WO2020143778A1 - 空调控制的方法、装置及计算机存储介质 - Google Patents

空调控制的方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2020143778A1
WO2020143778A1 PCT/CN2020/071468 CN2020071468W WO2020143778A1 WO 2020143778 A1 WO2020143778 A1 WO 2020143778A1 CN 2020071468 W CN2020071468 W CN 2020071468W WO 2020143778 A1 WO2020143778 A1 WO 2020143778A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
energy consumption
coefficient
air conditioner
value
Prior art date
Application number
PCT/CN2020/071468
Other languages
English (en)
French (fr)
Inventor
高玉辉
程绍江
禚百田
王军
袁本海
时斌
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US17/297,633 priority Critical patent/US11815276B2/en
Priority to EP20739058.4A priority patent/EP3855086A1/en
Publication of WO2020143778A1 publication Critical patent/WO2020143778A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • the invention relates to the technical field of smart home appliances, in particular to a method, device and computer storage medium for air conditioning control.
  • Air conditioners not only have basic core functions such as cooling and heating, but also have functions such as self-cleaning and sleep.
  • the working process of the sleep function of the air conditioner includes: during the cooling/dehumidification operation, the set temperature rises by n1°C after m1 hours of operation, and then increases by n2°C after m2 hours until the cooling sleep limit temperature.
  • the set temperature drops by n3°C after m3 hours, and then decreases by n4°C after m4 hours until the heating sleep limit temperature.
  • this control method is relatively simple, although it plays a role in power saving to a certain extent, it cannot meet the requirements of all users for comfort.
  • Embodiments of the present invention provide a method, device, and computer storage medium for air conditioning control.
  • a brief summary is given below. This summary section is not a general comment, nor is it to determine key/important constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a preface to the detailed description that follows.
  • a method for controlling an air conditioner including:
  • the current set temperature and the current compressor frequency of the air conditioner are adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner One or two of them.
  • the adjusting one or both of the current set temperature of the air conditioner and the current compressor frequency includes:
  • Tc is the current set temperature
  • To is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • at and ct are the current first body characteristic, respectively Coefficient and the current first energy consumption coefficient.
  • the adjusting one or both of the current set temperature of the air conditioner and the current compressor frequency includes:
  • the selected current sleep control strategy corresponds to the current body characteristic parameter value and the current energy consumption value
  • fc is the current set temperature
  • fo is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • ap and cp are the current second body characteristic, respectively Coefficient and the current second energy consumption coefficient.
  • the method further includes:
  • each sleep control strategy Configure each sleep control strategy and save the correspondence between the value range of the body characteristic parameter and the first body characteristic coefficient and the second body characteristic coefficient in each sleep control strategy, and save each sleep control strategy, Correspondence between the energy consumption range and the first energy consumption coefficient and the second energy consumption coefficient;
  • the sleep control strategy includes: a first sleep control strategy or a second sleep control strategy; within the same physical feature range, the absolute value of the first body feature coefficient in the first sleep control strategy is greater than the second sleep The absolute value of the first body characteristic coefficient in the control strategy; within the same energy consumption range, the absolute value of the first energy consumption coefficient in the first sleep control strategy is less than the first energy consumption coefficient in the second sleep control strategy Absolute value; within the same physical characteristic range, the absolute value of the second physical characteristic coefficient in the first sleep control strategy is less than the absolute value of the second physical characteristic coefficient in the second sleep control strategy; within the same energy consumption range, The absolute value of the second energy consumption coefficient in the first sleep control strategy is greater than the absolute value of the second energy consumption coefficient in the second sleep control strategy.
  • an air conditioner control device including:
  • An obtaining unit configured to obtain the current physical characteristic parameter value of the air-conditioning user within the current sampling time
  • the control unit is configured to adjust the current set temperature of the air conditioner according to the current body feature parameter value and the current energy consumption value of the air conditioner when the current body characteristic parameter value satisfies the sleep state setting parameter range And one or two of the current compressor frequency.
  • control unit includes:
  • a first determining subunit configured to determine the current first body characteristic coefficient and the current first energy consumption coefficient respectively corresponding to the current body characteristic parameter value and the current energy consumption value in the selected current sleep control strategy
  • the first control subunit is used to determine and save the current set temperature of the air conditioner according to the current first body characteristic coefficient and the current first energy consumption coefficient, and formula (1), and according to the current Setting the temperature to control the air conditioner;
  • Tc is the current set temperature
  • To is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • at and ct are the current first body characteristic, respectively Coefficient and the current first energy consumption coefficient.
  • control unit includes:
  • a second determining subunit configured to determine the selected current sleep control strategy and the current body feature parameter value when the current body feature parameter value meets a preset parameter range and the duration exceeds a set time
  • fc is the current set temperature
  • fo is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • ap and cp are the current second body characteristic, respectively Coefficient and the current second energy consumption coefficient.
  • it further includes:
  • the configuration unit is used to configure each sleep control strategy and save the correspondence between the value range of the body characteristic parameter and the first body characteristic coefficient and the second body characteristic coefficient in each sleep control strategy, and save each Correspondence between the energy consumption range and the first energy consumption coefficient and the second energy consumption coefficient in the sleep control strategy;
  • the sleep control strategy includes: the first sleep control strategy or the second sleep control strategy; the same physical characteristics Within the range, the absolute value of the first body characteristic coefficient in the first sleep control strategy is greater than the absolute value of the first body characteristic coefficient in the second sleep control strategy; within the same energy consumption range, the first sleep control The absolute value of the first energy consumption coefficient in the strategy is less than the absolute value of the first energy consumption coefficient in the second sleep control strategy; within the same physical characteristic range, the second body characteristic coefficient in the first sleep control strategy The absolute value is less than the absolute value of the second body characteristic coefficient in the second sleep control strategy; within the same energy consumption range, the absolute value of the second energy consumption coefficient in the first sleep control strategy is greater than the second sleep control The absolute value of the second energy consumption coefficient in
  • an air conditioner control device is used for air conditioning, and the device includes:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the current set temperature and the current compressor frequency of the air conditioner are adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner One or two of them.
  • a computer-readable storage medium on which computer instructions are stored, characterized in that the instructions implement the steps of the above method when executed by a processor.
  • the air conditioner when the user of the air conditioner enters the sleep state, the air conditioner can be controlled according to the user's physical characteristic parameter value and the air conditioner's energy consumption value, that is, taking into account the user's physical characteristics and energy consumption, so that it can be satisfied
  • the demand for energy saving can also meet the user's comfort experience, further enriching the diversity of air conditioning sleep control.
  • Fig. 1 is a flow chart showing an air conditioning control method according to an exemplary embodiment
  • Fig. 2 is a flowchart of an air conditioner control method according to an exemplary embodiment
  • Fig. 3 is a flowchart of an air conditioner control method according to an exemplary embodiment
  • Fig. 4 is a block diagram of an air conditioner control device according to an exemplary embodiment
  • Fig. 5 is a block diagram of an air conditioner control device according to an exemplary embodiment.
  • the air conditioner has multiple working functions, including: cooling, heating or sleeping, etc.
  • the air conditioner when the user of the air conditioner enters the sleep state, the air conditioner can be controlled according to the user's physical characteristic parameter value and the air conditioner's energy consumption value, that is, taking into account the user's physical characteristics and energy consumption, so that it can be satisfied
  • the demand for energy saving can also meet the user's comfort experience, further enriching the diversity of air conditioning sleep control.
  • Fig. 1 is a flow chart showing an air conditioning control method according to an exemplary embodiment. As shown in Figure 1, the process of air conditioning control may include:
  • Step 101 Obtain the current physical characteristic parameter value of the air-conditioning user within the current sampling time.
  • the air conditioner user's physical characteristic parameter value may include one or two of heart rate value and body surface temperature value.
