WO2020143360A1 - 一种同步信号发送和接收的方法及装置 - Google Patents

一种同步信号发送和接收的方法及装置 Download PDF

Info

Publication number
WO2020143360A1
WO2020143360A1 PCT/CN2019/122265 CN2019122265W WO2020143360A1 WO 2020143360 A1 WO2020143360 A1 WO 2020143360A1 CN 2019122265 W CN2019122265 W CN 2019122265W WO 2020143360 A1 WO2020143360 A1 WO 2020143360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
node
hopping sequence
synchronization signal
configuration information
Prior art date
Application number
PCT/CN2019/122265
Other languages
English (en)
French (fr)
Inventor
刘凤威
陈磊
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143360A1 publication Critical patent/WO2020143360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to communication technology, and in particular to a method and device for transmitting and receiving synchronization signals of relay nodes in a wireless communication system.
  • the base station establishes a connection with the core network through optical fiber.
  • fiber deployment costs are very high.
  • the wireless relay node (RN) establishes a connection with the core network through a wireless backhaul link, which can save part of the fiber deployment cost.
  • the wireless relay node establishes a wireless backhaul link with one or more superior nodes, and accesses the core network through the superior node.
  • the wireless relay node can provide services for multiple subordinate nodes.
  • the upper node of the relay node may be a base station or another relay node; the lower node of the relay node may be a terminal equipment (user equipment, UE) or another wireless relay node.
  • Wireless relays are divided into in-band relays and out-of-band relays according to the wireless resources used by the backhaul link and the access link.
  • In-band relay is a relay scheme in which the backhaul link and the access link share the same frequency band. Since no extra spectrum resources are used, the in-band relay has the advantages of high spectrum efficiency and low deployment cost.
  • In-band relays generally have a half-duplex constraint. Specifically, when a relay node receives a downlink signal sent by its superior node, it cannot send a downlink signal to its subordinate node, while the relay node receives an uplink signal sent by its subordinate node. Cannot send upstream signals to its superior node.
  • the fifth generation mobile communication (5th generation mobile networks) or 5th generation wireless systems (5G) radio access network (radio access network, RAN) new air interface (new radio, NR) uses an in-band relay solution.
  • the NR in-band relay solution is called integrated access and backhaul (IAB), and the relay node for integrated access and backhaul is called IAB node (IAB node).
  • IAB nodes When there are multiple IAB nodes in the network, the IAB nodes need to discover or measure each other for the purpose of establishing multiple connections, maintaining standby connections, or interference measurement.
  • IAB nodes can find other IAB nodes by measuring reference signals such as synchronization signal block (SSB).
  • SSB synchronization signal block
  • the IAB node also needs to send SSB and other reference signals for the UE or other IAB nodes to discover and measure the IAB node. Due to the above half-duplex constraints, IAB nodes cannot send and receive SSBs at the same time, and the SSB positions of different IAB nodes are generally located at the same time position. Therefore, IAB nodes need to stop sending their own SSBs when measuring the SSBs of other nodes .
  • SSB synchronization signal block
  • the IAB subordinate UE assumes that the SAB of the IAB node is continuously sent periodically. If the IAB node stops sending for measurement, it will cause measurement errors of the IAB node's subordinate UE.
  • a backhaul SSB backhaul SSB, BH-SSB
  • BH-SSB may not consider the behavior of the UE, so it is beneficial to the mutual measurement of IAB nodes.
  • the above BH-SSB method may be able to complete the mutual measurement of IAB nodes within a certain time.
  • it may be necessary to perform mutual measurement of all nodes.
  • the configuration required for measurement may be complicated, or it takes a long time to complete the mutual measurement of IAB nodes. This application is to solve the problem of complicated configuration or long measurement time when there are many nodes measuring each other in the IAB system.
  • the embodiments of the present application provide a method and a device for sending and receiving synchronization signals, which solves the problem that when there are many IAB nodes in the relay system, the time for mutual measurement and discovery between the IAB nodes is long, and the configuration is complicated.
  • a method for transmitting and receiving a synchronization signal including: a first node acquiring pattern configuration information of a synchronization signal block, the pattern configuration information is used to indicate a pattern parameter of the synchronization signal block; and the first node determines the synchronization signal block's A pattern hopping sequence.
  • the pattern hopping sequence indicates a pattern of the synchronization signal block in different pattern periods; the first node determines the reception and/or transmission of the synchronization signal block according to the pattern configuration information and the pattern hopping sequence.
  • the first node can obtain the pattern that the SSB set receives or sends in different pattern periods, and through pattern hopping, the IAB node in the IAB system After a pattern hopping sequence period, mutual measurement and discovery between nodes can be completed, reducing the time delay for mutual discovery between nodes, thereby reducing the overhead of SSB set transmission, and simplifying the configuration of the host node for each IAB node .
  • the pattern configuration information includes: pattern period information, node number information, synchronization signal block sending and receiving instructions, initial pattern period start time, repetition factor, and initial pattern hopping sequence At least one of pattern, pattern sequence order indication, sequence period information.
  • the first node acquiring the pattern configuration information of the synchronization signal block includes: the first node receives the pattern configuration information sent by the second node; or, the pattern configuration information is predefined.
  • the parameters of the pattern configuration are determined through the explicit configuration of the pattern configuration information or through the protocol-defined method, so that the first node can determine the pattern and the pattern hopping sequence according to the pattern configuration information to achieve mutual measurement between the nodes.
  • the first node determining the pattern hopping sequence of the synchronization signal block includes: the first node receiving the information of the pattern hopping sequence sent by the second node; or, the first node
  • the pattern hopping sequence is determined according to the node number information, pattern period information, and sequence period information.
  • the method of determining the pattern hopping sequence is different according to the different parameter configuration methods.
  • the explicit pattern hopping sequence simplifies the step of determining the pattern hopping sequence by the first node, so that the pattern hopping sequence of the first node Is ok. Or the first node generates the pattern hopping sequence through the specified parameters, which can reduce the overhead of the air interface transmission.
  • the first node receives the pattern reconfiguration indication sent by the second node, where the pattern reconfiguration indication is used to instruct the first node to reconfigure the pattern hopping sequence and/or Pattern configuration information.
  • the pattern reconfiguration indication is used to instruct the first node to reconfigure the pattern hopping sequence and/or Pattern configuration information.
  • the pattern reconfiguration indication further includes: the start time of the updated pattern hopping sequence and/or pattern configuration information.
  • the information of each node remains the same, to avoid the situation that the nodes do not cooperate with each other and cannot be measured or cannot be found during mutual measurement.
  • the pattern period information includes: a time or number of times that the first node sends and receives a synchronization signal block to achieve mutual measurement between nodes or groups of nodes.
  • the information of the pattern hopping sequence includes at least one of an initial pattern of the pattern hopping sequence, a sequence sequence indication of the pattern, sequence period information, and a pattern hopping sequence index.
  • the information of the pattern hopping sequence enables the first node to determine the pattern hopping sequence.
  • the node number information includes: a configured node number, cell ID, PCI, one of wireless network temporary identifier RNTI, MAC address, and IP address.
  • each node in the IAB system can regularly generate patterns and pattern hopping sequences to ensure mutual measurement and discovery between the nodes.
  • the first node receives pattern configuration information of other nodes sent by the second node.
  • the first node can better determine the reception or transmission mode of its SSB set, to avoid collision with other nodes, which can cause measurement and discovery.
  • a method for sending and receiving a synchronization signal which includes: a second node sends pattern configuration information of a synchronization signal block to a first node, and the pattern configuration information is used to instruct the first node to synchronize on a backhaul link The pattern parameter of the signal block; the second node receives the pattern configuration information response sent by the first node.
  • the first node can obtain the pattern that the SSB set receives or sends in different pattern periods, and through pattern hopping, the IAB node in the IAB system After a pattern hopping sequence period, mutual measurement and discovery between nodes can be completed, reducing the time delay for mutual discovery between nodes, thereby reducing the overhead of SSB set transmission, and simplifying the configuration of the host node for each IAB node .
  • the pattern configuration information includes: pattern period information, node number information, synchronization signal block sending and receiving instructions, initial pattern period start time, repetition factor, and pattern hopping sequence initial At least one of pattern, pattern sequence order indication, sequence period information.
  • the second node sends a pattern reconfiguration indication to the first node, where the pattern reconfiguration indication is used to instruct the first node to reconfigure the pattern hopping sequence and/or pattern configuration information .
  • the IAB node in the system can optimize the transmission and SSB set on the return link receive.
  • the pattern reconfiguration indication further includes: the start time of the updated pattern hopping sequence and/or pattern configuration information.
  • the information of each node is kept the same, so as to avoid the situation that the nodes do not cooperate with each other and cannot be measured or cannot be found during mutual measurement.
  • the pattern period information includes: a time or number of times that the first node sends and receives the synchronization signal block to achieve mutual measurement between nodes or node groups.
  • the pattern configuration information includes pattern hopping sequence information
  • the pattern hopping sequence information includes the initial pattern of the pattern hopping sequence, the pattern sequence order indication, the sequence period information, and the pattern hopping At least one of variable sequence indexes.
  • the information of the pattern hopping sequence enables the first node to determine the pattern hopping sequence.
  • the node number information includes: a configured node number, a cell identifier cell ID, a physical cell identifier PCI, a wireless network temporary identifier RNTI, a MAC address, and an IP address.
  • the second node sends pattern configuration information of other nodes to the first node.
  • the first node can better determine the reception or transmission mode of its SSB set, to avoid collision with other nodes, which can cause measurement and discovery.
  • a first node is provided, and the first node is used to implement the functions of the method for sending and receiving a synchronization signal provided by any possible implementation manner of the first aspect, the functions It can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the first node includes a processor configured to support the user equipment to perform the synchronization provided by the first aspect or any possible implementation manner of the first aspect Signal sending and receiving methods.
  • the first node may further include a memory and a communication interface, where the memory stores codes and data, the memory is coupled to the processor, and the communication interface is coupled to the processor or memory.
  • a second node is provided, and the second node is used to implement the functions of the method for transmitting and receiving a synchronization signal provided by the foregoing second aspect or any possible implementation manner of the second aspect
  • the function can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the second node includes a processor configured to support the network device to perform the synchronization signal provided by the foregoing second aspect or any possible implementation manner of the second aspect The function of the sending and receiving method.
  • the network device may further include a memory and a communication interface.
  • the memory stores codes required for processing and/or a baseband processor, the memory is coupled to the processor, and the communication interface is coupled to the memory or processor.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to perform the first aspect or the first aspect
  • a computer program product containing instructions, which when executed on a computer, causes the computer to perform the synchronization provided by the first aspect or any possible implementation manner of the first aspect
  • a method for sending and receiving signals, or a method for sending and receiving synchronization signals provided by the foregoing second aspect or any possible implementation manner of the second aspect is provided.
  • a communication system in yet another aspect of the present application, includes multiple devices including a first node and a second node; wherein the first node is the first node provided in the above aspects, A method for supporting a first node to perform the method for sending and receiving a synchronization signal provided by the first aspect or any possible implementation manner of the first aspect; and/or, the second node is the second provided by the above aspects The node is used to support the second node to perform the method for sending and receiving the synchronization signal provided by the second aspect or any possible implementation manner of the second aspect.
  • an apparatus is provided.
  • the apparatus is a processor, an integrated circuit, or a chip, and is used to perform the steps performed by the processing unit of the first node in the embodiment of the present invention, for example, to determine a synchronization signal block.
  • the pattern hopping sequence of determines the reception and/or transmission of the synchronization signal block according to the pattern configuration information and the pattern hopping sequence, processes the received pattern configuration information, and obtains the pattern configuration information of the synchronization signal block.
  • the device is also used to perform the first node processing or action that has been described in the foregoing other aspects or embodiments, which will not be repeated here.
  • another device is provided, where the device is a processor, an integrated circuit, or a chip, and is used to perform the steps performed by the processing unit of the second node in the embodiment of the present invention.
