WO2020143694A1 - 预编码矩阵指示方法及相关设备 - Google Patents

预编码矩阵指示方法及相关设备 Download PDF

Info

Publication number
WO2020143694A1
WO2020143694A1 PCT/CN2020/071016 CN2020071016W WO2020143694A1 WO 2020143694 A1 WO2020143694 A1 WO 2020143694A1 CN 2020071016 W CN2020071016 W CN 2020071016W WO 2020143694 A1 WO2020143694 A1 WO 2020143694A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
coefficients
amplitude value
merge
groups
Prior art date
Application number
PCT/CN2020/071016
Other languages
English (en)
French (fr)
Inventor
高翔
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738094.0A priority Critical patent/EP3902153A4/en
Publication of WO2020143694A1 publication Critical patent/WO2020143694A1/zh
Priority to US17/369,069 priority patent/US11843435B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • This application relates to the field of communication technology, and in particular, to a precoding matrix indication method and related equipment.
  • Massive Multiple Input and Multiple Output (Massive MIMO) systems can achieve a significant improvement in spectrum efficiency through large-scale antennas, and the accuracy of the channel state information obtained by the base station is largely determined
  • a codebook is usually used to quantize the channel state information.
  • quantizing the channel state information in the codebook it is necessary to approximate the original channel characteristics as much as possible under the allowable overhead, so that the channel quantization is more accurate.
  • the high-precision codebook can obtain significant performance advantages by linearly combining multiple orthogonal beams.
  • L spatial domain beam basis vectors and M frequency domain basis vectors can be used for linear combination Get, ie Among them, W 1 is a space-domain beam basis vector matrix composed of L space-domain beam basis vectors; W 3 is a frequency domain basis vector matrix composed of M frequency-domain basis vectors, A merging coefficient matrix that linearly merges the L space domain beam basis vectors and the M frequency domain basis vectors.
  • the present application provides a precoding matrix indication method and related equipment, which is beneficial to reduce reporting overhead while minimizing performance loss.
  • the present application provides a precoding matrix indication method.
  • the transmitter determines the amplitude value of each of the K merging coefficients corresponding to each spatial layer.
  • the amplitude value of each merging coefficient is The same number of amplitude quantization bits and the same amplitude quantization rule are determined; further, the transmitter can also group the K combining coefficients according to the amplitude value of each combining coefficient to obtain Q combining coefficient groups, where Q is An integer greater than or equal to 2; when determining the phase value of each merged coefficient in each merged coefficient group, at the transmitter end, at least two merged coefficient groups exist in the phase quantization bits and phase quantization rules used by the merged coefficient group At least one of them is different; further, the transmitting end may send precoding matrix indication information, where the precoding matrix indication information includes the amplitude value and the phase value of each of the K combining coefficients.
  • the K merging coefficients are some or all of the merging coefficients corresponding to the linear merging of the L spatial domain beam base vectors and the M frequency domain base vectors corresponding to a spatial layer, that is, K is less than or equal to L* Positive integer of M.
  • the space-domain beam base vector and the frequency-domain base vector corresponding to each space layer may be the same or different, but for the K combining coefficients corresponding to each space layer, the precoding matrix indication method described in this application may be used Report. This application uses the example of how to report the K merger coefficients corresponding to one spatial layer as an example.
  • the amplitude value of each combining coefficient is determined using the same number of amplitude quantization bits and the same amplitude quantization rule, so that the transmitting end does not need to additionally indicate the grouping situation of the K combining coefficients, and the receiving end is based on each The amplitude value of the merging coefficients can determine the grouping situation.
  • at least two of the Q merging coefficient groups have different phase quantization bit numbers and at least one of the phase quantization rules used by the two merging coefficient groups, thereby facilitating Different phase quantization precisions are adopted according to the different impact levels of different combination coefficient groups on performance, and further, it is helpful to reduce reporting overhead while minimizing performance loss.
  • the above-mentioned L, M, Q and K values may be determined in a predefined manner or in a signaling manner. In other words, both the transmitter and the receiver know the values of the above parameters.
  • the transmitting end groups the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups, which may include: In order of magnitude of the amplitude value of each of the K merging coefficients, the K merging coefficients are grouped to obtain Q merging coefficient groups. For example, the K merging coefficients are arranged in the order of magnitude from large to small or small to large, and the K merging coefficients after grouping are grouped to obtain Q merging coefficient groups.
  • this embodiment is beneficial to adopt different phase quantization precisions according to the difference in the degree of impact of different merge coefficient groups on performance, and further, to reduce reporting overhead while minimizing performance loss.
  • the Q merger coefficient groups there are at least two merger coefficient groups, and the phase quantization bits and phase quantization rules adopted by the merger coefficient group with the smallest amplitude value, the sum of the amplitude values, or the larger maximum amplitude value are quantization Quantization method with higher accuracy; the number of phase quantization bits and phase quantization rules adopted by the merged coefficient group with the smallest amplitude value, the sum of the amplitude values or the smaller maximum amplitude value is a quantization method with lower quantization accuracy, so that it can be minimized In case of performance loss, reduce reporting overhead.
  • the number of merge coefficients included in each merge coefficient group may be the same or different.
  • each of the 1st to Q-1 merger coefficient groups may include Merger coefficients
  • the Qth merge coefficient group Merging coefficients; according to the order of K merging coefficients from the largest to the smallest, the first merging coefficient group includes the K merging coefficient with the largest amplitude value Merger coefficients; the Qth merger coefficient group includes the smallest amplitude value of the K merger coefficients Merging coefficients; if Q is an integer greater than or equal to 3, the qth merging coefficient group includes the K merging coefficients with the largest amplitude value In addition to the combination coefficient, the amplitude value is the largest A combination coefficient, q is an integer greater than 1 and less than Q.
  • the number of merge coefficients included in each merge coefficient group may be predefined or signaled; that is, the qth merge coefficient group among the Q merge coefficient groups includes k q merge coefficients, Where q is an integer greater than or equal to 1 and less than or equal to Q, and k q is predefined or signaled; the number of merge coefficients included in each merge coefficient group k q may be the same or different,
  • Q-th combined set of coefficients comprises a minimum of the K combined coefficients amplitude value K Q a combined coefficient
  • the qth combination coefficient group includes the K combination coefficients with the largest division value
  • the k q combination coefficients with the largest amplitude value may be predefined or signaled; that is, the qth merge coefficient group among the Q merge coefficient groups includes k q merge coefficients, Where q is an integer greater than or equal to 1 and less than or equal to Q, and k q is pre
  • multiple merge coefficients with the same amplitude value may be grouped based on the index of the spatial domain beam base vector or frequency domain base vector corresponding to the multiple merge coefficients. For example, during the grouping process, if the amplitude values of multiple merge coefficients are the same, based on the number of merge coefficients included in each merge coefficient group, a part of the merge coefficients in the multiple merge coefficients needs to be divided into the ones with larger amplitude values.
  • the index of the spatial domain beam base vector or frequency domain beam base vector corresponding to the multiple combination coefficients may be larger or smaller
  • the merging coefficients are divided into merging coefficient groups with larger amplitude values, and the other part are divided into merging coefficient groups with smaller amplitude values; if the corresponding indexes of the spatial domain beam base vector or frequency domain beam base vector are the same, you can further divide A part of the corresponding index of the frequency-domain beam base vector or the space-domain beam base vector that is larger or smaller is divided into a combination coefficient group with a larger amplitude value, and the rest is divided into a combination coefficient group with a smaller amplitude value.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficients in the q 1st combination coefficient group are greater than the q 2nd combination coefficient
  • the minimum amplitude value, the maximum amplitude value or the sum of the amplitude values of the merge coefficients in the group, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the q 2 merge
  • the minimum amplitude value, maximum amplitude value, or amplitude value of each combination coefficient in the first combination coefficient group is greater than the minimum amplitude value, maximum amplitude value, or amplitude value of each combination coefficient in the second combination coefficient group.
  • the number of phase quantization bits used for the phase value of each merge coefficient in the first merge coefficient group is greater than the number of phase quantization bits used for the phase value of each merge coefficient in the second merge coefficient group. Because the amplitude value of each merge coefficient in the first merge coefficient group is relatively large, and the impact on the system performance is also relatively large, therefore, the quantization accuracy of the first merge coefficient group is high, and the quantization accuracy of the second merge coefficient group Low, so that this embodiment can reduce system overhead while minimizing system performance loss.
  • the transmitting end groups the K combining coefficients according to the amplitude value of each combining coefficient of the K combining coefficients to obtain Q combining coefficient groups, including: Among the K merging coefficients, determine one or more merging coefficients corresponding to each space-domain beam base vector in 1 space-domain beam base vector; the l is a positive integer less than or equal to the L; The magnitude order of the sum of the amplitude value, the maximum magnitude value or the sum of the power of the one or more combining coefficients corresponding to each airspace beam base vector is grouped into the l airspace beam base vectors to obtain Q An airspace beam basis vector group; for one or more airspace beam basis vectors in each airspace beam basis vector group in the Q airspace beam basis vector groups, the transmitting end determines the one or more airspace beam basis vectors All corresponding combination coefficients are used as one combination coefficient group, and Q combination coefficient groups corresponding to the Q space domain beam basis vector groups are obtained.
  • the 1 spatial domain beam base vectors are the spatial domain beam base vectors corresponding to each of the K combining coefficients.
  • the number of airspace beam base vectors included in each airspace beam base vector group in the Q airspace beam base vector groups may be the same or different.
  • the Q merge coefficient groups correspond to the Q airspace beam base vector groups in one-to-one relationship, which is beneficial to the use of the corresponding merge coefficient groups based on the different degree of impact of each airspace beam base vector group on the system performance.
  • Different phase quantization accuracy such as the difference between the number of phase quantization bits and the phase quantization rule, is beneficial to reduce reporting overhead while minimizing system performance loss.
  • the sum of the amplitude values, the maximum amplitude value, or the power of each airspace beam basis vector The sum is large, and the number of phase quantization bits and phase quantization rules used in the merged coefficient group are quantization methods with high quantization accuracy; in the airspace beam base vector group corresponding to the other merged coefficient group, each airspace beam The sum of the amplitude value, the maximum amplitude value or the power of the base vector is small, and the number of phase quantization bits and phase quantization rules adopted by the merged coefficient group are quantization methods with low quantization accuracy, so that the performance can be minimized In case of loss, reduce the reporting overhead.
  • grouping may be performed based on the indexes of the multiple airspace beam base vectors. For example, in the grouping process, if the sum of the amplitude value, the maximum amplitude value, or the power sum corresponding to multiple airspace beam base vectors is the same, based on the number of airspace beam base vectors included in each airspace beam base vector group, the A part of the airspace beam base vectors in the plurality of airspace beam base vectors is divided into a larger airspace beam base vector group with a larger sum of amplitude values, a maximum amplitude value or power, and another part is divided into a sum of amplitude values and a maximum amplitude value When the sum of power or the airspace beam base vector is smaller, a part of the airspace beam base vector with larger or smaller index can be divided into the airspace beam base vector with larger sum of amplitude values, maximum amplitude value or power In
  • the coefficients of Q groups combined, a combined coefficient group corresponding to q a q-beam spatial basis vectors, each basis vector corresponding to the spatial beam combined coefficient and the amplitude value, the maximum amplitude value or power sum are greater than the spatial beams q 2 th basis vectors q 2 th second group combined coefficient group corresponding to the amplitude value integrating spatial beam coefficients for each basis vector corresponding to the sum of ,
  • the sum of the maximum amplitude value or the power, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than that used by each merge coefficient in the q 2 merge coefficient group
  • the number of phase quantization bits B q2 ; q 1 is not equal to q 2
  • q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the airspace beam base vector group adopts a larger number of phase quantization bits, which can reduce the loss of system performance; in addition, the sum of the amplitude values corresponding to each airspace beam base vector in the airspace beam base vector group, the maximum amplitude value or the power
  • the smaller sum indicates that the airspace beam basis vector group has less influence on the performance of the system. Therefore, the airspace beam basis vector group adopts a smaller number of phase quantization bits, which can reduce the reporting overhead. Therefore, this embodiment can achieve a compromise between minimizing system performance loss and reducing reporting overhead.
  • the transmitting end may determine one or more merging coefficients corresponding to each frequency-domain base vector in the m frequency-domain base vectors out of K merging coefficients; m is less than or A positive integer equal to the M; the transmitting end calculates the number of m based on the sum of the amplitude values, the maximum amplitude value, or the power of the one or more combining coefficients corresponding to each frequency domain basis vector Grouping frequency domain basis vectors to obtain Q frequency domain basis vector groups; for one or more frequency domain basis vectors in each frequency domain basis vector group of the Q frequency domain basis vector groups, the transmitting end determines All merge coefficients corresponding to the one or more frequency domain basis vectors are used as a merge coefficient group, and Q merge coefficient groups corresponding to the Q frequency domain basis vector groups are obtained.
  • the m frequency domain basis vectors are frequency domain basis vectors corresponding to each of the K combining coefficients.
  • the number of frequency domain basis vectors included in each frequency domain basis vector group in the Q frequency domain basis vector groups may also be the same
  • Q frequency domain basis vector groups correspond to Q merge coefficient groups one-to-one, which is beneficial to the difference in the degree of influence of each frequency domain basis vector group on system performance.
  • the corresponding merge coefficient group is adopted Different phase quantization accuracy, which is beneficial to compromise between system performance and reporting overhead.
  • a frequency domain basis vector group corresponding to a combination coefficient group the sum of the amplitude value, the maximum amplitude value, or the power of each frequency domain basis vector Are larger, and the number of phase quantization bits and phase quantization rules adopted by the merged coefficient group is a quantization method with higher quantization accuracy; in the frequency domain basis vector group corresponding to another merged coefficient group, the The sum of the amplitude value, the maximum amplitude value or the sum of the power are small, and the number of phase quantization bits and phase quantization rules adopted by the merged coefficient group are quantization methods with low quantization accuracy, so that the performance loss can be minimized Next, reduce the reporting overhead.
  • the sum of the powers of the combining coefficients corresponding to each spatial domain beam base vector or each frequency domain base vector refers to each of the combining coefficients corresponding to each spatial domain beam base vector or each frequency domain base vector, each The sum of the squares of the amplitude values of the merging coefficients.
  • grouping may be performed based on the indexes of the multiple frequency domain base vectors. For example, in the grouping process, if the sum of the amplitude value, the maximum amplitude value, or the power sum corresponding to multiple frequency domain base vectors is the same, based on the number of frequency domain base vectors included in each frequency domain base vector group, the A part of the frequency-domain base vectors in the plurality of frequency-domain base vectors is divided into a group of frequency-domain base vectors with a larger sum of amplitude values, maximum amplitude values or powers, and another part is divided into a sum of amplitude values and maximum amplitude values Or in a frequency domain vector group with a small sum of power, a part of the frequency domain base vector with a larger or smaller index can be divided into a frequency domain base vector group with a larger sum of amplitude values, a maximum amplitude value or a power
  • the combined coefficient group of Q, a combined coefficient group corresponding to the q q a frequency-domain vector-yl group, and the amplitude value for each frequency domain coefficient of the base vectors corresponding to the combined maximum the sum of the amplitude or power values are greater than the q 2 frequency-domain vectors of q 2 groups combined th coefficient group corresponding to each frequency-domain coefficients based vectors corresponding combined value and the amplitude, the maximum amplitude value or power
  • the sum, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the number of phase quantization bits B q2 used by each merge coefficient in the q 2 merge coefficient group; 1 is not equal to the q 2 , and q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the greater the sum of the amplitude value, the maximum amplitude value, or the power sum of the frequency domain base vector groups in the frequency domain base vector group it means that the frequency domain base vector group has a greater impact on system performance, so ,
  • the frequency domain basis vector group adopts a larger number of phase quantization bits, which can reduce the loss of system performance; in addition, the sum of the amplitude values corresponding to the frequency domain basis vectors in the frequency domain basis vector group, the maximum amplitude value, or the power
  • the smaller sum indicates that the frequency-domain base vector group has less impact on the performance of the system. Therefore, the frequency-domain base vector group uses a smaller number of phase quantization bits, which can reduce the reporting overhead. Therefore, this embodiment can achieve a compromise between minimizing system performance loss and reducing reporting overhead.
  • the transmitting end determines one or more merging coefficients corresponding to each spatial domain beam base vector of the 1 spatial domain beam base vectors out of the K merging coefficients; the l is less than Or a positive integer equal to L; for one or more merging coefficients corresponding to each space-domain beam basis vector, the transmitting end compares the one or more merging coefficients according to the magnitude order of the amplitude value of each merging coefficient Performing grouping to obtain Q combining coefficient groups corresponding to each airspace beam base vector; the transmitting end combines the qth combining coefficient groups corresponding to each airspace beam base vector in the l airspace beam base vectors, The qth merging coefficient group among the Q merging coefficient groups of the K merging coefficients is obtained, where q is equal to an integer of 1, 2, ..., Q.
  • merging the qth merge coefficient group corresponding to each airspace beam base vector refers to taking the union of the merge coefficients included in the qth merge coefficient group corresponding to each airspace beam base vector as the K merger coefficients Among the Q combination coefficient groups, the qth combination coefficient group. That is to say, among the Q combining coefficient groups of the K combining coefficients, the qth combining coefficient group includes the qth combining coefficient group corresponding to all spatial domain beam basis vectors.
  • this embodiment is beneficial to adopt different phase quantization precisions according to the difference in the degree of impact of different merge coefficient groups on performance, and further, to reduce reporting overhead while minimizing performance loss.
  • the Q combination coefficient groups of the K combination coefficients there are at least two combination coefficient groups, and the minimum amplitude value, the sum of the amplitude values, or the maximum amplitude of the combination coefficient group corresponding to each spatial domain beam basis vector in a combination coefficient group
  • the values are all large, and the number of phase quantization bits and phase quantization rules adopted by the combination coefficient group are quantization methods with high quantization accuracy; the minimum amplitude of the combination coefficient group corresponding to each spatial domain beam basis vector in the other combination coefficient group
  • the sum of the value, the amplitude value, or the maximum amplitude value is small, and the number of phase quantization bits and phase quantization rules used in the merged coefficient group are quantization methods with low quantization accuracy, so that the performance loss can be minimized.
  • Reduce reporting overhead is possible.
  • the number of combining coefficients included in each combining coefficient group may be the same or different.
  • the Q combining coefficient groups corresponding to each spatial domain beam base vector for multiple combining coefficients with the same amplitude value, it may be performed based on the index of the frequency domain base vector corresponding to the multiple combining coefficients Grouped. For example, during the grouping process, if the amplitude values of multiple merge coefficients are the same, based on the number of merge coefficients included in each merge coefficient group, a part of the merge coefficients in the multiple merge coefficients needs to be divided into the ones with larger amplitude values.
  • a part of the combination coefficient with a larger or smaller index of the frequency domain beam base vector corresponding to the multiple combination coefficients can be divided into amplitudes
  • another part is divided into the merger coefficient group with a smaller amplitude value.
  • Q a combined set of coefficients for each of said spatial beam vectors corresponding group, the minimum amplitude value of q 1 th coefficient sets combined, or a maximum amplitude greater than the amplitude value q 2 and the combined set of coefficients th
  • the combination coefficient group corresponding to each spatial domain beam base vector included in the combination coefficient group is a combination coefficient group with a maximum amplitude value, a minimum amplitude value, or a relatively large sum of amplitude values.
  • the system performance has a greater impact, and the use of a larger number of phase quantization bits for this combination coefficient group can minimize the loss of system performance; in addition, the combination coefficient group corresponding to each spatial domain beam base vector included in the combination coefficient group is the maximum amplitude value , The minimum amplitude value or the relatively small combination of the amplitude values of the combination coefficient group, indicating that the combination coefficient group has little impact on system performance, and the use of a smaller number of phase quantization bits for the combination coefficient group can reduce the reporting overhead, thereby, A compromise between minimizing system performance loss and reducing reporting overhead.
  • the amplitude value of each of the K combining coefficients is determined by quantization using the number of quantization bits A 1 according to a preset quantization rule; the A 1 is greater than or equal to An integer equal to 2.
  • the amplitude value of each of the K combining coefficients is the average amplitude value or the maximum amplitude value of each spatial domain beam base vector corresponding to each of the combining coefficients
  • a 3 is an integer greater than or equal to 1
  • the average amplitude value or maximum amplitude value of each spatial domain beam basis vector is for the K number
  • the average amplitude value or the maximum amplitude value corresponding to each spatial domain beam base vector is the number of bits quantized by amplitude A 2 is determined quantitatively, and A 2 is an integer greater than or equal to 2.
  • the precoding matrix indication information further includes an average amplitude value or a maximum amplitude value corresponding to each spatial domain beam base vector in 1 spatial domain beam base vector; the 1 is a positive integer less than or equal to the L;
  • the 1 spatial domain beam basis vector is the spatial domain beam basis vector corresponding to each of the K combining coefficients.
  • the phase value of each merge coefficient in each merge coefficient group may be referenced by using the phase value of the merge coefficient with the largest amplitude value in the merge coefficient group, and adopt the phase quantization bit number corresponding to the merge coefficient group for difference Quantitatively determined.
  • the precoding matrix indication information also includes the phase value of the merge coefficient with the largest amplitude value in each merge coefficient group.
  • the phase value of the merge coefficient with the largest amplitude value in each merge coefficient group is phase quantization bit number B 1 Determined quantitatively, B 1 is an integer greater than or equal to 2.
  • the receiving end in order to enable the receiving end to preferentially determine the grouping situation of the merged coefficients based on the amplitude value of each merged coefficient, and then determine the number of phase quantization bits and phase quantization rules adopted by each merged coefficient group, It can be pre-defined or notified by the base station, so that the transmitting end and the receiving end can learn the arrangement manner of the amplitude value, phase value and other contents of each combining coefficient in the precoding indication information.
  • the amplitude values of all the merging coefficients in the K merging coefficients are located before the phase values of all the merging coefficients, that is, the amplitude values of all the merging coefficients in the K merging coefficients are located in high bits Bits, the phase values of all the merging coefficients in the K merging coefficients are in the lower bits;
  • the amplitude value of each merging coefficient in the K merging coefficients is the The index of the space-domain beam base vector corresponding to the coefficient or the index of the corresponding frequency-domain base vector are arranged in order;
  • the phase value of each of the K combining coefficients is based on The index of the spatial domain beam base vector corresponding to each merging coefficient or the index of the corresponding frequency domain base vector is arranged in order; or, in the precoding matrix indication information, for the K merging coefficients respectively For the Q merged coefficient groups, the phase value of each merged coefficient group is arranged in order according
  • the average amplitude value or the maximum amplitude value corresponding to all spatial domain beam base vectors in the l spatial domain beam base vectors is located before the amplitude values of all the merge coefficients in the K merge coefficients That is, the average amplitude value or the maximum amplitude value corresponding to all the airspace beam base vectors in the l airspace beam base vectors are located in high bits, and the amplitude values of all the merge coefficients in the K combination coefficients are located in low bits;
  • the average amplitude value or the maximum amplitude value corresponding to each space domain beam base vector is arranged in the order of the index of each space domain beam base vector.
  • the present application also provides a precoding matrix indication method.
  • the receiving end receives precoding matrix indication information, where the precoding matrix indication information includes the amplitude value of each of the K combining coefficients And the phase value; the receiving end determines the amplitude value and the phase value of each of the K combining coefficients according to the precoding matrix indication information; the amplitude value of each combining coefficient adopts the same amplitude
  • the number of quantization bits and the same amplitude quantization rule are determined; K is a positive integer less than or equal to L*M, L is the total number of airspace beam basis vectors determined by the transmitter, and M is The total number of frequency domain base vectors determined by the transmitting end; the Q combining coefficient groups to which the K combining coefficients belong respectively are grouped based on the amplitude values of the K combining coefficients;
  • the phase value is determined based on the number of phase quantization bits and the phase quantization rule adopted by the merge coefficient group to which each merge coefficient belongs; at least two of the Q merge
  • the Q merger coefficient groups to which the K merger coefficients respectively belong are in accordance with the magnitude order of the amplitude value of each merger coefficient in the K merger coefficients.
  • the combination coefficients are grouped and obtained.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficients in the q 1st combination coefficient group are greater than the combination coefficients in the q 2nd combination coefficient group
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than each merge in the q 2 merge coefficient groups
  • the number of phase quantization bits B q2 used by the coefficients; the q 1 is not equal to the q 2 , and the q 1 and the q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • each of the Q combining coefficient groups to which the K combining coefficients belong respectively is each airspace in each of the Q airspace beam base vector groups in the Q airspace beam base vector groups All the combination coefficients corresponding to the beam basis vector are formed; the Q space-domain beam basis vector group is based on one or more combinations corresponding to each space-domain beam basis vector in the l space-space beam basis vectors out of the K combination coefficients
  • the magnitude order of the sum of the amplitude values of the coefficients, the maximum magnitude value or the sum of the powers is obtained by grouping the l space-space beam basis vectors; the l is a positive integer less than or equal to the L.
  • the coefficients of Q groups combined, a combined coefficient group corresponding to q a q-beam spatial basis vectors, the magnitude of each basis vector corresponding to the spatial beam combined coefficient the sum, the maximum amplitude value or power sum are greater than the spatial beams q 2 th basis vectors q 2 th second group combined coefficient group corresponding to each base vector spatial beam coefficient corresponding to the combined value and the amplitude,
  • the sum of the maximum amplitude value or power, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the phase used by each merge coefficient in the q 2 merge coefficient group
  • the number of quantization bits B q2 ; q 1 is not equal to q 2
  • q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • each of the Q combining coefficient groups to which the K combining coefficients respectively belong is each of the frequency domain basis vector groups in the Q frequency domain basis vector groups All the combination coefficients corresponding to each frequency domain basis vector are formed; the Q frequency domain basis vector groups are one or more of the m frequency domain basis vectors corresponding to each of the m frequency domain basis vectors among the K combination coefficients
  • the magnitude order of the sum of the amplitude values, the maximum magnitude value or the sum of the power of the combining coefficients is obtained by grouping the M frequency domain basis vectors; the m is a positive integer less than or equal to the M.
  • a combined coefficient group corresponding to the q q frequency domain a set of basis vectors, each basis vector corresponding frequency domain coefficient combined value and the amplitude, the maximum amplitude value or power sum q 2 are greater than the frequency-domain vectors of q 2 groups combined th coefficient group corresponding to each frequency-domain coefficients based vectors corresponding combined value and the amplitude, the maximum amplitude value or power sum, is
  • the number of phase quantization bits B q1 used in each merge coefficient in the q 1st merge coefficient group is greater than the number of phase quantization bits B q2 used in each merge coefficient in the q 2 merge coefficient group; the q 1 is not equal to the Say q 2 , and q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the qth merger coefficient group is corresponding to each of the airspace beam base vectors out of the l airspace beam base vectors
  • the qth combination coefficient group is obtained by combining, and the l is a positive integer less than or equal to the L; the q is an integer of 1, 2, ..., Q; the l
  • the Q combination coefficient groups corresponding to each airspace beam base vector are for one or more combination coefficients corresponding to each airspace beam base vector, in order of the magnitude of each combination coefficient, Obtained by grouping the one or more merging coefficients.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the q 1st combining coefficient group is greater than the q 2 Of the minimum amplitude value, the maximum amplitude value, or the amplitude value of the merger coefficient groups, then among the Q merger coefficient groups of the K merger coefficient groups, the number of phase quantization bits B q1 used by the q 1st merger coefficient group is greater than q 2 of merged th coefficient group used in phase quantizing bits B q2; the Q 1 not equal to the q 2, q 2 and Q 1 and greater than or equal to 1 and less than or equal to Q integer.
  • the amplitude value of each of the K combining coefficients is determined by quantization using the number of quantization bits A 1 respectively; the A 1 is an integer greater than or equal to 2.
  • phase value of each merge coefficient in each merge coefficient group is quantized and determined by using the number of phase quantization bits corresponding to the merge coefficient group.
  • the amplitude value of each of the K combining coefficients is the average amplitude value or the maximum amplitude value of each spatial domain beam base vector corresponding to each of the combining coefficients
  • a 3 is an integer greater than or equal to 1
  • the average amplitude value or maximum amplitude value of each spatial domain beam basis vector is for the K number
  • the average amplitude value or the maximum amplitude value corresponding to each spatial domain beam base vector is the number of bits quantized by amplitude A 2 is determined quantitatively, and A 2 is an integer greater than or equal to 2.
  • the phase value of each merge coefficient in each merge coefficient group may be referenced by using the phase value of the merge coefficient with the largest amplitude value in the merge coefficient group, and adopt the phase quantization bit number corresponding to the merge coefficient group for difference Quantitatively determined.
  • the precoding matrix indication information also includes the phase value of the combining coefficient with the largest amplitude value in each combining coefficient group.
  • the phase value of the combining coefficient with the largest amplitude value in each combining coefficient group is performed using the phase quantization bit number B Quantitatively determined, B is an integer greater than or equal to 2.
  • the amplitude values of all of the K combining coefficients are before the phase values of all the combining coefficients; in the precoding matrix indicating information, The amplitude value of each of the K merging coefficients is sequentially arranged in the order of the index of the spatial domain beam base vector corresponding to each merging coefficient or the index of the corresponding frequency domain base vector; the precoding In the matrix indication information, the phase value of each of the K combining coefficients is sequentially arranged in the order of the index of the spatial domain beam base vector corresponding to each of the combining coefficients or the index of the corresponding frequency domain base vector; Alternatively, in the precoding matrix indication information, for the Q merger coefficient groups to which the K merger coefficients respectively belong, the phase value of each merged coefficient group is in the order of the index of each merged coefficient group, in turn Arranged; the phase indication of each merged coefficient in the phase indication of each merged coefficient group is arranged in the order of the index of the spatial domain beam base vector corresponding to
  • the precoding matrix indication information further includes an average amplitude value or a maximum amplitude value corresponding to each spatial domain beam base vector in 1 spatial domain beam base vector, where l is less than or equal to The positive integer of L; the 1 spatial domain beam base vector is the spatial domain beam base vector corresponding to each of the K combining coefficients; the amplitude value of each of the K combining coefficients is The average amplitude value or the maximum amplitude value of each spatial domain beam base vector corresponding to each merging coefficient is referenced, and is determined by differential quantization using the number of quantization bits A 3 , where A 3 is an integer greater than or equal to 1.
  • the average amplitude value or maximum amplitude value of each airspace beam base vector is the average amplitude value or maximum amplitude value of one or more combining coefficients corresponding to each airspace beam base vector of the K combining coefficients;
  • the average amplitude value or the maximum amplitude value corresponding to each space-domain beam base vector is quantized and determined using the amplitude quantization bit number A 2 respectively, where A 2 is an integer greater than or equal to 2.
  • the average amplitude value or the maximum amplitude value corresponding to all spatial domain beam base vectors in the l spatial domain beam base vectors is located before the amplitude values of all the merge coefficients in the K merge coefficients
  • the average amplitude value or maximum amplitude value corresponding to each airspace beam base vector is arranged in the order of the index of each airspace beam base vector.
  • an embodiment of the present application further provides a device having some or all of the functions of the transmitting end in the example of the precoding matrix indication method described in the first aspect above, for example, the functions of the device may be provided in the present application Some or all of the functions in the embodiments may also have the functions of individually implementing any of the embodiments in the present application.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the device may include a processing unit and a communication unit, and the processing unit is configured to support the transmitting end to perform the corresponding function in the above method.
  • the communication unit is used to support communication between the device and other devices.
  • the transmitting end may further include a storage unit for coupling with the processing unit, which stores necessary program instructions and data of the terminal device.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory.
  • an embodiment of the present application further provides a device that has some or all of the functions of the receiving end in the example of the precoding matrix indication method described in the second aspect above.
  • the function of the device may include the Some or all of the functions in the embodiments may also have the functions of individually implementing any of the embodiments in the present application.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the device includes a processing unit and a communication unit, and the processing unit is configured to support the receiving end to perform the corresponding function in the above method.
  • the communication unit is used to support communication between the device and other devices.
  • the device may further include a storage unit for coupling with the processing unit, which stores necessary program instructions and data of the device.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory.
  • an embodiment of the present invention provides a communication system.
  • the system includes the transmitting end and the receiving end in the above aspect.
  • the system may further include other devices that interact with the transmitting end and/or the receiving end in the solution provided by the embodiment of the present invention.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the transmitting end, which includes a program designed to execute the precoding matrix indication method described in the foregoing first aspect .
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the receiving end, including a program designed to execute the precoding matrix indication method described in the second aspect above .
  • the present application also provides a computer program product including instructions, which when executed on a computer, causes the computer to perform the method described in the first aspect or the second aspect.
  • the present application provides a chip system that includes a processor for supporting the functions involved in the above aspects of the transmitting end, for example, determining or processing data and/or information involved in the above method .
  • the chip system further includes a memory for storing necessary program instructions and data at the transmitting end.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the present application provides a chip system including a processor for supporting a receiving end to implement the functions involved in the above aspects, for example, generating or processing data and/or information involved in the above method .