  • the air conditioner can periodically obtain the physical characteristic parameter values of the air conditioner user, for example, by communicating with the wearable device to obtain the user's heart rate value, communicating with the wearable device or the infrared temperature measuring device, and obtaining the air conditioner's body surface temperature value. That is, the air conditioner can periodically sample to obtain the corresponding physical characteristic parameter value within each sampling time, and for the current sampling time, the current physical characteristic parameter value of the air conditioning user within the current sampling time is obtained.
  • Step 102 When the current body characteristic parameter value meets the sleep state setting parameter range, adjust one of the current set temperature of the air conditioner and the current compressor frequency according to the current body characteristic parameter value and the current energy consumption value of the air conditioner Two kinds.
  • the sleep state parameter range may include: a heart rate value range of 40-75 beats/min, a body surface temperature value range 36-37.3.
  • the sleep state parameter range only has a corresponding sleep state heart rate value range or sleep state body surface temperature value range.
  • the sleep control of the air conditioner can be performed.
  • the current heart rate value is 55
  • the current body surface temperature value is 36.7
  • the sleep state heart rate value range is 40-75 beats/min
  • the sleep state body surface temperature value range is 36-37.3
  • air conditioning control can be performed in consideration of the user's physical characteristics and energy consumption, that is, one of the current set temperature of the air conditioner and the current compressor frequency can be adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner Kind or two.
  • the current set temperature of the air conditioner can be adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner; or, the current compression of the air conditioner can be adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner Machine frequency; or, according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner, adjust the current set temperature of the air conditioner and the current compressor frequency.
  • adjusting one or both of the current set temperature of the air conditioner and the current compressor frequency may include adjusting the current set temperature of the air conditioner.
  • it may include: determining the selected current sleep control strategy, and the current The current first body characteristic coefficient and the current first energy consumption coefficient corresponding to the body characteristic parameter value and the current energy consumption value respectively; determined and saved according to the current first body characteristic coefficient and the current first energy consumption coefficient, and formula (1) The current set temperature of the air conditioner, and control the air conditioner according to the current set temperature;
  • Tc is the current set temperature
  • To is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • at and ct are the current first body characteristic coefficient and the current first energy consumption coefficient, respectively .
  • at or ct may be positive or negative.
  • at or ct may be positive or negative.
  • the air conditioner is cooling, at can be a negative number, and when the air conditioner is heating, at can be a positive number.
  • the current body surface temperature value is relatively high, at may be a negative number and so on.
  • Adjusting one or both of the current set temperature of the air conditioner and the current compressor frequency may include adjusting the current compressor frequency of the air conditioner, preferably, may include: when the current physical characteristic parameter value satisfies the preset parameter range, and When the duration exceeds the set time, determine the current second body characteristic coefficient and the current second energy consumption coefficient corresponding to the current body characteristic parameter value and the current energy consumption value in the selected current sleep control strategy, wherein the sleep state is set
  • the fixed parameter range includes the preset parameter range; according to the current second body characteristic coefficient and the current second energy consumption coefficient, and formula (2), determine and save the current compressor frequency of the air conditioner and save it, and control the air conditioner according to the current compressor frequency ;
  • fc is the current set temperature
  • fo is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • ap and cp are the current second body characteristic coefficient and current second energy consumption coefficient, respectively .
  • ap or cp can be positive or negative. It can be determined according to the operation mode of the air conditioner, as well as the specific physical characteristic parameter values and energy consumption values.
  • the previous set temperature To and the previous compressor frequency fo can be obtained from the saved set temperature and compressor frequency.
  • both the current set temperature and the current compressor frequency can be adjusted, that is, the current first corresponding to the current body characteristic parameter value and the current energy consumption value in the selected current sleep control strategy are determined.
  • the body characteristic coefficient and the current first energy consumption coefficient, as well as the current second body characteristic coefficient and the current second energy consumption coefficient corresponding to the current body characteristic parameter value and the current energy consumption value in this way, can be determined according to formula (1) and Save the current set temperature of the air conditioner and perform the corresponding air conditioner control. Then, when the current physical characteristic parameter value meets the preset parameter range and the duration exceeds the set time, determine and save the current air conditioner according to formula (2) Compressor frequency. At this time, the air conditioner is controlled according to the current set temperature and the current compressor frequency.
  • the current physical characteristic parameter value meets the preset parameter range and the duration exceeds the set time, first determine and save the current compressor frequency of the air conditioner according to formula (2), and control the air conditioner.
  • the current set temperature of the air conditioner may be determined and saved according to formula (1), and then the corresponding air conditioner control is performed.
  • different sleep control strategies need to be pre-configured, for example, a comfortable strategy that weights user's physical characteristics, that is, a first sleep control strategy, or an energy-saving strategy that weights energy consumption, that is, a second sleep control strategy.
  • a comfortable strategy that weights user's physical characteristics that is, a first sleep control strategy
  • an energy-saving strategy that weights energy consumption that is, a second sleep control strategy.
  • the first sleep control strategy only the set temperature of the air conditioner may be adjusted, or both the set temperature adjustment and the compressor frequency of the air conditioner may be adjusted.
  • the second sleep control strategy only the compressor of the air conditioner may be adjusted, and both the compressor frequency and the set temperature adjustment of the air conditioner may be adjusted. Therefore, in each sleep control strategy, the corresponding relationship between the body characteristic parameter value range and the first body characteristic coefficient, and the second body characteristic coefficient, and the energy consumption range and the first energy consumption coefficient and the first The corresponding relationship between the two energy consumption coefficients.
  • the first sleep control strategy may be a comfortable strategy that weights the user's physical characteristics
  • the second sleep control strategy may be an energy-saving strategy that weights energy consumption, therefore, within the same physical characteristic range, the first of the first sleep control strategies
  • the absolute value of the body characteristic coefficient is greater than the absolute value of the first body characteristic coefficient in the second sleep control strategy; within the same energy consumption range, the absolute value of the first energy consumption coefficient in the first sleep control strategy is less than that in the second sleep control strategy Absolute value of the first energy consumption coefficient; within the same body characteristic range, the absolute value of the second body characteristic coefficient in the first sleep control strategy is less than the absolute value of the second body characteristic coefficient in the second sleep control strategy; the same energy consumption range Within, the absolute value of the second energy consumption coefficient in the first sleep control strategy is greater than the absolute value of the second energy consumption coefficient in the second sleep control strategy.
  • Table 1 shows the correspondence between the value range of the body characteristic parameter, the first body characteristic coefficient, and the second body characteristic coefficient in the first sleep control strategy.
  • Table 2 shows the correspondence between the value range of the body characteristic parameter, the first body characteristic coefficient, and the second body characteristic coefficient in the second sleep control strategy.
  • Table 3 shows the correspondence between the energy consumption range in the first sleep control strategy, the first energy consumption coefficient and the second energy consumption coefficient in the second sleep control strategy.
  • the physical characteristic parameter values include heart rate values and body surface temperature values. Therefore, in the first sleep control strategy, the first physical characteristic coefficients at include: coefficients corresponding to the heart rate ⁇ 1tn , the coefficient b 1ttn corresponding to the body surface temperature, and the first energy consumption coefficient c 1tn , and the second body characteristic coefficient ap respectively include: a coefficient corresponding to the heart rate ⁇ 1pn , a coefficient corresponding to the body surface temperature b 1pn , and The second energy consumption coefficient c 1pn .
  • the first body characteristic coefficient at includes respectively: a coefficient corresponding to heart rate ⁇ 2tn , a coefficient corresponding to body surface temperature b 2ttn , and a first energy consumption coefficient c 2tn
  • the second body characteristic coefficient ap includes: the coefficient ⁇ 2pn corresponding to the heart rate, the coefficient b 2pn corresponding to the body surface temperature, and the second energy consumption coefficient c 2pn .
  • n 1, 2, 3...
  • the absolute value 1t1 ⁇ ⁇ 2t1 is greater than ⁇ 1t2 ⁇ 2t2 ...
  • the same surface temperature range the absolute value of b is greater than b 2T1 1t1, 1t2 absolute value of b is greater than b 2T2 ...
  • the same energy range c is smaller than the absolute value 1t1 c 2t1, the absolute value is smaller than c 1t2 c 2t2, ....
