WO2020143685A1 - 发送同步信号的方法和装置 - Google Patents

发送同步信号的方法和装置 Download PDF

Info

Publication number
WO2020143685A1
WO2020143685A1 PCT/CN2020/070977 CN2020070977W WO2020143685A1 WO 2020143685 A1 WO2020143685 A1 WO 2020143685A1 CN 2020070977 W CN2020070977 W CN 2020070977W WO 2020143685 A1 WO2020143685 A1 WO 2020143685A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
time domain
iab node
iab
index
Prior art date
Application number
PCT/CN2020/070977
Other languages
English (en)
French (fr)
Inventor
刘凤威
袁世通
邱晶
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143685A1 publication Critical patent/WO2020143685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • This application relates to the technical field of integrated access backhaul IAB, in particular to a method and device for sending synchronization signals in an IAB system.
  • LTE long term evolution
  • NR new radio
  • the base station successively transmits synchronization signals in various directions in time, and within a period of time (for example, 5 ms), completes the transmission of synchronization signals in all directions.
  • the base station sends a synchronization signal for the terminal device to measure.
  • the IAB node in addition to the terminal device needing to measure the synchronization signal, the IAB node also needs to measure the synchronization signal sent by other IAB nodes to measure and maintain the backhaul link . Therefore, in the IAB system, network devices not only need to send synchronization signals to terminal devices on the access link, but also need to send synchronization signals to other network devices on the return link.
  • the mapping position of the synchronization signal of the access link in the half-frame in the time domain has been defined in the standard protocol. Therefore, the design of the resource mapping of the synchronization signal of the backhaul link in the time domain needs to consider many factors.
  • the synchronization signal of the backhaul link can not only conflict with the mapping position of the synchronization signal of the access link, but also achieve the purpose of mutual discovery and mutual measurement between the IAB nodes in the IAB system, especially in the IAB When there are many nodes, as many IAB nodes as possible need to be measured.
  • the synchronization signal of the return link cannot conflict with uplink resources such as random access resources, and try not to affect some configurations of the existing protocol, for example, time division duplexing (TDD) configuration.
  • TDD time division duplexing
  • the present application provides a method for transmitting a synchronization signal, and provides a mapping scheme of a synchronization signal of a backhaul link in the time domain, which can increase the probability of mutual discovery between IAB nodes and does not affect the configuration of existing protocols.
  • the present application provides a method for sending a synchronization signal, the method includes: a first IAB node determines a first set of time domain positions for sending a first synchronization signal and a second set of time domain positions for sending a second synchronization signal , When the first time domain position set and the second time domain position set are in the same field, the starting symbol indexes of the first time domain position set and the second time domain position set in the field are different; the first IAB The node sends the first synchronization signal at all or part of the time domain positions in the first set of time domain positions, and/or sends the second synchronization signal at all or part of the time domain positions in the second set of time domain positions.
  • the method for sending a synchronization signal provides an IAB communication system by considering many factors, such as the TDD configuration of the existing protocol, the configuration of the synchronization signal of the access link in the time domain, and the demand for uplink transmission resources.
  • the configuration scheme of the synchronization signal of the backhaul link in the present invention can increase the probability of mutual discovery between IAB nodes without affecting the configuration of the existing protocol.
  • the symbols and the second included in the first set of time domain positions are located in different field fields, the symbols and the second included in the first set of time domain positions The symbols contained in the set of time domain positions partially overlap or all overlap.
  • the first time domain position set and the second time domain position set are located in different fields, that is, the first synchronization signal and the second synchronization signal are configured in different fields. At this time, the mapping position of the first synchronization signal in the time domain is more flexible.
  • the network device configures two IAB nodes to send the first synchronization signal and the second synchronization signal in a half frame, respectively, adjacent nodes can simultaneously measure the first synchronization signal and the second synchronization signal in a measurement window.
  • the two synchronization signals, the synchronization signal increase the probability of node discovery.
  • the first set of time-domain positions is configured to be distributed and distributed in half-frames.
  • the first synchronization signal is distributed and distributed within 5 ms, which can avoid too few uplink time slots.
  • IAB nodes will have more and more uniform uplink time slots for uplink scheduling, for example, random access channel (random access channel, RACH) transmission and reception.
  • random access channel random access channel, RACH
  • the first set of time-domain positions is configured to be distributed and distributed in half-frames.
  • the starting symbol position of the first synchronization signal within a half frame is: ⁇ 4,8, 12,16,20 ⁇ +28 ⁇ n,n is equal to any element in the set ⁇ 1,2,3,4 ⁇ .
  • the index of the starting symbol of the first synchronization signal within a half frame is: ⁇ 4 ,8,16,20 ⁇ +28 ⁇ n,n is equal to any two elements in the set ⁇ 1,2,3,4 ⁇ .
  • the first synchronization signal and the second synchronization signal satisfy one or more of the following: the subcarrier spacing of the first synchronization signal and the second synchronization signal Different; or, the number of symbols occupied by the first synchronization signal and the second synchronization signal in one field is not equal.
  • the first IAB node determining the first time domain position set for sending the first synchronization signal includes: the first IAB node obtains configuration information, and the configuration information is used to indicate n Offset value, where n is a parameter defined by the protocol for determining the start symbol index of the second synchronization signal; the first IAB node according to the calculation formula of the second start symbol index set of the second synchronization signal and the The offset value of n determines the first starting symbol index set of the first synchronization signal; the first IAB node determines the first time domain position set according to the first starting symbol index set.
  • the n has multiple values, and the configuration information is used to indicate a value that needs to be offset among the multiple values, and the required offset
  • the offset value corresponding to the shift value corresponds to the offset value.
  • the first IAB node determines the first start symbol of the first synchronization signal according to the calculation formula of the second start symbol index set of the second synchronization signal and the offset value of n
  • the index set includes: the first IAB node determines the first starting symbol index set according to the value of n required offset and the offset value corresponding to the value of the offset required.
  • the present application provides an apparatus for transmitting a synchronization signal, the apparatus having a function of implementing the method in the first aspect and any possible implementation manner thereof.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the first aspect or any possible implementation manner of the first aspect.
  • the network device further includes a communication interface.
  • the communication interface may be a transceiver or an input output interface.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions run on a computer, causes the computer to perform the first aspect or any possible implementation of the first aspect The way in the way.
  • the present application provides a chip, including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the memory is used to store a computer program.
  • the chip further includes a communication interface.
  • the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code runs on a computer, causes the computer to perform the first aspect and any one of the possible Implementation method.
  • the method for sending a synchronization signal provides the IAB communication system by considering many factors, such as the TDD configuration of the existing protocol, the configuration of the synchronization signal of the access link in the time domain, and the demand for uplink transmission resources.
  • the configuration scheme of the synchronization signal of the backhaul link can improve the probability of mutual discovery between IAB nodes without affecting the configuration of the existing protocol.
  • FIG. 1 is an architectural diagram of an IAB system applicable to the technical solution of the present application.
  • Figure 2 is a specific example of the IAB system.
  • Figure 3 is a schematic diagram of the structure of an IAB node.
  • FIG. 4 is a schematic structural diagram of a second synchronization signal.
  • FIG. 5 is an example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 6 is another example of the mapping position of the first synchronization signal in the time domain.
  • mapping position of the first synchronization signal in the time domain is still another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 8 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 9 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 10 is another example of the mapping position of the first synchronization channel in the time domain.
  • FIG. 11 is yet another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 12 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 13 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 14 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 15 is an example of the mapping of the first synchronization signal across the field in the time domain.
  • 16 is a schematic diagram of a method 300 for sending a synchronization signal provided by this application.
  • FIG. 17 is another example of determining the mapping position of the first synchronization signal within a field.
  • FIG. 18 is another example of determining the mapping position of the first synchronization signal within a field.
  • FIG. 19 is another example of determining the mapping position of the first synchronization signal within a field.
  • FIG. 20 is a schematic structural block diagram of an apparatus 500 for sending a synchronization signal provided by this application.
  • FIG. 21 is a schematic structural diagram of a network device 1000 provided by this application.
  • the communication systems mentioned in the embodiments of the present application include but are not limited to: a narrow band-internet of things (NB-IoT) system, a wireless local area network (wireless local access network, WLAN) system, and device to device (device to device , the D2D) communication system, LTE system, the fifth generation (5 th generation, 5G) mobile communication system or communication systems after 5G.
  • NB-IoT narrow band-internet of things
  • WLAN wireless local area network
  • device to device device to device
  • LTE Long Term Evolution
  • 5G fifth generation
  • FIG. 1 is an architectural diagram of an IAB system applicable to the technical solution of the present application.
  • an IAB system includes at least one base station 100, and one or more terminal devices (terminals) 101 served by the base station 100, one or more relay nodes (that is, IAB nodes) 110, and IAB One or more terminal devices 111 served by the node 110.
  • the base station 100 is called a donor base station (donor next generation node B, DgNB), and the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the host base station is also referred to as a host node in this application, that is, a Donor node.
  • the base station 100 includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC) , Base transceiver station (BTS), home base station (home evolved NodeB, or home node B, HNB), baseband unit (baseband unit (BBU), evolved (LTE, eLTE) base station, NR base station (next generation, node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC Base transceiver station
  • BBU baseband unit
  • LTE Long eLTE
  • NR base station next generation, node B, gNB
  • Terminal equipment includes but is not limited to: user equipment (user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless communication device, user agent, Stations (ST), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations in wireless local area network (WLAN), Personal digital processing (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolving public Any one of terminal equipment in a land mobile network (PLMN) network.
  • the IAB node is a specific name of the relay node, and does not limit the scheme of the present application. It may be one of the above base stations or terminal devices with a forwarding function, or an independent device form.
  • the IAB system may also include multiple other IAB nodes, for example, IAB node 120 and IAB node 130.
  • the IAB node 120 is connected to the IAB node 110 via a wireless backhaul link 123 to access the network.
  • the IAB node 130 is connected to the IAB node 110 via a wireless backhaul link 133 to access the network.
  • the IAB node 120 serves one or more terminal devices 121, and the IAB node 130 serves one or more terminal devices 131.
  • both IAB node 110 and IAB node 120 are connected to the network through a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the relay node, for example, the wireless backhaul link 113 is the backhaul link of the IAB node 110, and the wireless backhaul link 123 is the IAB node 120 Backhaul link.
  • an IAB node such as 120
  • the relay node can be connected to the network via a multi-level wireless relay node.
  • IAB nodes can refer to any node or device with a relay function. The use of the IAB node and the relay node in this application should be understood to have the same meaning.
  • Access link The link between the UE and the IAB node or IAB donor node (IAB donor). Or, the access link includes a wireless link used by a certain node to communicate with its subordinate nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the uplink access link is also called uplink transmission of the access link, and the downlink access link is also called downlink transmission of the access link.
  • the backhaul link The link between the IAB node and the IAB child node (IAB child node) or the IAB parent node (IAB parent node).
  • the backhaul link includes a downlink transmission link with the IAB child node or IAB parent node, and an uplink transmission link with the IAB child node or IAB parent node.
  • the IAB node performs data transmission to the IAB parent node, or receives the upstream transmission of the IAB child node is called the uplink transmission of the backhaul link.
  • the IAB node receives the data transmission from the IAB parent node, or the data transmission to the IAB child node is called the downlink transmission of the return link.
  • the backhaul link between the IAB node and the IAB parent node is also called the parent backhaul link (parent BH), and the backhaul link between the IAB node and the IAB child node It is called the subordinate backhaul link (child BH).