  • the chip system further includes a memory for storing necessary program instructions and data at the receiving end.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a precoding indication method provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a device for indicating a precoding matrix according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another apparatus for indicating a precoding matrix according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM Global Mobile Communication System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code
  • TD-SCDMA Time-Division Synchronous Code Division Multiple Access
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • New Radio New Radio, Abbreviation: NR
  • D2D device to device
  • M2M machine to machine
  • the receiving end involved in this application may refer to an entity on the network side used to send or receive information, such as a base station, or may be a transmission point (transmission point, abbreviation: TP), a transmission and reception point (transmission and reception point, Abbreviation: TRP), relay equipment, or other network equipment with base station functions, etc., this application is not limited.
  • TP transmission point
  • TRP transmission and reception point
  • relay equipment or other network equipment with base station functions, etc.
  • the transmitting end may be a device with a communication function, which may include a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a computing device, or other processing devices connected to a wireless modem.
  • terminal equipment can be called different names, for example: terminal equipment (terminal), user equipment (user equipment (abbreviation: UE), mobile station, subscriber unit, relay (Relay), station, cell phone, personal Digital assistants, wireless modems, wireless communication devices, handheld devices, laptop computers, cordless phones, wireless local loop stations, etc.
  • the terminal device may refer to a wireless terminal device or a wired terminal device.
  • the wireless terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem, which may be connected to a wireless access network (such as RAN, radio access) to communicate with one or more core networks.
  • a wireless access network such as RAN, radio access
  • Massive Multiple Input and Multiple Output (Massive MIMO) systems can achieve a significant improvement in spectrum efficiency through large-scale antennas, and the accuracy of the channel state information obtained by the base station is largely determined
  • a codebook is usually used to quantize the channel state information.
  • quantizing the channel state information in the codebook it is necessary to approximate the original channel characteristics as much as possible under the allowable overhead, so that the channel quantization is more accurate.
  • the high-precision codebook can obtain significant performance advantages by linearly combining multiple orthogonal beams.
  • the precoding matrix W corresponding to a frequency domain unit fed back by the terminal device is formed by linearly combining multiple selected orthogonal beams:
  • W is the target precoding matrix corresponding to the frequency domain unit, and the dimension is 2N1N2*1 when the number of spatial layers is 1.
  • N1 and N2 represent the number of antenna ports in the horizontal and vertical directions, respectively.
  • W 1 is an airspace beam base vector matrix composed of L airspace beam base vectors.
  • the L airspace beam base vectors may be obtained by selecting L/2 airspace beam base vectors from the airspace beam base matrix for dual polarization rotation, that is, The same L/2 spatial domain beam basis vectors are selected for the two polarization directions.
  • the spatial domain beam basis matrix may be a pre-defined discrete Fourier transform (DFT) matrix.
  • DFT discrete Fourier transform
  • ls(i) represents the index of the i-th space-domain beam basis vector
  • W 2 is a combination coefficient matrix.
  • the combination coefficient matrix W 2 may be:
  • p i represents the amplitude value of the merge coefficient corresponding to the i-th spatial domain beam base vector on the frequency domain unit of the measured Precoding Matrix Index (PMI); Represents the phase value of the merging coefficient corresponding to the i-th spatial domain beam basis vector on the measured PMI frequency domain unit.
  • i 1, 2, ... L.
  • the precoding matrix W fed back by the terminal device may be:
  • the use of the above formula (4) to quantize the channel state information and report the above precoding matrix to the base station is beneficial to enable the base station to obtain an optimal precoding matrix.
  • the above precoding matrix brings performance improvement, but It also brings a huge precoding matrix indication overhead.
  • the above precoding matrix needs to report the amplitude value and phase value of the L combining coefficients corresponding to each PMI frequency domain unit.
  • the larger the number of PMI frequency domain units the more merge coefficients need to be reported. For example, if the number of PMI frequency domain units is N, the merge coefficient matrix will be The number of merge coefficients to be reported will reach L*N, which brings huge reporting overhead.
  • W is a joint precoding matrix composed of precoding matrices corresponding to N PMI frequency domain units, and the dimension is 2N1N2*N.
  • W 3 is a frequency domain basis vector matrix of M*N dimension composed of M frequency domain basis vectors selected from the frequency domain basis matrix, and N is the number of measured PMI frequency domain units, It is the L*M dimension combination coefficient matrix corresponding to the linear combination of the spatial domain beam base vector and the frequency domain base vector.
  • p i,j represents the amplitude value of the merging coefficient corresponding to the linear combination of the i-th spatial domain beam base vector and the j-th frequency domain base vector; Represents the phase value of the merging coefficient corresponding to the linear combination of the i-th spatial domain beam base vector and the j-th frequency domain base vector.
  • the merge coefficient corresponding to the ith beam base vector or the jth frequency domain base vector that is to say, the merging coefficient corresponding to the ith spatial domain beam base vector includes Correspondingly, the merge coefficient corresponding to the jth frequency domain basis vector includes
  • the terminal device only needs to feed back the index of the selected L/2 spatial domain beam base vectors, the M frequency domain base vector indexes, and the above in accordance with the measured channel state information.
  • the base station Based on the amplitude and phase values of the L*M combining coefficients, the base station can obtain the precoding matrix quantized based on the channel state information based on the feedback information.
  • the present application provides a precoding matrix indication method, which is aimed at how to reduce the L *Proposed by the reporting overhead required for the M merging coefficients. That is to say, how to report the L*M merging coefficients with as little overhead as possible while ensuring a minimum performance loss is a problem to be solved in this application.
  • the strongest merging coefficient pair among the L*M merging coefficients is used For normalization, you only need to report the index of the strongest merging coefficient, and the amplitude and phase values of the remaining L*M-1 merging coefficients.
  • the strongest combination coefficient refers to the combination coefficient with the largest amplitude value among the L*M combination coefficients.
  • the above merge coefficient matrix The number of data channels that can be transmitted in parallel in a MIMO system is 1, that is, when the number of spatial layers is 1, the number of spatial layers is determined by calculating the rank rank of the measured channel equivalent matrix.
  • each spatial layer corresponds to a precoding matrix
  • each spatial layer needs to be targeted Determine a combination coefficient matrix That is to say, the present application can use the same precoding matrix indication method for each spatial layer to separately report the merging coefficient corresponding to each spatial layer.
  • different spatial layers may use the same spatial domain beam base vector and frequency domain base vector for linear combination, or may use different spatial domain beam base vectors and frequency domain base vector for linear combination, respectively.
  • the precoding matrix indication method described in this application can be adapted to a downlink system.
  • the terminal device performs related operations of the transmitting end of this application, and the base station performs related operations of the receiving end of this application; the above L and M are all on the network device side , Such as the base station, which is notified to the terminal device through pre-definition or signaling; the above-mentioned space-domain base matrix and frequency-domain base matrix are known and the same matrix for both the base station and the terminal device, so the terminal device can report the selected The index of L/2 spatial domain beam base vectors and M frequency domain base vectors are sufficient.
  • the transmitting end is a device that sends precoding instruction information.
  • the transmitting end may be a terminal device, and the receiving end may be a base station.
  • the communication system may include one or more base stations and one or more terminal devices.
  • FIG. 2 is a schematic flowchart of a method for indicating a precoding matrix provided by an embodiment of the present application. As shown in FIG. 2, the method for indicating the method of precoding matrix feedback the amplitude value and phase value of the combining coefficient, It includes the following steps:
  • the transmitting end determines the amplitude value of each of the K merging coefficients corresponding to each spatial layer; the amplitude value of each merging coefficient is determined by using the same number of amplitude quantization bits and the same amplitude quantization rule.
  • the K merging coefficients are selected from L*M merging coefficients corresponding to a spatial layer, that is, the K is an integer less than or equal to L*M. It can also be said that the K combining coefficients are a subset of L*M combining coefficients.
  • the value of K may be configured by the base station, or may be reported by the terminal device according to channel conditions or overhead.
  • the transmitting end such as the terminal device, also needs to report the indexes corresponding to the K merge coefficients respectively.
  • the index may be the index of the spatial domain beam base vector and the frequency domain base vector corresponding to the K merge coefficients, or may be used.
  • the bitmap (bitmap) way to indicate.
  • the transmitting end groups the K merger coefficients according to the amplitude value of each of the K merger coefficients corresponding to each spatial layer to obtain Q merger coefficient groups, where Q is greater than or equal to An integer of 2.
  • the receiving end may determine the grouping situation of the K combining coefficients according to the amplitude value of each combining coefficient, that is, determine The Q merged coefficient groups.
  • the Q value may be notified by the base station to the terminal device, or may be determined by the terminal device or base station based on the measured channel state information, and notified to the base station or terminal device, or the Q value is pre-defined in the protocol Defined.
  • the transmitting end determines the phase value of each merged coefficient in each merged coefficient group; at least two of the Q merged coefficient groups differ in the number of phase quantization bits and the phase quantization rule adopted by at least two merged coefficient groups .
  • At least one of the number of phase quantization bits and phase quantization rules used by any two merge coefficient groups is different; at least one of the number of phase quantization bits and phase quantization rules used by at least one merge coefficient group is merged with other
  • the number of phase quantization bits used in the coefficient group is different from at least one of the phase quantization rules. For example, if Q is equal to 3, the number of phase quantization bits and phase quantization rules used in the merge coefficient groups 1, 2, and 3 are different, or the number of phase quantization bits used is the same, the phase quantization rules are different, or the phase quantization is used The number of bits is different, but the phase quantization rules are the same.
  • the number of phase quantization bits and phase quantization rules adopted by the merge coefficient groups 1 and 2 are the same, but they are different from the number of phase quantization bits and phase quantization rules adopted by the merge coefficient group 3, or
  • the number of phase quantization bits used in the merge coefficient group 3 is the same, but the phase quantization rules are different, or the same as the phase quantization rule adopted in the merge coefficient group 3, but the number of phase quantization bits is different, and so on.
  • the transmitting end sends precoding matrix indication information, and the receiving end receives the precoding matrix indication information.
  • the precoding matrix indication information includes the amplitude value and the phase value of each of the K combining coefficients.
  • the receiving end determines the amplitude value and the phase value of each of the K combining coefficients according to the precoding matrix indication information.
  • the transmitting end may also use the strongest merging coefficient of the K merging coefficients to normalize the K merging coefficients, and the strongest merging coefficient may be the merging with the largest amplitude value among the K merging coefficients coefficient.
  • the normalization process of the strongest merging coefficient is 1, so that the transmitter can report the index of the strongest merging coefficient, and the amplitude and phase values of the other K-1 merging coefficients. That is, 104 includes the amplitude value and the phase value of each of the K-1 combining coefficients.
  • the receiving end and the sending end both know the number of amplitude quantization bits and the amplitude quantization rule adopted by each combining coefficient, and the number of phase quantization bits and the phase quantization rule adopted by each combining coefficient group. For example, in an uplink and downlink system, it can be learned in a predefined or base station configuration manner.
  • the amplitude quantization rule is to use the number of amplitude quantization bits to quantize the amplitude value to obtain an amplitude quantization set, that is, a set of optional quantization amplitude values, so that the closest quantization amplitude can be selected for the amplitude value before quantization Value, and carry the corresponding index of the selected quantization amplitude value in the amplitude quantization set in the sent precoding matrix indication information as the reported amplitude value.
  • the receiving end uses the same number of amplitude quantization bits and amplitude quantization rules to obtain an amplitude quantization set; the quantization amplitude value corresponding to the merge coefficient is determined from the amplitude quantization set based on the reported index.
  • the phase quantization rule corresponding to each merged coefficient group is how to quantize the phase value using the number of phase quantization bits to obtain a phase quantization set, so that the closest phase quantization value can be selected for the phase value before quantization, and the The precoding matrix indication information carries the corresponding index of the selected phase quantization value in the phase quantization set as the reported phase value.
  • the receiving end uses the same number of phase quantization bits and phase quantization rules for the same combination coefficient group to obtain the phase quantization set of the combination coefficient group, and determines the phase quantization value based on the reported index.
  • the merging coefficients in the merging coefficient matrix may be normalized merging coefficients, or merging coefficients including quantized amplitude and phase values; in the precoding matrix indication information
  • the amplitude value of each merge coefficient is the corresponding index of the quantized amplitude value in the amplitude quantization set.
  • the phase value of each merge coefficient is the corresponding index of the quantized phase value in the corresponding phase quantization set. Different phase quantization The phase quantization set corresponding to the number of bits is different.
  • the number of phase quantization bits used in at least two of the Q merging coefficient groups It is different from at least one of the phase quantization rules, which is beneficial to the combination coefficient group that has a large impact on performance.
  • the phase value of each combination coefficient adopts high-precision quantization phase quantization bits and phase quantization rules, or adopts high-precision quantization phase quantization
  • the number of bits or phase quantization rules, and the combination coefficient group that has little effect on performance, the phase value of each combination coefficient adopts the phase quantization bit number and phase quantization rule of low precision quantization, or the phase quantization bit number of low precision quantization or Phase quantization rules. Therefore, it is beneficial to significantly reduce the quantization overhead while minimizing the performance loss.
  • the embodiments of the present application are based on the above merging coefficient group concept, which is beneficial to obtain the best compromise between performance and overhead in.
  • the embodiments of the present application are beneficial to ensure that the amplitude values of all the merging coefficients use the high-precision quantization method.
  • the phase value of the merged coefficient group with a small performance impact adopts a low-precision quantization method, thereby helping to avoid the performance loss caused by the decrease in quantization precision to the greatest extent.
  • the amplitude and phase values of each merging coefficient group use different quantization accuracy. In this way, in order to distinguish the grouping situation of the merging coefficients, additional indication information of the merging coefficient grouping needs to be added.
  • the amplitude values of all the merging coefficients use the same amplitude quantization bit number and amplitude quantization rule, so that the receiving end can determine the grouping situation of the merging coefficients according to the amplitude value, without adding additional merging coefficients Grouped indication information, thereby reducing reporting overhead.
  • step 102 according to the amplitude value of each of the K merging coefficients, the K merging coefficients are grouped to obtain Q merging coefficient groups.
  • An optional implementation manner is described.
  • the transmitting end may group the K merging coefficients in order of the magnitude value of each of the K merging coefficients to obtain Q merging coefficient groups.
  • the receiving end may obtain the grouping situation of the K merging coefficients according to the magnitude value of each merging coefficient in the precoding instruction information, and also in the order of magnitude of the magnitude value. In this way, it is advantageous to use a smaller number of phase quantization bits for a merger coefficient group with a smaller amplitude value, and a larger phase quantization bit number for a merger coefficient group with a larger amplitude value, thereby minimizing system performance loss, Can reduce the reporting overhead.
  • the number of merge coefficients included in each merge coefficient group may be the same or different.
  • each of the 1st to Q-1 merger coefficient groups may include Merger coefficients, included in the Qth merger coefficient group Merging coefficients; of which, the first merging coefficient group includes the largest amplitude value of the K merging coefficients Merger coefficients; the Qth merger coefficient group includes the smallest amplitude value of the K merger coefficients Merging coefficients; if Q is an integer greater than or equal to 3, the qth merging coefficient group includes the K merging coefficients with the largest amplitude value In addition to the combination coefficient, the amplitude value is the largest Merge coefficients, the q is an integer greater than 1 and less than Q, Means round down.
  • the number of merge coefficients included in each merge coefficient group may be predefined or signaled; that is, the qth merge coefficient group among the Q merge coefficient groups includes k q merge coefficients, Where q is an integer greater than or equal to 1 and less than or equal to Q, and k q is predefined or signaled; the number of merge coefficients included in each merge coefficient group k q may be the same or different,
  • Q-th combined set of coefficients comprises a minimum of the K combined coefficients amplitude value K Q a combined coefficient
  • the qth combination coefficient group includes the K combination coefficients with the largest division value
  • the k q merging coefficients with the largest amplitude value may be predefined or signaled; that is, the qth merge coefficient group among the Q merge coefficient groups includes k q merge coefficients, Where q is an integer greater than or equal to 1 and less than or equal to Q, and k q is
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficients in the q 1st combination coefficient group are greater than the q 2nd combination coefficient
  • the minimum amplitude value, the maximum amplitude value or the sum of the amplitude values of the merge coefficients in the group, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the q 2 merge
  • the K merging coefficients are grouped, and the phase quantization bits used in the merging coefficient group composed of the merging coefficients with larger amplitude values are included
  • the number is greater than the number of phase quantization bits used in the merged coefficient group containing a smaller amplitude value.
  • the amplitude value of each merge coefficient uses 3 bits of amplitude quantization bits;
  • the first merge coefficient group is a group containing k 1 merge coefficients with the largest amplitude value, and the second merge coefficient group It is a group containing the Kk 1 merge coefficient with the smallest amplitude value;
  • the minimum amplitude value, maximum amplitude value or the sum of the amplitude values of the first merge coefficient group is large, and the number of phase quantization bits used is 3 bits;
  • the second The minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficient group is small, and the number of phase quantization bits used is 2 bits; if the K combination coefficient amplitude quantization bits are all 3 bits, this embodiment is used to report
  • the magnitude value and phase value of each of the K-1 combining coefficients are required to be (K-1)*3+(k 1 -1)*3+(Kk 1 )*2 bits.
  • the quantization bit number used for the amplitude value and phase value of all the combining coefficients is 3, so the required reporting overhead is (K-1)*6 bits, which can reduce the reporting overhead while To ensure that the system has a greater impact on the system, the merger coefficients with larger amplitude values are quantized with high precision to minimize performance loss.
  • each combination coefficient group includes 12 combination coefficients as an example, the 6 spatial domain beam basis vectors are linear with 4 frequency domain basis vectors
  • the merged merge coefficient matrix is:
  • the strongest merging coefficient among the 24 merging coefficients refers to the normalization process of the merging coefficient matrix, and sets the amplitude quantization bit number used for the amplitude value of each merging coefficient to 3 bits, based on the amplitude quantization bit number
  • the corresponding amplitude quantization set is shown in Table 1.
  • the combination coefficient matrix can be further expressed as shown in formula (8).
  • the first combination coefficient group includes the 12 combination coefficients with the largest amplitude values, which are:
  • the second merging coefficient group includes 12 merging coefficients with the smallest amplitude values, respectively:
  • the reporting overhead required to report the above 23 merge coefficients is 23*3+11*3+12*2 bits, while the same quantization precision is required for the prior art amplitude value and phase value, 23*6 bits are required, which is obvious
  • the reporting overhead is reduced.
  • this embodiment can reduce more reporting overhead.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the merge coefficients in the second merge coefficient group are relatively small, which has relatively little impact on the system performance.
  • the phase values of the merge coefficients in the merge coefficient group are relatively relatively small.
  • phase quantization bits 2 bits; the minimum amplitude value, the maximum amplitude value or the sum of the amplitude values of the merge coefficients in the first merge coefficient group is large, which has a relatively large impact on the system performance.
  • the phase value of the merging coefficient adopts a relatively large phase quantization bit number, that is, 3 bits, thus, it is possible to minimize the system performance loss while reducing the reporting overhead.
  • the transmitting end may determine, for the K combining coefficients, one or more combining coefficients corresponding to each airspace beam base vector in 1 airspace beam base vector; according to the corresponding Summing the amplitude value, the maximum amplitude value, or the power of the one or more combining coefficients, grouping the 2L airspace beam basis vectors to obtain Q airspace beam basis vector groups; for the Q airspace beam basis One or more airspace beam basis vectors in each airspace beam basis vector group in the vector group, the transmitting end determines all the combination coefficients corresponding to the one or more airspace beam basis vectors as a combination coefficient group to obtain Q Q combining coefficient groups corresponding to the spatial domain beam basis vector group.
  • the K merge coefficients may be merge coefficients corresponding to any row, and each row corresponds to an airspace beam basis vector. Therefore, the K The airspace beam base vectors corresponding to the rows to which the merging coefficients respectively belong constitute the l airspace beam base vectors.
  • one or more merging coefficients corresponding to each airspace beam base vector is the row corresponding to the airspace beam base vector , The merging coefficient belonging to the K merging coefficients.
  • the merging coefficient corresponding to the i-th spatial domain beam basis vector includes Correspondingly, the sum of the amplitude values of the merging coefficients corresponding to the i-th airspace beam basis vector is Or, the maximum amplitude value of the merging coefficient corresponding to the i-th airspace beam base vector is max ⁇
  • ,j 1, 2,...,M ⁇ , or, the i-th airspace beam base vector corresponds to The power of the combination coefficient is According to the sum of the amplitude value, the maximum amplitude value or the power corresponding to each airspace beam base vector, the L airspace beam base vectors are grouped to obtain Q airspace beam base vector groups.
  • the number of airspace beam base vectors included in each airspace beam base vector group in the Q airspace beam base vector groups may be the same, or may be different.
  • each of the 1st to Q-1 airspace beam basis vector groups may include Airspace beam basis vectors, the Qth airspace beam basis vector group includes Airspace beam base vectors; where the first airspace beam base vector group includes the sum of the amplitude values, the maximum amplitude value or the power of the L airspace beam base vectors is larger Space-space beam base vectors; the Qth space-space beam base vector group includes the sum of the amplitude values, the maximum amplitude value, or the power sum of the L space-space beam base vectors is smaller Airspace beam base vectors; if Q is an integer greater than or equal to 3, the qth airspace beam base vector group includes the sum of amplitude values, maximum amplitude values, or power sum of the L airspace beam base vectors of (q-1) merger coefficients, the sum of the amplitude values, the maximum amplitude value or the power sum is larger For a space-domain beam basis vector, q is an integer greater than 1 and less than Q.
  • the number of airspace beam base vectors included in each airspace beam base vector group in the Q airspace beam base vector groups may be predefined or signaled; that is, the Q airspace beam base vectors
  • the qth space-domain beam basis vector group in the vector group includes L q space-domain beam basis vectors, where q is an integer greater than or equal to 1 and less than or equal to Q, and L q is predefined or signaled; each The number of airspace beam basis vectors included in the airspace beam basis vector group L q may be the same or different,
  • the first beam a spatial basis vectors containing the spatial beam of L basis vectors and the amplitude value, the maximum amplitude value or power sum greater spatial beams L 1 base vectors;
  • Q-th beam spatial basis vectors Including L Q airspace beam base vectors with a smaller sum of amplitude values, maximum amplitude values or power sums among the L airspace beam base vectors; if Q is an integer greater than or equal to 3, the qth airspace beam base
  • all merging coefficients corresponding to each spatial domain beam base vector group are used as a merging coefficient group, and the number of phase quantization bits used by each merging coefficient group satisfies the following characteristics: a combined coefficient group corresponding to q a q-beam spatial basis vectors, the coefficients for each combined beam spatial basis vectors corresponding to the amplitude value and the maximum amplitude value or power sum greater than 2 q-th
  • the sum of the amplitude value, the maximum amplitude value or the power of the merge coefficient corresponding to each spatial domain beam base vector then the q 1 th merge coefficient group B q1 phase quantization bits of each combined coefficients employed, q 2 is greater than the second coefficient group combined th coefficients of the merging bits used in quantization of phase B q2; q 1 does not equal q 2, and q and q.
  • 1 2 is an integer greater than or equal to 1 and less than or equal to Q.
  • the maximum amplitude values corresponding to the 6 spatial domain beam base vectors are as shown in Table 2:
  • the first airspace beam base vector group includes 3 airspace beam base vectors with larger maximum amplitude values
  • the second airspace beam base vector group includes 3 airspace beam base vectors with smaller amplitude values ,as shown in Table 3.
  • the merge coefficients corresponding to all the airspace beam base vectors in the first airspace beam base vector group constitute the first merger coefficient group
  • the merge coefficients corresponding to all the airspace beam base vectors in the second airspace beam base vector group The second combination coefficient group is formed as shown in Table 3.
  • phase value of each merge coefficient in the first merge coefficient group may use a 3-bit phase quantization bit number; the phase value of each merge coefficient in the second merge coefficient group may use a 2-bit phase quantization bit number, thereby , While reducing the reporting overhead, as much as possible to reduce the loss of system performance.
  • the amplitude values of the combining coefficients in the embodiment of the present application adopt the same amplitude quantization accuracy. Therefore, it is not necessary to separately report the grouping situation of the above combining coefficient groups or the grouping situation of the spatial domain beam basis vector.
  • the amplitude value can be determined by using the above method, thereby avoiding the increase in reporting overhead caused by the group indication.
  • the transmitting end may determine, for the K combining coefficients, one or more combining coefficients corresponding to each frequency domain base vector in the m frequency domain base vectors; according to the corresponding The sum of the amplitude value, the maximum amplitude value or the power of the one or more combining coefficients, one of the three, grouping the m frequency domain basis vectors to obtain Q frequency domain basis vector groups; For one or more frequency domain basis vectors in each frequency domain basis vector group of the Q frequency domain basis vector groups, the transmitting end determines all merge coefficients corresponding to the one or more frequency domain basis vectors as One merged coefficient group obtains Q merged coefficient groups corresponding to Q frequency domain basis vector groups.
  • the K merge coefficients may be merge coefficients distributed in any column, and each column corresponds to a frequency domain basis vector. Therefore, the K merge coefficients The frequency domain base vectors corresponding to the columns to which the coefficients respectively belong constitute the m frequency domain base vectors. Correspondingly, one or more merge coefficients corresponding to each frequency domain base vector are in the row corresponding to the frequency domain base vector, The merging coefficients belonging to the K merging coefficients.
  • the merge coefficient corresponding to the jth frequency domain basis vector includes Correspondingly, the sum of the amplitude values of the merge coefficients corresponding to the j-th frequency domain base vector is Or, the maximum amplitude value of the merge coefficient corresponding to the jth frequency domain base vector is max ⁇
  • ,i 1, 2,...,L ⁇ , or, the jth frequency domain base vector corresponds to The power of the combination coefficient is According to the sum of the amplitude value, the maximum amplitude value or the sum of the power corresponding to each space-domain beam base vector, the M frequency-domain base vectors are grouped to obtain Q frequency-domain base vector groups.
  • the number of frequency domain basis vectors included in each frequency domain basis vector group in the Q frequency domain basis vector groups may be the same or different.
  • each frequency domain basis vector group in the first to Q-1 frequency domain basis vector groups may include Frequency-domain basis vectors, including the Qth frequency-domain basis vector group Frequency domain base vectors; where the first frequency domain base vector group includes the sum of the amplitude values, the maximum amplitude value or the power sum of the M frequency domain base vectors is larger Frequency domain basis vectors; the Qth frequency domain basis vector group includes the sum of the amplitude values, the maximum amplitude value or the power sum of the M frequency domain basis vectors is smaller Frequency-domain base vectors; if Q is an integer greater than or equal to 3, the qth frequency-domain base vector group includes the sum of the amplitude value, the maximum amplitude value, or the power sum of the M frequency-domain base vectors of In addition to the combination coefficients, the sum of the amplitude value, the maximum amplitude value or the power sum is larger In frequency domain basis vectors, q is an integer greater than 1 and less than Q.
  • the number of frequency domain basis vectors included in each frequency domain basis vector group in the Q frequency domain basis vector groups may be predefined or signaled; that is, the Q frequency domain basis vectors
  • the qth frequency domain basis vector group in the vector group includes M q frequency domain basis vectors, where q is an integer greater than or equal to 1 and less than or equal to Q, and M q is predefined or signaled; each The number of frequency domain basis vectors included in the frequency domain basis vector group M q may be the same or different,
  • the coefficients of Q groups combined, a combined coefficient group corresponding to the q q frequency domain a set of basis vectors, the magnitude of each frequency-domain base vectors corresponding to the combined coefficient the sum, the maximum amplitude value or power sum, q 2 are greater than the frequency-domain vectors of q 2 groups combined th coefficient group corresponding to each frequency-domain vectors corresponding group combined value and the amplitude coefficient,
  • the sum of the maximum amplitude value or power, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the phase used by each merge coefficient in the q 2 merge coefficient group Quantization bit number B q2 ;
  • the q 1 is not equal to the q 2
  • q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the first frequency domain basis vector group includes 2 frequency domain basis vectors with a larger sum of amplitude values
  • the second frequency domain basis vector group includes 2 frequency domains with a smaller sum of amplitude values.
  • the domain basis vector is shown in Table 3.
  • the merge coefficients corresponding to all frequency domain base vectors in the first frequency domain base vector group constitute the first merge coefficient group
  • the merge coefficients corresponding to all frequency domain base vectors in the second frequency domain base vector group The second combination coefficient group is formed as shown in Table 5.
  • phase value of each merge coefficient in the first merge coefficient group may use a 3-bit phase quantization bit number; the phase value of each merge coefficient in the second merge coefficient group may use a 2-bit phase quantization bit number, thereby , While reducing the reporting overhead, as much as possible to reduce the loss of system performance.
  • the amplitude values of the merging coefficients in the embodiment of the present application adopt the same amplitude quantization accuracy. Therefore, it is not necessary to separately report the grouping situation of the merging coefficient groups or the frequency domain basis vector grouping.
  • the receiving end is based on the For the amplitude value, the grouping can be determined in the above manner, thereby avoiding the increase in reporting overhead caused by the grouping.
  • the K combining coefficients correspond to 1 spatial domain beam basis vector, and the combining coefficients corresponding to each spatial domain beam basis vector are grouped to obtain Q combining coefficient groups corresponding to the K combining coefficients, where the l is less than or A positive integer equal to 2L.
  • the transmitting end may determine, for the K combining coefficients, one or more combining coefficients corresponding to each airspace beam base vector in 1 airspace beam base vector; for one or more corresponding to each airspace beam base vector A plurality of combining coefficients, the transmitting end groups the one or more combining coefficients according to the magnitude order of the amplitude value of each combining coefficient, to obtain Q combining coefficient groups corresponding to each spatial domain beam basis vector;
  • the transmitting end merges the qth merge coefficient group corresponding to each airspace beam base vector in the l airspace beam base vectors to obtain the qth merge coefficient group of the Q merge coefficient groups of the K merge coefficients , Q is an integer equal to 1, 2, ..., Q.
  • the K merge coefficients may be merge coefficients distributed in any row, and each row corresponds to an airspace beam basis vector. Therefore, the K merge coefficients The airspace beam basis vectors corresponding to the rows to which the coefficients respectively belong constitute the l airspace beam basis vectors. Correspondingly, one or more merge coefficients corresponding to each airspace beam basis vector are in the row corresponding to the airspace beam basis vector, The merging coefficients belonging to the K merging coefficients.
  • each merging coefficient group includes a merging coefficient
  • the number can be the same or different.
  • the first beam L 1 th spatial basis vectors corresponding to a combined coefficient K l1, Q-1 first to a combined group L 1 th coefficient beam spatial basis vectors corresponding to, respectively, may comprise A combined coefficient
  • the first beam L a spatial basis vectors corresponding to the first coefficient set comprising a combined coefficient L a combined beam spatial basis vectors corresponding to the amplitude value larger A combined coefficient; l 1 th first spatial beamforming vectors corresponding to the first group of Q combined coefficient set comprising a smaller coefficient combined beams l 1 th spatial basis vectors corresponding to the amplitude value A combined coefficient; if Q is an integer greater than or equal to 3, the first spatial beams l 1 th basis vector corresponding to the q-th coefficient group contain other combined amplitude values combined coefficient larger spatial beams l 1 th basis vectors corresponding In addition to the combination coefficient, the amplitude value is larger Merger coefficients.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the q 1st combining coefficient group is greater than the q 2 Of the minimum amplitude value, the maximum amplitude value, or the amplitude value of the merger coefficient groups, then among the Q merger coefficient groups of the K merger coefficient groups, the number of phase quantization bits B q1 used by the q 1st merger coefficient group is greater than q 2 of merged th coefficient group used in phase quantizing bits B q2; the Q 1 not equal to the q 2, q 2 and Q 1 and greater than or equal to 1 and less than or equal to Q integer.
  • the 2 merge coefficient groups corresponding to the 4 frequency domain base vectors are merged to obtain 2 merge coefficient groups corresponding to 24 merge coefficients, as shown in Table 6
  • the merge coefficients corresponding to each airspace beam base vector are divided into 2 merge coefficient groups; the first merge coefficient group corresponding to all the airspace beam base vectors is further merged to obtain the The first merging coefficient group corresponding to the 24 merging coefficients; merging the second merging coefficient group corresponding to all the airspace beam base vectors to obtain the second merging coefficient group corresponding to the 24 merging coefficients.
  • phase value of each merged coefficient in the first merged coefficient finally determined may adopt a 3-bit phase quantization bit number; the phase value of each merged coefficient in the second merged coefficient group may adopt a 2-bit phase quantization bit number
  • the above-mentioned grouping rules corresponding to each spatial domain beam base vector are consistent when grouping.
  • the amplitude values of the combining coefficients in the embodiment of the present application adopt the same amplitude quantization accuracy. Therefore, it is not necessary to separately report the grouping situation of the above combining coefficient groups or the grouping situation of the combining coefficients corresponding to each spatial domain beam basis vector Based on the amplitude value of each merging coefficient, the grouping situation can be determined in the above manner, thereby avoiding the increase in reporting overhead caused by the grouping indication.
  • the above optional embodiment may be predefined by the transmitting end and the receiving end, or notified by the base station to the terminal device, so that the grouping rules adopted by the transmitting end and the receiving end are the same, which is beneficial to the receiving end based on each combination coefficient
  • the amplitude value obtains the grouping situation of each merging coefficient, so as to avoid reporting overhead caused by additionally indicating the grouping situation.
  • At least one of the above merged coefficient groups differs from at least one of the number of phase quantization bits and the phase quantization rule adopted by the other merged coefficient groups.
  • the phase quantization set composed of optional phase quantization values is Represents the index corresponding to the phase quantization value of a merge coefficient in the second merge coefficient group.
  • Each merge coefficient in the second merge coefficient group can select an actual phase value closest to the merge coefficient from the phase quantization set
  • the phase quantization value of is used as the phase value of the merging coefficient. Therefore, in the precoding matrix indication information, 2 bits can be used to represent the index of the phase value of the merging coefficient in the phase quantization set as the merging coefficient. Phase value.
  • the amplitude value of each of the K merging coefficients is quantized and determined using the number of quantization bits A 1 ; the A 1 is an integer greater than or equal to 2. For example, if the number of amplitude quantization bits is 3 bits, the amplitude quantization set composed of optional quantization amplitude values is shown in Table 1. For each merge coefficient, a quantization amplitude value can be selected from Table 1 and the quantization amplitude value It is closest to the actual value after the normalization of the merge coefficient.