  • the absolute value is smaller than the absolute ⁇ ⁇ 1p1 2p1 and 1P2 ⁇ absolute value is smaller than the absolute value of 2p2 of ⁇ ...; the same surface temperature range, b 1p1 absolute value is less than the magnitude of b 2p1, b 1p2 absolute value less than the magnitude of b 2p2 ...; the same energy range, c is greater than the absolute value of the absolute value of 1p1 of c 2p1, c 1P2 absolute value than the absolute value of a ... c 2p2.
  • the second sleep control strategy focuses on the frequency control of the compressor of the air conditioner, and when performing frequency control, the absolute value of the energy consumption coefficient corresponding to the energy consumption value is relatively large, that is, weighted energy consumption, to achieve the purpose of energy saving.
  • the air conditioner when the user of the air conditioner enters the sleep state, the air conditioner can be controlled according to the user's physical characteristic parameter value and the air conditioner's energy consumption value, that is, the user's physical characteristics and energy consumption are taken into account. It can meet the needs of energy saving and the user's comfort experience, further enriching the diversity of air conditioning sleep control.
  • the selected current sleep control strategy may be the first sleep control strategy.
  • the range between the value of the body characteristic parameter and the first body characteristic coefficient and the second body characteristic coefficient The corresponding relationship may be as shown in Table 1.
  • the corresponding relationship between the energy consumption range, the first energy consumption coefficient, and the second energy consumption coefficient is shown in Table 3.
  • Fig. 2 is a flow chart showing an air conditioning control method according to an exemplary embodiment. As shown in Figure 2, the process of air conditioning control includes:
  • Step 201 When the sampling time arrives, the current physical characteristic parameter value of the air-conditioning user within the current sampling time is obtained.
  • Step 202 Determine whether the current physical characteristic parameter value meets the sleep state setting parameter range? If yes, go to step 203, otherwise, go to step 211.
  • Step 203 Determine the current first body characteristic coefficient and the current first energy consumption coefficient corresponding to the current body characteristic parameter value and the current energy consumption value in the first sleep control strategy, respectively.
  • the current physical characteristic parameter values include: current heart rate value and current body surface temperature value, therefore, as shown in Tables 1 and 3, at may include a coefficient corresponding to heart rate ⁇ 1tn and a coefficient corresponding to body surface temperature b 1tn .
  • Step 204 Determine and save the current set temperature of the air conditioner.
  • the current set temperature of the air conditioner can be determined according to formula (1). Since the current physical characteristic parameter values include: the current heart rate value and the current body surface temperature value, preferably, the current set temperature of the air conditioner can be determined according to formula (3).
  • Equation 3 A is the current heart rate value, and B can be the current body surface temperature value.
  • Step 205 Determine whether the current physical characteristic parameter value meets the preset first parameter range? If yes, go to step 206, otherwise, go to step 210.
  • the sleep state setting parameter range may be further divided, and the sleep state setting parameter range includes the preset first parameter range.
  • the parameter range corresponding to the deep sleep state may be the preset first parameter range.
  • Step 206 Determine whether the duration exceeds the set time? If yes, go to step 207; otherwise, go to step 210.
  • Step 207 Determine the current second body characteristic coefficient and the current second energy consumption coefficient corresponding to the current body characteristic parameter value and the current energy consumption value in the first sleep control strategy.
  • the coefficient ⁇ 1pn corresponding to the heart rate and the coefficient b 1pn corresponding to the body surface temperature can be obtained.
  • Step 208 Determine and save the current compressor frequency of the air conditioner.
  • the current compressor frequency of the air conditioner can be determined according to formula (2). Since the current physical characteristic parameter values include: the current heart rate value and the current body surface temperature value, preferably, the current compressor of the air conditioner can be determined according to formula (4) frequency.
  • A is the current heart rate value
  • B can be the current body surface temperature value
  • Step 209 Control the air conditioner according to the current set temperature and the current compressor frequency. Then, it returns to step 201 and performs the next air-conditioning control.
  • Step 210 Control the air conditioner according to the current set temperature. Then, it returns to step 201 and performs the next air-conditioning control.
  • Step 211 Control the air conditioner according to the current environmental information.
  • the air conditioner has not entered the sleep state, so that the air conditioner can be continuously controlled according to the existing method.
  • the air conditioner in the comfortable strategy that weights the user's physical characteristics, that is, the first sleep control strategy, the air conditioner can be controlled by controlling the set temperature of the air conditioner, and further the compressor frequency of the air conditioner can be controlled. While weighting the user's comfort experience, it can also take into account the energy consumption of the air conditioner, which not only satisfies the user's comfort experience, but also energy saving, further enriching the diversity of air conditioning sleep control.
  • the selected current sleep control strategy may be a second sleep control strategy.
  • the range of body characteristic parameter values and the first body characteristic coefficient, and the second body characteristic coefficient The correspondence between them can be shown in Table 2.
  • the correspondence between the energy consumption range, the first energy consumption coefficient, and the second energy consumption coefficient is shown in Table 3.
  • Fig. 3 is a flow chart showing an air conditioning control method according to an exemplary embodiment. As shown in Figure 3, the process of air conditioning control includes:
  • Step 301 When the sampling time arrives, the current physical characteristic parameter value of the air-conditioning user within the current sampling time is obtained.
  • Step 302 Determine whether the current physical characteristic parameter value meets the sleep state setting parameter range? If yes, go to step 303, otherwise, go to step 311.
  • Step 303 Determine whether the current physical characteristic parameter value meets the preset second parameter range? If yes, go to step 306, otherwise, go to step 308.
  • the sleep state setting parameter range may be further divided, and the sleep state setting parameter range includes a preset second parameter range.
  • the preset second parameter range is larger than the preset first parameter range in the above embodiment.
  • Step 304 Determine whether the duration exceeds the set time? If yes, go to step 305, otherwise, go to step 308.
  • Step 305 Determine the current second body characteristic coefficient and the current second energy consumption coefficient corresponding to the current body characteristic parameter value and the current energy consumption value in the second sleep control strategy.
  • the coefficient ⁇ 2pn corresponding to the heart rate and the coefficient b 2pn corresponding to the body surface temperature can be obtained.
  • Step 306 Determine and save the current compressor frequency of the air conditioner.
  • the current compressor frequency of the air conditioner can be determined according to formula (5).
  • A is the current heart rate value
  • B can be the current body surface temperature value
  • Step 307 Control the air conditioner according to the current compressor frequency. Then, it returns to step 301 and performs the next air-conditioning control.
  • Step 308 Determine the current first body characteristic coefficient and the current first energy consumption coefficient respectively corresponding to the current body characteristic parameter value and the current energy consumption value in the second sleep control strategy.
  • the coefficient ⁇ 2tn corresponding to heart rate and the coefficient b 2tn corresponding to body surface temperature can be obtained.
  • Step 309 Determine and save the current set temperature of the air conditioner.
  • the current set temperature of the air conditioner can be determined according to formula (6).
  • Equation 6 A is the current heart rate value, and B can be the current body surface temperature value.
  • Step 310 Control the air conditioner according to the current set temperature. Then, it returns to step 301 and performs the next air-conditioning control.
  • Step 311 Control the air conditioner according to the current environmental information.
  • the air conditioner has not entered the sleep state, so that the air conditioner can be continuously controlled according to the existing method.
  • the air conditioner in the energy-saving strategy that weights the energy consumption of the air conditioner, that is, the second sleep control strategy, the air conditioner can be controlled by controlling the compressor frequency of the air conditioner, and further the set temperature of the air conditioner can be controlled. While weighting the energy consumption of the air conditioner, it can also take into account the user's comfort, which not only meets the energy saving needs, but also the user's comfort experience, further enriching the diversity of air conditioning sleep control.
  • an air-conditioning control device can be constructed.
  • Fig. 4 is a block diagram of an air conditioner control device according to an exemplary embodiment. As shown in FIG. 4, the device may include: an acquisition unit 100 and a control unit 200.