  • the second node is supported to perform processing on various received or sent messages in the foregoing embodiments, and determine related parameters of the pattern configuration information for the first node.
  • the another device is also used to perform the processing or action of the second node that has been described in other aspects or embodiments, which will not be repeated here.
  • the device, the computer storage medium, or the computer program product of the synchronization signal sending and receiving method provided above are used to perform the corresponding methods provided above, and therefore, for the beneficial effects that can be achieved, refer to the above The beneficial effects of the corresponding methods provided will not be repeated here.
  • FIG. 1 is an IAB communication system provided by an embodiment of this application.
  • 3 is a receiving and sending sequence of BH-SSB sets of three IAB nodes provided by an embodiment of the present application
  • FIG. 6 is an example of a repetition factor of 4 in a pattern hopping sequence provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the interval between the patterns in the pattern hopping sequence provided by the embodiment of the present application is an integer multiple of the SSB set period;
  • FIG. 8 is a schematic diagram of the interval between the patterns in the pattern hopping sequence provided by the embodiment of the present application is not an integer multiple of the SSB set period;
  • FIG. 10 is a schematic diagram of updating pattern configuration information provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a possible structure of a first node provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a possible logical structure of a first node provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a possible structure of a second node provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a possible logical structure of a second node provided by an embodiment of the present application.
  • A/B may mean A or B.
  • the "and/or” in this article is just an association relationship describing the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, B exists alone These three situations.
  • plural means two or more than two.
  • “including one or more of A or B” may mean: including A, including A and B, and including three cases of B.
  • including one or more of A, B, or C may mean: including A and B and C, including A and B, including A and C, including B and C, including A, including B , Including 7 cases of C.
  • NR considers introducing the IAB scheme to further reduce deployment costs and increase deployment flexibility, and thus introduce integrated access and backhaul relays.
  • This application will have integrated access and
  • the relay node of the backhaul is called an integrated access and backhaul node (IAB node) to distinguish the relay of the long term evolution (LTE) system.
  • IAB node integrated access and backhaul node
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applicable.
  • NB-IoT narrowband Internet of Things
  • WLAN wireless local area network
  • LTE Long Term Evolution
  • D2D device-to-device
  • An IAB system includes at least one base station 100, and one or more terminal devices (terminals) 101 served by the base station 100, one or more relay nodes IAB node, and one or more terminal devices served by the IAB node 110 111.
  • the base station 100 is called a donor base station (donor next generation node B, DgNB), and the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the host base station is also referred to as a host node, that is, a Donor node in this application.
  • Base stations include but are not limited to: evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station, NR base station (next generation, node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC Base transceiver station
  • home base station for example, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE, eLTE
  • Terminal equipment includes but is not limited to: user equipment (user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless communication device, user agent, Stations (ST), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop) (WLL) stations in wireless local area network (WLAN) Personal digital processing (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolving public Any one of terminal equipment in a land mobile network (PLMN) network.
  • IAB node is a specific name of a relay node, which does not limit the scheme of the present application. It may be one of the above base stations or terminal devices with a forwarding function, or an independent device form.
  • the integrated access and backhaul system can also include multiple other IAB nodes, such as IAB node 120 and IAB node 130.
  • IAB node 120 is connected to IAB node 110 through wireless backhaul link 123 to access the network.
  • the IAB node 130 is connected to the IAB node 110 through a wireless backhaul link 133 to access the network, the IAB node 120 serves one or more terminal devices 121, and the IAB node 130 serves one or more terminal devices 131.
  • IAB node 110 and IAB node 120 are both connected to the network via a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the relay node, for example, the wireless backhaul link 113 is the backhaul link of the IAB node 110, and the wireless backhaul link 123 is the IAB node 120 Backhaul link.
  • an IAB node such as 120
  • the relay node can be connected through multiple wireless relay nodes To the network.
  • IAB node can refer to any node or device with a relay function. The use of IAB node and relay node in this application should be understood to have the same meaning.
  • the node that provides wireless backhaul link resources, such as 110, is called the IAB node 120 and the upper node.
  • the superior node may also be called an upstream node. It should be understood that the superior node is not limited to the direct superior node that provides wireless backhaul link resources, including all nodes that provide wireless backhaul link resources on the link that provides transmission to the host base station.
  • a direct superior node refers to a node that directly provides transmission resources for a relay node.
  • IAB 110 is a direct superior node of IAB node 120.
  • Subordinate node The node that uses the backhaul link resources to transmit data to the network or receives data from the network is called the subordinate node, for example, 120 is called the relay node 110 subordinate node, the network is the core network or other access Networks on the Internet, such as the Internet, private networks, etc.
  • the lower-level nodes are not limited to the direct lower-level nodes for which wireless backhaul link resources are provided, including all nodes that provide wireless backhaul link resources on the link that provides transmission to the target node.
  • a direct subordinate node refers to a node directly providing transmission resources for it, for example, IAB node 120 is a direct subordinate node of IAB node 110.
  • Access link The link between the UE and the IAB node or IAB donor node (IAB donor). Or, the access link includes a wireless link used by a certain node to communicate with its subordinate nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the uplink access link is also called uplink transmission of the access link, and the downlink access link is also called downlink transmission of the access link.
  • the backhaul link The link between the IAB node and the IAB child node (IAB child node) or the IAB parent node (IAB parent node).
  • the backhaul link includes a downlink transmission link with the IAB child node or IAB parent node, and an uplink transmission link with the IAB child node or IAB parent node.
  • the IAB node performs data transmission to the IAB parent node, or receives the upstream transmission of the IAB child node is called the uplink transmission of the backhaul link.
  • the IAB node receives the data transmission from the IAB parent node, or the data transmission to the IAB child node is called the downlink transmission of the return link.
  • the backhaul link between the IAB node and the IAB parent node is also called the parent backhaul link (parent BH), and the backhaul link between the IAB node and the IAB child node It is called the subordinate backhaul link (child BH).
  • Waveform parameter refers to a set of subcarriers, or physical subcarriers of a certain bandwidth or part of a carrier.
  • the waveform parameters include at least one of the following parameters: subcarrier spacing, cyclic prefix (CP) length, time Interval (transmission time interval, TTI), symbol length, number of symbols, ⁇ .
  • CP cyclic prefix
  • TTI transmission time interval
  • is an integer greater than or equal to 0, and can take values from 0 to 5
  • each ⁇ corresponds to a specific subcarrier interval and CP
  • Time slot It is the basic time domain unit in NR.
  • a time slot can contain 14 or 12 symbols, depending on the CP length in the waveform parameters used by the time slot. It should be understood that in some cases, the time slot and the subframe are the same, for example, when the subcarrier spacing in the waveform parameter is 15 KHz, the time slot and the subframe may be the same. Similarly, time slots should not be limited to the above definitions.
  • mini-slots can also be defined, that is, one or more symbols can also be called a time slot.
  • the time slots in this application include the mini-slot concept. Symbols generally refer to orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • One subframe may be, for example, 1 ms, and one subframe may include one or more time slots. When a subframe contains only one slot, the subframe and slot are the same.
  • the time slot or subframe in the following refers to either a time slot or a subframe. In some cases, the subframe and the time slot are the same, and in some cases, the subframe and the time slot are different. Refers to a basic unit of scheduling, where the time slot can be a mini-slot, which will not be repeated below.
  • Beam is a communication resource.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the technique of forming a beam may be a beam forming technique or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can be formed by one or more antenna ports, used to transmit data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after the signal is transmitted through the antenna
  • the receive beam may refer to an antenna array that enhances or weakens the distribution of wireless signals in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the beam can be reflected through the antenna port (quasi-colocation, QCL) relationship.
  • the two signals with the same beam have a QCL relationship on the spatial receive parameter (spatial Rx parameter) , That is, QCL-Type D: ⁇ Spatial Rx parameter ⁇ in the protocol.
  • the beam can be specifically expressed in the protocol by the identification of various signals, such as the resource ID of CSI-RS, the time domain index of SS/PBCH, the resource ID of SRS (sounding reference), TRS (tracking reference) , Tracking signal) resource ID, etc.
  • the above antenna port is a logical concept, and it has no one-to-one correspondence with the physical antenna.
  • the antenna port is a logical unit formed by one or more physical antennas for the physical antennas transmitting a signal or signal stream.
  • In-band relay It is a relay node where the return link and the access link share the same frequency band.
  • the lower node can be regarded as a UE of the upper node.
  • one IAB node is connected to one superior node.
  • an IAB node such as 120
  • the IAB node 130 can also be connected to the IAB node 120 through the backhaul link 134, that is, the IAB node 110 and the IAB node 120 are both superior nodes of the IAB node 130.
  • the names of IAB nodes 110, 120, and 130 do not limit the scenarios or networks in which they are deployed, and can be any other names such as relay, RN, etc. The use of IAB node in this application is only for the convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134 can be bidirectional links, including uplink and downlink transmission links, in particular, the wireless backhaul links 113, 123, 133, 134 can be used by superior nodes to provide services for subordinate nodes, such as superior nodes 100 provides a wireless backhaul service for the subordinate node 110. It should be understood that the uplink and downlink of the backhaul link may be separated, that is, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to a higher-level node, such as node 100, and a lower-level node, such as node 110, to transmit information or data
  • the uplink transmission refers to a lower-level node, such as node 110, to a higher-level node, such as node 100, to transmit information or data.
  • the node is not limited to whether it is a network node or a terminal device.
  • the terminal device may serve as a relay node to serve other terminal devices.
  • the wireless backhaul link may be an access link.
  • the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also the access of the node 100. link.
  • the link 113 is called a parent backhaul link (parent BH)
  • the link 123 is called a lower backhaul link (child BH)
  • the link 112 is called an access link.
  • the above-mentioned upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a terminal device with a relay function.
  • the lower-level node may also be a terminal device.
  • the relay nodes shown in FIG. 1, such as 110, 120, and 130, can exist in two forms: one exists as an independent access node, and can independently manage terminal devices that access the relay node.
  • Relay nodes usually have independent physical cell identifiers (PCI).
  • PCI physical cell identifiers
  • This type of relay usually requires full protocol stack functions, such as radio resource control (RRC) functions. It is usually called layer 3 relay; while another form of relay node and Donor node, such as Donor eNB, Donor gNB, belong to the same cell, and user management is managed by the host base station, such as Donor node
  • RRC radio resource control
  • Layer 2 relays usually exist as the DU of the base station DgNB under the NR control and bearer separation (central unit and distributed unit, CU-DU) architecture, and communicate with the CU through the F1-AP (F1 application protocol) interface or tunneling protocol Among them, the tunneling protocol may be, for example, GTP (general packet service radio tunneling protocol, GTP) protocol, which will not be described in detail.
  • the Donor node refers to a node that can access the core network through the node, or an anchor base station of the wireless access network, through which the base station can access the network.
  • the anchor base station is responsible for receiving the data of the core network and forwarding it to the relay node, or receiving the data of the relay node and forwarding it to the core network.
  • the primary synchronization signal primary synchronization signal
  • secondary synchronization signal secondary synchronization signal
  • physical broadcast channel physical broadcast channel
  • PBCH synchronization signal/broadcast signal block
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH block physical broadcast channel
  • SS/PBCH block SS/PBCH block
  • an SSB contains four orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • the UE determines the SSB block index (block index) through different DM-RS sequences and the index number (index) transmitted in the PBCH, which is used to identify different SSBs.
  • the specific method for determining the block index of the SSB is well known to those of ordinary skill in the art, and will not be described in detail.
  • the transmission of synchronization signals is carried out by means of beam scanning.
  • the NR base station will send multiple SSBs in a cycle, each SSB covers a certain area, and each SSB is sent at the SSB candidate (candidates) defined by the protocol. All SSB candidates are located within a half-frame (5 ms). In this application, the SSB candidates position refers to the symbol position in the time domain, which will not be repeated below.