  • the lower node can be regarded as a terminal device of the upper node.
  • one IAB node is connected to one superior node.
  • an IAB node such as 120
  • IAB node 130 can have multiple superior nodes simultaneously serving an IAB node, as shown in Figure 1 IAB node 130 also It can be connected to the IAB node 120 through the backhaul link 134, that is, both the IAB node 110 and the IAB node 120 are regarded as superior nodes of the IAB node 130.
  • the names of the IAB nodes 110, 120, and 130 do not limit the scenarios or networks in which they are deployed, and can be any other names such as relay, RN, and so on. The use of IAB nodes in this application is only for the convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, and 134 can be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul links 113, 123, 133, and 134 can be used by upper-level nodes to provide services to lower-level nodes, such as the upper-level node 100 is a lower-level node.
  • 110 provides wireless backhaul service. It should be understood that the uplink and downlink of the backhaul link may be separated, that is, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to an upper node, such as node 100, and a lower node, such as node 110, to transmit information or data
  • the uplink transmission refers to a lower node, such as node 110, to an upper node, such as node 100, to transmit information or data.
  • the node is not limited to whether it is a network node or a terminal device.
  • the terminal device may serve as a relay node to serve other terminal devices.
  • the wireless backhaul link may be an access link.
  • the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also the access of the node 100. link.
  • the upper node may be a base station or a relay node
  • the lower node may be a relay node or a terminal device with a relay function.
  • the lower node may also be a terminal device.
  • the IAB system shown in FIG. 2 includes a host base station, IAB node 1, IAB node 2, UE1 and UE2. Among them, the link between the host base station and the IAB node 1, and the link between the IAB node 1 and the IAB node 2 are backhaul links. The link between UE1 and the host base station and the link between UE2 and IAB node 1 are access links.
  • FIG. 3 is a schematic structural diagram of an IAB node.
  • the mobile terminal (mobile terminal, MT) function is defined as a component similar to the UE.
  • MT is called a function that resides on the IAB node. Since the MT is similar to the function of an ordinary UE, it can be considered that the IAB node accesses the superior node or network through the MT.
  • the distributed unit (DU) function is relative to the centralized unit (CU) function.
  • the function of the base station is divided into two parts, called CU-DU separation.
  • the CU includes the RRC layer and the PDCP layer of the LTE base station
  • the DU includes the radio link control (RLC) layer and media access control (MAC) layer of the LTE base station.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer.
  • the CU and DU can be physically connected through an optical fiber, and there is a logically defined F1 interface for communication between the CU and the DU.
  • the CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, and bearer management.
  • DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the method for sending a synchronization signal provided by the present application is applied to an IAB communication system.
  • the IAB communication system may include a host base station, one or more IAB nodes, and one or more terminal devices.
  • the IAB communication system shown in FIG. 1 or FIG. 2.
  • Synchronization signal is also called synchronization signal block, synchronization signal/physical broadcast channel block (synchronization/signal/physical broadcast channel block), SSB block, or SS/PBCH block etc.
  • the first IAB node in this application refers to any one IAB node in the IAB communication system, and the second IAB node is another IAB node different from the first IAB node.
  • first synchronization signal Two synchronization signals are involved in the embodiments of the present application, and are hereinafter referred to as first synchronization signal and second synchronization signal, respectively.
  • the first synchronization signal is used for measurement by other IAB nodes than the first IAB node.
  • the second synchronization signal is used for synchronization and/or measurement by the terminal device in the IAB system.
  • the set of symbols used for transmitting the first synchronization signal in the time domain is called a first symbol set
  • the set of symbols used for transmitting the second synchronization signal is called a second symbol set.
  • start symbol index of the synchronization signal in the time domain can be used to describe the mapping position of the synchronization signal in the time domain.
  • the starting symbol index set of the first synchronization signal is determined, which determines which symbols in the first half frame of the time domain send the first synchronization signal, that is, the first time domain position set is determined.
  • the second starting symbol index set of the second synchronization signal is determined, that is, the second time domain position set used to transmit the second synchronization signal is determined.
  • first time-domain position set contains symbols used to send the first synchronization signal
  • second time-domain position set contains symbols used to send the second synchronization signal.
  • first set of time-domain positions may also be referred to as a first set of symbols.
  • the second set of time domain positions may also be referred to as a second set of symbols.
  • the first start symbol index set refers to a set composed of start symbol indexes of the first synchronization signal in the time domain.
  • the second start symbol index set refers to a set of start symbol indexes of the second synchronization signal in the time domain.
  • the first symbol set includes the first starting symbol index set, that is, the first starting symbol index set is a true subset of the first symbol set.
  • the second starting symbol set is a true subset of the second symbol set.
  • the first synchronization signal may also be called a synchronization signal of the backhaul link.
  • the second synchronization signal may also be referred to as an access link synchronization signal.
  • FIG. 4 is a schematic structural diagram of a second synchronization signal.
  • the second synchronization signal is composed of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the structure of the first synchronization signal may be the same as the structure of the second synchronization signal.
  • the first synchronization signal may include only PSS and SSS, but not PBCH.
  • the structure of the first synchronization signal is to replace the PBCH in FIG. 4 with other content.
  • the subcarrier intervals of the first synchronization signal and the second synchronization signal may be different, or the number of symbols occupied by the first synchronization signal and the second synchronization signal in a half frame is not equal.
  • the number of symbols occupied by the first synchronization signal and the second synchronization signal in one field can also be equal.
  • This application does not limit the structure of the first synchronization signal, but mainly focuses on the mapping position of the first synchronization signal in the time domain, specifically the design of resource mapping at the slot level.
  • the first synchronization signal and the second synchronization signal are located in the same field in the time domain.
  • the first symbol index of the first synchronization signal and the second synchronization signal in the half-frame are all different , That is, the first start symbol index set and the second start symbol index set have no intersection.
  • the first synchronization signal and the second synchronization signal have the same start symbol index part in a half frame, that is, the first start symbol index set and the second start symbol index set have an intersection.
  • the first start symbol index set and the second start symbol index set are not completely the same.
  • the first synchronization signal and the second synchronization signal are located in different fields in the time domain.
  • the start symbol indexes of the first synchronization signal and the second synchronization signal in the field can be all the same, or partly the same, or they can all be different. That is, the first start symbol index set and the second start symbol index set may have no intersection, or partially overlap, or all overlap.
  • the start symbol index of the first synchronization signal in the half frame also has different designs, which will be described below.
  • the working frequency band of the communication system is greater than 6GHz, and the subcarrier spacing is 240KHz.
  • the starting symbol index of the first synchronization signal in the field includes n traversing each value in ⁇ 10,11,12,13,15,16,17,18 ⁇ , and substituting ⁇ 8,12,16, 20,32,36,40,44 ⁇ +56 ⁇ n calculated symbol index.
  • n 10, substitute ⁇ 8,12,16,20,32,36,40,44 ⁇ +56 ⁇ n, and get a total of 8 symbol indexes of 568,572,576,580,582,586,600 and 604.
  • 64 symbol indexes will be obtained. These 64 symbol indexes constitute the first starting symbol index set described in this application.
  • FIG. 5 is an example of the mapping position of the first synchronization signal in the time domain.
  • the first synchronization signal and the second synchronization signal are located in the same field.
  • the start symbol index of the first synchronization signal and the start symbol index of the second synchronization signal are different, and there is no intersection of the first symbol set and the second symbol set, that is, the first synchronization signal and the second synchronization signal are orthogonal.
  • n 0,1,5,6,10,11,15,16.
  • the measurement window for the IAB node to measure the synchronization signal may be 5 ms. Therefore, in the embodiment shown in FIG. 5, the first synchronization signal and the second synchronization signal are configured in the same field (that is, 5 ms Inside). If the network device configures two IAB nodes to send the first synchronization signal and the second synchronization signal in half a frame, respectively, the adjacent nodes can simultaneously measure the two synchronizations of the first synchronization signal and the second synchronization signal in a measurement window. The signal increases the probability of node discovery.
  • the network device can configure an uplink transmission opportunity, for example, random access resources, which can increase the flexibility of system scheduling.
  • TDD configuration shown in FIG. 5 is only an example, which is convenient for understanding the mapping position of the first synchronization signal in the time domain.
  • the TDD configurations appearing in the following embodiments are for reference only and will not be described in detail.
  • FIG. 6 is another example of the mapping position of the first synchronization signal in the time domain.
  • the first synchronization signal is distributed and distributed in a half frame, and is not concentrated in the first 2.5ms of 5ms.
  • the first synchronization signal is mapped to the complementary position of the position shown in FIG. 6 to obtain another mapping scheme of the first synchronization signal in the time domain, as shown in FIG. 7. 7 is still another example of the mapping position of the first synchronization signal in the time domain.
  • the time domain position for sending the first synchronization signal shown in FIG. 6 occupies the downlink time slot of the TDD configuration, and the time domain for sending the first synchronization signal shown in FIG. 7 The location occupies the flexible time slot configured by TDD.
  • the positions when the first synchronization signal is mapped to the downlink time slot and the flexible time slot in the TDD configuration are called complementary positions.
  • the uplink time slot configured by TDD is as “D” shown in FIG. 6 or FIG. 7 and the flexible time slot is as "F” shown in FIG. 6 or FIG. "D” indicates downlink, “F” indicates flexible, and “U” indicates uplink.
  • distributing the first synchronization signal within 5 ms can avoid too few uplink time slots, especially when the AC-SSB uses a sub-carrier spacing of 120 KHz.
  • IAB nodes will have more and more uniform uplink time slots for uplink scheduling, for example, random access channel (random access channel, RACH) transmission and reception.
  • random access channel random access channel
  • neighboring nodes can simultaneously measure two IAB nodes within a half frame, and can also increase the node discovery probability. At the same time, the time required to complete mutual measurement between IAB nodes is reduced, and the measurement efficiency is improved.
  • the present application also proposes another solution in which the first synchronization signal is distributed and distributed within 5 ms. This will be described below in conjunction with FIG. 8.
  • FIG. 8 is another example of the mapping position of the first synchronization signal in the time domain.
  • the mapping position of the first synchronization signal in the time domain is shown as SSB candidates (SSB candidates) 1 in FIG. 8.
  • the index of the starting symbol of the first synchronization signal in the half frame is:
  • n 0,1,2,3,10,11,12,13.
  • mapping position of the first synchronization signal in the time domain is shown as SSB candidate 2 in FIG. 8.
  • index of the starting symbol of the first synchronization signal in the half frame is:
  • the two mapping positions shown in FIG. 8 can be defined by the protocol, or the host base station configures an IAB node to use one of the two mapping positions, and the other IAB node receives the same configuration information and a complementary indication information.
  • the complementary indication information is used to instruct the IAB node to use the complementary position indicated by the configuration information to send the first synchronization signal.
  • two IAB nodes in one field, can be configured to use complementary positions to send the first synchronization signal, and adjacent IAB nodes can simultaneously measure two IAB nodes in one field. At the same time, the IAB node has more time to send downlink signals or receive uplink signals within 5ms.
  • the working frequency band of the communication system is less than 3GHz, and the subcarrier spacing is 15KHz.
  • FIG. 9 is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 10 is another example of the mapping position of the first synchronization signal in the time domain.
  • the synchronization signal of the return link adopts the mapping position shown in FIG. 9 or FIG. 10, which can enable at least two IAB nodes to send in the same half frame With the synchronization signal, other adjacent nodes can measure multiple IAB nodes within a measurement window.