  • the obtaining unit 100 is configured to obtain the current physical characteristic parameter value of the air-conditioning user within the current sampling time.
  • the control unit 200 is used to adjust the current set temperature of the air conditioner and the current compressor frequency according to the current physical feature parameter value and the current energy consumption value of the air conditioner when the current body characteristic parameter value satisfies the sleep state setting parameter range One or two.
  • control unit 200 includes:
  • the first determining subunit is used to determine the current first body characteristic coefficient and the current first energy consumption coefficient respectively corresponding to the current body characteristic parameter value and the current energy consumption value in the selected current sleep control strategy;
  • the first control subunit is used to determine and save the current set temperature of the air conditioner according to the current first body characteristic coefficient and the current first energy consumption coefficient, and formula (1), and control the air conditioner according to the current set temperature;
  • Tc is the current set temperature
  • To is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • at and ct are the current first body characteristic coefficient and the current first energy consumption coefficient, respectively .
  • control unit 200 includes:
  • the second determining subunit is used to determine the current physical characteristic parameter value and the current energy consumption value in the selected current sleep control strategy when the current physical characteristic parameter value meets the preset parameter range and the duration exceeds the set time Corresponding current second body characteristic coefficient and current second energy consumption coefficient, wherein the sleep state setting parameter range includes a preset parameter range;
  • fc is the current set temperature
  • fo is the previous set temperature
  • U is the current body characteristic parameter value
  • W is the current energy consumption value
  • ap and cp are the current second body characteristic coefficient and current second energy consumption coefficient, respectively .
  • it further includes:
  • the configuration unit is used to configure each sleep control strategy and save the correspondence between the value range of the body characteristic parameter and the first body characteristic coefficient and the second body characteristic coefficient in each sleep control strategy, and save each Correspondence between the energy consumption range and the first energy consumption coefficient and the second energy consumption coefficient in the sleep control strategy;
  • the sleep control strategy includes: the first sleep control strategy or the second sleep control strategy; within the same physical characteristics range , The absolute value of the first body characteristic coefficient in the first sleep control strategy is greater than the absolute value of the first body characteristic coefficient in the second sleep control strategy; within the same energy consumption range, the first energy consumption coefficient in the first sleep control strategy The absolute value of is less than the absolute value of the first energy consumption coefficient in the second sleep control strategy; within the same physical characteristic range, the absolute value of the second body characteristic coefficient in the first sleep control strategy is less than the second body in the second sleep control strategy Absolute value of characteristic coefficient; within the same energy consumption range, the absolute value of the second energy consumption coefficient in the first sleep control strategy is greater than the absolute value of the second energy consumption coefficient in the second sleep control
  • Fig. 5 is a block diagram of an air conditioner control device according to an exemplary embodiment.
  • the device may include: the acquiring unit 100 and the control unit 200 further include a configuration unit 300.
  • the control unit 200 may include: a first determination subunit 210 and a first control subunit 220, and a second determination subunit 230 and a second control subunit 240.
  • the configuration unit 300 can configure each sleep control strategy and save the correspondence between the value range of the body characteristic parameter and the first body characteristic coefficient and the second body characteristic coefficient in each sleep control strategy, and save each Correspondence relationship between the energy consumption range and the first energy consumption coefficient and the second energy consumption coefficient in a sleep control strategy;
  • the sleep control strategy includes: the first sleep control strategy or the second sleep control strategy; the same physical characteristic range Within, the absolute value of the first body characteristic coefficient in the first sleep control strategy is greater than the absolute value of the first body characteristic coefficient in the second sleep control strategy; within the same energy consumption range, the first energy consumption in the first sleep control strategy The absolute value of the coefficient is less than the absolute value of the first energy consumption coefficient in the second sleep control strategy; within the same physical characteristic range, the absolute value of the second body characteristic coefficient in the first sleep control strategy is less than the second in the second sleep control strategy The absolute value of the body characteristic coefficient; within the same energy consumption range, the absolute value of the second energy consumption coefficient in the first sleep control strategy is greater than the absolute value of the second energy consumption
  • the acquiring unit 100 may acquire the current physical characteristic parameter value of the air conditioning user within the current sampling time, and when the current physical characteristic parameter value meets the sleep state setting parameter range, the control unit 200 may determine the current physical characteristic The parameter value, and the current energy consumption value of the air conditioner, adjust one or both of the current set temperature of the air conditioner and the current compressor frequency.
  • the first determining subunit 210 in the control unit 200 may determine the current first body characteristic coefficient and the current first energy consumption corresponding to the current body characteristic parameter value and the current energy consumption value respectively in the selected current sleep control strategy Coefficient; then the first control subunit 220 may determine and save the current set temperature of the air conditioner according to the current first body characteristic coefficient and the current first energy consumption factor, and formula (1), and control the air conditioner according to the current set temperature.
  • the second determining subunit 230 in the control unit 200 may determine the current body characteristic parameter value in the selected current sleep control strategy And the current second body characteristic coefficient and the current second energy consumption coefficient corresponding to the current energy consumption value. Then, the second control subunit 240 may determine and save the current compressor frequency of the air conditioner according to the current second body characteristic coefficient and the current second energy consumption coefficient, and formula (2), and control the air conditioner according to the current compressor frequency.
  • the air conditioner after the air conditioner user enters the sleep state, the air conditioner can be controlled according to the user's physical characteristic parameter values and the air conditioner's energy consumption value, that is, taking into account the user's physical characteristics and energy consumption, in this way, both Satisfying the energy-saving requirements and the user's comfort experience further enriches the diversity of air-conditioning sleep control.
  • an air conditioner control device is provided.
  • the device is used for air conditioning, and the device includes:
  • Memory for storing processor executable instructions
  • the processor is configured as:
  • the current set temperature and the current compressor frequency of the air conditioner are adjusted according to the current physical characteristic parameter value and the current energy consumption value of the air conditioner One or two of them.