  • the number of SSB candidates in a half frame is different. Specifically, below 3 GHz (gigahertz, GHz), the number of SSB candidates is 4. At 3GHz-6GHz, the number of SSB candidates is 8. Above 6GHz, the number of SSB candidates is 64.
  • the base station can send multiple SSBs by frequency division. The SSB sent by the base station repeats periodically, and the period size is configurable. For an SSB used for UE access, the typical value of the period is 20 milliseconds (ms). It includes the following 5 cases (case):
  • a 15KHz sub-carrier interval is sent according to ⁇ 2,8 ⁇ +14*n, where ⁇ 2,8 ⁇ +14*n represents the index of the first symbol of SS/PBCH Block, that is, the position, the same below ,No longer.
  • n 0,1
  • n 0,1,2,3.
  • the position of the SS/PBCH Block within a synchronization signal cycle is traversed by the above formula to the above value of n, which is the same below and will not be repeated.
  • the multiple SSBs at different locations mentioned above are required to complete the transmission within 5 ms.
  • the SSBs sent on multiple time slots or symbols in different cases are called SSB sets.
  • the SSBs defined above are used to access the link.
  • the BH-SSB set is introduced.
  • the BH-SSB set is located in the time domain or the frequency domain.
  • the SSB of the access link is different from the above standard to avoid conflict with the SSB of the access link.
  • Figure 2 is an example of a possible network topology of an NR relay system. This includes three IAB nodes, namely IAB node 1, IAB node 2, IAB node 3, and a donor node. Each node in Figure 2 will send SSB set for the UE to detect the synchronization signal to achieve cell camping or access. In this application, the SSB set that each node in FIG. 2 can use for the UE to perform initial access is called access (AC) SSB set (AC-SSB set).
  • IAB node 1, IAB node 2, IAB node 3 in Figure 2 need to send BH-SSB set in order to realize mutual discovery. As mentioned earlier, the position of the BH-SSB in the time and/or frequency domain is different from the AC-SSB set.
  • the three IAB nodes can choose to receive the SSB set at different BH-SSB time points. Therefore, the reception and transmission timing of the BH-SSB set of the three IAB nodes is as shown in the figure 3 shown.
  • the direction of the arrow in FIG. 3 indicates time.
  • the white block diagram in the figure indicates that the IAB node receives the BH-SSB set sent by other nodes, and the black filled block diagram indicates that the IAB node sends the BH-SSB set.
  • the interval between two consecutive BH-SSB sets is called the SSB set period.
  • the definition of the BH-SSB set is similar to the definition of the SSB of the access link, indicating that the possible BH-SSB set transmission position is only different in the time domain and/or frequency domain, and will not be repeated here.
  • three SSB set cycles are required to achieve complete inter-IAB node measurement. It should be understood that the SSB set period in FIG. 3 represents the BH-SSB set period.
  • the IAB node sends or receives SSB sets at different time positions as SSB set transceiver patterns.
  • the transmission and reception pattern of the SSB set is defined on one or more SSB sets.
  • the one or more SSB sets are referred to as an SSB set group. That is, the pattern indicates that one or more SSB sets in a SSB set group are configured as SSB set reception and transmission modes.
  • two IAB nodes can use two SSB sets, including a receiving SSB set and a sending SSB set SSB set transceiver mode, where the receiving SSB set can be configured in the 0th SSB set, or can be configured in the first SSB set, thus forming two patterns.
  • three IAB nodes use one receiving SSB set and two sending SSB sets to form the SSB set pattern shown in FIG. 3, where the receiving SSB set can be the 0, 1, 1 and 2 SSB set in the SSB set group Position.
  • the received SSB set is the IAB node's SSB set measurement at the SSB set position, and stops sending the SSB set.
  • Sending the SSB set means that the IAB node sends the SSB set at the SSB set position, but the SSB set cannot be received.
  • the pattern shown in FIG. 3 may also be two receiving SSB sets and one sending SSB set.
  • a receiving SSB set is mainly used as an example.
  • each IAB node when configuring a receiving SSB set, can have three configuration methods, that is, the receiving SSB set can be at the 0th, 1st, and 2nd SSB set positions, so There can be 3 patterns.
  • the interval between two adjacent SSB set groups of the IAB node is called the pattern period.
  • the pattern period can also represent an SSB set group, or the number of SSB sets in the SSB set group. This is just for convenience of description and uses the pattern period, and does not necessarily represent the concept of time interval.
  • the IAB node can send and/or receive SSB sets. That is, the pattern period includes an SSB set group, and each SSB set in the SSB set group can be configured as a receiving or transmitting mode. For example, in a pattern period, assuming that there are K SSB sets and configure an SSB set as the receiving mode, there may be K patterns, that is, the SSB of the receiving mode may be in different positions.
  • the above methods can achieve mutual measurement between IAB nodes.
  • the above pattern period will increase significantly.
  • the density of BH-SSB set can be increased, that is, the period of BH-SSB set can be reduced.
  • reducing the BH-SSB set cycle means more resource consumption. Therefore, when the above method is adopted, there is a contradiction between the measurement time (or measurement delay) of the BH-SSB set and the resource consumption of the BH-SSB set.
  • the IAB node can use different SSB set transmission patterns in different pattern periods. It should be understood that in a pattern period, or the number of SSBs contained in an SSB set group may be arbitrary, and the specific number is not limited by this application.
  • the number of patterns is denoted as L, that is, the SSB set has L different transmission and reception configurations in the time domain, and L is a positive integer.
  • the pattern also represents a configuration mode in which the SSB sets are received and/or transmitted at different time domain positions within a pattern period.
  • the number of SSB sets occupied by the pattern is recorded as K, that is, one SSB set group has K SSB sets.
  • K1 and K2 are positive integers.
  • not all possible patterns need to be defined in the agreement. It may be considered to introduce some idleness to reduce the number of patterns.
  • a mutual measurement pattern can be defined, that is, a mutual measurement pattern is a pattern where two nodes using different patterns can achieve mutual measurement, or neither K1 nor K2 is equal to 0.
  • P1 means that the SSB set is sent on the 0th SSB set, and the SSB set is received on the first SSB set.
  • K1 or K2 has a value of 1
  • K2 is 1, for example, that is, a SSB set in a pattern period is set as the receiving mode.
  • the K patterns in this example are all mutual measurement patterns.
  • the method of the present application is not limited to the case where either K1 or K2 has a value of 1.
  • the number of patterns L may be greater than K.
  • a pattern hopping sequence can be configured for the IAB nodes to realize mutual measurement between the nodes.
  • the pattern hopping sequence refers to the order in which patterns appear in multiple pattern periods within a period of time.
  • the mutual measurement pattern may have the following constraint.
  • two nodes using two different patterns can measure each other. For example, consider that there is at least one SSB set for node 1 and node 2. When node 1 sends in the SSB set, node 2 receives in the SSB set; in addition, there is at least one SSB set, when node 2 sends the SSB set At this time, Node 1 is performing SSB set reception.
  • the pattern hopping sequence of the three patterns in three pattern periods may be: (P0, P1, P2), that is, in the three pattern periods, the first pattern period adopts pattern P0, and the second pattern period adopts For pattern P1, pattern P2 is used for the first pattern period.
  • the pattern hopping sequence may also be: (P0, P2, P1), that is, of the three pattern periods, the first pattern period uses pattern P0, the second pattern period uses pattern P2, and the first pattern period uses pattern P1.
  • the above pattern jump sequence can also have many different forms.
  • the pattern hopping sequence may also be defined as (P0, P2, P0, P2), that is, there may be repeated patterns in one pattern hopping sequence.
  • each element in the above pattern hopping sequence may be repeated, for example, the pattern hopping sequence may be: (P0, P0, P0, P0, P1, P1, P1, P1, P2, P2, P2 , P2) Each pattern is repeated 4 times.
  • a pattern repetition factor R can be defined, which represents the number of times the pattern repeats in the pattern hopping sequence, for example, defining the pattern hopping sequence (P0, P0, P0, P0, P1, P1, P1, P1, P2, P2, P2, P2) has a repetition factor of 4, and the pattern hopping sequence can be expressed as (P0, P1, P2).
  • FIG. 6 is an example of a repetition factor of 4 in a pattern hopping sequence provided by an embodiment of the present application.
  • the length of the above pattern hopping sequence is called a sequence period.
  • the node numbers are IAB node 0, IAB node 1,..., IAB node 8.
  • the pattern hopping sequence of IAB node 0 is (P0, P0); the pattern hopping sequence of IAB node 1 is (P0, P1); the pattern hopping sequence of IAB node 2 is (P0, P2); the pattern of IAB node 3
  • the hopping sequence is (P1, P0); the pattern hopping sequence of IAB node 4 is (P1, P1); the pattern hopping sequence of IAB node 5 is (P1, P2); the pattern hopping sequence of IAB node 6 is ( P2, P0); IAB node 7 pattern hopping sequence is (P2, P1); IAB node 8 pattern hopping sequence is (P2, P1).
  • a pattern period nodes using the same pattern cannot measure each other.
  • IAB node 0, IAB node 1 and IAB node 2 all use pattern P0 in the first pattern period, so they cannot measure each other. However, in the second pattern period, IAB node 0, IAB node 1 and IAB node 2 use different patterns, so mutual measurement can be achieved. Similarly, it can be seen that the remaining nodes using the same pattern in the first cycle will also use different patterns in the second node. In this way, after 2 pattern cycles, mutual measurement between all nodes can be achieved. In this way, the time for mutual measurement between nodes is shortened.
  • the pattern hopping sequence should be as short as possible, so as to reduce the delay of mutual measurement between nodes.
  • each node in the IAB system supports L patterns, where L is a positive integer, and there are K SSB sets within a pattern period, where the SSB set is the SSB set of the return link, just for description Yes, I won’t repeat them here.
  • the pattern hopping sequence of each node contains M elements, and each pattern in the sequence is repeated R times. After completing M*R SSB set pattern cycles, the IAB node repeats from the first element of the pattern hopping sequence (ie, the first pattern).
  • the IAB node can change the configuration of the patterns and pattern sequences at any time and re-enable the new pattern sequences and/or patterns under controlled conditions. That is, the IAB node may only change the pattern sequence or the pattern and pattern sequence at the same time.
  • the network device (for example, donor) determines the value of L according to the number of nodes that need to measure each other, and configures a pattern hopping sequence for each node.
  • the number of IAB nodes that can be supported by this solution is L M.
  • the two pattern periods are 6 SSB sets, while using the traditional method requires 9 SSB sets. Therefore, the above method can significantly improve the delay of mutual measurement between nodes.
  • the floor function indicates rounding down, and the mod function indicates modulo operation.
  • the pattern hopping sequence obtained by the above formula can ensure that IAB nodes with different numbers n can measure other nodes in at least one pattern period, or have different numbers For the IAB node of n, if the same pattern is used on the 0th pattern period, then a different pattern will be used on the 1st pattern period.
  • the pattern jump sequence of each node adopts the following configuration method:
  • Each node is assigned a number n, and the pattern sequence is obtained by converting the number n into an M-digit L-ary representation, and the m-th element of the pattern-hopping sequence is the m-th of this L-ary representation number Bits, it should be understood that the value of the pattern hopping sequence may be the positive sequence or the reverse sequence of the digits of the L-ary number n.
  • the IAB node number n and or Among them, P(m) represents the value of the m-th element of the pattern hopping sequence, that is, the m-th pattern in the hopping sequence.
  • the value range is ⁇ 0, 1, .., L-1 ⁇ , and the number can be obtained as
  • the pattern hopping sequence of the IAB node of n is (P(0), P(1), ..., P(M-2), P(M-1)).
  • the number of nodes that can be distinguished by the above method is L M , that is, when the number of nodes is less than or equal to L M and each node has a different number, each node can discover each other. This is because when two nodes have different numbers, at least one bit is not equal after converting their numbers to L system, that is, at least one pattern in the pattern hopping sequence is different from other nodes, so any Two nodes can discover each other.
  • the above embodiment provides an optimized method for mutual measurement between nodes.