  • the working frequency band of the communication system is less than 6GHz, and the subcarrier spacing is 30KHz.
  • n is equal to any element in the set ⁇ 1,2,3,4 ⁇ .
  • mapping position of the first synchronization signal in the time domain is shown in FIG. 11, which is another example of the mapping position of the first synchronization channel in the time domain.
  • the access link adopts a sub-carrier spacing of 30 kHz and operates below 6 GHz
  • the synchronization signal of the return link adopts the mapping position shown in FIG. 11, so that at least two IAB nodes can send the synchronization signal in the same field, Other adjacent nodes can measure multiple IAB nodes in one measurement window.
  • the operating frequency band of the communication system is greater than or equal to 3 GHz and less than or equal to 6 GHz (ie, 3 GHz to 6 GHz), and the subcarrier spacing is 30 KHz.
  • n is equal to any two elements in the set ⁇ 1,2,3,4 ⁇ .
  • mapping of the first synchronization signal in the time domain is shown in FIG. 12, which is another example of the mapping position of the first synchronization signal in the time domain.
  • FIG. 13 is another example of the mapping position of the first synchronization signal in the time domain.
  • the first synchronization signal is distributed within 5 ms.
  • FIG. 14 is another example of the mapping position of the first synchronization signal in the time domain.
  • the mapping positions of the first synchronization signal in the time domain shown in FIGS. 5 to 14 above are designed in accordance with the principle that the first synchronization signal is transmitted in one half frame.
  • the IAB node usually needs to locate the second synchronization signal sent to the terminal device on the access link at a Within half a frame.
  • the first synchronization signal is sent by an IAB node (for example, the first IAB node) to other IAB nodes on the return link, and does not need to have timing and synchronization functions. Therefore, in view of the functional difference between the first synchronization signal and the second synchronization signal, the first synchronization signal and the second synchronization signal may be designed based on different design principles.
  • the first synchronization signal may be mapped across the field in the time domain.
  • FIG. 15 is an example of the mapping of the first synchronization signal across the field in the time domain.
  • the first synchronization signal spans half a frame in the time domain and can be configured as follows.
  • the offset of the IAB node configuration n is 10. That is, each value of n is offset by 10 symbols from the value specified in the protocol.
  • the method of mapping the first synchronization signal across the half-frame shown in FIG. 15 can make the configuration and measurement of the first synchronization signal more flexible.
  • mapping scheme of the first synchronization signal in the time domain has been described in detail above, and the process of sending the first synchronization signal and/or the second synchronization signal by the IAB node is described below.
  • FIG. 16 is a schematic diagram of a method 300 for transmitting a synchronization signal provided by this application.
  • the method 300 is applied to a communication system including a host base station, one or more IAB nodes, and one or more terminal devices.
  • the method 300 includes steps 310-320.
  • the first IAB node determines a first symbol set that sends the first synchronization signal and a second symbol set that sends the second synchronization signal.
  • the first synchronization signal is used for measurement by other IAB nodes other than the first IAB node in the communication system, and is mainly used for mutual measurement and mutual discovery between IAB nodes.
  • the second synchronization signal is used for measurement by one or more terminal devices in the communication system.
  • the first synchronization signal is sent by the first IAB node on the backhaul link to other IAB nodes in the communication system
  • the second synchronization signal is sent by the first IAB node on the access link to the communication system Sent by the terminal device.
  • the start symbol index and the second start symbol index of the first synchronization signal included in the first start symbol index set may be partially the same, or all the same, or all different.
  • the start symbol index of the first synchronization signal included in the first start symbol index set and the second symbol included in the second start symbol index set may be all different, or partly different.
  • the first IAB node determining the first symbol set for transmitting the first synchronization signal may include multiple manners. Several methods are listed below as examples.
  • the protocol defines that each type of first symbol set corresponds to an index.
  • the host base station or the core network device instructs the first IAB node to send the time-domain resource location of the first synchronization signal by sending the protocol-defined index to the first IAB node.
  • the protocol defines pattern1, pattern2, and pattern3 respectively corresponding to three different first symbol sets. If the first IAB node receives index 3, it may determine to send the first synchronization signal on the symbol included in the first symbol set corresponding to "pattern 3".
  • the agreement may also define the correspondence between case 1, case 2, case 3, ..., or case A, case B, case C, ... and each first symbol set, which is not limited in this application.
  • the first IAB node receives configuration information from the host base station or the core network device, and the configuration information is used by the first IAB node to determine the first symbol index set.
  • the core network device may be, for example, an operation and maintenance (O&M) server.
  • O&M operation and maintenance
  • the host base station or the core network device may indicate one or more of the following information through configuration information: a formula for calculating a start symbol index of the first synchronization signal and a set of values of n, sub The value of the carrier interval SCS, the offset value of n, etc.
  • the unit of the offset value of n is the sign.
  • the magnitude of the offset value indicates the number of symbols that are offset backward in the time domain. That is, in this application, the offset value of n is offset by a number of symbols backward in time by default.
  • the first synchronization signal is overall shifted with respect to the second synchronization signal.
  • the configuration information only needs to indicate the offset value of n (hereinafter referred to as n_offset).
  • the first IAB node determines the first symbol index set according to the second symbol set for sending the second synchronization signal defined by the protocol and in combination with n_offset indicated by the configuration information.
  • the first IAB node can determine the The first starting symbol index set of a synchronization signal in a field.
  • the configuration information indicates the values of n_offset and SCS.
  • FIG. 17 is another example of determining the mapping position of the first synchronization signal within a field.
  • the first symbol of the first synchronization signal is offset within a half frame.
  • the first IAB node determines the value of n that needs to be offset and its offset value.
  • FIG. 18 is another example of determining the mapping position of the first synchronization signal within a field.
  • the configuration information displays a value of n indicating an offset that needs to be offset and an offset value corresponding to each value of n that needs to be offset.
  • different values of n correspond to different offset values.
  • Different offset values can be expressed differently, for example, n_offset_1, n_offset_2, n_offset_3, etc.
  • the first IAB node determines the value of n that needs to be offset and the offset value corresponding to each of these values, and determines the starting symbol index of the first synchronization signal in the field. See Figure 19.
  • FIG. 19 is another example of determining the mapping position of the first synchronization signal within a field.
  • the above is a description of some ways for the first IAB node to determine the mapping position of the first synchronization signal in the time domain.
  • SSB candidates are the synchronization signals described in this application.
  • the first IAB node sends the first synchronization signal on part or all of the time domain positions in the first time domain position set, and/or sends the second synchronization signal on part or all of the time domain positions in the second time domain position set Sync signal.
  • the first synchronization signal is used for measurement by other IAB nodes than the first IAB node.
  • the second synchronization signal is used for measurement by the terminal device.
  • the process of measuring the second synchronization signal by the terminal device may be the same as the prior art, and will not be described in detail here.
  • the method 300 may further include step 330.
  • the second IAB node receives the first synchronization signal.
  • the second IAB node receiving the first synchronization signal may be used for measuring and maintaining the backhaul link between the first IAB node and the second IAB node, or for discovering the first IAB node.
  • the second IAB node before receiving the first synchronization signal, the second IAB node also needs to determine the first time-domain position set for receiving the first synchronization signal.
  • the process of the second IAB node determining the first time domain position set refer to the process and examples of the first IAB node determining the first time domain position set described in step 310.
  • the example in which the first IAB node determines the first time domain position set described in step 310 is applicable to the second IAB node, and will not be described in detail here.
  • the second synchronization signal sent by the first IAB node may be measured by the terminal device.
  • the terminal device receives the second synchronization signal, and measures the access link between the first IAB node and the terminal device according to the second synchronization signal.
  • the first IAB node receives configuration information from the donor base station, and the configuration information is used to determine a first set of time-domain positions for sending the first synchronization signal.
  • the second IAB node receives configuration information and complementary indication information from the host base station, and the complementary indication information is used to instruct the second IAB node to send the first time domain position set of the first synchronization signal to take the first time domain position set indicated in the configuration information Complementary position.
  • the host base station sends configuration information to the first IAB node, and the configuration information is used to instruct the first IAB node to send the first time domain position set as shown in FIG. 6.
  • the host base station sends configuration information and complementary indication information to the second IAB node.
  • the complementary indication information is used to instruct the second IAB node to send the first synchronization signal.
  • the second time-domain position set is shown in FIG. 7 and shown in FIG. 6
  • the first set of time domain positions and the first set of time domain positions shown in FIG. 7 each have complementary time domain positions.
  • the second IAB node determines the first symbol set indicated by the configuration information according to the operating frequency band and subcarrier interval of the communication system, and determines the complementary position of the first symbol set indicated by the configuration information, and sends the first synchronization signal at the complementary position. It can be understood that the first synchronization signal sent by the second IAB node is used for mutual discovery and mutual measurement of other IAB nodes other than the second IAB node.
  • the first IAB node receives configuration information of the host base station, and the configuration information is used to instruct the first IAB node to send the first synchronization signal in the time domain position as shown in FIG. 6- Any one example of the first symbol set in the embodiment in FIG. 8.
  • the neighboring node of the first IAB node receives configuration information and complementary indication information from the host base station.
  • the complementary indication information is used to instruct the neighboring node to send the first synchronization signal to take the position indicated in the configuration information Complementary position.
  • the third IAB node other than the first IAB node and the second IAB node in the communication system can simultaneously measure the first synchronization signal sent by the first IAB node and the second IAB node within half a frame.
  • the first synchronization signal therefore, can increase the probability of discovery between nodes.
  • the third IAB node is an example of other IAB nodes other than the first IAB node and the second IAB node in the communication system.
  • the third IAB node is an adjacent node of the first IAB node and the second IAB node.
  • the first IAB node in the method 300 may be the IAB node 1 shown in FIG. 2, and the second IAB node may be the IAB node 2 shown in FIG. 2.
  • the configuration information may be carried in the F1AP message sent by the CU of the host base station.
  • the MT of the IAB node receives the data packet containing the F1AP message from the host base station at the air interface, and after the DU of the IAB node analyzes and processes it, it obtains the configuration information.
  • it may be configured on the DU of the IAB node by the host base station or the core network device (for example, an operation and maintenance server), or on the DU through the CU of the IAB node.
  • the method for sending a synchronization signal provides the IAB communication system by considering many factors, such as the TDD configuration of the existing protocol, the configuration of the synchronization signal of the access link in the time domain, and the demand for uplink transmission resources.
  • the configuration scheme of the synchronization signal of the backhaul link can improve the probability of mutual discovery between IAB nodes without affecting the configuration of the existing protocol.
  • FIG. 20 is a schematic structural block diagram of an apparatus 500 for transmitting a synchronization signal provided by this application.
  • the device 500 includes a processing unit 510 and a transceiver unit 520.
  • the processing unit 510 is configured to determine a first time domain position set that sends the first synchronization signal and a second time domain position set that sends the second synchronization signal, when the first time domain position set and the second time domain position When the set is in the same field, the starting symbol index of the first time-domain position set and the second time-domain position set in the field are different;
  • the transceiver unit 520 is configured to send the first synchronization signal on all or part of the time domain positions of the first time domain position set, and/or on all or part of the time domain positions of the second time domain position set The second synchronization signal.
  • the device 500 may be a chip or an integrated circuit.
  • the chip described in the embodiment of the present application may be a field-programmable gate array (field-programmable gate array, FPGA), a dedicated integrated chip (application specific integrated circuit, ASIC), a system chip (system on chip, SoC), or a central
  • the processor central processor
  • CPU central processor
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • the processing unit 510 may be a processor.