  • the precoding indication information can carry a 3-bit indicated quantization index to indicate the quantized amplitude value of the merged coefficient, and can also be used as the amplitude value of the merged coefficient, so that the receiving end can obtain 3 bits based on the amplitude quantization set The quantization amplitude value corresponding to the indicated quantization index.
  • the average amplitude value in the merge coefficient corresponding to the airspace beam base vector is used as a reference, and the amplitude of the differential amplitude is used to quantize Quantification rules.
  • the K combining coefficients correspond to 1 airspace beam base vector, and each of the 1 airspace beam base vectors corresponds to one or more combining coefficients; the transmitting end can calculate the correspondence of each airspace beam base vector
  • the average amplitude value of the combination coefficient of is used as the average amplitude value of each airspace beam base vector; for the average amplitude value of each airspace beam base vector, the average amplitude quantization bit number A 2 is used for quantization; in addition, each airspace beam base
  • the amplitude value of each merging coefficient corresponding to the vector is referenced to the average amplitude value, and the amplitude quantization bit number A 3 is used for differential amplitude quantization, so that the amplitude value of one merging coefficient corresponding to each spatial domain beam base vector is the average amplitude value The product of the difference amplitude value of the combination coefficient.
  • a 2 is an integer greater than or equal to 2
  • a 3 is an integer greater than or equal to 1.
  • the transmitting end may select an average amplitude quantization value from the average amplitude quantization set shown in Table 1, the average amplitude quantization value is the quantization value closest to the average amplitude value of the merging coefficient corresponding to the spatial domain beam basis vector; For each merge coefficient corresponding to the airspace beam basis vector, the transmitter selects a differential amplitude quantization value from the differential amplitude quantization set shown in Table 7, the differential amplitude quantization value is the amplitude value closest to the merge coefficient and the average amplitude The quantized value of the difference between the amplitude values.
  • the precoding indication information may carry the average amplitude values corresponding to all the spatial domain beam base vectors in the l spatial domain beam base vectors (also referred to as the index of the average amplitude value in the amplitude quantization set shown in Table 1), And the amplitude values of the merging coefficients corresponding to all spatial-domain beam base vectors (may also be referred to as differential amplitude quantization values, or quantization indexes of the differential amplitude quantization values in the differential amplitude quantization set shown in Table 7).
  • the receiving end receives the precoding instruction information, and can also use Tables 1 and 7 to obtain the average amplitude value corresponding to each space-domain beam base vector and the quantized differential amplitude value corresponding to each combining coefficient.
  • the quantized amplitude values also called amplitude values) of the two merge coefficients.
  • the maximum amplitude value in the merging coefficient corresponding to the airspace beam base vector is used as a reference, and the amplitude of differential amplitude quantization is used Quantification rules.
  • Table 8 for reference to the maximum amplitude value, a differential amplitude quantization set consisting of optional differential amplitude quantization values.
  • the transmitter can select an amplitude quantization value from Table 1, the amplitude quantization value is the quantization value closest to the maximum amplitude value of the merge coefficient corresponding to the airspace beam base vector; further, for this For each merge coefficient corresponding to the space-domain beam base vector, the transmitter selects a differential amplitude quantization value from the differential amplitude quantization set shown in Table 8.
  • the differential amplitude quantization value is the amplitude value closest to the merge coefficient and the maximum amplitude value The quantized value of the difference between the amplitude values.
  • the precoding indication information can carry the maximum amplitude values corresponding to all the spatial domain beam base vectors in the l spatial domain beam base vectors (also can be referred to as the corresponding maximum amplitude values in the amplitude quantization set shown in Table 1). Index), and the amplitude values of the merging coefficients corresponding to all spatial-domain beam base vectors (also called differential amplitude quantization values, or the quantization index of the differential amplitude quantization value in the differential amplitude quantization set shown in Table 8).
  • the receiving end receives the precoding matrix indication information, and can also use Tables 1 and 8 to obtain the maximum amplitude value corresponding to each space-domain beam base vector and the differential amplitude quantization value corresponding to each merging coefficient.
  • the amplitude quantization value ie, amplitude value
  • the base station may notify, or pre-defined, that the transmitting end and the receiving end are known.
  • the amplitude values of all of the K combining coefficients are located in all Before or after the phase value of the merge coefficient. That is, the amplitude values of all the merging coefficients in the K merging coefficients are in high bits, and the phase values of all the merging coefficients in the K merging coefficients are in low bits; or, the values of all the merging coefficients in the K merging coefficients
  • the amplitude value is located at a low bit, and the phase values of all the combining coefficients in the K combining coefficients are located at a high bit.
  • the amplitude value of each of the K combining coefficients is sequentially arranged in the order of the index of the spatial domain beam base vector corresponding to each combining coefficient.
  • K L*M
  • the phase value of each of the K combining coefficients is in the order of the index of the spatial domain beam base vector corresponding to each of the combining coefficients or the index of the corresponding frequency domain base vector, in order Arranged; or, in the precoding matrix indication information, for the Q merger coefficient groups to which the K merger coefficients respectively belong, the phase value of each merged coefficient group is the index of each merged coefficient group as Sequence, arranged in sequence, as the phase values of all the merge coefficients of the first merge coefficient group are arranged before or after the phase values of all the merge coefficients of the second merge coefficient group; the phase value of each merge coefficient group
  • the phase values of the merging coefficients in are arranged in the order of the index of the spatial domain beam base vector corresponding to the merging coefficients or the index of the corresponding frequency domain base vector.
  • the precoding matrix indication information further includes the average amplitude value or maximum amplitude value corresponding to each airspace beam base vector in the 1 airspace beam base vectors; the average amplitude value or maximum value corresponding to each airspace beam base vector The amplitude values are arranged in the order of the index of each airspace beam base vector.
  • the index of the spatial domain beam base vector corresponding to the merging coefficient is used in the order of arranging, there are cases where the index of the spatial domain beam base vector corresponding to multiple merging coefficients is the same , It can be further arranged in the order of the index of the frequency domain base vector corresponding to the multiple merge coefficients.
  • the index of the frequency domain base vector corresponding to the merging coefficient is used in the order of arranging, there are cases where the indexes of the frequency domain base vectors corresponding to multiple merging coefficients are the same, Then, the indexes of the spatial domain beam base vectors corresponding to the multiple combining coefficients may be further arranged in this order.
  • the amplitude or phase values of the L*M combining coefficients can be arranged one by one in each row shown in formula (8); or one by one in each column shown in formula (8) arrangement.
  • the indexes of the merge coefficient groups may be arranged first; for merge coefficients with the same index of the merge coefficient groups, the phase values may be arranged according to the corresponding spatial domains
  • the indexes of the beam base vectors are arranged in order; further, if the indexes of the spatial domain beam base vectors corresponding to the merging coefficients are also the same, they can be arranged in the order of the corresponding frequency domain base vector indexes.
  • the combination coefficient group corresponding to formula (8) first arrange the phase value of each combination coefficient in the first combination coefficient group corresponding to the 24 combination coefficients; then arrange the corresponding 24 combination coefficients
  • arrange the 6th airspace beam base vector corresponding to Combining coefficients with the same index for the corresponding spatial domain beam basis vector such as It can be arranged in the order of the corresponding frequency domain base vector index, such as first arranging the corresponding Rearrange the second frequency domain base vector corresponding to
  • Scheme 1 uses 3 bits for equal-precision amplitude quantization and phase quantization respectively for L*M-1 merge coefficients.
  • the L*M-1 merge coefficients of each merge coefficient are reported.
  • the required overhead is (L*M-1)*6.
  • Scheme 2 uses 3 bits to quantize the average amplitude value corresponding to each airspace beam base vector for L*M-1 merge coefficients.
  • the required overhead is the differential quantization amplitude value of L*3, L*M-1 combining coefficients
  • the required overhead is (L*M-1)*2; for the phase values of the L*M-1 merge coefficients, all using 3-bit quantization, the phase value of the L*M-1 merge coefficients is required
  • the overhead is (L*M-1)*3; therefore, in scheme 2, the amplitude and phase values of each of the L*M-1 merge coefficients are reported, and the required overhead is L*3+(L *M-1)*5.
  • Scheme 3 is aimed at L*M-1 merge coefficients, and the merge coefficients corresponding to each spatial domain beam base vector in the L spatial domain beam base vectors are divided into 2 merge coefficient groups, of which the amplitude quantization bits used by the merger coefficient groups with larger amplitudes The number is 3 bits, the number of phase quantization bits is 3 bits, the number of amplitude quantization bits used in the merger group with a smaller amplitude is 2 bits, and the number of phase quantization bits is 2 bits; thus, each of the L*M-1 merge coefficients
  • the amplitude and phase values of the combining coefficients require an overhead of (L*M/2-1)*6+L*M/2*4; in addition, the grouping of the combining coefficients corresponding to each spatial domain beam basis vector is required For additional instructions, the required cost is Therefore, in scheme 3, the amplitude and phase values of each of the 2L*M-1 merge coefficients are reported, and the required overhead is
  • the grouping method is grouped according to the amplitude value, and The amplitude value uses the same quantization method, so this application does not require additional indication of the grouping situation.
  • the receiving end can use the grouping method described in 1.4 to obtain the grouping situation according to the amplitude values of all the merge coefficients; therefore, this solution is reported to the L *M-1 merge coefficients
  • the amplitude value and phase value of each merge coefficient, the required overhead is (L*M-1)*3+(L*M/2-1)*3+L*M/2 *2.
  • the above grouping method can also be grouped using other predefined rules; and, the above-mentioned phase quantization method can also be quantified using other predefined rules, but the basic idea is unchanged, that is, all amplitude values are used
  • the same amplitude quantization method, grouping based on the amplitude value of each merging coefficient, and the phase quantization used by each merging coefficient group can be different, thereby ensuring that the reporting overhead can be reduced and improved while minimizing system performance loss
  • the compression efficiency of the codebook can also be grouped using other predefined rules; and, the above-mentioned phase quantization method can also be quantified using other predefined rules, but the basic idea is unchanged, that is, all amplitude values are used
  • the same amplitude quantization method, grouping based on the amplitude value of each merging coefficient, and the phase quantization used by each merging coefficient group can be different, thereby ensuring that the reporting overhead can be reduced and improved while minimizing system performance loss
  • the compression efficiency of the codebook can also be
  • FIG. 3 is a schematic structural diagram of a precoding matrix indicating device provided by an embodiment of the present application.
  • the precoding matrix indicating device may be located in a transmitting end.
  • the precoding matrix indicating device includes a determining unit 201 and a grouping. Unit 202 and sending unit 203, wherein the determining unit 201 and the grouping unit 202 may be processing units, where:
  • the determining unit 201 is configured to determine the amplitude value of each of the K merging coefficients corresponding to each spatial layer; the amplitude value of each merging coefficient is determined by using the same number of amplitude quantization bits and the same amplitude quantization rule ; K is a positive integer less than or equal to L*M, where L is the total number of airspace beam basis vectors determined by the transmitting end, and M is the frequency domain basis vector determined by the transmitting end The total number of;
  • the grouping unit 202 is configured to group the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups; the Q is an integer greater than or equal to 2;
  • the determining unit 201 is further configured to determine the phase value of each merge coefficient in each merge coefficient group; there are at least two phase coefficient quantization bits and phase quantization rules adopted by at least two merge coefficient groups in the Q merge coefficient groups At least one of them is different;
  • the sending unit 203 is configured to send precoding matrix indication information, where the precoding matrix indication information includes an amplitude value and a phase value of each of the K combining coefficients.
  • the grouping unit 202 groups the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups, specifically: According to the magnitude order of the amplitude value of each of the K merging coefficients, group the K merging coefficients to obtain Q merging coefficient groups.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficients in the q 1st combination coefficient group are greater than the combination coefficients in the q 2nd combination coefficient group
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than each merge in the q 2 merge coefficient groups
  • the number of phase quantization bits B q2 used by the coefficients; the q 1 is not equal to the q 2 , and the q 1 and the q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the grouping unit 202 groups the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups, specifically: For the K merging coefficients, determine one or more merging coefficients corresponding to each airspace beam base vector in 1 airspace beam base vector; the l is a positive integer less than or equal to the L; according to each The sum of the amplitude value, the maximum amplitude value or the power of the one or more merging coefficients corresponding to the spatial domain beam basis vector, grouping the l spatial domain beam basis vectors to obtain Q spatial domain beam basis vector groups; One or more airspace beam base vectors in each of the Q airspace beam base vector groups in the Q airspace beam base vector groups, determining all the merge coefficients corresponding to the one or more air space beam base vectors as a merge coefficient group, Q merger coefficient groups corresponding to Q spatial domain beam basis vector groups are obtained.
  • the sum of the amplitude value, the maximum amplitude value, or the power sum of the merge coefficient corresponding to each spatial domain beam base vector is greater than q 2 th second spatial beamforming vectors of q 2 groups combined th coefficient group corresponding to each base vector spatial beam coefficient corresponding to the combined value and the amplitude, the maximum amplitude value or power sum, is the first q 1
  • the number of phase quantization bits B q1 used for each merge coefficient in the merge coefficient groups is greater than the number of phase quantization bits B q2 used for each merge coefficient in the q 2 merge coefficient groups; q 1 is not equal to q 2 , and q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the grouping unit 202 groups the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups, specifically: Among the K merging coefficients, determine one or more merging coefficients corresponding to each frequency domain base vector in the m frequency domain base vectors; m is a positive integer less than or equal to the M; according to each frequency The sum of the amplitude value, the maximum amplitude value or the power of the one or more merging coefficients corresponding to the domain basis vector, group the m frequency domain basis vectors to obtain Q frequency domain basis vector groups; One or more frequency domain basis vectors in each frequency domain basis vector group of the Q frequency domain basis vector groups, and determining all the merge coefficients corresponding to the one or more frequency domain basis vectors as a merge coefficient group to obtain Q merge coefficient groups corresponding to Q frequency domain basis vector groups.
  • a combined coefficient group corresponding to the q q frequency domain a set of basis vectors, each basis vector corresponding frequency domain coefficient combined value and the amplitude, the maximum amplitude value or power sum greater than
  • the q 2nd frequency domain base vector group corresponding to the q 2nd merge coefficient group the sum of the amplitude value, the maximum amplitude value or the power of the merge coefficient corresponding to each frequency domain base vector, then the q 1st merge
  • the number of phase quantization bits B q1 used by each merge coefficient in the coefficient group is greater than the number of phase quantization bits B q2 used by each merge coefficient in the q 2nd merge coefficient group; the q 1 is not equal to the q 2 , and q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the grouping unit 202 groups the K combining coefficients according to the amplitude value of each of the K combining coefficients to obtain Q combining coefficient groups, specifically: : Among the K merging coefficients, determine one or more merging coefficients corresponding to each airspace beam base vector in 1 airspace beam base vector; the l is a positive integer less than or equal to the L; for each One or more combining coefficients corresponding to the spatial domain beam base vector, grouping the one or more combining coefficients according to the magnitude order of the amplitude value of each combining coefficient, to obtain Q corresponding to each of the spatial domain beam base vectors Merge coefficient group; merge the qth merge coefficient group corresponding to each airspace beam base vector in the l airspace beam base vectors to obtain the qth merge coefficient group of the Q merge coefficient groups of the K merge coefficients , Q is an integer equal to 1, 2, ..., Q.
  • Q a combined set of coefficients for each of said spatial beam vectors corresponding group, the minimum amplitude value of q 1 th coefficient sets combined, or a maximum amplitude greater than the amplitude value q 2 and the combined set of coefficients th minimum amplitude value, or a maximum amplitude value and the amplitude value, then the combined number of K coefficients Q were combined coefficients, the coefficients q1 a combined use group B phase q1 quantization bit number larger than the two combined coefficients q 2
  • the amplitude value of each of the K combining coefficients is determined by quantization using the number of quantization bits A 1 respectively; the A 1 is an integer greater than or equal to 2.
  • the precoding matrix indication information further includes an average amplitude value or a maximum amplitude value corresponding to each spatial domain beam base vector in the 1 spatial domain beam base vectors; the l is less than or Is a positive integer equal to L; the 1 spatial domain beam base vector is the spatial domain beam base vector corresponding to each of the K combining coefficients; the amplitude value of each of the K combining coefficients is Using the average amplitude value or the maximum amplitude value of each spatial domain beam base vector corresponding to each merging coefficient as a reference, the number of quantization bits A 3 is respectively used for differential quantization and determination, where A 3 is greater than or equal to 1.
  • the average amplitude value or maximum amplitude value of each airspace beam base vector is the average amplitude value or maximum amplitude value of one or more combining coefficients corresponding to each airspace beam base vector of the K combining coefficients ;
  • the average amplitude value or the maximum amplitude value corresponding to each space-domain beam base vector is quantized and determined using the amplitude quantization bit number A 2 respectively, where A 2 is an integer greater than or equal to 2.
  • the average amplitude value or the maximum amplitude value corresponding to all the spatial domain beam base vectors in the l spatial domain beam base vectors is located at the Before the amplitude value; in the precoding matrix indication information, the average amplitude value or the maximum amplitude value corresponding to each airspace beam base vector is arranged in the order of the index of each airspace beam base vector.
  • the amplitude values of all the merging coefficients in the K merging coefficients are before the phase values of all the merging coefficients
  • the amplitude value of each of the K merging coefficients is in the order of the index of the spatial domain beam base vector corresponding to each merging coefficient or the index of the corresponding frequency domain base vector , Arranged in sequence;
  • the phase value of each of the K combining coefficients is in the order of the index of the spatial domain beam base vector corresponding to each of the combining coefficients or the index of the corresponding frequency domain base vector, Arranged in sequence; or, in the precoding matrix indication information, for the Q merger coefficient groups to which the K merger coefficients respectively belong, the phase value of each merged coefficient group is an index of each merged coefficient group
  • the order of each merging coefficient in the phase indication of each merging coefficient group is the order of the index of the spatial domain beam base vector corresponding to the merging coefficient or the index of the corresponding frequency domain base vector , In order.
  • FIG. 4 is another precoding matrix indicating device disclosed in an embodiment of the present application.
  • the precoding matrix indicating device may be located at the receiving end.
  • the precoding matrix indicating device includes a receiving unit 301 and a determining unit 302.
  • the determining unit 302 may also be a processing unit, where:
  • the receiving unit 301 is configured to receive precoding matrix indication information, where the precoding matrix indication information includes the amplitude value and the phase value of each of the K combining coefficients;
  • the determining unit 302 is configured to determine the amplitude value and the phase value of each of the K combining coefficients according to the precoding matrix indication information;
  • the amplitude value of each combining coefficient is determined by using the same number of amplitude quantization bits and the same amplitude quantization rule; the K is a positive integer less than or equal to L*M, and the L is determined by the transmitting end The total number of space-domain beam base vectors, where M is the total number of frequency-domain base vectors determined by the transmitting end;
  • the Q merger coefficient groups to which the K merger coefficients respectively belong are grouped based on the amplitude values of the K merger coefficients; the phase value of each merger coefficient is based on the merger coefficient to which each merger coefficient belongs
  • the number of phase quantization bits used by the group and the phase quantization rule are determined; at least one of the phase quantization bit numbers and phase quantization rules used by at least two merger coefficient groups in the Q merger coefficient groups is different.
  • the Q merger coefficient groups to which the K merger coefficients respectively belong are in accordance with the magnitude order of the amplitude value of each merger coefficient in the K merger coefficients.
  • the combination coefficients are grouped and obtained.
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values of the combination coefficients in the q 1st combination coefficient group are greater than the combination coefficients in the q 2nd combination coefficient group
  • the minimum amplitude value, the maximum amplitude value, or the sum of the amplitude values, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than each merge in the q 2 merge coefficient groups
  • the number of phase quantization bits B q2 used by the coefficients; the q 1 is not equal to the q 2 , and the q 1 and the q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • each of the Q combining coefficient groups to which the K combining coefficients belong respectively is all combining coefficients corresponding to each airspace beam base vector in each airspace beam base vector group Constituted; the each airspace beam base vector group is based on the sum of the amplitude values of the one or more merger coefficients corresponding to each airspace beam base vector in the 1 of the K airspace beam base vectors, the maximum The amplitude value or the sum of the power is obtained by grouping the l space-space beam basis vectors; the l is a positive integer less than or equal to the L.
  • the combined coefficient group of Q a combined coefficient group corresponding to q a q-beam spatial basis vectors, the spatial amplitude values each combined beam vectors corresponding group of coefficients, the maximum the sum of the amplitude or power values are greater than the spatial beams q 2 th basis vectors q 2 th second group combined coefficient group corresponding to each base vector spatial beam coefficient corresponding to the combined value and the amplitude, the maximum amplitude value or power
  • the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the number of phase quantization bits B q2 used by each merge coefficient in the q 2 merge coefficient group ;
  • Q 1 is not equal to q 2
  • q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • each of the Q combining coefficient groups to which the K combining coefficients respectively belong is each of the frequency domain basis vector groups in the Q frequency domain basis vector groups All the combination coefficients corresponding to each frequency domain basis vector; the Q frequency domain basis vector group is based on one or more of the m frequency domain basis vectors corresponding to each of the m frequency domain basis vectors among the K combination coefficients The sum of the amplitude values of the combining coefficients, the maximum amplitude value or the power, is obtained by grouping the M frequency-domain base vectors; the m is a positive integer less than or equal to the M.
  • the combined coefficient group of Q, a combined coefficient group corresponding to the q q a frequency-domain vector-yl group, and the amplitude value for each frequency domain coefficient of the base vectors corresponding to the combined maximum the sum of the amplitude or power values are greater than the q 2 frequency-domain vectors of q 2 groups combined th coefficient group corresponding to each frequency-domain coefficients based vectors corresponding combined value and the amplitude, the maximum amplitude value or power
  • the sum, the number of phase quantization bits B q1 used by each merge coefficient in the q 1st merge coefficient group is greater than the number of phase quantization bits B q2 used by each merge coefficient in the q 2 merge coefficient group; 1 is not equal to the q 2 , and q 1 and q 2 are integers greater than or equal to 1 and less than or equal to Q.
  • the qth merger coefficient group is corresponding to each of the airspace beam base vectors out of the l airspace beam base vectors
  • the qth combination coefficient group is obtained by combining, and the l is a positive integer less than or equal to the L; the q is an integer of 1, 2, ..., Q; the l
  • the Q combination coefficient groups corresponding to each airspace beam base vector are for one or more combination coefficients corresponding to each airspace beam base vector, in order of the magnitude of each combination coefficient, Obtained by grouping the one or more merging coefficients.
  • the combined coefficient group of Q each of said spatial beam vectors corresponding to the Q group combined coefficient group, the first minimum amplitude value q 1 th coefficient sets combined, or the maximum amplitude value and the amplitude Greater than the sum of the minimum amplitude value, the maximum amplitude value, or the amplitude value of the q 2nd merged coefficient group, then among the Q merged coefficient groups of the K merged coefficients, the number of phase quantization bits used by the q1 merged coefficient group B q1 is greater than the number of phase quantization bits B q2 used in the q 2 merging coefficient group; the q 1 is not equal to the q 2 , and q 1 and q 2 are greater than or equal to 1 and less than or equal to Q Integer.
  • the amplitude value of each of the K combining coefficients is determined by quantization using the number of quantization bits A 1 respectively; the A 1 is an integer greater than or equal to 2.
  • the precoding matrix indication information further includes an average amplitude value or a maximum amplitude value corresponding to each spatial domain beam base vector in 1 spatial domain beam base vector, where l is less than or A positive integer equal to the L; the 1 spatial domain beam basis vector is the spatial domain beam basis vector corresponding to each of the K combining coefficients;
  • the amplitude value of each of the K merging coefficients is based on the average amplitude value or the maximum amplitude value of each spatial domain beam base vector corresponding to each merging coefficient respectively, and is quantized using the number of quantization bits A 3 Determined by differential quantization, A 3 is an integer greater than or equal to 1; the average amplitude value or maximum amplitude value of each spatial domain beam base vector is for the K combining coefficients, and each spatial domain beam base vector corresponds to The average amplitude value or maximum amplitude value of one or more of the combination coefficients of
  • the average amplitude value or the maximum amplitude value corresponding to each space-domain beam base vector is quantized and determined using the amplitude quantization bit number A 2 respectively, where A 2 is an integer greater than or equal to 2.
  • the average amplitude value or the maximum amplitude value corresponding to all spatial domain beam base vectors in the l spatial domain beam base vectors is located in the amplitude values of all the merge coefficients in the K merge coefficients prior to;
  • the average amplitude value or the maximum amplitude value corresponding to each airspace beam base vector is arranged in the order of the index of each airspace beam base vector.
  • the amplitude values of all the merging coefficients in the K merging coefficients are located before the phase values of all the merging coefficients;
  • the amplitude value of each of the K merging coefficients is in the order of the index of the spatial domain beam base vector corresponding to each merging coefficient or the index of the corresponding frequency domain base vector , Arranged in sequence;
  • the phase value of each of the K combining coefficients is in the order of the index of the spatial domain beam base vector corresponding to each of the combining coefficients or the index of the corresponding frequency domain base vector, Arranged in sequence; or, in the precoding matrix indication information, for the Q merger coefficient groups to which the K merger coefficients respectively belong, the phase value of each merged coefficient group is an index of each merged coefficient group
  • the order of each merging coefficient in the phase indication of each merging coefficient group is the order of the index of the spatial domain beam base vector corresponding to the merging coefficient or the index of the corresponding frequency domain base vector , In order.
  • FIG. 5 is a schematic diagram of a device provided by an embodiment of the present application.
  • the device may be a terminal device; it may also be a chip or a circuit, such as a chip or a chip that can be provided in the terminal device. Circuit.
  • the device can correspond to the relevant operations of the transmitting end in the above method.
  • the device may include a processor 410 and a memory 420.
  • the memory 420 is used to store instructions
  • the processor 410 is used to execute the instructions stored in the memory 420, so as to implement the steps performed by the transmitting end described above, or to implement the above-mentioned precoding matrix indication device shown in FIG. 3 Related operations.
  • the device may further include a receiver 440 and a transmitter 450. Further, the device may further include a bus system 430, wherein the processor 410, the memory 420, the receiver 440, and the transmitter 450 may be connected through the bus system 830.
  • the processor 410 is used to execute the instructions stored in the memory 420 to control the receiver 440 to receive the signal and the transmitter 450 to send the signal to complete the steps of the transmitting end in the above method, such as sending precoding matrix indication information.
  • the receiver 440 and the transmitter 450 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 420 may be integrated in the processor 410, or may be provided separately from the processor 410.
  • the memory 420 is also used to store the predefined information described in the foregoing method embodiments, or information notified by a network device such as a base station.
  • the functions of the receiver 440 and the transmitter 450 may be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 410 may be realized by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be used to implement related operations of the transmitting end provided by the embodiments of the present application.
  • the program codes to implement the functions of the processor 410, the receiver 440, and the transmitter 450 are stored in the memory, and the general processor implements the functions of the processor 410, the receiver 440, and the transmitter 450 by executing the codes in the memory, for example, processing
  • the device 410 calls the program code in the memory 420, so that the computer or the terminal device performs the relevant operations of the transmitting end in the above method embodiments.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1.
  • FIG. 6 shows only the main components of the terminal device.
  • the terminal device includes a processor, a memory, a control circuit, an antenna, and input and output devices.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the transmitting end in the above method embodiments .
  • the memory is mainly used to store software programs and data, for example, the predefined information described in the foregoing method embodiments, or the information notified by the network device such as the base station, etc.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves, such as receiving channel state measurement information configured by a network device, sending precoding matrix indication information to the network device, and so on.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program, such as performing the relevant operations of the transmitting end in the foregoing method embodiments.
  • the processor when data needs to be sent wirelessly, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then Radio frequency signals are sent out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 6 only shows one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 6 integrates the functions of the baseband processor and the central processor.
  • the baseband processor and the central processor may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processor may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit having a transceiving function may be regarded as a communication unit or a transceiving unit of a terminal device, and a processor having a processing function may be regarded as a determining unit or a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 501 and a processing unit 502.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the device used to implement the receiving function in the transceiver unit 501 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 501 can be regarded as a sending unit, that is, the transceiver unit 501 includes an example of a receiving unit and a sending unit sexually, the receiving unit may also be called a receiver, receiver, receiving circuit, etc., and the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • FIG. 7 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device may be a network device; the device may also be a chip or a circuit, such as a receiver. Chip or circuit.
  • the device performs the relevant operations of the receiving end in the above method.
  • the device may include a processor 610 and a memory 620.
  • the memory 620 is used to store instructions, and the processor 610 is used to execute the instructions stored in the memory 620 to enable the device to implement the aforementioned related operations of the receiving end, such as receiving precoding matrix indication information and determining the amplitude value of each combining coefficient and Phase value, etc.
  • the network device may further include a receiver 640 and a transmitter 650. Still further, the network device may also include a bus system 630.
  • the processor 610, the memory 620, the receiver 640, and the transmitter 650 are connected through a bus system 630.
  • the processor 610 is used to execute instructions stored in the memory 620 to control the receiver 640 to receive signals, and control the transmitter 650 to send signals To complete the steps of the network device in the above method.
  • the receiver 640 and the transmitter 650 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 620 may be integrated in the processor 610, or may be provided separately from the processor 610.
  • the functions of the receiver 640 and the transmitter 650 may be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 610 may be realized by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be used to implement related operations of the receiving end provided by the embodiments of the present application.
  • the program codes that will realize the functions of the processor 610, the receiver 640, and the transmitter 650 are stored in the memory, and the general processor implements the functions of the processor 610, the receiver 640, and the transmitter 650 by executing the codes in the memory, for example, processing
  • the controller 610 can call the program code in the memory 620, or based on the receiver 640 and the transmitter 650, make the computer or network device perform related operations of the receiving unit, the determining unit, etc. in the embodiment shown in FIG. 4, or perform the above method implementation Examples of related operations or implementations performed by the receiving end.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be a base station, and may perform related operations of a receiving end in the foregoing method embodiments, for example, capable of sending related channels for a terminal device.
  • the measurement configuration information of the status information and the operation of receiving the precoding matrix indication information reported by the terminal device are shown in FIG. 8 by taking the structure of the base station as an example.
  • the base station can be applied to the system shown in FIG.
  • the base station includes one or more radio frequency units, such as a remote radio unit (RRU) 701 and one or more baseband units (BBU) (also called a digital unit, DU) 702.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 701 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc. It may include at least one antenna 7011 and a radio frequency unit 7012.
  • the RRU701 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for receiving the precoding matrix indication information described in the above embodiment reported by the terminal device.
  • the BBU702 part is mainly used for baseband processing and controlling the base station.
  • the RRU701 and the BBU702 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU702 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow of the receiving end in the foregoing method embodiments.
  • the BBU702 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network of a single access standard (such as an LTE network), or may support wireless access of different access standards respectively Access Network.
  • the BBU 702 also includes a memory 7021 and a processor 7022.
  • the memory 7021 is used to store necessary instructions and data.
  • the memory 7021 stores the predefined content and the like in the above embodiment.
  • the processor 7022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow on the receiving end in the foregoing method embodiment.
  • the memory 7021 and the processor 7022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the embodiment of the present application further provides a communication system, which includes the foregoing receiving end and one or more than one transmitting end.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integrated Circuit (ASIC), ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as bus systems in the figure.
  • the present application also provides a computer-readable storage medium that stores computer instructions, and when the computer instructions run on the computer, the computer is allowed to perform the precoding matrix indication method described in the embodiments of the present application In the corresponding operation and/or process performed by the transmitting end in the computer, or causing the computer to perform the corresponding operation and/or process performed by the receiving end in the precoding matrix indication method described in the embodiments of the present application.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program product is caused to perform the precoding matrix instruction method described in the embodiment of the present application by the transmitter.
  • the present application also provides a chip, including a processor.
  • the processor is used to call and run the computer program stored in the memory to perform the corresponding operations and/or processes performed by the transmitting end in the method for indicating the precoding matrix described in the embodiment of the present application, or to perform the preprocessing described in the embodiment of the present application.
  • the coding matrix indicates the corresponding operation and/or process performed by the receiving end in the method.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input-output interface.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and inherent logic, and should not correspond to the embodiments of the present invention.
  • the implementation process constitutes no limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Radio Transmission System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请提供一种预编码矩阵指示方法及相关设备,该方法中,发射端能够根据K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,并确定每个合并系数组中每个合并系数的相位值。其中,每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的,使得发射端不必额外指示该K个合并系数的分组情况;另外,所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同,从而,有利于根据不同合并系数组对性能影响程度的不同,采用不同的相位量化精度,进而有利于在降低上述合并系数的上报开销的同时,最小化合并系数量化对系统性能的损失。