  • the above parameters need to be configured to ensure that each node cooperates with each other to avoid conflicts.
  • the synchronization signal pattern configuration includes the following steps:
  • the second node sends the pattern configuration information to the first node.
  • the pattern configuration information is used to indicate the pattern parameters of the synchronization signal block.
  • the pattern parameters include pattern period information, node number information, synchronization signal block sending and receiving instructions, the initial time of the initial pattern period, the repetition factor, the initial pattern of the pattern hopping sequence, the pattern sequence order indication, and at least one of the sequence period information .
  • the pattern period information may be the number K of SSB sets in the SSB set group, or may be an index of the pattern period.
  • the K values that can be supported can be given in the manner defined by the protocol, and an index is specified for each K value.
  • the first node can determine the value of K according to the index of the pattern period.
  • the node number information may be the number n configured by the second node for the first node, or it may be that the second node instructs the first node to use some other configured or existing identifier, or is calculated or derived based on the existing identifier,
  • the identifier can be a cell identifier (identity, ID), a physical cell identifier (physical cell identity, PCI), a wireless network temporary identifier (radio network temporary identity, RNTI), a MAC address, an Internet protocol (internet protocol, IP) address One kind.
  • the node number in the IAB system can be reused.
  • DgNB DonorgNB
  • the node number n assigned to the IAB node can be reused.
  • the nodes can be clustered. The numbers of nodes within a cluster will not be repeated, and the numbers between different clusters can be repeated.
  • the node numbers between adjacent clusters are different.
  • the node numbers between adjacent clusters may also be partially the same, but no node numbers are the same at the boundary between two clusters.
  • node number information may be configured only for IAB nodes.
  • PCI can be used as the node number, so as to avoid the redistribution of the node number.
  • the protocol only needs to define one or more of K, a method for generating a pattern hopping sequence, or a sending and receiving indication of a synchronization signal block.
  • the host node only needs to configure the starting time of the initial pattern period for the IAB node.
  • the above scheme for clustering nodes can be used independently as an implementation mode, and does not depend on the steps of the embodiment shown in FIG. 9.
  • the clustering can be used as an implementation method, and does not need to be reflected in the protocol, but the node number is arranged based on the physical location of the node.
  • the protocol only needs to define the pattern and pattern hopping sequence.
  • K can be obtained through system messages, and can also be configured through dedicated signaling, such as RRC signaling, or F1-AP, or F1-AP enhanced protocol. Specific notification methods and message formats are not limited in this application.
  • the second node configures the node number n for the first node. Because of the synchronization of the node number configuration, the nodes in an area can be configured as different, evenly distributed node groups, which is beneficial to the pattern hopping sequence of each node not repeating each other within a sequence period. If the existing node identification is used, the nodes in different groups may be unevenly distributed, which is not conducive to shortening the measurement delay and overhead.
  • the transmission and reception indication of the synchronization signal block is used to indicate the number and/or position of SSB sets received or transmitted in one pattern period.
  • the sending and receiving indication of the synchronization signal block is used to indicate whether K1 or K2 is 1, that is, whether it is a receiving or sending SSB set.
  • K1 and K2 are as described above and will not be repeated here.
  • the protocol definition has a default value of K, for example, the default K is 3, and when K is not configured, the value of K is the default value.
  • the K value does not necessarily need to be sent to the first node.
  • the definition of the repetition factor is as described above. Due to the configuration of the repetition factor, the measurement delay may increase, but the reliability of the measurement can also be guaranteed. Therefore, the configuration of the repetition factor is optional.
  • the start time of the initial pattern is used to indicate the start time of the first pattern in the pattern hopping sequence. It can be indicated by the frame number and time slot number, or the SSB can be determined according to the configuration parameters of the synchronization signal, such as the operating frequency.
  • the SSB index in the set is determined by the frame number and/or subframe number and the SSB index.
  • the subframe number may also be a slot number. It can also be other representation methods, for example, starting from the qth frame after receiving the currently indicated frame number, q is an integer. This application does not restrict the method for expressing the time when a specific pattern starts.
  • the initial pattern of the pattern hopping sequence is used to indicate from which pattern the pattern hopping sequence starts. By default, when the pattern sequence is automatically determined by the node number n, the initial pattern may not be specified. If the second node specifies an initial pattern, the first node starts from the initial pattern and performs hopping according to the pattern hopping sequence determined in the subsequent steps.
  • the pattern sequence order indication is used to indicate whether the pattern hopping sequence adopts the high order or low order of each bit of the node number represented by the L system, that is, the pattern hopping sequence starts from the high order of each bit represented by the L system of the node number , Or start the pattern jump sequence from the low bit. It should be understood that the pattern hopping sequence may also be defined by default to start the pattern hopping sequence starting from the low bit or high bit of each bit represented by the L system. When the protocol is defined, the pattern sequence order indication does not have to be signaled.
  • the sequence period information is the period information of the pattern hopping sequence, that is, the number of elements included in the pattern hopping sequence, that is, the number of pattern periods.
  • the sequence period information can control the length of time the sequence repeats.
  • the pattern configuration information includes indicating that all SSBs of the first node are in the receiving mode.
  • the pattern can be regarded as a special pattern.
  • other nodes cannot discover the existence of the first node. This is very useful in some special cases. For example, when the first node's backhaul link has quality problems, the node cannot provide relay transmission services for other nodes, and the node needs to measure the remaining nodes as soon as possible. At this time, the transmission of this message may be triggered by an event.
  • the node when the first node experiences beam failure or link failure, the node automatically switches to the full-reception mode, or when the first node receives the During the first notification signaling, the first node automatically switches to the full reception mode, the first notification signaling indicates that the upper node has a beam failure or link failure, or the first notification signaling directly triggers the first node to perform a full reception status.
  • the configuration of the return link SSB set may be an independent embodiment and does not depend on other steps.
  • the second node sends the first node pattern configuration information of other nodes.
  • other nodes are neighbors of the first node, and the SSB sent by the neighbors of the first node on the backhaul link may be received by the first node.
  • the first node determines the pattern period that can be measured to other nodes according to the pattern configuration information of other nodes.
  • the pattern configuration information of other nodes may include one or more of the above pattern parameters, which will not be repeated here.
  • the pattern period information may further include: the time or the number of times that the first node sends and receives synchronization signal blocks to achieve mutual measurement between nodes or node groups.
  • the duration or the number of times that the first node sends and receives the synchronization signal block can be configured by the duration or the number of times of the synchronization signal block, or can be configured by the duration or the number of times of the pattern period, which is not limited in this application.
  • the time or the number of times that the first node sends and receives the synchronization signal block the period of time for which the pattern is periodically transmitted or continued can be defined.
  • the first node acquires pattern information of the synchronization signal block.
  • the first node may obtain the pattern configuration information of the synchronization signal block through S901 to obtain the pattern configuration information, so that the pattern may be determined according to the pattern configuration information.
  • the pattern may be any pattern in the pattern period.
  • the pattern determined by the first node is mainly the reception or transmission mode of the SSB set in the pattern period.
  • the first node may also obtain the pattern configuration information of the synchronization signal block through the pre-configured parameters. If all the pattern parameters in step S901 are defined or pre-configured by the protocol, the first node does not need the second node to explicitly configure the pattern configuration information of the first node through signaling. For example, the node number uses PCI, and K uses the default value 3 defined by the protocol. By default, an SSB set is configured to receive within one pattern period. After the first node finishes starting, or starts to send the SSB of the access link, it starts to receive or send the SSB of the backhaul link. At this time, the first node can obtain the pattern only by acquiring the pre-configured pattern parameters.
  • the sending configuration of the SSB set is sent by the donor or superior node to the DU function of the IAB node
  • the receiving configuration of the SSB set is sent by the donor or superior node to the MT function of the IAB node.
  • the IAB node implicitly determines the above SSB set transceiver pattern according to the sending and receiving configuration.
  • the sending and receiving pattern may be implemented through a SSB set transmission and reception priority defined by a protocol or configured by a superior node.
  • the sending or receiving of SB set can be semi-persistent, periodic, or dynamic.
  • Semi-persistent includes the SSB set configuration, and then the SSB set transmission and/or reception process is enabled through the activation and/or deactivation process (signaling).
  • the donor or superior node configures a periodic SSB set for the DU of the IAB node, and can also configure the number K of SSB sets in the set group. Since the SSB sets are periodic, the periodic SSB sets are divided into K groups, and a pattern period is formed between every K SSB sets. At this time, the pattern period (or the period of the SSB set group) is K times the set period of the SSB, and the K SSBs of an SSB set group are the K periods of the SSB set, as shown in FIG. 7.
  • the donor or superior node configures the DU of the IAB node for multiple periods or semi-persistent SSB sets, as shown in Figure 8.
  • IAB node 0 As an example, three periodic SSB sets are configured.
  • SSB set 801, SSB set 802, and SSB set 803 are three periodic SSB sets.
  • SSB set 801 and SSB set 804 are the same SSB set configuration, and the period is the interval between SSB set 801 and SSB set 804; SSB set 802 and SSB set 805 are the same SSB set configuration, and the period is SSB set 802 and The interval between SSB set 805; SSB set 803 and SSB set 806 are the same SSB set configuration, and the period is the interval between SSB set 803 and SSB set 806.
  • IAB node 1 and IAB node 2 are the same and will not be repeated here.
  • the SSB set group or pattern period has no fixed relationship with the period of consecutive SSB sets.
  • Continuous SSB sets include two adjacent SSB sets in the time domain, which may come from the configuration of different SSB sets.
  • the SSBs in the SSB set group come from different periodic SSB set configurations. It should be understood that the periods of different SSB sets may be the same, may be different, and do not overlap with each other in the time domain.
  • the number of K is the same as the number of SSB sets.
  • each SSB set has the same period
  • the SSB set group period is the same as the SSB set period
  • the SSB sets in an SSB set group come from different SSB set configurations.
  • This configuration method can be well adapted to the current SSB set configuration method, and only needs to expand the existing configuration method.
  • This application does not limit the specific form of the SSB set transmission configuration of the DU.
  • the configuration of the IAB DU by the upper-level node is performed through the F1-AP interface or the F1-AP enhanced interface, but the situation that is performed through RRC signaling is not excluded.
  • the donor or superior node can also configure SSB set reception for the MT of the IAB node.
  • the receiving mode of the SSB set in the pattern information can be completed by one set of SSB set configuration, or by multiple sets of configuration. The specific method is similar to the above method of FIG. 7 or 8, except that the receiving or sending mode of the SSB set is different and will not be described in detail.
  • the donor or superior node directly configures the receiving pattern for the IAB node.
  • the donor or superior node configures the MT for periodic SSB set reception.
  • the reception period of the SSB set is equal to the period of the SSB set group, that is, the period of the SSB set pattern.
  • the reception of the SSB set can be shifted (offset), so as to realize the pattern jump.
  • the superior node may notify the IAB node of the measurable node or the target measurement node in different patterns or different SSB set reception periods.
  • the sending and receiving pattern sequence adopted by the IAB node is ⁇ P0, P1, P2 ⁇
  • the corresponding SSB set reception period is the period of the SSB set group, and different measurement shifts are adopted in different reception periods. Get different sending and receiving patterns. Therefore, at this time, the hopping sequence of the SSB set pattern can be reflected by measuring the shift of the configured shift value. Since the SSB set reception period is the period of the SSB set group, in this case, the period of the SSB set group may not need to be explicitly configured.
  • the configuration of the IAB DU by the upper-level node is performed through RRC signaling, but the case of F1-AP is not excluded.
  • the superior node configures multiple sets of SSB set reception for the IAB node, for example, M sets (where M is the pattern hopping sequence length), and different SSB set reception configurations may have different periods and/or Or shift value.
  • M is the pattern hopping sequence length
  • different SSB set reception configurations may have different periods and/or Or shift value.