  • An embodiment of the present invention provides a computer-readable storage medium having computer instructions stored thereon, which is characterized in that the instructions implement the steps of the above method when the instructions are executed by a processor.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of one flow or multiple blocks of a flowchart.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制的方法、装置及计算机存储介质,属于智能家电技术领域。该方法包括:获取当前采样时间内的空调用户的当前身体特征参数值;当当前身体特征参数值满足睡眠状态设定参数范围时,根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率中的一种或两种。这样既可满足节能的需求,也能满足用户的舒适度体验,丰富了空调睡眠控制的多样性。

Description

空调控制的方法、装置及计算机存储介质
本申请基于申请号为201910023893.4、申请日为2019年01月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及智能家电技术领域,特别涉及空调控制的方法、装置及计算机存储介质。
背景技术
随着生活水平的提高,空调已经是人们日常生活的必备品。空调不仅具有制冷、制热等基本核心功能,还可以具有自清洁、睡眠等功能。其中,空调的睡眠功能的工作过程包括:在制冷/除湿运转时,运行m1小时后设定温度上升n1℃,再过m2小时后设定温度再上升n2℃,直至制冷睡眠限制温度。在制热运转时,m3小时后设定温度下降n3℃,再m4小时后设定温度再下降n4℃,直至制热睡眠限制温度。
目前,这种控制方式比较单一,虽然一定程度的起到节电作用,但不能满足所有用户对舒适度的要求。
发明内容
本发明实施例提供了一种空调控制的方法、装置及计算机存储介质。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面提供了一种空调控制的方法,包括:
获取当前采样时间内的空调用户的当前身体特征参数值;
当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
本发明一实施例中,所述调整所述空调的当前设定温度和当前压缩机频率中的一种或两种包括:
确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;
根据所述当前第一身体特征系数和所述当前第一能耗系数,以及公式(1),确定并保存所述空调的当前设定温度,并根据所述当前设定温度控制所述空调;
Tc=To-(at*U+ct*W)-----------------------(1)
其中,Tc为所述当前设定温度,To为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,at和ct分别为所述当前第一身体特征系数和所述当前第一能耗系数。
本发明一实施例中,所述调整所述空调的当前设定温度和当前压缩机频率中的一种或两种包括:
当所述当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,所述睡眠状态设定参数范围包含所述预设参数范围;
根据所述当前第二身体特征系数和所述当前第二能耗系数,以及公式(2),确定并保存所述空调的当前压缩机频率,并根据所述当前压缩机频率控制所述空调;
fc=fo-(ap*Up+cp*W)-----------------------(2)
其中,fc为所述当前设定温度,fo为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,ap和cp分别为所述当前第二身体特征系数和所述当前第二能耗系数。
本发明一实施例中,所述方法还包括:
配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;
其中,所述睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,所述第一睡眠控制策略中的第一身体特征系数的绝对值大于所述第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第一能耗系数的绝对值小于所述第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,所述第一睡眠控制策略中的第二身体特征系数的绝对值小于所述第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第二能耗系数的绝对值大于所述第二睡眠控制策略中第二能耗系数的绝对值。
根据本发明实施例的第二方面提供了一种空调控制的装置,所述装置包括:
获取单元,用于获取当前采样时间内的空调用户的当前身体特征参数值;
控制单元,用于当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
本发明一实施例中,所述控制单元包括:
第一确定子单元,用于确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;
第一控制子单元,用于根据所述当前第一身体特征系数和所述当前第一能耗系数,以 及公式(1),确定并保存所述空调的当前设定温度,并根据所述当前设定温度控制所述空调;
Tc=To-(at*U+ct*W)-----------------------(1)
其中,Tc为所述当前设定温度,To为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,at和ct分别为所述当前第一身体特征系数和所述当前第一能耗系数。
本发明一实施例中,所述控制单元包括:
第二确定子单元,用于当所述当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,所述睡眠状态设定参数范围包含所述预设参数范围;
根据所述当前第二身体特征系数和所述当前第二能耗系数,以及公式(2),确定并保存所述空调的当前压缩机频率,并根据所述当前压缩机频率控制所述空调;
fc=fo-(ap*Up+cp*W)-----------------------(2)
其中,fc为所述当前设定温度,fo为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,ap和cp分别为所述当前第二身体特征系数和所述当前第二能耗系数。
本发明一实施例中,还包括:
配置单元,用于配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;其中,所述睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,所述第一睡眠控制策略中的第一身体特征系数的绝对值大于所述第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第一能耗系数的绝对值小于所述第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,所述第一睡眠控制策略中的第二身体特征系数的绝对值小于所述第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第二能耗系数的绝对值大于所述第二睡眠控制策略中第二能耗系数的绝对值。
根据本发明实施例的第三方面提供了一种空调控制的装置,所述装置用于空调,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取当前采样时间内的空调用户的当前身体特征参数值;
当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参 数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
根据本发明实施例的第四方面提供了一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述方法的步骤。
本发明实施例提供的技术方案可以包括以下有益效果:
本发明实施例中,当空调用户进入睡眠状态后,可根据用户的身体特征参数值,以及空调的能耗值来对空调进行控制,即兼顾了用户身体特征和能耗,这样,既可满足节能的需求,也能满足用户的舒适度体验,进一步丰富了空调睡眠控制的多样性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种空调控制方法的流程图;
图2是根据一示例性实施例示出的一种空调控制方法的流程图;
图3是根据一示例性实施例示出的一种空调控制方法的流程图;
图4是根据一示例性实施例示出的一种空调控制装置的框图;
图5是根据一示例性实施例示出的一种空调控制装置的框图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
空调具有多种工作功能,包括:制冷,制热或睡眠等等。本发明实施例中,当空调用户进入睡眠状态后,可根据用户的身体特征参数值,以及空调的能耗值来对空调进行控制,即兼顾了用户身体特征和能耗,这样,既可满足节能的需求,也能满足用户的舒适度体验,进一步丰富了空调睡眠控制的多样性。
图1是根据一示例性实施例示出的一种空调控制方法的流程图。如图1所示,空调控制的过程可包括:
步骤101:获取当前采样时间内的空调用户的当前身体特征参数值。
本发明实施例中,空调用户的身体特征参数值可包括:心率值和体表温度值中的一种或两种。空调可定期获取空调用户的身体特征参数值,例如,通过与可穿戴设备通讯,获取用户的心率值,与穿戴设备或者红外测温装置进行通讯,获取空调用户的体表温度值等。即空调可定期进行采样,获取每个采样时间内对应的身体特征参数值,对于当前采样时间,则获取当前采样时间内的空调用户的当前身体特征参数值。
步骤102:当当前身体特征参数值满足睡眠状态设定参数范围时,根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率中的一种或两种。
用户在睡觉时,用户的心率值会比较低,体表温度也比较稳定,根据大数据统计,会有一个对应的范围,目前,很多穿戴设备,监控软件等都有对应的参数范围。这里,针对不同的身体特征参数对应不同的参数范围,即预先配置一个睡眠状态设定参数范围,例如,睡眠状态参数范围可包括:心率值范围为40-75次/分,体表温度值范围为36-37.3。或者,睡眠状态参数范围只有对应的睡眠状态心率值范围或睡眠状态体表温度值范围。
这样,若当前特征参数值满足睡眠状态设定参数范围时,即可确定用户进入睡眠状态,即可进行空调的睡眠控制了。例如:当前心率值为55,当前体表温度值为36.7,分别在睡眠状态心率值范围为40-75次/分与睡眠状态体表温度值范围为36-37.3之中,从而,可确定用户进入睡眠状态,即可进行空调的睡眠控制了。
本实施例中,可兼顾用户身体特征和能耗来进行空调控制,即可根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率中的一种或两种。具体地,可根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度;或者,可根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前压缩机频率;或者,根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率。