  • the transceiver unit 510 may be composed of a receiving unit and a sending unit.
  • the transceiving unit 520 may be a transceiver, and the transceiver may include a transmitter and a receiver, and has functions of receiving and transmitting.
  • the transceiver unit 510 may also be an input-output interface or an input-output circuit.
  • the transceiver unit 520 may be a communication interface.
  • input and output interfaces, input interface circuits and output interface circuits may be a communication interface.
  • the apparatus 500 may correspond to the method 300 for sending a synchronization signal provided in this application and the first IAB node in each embodiment.
  • the units included in the apparatus 500 are respectively used to implement the corresponding operations and/or processes performed by the first IAB node in the method 300 and its embodiments.
  • the transceiver unit 520 is also used to obtain configuration information.
  • the processing unit 510 is further configured to execute the calculation formula of the second start symbol index set of the second synchronization signal and the offset value of n to determine the first start symbol index set of the first synchronization signal, and according to the first start symbol index The set determines the first set of time domain positions.
  • the processing unit 510 is further configured to determine the first starting symbol index set according to the value of the required offset of n and the offset value corresponding to the value of the required offset.
  • This application also provides a network device 1000, which will be described below with reference to FIG. 21.
  • FIG. 21 is a schematic structural diagram of a network device 1000 provided by the present application.
  • the network device 1000 is used to implement the function of the first IAB node in the method embodiment.
  • the network device 1000 includes an antenna 1101, a radio frequency device 1102, and a baseband device 1103.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the radio frequency device 1102 receives the signal sent by the terminal device through the antenna 1101, and sends the signal sent by the terminal device to the baseband device 1103 for processing.
  • the baseband device 1103 processes the signal that needs to be sent to the terminal device, and sends it to the radio frequency device 1102, and the radio frequency device 1102 processes the signal and sends it to the terminal device through the antenna 1101.
  • the baseband device 1103 may include one or more processing units 11031.
  • the baseband device 1103 may further include a storage unit 11032 and a communication interface 11033.
  • the storage unit 11032 is used to store programs and data.
  • the communication interface 11033 is used to exchange information with the radio frequency device 1102.
  • the communication interface 11033 may be an input-output interface or an input-output circuit.
  • the network device 1000 in the above apparatus embodiment may completely correspond to the first IAB node in the method embodiment, and the corresponding unit included in the network device 1000 is used to perform the corresponding step performed by the first IAB node in the method embodiment.
  • the baseband device 1103 determines the first time domain position set and the second time domain position set used to send the first synchronization signal, and sends the information including the first time domain position set and the second time domain position set to the radio frequency device 1102.
  • the radio frequency device 1102 sends the first synchronization signal on part or all of the time domain positions in the first time domain position set, or sends the second synchronization signal on part or all of the time domain positions in the second time domain position set.
  • the radio frequency device 1102 sends the first synchronization signal on part or all of the time domain positions in the first time domain position set, and sends the second synchronization signal on part or all of the time domain positions in the second time domain position set.
  • the radio frequency device 1102 obtains configuration information from the host base station through the antenna 1101, and sends the configuration information to the baseband device.
  • the baseband device 1103 determines the offset value of n according to the configuration information, and determines the first start symbol index set of the first synchronization signal according to the calculation formula of the second start symbol set of the second synchronization signal and the offset value of n, and then The first time domain position set is determined according to the first starting symbol set.
  • the baseband device 1103 determines the value of n that needs to be offset according to the configuration information, and the offset value corresponding to the value of n that needs to be offset, Furthermore, the first starting symbol index set is determined, and finally the first time domain position set is determined.
  • the radio frequency device 1102 obtains the cooperation information and the complementary indication information from the host base station through the antenna 1101, and sends the configuration information and the complementary indication information to the baseband device 1103.
  • the baseband device 1103 determines the first time domain position set according to the configuration information and the complementary indication information.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions run on the computer, causes the computer to perform any corresponding method embodiment executed by the first IAB node Operations and/or processes.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program product is caused to execute the method 300 for transmitting a synchronization signal according to an embodiment of the present application or any method embodiment by The corresponding operations and/or processes performed by the first IAB node.
  • the present application also provides a chip, including a processor.
  • the processor is used to call and run the computer program stored in the memory to perform the corresponding operation and/or process performed by the first node in the method 300 for transmitting a synchronization signal according to an embodiment of the present application.
  • the chip further includes a memory, which is connected to the processor.
  • the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive signals and/or data that need to be processed, and the processor obtains the signals and/or data from the communication interface and processes them.
  • the communication interface may be an input-output interface, and may specifically include an input interface and an output interface.
  • the communication interface may be an input-output circuit (that is, an interface circuit), and may specifically include an input circuit and an output circuit.
  • the memory and the memory involved in the above embodiments may be physically independent units, or the memory may be integrated with the processor.