  • the reception period of each SSB set is M times the pattern period, and different SSB set receptions use different configurations, so as to achieve the above-mentioned SSB set transceiver pattern and the hopping of the transceiver pattern.
  • the superior node may notify the IAB node of the measurable node or the target measurement node in different SSB set reception configurations.
  • the sending and receiving of the SSB set should have priority, which can be defined by the protocol, and can also be configured by the donor or superior node.
  • priority can be defined by the protocol, and can also be configured by the donor or superior node.
  • the IAB node receives at all SSB set positions, that is, in a fully received state.
  • the IAB node enters the full-reception state, such as the signaling trigger of the higher-level node, or automatic triggering after its own state changes, for example, the IAB node automatically enters the full-reception state after the link fails or the beam fails.
  • the full reception state the SSB set reception behavior of the IAB node is different from the normal case.
  • the full receiving state can be achieved in three ways: 1). The receiving period of the SSB set is reduced; 2) The receiving period of the SSB set is unchanged, but the IAB node measures at all shifts within the period. 3).
  • this set of SSB set reception is exclusively used for full reception, and is normally inactive.
  • the IAB node cannot detect the SSB set of any node, resulting in waste of resources. Therefore, the following constraint may be added:
  • the IAB node may not receive the SSB set.
  • the SSB set sending position may be the SAB set sending position of the IAB node itself, or may be the SSB set sending position of the remaining nodes notified by the superior node to the IAB node.
  • the first node determines the pattern hopping sequence of the synchronization signal block.
  • the first node determining the pattern hopping sequence of the synchronization signal block includes: the first node receives the information of the pattern hopping sequence sent by the second node; or, the first node determines based on the node number information, pattern period information, and sequence period information Pattern jump sequence.
  • the information of the pattern hopping sequence includes one or more of the initial pattern of the pattern hopping sequence, the sequence sequence indication of the pattern, sequence period information, and the index of the pattern hopping sequence, which are used to assist in determining the pattern hopping sequence.
  • the information of the pattern hopping sequence may also be a pattern sequence configured by the second node or an index of the pattern sequence.
  • a limited pattern hopping sequence can be defined through a protocol, and these pattern hopping sequences are numbered (indexed), and the pattern hopping sequence can be uniquely determined by the pattern hopping sequence index.
  • a pattern hopping sequence corresponding to different K values and M values can be defined, and an index can be arranged for the different sequences.
  • the second node indicates the pattern sequence used by the first node through the pattern hopping sequence index.
  • the first element of the pattern hopping sequence determined by the first node starts from the specified initial pattern, and then follows the pattern hopping sequence determined by the mathematical method described above
  • the second node does not specify the initial pattern of the pattern hopping sequence, or the protocol definition starts from the low or high bit of the L number of the node number, only the low or high bit of the node number of the L number needs to be used according to the sequence period. Just start.
  • the second node notifies the first node of the pattern hopping sequence of multiple third nodes.
  • the third node is the remaining IAB node or the remaining network equipment.
  • the specific notification method includes the second node notifying the correspondence between the identifier of the third node and the pattern hopping sequence, where the representation of the third node may be identification information such as PCI, etc.
  • the application does not limit the identifier of the third node.
  • the notification of the pattern hopping sequence is the same as the above solution and will not be repeated here.
  • the first node determines the reception and/or transmission of the synchronization signal block.
  • the first node obtains the pattern hopping sequence. After the start time of the initial pattern period, it can start to receive or send the SSB set on the backhaul link. According to the pattern in the pattern hopping sequence, within one pattern period, the time domain information of the received or transmitted SSB set is determined according to the corresponding pattern.
  • the node uses the pattern P0.
  • the pattern P0 indicates that the 0th SSB set is for reception, and the 1st and 2nd SSB sets are for transmission, then the first node is at the 0th SSB
  • the position of the set measures the SSB of other nodes.
  • the first node sends a pattern configuration information response to the second node.
  • the second node is notified in response to the pattern configuration information that the pattern configuration information is received.
  • the first node can obtain the receiving or sending mode of the SSB set on the backhaul link within a pattern period, and through pattern hopping, the nodes in the same group can measure each other after the pattern hopping.
  • the above method can reduce the time delay of mutual measurement between nodes, and solve the problem of too long time to complete mutual measurement when the number of IABs in the system is too long, and the system configuration is complicated.
  • FIG. 10 is a schematic diagram of updating pattern configuration information provided by an embodiment of the present application.
  • the pattern configuration information of the node can be updated. This includes:
  • S1001-S1005 are the same as steps S901-S905 and will not be repeated here.
  • the second node sends a pattern reconfiguration instruction to the first node.
  • the pattern reconfiguration instruction is used to instruct the first node to reconfigure the pattern configuration information.
  • the first node can be caused to update the pattern and/or pattern hopping sequence.
  • the pattern reconfiguration indication may include one or more parameters in the pattern parameters in the foregoing pattern configuration information, and specific parameters are not described in detail.
  • the second node reconfigures the pattern configuration information of the first node, many parameters may not need to be reconfigured, but only some updated parameters need to be configured, for example, the node number information does not need to be reconfigured, and the pattern period Information K may not need to be reconfigured, but sequence period information needs to be reconfigured.
  • the pattern period information K may also be reconfigured. For example, when the IAB in the system increases or decreases sharply, K will need to be reconfigured.
  • the pattern reconfiguration indication may further include: the start time of the updated pattern hopping sequence and/or pattern configuration information. If you do not specify a new start time, you can define the protocol to start transmission or reception of a new pattern hopping sequence and/or pattern synchronization signal after q frames or subframes or time slots after receiving the pattern reconfiguration indication , Q can be the value specified by the protocol, generally q is an integer.
  • the start time of the pattern hopping sequence and/or the pattern configuration information is the start time of the new initial pattern period. The start time of the initial pattern period is as described above and will not be repeated here.
  • the first node When the pattern configuration information is reconfigured, the first node needs to determine a new pattern hopping sequence and/or pattern according to the new pattern configuration information, and according to the starting time of the initial pattern period, start a new SSB set receiving or sending mode.
  • the first node sends a pattern reconfiguration indication response to the second node.
  • the first node After receiving the pattern reconfiguration instruction, the first node sends a pattern reconfiguration instruction response to the second node.
  • the problem that the pattern and/or pattern hopping sequence measured by the nodes may not be optimal after the IAB node changes in the IAB system is solved.
  • the reception and/or transmission mode of the synchronization signal on the backhaul link is optimized to reduce measurement delay and resource consumption.
  • the pattern configuration information, the pattern configuration information response, the pattern reconfiguration indication, and the pattern reconfiguration indication response may be performed through the RRC or the F1-AP protocol or the enhanced version of the F1-AP protocol. transmission.
  • the specific signaling interface depends on the protocol definition, and this application does not make any restrictions.
  • each network element such as the first node and the second node, includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the first node and the second node may be divided into functional modules according to the above method examples.
  • the functional modules may be divided into various functional modules, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • the second node may be an IAB node or a host base station.
  • FIG. 11 is a schematic diagram of a possible structure of the IAB node involved in the foregoing embodiment provided by the present application.
  • the first node is an IAB node.
  • the first node includes: a receiving unit 1101, an acquiring unit 1102, and a sending unit 1103.
  • the receiving unit 1101 is used to support the first node to execute S901 in FIG. 9 or S1001 and S1006 in FIG. 10, and to support the first node in the foregoing embodiment to receive the pattern reconfiguration instruction sent by the second node to perform the pattern And the reconfiguration function of the pattern hopping sequence, and the function of receiving SSBs sent by other IAB nodes to realize measurement and node discovery, and the function of receiving the information of the pattern hopping sequence sent by the second node.
  • the function of the pattern configuration information of other nodes sent by the two nodes is used to support the first node to execute S902 in FIG. 9 or S1002 in FIG. 10; the processing unit 1103 is used to support the first node to execute FIG. 9 In S903 and S904, or S1003 and S1004 in FIG. 10, and for supporting the first node in the foregoing embodiment to process the received message or signaling.
  • the first node further includes: a sending unit 1104, configured to support the first node to execute S905 in FIG. 9 or S1005 and S1007 in FIG. 10, and to support the reception and/or synchronization of the first node in the foregoing embodiment by the first node Or after sending, send the synchronization signal block on the backhaul link.
  • a sending unit 1104 configured to support the first node to execute S905 in FIG. 9 or S1005 and S1007 in FIG. 10, and to support the reception and/or synchronization of the first node in the foregoing embodiment by the first node Or after sending, send the synchronization signal block on the backhaul link.
  • the sending unit 1101 may be a transmitter
  • the receiving unit 1103 may be a receiver.
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • FIG. 12 is a schematic diagram of a possible logical structure of the first node involved in the foregoing embodiment provided by an embodiment of the present application.
  • the first node includes: a processor 1202.
  • the processor 1202 is used to control and manage the actions of the first node.
  • the processor 1202 is used to support the first node to execute S903 and S904 in FIG. 9 and FIG. 10 in the foregoing embodiment.
  • S1003 and S1004 in FIG. 3 and for supporting the first node in the foregoing embodiment to process the received message or signaling; the processor 1202 may also be used to support S902 in FIG. 9 performed by the first node in the foregoing embodiment.
  • the first node may further include: a memory 1201 and a communication interface 1203; the processor 1202, the communication interface 1203, and the memory 1201 may be connected to each other or via a bus 1204.
  • the communication interface 1203 is used to support the first node to communicate, and the memory 1201 is used to store the program code and data of the first node.
  • the processor 1202 calls the code stored in the memory 1201 for control and management.
  • the memory 1501 may or may not be coupled with the processor.
  • the processor 1202 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination that realizes a computing function, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1204 may be a peripheral component interconnection (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, or the like.
  • PCI peripheral component interconnection
  • EISA Extended Industry Standard Architecture
  • the processor 1202, the communication interface 1203, and the memory 1201 may also be integrated in an integrated circuit to perform all the actions or functions performed by the first node in the foregoing embodiments.
  • FIG. 13 is a schematic diagram of a possible structure of the second node involved in the foregoing embodiment provided by the present application.
  • the second node is a relay node.
  • the second node includes: a sending unit 1301 and a receiving unit 1303.
  • the sending unit 1301 is used to support the second node to execute S901 in FIG. 9, S1001 and S1006 in FIG. 10, and to support the second node to send the pattern reconfiguration instruction and the first node to the first node in the foregoing embodiment
  • the node sends the pattern configuration information of other nodes;
  • the receiving unit 1303 is used to support the second node to execute S905 in FIG. 9 or S1005 and S1007 in FIG. 10.
  • the second node further includes: a processing unit 1302, which is used to support the second node to perform processing of the received message in FIG. 9 or determine parameters for the sent message, such as related parameters in the pattern configuration information.
  • the sending unit 1301 may be a transmitter
  • the receiving unit 1303 may be a transmitter
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • the second node includes: a processor 1402.
  • the processor 1402 is used to control and manage the action of the second node, for example, the processor 1402 is used to support the second node to perform various reception or transmission in FIG. 9 in the foregoing embodiment
  • the processing of the message prepares the relevant parameters of the relevant pattern configuration information for the first node.
  • the second node may further include: a memory 1401 and a communication interface 1403; the processor 1402, the communication interface 1403, and the memory 1401 may be connected to each other or via a bus 1404.
  • the communication interface 1403 is used to support the second node to communicate, and the memory 1401 is used to store the program code and data of the second node.
  • the processor 1402 calls the code stored in the memory 1401 for control and management.
  • the memory 1701 may or may not be coupled with the processor.
  • the processor 1402 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1704 may be a peripheral component interconnection standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, or the like.
  • PCI peripheral component interconnection standard
  • EISA Extended Industry Standard Architecture
  • the processor 1402, the communication interface 1403, and the memory 1401 may also be integrated into an integrated circuit to perform the actions or functions performed by all the second nodes in the foregoing embodiments.
  • a readable storage medium stores computer-executable instructions.
  • a device which may be a single-chip, chip, etc.