Description

预编码矩阵指示方法及相关设备
本申请要求于2019年1月08日提交中国专利局、申请号为201910016817.0、申请名称为“预编码矩阵指示方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种预编码矩阵指示方法及相关设备。
背景技术
目前,大规模多输入多输出(Massive Multiple Input and Multiple Output,Massive MIMO)系统能够通过大规模的天线实现频谱效率的显著提升,而基站所获得的信道状态信息的准确性在很大程度上决定了Massive MIMO的性能,因此,通常采用码本来量化信道状态信息。在进行码本量化信道状态信息时,需要在可允许的开销下尽量逼近原有的信道特征,使得信道量化更为精确。
高精度码本通过对多个正交波束的线性合并,可以获得显著的性能优势。例如,采用空域压缩和频域压缩的思想,发射端根据测量的信道信息,确定与信道信息匹配的预编码矩阵W时,可以采用L个空域波束基向量和M个频域基向量进行线性合并获得,即
Figure PCTCN2020071016-appb-000001
其中,W 1为L个空域波束基向量构成的空域波束基向量矩阵;W 3为M个频域基向量构成的频域基向量矩阵,
Figure PCTCN2020071016-appb-000002
为该L个空域波束基向量和M个频域基向量进行线性合并的合并系数矩阵。
然而,在上报上述预编码矩阵时,除了要上报所采用的L个空域波束基向量的索引以及M个频域基向量的索引外,还需要上报该合并系数矩阵中的合并系数,导致上报开销较大。因此,如何在降低量化对系统性能损失的同时,降低上报开销是一个亟待解决的问题。
发明内容
本申请提供一种预编码矩阵指示方法及相关设备,有利于在最小化性能损失的情况下,降低上报开销。
第一方面,本申请提供一种预编码矩阵指示方法,该方法中,发射端确定每个空间层对应的K个合并系数中每个合并系数的幅度值,每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;进一步的,发射端还可以根据每个合并系数的幅度值,将该K个合并系数进行分组,获得Q个合并系数组,该Q为大于或等于2的整数;发射端在确定每个合并系数组中每个合并系数的相位值时,Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同;进一步的,发射端可以发送预编码矩阵指示信息,该预编码矩阵指示信息中包括所述K个合并系数中每个合并系数的幅度值和相位值。
其中,该K个合并系数为一个空间层对应的L个空域波束基向量和M个频域基向量进行线性合并对应的合并系数中的部分或全部合并系数,即该K为小于或等于L*M的正整数。其中,每个空间层对应的空域波束基向量和频域基向量可以相同,也可以不同,但 针对每个空间层对应的K个合并系数,均可以采用本申请所述的预编码矩阵指示方法进行上报。本申请以一个空间层对应的K个合并系数如何上报为例进行阐述。
可见,本申请中,每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的,使得发射端不必额外指示该K个合并系数的分组情况,接收端基于每个合并系数的幅度值即可确定该分组情况;另外,所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同,从而,有利于根据不同合并系数组对性能影响程度的不同,采用不同的相位量化精度,进而,有利于在最小化性能损失的情况下,降低上报开销。
本申请实施例中,上述L、M、Q和K值可以采用预定义的方式,或信令通知的方式来确定。也就是说,发射端和接收端均已知上述各参数的值。
在一种可选的实施方式中,发射端根据K个合并系数中每个合并系数的幅度值,对该K个合并系数进行分组,获得Q个合并系数组,可以包括:发射端按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得Q个合并系数组。例如,将该K个合并系数按照幅度值的大小,从大到小或者从小到大的顺序进行排列,将排列后的该K个合并系数进行分组,获得Q个合并系数组。
可见,该实施方式有利于根据不同合并系数组对性能影响程度的不同,采用不同的相位量化精度,进而,有利于在最小化性能损失的情况下,降低上报开销。例如,该Q个合并系数组中,至少存在两个合并系数组中,最小幅度值、幅度值之和或最大幅度值较大的合并系数组所采用的相位量化比特数和相位量化规则为量化精度较高的量化方法;最小幅度值、幅度值之和或最大幅度值较小的合并系数组所采用的相位量化比特数和相位量化规则为量化精度较低的量化方法,从而可以实现最小化性能损失的情况下,降低上报开销。
其中,每个合并系数组中包括的合并系数的个数可以相同,也可以不相同。
在一个示例中,第1至Q-1个合并系数组中每个合并系数组可以包括
Figure PCTCN2020071016-appb-000003
个合并系数,
第Q个合并系数组中包括
Figure PCTCN2020071016-appb-000004
个合并系数;按照K个合并系数按照幅度值从大到小的顺序,其中,第1个合并系数组中包括该K个合并系数中幅度值最大的
Figure PCTCN2020071016-appb-000005
个合并系数;第Q个合并系数组中包括该K个合并系数中幅度值最小的
Figure PCTCN2020071016-appb-000006
个合并系数;若Q为大于或等于3的整数,则第q个合并系数组中包括该K个合并系数中除幅度值最大的
Figure PCTCN2020071016-appb-000007
个合并系数外,幅度值最大的
Figure PCTCN2020071016-appb-000008
个合并系数,该q为大于1,且小于Q的整数。
在另一个示例中,每个合并系数组中包括的合并系数的个数可以为预定义或信令通知的;即该Q个合并系数组中第q个合并系数组包括k q个合并系数,其中,该q为大于或等于1,小于或等于Q的整数,该k q为预定义或信令通知的;各合并系数组包括的合并系数 的个数k q可以相同,也可以不同,
Figure PCTCN2020071016-appb-000009
这样,第1个合并系数组包含该K个合并系数中幅度值最大的k 1个合并系数;第Q个合并系数组包括该K个合并系数中幅度值最小的k Q个合并系数;若Q为大于或等于3的整数,第q个合并系数组包括该K个合并系数中除幅度值最大的
Figure PCTCN2020071016-appb-000010
个合并系数外,幅度值最大的k q个合并系数。
该实施方式中,针对多个幅度值相同的合并系数,可以基于该多个合并系数所对应的空域波束基向量或频域基向量的索引,进行分组。例如,在分组过程中,若多个合并系数的幅度值相同,基于上述每个合并系数组包含的合并系数个数,需将该多个合并系数中的一部分合并系数划分到幅度值较大的合并系数组中,另一部分划分到幅度值较小的合并系数组中时,可以将该多个合并系数中所对应的空域波束基向量或频域波束基向量的索引较大或较小的一部分合并系数划分到幅度值较大的合并系数组中,另一部分划分到幅度值较小的合并系数组中;若所对应的空域波束基向量或频域波束基向量的索引相同,则可以进一步将所对应的频域波束基向量或空域波束基向量的索引较大或较小的一部分划分到幅度值较大的合并系数组,其余部分划分到幅度值较小的合并系数组中。
可选的,该实施方式中,所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。例如,第1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,则第1个合并系数组中各合并系数的相位值所采用的相位量化比特数要大于第2个合并系数组中各合并系数的相位值所采用的相位量化比特数。由于第1个合并系数组中各合并系数的幅度值相对较大,对系统性能的影响也相对较大,因此,第1个合并系数组的量化精度高,第2个合并系数组的量化精度低,使得该实施方式能够在最小化系统性能损失的情况下,降低系统开销。
在另一种可选的实施方式中,发射端根据该K个合并系数每个合并系数的幅度值,对该K个合并系数进行分组,获得Q个合并系数组,包括:所述发射端在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;所述发射端根据所述每个空域波束基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组,获得Q个空域波束基向量组;针对所述Q个空域波束基向量组中每个空域波束基向量组中的一个或多个空域波束基向量,所述发射端确定所述一个或多个空域波束基向量对应的所有合并系数作为一个合并系数组,获得所述Q个空域波束基向量组对应的Q个合并系数组。
其中,该l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量。该Q个空域波束基向量组中每个空域波束基向量组包括的空域波束基向量的个数可以相同,也可以不同。
可见,该实施方式中,Q个合并系数组与Q各空域波束基向量组一一对应,从而有利于基于每个空域波束基向量组对系统性能影响程度的不同,对相应的合并系数组采用不同的相位量化精度,如采用的相位量化比特数和相位量化规则中的至少一个不同,从而有利于在最小化系统性能损失的情况下,降低上报开销。例如,该Q个合并系数组中,至少存在两个合并系数组中,一合并系数组所对应的空域波束基向量组中,每个空域波束基向量的幅度值之和、最大幅度值或功率之和均较大,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较高的量化方法;另一合并系数组所对应的空域波束基向量组中,每个空域波束基向量的幅度值之和、最大幅度值或功率之和均较小,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较低的量化方法,从而可以实现最小化性能损失的情况下,降低上报开销。
该实施方式中,针对多个幅度值之和、最大幅度值或功率之和相同的空域波束基向量,可以基于该多个空域波束基向量的索引,进行分组。例如,在分组过程中,若多个空域波束基向量对应的幅度值之和、最大幅度值或功率之和相同,基于上述每个空域波束基向量组包含的空域波束基向量个数,需将该多个空域波束基向量中的一部分空域波束基向量划分到幅度值之和、最大幅度值或功率之和较大的空域波束基向量组中,另一部分划分到幅度值之和、最大幅度值或功率之和较小的空域波束基向量组中时,可以将索引较大或较小的一部分空域波束基向量划分到幅度值之和、最大幅度值或功率之和较大的空域波束基向量组中,另一部分划分到幅度值之和、最大幅度值或功率之和较小的空域波束基向量组中。
可选的,在该实施方式中,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。可见,该实施方式中,空域波束基向量组中各空域波束基向量对应的幅度值之和、最大幅度值或功率之和越大,说明该空域波束基向量组对系统性能影响越大,因此,该空域波束基向量组采用较大的相位量化比特数,能够降低对系统性能的损失;另外,空域波束基向量组中各空域波束基向量对应的幅度值之和、最大幅度值或功率之和较小,说明该空域波束基向量组对该系统性能影响较小,因此,该空域波束基向量组采用较小的相位量化比特数,能够降低上报开销。故该实施方式能够实现最小化系统性能损失与降低上报开销之间的折中。
在又一种可选的实施方式中,发射端可以在K个合并系数中,确定m个频域基向量中每个频域基向量对应的一个或多个合并系数;所述m为小于或等于所述M的正整数;所述发射端根据所述每个频域基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和,对所述m个频域基向量进行分组,获得Q个频域基向量组;针对所述Q个频域基向量组中每个频域基向量组中的一个或多个频域基向量,所述发射端确定所述一个或多个频域基向量对应的所有合并系数作为一个合并系数组,获得所述Q个频域基向量组对应的Q个合并系数组。所述m个频域基向量为所述K个合并系数中各合并系数所对 应的频域基向量。该Q个频域基向量组中每个频域基向量组包括的频域基向量的个数也可以相同或不同。
可见,该实施方式中,Q个频域基向量组与Q个合并系数组一一对应,从而有利于基于每个频域基向量组对系统性能影响程度的不同,所对应的合并系数组采用不同的相位量化精度,从而有利于在系统性能和上报开销之间进行折中。例如,该Q个合并系数组中,至少存在两个合并系数组,一合并系数组对应的频域基向量组中,每个频域基向量的幅度值之和、最大幅度值或功率之和均较大,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较高的量化方法;另一合并系数组对应的频域基向量组中,每个频域基向量的幅度值之和、最大幅度值或功率之和均较小,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较低的量化方法,从而可以实现最小化性能损失的情况下,降低上报开销。
其中,每个空域波束基向量或每个频域基向量对应的合并系数的功率之和,是指每个每个空域波束基向量或每个频域基向量对应的所有合并系数中,每个合并系数的幅度值的平方之和。
该实施方式中,针对多个幅度值之和、最大幅度值或功率之和相同的频域基向量,可以基于该多个频域基向量的索引,进行分组。例如,在分组过程中,若多个频域基向量对应的幅度值之和、最大幅度值或功率之和相同,基于上述每个频域基向量组包含的频域基向量个数,需将该多个频域基向量中的一部分频域基向量划分到幅度值之和、最大幅度值或功率之和较大的频域基向量组中,另一部分划分到幅度值之和、最大幅度值或功率之和较小的频域向量组中时,可以将索引较大或较小的一部分频域基向量划分到幅度值之和、最大幅度值或功率之和较大的频域基向量组中,另一部分划分到幅度值之和、最大幅度值或功率之和较小的频域基向量组中。
可选的,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。可见,该实施方式中,频域基向量组中各频域基向量对应的幅度值之和、最大幅度值或功率之和越大,说明该频域基向量组对系统性能影响越大,因此,该频域基向量组采用较大的相位量化比特数,能够降低对系统性能的损失;另外,频域基向量组中各频域基向量对应的幅度值之和、最大幅度值或功率之和较小,说明该频域基向量组对该系统性能影响较小,因此,该频域基向量组采用较小的相位量化比特数,能够降低上报开销。故该实施方式能够实现最小化系统性能损失与降低上报开销之间的折中。
在又一种可选的实施方式中,发射端在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;针对每个空域波束基向量对应的一个或多个合并系数,所述发射端按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组,获得所述每个空域波束基向 量对应的Q个合并系数组;所述发射端将所述l个空域波束基向量中各空域波束基向量对应的第q个合并系数组进行合并,获得所述K个合并系数的Q个合并系数组中第q个合并系数组,所述q等于1,2,…,Q的整数。其中,将各空域波束基向量对应的第q个合并系数组进行合并,是指将各空域波束基向量对应的第q个合并系数组包含的合并系数取并集,作为该K个合并系数的Q个合并系数组中,第q个合并系数组。也就是说,该K个合并系数的Q个合并系数组中,第q个合并系数组包含所有空域波束基向量对应的第q个合并系数组。
可见,该实施方式有利于根据不同合并系数组对性能影响程度的不同,采用不同的相位量化精度,进而,有利于在最小化性能损失的情况下,降低上报开销。例如,K个合并系数的Q个合并系数组中,至少存在两个合并系数组,一合并系数组中各空域波束基向量分别对应的合并系数组的最小幅度值、幅度值之和或最大幅度值均较大,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较高的量化方法;另一合并系数组中各空域波束基向量分别对应的合并系数组的最小幅度值、幅度值之和或最大幅度值均较小,且该合并系数组所采用的相位量化比特数和相位量化规则为量化精度较低的量化方法,从而可以实现最小化性能损失的情况下,降低上报开销。
其中,每个空域波束基向量对应的Q个合并系数组中,每个合并系数组包括的合并系数的个数可以相同,也可以不相同。
该实施方式中,确定每个空域波束基向量对应的Q个合并系数组过程中,针对多个幅度值相同的合并系数,可以基于该多个合并系数所对应的频域基向量的索引,进行分组。例如,在分组过程中,若多个合并系数的幅度值相同,基于上述每个合并系数组包含的合并系数个数,需将该多个合并系数中的一部分合并系数划分到幅度值较大的合并系数组中,另一部分划分到幅度值较小的合并系数组中时,可以将该多个合并系数中所对应的频域波束基向量的索引较大或较小的一部分合并系数划分到幅度值较大的合并系数组中,另一部分划分到幅度值较小的合并系数组中。
可选的,所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q 1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。可见,该实施方式中,合并系数组中包含的各空域波束基向量对应的合并系数组为最大幅度值、最小幅度值或幅度值之和相对较大的合并系数组,说明该合并系数组对系统性能影响较大,针对该合并系数组采用较大的相位量化比特数,能够最小化系统性能的损失;另外,合并系数组中包含的各空域波束基向量对应的合并系数组为最大幅度值、最小幅度值或幅度值之和相对较小的合并系数组,说明该合并系数组对系统性能影响较小,针对该合并系数组采用较小的相位量化比特数,能够降低上报开销,从而,实现最小化系统性能损失与降低上报开销之间的折中。
在一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1按照预设的量化规则分别进行量化确定的;所述A 1为大于或等于2的整数。
在另一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是以所述每 个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
相应的,所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值;所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量。
可选的,每个合并系数组中各合并系数的相位值,可以是以该合并系数组中幅度值最大的合并系数的相位值为参照,采用该合并系数组对应的相位量化比特数进行差分量化确定。相应的,所述预编码矩阵指示信息中还包括各合并系数组中幅度值最大的合并系数的相位值,各合并系数组中幅度值最大的合并系数的相位值是采用相位量化比特数B 1进行量化确定的,该B 1为大于或等于2的整数。
在一种可选的实施方式中,为了使得接收端能够优先基于每个合并系数的幅度值确定合并系数的分组情况,进而确定每个合并系数组所采用的相位量化比特数和相位量化规则,可以通过预定义或基站通知的方式,使得发射端和接收端能够获知,预编码指示信息中各合并系数的幅度值、相位值等内容的排列方式。
例如,所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前,即所述K个合并系数中所有合并系数的幅度值位于高比特位,所述K个合并系数中所有合并系数的相位值位于低比特位;所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
相应的,所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前,即所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于高比特位,所述K个合并系数中所有合并系数的幅度值位于低比特位;所述预编码矩阵指示信息中,所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
第二方面,本申请还提供一种预编码矩阵指示方法,该方法中,接收端接收预编码矩阵指示信息,所述预编码矩阵指示信息中包括K个合并系数中每个合并系数的幅度值和相 位值;所述接收端根据所述预编码矩阵指示信息,确定所述K个合并系数中每个合并系数的幅度值和相位值;所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;所述K个合并系数分别所属的Q个合并系数组是基于所述K个合并系数的幅度值进行分组的;所述每个合并系数的相位值是基于所述每个合并系数所属的合并系数组所采用的相位量化比特数和相位量化规则确定的;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。
在一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组,是按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得的。
可选的,所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
在另一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是Q个空域波束基向量组中每个空域波束基向量组中各空域波束基向量对应的所有合并系数构成的;所述Q个空域波束基向量组是根据所述K个合并系数中,l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组获得;所述l为小于或等于所述L的正整数。
可选的,该实施方式中,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是所述Q个频域基向量组中每个频域基向量组中各频域基向量对应的所有合并系数构成的;所述Q个频域基向量组是在所述K个合并系数中,m个频域基向量中每个频域基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述M个频域基向量进行分组获得;所述m为小于或等于所述M的正整数。
可选的,该实施方式中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第 q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中,第q个合并系数组是由l个空域波束基向量中各空域波束基向量分别对应的Q个合并系数组中,第q个合并系数组进行合并获得的,所述l为小于或等于所述L的正整数;所述q等于1,2,…,Q的整数;所述l个空域波束基向量中,每个空域波束基向量对应的Q个合并系数组是针对所述每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组获得的。
可选的,该实施方式中,所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q 1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
另外,每个合并系数组中各合并系数的相位值是采用该合并系数组对应的相位量化比特数进行量化确定的。
在另一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
可选的,每个合并系数组中各合并系数的相位值,可以是以该合并系数组中幅度值最大的合并系数的相位值为参照,采用该合并系数组对应的相位量化比特数进行差分量化确定。相应的,所述预编码矩阵指示信息中还包括各合并系数组中幅度值最大的合并系数的相位值,各合并系数组中幅度值最大的合并系数的相位值是采用相位量化比特数B进行量化确定的,该B为大于或等于2的整数。
在一种可选的实施方式中,所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序, 依次排列的。
在一种可选的实施方式中,所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值,所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
相应的,所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
第三方面,本申请实施例还提供了一种设备,该设备具有实现上述第一方面所述的预编码矩阵指示方法示例中发射端的部分或全部功能,比如该设备的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该设备的结构中可包括处理单元和通信单元,所述处理单元被配置为支持发射端执行上述方法中相应的功能。所述通信单元用于支持该设备与其他设备之间的通信。所述发射端还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存终端设备必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
第四方面,本申请实施例还提供一种设备,该设备具有实现上述第二方面所述的预编码矩阵指示方法示例中接收端的部分或全部功能,比如该设备的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该设备的结构中包括处理单元和通信单元,所述处理单元被配置为支持接收端执行上述方法中相应的功能。所述通信单元用于支持该设备与其他设备之间的通信。所述设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存设备必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
第五方面,本发明实施例提供了一种通信系统,该系统包括上述方面的发射端、接收端。在另一种可能的设计中,该系统还可以包括本发明实施例提供的方案中与发射端和/或接收端进行交互的其他设备。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存为上述发射端所用的计算机软件指令,其包括用于执行上述第一方面所述的预编码矩阵指示方法所设计的程序。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述接收端所用的计算机软件指令,其包括用于执行上述第二方面所述的预编码矩阵指示方法所设计的程序。
第八方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持发射端在上述方面中所涉及的功能,例如,确定或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发射端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持接收端实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存接收端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种预编码指示方法的流程示意图;
图3为本申请实施例提供的一种预编码矩阵指示装置的结构示意图;
图4为本申请实施例提供的另一种预编码矩阵指示装置的结构示意图;
图5为本申请实施例提供的一种设备的结构示意图;
图6为本申请实施例提供的一种终端设备的结构示意图;
图7为本申请实施例提供的另一种设备的结构示意图;
图8为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请的技术方案可具体应用于各种通信系统中,例如:全球移动通讯系统(Global system for mobile communications,缩写:GSM)、码分多址(Code Division Multiple Access,缩写:CDMA)、宽带码分多址(Wideband Code Division Multiple Access,缩写:WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,缩写:TD-SCDMA)、通用移动通信系统(Universal Mobile Telecommunications System,缩写:UMTS)、长期演进(Long Term Evolution,缩写:LTE)系统等,随着通信技术的不断发展, 本申请的技术方案还可用于未来网络,如5G系统,也可以称为新空口(New Radio,缩写:NR)系统,或者可用于设备到设备(device to device,缩写:D2D)系统,机器到机器(machine to machine,缩写:M2M)系统等等。
本申请涉及的接收端可以是指网络侧的一种用来发送或接收信息的实体,比如可以是基站,或者可以是传输点(transmission point,缩写:TP)、传输接收点(transmission and receptionpoint,缩写:TRP)、中继设备,或者具备基站功能的其他网络设备等等,本申请不做限定。
在本申请中,发射端可以为一种具有通信功能的设备,其可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端设备可以叫做不同的名称,例如:终端设备(terminal),用户设备(user equipment,缩写:UE),移动台,用户单元,中继(Relay),站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该终端设备可以是指无线终端设备、有线终端设备。该无线终端设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,其可以经无线接入网(如RAN,radio access network)与一个或多个核心网进行通信。
首先,对提出本申请所要解决的技术问题和应用场景进行介绍。
目前,大规模多输入多输出(Massive Multiple Input and Multiple Output,Massive MIMO)系统能够通过大规模的天线实现频谱效率的显著提升,而基站所获得的信道状态信息的准确性在很大程度上决定了Massive MIMO的性能,因此,通常采用码本来量化信道状态信息。在进行码本量化信道状态信息时,需要在可允许的开销下尽量逼近原有的信道特征,使得信道量化更为精确。
高精度码本通过对多个正交波束的线性合并,可以获得显著的性能优势。例如,下行系统中,终端设备反馈的一个频域单元对应的预编码矩阵W是通过选择的多个正交波束进行线性合并构成的:
W=W 1*W 2    (1)
其中,W为该频域单元对应的目标预编码矩阵,空间层数为1时维度为2N1N2*1。N1和N2分别表示水平和垂直方向天线端口数目。W 1为L个空域波束基向量构成的空域波束基向量矩阵,该L个空域波束基向量可以是从空域波束基矩阵中选择L/2个空域波束基向量进行双极化旋转获得的,即两个极化方向选取了相同的L/2个空域波束基向量。空域波束基矩阵可以是预定义的离散傅里叶变换(Discrete Fourier transform,DFT)矩阵。
Figure PCTCN2020071016-appb-000011
其中,ls(i),(i=1,2,…L),表示L个空域波束基向量,ls(i)表示第i个空域波束基向量的索引。
W 2为合并系数矩阵,对于空间层数为1时,该合并系数矩阵W 2可以为:
Figure PCTCN2020071016-appb-000012
其中,p i表示测量的预编码矩阵索引(Precoding Matrix Index,PMI)频域单元上第i个空域波束基向量对应的合并系数的幅度值;
Figure PCTCN2020071016-appb-000013
表示测量的PMI频域单元上第i个空域波束基向量对应的合并系数的相位值。其中,该PMI频域单元的频域长度可以为频域子带对应的带宽,也可以是频域子带带宽的1/R倍,R=2或4,还可以是1、2或4个资源块(resource block,RB),等等。其中,i=1,2,…L。
根据上述公式(1)至公式(3),终端设备反馈的预编码矩阵W可以为:
Figure PCTCN2020071016-appb-000014
可见,利用上述公式(4)来量化信道状态信息,将上述预编码矩阵上报给基站,有利于使得基站获得逼近最优的预编码矩阵,然而上述预编码矩阵虽然带来了性能的提升,但也带来了巨大的预编码矩阵指示开销,比如上述预编码矩阵需要上报每个PMI频域单元对应的L个合并系数的幅度值和相位值。特别是PMI频域单元的数目较大,所需要上报的合并系数就越多,例如,PMI频域单元的数目为N,则合并系数矩阵将为
Figure PCTCN2020071016-appb-000015
所需要上报的合并系数的数目将达到L*N个,带来了巨大的上报开销。