  • the device 500 described in the above device embodiments may be a chip on the baseband device 1103, and the chip includes at least one processing unit and an interface circuit.
  • the processing element is used to execute each step of any method performed by the above network device (that is, the first IAB node), and the interface circuit is used to communicate with other devices.
  • the unit of the network device that implements the various steps in the above method may be implemented in the form of a processing unit scheduler.
  • the processing unit 11031 calls the program stored in the storage unit 11032 to execute the method executed by the first IAB node in the above method embodiment.
  • the storage unit 11032 may be a processing unit 11031 on the same chip, that is, an on-chip storage unit, or a storage element on a different chip from the processing unit 11031, that is, an off-chip storage unit.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more used to control the technology of the present application Integrated circuits for program execution.
  • the processor may be a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, or the like.
  • the processor may allocate the functions of control and signal processing of the terminal device or network device among these devices according to their respective functions.
  • the processor may have a function of operating one or more software programs, and the software programs may be stored in the memory.
  • the functions of the processor may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the memory may be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), compact disc-read-only memory (CD-ROM) or other optical disc storage, optical disc storage ( (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other media accessed by the computer, etc.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc-read-only memory
  • optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may Integration into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种发送同步信号的方法,能够提高IAB节点之间互发现的概率,并且不会影响现有协议的配置。该方法包括:第一IAB节点确定发送第一同步信号的第一时域位置集合和发送第二同步信号的第二时域位置集合,当第一时域位置集合和第二时域位置集合位于同一个半帧内时,第一时域位置集合和第二时域位置集合在半帧内的起始符号索引不同;第一IAB节点在第一时域位置集合的全部或部分时域位置上发送第一同步信号,和/或在第二时域位置集合的全部或部分时域位置上发送第二同步信号。

Description

发送同步信号的方法和装置
本申请要求于2019年01月10日提交国家知识产权局、申请号为201910024189.0、申请名称为“发送同步信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及接入回传一体化IAB技术领域,尤其涉及一种IAB系统中发送同步信号的方法和装置。
背景技术
在长期演进(long term evolution,LTE)中,基站广播公共参考信号(common reference signal,CRS)供终端设备进行下行同步和小区质量测量。在新空口(new radio,NR)中,由于蜂窝系统向高频演进,系统中所有的下行信道采用波束形式进行发送。这种以波束形式提供下行同步的信号被称为同步信号。基站在时间上先后向各个方向发送同步信号,在一段时间内(例如,5ms),完成所有方向的同步信号的发送。
在通常的场景中,往往只需要考虑基站发送同步信号供终端设备进行测量。但是在接入与回传一体化(integratedaccess and backhaul,IAB)系统中,除了终端设备需要测量同步信号,IAB节点也需要测量其它IAB节点发送的同步信号,来对回传链路进行测量和维护。因此,在IAB系统中,网络设备不仅需要在接入链路上面向终端设备发送同步信号,还需要在回传链路上面向其它的网络设备发送同步信号。
目前,标准协议中已经定义了接入链路的同步信号在时域上的半帧内的映射位置。因此,回传链路的同步信号在时域上的资源映射的设计需要考虑诸多的因素。例如,回传链路的同步信号不仅不能和接入链路的同步信号的映射位置发生冲突,同时还要达到IAB系统中的IAB节点之间实现互发现和互测量的目的,尤其是在IAB节点较多的情况下,需要让尽可能多的IAB节点被测量到。又例如,回传链路的同步信号也不能和随机接入资源等上行资源冲突,并尽量不影响现有协议的一些配置,例如,不影响时分双工(time division duplexing,TDD)配置等。而现阶段,业界还没有设计出满足上述要求的方案。
发明内容
本申请提供一种发送同步信号的方法,提供一种回传链路的同步信号在时域上的映射方案,能够提高IAB节点之间互发现的概率,并且不会影响现有协议的配置。
第一方面,本申请提供了一种发送同步信号的方法,该方法包括:第一IAB节点确定发送第一同步信号的第一时域位置集合和发送第二同步信号的第二时域位置集合,当第一时域位置集合和第二时域位置集合位于同一个半帧内时,第一时域位置集合和第二时域位置集合在半帧内的起始符号索引不同;第一IAB节点在第一时域位置集合的全部或部分时 域位置上发送第一同步信号,和/或在第二时域位置集合的全部或部分时域位置上发送第二同步信号。
本申请提供的发送同步信号的方法,通过考虑诸多因素,例如,现有协议的TDD配置,接入链路的同步信号在时域上的配置,上行传输资源的需求等,提供了IAB通信系统中的回传链路的同步信号的配置方案,可以在不影响现有协议的配置,同时提高IAB节点之间互发现的概率。
结合第一方面,在第一方面的某些实现方式中,当第一时域位置集合和第二时域位置集合位于不同的半帧内时,第一时域位置集合包含的符号和第二时域位置集合包含的符号部分重叠或者全部重叠。
第一时域位置集合和第二时域位置集合位于不同的半帧,也即第一同步信号和第二同步信号被配置在不同的半帧内。此时,第一同步信号在时域上的映射位置更加灵活。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,第一同步信号在半帧内的起始符号索引为:{8,12,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
在本实施例中,如果网络设备配置两个IAB节点分别在半帧内发送第一同步信号和第二同步信号,可以使相邻节点在一个测量窗口内同时测量到第一同步信号和第二同步信号这两种同步信号,增大了节点发现的概率。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,第一时域位置集合被配置为在半帧内分散分布,第一同步信号在半帧内的起始符号索引为:{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,5,6,10,11,15,16。
结合第一方面,在第一方面的某些实现方式中,第一同步信号在所述半帧内的起始符号索引还包括:{8,12,16,20,32,36,40,44}+56·n,n=2,3,7,8,12,13,17和18。
在本申请实施例中,第一同步信号在5ms内分散分布,可以避免上行时隙过少。IAB节点将会有更多更均匀的上行时隙用于上行调度,例如,随机接入信道(random access channel,RACH)的发送和接收等。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,第一时域位置集合被配置为在半帧内分散分布,第一同步信号在半帧内的起始符号索引为:{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,2,3,10,11,12,13。
结合第一方面,在第一方面的某些实现方式中,第一同步信号在所述半帧内的起始符号索引还包括:{8,12,16,20,32,36,40,44}+56·n,n=5,6,7,8,15,16,17和18。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带小于3GHz,SCS为15KHz时,第一同步信号在半帧内的起始符号索引为:{2,8}+14·n,n=2,3。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带小于3GHz,SCS为15KHz时,第一同步信号在半帧内的起始符号索引为:{2,8}+14·n,n=3,4。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带小于6GHz,SCS为30KHz时,第一同步信号在半帧内的起始符号位置为:{4,8,12,16,20}+28·n,n的取值等于集合{1,2,3,4}中的任意一个元素。
结合第一方面,在第一方面的某些实现方式中,当通信系统的工作频带大于或等于3GHz且小于或等于6GHz时,第一同步信号在半帧内的起始符号索引为:{4,8,16,20}+28·n,n的取值等于集合{1,2,3,4}中的任意两个元素。
结合第一方面,在第一方面的某些实现方式中,第一同步信号和所述第二同步信号满足如下一项或多项:第一同步信号和所述第二同步信号的子载波间隔不同;或者,第一同步信号和所述第二同步信号在一个半帧内占用的符号数不相等。
结合第一方面,在第一方面的某些实现方式中,第一IAB节点确定发送第一同步信号的第一时域位置集合,包括:第一IAB节点获取配置信息,配置信息用于指示n的偏移值,所述n为协议定义的用于确定第二同步信号的起始符号索引的参数;第一IAB节点根据第二同步信号的第二起始符号索引集合的计算公式和所述n的偏移值,确定第一同步信号的第一起始符号索引集合;第一IAB节点根据第一起始符号索引集合,确定第一时域位置集合。
结合第一方面,在第一方面的某些实现方式中,所述n有多个取值,配置信息用于指示所述多个取值中需要进行偏移的取值,以及所述需要偏移的取值各自对应的偏移值,第一IAB节点根据第二同步信号的第二起始符号索引集合的计算公式和所述n的偏移值,确定第一同步信号的第一起始符号索引集合,包括:第一IAB节点根据n的需要偏移的取值以及所述需要偏移的取值各自对应的偏移值,确定第一起始符号索引集合。
第二方面,本申请提供了一种发送同步信号的装置,所述装置具有实现第一方面及其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第三方面,本申请提供一种网络设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得网络设备执行上述第一方面或第一方面任意可能的实现方式中的方法。
可选地,网络设备还包括通信接口。所述通信接口可以为收发器或者输入输出接口。
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或第一方面任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接,存储器用于存储计算机程序。
进一步可选地,所述芯片还包括通信接口。
第六方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及其任意一种可能的实现方式中的方法。
本申请提供的发送同步信号的方法,通过考虑诸多因素,例如现有协议的TDD配置,接入链路的同步信号在时域上的配置,上行传输资源的需求等,提供了IAB通信系统中的回传链路的同步信号的配置方案,可以在不影响现有协议的配置,同时提高IAB节点之间互发现的概率。
附图说明
图1是适用于本申请的技术方案的IAB系统的架构图。
图2是IAB系统的一个具体示例。
图3是IAB节点的结构示意图。
图4是第二同步信号的结构示意图。
图5是第一同步信号在时域上的映射位置的一个示例。
图6是第一同步信号在时域上的映射位置的又一个示例。
图7是第一同步信号在时域上的映射位置的再一个示例。
图8是第一同步信号在时域上的映射位置的又一个示例。
图9是第一同步信号在时域上的映射位置的又一个示例。
图10是第一同步信道在时域上的映射位置的又一个示例。
图11是第一同步信号在时域上的映射位置的又一个示例。
图12是第一同步信号在时域上的映射位置的又一个示例。
图13是第一同步信号在时域上的映射位置的又一个示例。
图14是第一同步信号在时域上的映射位置的又一个示例。
图15是第一同步信号在时域上的跨半帧映射的一个示例。
图16是本申请提供的发送同步信号的方法300的示意图。
图17是确定第一同步信号在半帧内的映射位置的又一个示例。
图18是确定第一同步信号在半帧内的映射位置的又一个示例。
图19是确定第一同步信号在半帧内的映射位置的又一个示例。
图20是本申请提供的发送同步信号的装置500的示意性结构框图。
图21是本申请提供的一种网络设备1000的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、设备到设备(device to device,D2D)通信系统、LTE系统、第五代(5 thgeneration,5G)移动通信系统或者5G之后的通信系统等。
参见图1,图1是适用于本申请的技术方案的IAB系统的架构图。如图1所示,一个IAB系统至少包括一个基站100,以及基站100所服务的一个或多个终端设备(terminal)101,一个或多个中继节点(也即,IAB节点)110,以及IAB节点110所服务的一个或多个终端设备111。通常,基站100被称为宿主基站(donor next generation node B,DgNB),IAB节点110通过无线回传链路113连接到基站100。宿主基站在本申请中也称为宿主节 点,即,Donor节点。
基站100包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、演进的(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。IAB节点是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。