  • processor executes FIGS. 9 and 10 And when reconfiguring the pattern configuration information of the first node, read the computer execution instruction in the storage medium.
  • the foregoing readable storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product includes computer-executable instructions, which are stored in a computer-readable storage medium; at least one processor of the device may be available from the computer
  • the read storage medium reads the computer-executed instruction, and at least one processor executes the computer-executed instruction so that the device implements the steps of the first node and the second node in the synchronization signal transmission and reception methods provided in FIGS. 9 and 10.
  • a communication system is further provided.
  • the communication system includes at least a first node and a second node.
  • the first node may be the first node provided in FIG. 11 or FIG. 12, for performing the steps of the first node in the method for transmitting and receiving the synchronization signal provided in FIG. 9 and FIG. 10; and/or, the second The node may be the second node provided in FIG. 13 or FIG. 14, and is used to perform the steps performed by the second node in the synchronization signal transmission and reception methods provided in FIG. 9 and FIG. 10.
  • the communication system may include a plurality of first nodes and a second node, or include a plurality of first nodes and a second node, and the second node configures the pattern configuration information of the plurality of first nodes so that the system Multiple first nodes can measure and discover each other, and minimize measurement delay and resource overhead.
  • the node in the system by configuring the pattern configuration information of the first node, the node in the system obtains the pattern hopping sequence, and the SSB set is received or received according to the obtained pattern hopping sequence and the pattern in the sequence. Sending, reducing the delay of mutual discovery between nodes in the IAB system, and reducing overhead, while making the configuration of the system simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种同步信号的发送与接收方法及装置,涉及通信技术领域,用于中继系统中中继节点在回传链路上发送或接收SSB set的优化,减小IAB节点间相互发现的时延和资源开销。所述方法包括:第一节点获取同步信号块的图案配置信息,图案配置信息用于指示同步信号块的图案参数;第一节点确定同步信号块的图案跳变序列,图案跳变序列指示同步信号块在不同图案周期内的图案;第一节点根据图案配置信息和所述图案跳变序列确定同步信号块的接收和/或发送。

Description

一种同步信号发送和接收的方法及装置 技术领域
本发明涉及通信技术,具体涉及无线通信系统中中继节点的同步信号发送和接收的方法和装置。
背景技术
随着移动通信技术的不断发展,频谱资源日趋紧张。为了提高频谱利用率,未来的基站部署将会更加密集。此外,密集部署还可以避免覆盖空洞的出现。在传统蜂窝网络架构下,基站通过光纤与核心网建立连接。然而,光纤的部署成本非常高昂。无线中继节点(relay node,RN)通过无线回传链路与核心网建立连接,可节省部分光纤部署成本。
一般情况下,无线中继节点与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网。无线中继节点可为多个下级节点提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点;中继节点的下级节点可以是终端设备(user equipment,UE),也可以是另一个无线中继节点。
无线中继按照回传链路和接入链路使用的无线资源分为带内中继和带外中继。带内中继是回传链路与接入链路共享相同频段的中继方案,由于没有使用额外的频谱资源,带内中继具有频谱效率高及部署成本低等优点。带内中继一般具有半双工的约束,具体地,中继节点在接收其上级节点发送的下行信号时不能向其下级节点发送下行信号,而中继节点在接收其下级节点发送的上行信号时不能向其上级节点发送上行信号。第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)无线接入网(radio access network,RAN)的新空口(new radio,NR)采用带内中继方案。NR带内中继方案被称为一体化的接入和回传(integrated access and backhaul,IAB),而一体化的接入和回传的中继节点被称为IAB节点(IAB node)。
当网络中存在多个IAB节点时,IAB节点需要相互发现或测量,用以建立多连接、维护备用连接或干扰测量等目的。一般情况下,IAB节点可通过测量同步信号块(synchronization signal block,SSB)等参考信号发现其余IAB节点。同时,IAB节点还需要发送SSB等参考信号,用于UE或其余IAB节点对IAB节点进行发现和测量。由于上述半双工约束,IAB节点不能同时进行SSB的发送和接收,而不同IAB节点的SSB位置一般又位于同样的时间位置,因此,IAB节点在测量其余节点SSB的时候需要停止自身SSB的发送。然而,IAB下属UE假设IAB节点的SSB是周期性持续发送的,IAB节点停止发送进行测量将导致IAB节点下属UE测量错误。为解决上述问题,可引入用于IAB节点相互测量的回传SSB(backhaul SSB,BH-SSB),BH-SSB可以不考虑UE的行为,因此有利于IAB节点的相互测量。
当网络中IAB节点较少时,上述BH-SSB的方法可能能够满在一定时间内完成IAB节 点的相互测量。但是,当IAB节点较多时,可能需要进行所有节点的相互测量。此时,测量所需要的配置可能较为复杂,或完成IAB节点的互测量需要较长的时间。本申请为解决IAB系统中相互测量的节点较多时配置复杂或者测量时间较长的问题。
发明内容
本申请的实施例提供一种同步信号的发送与接收方法及装置,解决了中继系统中当IAB节点较多时,IAB节点间相互测量和发现的时间较长,配置复杂的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种同步信号的发送与接收方法,包括:第一节点获取同步信号块的图案配置信息,图案配置信息用于指示同步信号块的图案参数;第一节点确定同步信号块的图案跳变序列,图案跳变序列指示同步信号块在不同图案周期内的图案;第一节点根据图案配置信息和所述图案跳变序列确定同步信号块的接收和/或发送。上述技术方案中,通过对第一节点发送的图案配置信息进行配置,使得第一节点可以获得SSB set在不同图案周期中接收或发送的模式,通过图案跳变,使得IAB系统中的IAB节点在经过一个图案跳变序列周期后,可以完成节点间的相互测量和发现,减小了节点间相互发现的时延,从而降低了SSB set发送的开销,并且简化了宿主节点对个IAB节点的配置。
在第一方面的一种可能的实现方式中,图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。上述技术方案中,通过对图案参数进行配置,使得得以节点可以正确获得图案以及图案跳变序列,从而为节点发现提供配置的依据。
在第一方面的一种可能的实现方式中,第一节点获取同步信号块的图案配置信息包括:第一节点接收第二节点发送的图案配置信息;或者,图案配置信息是预定义的。上述技术方案中,通过图案配置信息的显式配置,或者通过协议定义的方式确定图案配置的参数,使得第一节点可以根据图案配置信息确定图案和图案跳变序列,实现节点间的相互测量。
在第一方面的一种可能的实现方式中,第一节点确定所述同步信号块的图案跳变序列包括:第一节点接收第二节点发送的图案跳变序列的信息;或者,第一节点根据节点编号信息,图案周期信息,序列周期信息确定图案跳变序列。上述技术方案中,根据参数配置方法的不同,图案跳变序列的确定方法不同,显式的图案跳变序列简化了第一节点确定图案跳变序列的步骤,使得第一节点的图案跳变序列是确定的。或者第一节点通过指定的参数来生成图案跳变序列,可以减少空口传输的开销。
在第一方面的一种可能的实现方式中,第一节点接收第二节点发送的图案重配指示,所述图案重配指示用于指示第一节点重新配置所述图案跳变序列和/或图案配置信息。上述技术方案中,通过对图案跳变序列和/或图案配置信息的重新配置,使得当系统中的IAB节点增多或减少时,可以优化系统中IAB节点在回传链路上SSB set的发送和接收。
在第一方面的一种可能的实现方式中,图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。上述技术方案中,使得对图案跳变序列和/或图案配置信息的重新配置时,各节点的信息保持一致,避免各节点相互不协同带来相互测量时测量不到 或不能发现的情况。
在第一方面的一种可能的实现方式中,图案周期信息包括:第一节点发送和接收同步信号块持续的时间或次数以实现节点或节点组之间的相互测量。
在第一方面的一种可能的实现方式中,图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的至少一种。上述技术方案中,通过图案跳变序列的信息使得第一节点可以确定图案跳变序列。
在第一方面的一种可能的实现方式中,节点编号信息包括:配置的节点编号,cell ID,PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种。上述技术方案中,通过节点的编号,可以使得IAB系统中各节点有规律生成图案和图案跳变序列,保证节点间的相互测量和发现。
在第一方面的一种可能的实现方式中,第一节点接收第二节点发送的其他节点的图案配置信息。上述技术方案中,通过对其他节点的图案配置信息,第一节点可以更好确定它的SSB set的接收或发送模式,避免和其他节点相互碰撞而导致无法测量和发现。
第二方面,提供一种同步信号的发送与接收方法,包括:第二节点向第一节点发送同步信号块的图案配置信息,图案配置信息用于指示第一节点在回传链路上的同步信号块的图案参数;第二节点接收第一节点发送的图案配置信息响应。上述技术方案中,通过对第一节点发送的图案配置信息进行配置,使得第一节点可以获得SSB set在不同图案周期中接收或发送的模式,通过图案跳变,使得IAB系统中的IAB节点在经过一个图案跳变序列周期后,可以完成节点间的相互测量和发现,减小了节点间相互发现的时延,从而降低了SSB set发送的开销,并且简化了宿主节点对个IAB节点的配置。
在第二方面的一种可能的实现方式中,图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。上述技术方案中,通过对图案参数进行配置,使得得以节点可以正确获得图案以及图案跳变序列,从而为节点发现提供配置的依据。
在第二方面的一种可能的实现方式中,第二节点向第一节点发送图案重配指示,图案重配指示用于指示第一节点重新配置所述图案跳变序列和/或图案配置信息。上述技术方案中,通过对图案跳变序列和/或图案配置信息的重新配置,使得当系统中的IAB节点增多或减少时,可以优化系统中IAB节点在回传链路上SSB set的发送和接收。
在第二方面的一种可能的实现方式中,图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。上述技术方案中,使得对图案跳变序列和/或图案配置信息的重新配置时,各节点的信息保持一致,避免各节点相互不协同带来相互测量时测量不到或不能发现的情况。
在第二方面的一种可能的实现方式中,图案周期信息包括:第一节点发送和接收所述同步信号块持续的时间或次数以实现节点或节点组之间的相互测量。
在第二方面的一种可能的实现方式中,图案配置信息包括图案跳变序列的信息,图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的至少一种。上述技术方案中,通过图案跳变序列的信息使得第一节点可 以确定图案跳变序列。
在第二方面的一种可能的实现方式中,节点编号信息包括:配置的节点编号,小区标识cell ID,物理小区标识PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种。
在第二方面的一种可能的实现方式中,第二节点向第一节点发送其他节点的图案配置信息。上述技术方案中,通过对其他节点的图案配置信息,第一节点可以更好确定它的SSB set的接收或发送模式,避免和其他节点相互碰撞而导致无法测量和发现。