为了解决该问题,采用频域压缩思想,从频域基矩阵W freq中选择M个频域基向量,将
Figure PCTCN2020071016-appb-000016
转换为
Figure PCTCN2020071016-appb-000017
的方式,从而N个频域单元对应的预编码矩阵W可以进一步表示为
Figure PCTCN2020071016-appb-000018
其中,W为N个PMI频域单元对应的预编码矩阵所构成的联合预编码矩阵,维度为2N1N2*N。这样,如公式(5)所示,W 3为从频域基矩阵中选择M个频域基向量构成的M*N维度的频域基向量矩阵,N为测量的PMI频域单元的数目,
Figure PCTCN2020071016-appb-000019
为空域波束基向量与频域基向量进行线性合并对应的L*M维度的合并系数矩阵。
Figure PCTCN2020071016-appb-000020
Figure PCTCN2020071016-appb-000021
其中,p i,j表示第i个空域波束基向量与第j个频域基向量进行线性合并对应的合并系数的幅度值;
Figure PCTCN2020071016-appb-000022
表示第i个空域波束基向量与第j个频域基向量进行线性合并对应的合并系数的相位值。其中,i=1,2,…L;j=1,2,…M。
为了便于陈述,后续将
Figure PCTCN2020071016-appb-000023
阐述为第i个波束基向量或者第j个频域基向量对应的合并系数,也就是说,第i个空域波束基向量对应的合并系数包括
Figure PCTCN2020071016-appb-000024
Figure PCTCN2020071016-appb-000025
相应的,第j个频域基向量对应的合并系数包括
Figure PCTCN2020071016-appb-000026
Figure PCTCN2020071016-appb-000027
可见,终端设备只需根据测量的信道状态信息,反馈所选择的L/2个空域波束基向量的索引、M个频域基向量的索引,以及上述中
Figure PCTCN2020071016-appb-000028
的L*M个合并系数的幅度值和相位值,基站就可以基于这些反馈的信息,获得基于信道状态信息所量化的预编码矩阵。
若简单采用同样的幅度量化精度和相同的相位量化精度来反馈这些合并系数,如分别采用的幅度和相位量化总比特数为X,则该L*M个合并系数所需的上报开销为L*M*X,可见,为了最小化量化对性能的损失,该量化比特数越大越好,然而会导致上报开销会直线上升。
为了在保证最小化性能损失的情况下,显著降低上述L*M个合并系数所带来的上报开销,本申请提供一种预编码矩阵指示方法,该预编码矩阵指示方法是针对如何降低该L*M个合并系数所需的上报开销所提出的。也就是说,如何在保证最小化性能损失的情况下,以尽可能小的开销上报该L*M个合并系数是本申请所需解决的问题。
可选的,为了上报该L*M个合并系数的幅度值和相位值,若采用该L*M个合并系数中的最强合并系数对
Figure PCTCN2020071016-appb-000029
进行归一化处理,则只需上报最强合并系数的索引,以及剩余的L*M-1个合并系数的幅度值和相位值即可。其中,最强合并系数是指该L*M个合并系数中幅度值最大的合并系数。其中,上述合并系数矩阵
Figure PCTCN2020071016-appb-000030
是针对MIMO系统可以并行传输的数据路数为1,即空间层数为1时确定的,该空间层数是通过计算测量的信道等效矩阵的秩rank来确定的。可选的,针对并行传输的数据路数为2的信道,确定合并系数矩阵的过程与上述内容类似,不同之处在于,每个空间层对应一个预编码矩阵,因此,需要针对每个空间层确定一个合并系数矩阵
Figure PCTCN2020071016-appb-000031
也就是说,本申请可以针对每个空间层,采用相同的预 编码矩阵指示方法分别上报每个空间层对应的合并系数。另外,不同空间层可以采用相同的空域波束基向量和频域基向量进行线性合并,也可以分别采用不同的空域波束基向量和频域基向量进行线性合并。
可选的,本申请所述的预编码矩阵指示方法可以适应于下行系统,由终端设备执行本申请发射端的相关操作,由基站执行本申请接收端的相关操作;上述L、M均为网络设备侧,如基站,通过预定义或信令通知给终端设备的;上述所述的空域基矩阵和频域基矩阵为基站和终端设备均已知的且相同的矩阵,因此,终端设备可以上报所选择的L/2个空域波束基向量的索引和M个频域基向量的索引即可。
以下结合图1所示的通信系统,对本申请所述的预编码矩阵指示方法进行阐述。如图1所示,发射端为发送预编码指示信息的设备。发射端可以为终端设备,接收端可以为基站。可选的,该通信系统可以包括一个或多个基站,以及一个或多个终端设备。
请参阅图2,图2是本申请实施例提供的一种预编码矩阵指示方法的流程示意图,如图2所示,该预编码矩阵指示方法反馈合并系数的幅度值和相位值的方式,可以包括以下步骤:
101、发射端确定每个空间层对应的K个合并系数中每个合并系数的幅度值;每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的。
其中,该K个合并系数是从一个空间层对应的L*M个合并系数中选择的,即该K为小于或等于L*M的整数。也可以称为该K个合并系数是L*M个合并系数的子集。其中,K的值可以是基站配置的,也可以是终端设备根据信道条件或开销上报的。另外,发射端,如终端设备,还需要上报K个合并系数分别对应的索引,该索引可以是所述K个合并系数对应的空域波束基向量的索引和频域基向量的索引,也可以采用位图(bitmap)的方式进行指示。
102、发射端根据所述每个空间层对应的K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,所述Q为大于或等于2的整数。
可见,本申请实施例由于每个合并系数所采用的幅度量化比特数和幅度量化规则相同,因此接收端可以根据每个合并系数的幅度值,确定该K个合并系数的分组情况,即确定出该Q个合并系数组。可选的,该Q值可以为基站通知给终端设备的,也可以为终端设备或基站基于测量的信道状态信息确定的,并通知给基站或终端设备的,或者该Q值是在协议中预定义的。
103、发射端确定每个合并系数组中每个合并系数的相位值;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。
例如,任意两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同;至少存在一个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个,与其他合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。例如,该Q等于3,合并系数组1、2、3所采用的相位量化比特数和相位量化规则均不同,或者所采用的相位量化比特数相同,相位量化规则不同,或者所采用的相位量化比特数不同,但相位量化规则相同。再例如,该Q等于3,合并系数组1、2所采用的相位量化比特数和相位量化规则均相同,但与合并系数组3所采用的相位量化比特数和相位量化规则均不同,或 者与合并系数组3所采用的相位量化比特数相同,但相位量化规则不同,或者与合并系数组3采用的相位量化规则相同,但相位量化比特数不同,等等。
104、发射端发送预编码矩阵指示信息,接收端接收该预编码矩阵指示信息,所述预编码矩阵指示信息中包括所述K个合并系数中每个合并系数的幅度值和相位值。
105、接收端根据所述预编码矩阵指示信息确定所述K个合并系数中每个合并系数的幅度值和相位值。
可选的,发射端还可以利用该K个合并系数中的最强合并系数对该K个合并系数进行归一化处理,所述最强合并系数可以是K个合并系数中幅度值最大的合并系数。这样,该最强合并系数归一化处理后为1,从而发射端可以上报该最强合并系数的索引,以及另外K-1个合并系数的幅度值和相位值。也就是说,104中包括K-1个合并系数中每个合并系数的幅度值和相位值。
其中,接收端和发送端均已知每个合并系数所采用的幅度量化比特数和幅度量化规则,以及各合并系数组所采用的相位量化比特数和相位量化规则。例如,上下行系统中,可以通过预定义或基站配置的方式获知。可选的,该幅度量化规则为采用幅度量化比特数对幅度值如何量化,获得幅度量化集合,即可选的量化幅度值构成的集合,从而可以为量化前的幅度值选择最接近的量化幅度值,并在发送的预编码矩阵指示信息中携带选择的量化幅度值在幅度量化集合中对应的索引,作为上报的幅度值。这样,接收端采用相同的幅度量化比特数和幅度量化规则,获得幅度量化集合;基于上报的索引从该幅度量化集合中确定合并系数对应的量化幅度值。同理,每个合并系数组对应的相位量化规则为采用相位量化比特数对相位值如何量化,获得相位量化集合,从而可以为量化前的相位值选择最接近的相位量化值,并在发送的预编码矩阵指示信息中携带选择的相位量化值在相位量化集合中对应的索引,作为上报的相位值。这样,接收端针对同一合并系数组,采用相同的相位量化比特数和相位量化规则,获得该合并系数组的相位量化集合,基于上报的索引确定相位量化值。
也就是说,本申请实施例中,上述合并系数矩阵中的合并系数可以为归一化后的合并系数,或者为包含了量化后的幅度值和相位值的合并系数;预编码矩阵指示信息中每个合并系数的幅度值为量化后的幅度值在幅度量化集合中对应的索引,每个合并系数的相位值为量化后的相位值在相应的相位量化集合中对应的索引,不同的相位量化比特数对应的相位量化集合不同。
可见,所采用的幅度量化比特数和相位量化比特数越多,结合量化规则,对应的量化精度越高,量化后的幅度值和相位值越接近系统测量的实际值,从而有助于最小化性能损失,但这样上报开销较大。
而本申请实施例,通过基于每个合并系数的幅度值,将K个合并系数划分为Q个合并系数组,使得该Q个合并系数组中至少两个合并系数组所采用的相位量化比特数和相位量化规则中至少一个不同,有利于针对性能影响较大的合并系数组,每个合并系数的相位值采用高精度量化的相位量化比特数和相位量化规则,或者采用高精度量化的相位量化比特数或相位量化规则,而对性能影响较小的合并系数组,每个合并系数的相位值采用低精度量化的相位量化比特数和相位量化规则,或者采用低精度量化的相位量化比特数或相位量 化规则。从而,有利于在最小化性能损失的情况下,显著降低量化开销。
与现有技术中针对所有合并系数的幅度值和相位值均采用相同的量化比特数和量化规则相比,本申请实施例基于上述合并系数组的概念,有利于获得性能与开销的最佳折中。
与现有技术中针对合并系数的幅度值采用低精度量化方法,对于相位采用高精度量化方法相比,本申请实施例有利于保证所有合并系数的幅度值均采用高精度量化方法,只对系统性能影响较小的合并系数组的相位值采用低精度量化方法,从而有利于最大限度的避免量化精度下降造成的性能损失。
与虽然引入了合并系数组的概念,但每个合并系数组的幅度值和相位值均采用不同的量化精度,这样,为了区分合并系数的分组情况,还需额外增加合并系数分组的指示信息的方式相比,本申请实施例中,所有合并系数的幅度值采用相同的幅度量化比特数和幅度量化规则,从而使得接收端根据该幅度值就能够确定合并系数的分组情况,无需额外增加合并系数分组的指示信息,从而降低了上报开销。
以下对步骤102中,根据K个合并系数中每个合并系数的幅度值,对K个合并系数进行分组,以获得Q个合并系数组,可选的实施方式进行阐述。
1.1按照K个合并系数中每个合并系数的幅度值的大小顺序,对该K个合并系数进行分组
该实施方式中,发射端可以按照K个合并系数中每个合并系数的幅度值的大小顺序,对该K个合并系数进行分组,获得Q个合并系数组。相应的,接收端可以根据预编码指示信息中各合并系数的幅度值,同样按照幅度值的大小顺序,获得该K个合并系数的分组情况。这样,有利于针对幅度值较小的合并系数组采用较少的相位量化比特数,幅度值较大的合并系数组采用较大的相位量化比特数,从而在最小化系统性能损失的情况下,能够降低上报开销。
其中,每个合并系数组中包括的合并系数的个数可以相同,也可以不相同。
在一个示例中,第1至Q-1个合并系数组中每个合并系数组可以包括
Figure PCTCN2020071016-appb-000032
个合并系数,第Q个合并系数组中包括
Figure PCTCN2020071016-appb-000033
个合并系数;其中,第1个合并系数组中包括该K个合并系数中幅度值最大的
Figure PCTCN2020071016-appb-000034
个合并系数;第Q个合并系数组中包括该K个合并系数中幅度值最小的
Figure PCTCN2020071016-appb-000035
个合并系数;若Q为大于或等于3的整数,则第q个合并系数组中包括该K个合并系数中除幅度值最大的
Figure PCTCN2020071016-appb-000036
个合并系数外,幅度值最大的
Figure PCTCN2020071016-appb-000037
个合并系数,该q为大于1,且小于Q的整数,
Figure PCTCN2020071016-appb-000038
表示向下取整。
在另一个示例中,每个合并系数组中包括的合并系数的个数可以为预定义或信令通知的;即该Q个合并系数组中第q个合并系数组包括k q个合并系数,其中,该q为大于或等 于1,小于或等于Q的整数,该k q为预定义或信令通知的;各合并系数组包括的合并系数的个数k q可以相同,也可以不同,
Figure PCTCN2020071016-appb-000039
这样,第1个合并系数组包含该K个合并系数中幅度值最大的k 1个合并系数;第Q个合并系数组包括该K个合并系数中幅度值最小的k Q个合并系数;若Q为大于或等于3的整数,第q个合并系数组包括该K个合并系数中除幅度值最大的
Figure PCTCN2020071016-appb-000040
个合并系数外,幅度值最大的k q个合并系数。
可选的,在该实施方式中,该Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。也就是说,按照K个合并系数中每个合并系数的幅度值的大小顺序,对该K个合并系数进行分组,包含的幅度值较大的合并系数构成的合并系数组所采用的相位量化比特数,大于包含的幅度值较小的合并系数组所采用的相位量化比特数。例如,假设Q=2,每个合并系数的幅度值采用的幅度量化比特数为3比特;第1个合并系数组为包含幅度值最大的k 1个合并系数的分组,第2个合并系数组为包含幅度值最小的K-k 1个合并系数的分组;第1个合并系数组的最小幅度值、最大幅度值或幅度值之和较大,所采用的相位量化比特数为3比特;第2个合并系数组的最小幅度值、最大幅度值或幅度值之和较小,所采用的相位量化比特数为2比特;若K个合并系数幅度量化比特均为3比特,则利用该实施方式,上报K-1个合并系数每个合并系数的幅度值和相位值,所需的开销为(K-1)*3+(k 1-1)*3+(K-k 1)*2比特。与现有技术中,所有合并系数的幅度值和相位值均采用的量化比特数为3,则所需的上报开销为(K-1)*6比特相比,能够在降低上报开销的同时,保证对系统影响较大的,幅度值较大的合并系数采用高精度量化方式,以最小化性能损失。
以L=6,M=4,K=L*M=24,Q=2,每个合并系数组包括12个合并系数为例,该6个空域波束基向量与4个频域基向量进行线性合并的合并系数矩阵为:
Figure PCTCN2020071016-appb-000041
该24个合并系数中最强合并系数为参照对该合并系数矩阵进行归一化处理,并设定每个合并系数的幅度值采用的幅度量化比特数为3比特,则基于该幅度量化比特数对应的幅度量化集合,如表1所示。
表1
Figure PCTCN2020071016-appb-000042
该合并系数矩阵可以进一步表示为公式(8)所示,另外,公式(8)中等号右边矩阵中的
Figure PCTCN2020071016-appb-000043
为归一化后的相位值,其中,i=1,2,…L,j=1,2,…M。
Figure PCTCN2020071016-appb-000044
针对该24个合并系数,按照每个合并系数的幅度值的大小顺序,如从大到小的顺序,排列为:p 4,1=1,
Figure PCTCN2020071016-appb-000045
Figure PCTCN2020071016-appb-000046
Figure PCTCN2020071016-appb-000047
因此,第1个合并系数组包括幅度值最大的12个合并系数,分别为:
Figure PCTCN2020071016-appb-000048
Figure PCTCN2020071016-appb-000049
第2个合并系数组包括幅度值最小的12个合并系数,分别为:
Figure PCTCN2020071016-appb-000050
Figure PCTCN2020071016-appb-000051
这样,上报上述23个合并系数所需的上报开销为23*3+11*3+12*2个比特,而现有技术幅度值和相位值采用相同量化精度则需要23*6个比特,明显降低了该上报开销。并且随着K值的增加,该实施方式能够降低更多的上报开销。另外,第2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和较小,对系统性能影响相对较小,该合并系数组中各合并系数的相位值采用相对较小的相位量化比特数即2比特;第1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和较大,对系统性能影响相对较大,该合并系数组中各合并系数的相位值采用相对较大的相位量化比特数即3比特,从而,可以在降低上报开销的同时,最小化系统性能损失。
1.2根据该K个合并系数对应的l个空域波束基向量,对该K个合并系数进行分组,其中,该l为小于或等于L的正整数。
该实施方式中,发射端可以针对所述K个合并系数,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;根据所述每个空域波束基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和,对所述2L空域波束基向量进行分组,获得Q个空域波束基向量组;针对所述Q个空域波束基向量组中每个空域波束基向量组中的一个或多个空域波束基向量,所述发射端确定所述一个或多个空域波束基向量对应的所有合并系数作为一个合并系数组,获得Q个空域波束基向量组对应的Q个合并系数组。
也就是说,比如,针对上述公式(6)所示的合并系数矩阵,该K个合并系数可以为分布在任意行所对应的合并系数,每行与一个空域波束基向量对应,因此,该K个合并系数分别所属的行对应的空域波束基向量构成该l个空域波束基向量,相应的,每个空域波束基向量对应的一个或多个合并系数,就为该空域波束基向量对应的行中,属于该K个合并系数的合并系数。
例如,K=L*M,第i个空域波束基向量对应的合并系数包括
Figure PCTCN2020071016-appb-000052
相应的,第i个空域波束基向量对应的合并系数的幅度值之和为
Figure PCTCN2020071016-appb-000053
或者,第i个空域波束基向量对应的合并系数的最大幅度值为max{|p i,j|,j=1,2,...,M},或者,第i个空域波束基向量对应的合并系数的功率之和为
Figure PCTCN2020071016-appb-000054
根据每个空域波束基向量对应的幅度值之和、最大幅度值或功率之和,对该L个空域波束基向量进行分组,获Q个空域波束基向量 组。
其中,所述Q个空域波束基向量组中每个空域波束基向量组中包括的空域波束基向量的个数可以相同,也可以不相同。
在一个示例中,以K=L*M为例,第1至Q-1个空域波束基向量组中每个空域波束基向量组可以包括
Figure PCTCN2020071016-appb-000055
个空域波束基向量,第Q个空域波束基向量组中包括
Figure PCTCN2020071016-appb-000056
个空域波束基向量;其中,第1个空域波束基向量组中包括该L个空域波束基向量中幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000057
个空域波束基向量;第Q个空域波束基向量组中包括该L个空域波束基向量中幅度值之和、最大幅度值或功率之和较小的
Figure PCTCN2020071016-appb-000058
个空域波束基向量;若Q为大于或等于3的整数,则第q个空域波束基向量组中包括该L个空域波束基向量中除幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000059
(q-1)个合并系数外,幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000060
个空域波束基向量,该q为大于1,且小于Q的整数。
在另一个示例中,所述Q个空域波束基向量组中每个空域波束基向量组中包括的空域波束基向量的个数可以为预定义或信令通知的;即该Q个空域波束基向量组中第q个空域波束基向量组包括L q个空域波束基向量,其中,该q为大于或等于1,小于或等于Q的整数,该L q为预定义或信令通知的;各空域波束基向量组包括的空域波束基向量的个数L q可以相同,也可以不同,
Figure PCTCN2020071016-appb-000061
这样,第1个空域波束基向量组包含该L个空域波束基向量中幅度值之和、最大幅度值或功率之和较大的L 1个空域波束基向量;第Q个空域波束基向量组包括该L个空域波束基向量中幅度值之和、最大幅度值或功率之和较小的L Q个空域波束基向量;若Q为大于或等于3的整数,第q个空域波束基向量组包括该L个空域波束基向量中除幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000062
个空域波束基向量外,幅度值之和、最大幅度值或功率之和较大的L q个空域波束基向量。
可选的,上述两个示例中“较大”可以替换为“较小”,即以相反的顺序来进行分组,本申请实施例不做限定。
可选的,该实施方式中,针对K个合并系数中,每个空域波束基向量组对应的所有合并系数作为一个合并系数组,每个合并系数组所采用的相位量化比特数满足以下特点:第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和, 则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。这样,由于幅度值之和、最大幅度值或功率之和越大,这些合并系数组对性能影响越大,因此,针对这些合并系数组采用相对较大的相位量化比特数,能够在降低上报开销的同时,降低对系统性能的损失。
例如,上述公式(8)所示的合并系数矩阵,以最大幅度值为例,则该6个空域波束基向量所分别对应的最大幅度值,如表2所示:
表2
Figure PCTCN2020071016-appb-000063
相应的,基于Q=2,第1个空域波束基向量组包括最大幅度值较大的3个空域波束基向量,第2个空域波束基向量组包括幅度值较小的3个空域波束基向量,如表3所示。相应的,该第1个空域波束基向量组中所有空域波束基向量对应的合并系数,构成第1个合并系数组,第2个空域波束基向量组中所有空域波束基向量对应的合并系数,构成第2个合并系数组,如表3所示。其中,针对第5和6个空域波束基向量对应的最大幅度值相同时,设定所对应的空域波束基向量的索引越大,相应的空域波束基向量对应的合并系数的优先级越高,因此,可以将最大幅度值相同的第5和6个空域波束基向量中第6个空域波束基向量划分到高精度量化的分组,即第1个空域波束基向量组。
表3
Figure PCTCN2020071016-appb-000064
Figure PCTCN2020071016-appb-000065
例如,上述第1个合并系数组中各合并系数的相位值可以采用3比特的相位量化比特数;第2个合并系数组中各合并系数的相位值可以采用2比特的相位量化比特数,从而,在降低上报开销的同时,尽可能的降低对系统性能的损失。
另外,本申请实施例中各合并系数的幅度值采用相同的幅度量化精度,因此,不必另外上报上述合并系数组的分组情况,或者空域波束基向量的分组情况,接收端基于每个合并系数的幅度值,采用上述方式就可以确定分组情况,从而避免了分组指示引起的上报开销的增加。
1.3根据该K个合并系数对应的m个频域基向量,对该K个合并系数进行分组,其中,该m为小于或等于M的正整数。
该实施方式中,发射端可以针对所述K个合并系数,确定m个频域基向量中每个频域基向量对应的一个或多个合并系数;根据所述每个频域基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和,这三个中的一个,对所述m个频域基向量进行分组,获得Q个频域基向量组;针对所述Q个频域基向量组中每个频域基向量组中的一个或多个频域基向量,所述发射端确定所述一个或多个频域基向量对应的所有合并系数作为一个合并系数组,获得Q个频域基向量组对应的Q个合并系数组。
也就是说,比如,针对上述公式(6)所示的合并系数矩阵,该K个合并系数可以为分布在任意列的合并系数,每列与一个频域基向量对应,因此,该K个合并系数分别所属的列对应的频域基向量构成该m个频域基向量,相应的,每个频域基向量对应的一个或多个合并系数,就为该频域基向量对应的行中,属于该K个合并系数的合并系数。
例如,K=L*M,第j个频域基向量对应的合并系数包括
Figure PCTCN2020071016-appb-000066
相应的,第j个频域基向量对应的合并系数的幅度值之和为
Figure PCTCN2020071016-appb-000067
或者,第j个频域基向量对应的合并系数的最大幅度值为max{|p i,j|,i=1,2,...,L},或者,第j个频域基向量对应的合并系 数的功率之和为
Figure PCTCN2020071016-appb-000068
根据每个空域波束基向量对应的幅度值之和、最大幅度值或功率之和,这三个中的一个,对该M个频域基向量进行分组,获Q个频域基向量组。
其中,所述Q个频域基向量组中每个频域基向量组中包括的频域基向量的个数可以相同,也可以不相同。
在一个示例中,以K=L*M为例,第1至Q-1个频域基向量组中每个频域基向量组可以包括
Figure PCTCN2020071016-appb-000069
个频域基向量,第Q个频域基向量组中包括
Figure PCTCN2020071016-appb-000070
个频域基向量;其中,第1个频域基向量组中包括该M个频域基向量中幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000071
个频域基向量;第Q个频域基向量组中包括该M个频域基向量中幅度值之和、最大幅度值或功率之和较小的
Figure PCTCN2020071016-appb-000072
个频域基向量;若Q为大于或等于3的整数,则第q个频域基向量组中包括该M个频域基向量中除幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000073
个合并系数外,幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000074
个频域基向量,该q为大于1,且小于Q的整数。
在另一个示例中,所述Q个频域基向量组中每个频域基向量组中包括的频域基向量的个数可以为预定义或信令通知的;即该Q个频域基向量组中第q个频域基向量组包括M q个频域基向量,其中,该q为大于或等于1,小于或等于Q的整数,该M q为预定义或信令通知的;各频域基向量组包括的频域基向量的个数M q可以相同,也可以不同,
Figure PCTCN2020071016-appb-000075
这样,第1个频域基向量组包含该M个频域基向量中幅度值之和、最大幅度值或功率之和较大的M 1个频域基向量;第Q个频域基向量组包括该M个频域基向量中幅度值之和、最大幅度值或功率之和较小的M Q个频域基向量;若Q为大于或等于3的整数,第q个频域基向量组包括该M个频域基向量中除幅度值之和、最大幅度值或功率之和较大的
Figure PCTCN2020071016-appb-000076
个频域基向量外,幅度值之和、最大幅度值或功率之和较大的M q个频域基向量。
可选的,上述两个示例中“较大”可以替换为“较小”,即以幅度值之和、最大幅度值或功率之和以从小到大的顺序来进行分组,本申请实施例不做限定。
可选的,该实施方式中,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的 相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。这样,由于幅度值之和、最大幅度值或功率之和越大,这些合并系数组对性能影响越大,因此,针对这些合并系数组采用相对较大的相位量化比特数,能够在降低上报开销的同时,降低对系统性能的损失。
例如,上述公式(8)所示的合并系数矩阵,以频域基向量对应的合并系数的幅度值之和为例,则该4个频域基向量所分别对应的幅度值之和,如表4所示:
表4
Figure PCTCN2020071016-appb-000077
相应的,基于Q=2,第1个频域基向量组包括幅度值之和较大的2个频域基向量,第2个频域基向量组包括幅度值之和较小的2个频域基向量,如表3所示。相应的,该第1个频域基向量组中所有频域基向量对应的合并系数,构成第1个合并系数组,第2个频域基向量组中所有频域基向量对应的合并系数,构成第2个合并系数组,如表5所示。
表5
Figure PCTCN2020071016-appb-000078
Figure PCTCN2020071016-appb-000079
例如,上述第1个合并系数组中各合并系数的相位值可以采用3比特的相位量化比特数;第2个合并系数组中各合并系数的相位值可以采用2比特的相位量化比特数,从而,在降低上报开销的同时,尽可能的降低对系统性能的损失。
另外,本申请实施例中各合并系数的幅度值采用相同的幅度量化精度,因此,不必另外上报上述合并系数组的分组情况,或者频域基向量的分组情况,接收端基于每个合并系数的幅度值,采用上述方式就可以确定分组情况,从而避免了分组引起的上报开销的增加。
1.4该K个合并系数对应l个空域波束基向量,对每个空域波束基向量对应的合并系数进行分组,以获得该K个合并系数对应的Q个合并系数组,其中,该l为小于或等于2L的正整数。
该实施方式中,发射端可以针对所述K个合并系数,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;针对每个空域波束基向量对应的一个或多个合并系数,所述发射端按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组,获得所述每个空域波束基向量对应的Q个合并系数组;所述发射端将所述l个空域波束基向量中各空域波束基向量对应的第q个合并系数组进行合并,获得所述K个合并系数的Q个合并系数组中第q个合并系数组,所述q为等于1,2,…,Q的整数。
也就是说,比如,针对上述公式(6)所示的合并系数矩阵,该K个合并系数可以为分布在任意行的合并系数,每行与一个空域波束基向量对应,因此,该K个合并系数分别所属的行对应的空域波束基向量构成该l个空域波束基向量,相应的,每个空域波束基向量对应的一个或多个合并系数,就为该空域波束基向量对应的行中,属于该K个合并系数的合并系数。
可选的,该实施方式中,针对K个合并系数,分别对应的l个空域波束基向量中,每个空域波束基向量对应的Q个合并系数组中,每个合并系数组包括的合并系数的个数,可以相同,也可以不同。
例如,第l 1个空域波束基向量对应K l1个合并系数,第l 1个空域波束基向量对应的第1至Q-1个合并系数组,可分别包含
Figure PCTCN2020071016-appb-000080
个合并系数,第l 1个空域波束基向量对应的第Q合并系数组可包含
Figure PCTCN2020071016-appb-000081
个合并系数,l 1=1,2,...,L。
再例如,第l 1个空域波束基向量对应的
Figure PCTCN2020071016-appb-000082
个合并系数,则该第l 1个空域波束基向量对应的第l 1q个合并系数组可以包含
Figure PCTCN2020071016-appb-000083
个合并系数,l 1=1,2,...,L;q=1,2,...,Q。其中, 各
Figure PCTCN2020071016-appb-000084
可以为系统预定义或基站通知的。这样,第l 1个空域波束基向量对应的第1个合并系数组包含第l 1个空域波束基向量对应的合并系数中幅度值较大的
Figure PCTCN2020071016-appb-000085
个合并系数;第l 1个空域波束基向量对应的第Q个合并系数组包含第l 1个空域波束基向量对应的合并系数中幅度值较小的
Figure PCTCN2020071016-appb-000086
个合并系数;若Q为大于或等于3的整数,第l 1个空域波束基向量对应的第q个合并系数组包含第l 1个空域波束基向量对应的合并系数中除幅度值较大的