IAB系统还可以包括多个其它IAB节点,例如,IAB节点120和IAB节点130。IAB节点120是通过无线回传链路123连接到IAB节点110以接入到网络的。IAB节点130是通过无线回传链路133连接到IAB节点110以接入到网络的。IAB节点120为一个或多个终端设备121服务,IAB节点130为一个或多个终端设备131服务。图1中,IAB节点110和IAB节点120都通过无线回传链路连接到网络。在本申请中,所述无线回传链路都是从中继节点的角度来看的,例如无线回传链路113是IAB节点110的回传链路,无线回传链路123是IAB节点120的回传链路。如图1所示,一个IAB节点,如120,可以通过无线回传链路,如123,连接另一个IAB节点110,从而连接到网络。而且,中继节点可以经过多级无线中继节点连接到网络。应理解,本申请中用IAB节点仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请中的IAB节点和中继节点的使用应理解具有相同的含义。
另外,本申请中还涉及到如下基本术语或概念。
接入链路:UE和IAB node或IAB宿主节点(IAB donor)之间的链路。或者,接入链路包括某个节点和它的下级节点进行通信时所使用的无线链路。接入链路包括上行接入链路和下行接入链路。上行接入链路也被称为接入链路的上行传输,下行接入链路也被称为接入链路的下行传输。
回传链路:IAB node和IAB子节点(IAB child node)或者IAB父节点(IAB parent node)之间的链路。回传链路包括和IAB子节点或者IAB父节点的下行传输的链路,以及和IAB子节点或者IAB父节点的上行传输的链路。IAB节点向IAB父节点进行数据传输,或者接收IAB子节点的上行传输被称为回传链路的上行传输。IAB节点接收IAB父节点的数据传输,或者向IAB子节点进行的数据传输被称为回传链路的下行传输。为了对UE和IAB节点进行区分,IAB节点与IAB父节点之间的回传链路被又称为上级回传链路(parent BH), 而IAB节点与IAB子节点之间的回传链路被称为下级回传链路(child BH)。
通常,下级节点可以被看作是上级节点的一个终端设备。应理解,图1所示的一体化接入和回传系统中,一个IAB节点连接一个上级节点。但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB节点,如120,可以有多个上级节点同时为一个IAB节点提供服务,如图1中的IAB节点130还可以通过回传链路134连接到IAB节点120,即,IAB节点110和IAB节点120都视为IAB节点130的上级节点。IAB节点110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用IAB节点仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,例如节点100,向下级节点,例如节点110,传输信息或数据,上行传输是指下级节点,例如节点110,向上级节点,例如节点100,传输信息或数据。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如回传链路123对节点110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,例如D2D场景下,下级节点也可以是终端设备。
参见图2,图2是IAB系统的一个具体示例。在图2所示的IAB系统中,包括宿主基站,IAB节点1,IAB节点2,UE1和UE2。其中,宿主基站和IAB节点1之间的链路,以及IAB节点1和IAB节点2之间的链路为回传链路。UE1和宿主基站之间的链路以及UE2和IAB节点1之间的链路为接入链路。
参见图3,图3是IAB节点的结构示意图。如图3所示,移动终端(mobile terminal,MT)功能被定义为类似UE的一个组件。在IAB中,MT被称为驻留在IAB节点上的功能。由于MT类似一个普通UE的功能,因此可以认为IAB节点通过MT接入到上级节点或网络。
分布式单元(distributed unit,DU)功能是相对于集中式单元(centralized unit,CU)功能而言的。在NR中,基站的功能被分为两部分,称为CU-DU分离。从协议栈的角度来看,CU包括了LTE基站的RRC层和PDCP层,DU包括了LTE基站的无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)层和物理(physical,PHY)层。在普通的5G基站部署中,CU和DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度来看,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等。DU主要负责调度,物理信号生成与发送。
下面对本申请提供的发送同步信号的方法作详细说明。
本申请提供的发送同步信号的方法应用于IAB通信系统中,IAB通信系统中可以包括宿主基站,一个或多个IAB节点以及一个或多个终端设备。例如,图1或图2所示的IAB系统。
同步信号也称为同步信号块,同步信号/物理广播信道块(synchronization signal/ physical broadcast channel block),SSB block,或者SS/PBCH block等。
本申请中的第一IAB节点是指IAB通信系统中的任意一个IAB节点,第二IAB节点是不同于第一IAB节点的另一个IAB节点。
本申请实施例中涉及两种同步信号,以下分别称为第一同步信号和第二同步信号。第一同步信号用于第一IAB节点之外的其它IAB节点进行测量。第二同步信号用于IAB系统中的终端设备进行同步和/或测量。其中,本申请中将时域上用于发送第一同步信号的符号构成的集合称为第一符号集合,将用于发送第二同步信号的符号构成的集合称为第二符号集合。
需要说明的是,同步信号在时域上的起始符号索引可以用来描述同步信号在时域上的映射位置。确定了第一同步信号的起始符号索引集合,也就确定了在时域上半帧内的哪些符号上发送第一同步信号,也即确定了第一时域位置集合。同样地,确定了第二同步信号的第二起始符号索引集合,也即确定了用于发送第二同步信号的第二时域位置集合。
应理解,第一时域位置集合包含了用于发送第一同步信号的符号,第二时域位置集合包含了用于发送第二同步信号的符号。可替换地,第一时域位置集合也可以称为第一符号集合。第二时域位置集合也可以称为第二符号集合。
因此,本申请中还引入了第一起始符号索引集合和第二起始符号索引集合。其中,第一起始符号索引集合是指第一同步信号在时域上的起始符号索引构成的集合。第二起始符号索引集合是指第二同步信号在时域上的起始符号索引构成的集合。
可以理解的是,第一符号集合包含了第一起始符号索引集合,也即第一起始符号索引集合为第一符号集合的真子集。同样地,第二起始符号集合为第二符号集合的真子集。
可替换地,第一同步信号也可以称为回传链路的同步信号。第二同步信号也可以称为接入链路的同步信号。
第二同步信号的结构可以参见图4所示。图4是第二同步信号的结构示意图。如图4所示,第二同步信号由主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)组成。
在本申请中,第一同步信号的结构可以和第二同步信号的结构相同。或者,第一同步信号可以仅包括PSS和SSS,而不包括PBCH。又或者,第一同步信号的结构是将图4中的PBCH替换为其它内容。作为一个可能的方案,第一同步信号和所述第二同步信号的子载波间隔可以不同,或者,第一同步信号和第二同步信号在一个半帧内占用的符号数不相等。当然,第一同步信号和第二同步信号在一个半帧内占用的符号数也可以相等。本申请对第一同步信号的结构不作限定,而主要关注第一同步信号在时域上的映射位置,具体是时隙级的资源映射的设计。
下面介绍本申请提供的第一同步信号在时域上的映射方案。
方案1
第一同步信号和第二同步信号在时域上位于同一个半帧内。
当第一同步信号和第二同步信号位于同一个半帧(half-frame)内时,作为一种可能的实现,第一同步信号和第二同步信号在半帧内的起始符号索引全部不同,也即,第一起始符号索引集合和第二起始符号索引集合无交集。作为另一种可能的实现,第一同步信号和 第二同步信号在半帧内的起始符号索引部分相同,也即第一起始符号索引集合和第二起始符号索引集合有交集。但是,第一起始符号索引集合和第二起始符号索引集合不完全相同。
方案2
第一同步信号和第二同步信号在时域上位于不同的半帧内。
当第一同步信号和第二同步信号位于不同的半帧内时,第一同步信号和第二同步信号在半帧内的起始符号索引可以全部相同,或者部分相同,还可以全部不同。也即,第一起始符号索引集合和第二起始符号索引集合可以无交集,或者部分重叠,或者全部重叠。
基于方案1和方案2的设计原则,根据通信系统的工作频段以及子载波间隔的不同,第一同步信号在半帧内的起始符号索引也分别有不同的设计,下面分别进行说明。
(1)通信系统的工作频段大于6GHz,子载波间隔为240KHz。
第一同步信号在半帧内的起始符号索引为:
{8,12,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
这里,第一同步信号在半帧内的起始符号索引包括n遍历{10,11,12,13,15,16,17,18}中的每一个数值,并代入{8,12,16,20,32,36,40,44}+56·n中计算得到的符号索引。例如,n=10,代入{8,12,16,20,32,36,40,44}+56·n,得到568,572,576,580,582,586,600和604共8个符号索引。n遍历上述8个取值,将得到64个符号索引。这64个符号索引即构成了本申请中所述的第一起始符号索引集合。
下文各实施例中关于起始符号索引的计算过程都是类似的,不再赘述。
参见图5,图5是第一同步信号在时域上的映射位置的一个示例。如图5所示,第一同步信号和第二同步信号位于同一个半帧内。第一同步信号的起始符号索引和第二同步信号的起始符号索引不同,且第一符号集合和第二符号集合没有交集,也即第一同步信号和第二同步信号正交。
第一同步信号在半帧内的起始符号索引为:
{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,5,6,10,11,15,16。
在现有协议中,IAB节点测量同步信号的测量窗口可以为5ms,因此,在图5所示的实施例中,将第一同步信号和第二同步信号配置在同一个半帧内(即5ms内)。如果网络设备配置两个IAB节点分别在半帧内发送第一同步信号和第二同步信号,可以使相邻节点在一个测量窗口内同时测量到第一同步信号和第二同步信号这两种同步信号,增大了节点发现的概率。
另外,在图5中所示的没有发送第一同步信号的符号上,网络设备可以配置上行传输机会,例如,随机接入资源,可以提高系统调度的灵活性。
需要说明的是,图5中所示的TDD配置仅仅是作为示例,便于理解第一同步信号的在时域上的映射位置。以下各实施例中出现的TDD配置仅是作为参考,不再赘述。
参见图6,图6是第一同步信号在时域上的映射位置的又一个示例。如图6所示,第一同步信号在半帧内分散分布,而并不集中在5ms的前2.5ms。
将第一同步信号映射在图6所示位置的互补位置,得到第一同步信号在时域上的另一种映射方案,如图7所示。图7是第一同步信号在时域上的映射位置的再一个示例。
第一同步信号在半帧内的起始符号索引为:
{8,12,16,20,32,36,40,44}+56·n,其中,n=2,3,7,8,12,13,17和18。
对比图6和图7可以发现,图6中所示的用于发送第一同步信号的时域位置占用TDD配置的下行时隙,图7中所示的用于发送第一同步信号的时域位置占用TDD配置的灵活时隙。在本申请实施例中,将第一同步信号分别映射至TDD配置中的下行时隙和灵活时隙时的位置,称为互补位置。
这里,TDD配置的上行时隙如图6或图7中所示的“D”,灵活时隙如图6或图7中所示的“F”。其中“D”表示downlink,“F”表示flexible,“U”表示uplink。
可以看出,在图6和图7的示例中,将第一同步信号在5ms内分散分布可以避免上行时隙过少,尤其是在AC-SSB采用120KHz的子载波间隔时。IAB节点将会有更多更均匀的上行时隙用于上行调度,例如,随机接入信道(random access channel,RACH)的发送和接收等。
此外,如果宿主基站指示两个IAB节点分别在半帧内的互补位置发送第一同步信号,则相邻节点可以在一个半帧内同时测量到两个IAB节点,也可以增大节点发现概率。同时,减少了IAB节点之间完成互测量所需的时间,提高了测量效率。
作为另一个示例,本申请还提出第一同步信号在5ms内分散分布的另一个方案。下面结合图8进行说明。
参见图8,图8是第一同步信号在时域上的映射位置的又一个示例。第一同步信号在时域上的映射位置如图8中的SSB候选(SSB candidates)1所示。此时,第一同步信号在半帧内的起始符号索引为:
{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,2,3,10,11,12,13。
或者,第一同步信号在时域上的映射位置如图8中的SSB候选2所示。此时,第一同步信号在半帧内的起始符号索引为:
{8,12,16,20,32,36,40,44}+56·n,其中,n=5,6,7,8,15,16,17和18。
图8中所示的两种映射位置可以由协议定义,或者由宿主基站配置一个IAB节点采用这两种映射位置中的其中一种,另一个IAB节点接收相同的配置信息和一个互补指示信息,互补指示信息用于指示IAB节点采用配置信息指示的互补位置发送第一同步信号。
在图8所示的实施例中,在一个半帧内,可以配置两个IAB节点采用互补位置发送第一同步信号,相邻的IAB节点可以在一个半帧内同时测量到两个IAB节点。同时,IAB节点在5ms内,有更充分的时间发送下行信号或者接收上行信号。
(2)通信系统的工作频段小于3GHz,子载波间隔为15KHz。
作为一种可选的实现方式,第一同步信号在半帧内的起始符号索引为:{2,8}+14·n,n=2,3。如图9所示,图9是第一同步信号在时域上的映射位置的又一个示例。
作为另一种可选的实现方式,第一同步信号在半帧内的起始符号索引为:{2,8}+14·n,n=3,4。如图10所示,图10是第一同步信号在时域上的映射位置的又一个示例。
当接入链路采用15kHz子载波间隔并工作在6GHz以下时,回传链路的同步信号采用图9或图10所示的映射位置,可以使至少两个IAB节点在同一个半帧内发送同步信号,其它相邻节点在一个测量窗内就能测量到多个IAB节点。
(3)通信系统的工作频段小于6GHz,子载波间隔为30KHz。
第一同步信号在半帧内的起始符号索引为:
{4,8,12,16,20}+28·n,n的取值等于集合{1,2,3,4}中的任意一个元素。
例如,n=2时,第一同步信号在时域上的映射位置参见图11,图11是第一同步信道在时域上的映射位置的又一个示例。
当接入链路采用30kHz子载波间隔并工作在6GHz以下时,回传链路的同步信号采用图11所示的映射位置,可以使至少两个IAB节点在同一个半帧内发送同步信号,其它相邻节点在一个测量窗内就能测量到多个IAB节点。
(4)通信系统的工作频段大于或等于3GHz且小于或等于6GHz(即,3GHz~6GHz),子载波间隔为30KHz。
第一同步信号在半帧内的起始符号索引为:
{4,8,16,20}+28·n,n的取值等于集合{1,2,3,4}中的任意两个元素。
例如,n=2,3时,第一同步信号在时域上的映射参见图12,图12是第一同步信号在时域上的映射位置的又一个示例。
特别地,当n=1,3时,有利于和TDD配置周期=2.5ms相适应。如图13,图13是第一同步信号在时域上的映射位置的又一个示例。在图13中,第一同步信号分散分布在5ms内。
又例如,n=2,4时,第一同步信号在5ms内的分布参见图14,图14是第一同步信号在时域上的映射位置的又一个示例。
在图13和图14中所示的配置方式下,如果宿主基站配置一个IAB节点的n=1,3,并配置另一个IAB节点的n=2,4,同时TDD采用特定配置,也可以实现在5ms内测量两个IAB节点。