在本申请的又一方面,提供了一种第一节点,第一节点用于实现上述第一方面的任一种可能的实现方式所提供的同步信号的发送与接收方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第一节点的结构中包括处理器,该处理器被配置为支持该用户设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送与接收方法。可选的,第一节点还可以包括存储器和通信接口,该存储器中存储代码和数据,该存储器与处理器耦合,通信接口与处理器或存储器耦合。
在本申请的又一方面,提供了一种第二节点,第二节点用于实现上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送与接收方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第二节点的结构中包括处理器,该处理器被配置为支持网络设备执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送与接收方法的功能。可选的,网络设备还可以包括存储器和通信接口,存储器中存储处理和/或基带处理器所需代码,存储器与处理器耦合,通信接口与存储器或处理器耦合。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送与接收方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送与接收方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送与接收方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送与接收方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个设备,该多个设备包括第一节点、第二节点;其中,第一节点为上述各方面所提供的第一节点,用于支持第一节点执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送与接收方法;和/或,第二节点为上述各方面所提供的第二节点,用于支持第二节点执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送与接收方法。
在申请的又一方面,提供一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第一节点的处理单元执行的步骤,例如,确定同步信号块的图案跳变序列,根据所述图案配置信息和所述图案跳变序列确定所述同步信号块的接收和/或 发送,对接收的图案配置信息进行处理,获取同步信号块的图案配置信息。所述装置还用于执行前述其它方面或实施例中已经描述的第一节点处理或动作,此处不再赘述。
在申请的又一方面,提供另一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第二节点的处理单元执行的步骤。支持第二节点执行对前述实施例中对各种接收或发送的消息的处理,为第一节点确定图案配置信息的相关参数。所述另一种装置还用于执行前述其它方面或实施例中已经描述的第二节点的处理或动作,此处不再赘述。
可以理解,上述提供的同步信号的发送与接收方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的IAB通信系统;
图2为本申请实施例提供的NR中继系统一种可能的网络拓扑的示例;
图3为本申请实施例提供的三个IAB节点的BH-SSB set的接收和发送时序;
图4为本申请实施例提供的K=2,K1=K2=1时的图案;
图5为本申请实施例提供的K=3时的图案;
图6为本申请实施例提供的图案跳变序列中重复因子为4的示例;
图7为本申请实施例提供的图案跳变序列中各图案间的间隔是SSB set周期的整数倍的示意图;
图8为本申请实施例提供的图案跳变序列中各图案间的间隔不是SSB set周期的整数倍的示意图;
图9为本申请实施例提供的同步信号图案配置方法;
图10为本申请实施例提供的图案配置信息更新的示意图;
图11为本申请实施例提供的第一节点的一种可能的结构示意图;
图12为本申请实施例提供的第一节点的一种可能的逻辑结构示意图;
图13为本申请实施例提供的第二节点的一种可能的结构示意图;
图14为本申请实施例提供的第二节点的一种可能的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。本申请实施例中的“包括A或B中的一个或多个”可以表示:包括A,包括A和B,包括B这三种 情况。本申请实施例中的“包括A、B或C中的一个或多个”可以表示:包括A和B和C,包括A和B,包括A和C,包括B和C,包括A,包括B,包括C这7种情况。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
考虑到未来无线网络的高带宽,NR考虑引入IAB方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传中继,本申请将具有一体化的接入和回传的中继节点称为一体化的接入和回传节点(IAB node)以区分长期演进(long term evolution,LTE)系统的中继。
为了更好地理解本发明实施例公开的一种测量信号配置的方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回传IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或多个终端设备(terminal)101,一个或多个中继节点IAB node,及该IAB node 110所服务的一个或多个终端设备111。通常基站100被称为宿主基站(donor next generation node B,DgNB),IAB node 110通过无线回传链路113连接到基站100。宿主基站在本申请中也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。IAB node是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。
一体化的接入和回传系统还可以包括多个其他IAB node,例如IAB node 120和IAB node 130,IAB node 120是通过无线回传链路123连接到IAB node 110以接入到网络 的,IAB node 130是通过无线回传链路133连接到IAB node 110以接入到网络的,IAB node 120为一个或多个终端设备121服务,IAB node 130为一个或多个终端设备131服务。图1中,IAB node 110和IAB node 120都通过无线回传链路连接到网络。在本申请中,所述无线回传链路都是从中继节点的角度来看的,比如无线回传链路113是IAB node 110的回传链路,无线回传链路123是IAB node 120的回传链路。如图1所示,一个IAB node,如120,可以通过无线回传链路,如123,连接另一个IAB node 110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。应理解,本申请中用IAB node仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB node可以泛指任何具有中继功能的节点或设备,本申请中的IAB node和中继节点的使用应理解具有相同的含义。
为描述方便,以下定义本申请中用到的基本术语或概念。
上级节点:把提供无线回传链路资源的节点,如110,称为IAB node 120的上级节点。上级节点也可以称为上游节点。应理解,上级节点不限于提供无线回传链路资源的直接上级节点,包括所有提供到宿主基站的传输的链路上提供无线回传链路资源的节点。直接上级节点是指为中继节点直接提供传输资源的节点,如,IAB node 110为IAB node 120的直接上级节点。
下级节点:把使用回传链路资源向网络进行数据传输,或者接收来自网络的数据的节点称为下级节点,如,120则称为中继节点110下级节点,网络为核心网或者其他接入网之上的网络,如因特网,专网等。类似的,下级节点不限于为其提供无线回传链路资源的直接下级节点,包括所有提供到目标节点的传输的链路上提供无线回传链路资源的节点。直接下级节点是指为其直接提供传输资源的节点,如,IAB node 120为IAB node 110的直接下级节点。
接入链路:UE和IAB node或IAB宿主节点(IAB donor)之间的链路。或者,接入链路包括某个节点和它的下级节点进行通信时所使用的无线链路。接入链路包括上行接入链路和下行接入链路。上行接入链路也被称为接入链路的上行传输,下行接入链路也被称为接入链路的下行传输。
回传链路:IAB node和IAB子节点(IAB child node)或者IAB父节点(IAB parent node)之间的链路。回传链路包括和IAB子节点或者IAB父节点的下行传输的链路,以及和IAB子节点或者IAB父节点的上行传输的链路。IAB节点向IAB父节点进行数据传输,或者接收IAB子节点的上行传输被称为回传链路的上行传输。IAB节点接收IAB父节点的数据传输,或者向IAB子节点进行的数据传输被称为回传链路的下行传输。为了对UE和IAB节点进行区分,IAB节点与IAB父节点之间的回传链路被又称为上级回传链路(parent BH),而IAB节点与IAB子节点之间的回传链路被称为下级回传链路(child BH)。
波形参数:是指一个子载波集合,或者一定带宽或载波的一部分的物理子载波的参数,波形参数包括以下参数中的至少一种:子载波间隔、循环前缀(cyclic prefix,CP)长度、时间间隔(transmission time interval,TTI)、符号长度、符号数、μ。其中μ是一个大于或等于0的整数,可以取值0到5,每个μ对应一个特定的子载波间隔和CP,子载波间隔和μ的关系为Δf=2 μ·15[kHz],其中Δf为子载波间隔,Hz为频率的基本单位,kHz表示kilo Hz,即千赫兹。
时隙:是NR中的基本的时域单元,一个时隙可以包含14或12个符号,依赖于时隙所采用的波形参数中的CP长度。应理解,在有些情况下,时隙和子帧是相同的,例如,当波形参数中的子载波间隔为15KHz的时候,时隙和子帧可以是相同的。同样地,时隙不应局限于上述定义,在有些情况下,还可以定义mini-slot,即,一个或多个符号也可以称为一个时隙,本申请中的时隙包括mini-slot的概念。而符号一般指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,但是,不应理解为仅限于OFDM的符号,还可以包含其他波形的符号,如单载波正交频分复用的符号等。一个子帧为可以为,例如1ms,一个子帧可以包含一个或多个时隙。当一个子帧仅包含一个时隙时,子帧和时隙相同。下文中的时隙或子帧就是指可以是时隙,也可以是子帧,在有些情况下子帧和时隙相同,而在有些情况下子帧和时隙不同,因此,时隙或子帧泛指一个调度的基本单元,其中的时隙可以是mini-slot,以下不再赘述。
波束:是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以由一个或多个天线端口所形成,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在目前的NR协议中,波束可通过天线端口(antenna port)准共址(quasi colocation,QCL)关系体现,具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{Spatial Rx parameter}。波束在协议中具体地可以通过各种信号的标识来表示,例如CSI-RS的资源ID,SS/PBCH的时域索引,SRS(sounding reference signal,探测信号)的资源ID,TRS(tracking reference signal,跟踪信号)的资源ID等。上述天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系,天线端口是一个或多个物理天线为发射一个信号或信号流的物理天线形成的逻辑单元。
带内中继:是回传链路与接入链路共享相同频段的中继节点。
通常,下级节点可以被看作是上级节点的一个UE。应理解,图1所示的一体化接入和回传系统中,一个IAB node连接一个上级节点。但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB node,如120,可以有多个上级节点同时为一个IAB node提供服务。如图中的IAB node 130还可以通过回传链路134连接到IAB node 120,即,IAB node 110和IAB node 120都为IAB node 130的上级节点。IAB node 110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用IAB node仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路 的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如回传链路123对节点110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。对于节点110来说,链路113被称为上级回传链路(parent BH),链路123被称为下级回传链路(child BH),而链路112被称为接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,如D2D场景下,下级节点也可以是终端设备。
图1所示的中继节点,如110,120,130,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到中继节点的终端设备,此时的中继节点通常具有独立的物理小区标识(physical cell identifier,PCI),这种形态的中继通常需要有完全的协议栈功能,比如无线资源控制(radio resource control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点和Donor节点,如Donor eNB,Donor gNB,属于同一个小区,用户的管理是由宿主基站,如Donor节点来进行管理的,这种中继通常被称为层2中继。层2中继在NR的控制和承载分离(central unit and Distributed unit,CU-DU)架构下通常作为基站DgNB的DU而存在,通过F1-AP(F1 application protocol)接口或者隧道协议和CU进行通信,其中隧道协议可以是例如GTP(general packet radio service tunneling protocol,GTP)协议,不再赘述。Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
在NR中,主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS),和物理广播信道(physical broadcast channel,PBCH)被称为同步信号/广播信号块(synchronization signal/PBCH block,SS/PBCH block)。本申请为描述方便,把SS/PBCH block称为SSB。