Figure PCTCN2020071016-appb-000087
个合并系数外,幅度值较大的
Figure PCTCN2020071016-appb-000088
个合并系数。
可选的,该实施方式中,所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q 1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。这样,由于幅度值之和、最大幅度值或功率之和越大,这些合并系数组对性能影响越大,因此,针对这些合并系数组采用相对较大的相位量化比特数,能够在降低上报开销的同时,降低对系统性能的损失。
例如,上述公式(8)所示的合并系数矩阵,该4个频域基向量所分别对应的2个合并系数组,进行合并,获得24个合并系数对应的2个合并系数组,如表6所示,针对每个空域波束基向量对应的合并系数,根据幅度值的大小,分为2个合并系数组;再进一步将所有空域波束基向量对应的第1个合并系数组进行合并,获得该24个合并系数对应的第1个合并系数组;将所有空域波束基向量对应的第2个合并系数组进行合并,获得该24个合并系数对应的第2个合并系数组。
表6
Figure PCTCN2020071016-appb-000089
Figure PCTCN2020071016-appb-000090
例如,上述最终确定的第1个合并系数中各合并系数的相位值可以采用3比特的相位量化比特数;第2个合并系数组中各合并系数的相位值可以采用2比特的相位量化比特数,从而,在降低上报开销的同时,尽可能的降低了对系统性能的损失。
其中,上述针对每个空域波束基向量对应的合并系数,进行分组时所采用的分组规则是一致的。
另外,本申请实施例中各合并系数的幅度值采用相同的幅度量化精度,因此,不必另外上报上述合并系数组的分组情况,或者每个空域波束基向量对应的合并系数的分组情况,接收端基于每个合并系数的幅度值,采用上述方式就可以确定分组情况,从而避免了分组指示所引起的上报开销的增加。
上述可选的实施方式可以由发射端和接收端进行预定义,或者由基站通知给终端设备,从而,使得发射端和接收端所采用的分组规则相同,有利于接收端基于每个合并系数的幅度值获得各合并系数的分组情况,从而避免额外指示分组情况所引起的上报开销。
可选的,上述各合并系数组中至少存在一个合并系数组与其他合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。例如,上述确定的第1个合并系数组对应的最小幅度值、幅度值之和、最大幅度值或功率之和,大于第2个合并系数组对应的最 小幅度值、幅度值之和、最大幅度值或功率之和,因此,第1个合并系数组的相位值采用相位量化比特数B 1=3,相应的,可选的相位量化值构成的相位量化集合为:
Figure PCTCN2020071016-appb-000091
表示第1个合并系数组中的一合并系数的相位量化值所对应的索引;该l 2表示该合并系数对应的空域波束基向量的索引,其取值范围为[1,L]的整数;m 2表示该合并系数对应的频域基向量的索引,其取值范围为[1,M]的整数;也就是说,第1个合并系数组中每个合并系数可以从该相位量化集合中选择一最接近该合并系数的实际相位值的相位量化值,作为该合并系数的相位值,从而,可以在预编码矩阵指示信息中,用3个比特来表示该合并系数的相位值在该相位量化集合中的索引,作为该合并系数的相位值。同理,第2个合并系数组的相位值采用相位量化比特数B 2=2,相应的,可选的相位量化值构成的相位量化集合为
Figure PCTCN2020071016-appb-000092
表示第2个合并系数组中的一合并系数的相位量化值所对应的索引,第2个合并系数组中每个合并系数可以从该相位量化集合中选择一最接近该合并系数的实际相位值的相位量化值,作为该合并系数的相位值,从而,可以在预编码矩阵指示信息中,用2个比特来表示该合并系数的相位值在该相位量化集合中的索引,作为该合并系数的相位值。
在一种可选的实施方式中,K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。例如,幅度量化比特数为3比特,那么可选的量化幅度值构成的幅度量化集合如表1所示,针对每个合并系数,可从该表1中选择一量化幅度值,该量化幅度值最接近该合并系数归一化处理后的实际值。相应的,预编码指示信息中可以携带3比特指示的量化索引,以指示该合并系数的量化幅度值,还可以作为该合并系数的幅度值,使得接收端可以基于该幅度量化集合,获得3比特指示的量化索引所对应的量化幅度值。
在另一种可选的实施方式中,针对每个空域波束基向量对应的合并系数的幅度值,以该空域波束基向量对应的合并系数中的平均幅度值为参照,采用差分幅度量化的幅度量化规则。也就是说,该K个合并系数对应l个空域波束基向量,该l个空域波束基向量中每个空域波束基向量对应一个或多个合并系数;发射端可以计算每个空域波束基向量对应的合并系数的平均幅度值,作为每个空域波束基向量的平均幅度值;针对每个空域波束基向量的平均幅度值,采用平均幅度量化比特数A 2进行量化;另外,每个空域波束基向量对应的各合并系数的幅度值以该平均幅度值为参照,采用幅度量化比特数A 3进行差分幅度量化,从而每个空域波束基向量对应的一个合并系数的幅度值为所述平均幅度值与该合并系数的差分幅度值的乘积。其中,A 2为大于或等于2的整数,A 3为大于或等于1的整数。
例如,A 2为3,A 3为2,则平均幅度量化集合可选的平均幅度值也如表1所示的8个 值,差分幅度量化集合如表7所示,针对每个空域波束基向量,发射端可从表1所示的平均幅度量化集合选择一平均幅度量化值,该平均幅度量化值为最接近该空域波束基向量对应的合并系数的平均幅度值的量化值;进而,针对该空域波束基向量对应的每个合并系数,发射端从表7所示的差分幅度量化集合中选择一差分幅度量化值,该差分幅度量化值为最接近该合并系数的幅度值与该平均幅度值之间的差分幅度值的量化值。从而,预编码指示信息中可以携带该l个空域波束基向量中所有空域波束基向量分别对应的平均幅度值(也可以称为平均幅度值在表1所示的幅度量化集合中的索引),以及所有空域波束基向量分别对应的合并系数的幅度值(也可以称为差分幅度量化值,或该差分幅度量化值在表7所示的差分幅度量化集合中的量化索引)。相应的,接收端接收到预编码指示信息,也可以采用表1和表7获得每个空域波束基向量对应的平均幅度值,以及每个合并系数对应的量化差分幅度值,进而,可以获得每个合并系数的量化幅度值(也可以称为幅度值)。
表7
Figure PCTCN2020071016-appb-000093
在另一种可选的实施方式中,针对每个空域波束基向量对应的合并系数的幅度值,以该空域波束基向量对应的合并系数中的最大幅度值为参照,采用差分幅度量化的幅度量化规则。如表8所示,为以最大幅度值为参照,可选的差分幅度量化值构成的差分幅度量化集合。针对每个空域波束基向量,发射端可从该表1中选择一幅度量化值,该幅度量化值为最接近该空域波束基向量对应的合并系数的最大幅度值的量化值;进而,针对该空域波束基向量对应的每个合并系数,发射端从表8所示的差分幅度量化集合中选择一差分幅度量化值,该差分幅度量化值为最接近该合并系数的幅度值与该最大幅度值之间的差分幅度值的量化值。从而,预编码指示信息中可以携带该l个空域波束基向量中所有空域波束基向量分别对应的最大幅度值(也可以称为分别对应的最大幅度值在表1所示的幅度量化集合中的索引),以及所有空域波束基向量分别对应的合并系数的幅度值(也可以称为差分幅度量化值,或该差分幅度量化值在表8所示的差分幅度量化集合中的量化索引)。相应的,接收端接收到预编码矩阵指示信息,也可以采用表1和表8获得每个空域波束基向量对应的最大幅度值,以及每个合并系数对应的差分幅度量化值,进而,可以获得每个合并系数的幅度量化值(即幅度值)。
表8
Figure PCTCN2020071016-appb-000094
本申请实施例中,可以通过基站通知,或预定义的方式,使得发射端和接收端已知,所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前或之后。即所述K个合并系数中所有合并系数的幅度值位于高比特位,所述K个合并系数中所有合并系数的相位值位于低比特位;或者,所述K个合并系数中所有合并系数的幅度值位于低比特位,所述K个合并系数中所有合并系数的相位值位于高比特位。
可选的,该预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值,是以所述每个合并系数对应的空域波束基向量的索引为顺序,依次排列的。例如,K=L*M,第i-1个空域波束基向量对应的合并系数的幅度值排列在第i个空域波束基向量对应的合并系数的幅度值的前面;i=2,..,L。进一步的,每个空域波束基向量对应的合并系数的幅度值可以基于每个合并系数对应的频域基向量的索引进行排列,如第i个空域波束基向量对应的合并系数的幅度值按照每个合并系数对应的频域基向量的索引进一步排列,如第i个空域波束基向量中,
Figure PCTCN2020071016-appb-000095
的幅度值排列在
Figure PCTCN2020071016-appb-000096
的幅度值的前面,j=2,..,M。
该预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的,如第1个合并系数组的所有合并系数的相位值排列在第2个合并系数组的所有合并系数的相位值的前面或后面;所述每个合并系数组的相位值中各合并系数的相位值是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
可选的,预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值;所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
本申请中,在幅度值或相位值的排列过程中,若以合并系数对应的空域波束基向量的索引为顺序进行排列过程中,存在多个合并系数对应的空域波束基向量的索引相同的情况,则可以进一步的以该多个合并系数对应的频域基向量的索引为顺序进行排列。相应的,在幅度值或相位值的排列过程中,若以合并系数对应的频域基向量的索引为顺序进行排列过 程中,存在多个合并系数对应的频域基向量的索引相同的情况,则可以进一步的以该多个合并系数对应的空域波束基向量的索引为顺序进行排列。例如,公式(8)所示,L*M个合并系数的幅度值或相位值可以按照公式(8)所示的每一行一一排列;也可以按照公式(8)所示的每一列一一排列。
在一种可选的实施方式中,相位值的排列过程中,可以先按照合并系数组的索引为顺序进行排列;针对合并系数组的索引相同的合并系数,可以将相位值按照所对应的空域波束基向量的索引为顺序进行排列;进一步的,若合并系数对应的空域波束基向量的索引也相同,则可以按照所对应的频域基向量的索引为顺序进行排列。例如,公式(8)所对应的合并系数组,如表6所示,先排列该24个合并系数对应的第1个合并系数组中各合并系数的相位值;再排列该24个合并系数对应的第2个合并系数组中各合并系数的相位值;针对第1个合并系数组中各合并系数,可以按照各合并系数对应的空域波束基向量的索引为顺序排列,如先排列第1个空域波束基向量对应的
Figure PCTCN2020071016-appb-000097
最后排列第6个空域波束基向量对应的
Figure PCTCN2020071016-appb-000098
针对所对应的空域波束基向量的索引相同的合并系数,如
Figure PCTCN2020071016-appb-000099
可以以所对应的频域基向量的索引为顺序进行排列,如先排列第1个频域基向量对应的
Figure PCTCN2020071016-appb-000100
再排列第2个频域基向量对应的
Figure PCTCN2020071016-appb-000101
另外,假设K等于L*M,即针对上述合并系数矩阵
Figure PCTCN2020071016-appb-000102
中各合并系数利用最强合并系数进行归一化处理后,上报除最强合并系数外的L*M-1个合并系数的幅度值和相位值,所需的开销进行对比分析。即如表8所示,将本申请方案所需的开销与其他方案所需的开销进行对比分析。
方案1针对L*M-1个合并系数,分别采用3比特进行等精度的幅度量化和相位量化,则上报的预编码指示信息中,上报该L*M-1个合并系数每个合并系数的幅度值和相位值,所需的开销为(L*M-1)*6。
方案2针对L*M-1个合并系数,采用3比特量化每个空域波束基向量对应的平均幅度值,以该平均幅度值为参照,每个空域波束基向量对应的每个合并系数的幅度值,采用2比特进行差分量化,则上报的预编码指示信息中,所有空域波束基向量的平均幅度值,所需的开销为L*3,L*M-1个合并系数的差分量化幅度值所需的开销为(L*M-1)*2;针对L*M-1个合并系数的相位值,均采用3比特量化,则该L*M-1个合并系数的相位值所需的开销为(L*M-1)*3;故该方案2中,上报该L*M-1个合并系数每个合并系数的幅度值和相位值,所需的开销为L*3+(L*M-1)*5。
方案3针对L*M-1个合并系数,L个空域波束基向量中每个空域波束基向量对应的合并系数分为2个合并系数组,其中幅度较大的合并系数组采用的幅度量化比特数为3比特,相位量化比特数为3比特,幅度较小的合并系数组采用的幅度量化比特数为2比特,相位量化比特数为2比特;这样,L*M-1个合并系数每个合并系数的幅度值和相位值,所需的开销为(L*M/2-1)*6+L*M/2*4;另外,每个空域波束基向量对应的合并系数的分组情况 需要额外指示,所需的开销为
Figure PCTCN2020071016-appb-000103
故方案3中,上报该2L*M-1个合并系数每个合并系数的幅度值和相位值,所需的开销为
Figure PCTCN2020071016-appb-000104
本申请方案针对L*M-1个合并系数,所有合并系数的幅度值,采用的幅度量化比特数为3比特,进行等精度量化;采用上述实施方式1.4所述的分组方法,以Q=2为例,第1个合并系数组的相位值采用相位量化比特数为3比特,第2个合并系数组采用相位量化比特数为2比特,另外,该分组方法是根据幅度值进行分组的,且幅度值又是采用相同的量化方法,故本申请不需要额外指示分组情况,接收端可根据所有合并系数的幅度值,采用1.4所述的分组方法可以获得分组情况;故该方案,上报该L*M-1个合并系数每个合并系数的幅度值和相位值,所需的开销为(L*M-1)*3+(L*M/2-1)*3+L*M/2*2。
具体的,如表9所示,在L=4,M=3;L=4,M=4;L=4,M=5的情况下,本申请方案相比其他方案具有更低的量化开销。
表9
Figure PCTCN2020071016-appb-000105
以上对本申请中,如何对K个合并系数进行分组,每个合并系数组所采用的相位量化比特数的大小与合并系数组中合并系数的幅度值之间的关系,幅度量化方法和相位量化方法等,可选的实施方式做了阐述,上述阐述仅用于对本申请进行说明,并不用于对本申请的限制。可选的,上述分组方法,也可以采用其他预定义的规则进行分组;以及,上述所述的相位量化方法也可以采用其他预定义的规则进行量化,但基本思想不变,即所有幅度值采用相同的幅度量化方法,基于每个合并系数的幅度值进行分组,以及,每个合并系数组所采用的相位量化可以不同,从而能够保证在最小化系统性能损失的情况下,缩减上报开销,提升对码本的压缩效率。
另外,在本文中提及“本申请实施例”意味着,结合本申请实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图3,图3是本申请实施例提供的一种预编码矩阵指示装置的结构示意图,该预编码矩阵指示装置可以位于发射端中,所述预编码矩阵指示装置包括确定单元201、分组单元202以及发送单元203,其中,确定单元201、分组单元202可以为处理单元,其中:
确定单元201,用于确定每个空间层对应的K个合并系数中每个合并系数的幅度值;所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
分组单元202,用于根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组;所述Q为大于或等于2的整数;
所述确定单元201,还用于确定每个合并系数组中每个合并系数的相位值;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同;
发送单元203,用于发送预编码矩阵指示信息,所述预编码矩阵指示信息中包括所述K个合并系数中每个合并系数的幅度值和相位值。
在一种可选的实施方式,所述分组单元202根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得Q个合并系数组。
可选的,所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
在另一种可选的实施方式,所述分组单元202根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:针对所述K个合并系数,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;根据所述每个空域波束基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和,对所述l个空域波束基向量进行分组,获得Q个空域波束基向量组;针对所述Q个空域波束基向量组中每个空域波束基向量组中的一个或多个空域波束基向量,确定所述一个或多个空域波束基向量对应的所有合并系数作为一个合并系数组,获得Q个空域波束基向量组对应的Q个合并系数组。
可选的,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式,所述分组单元202根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:在K个合并系数中,确定m个频域基向量中每个频域基向量对应的一个或多个合并系数;所述m为小于或等于所述M的正整数;根据所述每个频域基向量对应的所述一个或多个合并系数的幅度值 之和、最大幅度值或功率之和,对所述m个频域基向量进行分组,获得Q个频域基向量组;针对所述Q个频域基向量组中每个频域基向量组中的一个或多个频域基向量,确定所述一个或多个频域基向量对应的所有合并系数作为一个合并系数组,获得Q个频域基向量组对应的Q个合并系数组。
可选的,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式,所述分组单元202根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;针对每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组,获得所述每个空域波束基向量对应的Q个合并系数组;将所述l个空域波束基向量中各空域波束基向量对应的第q个合并系数组进行合并,获得所述K个合并系数的Q个合并系数组中第q个合并系数组,所述q为等于1,2,...,Q的整数。
可选的,所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
在另一种可选的实施方式中,所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值;所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
本申请实施例中,所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;所述预编码矩阵指示信息中,所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
本申请实施例中,所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
请参阅图4,图4是本申请实施例公开的另一种预编码矩阵指示装置,预编码矩阵指示装置可以位于接收端,所述预编码矩阵指示装置包括:接收单元301、确定单元302,确定单元302也可以是处理单元,其中:
接收单元301,用于接收预编码矩阵指示信息,所述预编码矩阵指示信息中包括K个合并系数中每个合并系数的幅度值和相位值;
确定单元302,用于根据所述预编码矩阵指示信息,确定所述K个合并系数中每个合并系数的幅度值和相位值;
所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
所述K个合并系数分别所属的Q个合并系数组是基于所述K个合并系数的幅度值进行分组的;所述每个合并系数的相位值是基于所述每个合并系数所属的合并系数组所采用的相位量化比特数和相位量化规则确定的;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。
在一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组,是按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得的。
可选的,所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
在另一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是每个空域波束基向量组中各空域波束基向量对应的所有合并系数构成的;所述每个空域波束基向量组是根据所述K个合并系数中,l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和,对所述l个空域波束基向量进行分组获得;所述l为小于或等于所述L的正整数。
可选的,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是所述Q个频域基向量组中每个频域基向量组中各频域基向量对应的所有合并系数构成的;所述Q个频域基向量组是根据所述K个合并系数中,m个频域基向量中每个频域基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和,对所述M个频域基向量进行分组获得;所述m为小于或等于所述M的正整数。
可选的,所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在又一种可选的实施方式中,所述K个合并系数分别所属的Q个合并系数组中,第q个合并系数组是由l个空域波束基向量中各空域波束基向量分别对应的Q个合并系数组中,第q个合并系数组进行合并获得的,所述l为小于或等于所述L的正整数;所述q等于1,2,…,Q的整数;所述l个空域波束基向量中,每个空域波束基向量对应的Q个合并系数组是针对所述每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组获得的。
可选的,所述Q个合并系数组中,所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
在一种可选的实施方式中,所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
在另一种可选的实施方式中,所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值,所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;
所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;
所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
可选的,所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;
所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
可选的,所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
请参阅图5,图5为本申请实施例提供的一种设备的示意图,如图5所示,该设备可以为终端设备;也可以为芯片或电路,比如可设置于终端设备中的芯片或电路。该设备可以对应上述方法中发射端的相关操作。
该设备可以包括处理器410和存储器420。该存储器420用于存储指令,该处理器410用于执行该存储器420存储的指令,以实现如上述发射端所执行的步骤,或者实现上述图3所示的预编码矩阵指示装置中各单元的相关操作。
进一步的,该设备还可以包括接收器440和发送器450。进一步的,该设备还可以进一步包括总线系统430,其中,处理器410、存储器420、接收器440和发送器450可以通过总线系统830相连。
处理器410用于执行该存储器420存储的指令,以控制接收器440接收信号,并控制发送器450发送信号,完成上述方法中发射端的步骤,比如发送预编码矩阵指示信息等。其中,接收器440和发送器450可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器420可以集成在所述处理器410中,也可以与所述处理器410分开设置。
另外,存储器420还用于存储上述方法实施例中所述的预定义的信息,或者网络设备如基站所通知的信息等。
作为一种实现方式,接收器440和发送器450的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器410可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的发射端的相关操作。即将实现处理器410,接收器440和发送器450功能的程序代码存储在 存储器中,通用处理器通过执行存储器中的代码来实现处理器410,接收器440和发送器450的功能,比如,处理器410调用存储器420中的程序代码,使得计算机或终端设备执行上述方法实施例中发射端的相关操作。
请参阅图6,图6是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中。为了便于说明,图6仅示出了终端设备的主要部件。如图6所示,终端设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中发射端所描述的动作。存储器主要用于存储软件程序和数据,例如上述方法实施例中所述的预定义的信息,或者网络设备如基站所通知的信息等,等等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号,比如接收网络设备配置的信道状态测量信息,向网络设备发送预编码矩阵指示信息等等。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据,比如执行上述方法实施例中发射端的相关操作。在执行上述方法实施例中发射端的相关操作过程中,当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图6仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图6中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备的通信单元或收发单元,将具有处理功能的处理器视为终端设备的确定单元或处理单元。如图6所示,终端设备包括收发单元501和处理单元502。收发单元也可以称为收发器、收 发机、收发装置等。可选的,可以将收发单元501中用于实现接收功能的器件视为接收单元,将收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
请参阅图7,图7为本申请实施例提供的一设备的结构示意图,如图7所示,该设备可以为网络设别;该设备也可以为芯片或电路,如可设置于接收端内的芯片或电路。该设备执行上述方法中的接收端的相关操作。该设备可以包括处理器610和存储器620。该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令,以使所述设备实现前述接收端的相关操作,比如接收预编码矩阵指示信息以及确定各合并系数的幅度值和相位值等。
进一步的,该网络设备还可以包括接收器640和发送器650。再进一步的,该网络设备还可以包括总线系统630。
其中,处理器610、存储器620、接收器640和发送器650通过总线系统630相连,处理器610用于执行该存储器620存储的指令,以控制接收器640接收信号,并控制发送器650发送信号,完成上述方法中网络设备的步骤。其中,接收器640和发送器650可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器620可以集成在所述处理器610中,也可以与所述处理器610分开设置。
作为一种实现方式,接收器640和发送器650的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器610可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的接收端的相关操作。即将实现处理器610,接收器640和发送器650功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器610,接收器640和发送器650的功能,比如,处理器610可以调用存储器620中的程序代码,或者基于接收器640和发送器650,使得计算机或网络设备执行图4所示的实施例中接收单元、确定单元等的相关操作,或者执行上述方法实施例接收端执行的相关操作或实施方式。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
请参阅图8,图8为本申请实施例提供的一种网络设备的结构示意图,该网络设备可以为基站,可以执行上述方法实施例中接收端的相关操作,例如能够为终端设备发送相关的信道状态信息的测量配置信息,以及接收终端设备上报的预编码矩阵指示信息等操作,图8以基站的结构为例进行阐述。如图8所示,该基站可应用于如图1所示的系统中。基站包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)701和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)702。所述RRU701可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线7011和射频单元7012。所述RRU701部分主要用于射频信号的收发以及射频信号与基带信号的 转换,例如用于接收终端设备上报的上述实施例中所述的预编码矩阵指示信息等。所述BBU702部分主要用于进行基带处理,对基站进行控制等。所述RRU701与BBU702可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU702为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中接收端的操作流程。
在一个示例中,所述BBU702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU702还包括存储器7021和处理器7022。所述存储器7021用以存储必要的指令和数据。例如存储器7021存储上述实施例中的预定义的内容等。所述处理器7022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接收端的操作流程。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的接收端和一个或多于一个发射端。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
此外,本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程,或使得计算机执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程;或使得计算机执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程,或以执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口, 处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、 服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (57)