以上图5-图14中所示的第一同步信号在时域上的映射位置,都是遵循了第一同步信号在一个半帧内发送的原则进行设计的。但是,考虑到第二同步信号用于终端设备进行测量,因此,为了使终端设备能够更好地进行同步,IAB节点通常在接入链路上面向终端设备发送的第二同步信号都需要位于一个半帧内。而第一同步信号是一个IAB节点(例如,第一IAB节点)在回传链路上面向其它IAB节点发送的,并不需要具有定时和同步的功能。因此,鉴于第一同步信号和第二同步信号在功能上的差异,第一同步信号和第二同步信号可以基于不同的设计原则进行设计。
从而,作为一种实现方式,第一同步信号在时域上可以跨半帧映射。
参见图15,图15是第一同步信号在时域上的跨半帧映射的一个示例。如图15所示,第一同步信号在时域上跨半帧可以通过如下方式来配置。
方式1
显式配置n的顺序。
例如,IAB节点显示配置n=11,12,13,15,16,17,18,0,1,2,3,5,6,7,8。
方式2
显式配置n的偏移(offset)。
例如,如图15中子载波SCS=120KHz所示,IAB节点配置n的偏移为10。也即,n的每个取值在协议规定的取值上偏移10个符号。
方式3
IAB节点显示配置n=11,12,13,15,16,17,18,20,21,22,23,25,26,27,28。
采用图15中所示的跨半帧映射第一同步信号的方式,可以使第一同步信号的配置和 测量更加灵活。
以上对第一同步信号在时域上的映射方案进行了详细说明,下面说明IAB节点发送第一同步信号和/或第二同步信号的过程。
参见图16,图16是本申请提供的发送同步信号的方法300的示意图。方法300应用于包括宿主基站、一个或多个IAB节点和一个或多个终端设备的通信系统中。方法300包括步骤310-320。
310、第一IAB节点确定发送第一同步信号的第一符号集合和发送第二同步信号的第二符号集合。
其中,第一同步信号用于被通信系统中第一IAB节点之外的其它IAB节点测量,主要用于IAB节点之间的互测量和互发现。第二同步信号用于被通信系统中的一个或多个终端设备测量。换句话说,第一同步信号是第一IAB节点在回传链路上面向通信系统中的其它IAB节点发送的,第二同步信号是第一IAB节点在接入链路上面向通信系统中的终端设备发送的。
如上文所示,当第一同步信号和第二同步信号被配置于不同的半帧内时,第一起始符号索引集合中包括的第一同步信号的起始符号索引和第二起始符号索引集合中包括的第二同步信号的起始符号索引可以部分相同,或者全部相同,也可以全部不同。
当第一同步信号和第二同步信号被配置在同一个半帧内时,第一起始符号索引集合中包括的第一同步信号的起始符号索引和第二起始符号索引集合中包括的第二同步信号的起始符号索引可以全部不同,或者部分不同。
关于第一同步信号在半帧内的起始符号索引的具体取值参见上文图5-图15中的说明,这里不再详述。
第一IAB节点确定发送第一同步信号的第一符号集合可以包括多种方式。下面列举几种方式作为示例。
方式1
协议定义每一种第一符号集合和一个索引对应。宿主基站或核心网设备通过向第一IAB节点发送协议定义的索引,指示第一IAB节点发送第一同步信号的时域资源位置。
例如,协议中定义pattern 1,pattern 2,pattern 3分别和3个不同的第一符号集合对应。如果第一IAB节点接收到索引3,就可以确定在“pattern 3”对应的第一符号集合包含的符号上发送第一同步信号。又例如,协议中也可以定义case 1,case 2,case 3,…,或者,case A,case B,case C,…和每一个第一符号集合的对应关系,本申请中对此不作限定。
方式2
第一IAB节点从宿主基站或核心网设备接收配置信息,配置信息用于第一IAB节点确定第一符号索引集合。
这里,核心网设备例如可以是运行与维护(operation and maintenance,O&M)服务器。
作为一种可选的实现方式,宿主基站或核心网设备可以通过配置信息指示以下信息中的一种或多种:计算第一同步信号的起始符号索引的公式以及n的取值集合,子载波间隔SCS的取值,n的偏移值等。
在本申请中,n的偏移值的单位为符号。偏移值的大小表示了在时域上向后偏移的符号的数量。也即,在本申请中,n的偏移值都是默认在时间上向后偏移若干个符号。
需要说明的是,当配置信息用于指示n的偏移值时,根据不同的偏移方式,又可以包括多种具体的实现方式。
(1)第一同步信号在半帧内的起始符号全部偏移。
换句话说,第一同步信号相对于第二同步信号作整体偏移。
在一种实现方式中,配置信息只需要指示n的偏移值(以下记作n_offset)。
第一IAB节点根据协议定义的发送第二同步信号的第二符号集合,结合配置信息指示的n_offset,确定第一符号索引集合。
目前,协议中规定了各个不同的工作频段以及子载波间隔下第二同步信号在时域上的映射位置。例如,工作频带>6GHz,子载波间隔SCS=240KHz时,协议给出了每个SSB block的起始符号索引的计算公式为:{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8。假设配置信息指示的n_offset=10,第一IAB根据协议中规定的n的取值和配置信息指示的n_offset=10,确定出用于计算第一同步信号在半帧内的起始符号索引的n=10,11,12,13,15,16,17,18。再结合通信系统的工作频段和SCS=240KHz时同步信号的起始符号的计算公式{8,12,16,20,32,36,40,44}+56·n,第一IAB节点可以确定第一同步信号在半帧内的第一起始符号索引集合。
在另一种实现方式中,配置信息指示n_offset和SCS的取值。
例如,配置信息指示SCS=30KHz和n_offset=3。根据协议定义的SCS=30KHz时,第二同步信号的起始符号索引的计算公式为{4,8,16,20}+28·n,n=0,1。因此,用于计算第一同步信号在半帧内的起始符号索引的n=3,4。也即,偏移后的n=3,4。参见图17所示。图17是确定第一同步信号在半帧内的映射位置的又一个示例。
(2)第一同步信号在半帧内的起始符号部分偏移。
在这种情况下,第一IAB节点确定需要偏移的n的取值及其偏移值。
在一种实现方式中,配置信息显式指示需要偏移的n的取值以及共同的偏移值。例如,配置信息指示需要偏移的n={5,6,7,8}和n_offset=5。
第一IAB节点计算出偏移后的n={10,11,12,13},结合未作偏移的n={0,1,2,3},,计算得到第一同步信号在半帧内的起始符号索引为{8,12,16,20,32,36,40,44}+56·n,n={0,1,2,3,10,11,12,13}。参见图18,图18是确定第一同步信号在半帧内的映射位置的又一个示例。
在另一种实现方式中,配置信息显示指示需要偏移的n的取值以及每个需要偏移的n的取值对应的偏移值。换句话说,n的不同取值对应不同的偏移值。不同的偏移值可以区分表示,例如,n_offset_1,n_offset_2,n_offset_3等。
例如,配置信息指示n={0,1,2,3},n_offset_1=3,以及n={5,6,7,8},n_offset_2=10。第一IAB节点确定需要偏移的n的取值及其这些取值各自对应的偏移值,确定第一同步信号在半帧内的起始符号索引。参见图19所示。图19是确定第一同步信号在半帧内的映射位置的又一个示例。
以上是对第一IAB节点确定第一同步信号在时域上的映射位置的一些方式的说明。
需要说明的是,图5-图19中的SSB候选(SSB candidates)也即本申请中所述的同步信号。
320、第一IAB节点在第一时域位置集合中的部分或全部时域位置上发送第一同步信 号,和/或在第二时域位置集合中的部分或全部时域位置上发送第二同步信号。
其中,第一同步信号用于被第一IAB节点之外的其它IAB节点测量。第二同步信号用于被终端设备测量。终端设备测量第二同步信号的过程可以和现有技术相同,这里不作详细介绍。
可选地,方法300还可以包括步骤330。
330、第二IAB节点接收第一同步信号。
第二IAB节点接收第一同步信号可以用于对第一IAB节点和第二IAB节点之间的回传链路进行测量和维护,或者用于对第一IAB节点的发现。
应理解,第二IAB节点在接收第一同步信号之前,也需要确定接收第一同步信号的第一时域位置集合。
第二IAB节点确定第一时域位置集合的过程,可以参见步骤310中描述的第一IAB节点确定第一时域位置集合的过程和示例。步骤310中描述的第一IAB节点确定第一时域位置集合的示例对于第二IAB节点都是适用的,这里不再详述。
应理解,第一IAB节点发送的第二同步信号可以被终端设备测量。终端设备接收第二同步信号,并根据第二同步信号对第一IAB节点和该终端设备之间的接入链路进行测量。
另外,在图6-图8所示的实施例中,第一IAB节点从宿主基站接收配置信息,配置信息用于确定发送第一同步信号的第一时域位置集合。第二IAB节点从宿主基站接收配置信息和互补指示信息,互补指示信息用于指示第二IAB节点发送第一同步信号的第一时域位置集合取配置信息中指示的第一时域位置集合的互补位置。
例如,宿主基站向第一IAB节点发送配置信息,配置信息用于指示第一IAB节点发送第一同步信号的第一时域位置集合如图6所示。同时,宿主基站向第二IAB节点发送配置信息和互补指示信息,互补指示信息用于指示第二IAB节点发送第一同步信号的第二时域位置集合如图7所示,图6中所示的第一时域位置集合和图7中所示的第一时域位置集合,其各自包含的时域位置互补。
第二IAB节点根据通信系统的工作频段和子载波间隔,确定配置信息指示的第一符号集合,并确定配置信息指示的第一符号集合的互补位置,并在互补位置上发送第一同步信号。可以理解的是,第二IAB节点发送的第一同步信号用于第二IAB节点之外的其它IAB节点的互发现和互测量。
也即,在图6-图8所示的实施例中,第一IAB节点接收宿主基站的配置信息,配置信息用于指示第一IAB节点发送第一同步信号的时域位置为上述图6-图8中的实施例中的第一符号集合的任意一个示例。第一IAB节点的相邻节点(例如,第二IAB节点)从宿主基站接收配置信息和互补指示信息,互补指示信息用于指示相邻节点发送第一同步信号的位置取配置信息中指示的位置的互补位置。
在本实施例中,通信系统中除了第一IAB节点和第二IAB节点之外的第三IAB节点可以在半帧内同时测量到第一IAB节点发送的第一同步信号和第二IAB节点发送的第一同步信号,因此,可以增大节点之间的发现概率。
这里,第三IAB节点是通信系统中除了第一IAB节点和第二IAB节点之外的其它IAB节点的一个示例。例如,第三IAB节点为第一IAB节点和第二IAB节点的相邻节点。
作为一个示例,方法300中的第一IAB节点可以为图2中所示的IAB节点1,第二 IAB节点可以为图2中所示的IAB节点2。
结合图3中所示的IAB节点的结构,以上实施例中,配置信息可以携带在宿主基站的CU发出的F1AP消息中。IAB节点的MT在空口从宿主基站接收包含F1AP消息的数据包,并由IAB节点的DU进行解析和处理后,获取到配置信息。或者,也可以由宿主基站或核心网设备(例如,运维服务器)配置到IAB节点的DU上,或者通过IAB节点的CU再配置到DU上。
本申请提供的发送同步信号的方法,通过考虑诸多因素,例如现有协议的TDD配置,接入链路的同步信号在时域上的配置,上行传输资源的需求等,提供了IAB通信系统中的回传链路的同步信号的配置方案,可以在不影响现有协议的配置,同时提高IAB节点之间互发现的概率。
以上对本申请提供的发送同步信号的方法进行了详细说明,下面介绍本申请提供的发送同步信号的装置。
参见图20,图20是本申请提供的发送同步信号的装置500的示意性结构框图。如图20所示,装置500包括处理单元510和收发单元520。
处理单元510,用于确定发送第一同步信号的第一时域位置集合和发送第二同步信号的第二时域位置集合,当所述第一时域位置集合和所述第二时域位置集合位于同一个半帧内时,所述第一时域位置集合和所述第二时域位置集合在半帧内的起始符号索引不同;
收发单元520,用于在所述第一时域位置集合的全部或部分时域位置上发送所述第一同步信号,和/或在所述第二时域位置集合的全部或部分时域位置上发送所述第二同步信号。
可选地,装置500可以为芯片或集成电路。
本申请实施例中所述的芯片,可以是现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU、可编程控制器(programmable logic device,PLD)或其它集成芯片。
可选地,处理单元510可以为处理器。收发单元510可以由接收单元和发送单元组成。收发单元520可以为收发器,收发器可以包括发射机和接收机,同时具备接收和发送的功能。可选地,收发单元510还可以为输入输出接口,或者输入输出电路。
在另一种可能的方式中,收发单元520可以为通信接口。例如,输入输出接口,输入接口电路和输出接口电路等。
应理解,装置500可以对应本申请提供的发送同步信号的方法300及其各实施例中的第一IAB节点。装置500包括的各单元分别用于实现方法300及其各实施例中由第一IAB节点执行的相应操作和/或流程。
例如,收发单元520还用于获取配置信息。处理单元510还用于执行根据第二同步信号的第二起始符号索引集合的计算公式和n的偏移值,确定第一同步信号的第一起始符号索引集合,并根据第一起始符号索引集合确定第一时域位置集合。又例如,处理单元510还用于根据n的需要偏移的取值以及所述需要偏移的取值各自对应的偏移值,确定第一起始符号索引集合。
本申请还提供一种网络设备1000,下面结合图21进行说明。
参见图21,图21是本申请提供的一种网络设备1000的结构示意图。网络设备1000用于实现方法实施例中第一IAB节点的功能。如图21所示,网络设备1000包括天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向,射频装置1102通过天线1101接收终端设备发送的信号,将终端设备发送的信号发送给基带装置1103进行处理。在下行方向,基带装置1103对需要发送给终端设备的信号进行处理,并发送给射频装置1102,射频装置1102对所述信号进行处理后经过天线1101发送给终端设备。
基带装置1103可以包括一个或多个处理单元11031。此外,基带装置1103还可以包括存储单元11032和通信接口11033。存储单元11032用于存储程序和数据。通信接口11033用于与射频装置1102交互信息。通信接口11033可以为输入输出接口或者输入输出电路。
上述装置实施例中的网络设备1000可以与方法实施例中的第一IAB节点完全对应,网络设备1000所包括的相应单元用于执行方法实施例中由第一IAB节点执行的相应步骤。
例如,基带装置1103确定用于发送第一同步信号的第一时域位置集合和第二时域位置集合,并将包含第一时域位置集合和第二时域位置集合的信息发送给射频装置1102。射频装置1102在第一时域位置集合的部分或全部时域位置上发送第一同步信号,或者,在第二时域位置集合的部分或全部时域位置上发送第二同步信号。或者,射频装置1102在第一时域位置集合的部分或全部时域位置上发送第一同步信号,并在第二时域位置集合的部分或全部时域位置上发送第二同步信号。
又例如,射频装置1102通过天线1101从宿主基站获取配置信息,并将配置信息发送给基带装置。基带装置1103根据配置信息确定n的偏移值,并根据第二同步信号的第二起始符号集合的计算公式和n的偏移值,确定第一同步信号的第一起始符号索引集合,再根据第一起始符号集合确定第一时域位置集合。可选地,当n的不同取值的偏移值不同时,基带装置1103根据配置信息确定需要进行偏移的n的取值,以及需要偏移的n的取值各自对应的偏移值,进而确定第一起始符号索引集合,最终确定第一时域位置集合。
又例如,射频装置1102通过天线1101从宿主基站获取配合信息和互补指示信息,并将配置信息和互补指示信息发送给基带装置1103。基带装置1103根据配置信息和互补指示信息确定第一时域位置集合。
此外,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行任一方法实施例中由第一IAB节点执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请实施例的发送同步信号的方法300或任一方法实施例中由第一IAB节点执行的相应操作和/或流程。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例的发送同步信号的方法300中由第一节点执行的相应操作和/或流程。
可选地,芯片还包括存储器,存储器与处理器连接。处理器用于读取并执行存储器中 的计算机程序。
进一步可选地,芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收需要处理的信号和/或数据,处理器从通信接口获取该信号和/或数据,并对其进行处理。