其中,调整空调的当前设定温度和当前压缩机频率中的一种或两种可包括调整空调的当前设定温度,较佳地,可包括:确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;根据当前第一身体特征系数和当前第一能耗系数,以及公式(1),确定并保存空调的当前设定温度,并根据当前设定温度控制空调;
Tc=To-(at*U+ct*W)-----------------------(1)
其中,Tc为当前设定温度,To为前一次设定温度,U为当前身体特征参数值,W为当前能耗值,at和ct分别为当前第一身体特征系数和当前第一能耗系数。并且,at或ct可为正数或负数。例如:空调制冷时,at可为负数,而空调制热时at可为正数。或者,当前体表温度值比较高时,at可为负数等等。
而调整空调的当前设定温度和当前压缩机频率中的一种或两种可包括调整空调的当前压缩机频率,较佳地,可包括:当当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,睡眠状态设定参数范围包含预设参数范围;根据当前第二身体特征系数和当前第二能耗系数,以及公式(2),确定并保存空调的当前压缩机频率并保存,并根据当前压缩机频率控制空调;
fc=fo-(ap*Up+cp*W)-----------------------(2)
其中,fc为当前设定温度,fo为前一次设定温度,U为当前身体特征参数值,W为当前能耗值,ap和cp分别为当前第二身体特征系数和当前第二能耗系数。同样,ap或cp可为正数或负数。可根据空调的运行模式,以及具体的身体特征参数值以及能耗值确定。
由于每次进行控制时,保存了当前设定温度和当前压缩机频率,那么可以从保存的设定温度和压缩机频率中,获取到前一次设定温度To,以及前一次压缩机频率fo。
当然,本发明实施例中,可以既调整当前设定温度也调整当前压缩机频率,即确定了选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数,以及与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,这样,可先根据公式(1)确定并保存空调的当前设定温度,以及进行对应的空调控制,然后,当当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,根据公式(2),确定并保存空调的当前压缩机频率,此时,根据当前设定温度,以及当前压缩机频率控制空调。
或者,当当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,先根据公式(2)确定并保存空调的当前压缩机频率,并控制空调。而当当前身体特征参数值不满足预设参数范围,可继续根据公式(1)确定并保存空调的当前设定温度,然后进行对应的空调控制。
本发明实施例中,需预先配置不同的睡眠控制策略,例如:权重用户身体特征的舒适型策略,即第一睡眠控制策略,或者,权重能耗的节能型策略,即第二睡眠控制策略。并且,第一睡眠控制策略中,可以只对空调的设定温度调整,也可以既对设定温度调整又对空调的压缩机频率进行调整。而第二睡眠控制策略中,可以只对空调的压缩机进行调整,还可既对压缩机频率又对空调的设定温度调整进行调整。因此,每种睡眠控制策略中,都分别配置有身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系。
由于第一睡眠控制策略可为权重用户身体特征的舒适型策略,而第二睡眠控制策略可为权重能耗的节能型策略,因此,相同身体特征范围内,第一睡眠控制策略中的第一身体特征系数的绝对值大于第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第一能耗系数的绝对值小于第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,第一睡眠控制策略中的第二身体特征系数的绝对值小于第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第二能耗系数的绝对值大于第二睡眠控制策略中第二能耗系数的绝对值。
表1为第一睡眠控制策略中身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系。
表2为第二睡眠控制策略中身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系。
表3为第一睡眠控制策略,第二睡眠控制策略中能耗范围与第一能耗系数以及第二能耗系数之间的对应关系。
以上述表1、表2、表3为例,身体特征参数值包括心率值和体表温度值,因此,第一睡眠控制策略中,第一身体特征系数at分别包括:与心率对应的系数ɑ 1tn,与体表温度对应的系数b 1ttn,以及第一能耗系数c 1tn,而第二身体特征系数ap分别包括:与心率对应的系数ɑ 1pn,与体表温度对应的系数b 1pn,以及第二能耗系数c 1pn。而第二睡眠控制策略中,第一身体特征系数at分别包括:与心率对应的系数ɑ 2tn,与体表温度对应的系数b 2ttn,以及第一能耗系数c 2tn,而第二身体特征系数ap分别包括:与心率对应的系数ɑ 2pn,与体表温度对应的系数b 2pn,以及第二能耗系数c 2pn。其中,n=1、2、3…。
Figure PCTCN2020071468-appb-000001
表1
Figure PCTCN2020071468-appb-000002
Figure PCTCN2020071468-appb-000003
表2
Figure PCTCN2020071468-appb-000004
表3
其中,同一心率值范围下,ɑ 1t1的绝对值大于ɑ 2t1,ɑ 1t2的绝对值大于ɑ 2t2…;同一体表温度范围内,b 1t1的绝对值大于b 2t1,b 1t2的绝对值大于b 2t2…;而同一能耗范围内,c 1t1的绝对值小于c 2t1,c 1t2的绝对值小于c 2t2,…。
同一心率值范围下,ɑ 1p1的绝对值小于ɑ 2p1的绝对值,ɑ 1p2的绝对值小于ɑ 2p2的绝对值…;同一体表温度范围内,b 1p1的绝对值小于b 2p1的绝对值,b 1p2的绝对值小于b 2p2的绝对值…;而同一能耗范围内,c 1p1的绝对值大于c 2p1的绝对值,c 1p2的绝对值大于c 2p2的绝对值…。
可见,在第一睡眠控制策略中,着重于当前设定温度的控制,并且,进行温度控制时,与身体特征参数值对应的第一身体特征系数的绝对值比较大,即权重用户身体特征,到达用户舒适的目的。而第二睡眠控制策略中,着重于空调的压缩机频率的控制,并且,进行频率控制时,与能耗值对应的能耗系数的绝对值比较大,即权重能耗,达到节能的目的。
可见,本发明实施例中,当空调用户进入睡眠状态后,可根据用户的身体特征参数值,以及空调的能耗值来对空调进行控制,即兼顾了用户身体特征和能耗,这样,既可满足节能的需求,也能满足用户的舒适度体验,进一步丰富了空调睡眠控制的多样性。
下面将操作流程集合到具体实施例中,举例说明本发明实施例提供的控制方法。
本实施例中,已选择的当前睡眠控制策略可为第一睡眠控制策略,保存的第一睡眠控 制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系可如表1所示,保存的第一睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系如表3所示。
图2是根据一示例性实施例示出的一种空调控制方法的流程图。如图2所示,空调控制的过程包括:
步骤201:采样时间到达,获取当前采样时间内的空调用户的当前身体特征参数值。
步骤202:判断当前身体特征参数值是否满足睡眠状态设定参数范围?若是,执行步骤203,否则,执行步骤211。
步骤203:确定第一睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数。
这里,当前身体特征参数值包括:当前心率值和当前体表温度值,因此,如表1和表3所示,at可包括与心率对应的系数ɑ 1tn,以及与体表温度对应的系数b 1tn。同时也可获取到对应的第一能耗系数c 1tn,其中,n=1、2、3…。
步骤204:确定并保存空调的当前设定温度。
可根据公式(1),确定空调的当前设定温度。由于当前身体特征参数值包括:当前心率值和当前体表温度值,因此,较佳地,可根据公式(3)确定空调的当前设定温度。
Tc=To-(ɑ 1tn*A+b 1tn*B+c 1tn*W)-----------------------(3)
公式3中,A为当前心率值,而B可为当前体表温度值。
步骤205:判断当前身体特征参数值是否满足预设第一参数范围?若是,执行步骤206,否则,执行步骤210。
这里,可进一步睡眠状态设定参数范围进行划分,睡眠状态设定参数范围包含预设第一参数范围。例如:深睡眠状态对应的参数范围可为预设第一参数范围。
步骤206:判断持续时间是否超过设定时间?若是,执行步骤207,否则,执行步骤210。
步骤207:确定第一睡眠控制策略中,与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数。
根据表1和表3,即可获取的与心率对应的系数ɑ 1pn,以及与体表温度对应的系数b 1pn。同时也可获取到对应的第一能耗系数c 1pn,其中,n=1、2、3…。
步骤208:确定并保存空调的当前压缩机频率。
可根据公式(2)确定空调的当前压缩机频率,由于当前身体特征参数值包括:当前心率值和当前体表温度值,因此,较佳地,可根据公式(4)确定空调的当前压缩机频率。
fc=fo-(ɑ 1pn*A+b 1pn*B+c 1pn*W)-----------------------(4).
同样,A为当前心率值,而B可为当前体表温度值。
步骤209:根据当前设定温度和当前压缩机频率,控制空调。然后,返回步骤201,进行下一次空调控制。
步骤210:根据当前设定温度控制空调。然后,返回步骤201,进行下一次空调控制。
步骤211:根据当前环境信息,控制空调。
即空调未进入睡眠状态,从而,可根据现有的方式继续控制空调。
可见,本实施例中,在权重用户身体特征的舒适型策略,即第一睡眠控制策略中,可通过控制空调的设定温度来控制空调,而进一步还可控制空调的压缩机频率,这样,在权重用户舒适性体验的同时,也可兼顾空调的能耗,不仅满足用户的舒适度体验,也能兼顾节能,进一步丰富了空调睡眠控制的多样性。
本发明另一实施例中,已选择的当前睡眠控制策略可为第二睡眠控制策略,保存的第二睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系可如表2所示,保存的第二睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系如表3所示。
图3是根据一示例性实施例示出的一种空调控制方法的流程图。如图3所示,空调控制的过程包括:
步骤301:采样时间到达,获取当前采样时间内的空调用户的当前身体特征参数值。
步骤302:判断当前身体特征参数值是否满足睡眠状态设定参数范围?若是,执行步骤303,否则,执行步骤311。
步骤303:判断当前身体特征参数值是否满足预设第二参数范围?若是,执行步骤306,否则,执行步骤308。
这里,可进一步睡眠状态设定参数范围进行划分,睡眠状态设定参数范围包含预设第二参数范围。较佳地,预设第二参数范围大于上述实施例中的预设第一参数范围。
步骤304:判断持续时间是否超过设定时间?若是,执行步骤305,否则,执行步骤308。
步骤305:确定第二睡眠控制策略中,与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数。
根据表2,表3,即可获取的与心率对应的系数ɑ 2pn,以及与体表温度对应的系数b 2pn。同时也可获取到对应的第一能耗系数c 2pn,其中,n=1、2、3…。
步骤306:确定并保存空调的当前压缩机频率。
较佳地,可根据公式(5)确定空调的当前压缩机频率。
fc=fo-(ɑ 2pn*A+b 2pn*B+c 2pn*W)-----------------------(5).