  1. 一种预编码矩阵指示方法,其特征在于,包括:
    发射端确定每个空间层对应的K个合并系数中每个合并系数的幅度值;所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
    所述发射端根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组;所述Q为大于或等于2的整数;
    所述发射端确定每个合并系数组中每个合并系数的相位值;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同;
    所述发射端发送预编码矩阵指示信息,所述预编码矩阵指示信息中包括所述K个合并系数中每个合并系数的幅度值和相位值。
  2. 根据权利要求1所述的方法,其特征在于,所述发射端根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,包括:
    所述发射端按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得Q个合并系数组。
  3. 根据权利要求1所述的方法,其特征在于,所述发射端根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,包括:
    所述发射端在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;
    所述发射端根据所述每个空域波束基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组,获得Q个空域波束基向量组;
    针对所述Q个空域波束基向量组中每个空域波束基向量组中的一个或多个空域波束基向量,所述发射端确定所述一个或多个空域波束基向量对应的所有合并系数作为一个合并系数组,获得所述Q个空域波束基向量组对应的Q个合并系数组。
  4. 根据权利要求1所述的方法,其特征在于,所述发射端根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,包括:
    所述发射端在所述K个合并系数中,确定m个频域基向量中每个频域基向量对应的一个或多个合并系数;所述m为小于或等于所述M的正整数;
    所述发射端根据所述每个频域基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述m个频域基向量进行分组,获得Q个频域基向量组;
    针对所述Q个频域基向量组中每个频域基向量组中的一个或多个频域基向量,所述发射端确定所述一个或多个频域基向量对应的所有合并系数作为一个合并系数组,获得所述Q个频域基向量组对应的Q个合并系数组。
  5. 根据权利要求1所述的方法,其特征在于,所述发射端根据所述K个合并系数中 每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,包括:
    所述发射端在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;
    针对每个空域波束基向量对应的一个或多个合并系数,所述发射端按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组,获得所述每个空域波束基向量对应的Q个合并系数组;
    所述发射端将所述l个空域波束基向量中各空域波束基向量对应的第q个合并系数组进行合并,获得所述K个合并系数的Q个合并系数组中第q个合并系数组,所述q为等于1,2,…,Q的整数。
  6. 根据权利要求2所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  7. 根据权利要求3所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  8. 根据权利要求4所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  9. 根据权利要求5所述的方法,其特征在于,
    所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值;所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;
    所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;
    所述预编码矩阵指示信息中,所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,
    所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
    所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
    所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
  14. 一种预编码矩阵指示方法,其特征在于,包括:
    接收端接收预编码矩阵指示信息,所述预编码矩阵指示信息中包括K个合并系数中每个合并系数的幅度值和相位值;
    所述接收端根据所述预编码矩阵指示信息,确定所述K个合并系数中每个合并系数的幅度值和相位值;
    所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
    所述K个合并系数分别所属的Q个合并系数组是基于所述K个合并系数的幅度值进行分组的;所述每个合并系数的相位值是基于所述每个合并系数所属的合并系数组所采用的 相位量化比特数和相位量化规则确定的;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。
  15. 根据权利要求14所述的方法,其特征在于,所述K个合并系数分别所属的Q个合并系数组,是按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得的。
  16. 根据权利要求14所述的方法,其特征在于,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是Q个空域波束基向量组中每个空域波束基向量组中各空域波束基向量对应的所有合并系数构成的;所述Q个空域波束基向量组是根据所述K个合并系数中,l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组获得;所述l为小于或等于所述L的正整数。
  17. 根据权利要求14所述的方法,其特征在于,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是所述Q个频域基向量组中每个频域基向量组中,各频域基向量对应的所有合并系数构成的;所述Q个频域基向量组是根据所述K个合并系数中,m个频域基向量中每个频域基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述M个频域基向量进行分组获得;所述m为小于或等于所述M的正整数。
  18. 根据权利要求14所述的方法,其特征在于,所述K个合并系数分别所属的Q个合并系数组中,第q个合并系数组是由l个空域波束基向量中各空域波束基向量分别对应的Q个合并系数组中,第q个合并系数组进行合并获得的,所述l为小于或等于所述L的正整数;所述q等于1,2,…,Q的整数;
    所述l个空域波束基向量中,每个空域波束基向量对应的Q个合并系数组是针对所述每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组获得的。
  19. 根据权利要求15所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  20. 根据权利要求16所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  21. 根据权利要求17所述的方法,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  22. 根据权利要求18所述的方法,其特征在于,
    所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  23. 根据权利要求14至22任一项所述的方法,其特征在于,
    所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
  24. 根据权利要求14至22任一项所述的方法,其特征在于,
    所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值,所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;
    所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
  25. 根据权利要求24所述的方法,其特征在于,
    所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
  26. 根据权利要求14至25任一项所述的方法,其特征在于,
    所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
    所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
    所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的; 或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
  27. 一种预编码矩阵指示装置,其特征在于,位于发射端中,所述预编码矩阵指示装置包括:
    确定单元,用于确定每个空间层对应的K个合并系数中每个合并系数的幅度值;所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
    分组单元,用于根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组;所述Q为大于或等于2的整数;
    所述确定单元,还用于确定每个合并系数组中每个合并系数的相位值;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同;
    发送单元,用于发送预编码矩阵指示信息,所述预编码矩阵指示信息中包括所述K个合并系数中每个合并系数的幅度值和相位值。
  28. 根据权利要求27所述的装置,其特征在于,所述分组单元根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:
    按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得Q个合并系数组。
  29. 根据权利要求27所述的装置,其特征在于,所述分组单元根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:
    在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;
    根据所述每个空域波束基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组,获得Q个空域波束基向量组;
    针对所述Q个空域波束基向量组中每个空域波束基向量组中的一个或多个空域波束基向量,确定所述一个或多个空域波束基向量对应的所有合并系数作为一个合并系数组,获得所述Q个空域波束基向量组对应的Q个合并系数组。
  30. 根据权利要求27所述的装置,其特征在于,所述分组单元根据所述K个合并系数每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:
    在K个合并系数中,确定m个频域基向量中每个频域基向量对应的一个或多个合并系数;所述m为小于或等于所述M的正整数;
    根据所述每个频域基向量对应的所述一个或多个合并系数的幅度值之和、最大幅度值 或功率之和的大小顺序,对所述m个频域基向量进行分组,获得Q个频域基向量组;
    针对所述Q个频域基向量组中每个频域基向量组中的一个或多个频域基向量,确定所述一个或多个频域基向量对应的所有合并系数作为一个合并系数组,获得所述Q个频域基向量组对应的Q个合并系数组。
  31. 根据权利要求27所述的装置,其特征在于,所述分组单元根据所述K个合并系数中每个合并系数的幅度值,对所述K个合并系数进行分组,获得Q个合并系数组,具体为:
    在所述K个合并系数中,确定l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数;所述l为小于或等于所述L的正整数;
    针对每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组,获得所述每个空域波束基向量对应的Q个合并系数组;
    将所述l个空域波束基向量中各空域波束基向量对应的第q个合并系数组进行合并,获得所述K个合并系数的Q个合并系数组中第q个合并系数组,所述q为等于1,2,…,Q的整数。
  32. 根据权利要求28所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  33. 根据权利要求29所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;q 1不等于q 2,且q 1和q 2为大于或等于1,且小于或等于Q的整数。
  34. 根据权利要求30所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  35. 根据权利要求31所述的装置,其特征在于,
    所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和, 则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  36. 根据权利要求27至35任一项所述的装置,其特征在于,
    所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
  37. 根据权利要求27至35任一项所述的装置,其特征在于,
    所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值;所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;
    所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
  38. 根据权利要求37所述的装置,其特征在于,
    所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;
    所述预编码矩阵指示信息中,所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
  39. 根据权利要求27至38任一项所述的装置,其特征在于,
    所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
    所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
    所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
  40. 一种预编码矩阵指示装置,其特征在于,位于接收端中,所述预编码矩阵指示装置包括:
    接收单元,用于接收预编码矩阵指示信息,所述预编码矩阵指示信息中包括K个合并系数中每个合并系数的幅度值和相位值;
    确定单元,用于根据所述预编码矩阵指示信息,确定所述K个合并系数中每个合并系数的幅度值和相位值;
    所述每个合并系数的幅度值是采用相同的幅度量化比特数和相同的幅度量化规则确定的;所述K为小于或等于L*M的正整数,所述L为所述发射端确定的空域波束基向量的总个数,所述M为所述发射端确定的频域基向量的总个数;
    所述K个合并系数分别所属的Q个合并系数组是基于所述K个合并系数的幅度值进行分组的;所述每个合并系数的相位值是基于所述每个合并系数所属的合并系数组所采用的相位量化比特数和相位量化规则确定的;所述Q个合并系数组中至少存在两个合并系数组所采用的相位量化比特数和相位量化规则中的至少一个不同。
  41. 根据权利要求40所述的装置,其特征在于,所述K个合并系数分别所属的Q个合并系数组,是按照所述K个合并系数中每个合并系数的幅度值的大小顺序,对所述K个合并系数进行分组,获得的。
  42. 根据权利要求40所述的装置,其特征在于,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是Q个空域波束基向量组中每个空域波束基向量组中各空域波束基向量对应的所有合并系数构成的;所述Q个空域波束基向量组是根据所述K个合并系数中,l个空域波束基向量中每个空域波束基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述l个空域波束基向量进行分组获得;所述l为小于或等于所述L的正整数。
  43. 根据权利要求40所述的装置,其特征在于,所述K个合并系数分别所属的Q个合并系数组中每个合并系数组是所述Q个频域基向量组中每个频域基向量组中,各频域基向量对应的所有合并系数构成的;所述Q个频域基向量组是根据所述K个合并系数中,m个频域基向量中每个频域基向量对应的一个或多个合并系数的幅度值之和、最大幅度值或功率之和的大小顺序,对所述M个频域基向量进行分组获得;所述m为小于或等于所述M的正整数。
  44. 根据权利要求40所述的装置,其特征在于,所述K个合并系数分别所属的Q个合并系数组中,第q个合并系数组是由l个空域波束基向量中各空域波束基向量分别对应的Q个合并系数组中,第q个合并系数组进行合并获得的,所述l为小于或等于所述L的正整数;所述q=1,2,…,Q的整数;
    所述l个空域波束基向量中,每个空域波束基向量对应的Q个合并系数组是针对所述每个空域波束基向量对应的一个或多个合并系数,按照每个合并系数的幅度值的大小顺序,对所述一个或多个合并系数进行分组获得的。
  45. 根据权利要求41所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,大于第q 2个合并系数组中各合并系数的最小幅度值、最大幅度值或幅度值之和,所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  46. 根据权利要求42所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个空域波束基向量组中,每个空域波束基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则所述第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于所述第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  47. 根据权利要求43所述的装置,其特征在于,
    所述Q个合并系数组中,第q 1个合并系数组对应的第q 1个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,均大于第q 2个合并系数组对应的第q 2个频域基向量组中,每个频域基向量对应的合并系数的幅度值之和、最大幅度值或功率之和,则第q 1个合并系数组中各合并系数所采用的相位量化比特数B q1,大于第q 2个合并系数组中各合并系数所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  48. 根据权利要求44所述的装置,其特征在于,
    所述每个空域波束基向量对应的Q个合并系数组中,第q 1个合并系数组的最小幅度值、最大幅度值或幅度值之和大于第q 2个合并系数组的最小幅度值、最大幅度值或幅度值之和,则所述K个合并系数的Q个合并系数组中,第q1个合并系数组所采用的相位量化比特数B q1大于第q 2个合并系数组中所采用的相位量化比特数B q2;所述q 1不等于所述q 2,且所述q 1和所述q 2为大于或等于1,且小于或等于Q的整数。
  49. 根据权利要求40至48任一项所述的装置,其特征在于,
    所述K个合并系数中每个合并系数的幅度值是采用量化比特数A 1分别进行量化确定的;所述A 1为大于或等于2的整数。
  50. 根据权利要求40至48任一项所述的装置,其特征在于,
    所述预编码矩阵指示信息中还包括l个空域波束基向量中每个空域波束基向量对应的平均幅度值或最大幅度值,所述l为小于或等于所述L的正整数;所述l个空域波束基向量为所述K个合并系数中各合并系数所对应的空域波束基向量;
    所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数分别对应的每个空域波束基向量的平均幅度值或最大幅度值为参照,采用量化比特数A 3分别进行差分量化确定的,所述A 3为大于或等于1的整数;所述每个空域波束基向量的平均幅度值或最大幅度值为针对所述K个合并系数中,每个空域波束基向量对应的一个或多个合并系数的平均幅度值或最大幅度值;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是采用幅度量化比特数A 2分别进行量化确定的,所述A 2为大于或等于2的整数。
  51. 根据权利要求50所述的装置,其特征在于,
    所述预编码矩阵指示信息中,所述l个空域波束基向量中所有空域波束基向量对应的平均幅度值或最大幅度值位于所述K个合并系数中所有合并系数的幅度值之前;
    所述每个空域波束基向量对应的平均幅度值或最大幅度值是以所述每个空域波束基向量的索引为顺序,排列的。
  52. 根据权利要求40至51任一项所述的装置,其特征在于,
    所述预编码矩阵指示信息中,所述K个合并系数中所有合并系数的幅度值位于所有合并系数的相位值之前;
    所述预编码矩阵指示信息中,所述K个合并系数中每个合并系数的幅度值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;
    所述预编码矩阵指示信息中,所述K个合并系数每个合并系数的相位值是以所述每个合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的;或者,所述预编码矩阵指示信息中,针对所述K个合并系数分别所属的所述Q个合并系数组,每个合并系数组的相位值是以每个合并系数组的索引为顺序,依次排列的;所述每个合并系数组的相位指示中各合并系数的相位指示是以所述各合并系数对应的空域波束基向量的索引或对应的频域基向量的索引为顺序,依次排列的。
  53. 一种装置,其特征在于,所述装置包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行存储器中的指令以执行权利要求1至13中任一项所述的方法,或者以执行权利要求14至26任一项所述的方法。
  54. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至13中任一项所述的方法,或者执行权利要求14至26任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行所述权利要求1至13中任一项所述的方法的指令,或者执行所述权利要求14至26任一项所述的方法的指令。
  56. 一种装置,其特征在于,所述装置用于实现权利要求1至13中任一项所述的方法,或者实现权利要求14至26任一项所述的方法。
  57. 一种芯片系统,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至13中任一项所述的方法,或者用于读取指令以执行权利要求14至26任一项所述的方法。
PCT/CN2020/071016 2019-01-08 2020-01-08 预编码矩阵指示方法及相关设备 WO2020143694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738094.0A EP3902153A4 (en) 2019-01-08 2020-01-08 METHOD OF DISPLAYING A PRECODE MATRIX AND RELATED DEVICE
US17/369,069 US11843435B2 (en) 2019-01-08 2021-07-07 Precoding matrix indication method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910016817.0 2019-01-08
CN201910016817.0A CN111416645B (zh) 2019-01-08 2019-01-08 预编码矩阵指示方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/369,069 Continuation US11843435B2 (en) 2019-01-08 2021-07-07 Precoding matrix indication method and related device