可选地,通信接口可以是输入输出接口,具体可以包括输入接口和输出接口。或者,通信接口可以是输入输出电路(也即,接口电路),具体可以包括输入电路和输出电路。
上述实施例中涉及的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
以上装置实施例中所述的装置500可以为基带装置1103上的芯片,该芯片包括至少一个处理单元和接口电路。其中,处理元件用于执行以上网络设备(也即第一IAB节点)执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理单元调度程序的形式实现。例如,处理单元11031调用存储单元11032存储的程序,以执行以上方法实施例中第一IAB节点执行的方法。存储单元11032可以为处理单元11031处于同一芯片上,即片内存储单元,也可以为与处理单元11031处于不同芯片上的存储元件,即片外存储单元。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例只是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种发送同步信号的方法,其特征在于,应用于包括宿主基站、一个或多个接入与回传一体化IAB节点以及一个或多个终端设备的通信系统中,所述方法包括:
    第一IAB节点确定发送第一同步信号的第一时域位置集合和发送第二同步信号的第二时域位置集合,当所述第一时域位置集合和所述第二时域位置集合位于同一个半帧内时,所述第一时域位置集合和所述第二时域位置集合在半帧内的起始符号索引不同;
    所述第一IAB节点在所述第一时域位置集合的全部或部分时域位置上发送所述第一同步信号,和/或在所述第二时域位置集合的全部或部分时域位置上发送所述第二同步信号。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一时域位置集合和所述第二时域位置集合位于不同的半帧内时,所述第一时域位置集合包含的符号和所述第二时域位置集合包含的符号部分重叠或者全部重叠。
  3. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,n=10,11,12,13,15,16,17,18。
  4. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一时域位置集合被配置为在半帧内分散分布,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,其中,n=0,1,5,6,10,11,15,16。
  5. 根据权利要求4所述的方法,其特征在于,所述第一同步信号在所述半帧内的起始符号索引还包括:
    {8,12,16,20,32,36,40,44}+56n,n=2,3,7,8,12,13,17和18。
  6. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一时域位置集合被配置为在半帧内分散分布,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,其中,n=0,1,2,3,10,11,12,13。
  7. 根据权利要求6所述的方法,其特征在于,所述第一同步信号在所述半帧内的起始符号索引还包括:
    {8,12,16,20,32,36,40,44}+56n,n=5,6,7,8,15,16,17和18。
  8. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带小于3GHz,SCS为15KHz时,所述第一同步信号在半帧内的起始符号索引为:
    {2,8}+14n,n=2,3。
  9. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带小于3GHz,SCS为15KHz时,所述第一同步信号在半帧内的起始符号索引为:
    {2,8}+14n,n=3,4。
  10. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带小于6GHz,SCS为30KHz时,所述第一同步信号在半帧内的起始符号位置为:
    {4,8,12,16,20}+28n,n的取值等于集合{1,2,3,4}中的任意一个元素。
  11. 根据权利要求1所述的方法,其特征在于,当所述通信系统的工作频带大于或等于3GHz且小于或等于6GHz时,所述第一同步信号在半帧内的起始符号索引为:
    {4,8,16,20}+28n,n的取值等于集合{1,2,3,4}中的任意两个元素。
  12. 根据权利要求1所述的方法,其特征在于,所述第一IAB节点确定发送第一同步信号的第一时域位置集合,包括:
    所述第一IAB节点获取配置信息,所述配置信息用于指示n的偏移值,所述n为协议定义的用于确定第二同步信号的起始符号索引的参数;
    所述第一IAB节点根据第二同步信号的第二起始符号索引集合的计算公式和所述n的偏移值,确定所述第一同步信号的第一起始符号索引集合;
    根据所述第一起始符号索引集合,确定所述第一时域位置集合。
  13. 根据权利要求12所述的方法,其特征在于,所述n有多个取值,所述配置信息用于指示所述多个取值中需要进行偏移的取值,以及所述需要偏移的取值各自对应的偏移值,
    所述第一IAB节点根据第二同步信号的第二起始符号索引集合的计算公式和所述n的偏移值,确定所述第一同步信号的第一起始符号索引集合,包括:
    所述第一IAB节点根据n的需要偏移的取值以及所述需要偏移的取值各自对应的偏移值,确定所述第一起始符号索引集合。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一同步信号和所述第二同步信号满足如下一项或多项:
    所述第一同步信号和所述第二同步信号的子载波间隔不同;或者,
    所述第一同步信号和所述第二同步信号在一个半帧内占用的符号数不相等。
  15. 一种发送同步信号的装置,其特征在于,包括:
    处理单元,用于确定发送第一同步信号的第一时域位置集合和发送第二同步信号的第二时域位置集合,当所述第一时域位置集合和所述第二时域位置集合位于同一个半帧内时,所述第一时域位置集合和所述第二时域位置集合在半帧内的起始符号索引不同;
    收发单元,用于在所述第一时域位置集合的全部或部分时域位置上发送所述第一同步信号,和/或在所述第二时域位置集合的全部或部分时域位置上发送所述第二同步信号。
  16. 根据权利要求15所述的装置,其特征在于,当所述第一时域位置集合和所述第二时域位置集合位于不同的半帧内时,所述第一时域位置集合包含的符号和所述第二时域位置集合包含的符号部分重叠或者全部重叠。
  17. 根据权利要求15所述的装置,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,n=10,11,12,13,15,16,17,18。
  18. 根据权利要求15所述的装置,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一时域位置集合被配置为在半帧内分散分布,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,其中,n=0,1,5,6,10,11,15,16。
  19. 根据权利要求18所述的装置,其特征在于,所述第一同步信号在所述半帧内的 起始符号索引还包括:
    {8,12,16,20,32,36,40,44}+56n,n=2,3,7,8,12,13,17和18。
  20. 根据权利要求15所述的装置,其特征在于,当所述通信系统的工作频带大于6GHz,子载波间隔SCS为240KHz时,所述第一时域位置集合被配置为在半帧内分散分布,所述第一同步信号在半帧内的起始符号索引为:
    {8,12,16,20,32,36,40,44}+56n,其中,n=0,1,2,3,10,11,12,13。
  21. 根据权利要求20所述的装置,其特征在于,所述第一同步信号在所述半帧内的起始符号索引还包括:
    {8,12,16,20,32,36,40,44}+56n,n=5,6,7,8,15,16,17和18。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  23. 一种芯片,其特征在于,包括接口电路和处理器,所述接口电路用于接收计算机程序并传输至所述处理器,所述处理器用于读取并执行所述计算机程序,以执行如权利要求1-14中任一项所述的方法。
PCT/CN2020/070977 2019-01-10 2020-01-08 发送同步信号的方法和装置 WO2020143685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910024189.0A CN111432466B (zh) 2019-01-10 2019-01-10 发送同步信号的方法和装置
CN201910024189.0 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143685A1 true WO2020143685A1 (zh) 2020-07-16

Family

ID=71521764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070977 WO2020143685A1 (zh) 2019-01-10 2020-01-08 发送同步信号的方法和装置

Country Status (2)

Country Link
CN (1) CN111432466B (zh)
WO (1) WO2020143685A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797300A (zh) * 2014-10-10 2017-05-31 瑞典爱立信有限公司 用于动态csi反馈的方法
WO2018063892A1 (en) * 2016-09-29 2018-04-05 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945483B (zh) * 2009-07-07 2014-06-11 中兴通讯股份有限公司 一种上行中继子帧的传输方法及中继站
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN106507439B (zh) * 2016-10-28 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
WO2018175817A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Advanced radio resource management in next-gen multi-hop relaying cellular network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797300A (zh) * 2014-10-10 2017-05-31 瑞典爱立信有限公司 用于动态csi反馈的方法
WO2018063892A1 (en) * 2016-09-29 2018-04-05 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AT&T: "Remaining Details on Remaining Minimum System Information", 3GPP DRAFT; R1-1719622, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 8, XP051369429 *
NOKIA; NOKIA SHANGHAI BELL: "Discovery and Measurements for IAB", 3GPP DRAFT; R1-1810677, 12 October 2018 (2018-10-12), Chengdu, P.R. China, pages 1 - 7, XP051518081 *
NOKIA; NOKIA SHANGHAI BELL: "Discovery and Measurements for IAB", 3GPP DRAFT; R2-1817616, 16 November 2018 (2018-11-16), pages 1 - 5, XP051481515 *
SAMSUNG: "Necessary Enhancements for NR IAB", 3GPP DRAFT; R1-1812981, 16 November 2018 (2018-11-16), Spokane USA, pages 1 - 9, XP051479245 *

Also Published As

Publication number Publication date
CN111432466B (zh) 2021-07-09
CN111432466A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
TWI751277B (zh) 多子訊框探索參考信號傳遞(drs)量測時序配置(dmtc)訊窗
JP6275252B2 (ja) D2d信号の伝送方法及び装置
US9668299B2 (en) Multi-mode WLAN/PAN MAC
JP6402186B2 (ja) カバレッジのバランス改善を目的としたクロスセルキャリアアグリゲーションのためのシステム及び方法
TW201902288A (zh) 使用使用者設備類型和能力指示之方法及其使用者設備
WO2020143692A1 (zh) 通信方法和通信装置
US11265871B2 (en) Relay transmission method and apparatus
WO2020221318A1 (zh) 一种上行波束管理方法及装置
CN110972211B (zh) 一种功率控制的方法和装置
US11665723B2 (en) First station, second station and non-transitory computer-readable storage medium
US20220394737A1 (en) Resource configuration method and network device
US20230422085A1 (en) Managing a wireless local area network (wlan) to support a mobile communication network service
US20230362727A1 (en) Communication method and apparatus based on integrated access and backhaul
CN111866793A (zh) 通信方法、装置、设备与系统
TW201935942A (zh) 資訊發送方法及終端
WO2021159503A1 (zh) 资源配置方法和装置
WO2020143360A1 (zh) 一种同步信号发送和接收的方法及装置
WO2020143685A1 (zh) 发送同步信号的方法和装置
CN115918224A (zh) 用无线通信系统中iab节点的双连接发送或接收数据的方法和装置
CN111836367A (zh) 一种带内中继方法、中继设备和网络设备
WO2024031233A1 (zh) 通信方法及终端设备
WO2023011518A1 (zh) 一种通信方法及通信装置
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2023024704A1 (zh) 通信方法以及通信装置
WO2024032730A1 (zh) 资源指示方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738680

Country of ref document: EP

Kind code of ref document: A1