同样,A为当前心率值,而B可为当前体表温度值。
步骤307:根据当前压缩机频率,控制空调。然后,返回步骤301,进行下一次空调控制。
步骤308:确定第二睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数。
根据表2和表3,可获取与心率对应的系数ɑ 2tn,以及与体表温度对应的系数b 2tn。同 时也可获取到对应的第一能耗系数c 2tn,其中,n=1、2、3…。
步骤309:确定并保存空调的当前设定温度。
较佳地,可根据公式(6)确定空调的当前设定温度。
Tc=To-(ɑ 2tn*A+b 2tn*B+c 2tn*W)-----------------------(6)
公式6中,A为当前心率值,而B可为当前体表温度值。
步骤310:根据当前设定温度控制空调。然后,返回步骤301,进行下一次空调控制。
步骤311:根据当前环境信息,控制空调。
即空调未进入睡眠状态,从而,可根据现有的方式继续控制空调。
可见,本实施例中,在权重空调能耗的节能型策略,即第二睡眠控制策略中,可通过控制空调的压缩机频率来控制空调,而进一步还可控制空调的设定温度,这样,在权重空调能耗的同时,也可兼顾用户的舒适度,不仅满足节能需求,也能兼顾用户的舒适度体验,进一步丰富了空调睡眠控制的多样性。
根据上述空调控制的过程,可构建一种空调控制的装置。
图4是根据一示例性实施例示出的一种空调控制装置的框图。如图4所示,该装置可包括:获取单元100和控制单元200。
获取单元100,用于获取当前采样时间内的空调用户的当前身体特征参数值。
控制单元200,用于当当前身体特征参数值满足睡眠状态设定参数范围时,根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率中的一种或两种。
本发明一实施例中,控制单元200包括:
第一确定子单元,用于确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;
第一控制子单元,用于根据当前第一身体特征系数和当前第一能耗系数,以及公式(1),确定并保存空调的当前设定温度,并根据当前设定温度控制空调;
Tc=To-(at*U+ct*W)-----------------------(1)
其中,Tc为当前设定温度,To为前一次设定温度,U为当前身体特征参数值,W为当前能耗值,at和ct分别为当前第一身体特征系数和当前第一能耗系数。
本发明一实施例中,控制单元200包括:
第二确定子单元,用于当当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,睡眠状态设定参数范围包含预设参数范围;
根据当前第二身体特征系数和当前第二能耗系数,以及公式(2),确定并保存空调的当前压缩机频率,并根据当前压缩机频率控制空调;
fc=fo-(ap*Up+cp*W)-----------------------(2)
其中,fc为当前设定温度,fo为前一次设定温度,U为当前身体特征参数值,W为当前能耗值,ap和cp分别为当前第二身体特征系数和当前第二能耗系数。
本发明一实施例中,还包括:
配置单元,用于配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;其中,睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,第一睡眠控制策略中的第一身体特征系数的绝对值大于第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第一能耗系数的绝对值小于第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,第一睡眠控制策略中的第二身体特征系数的绝对值小于第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第二能耗系数的绝对值大于第二睡眠控制策略中第二能耗系数的绝对值。
下面对空调控制的装置进行具体的描述。
图5是根据一示例性实施例示出的一种空调控制装置的框图。如图5所示,该装置可包括:获取单元100和控制单元200还包括配置单元300。而控制单元200可包括:第一确定子单元210和第一控制子单元220,以及第二确定子单元230和第二控制子单元240。
这样,配置单元300可配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;其中,睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,第一睡眠控制策略中的第一身体特征系数的绝对值大于第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第一能耗系数的绝对值小于第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,第一睡眠控制策略中的第二身体特征系数的绝对值小于第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,第一睡眠控制策略中的第二能耗系数的绝对值大于第二睡眠控制策略中第二能耗系数的绝对值。例如:配置单元300配置了如表1、表2以及表3所示的对应关系。
然后,进行空调控制时,获取单元100可获取当前采样时间内的空调用户的当前身体特征参数值,而当当前身体特征参数值满足睡眠状态设定参数范围时,控制单元200可根据当前身体特征参数值,以及空调的当前能耗值,调整空调的当前设定温度和当前压缩机频率中的一种或两种.
其中,控制单元200中的第一确定子单元210可确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;然后第一控制子单元220可根据当前第一身体特征系数和当前第一能耗系数,以及公式(1),确定并保存空调的当前设定温度,并根据当前设定温度控制空调。
而若当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,控制单元200中的第二确定子单元230可确定已选择的当前睡眠控制策略中,与当前身体特征参数值以及当前能耗值对应的当前第二身体特征系数和当前第二能耗系数。然后,第二控制子单元240可根据当前第二身体特征系数和当前第二能耗系数,以及公式(2),确定并保存空调的当前压缩机频率,并根据当前压缩机频率控制空调。
可见,本实施例中,当空调用户进入睡眠状态后,可根据用户的身体特征参数值,以及空调的能耗值来对空调进行控制,即兼顾了用户身体特征和能耗,这样,既可满足节能的需求,也能满足用户的舒适度体验,进一步丰富了空调睡眠控制的多样性。
本发明一实施例中,提供了一种空调控制的装置,装置用于空调,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取当前采样时间内的空调用户的当前身体特征参数值;
当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述方法的步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调控制的方法,其特征在于,包括:
    获取当前采样时间内的空调用户的当前身体特征参数值;
    当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
  2. 如权利要求1所述的方法,其特征在于,所述调整所述空调的当前设定温度和当前压缩机频率中的一种或两种包括:
    确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;
    根据所述当前第一身体特征系数和所述当前第一能耗系数,以及公式(1),确定并保存所述空调的当前设定温度,并根据所述当前设定温度控制所述空调;
    Tc=To-(at*U+ct*W)-----------------------(1)
    其中,Tc为所述当前设定温度,To为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,at和ct分别为所述当前第一身体特征系数和所述当前第一能耗系数。
  3. 如权利要求1或2所述的方法,其特征在于,所述调整所述空调的当前设定温度和当前压缩机频率中的一种或两种包括:
    当所述当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,所述睡眠状态设定参数范围包含所述预设参数范围;
    根据所述当前第二身体特征系数和所述当前第二能耗系数,以及公式(2),确定并保存所述空调的当前压缩机频率,并根据所述当前压缩机频率控制所述空调;
    fc=fo-(ap*Up+cp*W)-----------------------(2)
    其中,fc为所述当前设定温度,fo为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,ap和cp分别为所述当前第二身体特征系数和所述当前第二能耗系数。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;
    其中,所述睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,所述第一睡眠控制策略中的第一身体特征系数的绝对值大于所述第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第一能 耗系数的绝对值小于所述第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,所述第一睡眠控制策略中的第二身体特征系数的绝对值小于所述第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第二能耗系数的绝对值大于所述第二睡眠控制策略中第二能耗系数的绝对值。
  5. 一种空调控制的装置,其特征在于,所述装置包括:
    获取单元,用于获取当前采样时间内的空调用户的当前身体特征参数值;
    控制单元,用于当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
  6. 如权利要求5所述的装置,其特征在于,所述控制单元包括:
    第一确定子单元,用于确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值分别对应的当前第一身体特征系数和当前第一能耗系数;
    第一控制子单元,用于根据所述当前第一身体特征系数和所述当前第一能耗系数,以及公式(1),确定并保存所述空调的当前设定温度,并根据所述当前设定温度控制所述空调;
    Tc=To-(at*U+ct*W)-----------------------(1)
    其中,Tc为所述当前设定温度,To为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,at和ct分别为所述当前第一身体特征系数和所述当前第一能耗系数。
  7. 如权利要求5或6所述的装置,其特征在于,所述控制单元包括:
    第二确定子单元,用于当所述当前身体特征参数值满足预设参数范围,且持续时间超过设定时间时,确定已选择的当前睡眠控制策略中,与所述当前身体特征参数值以及所述当前能耗值对应的当前第二身体特征系数和当前第二能耗系数,其中,所述睡眠状态设定参数范围包含所述预设参数范围;
    根据所述当前第二身体特征系数和所述当前第二能耗系数,以及公式(2),确定并保存所述空调的当前压缩机频率,并根据所述当前压缩机频率控制所述空调;
    fc=fo-(ap*Up+cp*W)-----------------------(2)
    其中,fc为所述当前设定温度,fo为前一次设定温度,U为所述当前身体特征参数值,W为所述当前能耗值,ap和cp分别为所述当前第二身体特征系数和所述当前第二能耗系数。