Publications (1)

Publication Number Publication Date
WO2020143694A1 true WO2020143694A1 (zh) 2020-07-16

Family

ID=71494361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071016 WO2020143694A1 (zh) 2019-01-08 2020-01-08 预编码矩阵指示方法及相关设备

Country Status (4)

Country Link
US (1) US11843435B2 (zh)
EP (1) EP3902153A4 (zh)
CN (1) CN111416645B (zh)
WO (1) WO2020143694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198471A1 (zh) * 2021-03-24 2022-09-29 华为技术有限公司 一种信息反馈方法以及相关装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164108A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Coefficient indication for channel state information
WO2021026212A1 (en) * 2019-08-05 2021-02-11 Cohere Technologies, Inc. Spectral sharing wireless systems
US11777647B2 (en) * 2021-06-30 2023-10-03 Electronics And Telecommunications Research Institute Method and apparatus for traffic transmission in communication system
WO2024016136A1 (zh) * 2022-07-18 2024-01-25 北京小米移动软件有限公司 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置
CN117998384A (zh) * 2022-10-28 2024-05-07 华为技术有限公司 通信方法与通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263619A (zh) * 2011-07-20 2011-11-30 电信科学技术研究院 一种信道状态信息反馈、接收的方法及装置
CN102868479A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 多天线传输方法、装置及系统
CN103731244A (zh) * 2014-01-03 2014-04-16 东南大学 Lte-a终端反馈系统中双码本差分设计方法
US20180302140A1 (en) * 2017-04-13 2018-10-18 Samsung Electronics Co., Ltd. High-resolution csi reporting based on unequal bit allocation in advanced wireless communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202276B (zh) * 2014-07-16 2018-06-01 中兴通讯股份有限公司 信道信息的量化反馈、数据的预编码方法及装置
CN107888323B (zh) * 2016-09-29 2020-01-17 电信科学技术研究院 一种信道状态信息的传输方法和设备
CN108271265B (zh) * 2017-01-03 2023-04-07 华为技术有限公司 通信方法、基站和终端设备
CN108418612B (zh) * 2017-04-26 2019-03-26 华为技术有限公司 一种指示及确定预编码向量的方法和设备
US10298311B2 (en) * 2017-05-02 2019-05-21 Mediatek Inc. Overhead reduction for linear combination codebook and feedback mechanism in mobile communications
CN109150412B (zh) * 2017-06-16 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN107528622A (zh) * 2017-10-20 2017-12-29 东莞市翔实信息科技有限公司 确定3d mu‑mimo预编码矩阵构造方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868479A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 多天线传输方法、装置及系统
CN102263619A (zh) * 2011-07-20 2011-11-30 电信科学技术研究院 一种信道状态信息反馈、接收的方法及装置
CN103731244A (zh) * 2014-01-03 2014-04-16 东南大学 Lte-a终端反馈系统中双码本差分设计方法
US20180302140A1 (en) * 2017-04-13 2018-10-18 Samsung Electronics Co., Ltd. High-resolution csi reporting based on unequal bit allocation in advanced wireless communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Enhancements on CSI reporting and codebook design", 3GPP DRAFT; R1-1808949, 24 August 2018 (2018-08-24), Gothenburg, Sweden, pages 1 - 7, XP051516324 *
HUAWEI; HISILICON: "The impact of basis vectors for codebook enhancement", 3GPP DRAFT; R1-1813692, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051480033 *
See also references of EP3902153A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198471A1 (zh) * 2021-03-24 2022-09-29 华为技术有限公司 一种信息反馈方法以及相关装置

Also Published As

Publication number Publication date
EP3902153A1 (en) 2021-10-27
EP3902153A4 (en) 2022-02-23
CN111416645A (zh) 2020-07-14
US20210351828A1 (en) 2021-11-11
CN111416645B (zh) 2021-11-30
US11843435B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2020143694A1 (zh) 预编码矩阵指示方法及相关设备
WO2020156103A1 (zh) 信息反馈方法及装置
TWI692261B (zh) 資料傳輸方法、基地台和終端
CN112803975B (zh) 确定预编码矩阵的方法、设备及系统
US20220173774A1 (en) Transmission precoding matrix indication method and device
WO2021008477A1 (zh) 预编码处理方法和装置
WO2019144801A1 (zh) 一种信道估计方法和装置
WO2018228228A1 (zh) 信息传输方法及装置
TWI795336B (zh) 一種基於通道互易性的預編碼矩陣配置方法及裝置
US10673508B2 (en) Channel state information feedback method, user equipment, and base station
WO2018228120A1 (zh) 一种发送下行控制信息dci的方法及装置
US11652518B2 (en) Channel estimation method and apparatus
WO2022063261A1 (zh) 一种上行参考信号的关联方法及通信装置
WO2022048400A1 (zh) 一种信道反馈方法及装置
CN110913477B (zh) 管理资源的方法和通信装置
US11057085B2 (en) Codebook subset restriction method
US20230239014A1 (en) Information indication method and apparatus
US20220210799A1 (en) Resource scheduling method and related device
CN110868245B (zh) 信息传输方法及设备
KR20170128452A (ko) 빔 정보를 취득하는 방법, 장치 및 통신 시스템
WO2019196886A1 (zh) 一种预编码矩阵确定方法及装置
CN112243246B (zh) 用于信道测量的接收参数的确定方法和装置
WO2019218906A1 (zh) 预编码矩阵指示方法及相关设备
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
TWI784462B (zh) 上行功率、調度資訊確定方法、終端和網路側設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738094

Country of ref document: EP

Effective date: 20210719