  8. 如权利要求7所述的装置,其特征在于,还包括:
    配置单元,用于配置每种睡眠控制策略,并保存每种睡眠控制策略中,身体特征参数值范围与第一身体特征系数,以及第二身体特征系数之间的对应关系,以及,保存每种睡眠控制策略中,能耗范围与第一能耗系数以及第二能耗系数之间的对应关系;其中,所述睡眠控制策略包括:第一睡眠控制策略或第二睡眠控制策略;相同身体特征范围内,所述 第一睡眠控制策略中的第一身体特征系数的绝对值大于所述第二睡眠控制策略中第一身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第一能耗系数的绝对值小于所述第二睡眠控制策略中第一能耗系数的绝对值;相同身体特征范围内,所述第一睡眠控制策略中的第二身体特征系数的绝对值小于所述第二睡眠控制策略中第二身体特征系数的绝对值;相同能耗范围内,所述第一睡眠控制策略中的第二能耗系数的绝对值大于所述第二睡眠控制策略中第二能耗系数的绝对值。
  9. 一种空调控制的装置,所述装置用于空调,其特征在于,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取当前采样时间内的空调用户的当前身体特征参数值;
    当所述当前身体特征参数值满足睡眠状态设定参数范围时,根据所述当前身体特征参数值,以及所述空调的当前能耗值,调整所述空调的当前设定温度和当前压缩机频率中的一种或两种。
  10. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1-4所述方法的步骤。
PCT/CN2020/071468 2019-01-10 2020-01-10 空调控制的方法、装置及计算机存储介质 WO2020143778A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/297,633 US11815276B2 (en) 2019-01-10 2020-01-10 Air conditioner control method and device, and computer storage medium
EP20739058.4A EP3855086A1 (en) 2019-01-10 2020-01-10 Air conditioner control method and device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910023893.4 2019-01-10
CN201910023893.4A CN111426000B (zh) 2019-01-10 2019-01-10 空调控制的方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2020143778A1 true WO2020143778A1 (zh) 2020-07-16

Family

ID=71521973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071468 WO2020143778A1 (zh) 2019-01-10 2020-01-10 空调控制的方法、装置及计算机存储介质

Country Status (3)

Country Link
EP (1) EP3855086A1 (zh)
CN (1) CN111426000B (zh)
WO (1) WO2020143778A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112214865A (zh) * 2020-08-10 2021-01-12 天津大学 一种暖通空调控制策略自动预检验方法
CN113917845A (zh) * 2021-09-22 2022-01-11 北京金茂绿建科技有限公司 一种控制方法、装置、电子设备及存储装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036084A (ja) * 2009-08-05 2011-02-17 Hitachi Ltd 需要家エネルギーマネジメントシステム
US20130085614A1 (en) * 2011-09-30 2013-04-04 Johnson Controls Technology Company Systems and methods for controlling energy use in a building management system using energy budgets
CN105091217A (zh) * 2015-07-31 2015-11-25 青岛海尔空调器有限总公司 空调器智能控制方法
CN105222266A (zh) * 2014-06-26 2016-01-06 广东美的制冷设备有限公司 空调器的电量控制方法、装置及系统
CN105444334A (zh) * 2014-08-21 2016-03-30 青岛海尔空调电子有限公司 一种空调机组的控制方法及控制装置
CN106440249A (zh) * 2016-10-28 2017-02-22 美的集团武汉制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置及空调器
CN109163424A (zh) * 2018-09-13 2019-01-08 宁波奥克斯电气股份有限公司 一种变频空调的双温差控制方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300602B2 (ja) * 2008-10-31 2013-09-25 三菱電機株式会社 空気調和機
CN105716196A (zh) * 2015-11-04 2016-06-29 美的集团股份有限公司 空调器的控制系统及空调器的控制方法
CN106885344A (zh) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 空调控制方法及装置
CN108052012A (zh) * 2017-12-18 2018-05-18 张馨予 睡眠环境智能调节系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036084A (ja) * 2009-08-05 2011-02-17 Hitachi Ltd 需要家エネルギーマネジメントシステム
US20130085614A1 (en) * 2011-09-30 2013-04-04 Johnson Controls Technology Company Systems and methods for controlling energy use in a building management system using energy budgets
CN105222266A (zh) * 2014-06-26 2016-01-06 广东美的制冷设备有限公司 空调器的电量控制方法、装置及系统
CN105444334A (zh) * 2014-08-21 2016-03-30 青岛海尔空调电子有限公司 一种空调机组的控制方法及控制装置
CN105091217A (zh) * 2015-07-31 2015-11-25 青岛海尔空调器有限总公司 空调器智能控制方法
CN106440249A (zh) * 2016-10-28 2017-02-22 美的集团武汉制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置及空调器
CN109163424A (zh) * 2018-09-13 2019-01-08 宁波奥克斯电气股份有限公司 一种变频空调的双温差控制方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112214865A (zh) * 2020-08-10 2021-01-12 天津大学 一种暖通空调控制策略自动预检验方法
CN112214865B (zh) * 2020-08-10 2022-07-08 天津大学 一种暖通空调控制策略自动预检验方法
CN113917845A (zh) * 2021-09-22 2022-01-11 北京金茂绿建科技有限公司 一种控制方法、装置、电子设备及存储装置

Also Published As

Publication number Publication date
CN111426000B (zh) 2021-08-06
CN111426000A (zh) 2020-07-17
EP3855086A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11815276B2 (en) Air conditioner control method and device, and computer storage medium
US10563878B2 (en) Controlling temperature regulating device based on user's internal body temperature and skin temperature received from wearable devices
CN108954662A (zh) 一种空调温度控制方法及装置
CN108332373B (zh) 一种室内环境状态的控制方法、装置、存储介质及空调
WO2020143778A1 (zh) 空调控制的方法、装置及计算机存储介质
CN107166666A (zh) 空调器制热控制方法、装置及计算机可读存储介质
CN107894065A (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
CN108917117B (zh) 空调及其控制方法、装置
CN109028516A (zh) 空调器控制方法、装置以及存储介质
CN104833058B (zh) 一种智能调节空调温度的方法及电子设备
CN107421074A (zh) 空调控制的方法及装置
WO2018214704A1 (zh) 用于空调控制的方法及装置
CN107883540A (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
CN105276765A (zh) 一种利用身型数据控制空调的方法及系统
CN112050398A (zh) 空调器及其控制方法
WO2021169109A1 (zh) 空调温度控制方法、控制装置及空调
CN106196491A (zh) 基于冷热感值的温度调节方法和装置
CN109812936A (zh) 一种空调及其空调出风温度调节方法与装置
CN105258292B (zh) 热泵空调机组及其节能控制方法、装置
CN105698335B (zh) 一种调节空调压缩机频率的方法及设备
CN107906701A (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
TW201837389A (zh) 室內空間舒適度調整方法及控制模組
CN108302718A (zh) 空调控制方法及空调器
CN107883524A (zh) 空调器节能控温方法、空调器及存储介质
CN114608172A (zh) 用于控制空调器的方法及装置、空调器、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020739058

Country of ref document: EP

Effective date: 20210421

NENP Non-entry into the national phase

Ref country code: DE