在时域上,一个SSB包含四个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。UE通过不同的DM-RS序列以及PBCH中传输的索引号(index)共同确定SSB块索引(block index),用于识别不同的SSB。具体的SSB的块索引的确定方法为本领域普通技术人员所熟知,不再赘述。
在NR中,同步信号的传输是采用波束扫描的方式进行传输的。NR基站会在一个周期内发送多个SSB,每个SSB覆盖一定区域,每个SSB均在协议定义的SSB候选(candidates)位置进行发送。所有SSB candidates位于一个半帧内(5毫秒)。本申请中,SSB candidates位置是指时域的符号位置,以下不再赘述。
在不同频段,半帧内的SSB候选(candidates)数目不同。具体地,在3GHz(gigahertz,GHz)以下,SSB candidates数目为4。在3GHz-6GHz,SSB candidates数目为8。而在6GHz以上,SSB candidates数目为64。在一个SSB candidate位置,基站可通过频分的方式发送多个SSB。基站发送的SSB会周期性重复,且周期大小可配置, 对于用于UE接入的SSB,周期的典型值为20毫秒(millisecond,ms)。具体包括如下5种情况(case):
Case A:对15KHz子载波间隔,按照{2,8}+14*n进行发送,其中{2,8}+14*n表示SS/PBCH Block的第一个符号的索引,即位置,以下相同,不再赘述。对小于3GHz或等于3GHz频段,n=0,1,对大于3GHz且小于等于6GHz频段,n=0,1,2,3。一个同步信号周期内的SS/PBCH Block的位置由上述公式遍历n的上述取值,以下相同,不再赘述。
Case B:对30KHz子载波间隔,按照{4,8,16,20}+28*n进行发送,对小于3GHz或等于3GHz频段,n=0,对大于3GHz且小于等于6GHz频段,n=0,1。
Case C:对30KHz子载波间隔,按照{2,8}+14*n进行发送,对小于3GHz或等于3GHz频段,n=0,1,对大于3GHz且小于等于6GHz频段,n=0,1,2,3。
Case D:对120KHz子载波间隔,按照{4,8,16,20}+28*n进行发送,对大于6GHz频段,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
Case E:对240KHz子载波间隔,按照{8,12,16,20,32,36,40,44}+56*n进行发送,对大于6GHz频段,n=0,1,2,3,5,6,7,8。
上述不同位置上的多个SSB要求在5ms内完成传输,对不同case的多个时隙或符号上发送的SSB称为SSB set,上述定义的SSB set用于接入链路的。如前所述,在IAB系统中,为了使得IAB节点之间可以相互测量而又不影响接入链路的性能,引入了BH-SSB set,BH-SSB set在时域位置上或频域位置上和上述标准的接入链路的SSB set不同,以避免和接入链路的SSB set相冲突。
图2为NR中继系统一种可能的网络拓扑的示例。其中包括三个IAB node,即IAB node 1,IAB node 2,IAB node 3,以及一个宿主节点(donor)。图2中的每个节点都会发送SSB set用于UE对同步信号进行检测以实现小区驻留或接入。本申请中,图2中各节点可用于UE进行初始接入的SSB set称为接入(access,AC)SSB set(AC-SSB set)。同时,图2中的IAB node 1,IAB node 2,IAB node 3为了实现相互发现,需要发送BH-SSB set。如前所述,BH-SSB在时间和/或频域上的位置和AC-SSB set不同。
为了保证三个IAB节点可以互相测量,三个IAB节点可以选择在不同的BH-SSB set时间点上进行SSB set的接收,因此,三个IAB节点的BH-SSB set的接收和发送时序如图3所示。
图3中箭头方向标识时间,图中白色框图标识IAB节点接收其他节点发送的BH-SSB set,而黑色填充的框图标识IAB节点发送BH-SSB set。两个连续的BH-SSB set之间的间隔称为SSB set周期。BH-SSB set的定义类似于接入链路的SSB set的定义,表示可能的BH-SSB set发送的位置,仅仅是在时域和/或频域上的位置不同,不再赘述。为了实现三个IAB节点之间的相互测量,需要三个SSB set周期实现完全的IAB节点间的测量。应理解,图3中SSB set周期表示BH-SSB set周期。
本申请中,把IAB节点在不同时间位置发送或接收SSB set称为SSB set的收发图案(pattern)。SSB set的收发图案定义在一个或多个SSB set上,在本申请中将这一个或多个SSB set称为一个SSB set组(group)。即,图案表示在一个SSB set组中一个或多个SSB set被配置为SSB set接收和发送的模式。例如,两个IAB节点可以使用两个 SSB set,包括一个接收SSB set和一个发送SSB set形成的SSB set收发模式,其中接收SSB set可以配置在第0个SSB set,也可以配置在第一个SSB set,因而形成两个图案。再如,三个IAB节点使用一个接收SSB set和两个发送SSB set形成图3所示的SSB set图案,其中接收SSB set可以在SSB set组中的第0,第1,第2个SSB set的位置上。对于半双工IAB节点,接收SSB set为IAB节点在该SSB set位置进行SSB set测量,停止发送SSB set。发送SSB set为IAB节点在该SSB set位置发送SSB set,而不能进行SSB set的接收。
应理解,图3所示的图案也可以是两个接收SSB set和一个发送SSB set。以下实施例中主要采用一个接收SSB set作为示例。
图3所示的示例中,当配置一个接收SSB set时,每个IAB节点可以有3种配置方式,即,接收SSB set可以在第0,第1,第2个SSB set的位置上,因此,可以有3种图案。
把IAB节点两个相邻SSB set组的间隔称为图案周期。图案周期也可以表示一个SSB set组,或者SSB set组中的SSB set的个数。这里仅仅是处于描述的方便而使用图案周期,并不一定表示时间间隔的概念。在一个图案周期内,IAB节点可进行SSB set的发送和/或接收。即图案周期包括一个SSB set组,SSB set组中的每个SSB set可以配置为接收或发送模式。例如,在一个图案周期内,假定有K个SSB set,配置一个SSB set为接收模式,则可以有K个图案,即,接收模式的SSB set可以处于不同的位置上。
采用上述方法显然可以实现IAB节点之间的相互测量。但是也可以看到,随着IAB系统中节点数的增多,上述图案周期将显著增加。要减小图案周期,可以增加BH-SSB set的密度,即,减小BH-SSB set的周期。但是减小BH-SSB set的周期意味着更多的资源消耗。因此,采用上述方法时,BH-SSB set的测量时间(或者说测量延迟)和BH-SSB set的资源消耗之间存在矛盾。
为解决上述问题,一种可行的方式是引入图案周期的跳变,即IAB节点在不同的图案周期可采用不同的SSB set的收发图案。应理解,在一个图案周期中,或者说一个SSB set组中包含的SSB set的个数可以是任意的,具体的数量本申请不做限定。
为描述方便,将图案的个数记为L,即SSB set在时域上有L种不同的收发配置,L为正整数。通常,图案也表示一个图案周期内SSB set在不同时域位置上接收和/或发送的配置模式。
进一步的,图案所占用的SSB set数目记为K,即一个SSB set组具有K个SSB set。不失一般性,在一个图案周期内,假定K1个SSB set被配置为发送模式,K2个SSB set被配置为接收模式,则K1+K2=K。其中,K1、K2均为正整数。由于图案定义在K个SSB set上,每个SSB set都可以有接收和发送两种状态,因此,图案的数目有L=2 K。然而,并非所有可能的图案都需要在协议中定义。可考虑引入部分闲置,减少图案的数目。例如,可定义互测量图案,即,互测量图案为采用不同的图案的两个节点可以实现相互测量,或者K1和K2均不等于0的图案。
图4为本申请实施例提供的K=2,K1=K2=1时的图案。图4中包括两种可能的图案,即L=2,其中P0表示在第0个SSB set上进行SSB set的接收,在第1个SSB set上进行SSB set的发送。P1表示在第0个SSB set上进行SSB set的发送,在第1个SSB set上进行SSB set的接收。
图5为本申请实施例提供的K=3时的图案。其中图5(a)为K1=2,K2=1,图5(b)为K1=1,K2=2。
由图4和图5可以看出,对于一个图案周期内的K个SSB set,若K1或K2中的任一个值为1,则可得到K个图案,即L=K。本申请将以K1或K2中任一个值为1为例,尤其以K2为1为例,即一个图案周期中配置一个SSB set为接收模式。应注意,此例中的K个图案均为互测量图案。
但本申请的方法不限于K1或K2中任一个值为1的情况。当K1和K2都不为1的时候,图案个数L可能会大于K。例如,当K1=K/2,其中K为偶数,可以得到的图案数目为
Figure PCTCN2019122265-appb-000001
此时,这L个图案均为互测量图案。再例如,当K=1时,分别取K1=0和K1=1,可以得到2个图案,此时,这两个图案不是互测量图案,不能实现相互测量。
在基于上述图案的基础上,当IAB系统中的IAB node很多时,如几十个IAB node共存,可以为IAB节点配置图案跳变序列,实现各节点之间的相互测量。图案跳变序列是指在一段时间内,多个图案周期中各图案出现的顺序。
在本申请中,当采用图案跳变时,主要是指互测量图案的跳变。进一步的,互测量图案可以具有以下约束,当两个互测量图案不相同时,采用两个不同图案的两个节点能够相互测量。例如,考虑节点1和节点2,至少存在一个SSB set,当节点1在该SSB set进行发送时,节点2在该SSB set进行接收;另外至少存在一个SSB set,当节点2在进行SSB set发送时,节点1在进行SSB set接收。
例如,对图案个数L=3,有三种图案,分别记为:P0,P1,P2。这三个图案在三个图案周期内的图案跳变序列可以是:(P0,P1,P2),即,在三个图案周期中,第一个图案周期采用图案P0,第二个图案周期采用图案P1,第一个图案周期采用图案P2。图案跳变序列还可以是:(P0,P2,P1),即,在三个图案周期中,第一个图案周期采用图案P0,第二个图案周期采用图案P2,第一个图案周期采用图案P1。
通过上述互测量图案的图案跳变序列,可以保证两个节点不会始终采用同样的图案,从而实现相互测量。
上述图案跳变序列还可以有多种不同的形式。例如,对上述图案个数L=3的例子,还可以定义图案跳变序列为(P0,P2,P0,P2),即,一个图案跳变序列中可以存在重复的图案。
上述图案跳变序列可以呈周期性出现,例如,以上述图案个数L=3,图案跳变序列为(P0,P1,P2)作为例子,某个IAB node可以重复上述图案跳变序列,其SSB set的图案为:(P0,P1,P2,P0,P1,P2……),也即图案跳变序列(P0,P1,P2)周期性重复。
在另一个示例中,上述图案跳变序列中的每个元素可以重复,例如,图案跳变序列可以为:(P0,P0,P0,P0,P1,P1,P1,P1,P2,P2,P2,P2)每个图案重复4次。为简化图案序列的配置,可以定义一个图案重复因子R,表示图案跳变序列中图案重复的次数,例如,定义图案跳变序列(P0,P0,P0,P0,P1,P1,P1,P1,P2,P2,P2,P2)的重复因子为4,图案跳变序列就可以表述为(P0,P1,P2)。
图6为本申请实施例提供的图案跳变序列中重复因子为4的示例。
为方便描述,将上述图案跳变序列的长度称为序列周期。为了保证两个节点经图案跳变序列后可以相互测量,需要保证两者在一个序列周期中至少有一个图案不同。例如,假 定有9个节点,且节点编号为IAB node 0,IAB node 1,…,IAB node 8。IAB node 0的图案跳变序列为(P0,P0);IAB node 1的图案跳变序列为(P0,P1);IAB node 2的图案跳变序列为(P0,P2);IAB node 3的图案跳变序列为(P1,P0);IAB node 4的图案跳变序列为(P1,P1);IAB node 5的图案跳变序列为(P1,P2);IAB node 6的图案跳变序列为(P2,P0);IAB node 7的图案跳变序列为(P2,P1);IAB node 8的图案跳变序列为(P2,P1)。在一个图案周期内,使用相同图案的节点不能相互测量,例如,IAB node 0,IAB node 1和IAB node 2在第一个图案周期内均使用图案P0,因此不能相互测量。然而,在第二个图案周期,IAB node 0,IAB node 1和IAB node 2使用了不同的图案,因此可实现相互测量。同样,可以看出,其余在第一个周期采用同样图案的节点在第二个节点也会采用不同的图案。这样,经过2个图案周期就可以实现所有节点间的相互测量。通过这种方法,缩短了节点间相互测量的时间。
为了使得两个IAB节点能够相互测量,需要设计一种图案序列跳变模式使得两个节点在一个序列周期内至少具有一个不同的图案。而且要使得图案跳变序列尽量短,从而减小节点间相互测量的时延。
具体地,假设IAB系统中每个节点支持L个图案,其中,L为正整数,且一个图案周期内具有K个SSB set,这里的SSB set为回传链路的SSB set,只是为描述的需要,以下不再赘述。每个节点的图案跳变序列包含M个元素,序列中的每个图案重复R次。在完成M*R个SSB set图案周期后,IAB节点从图案跳变序列的第一个元素(即第一个图案)开始重复。IAB node可以在任何时候在受控的情况下改变图案和图案序列的配置而重新启用新的图案序列和/或图案,即,IAB node可能只改变图案序列,也可以同时改变图案和图案序列。
在一种可能的实现中,每个IAB node仅采用固定长度的图案跳变序列,例如,M=2。而网络设备(例如donor)根据需要进行相互测量的节点数目来确定L的取值,并为每个节点配置图案跳变序列。该方案可支持的相互测量IAB节点数目为L M。例如,当M=2,L=3时,该方案可相互测量的IAB节点数目为9个。M=2时,使用两个图案周期就完成9个节点的相互测量,两个图案周期为6个SSB set,而使用传统方法则需要9个SSB set。因此,上述方法可以明显提升节点间相互测量的时延。
限制M=2,可相互测量的节点数目为L 2。一般的,若限制M=2,假设每个节点具有一个编号n,可以设每个节点采用的第一个图案为floor(n/L),而第二个图案为mod(n,L),或第一个图案为mod(n,L),而第二个图案为floor(n/L)。其中,floor函数表示向下取整,mod函数表示取模操作。假设n的取值为0至L 2-1,采用上述公式得到的图案跳变序列可保证具有不同编号n的IAB node具有至少在一个图案周期内能够测量到其他的节点,或者说具有不同编号n的IAB node,如果在第0个图案周期上使用相同的图案,那么在第1个图案周期上将使用不同的图案。
例如,编号为3,4,5的三个IAB节点,第一个图案周期使用图案P1,因为floor(3/3)=1,floor(4/3)=1,floor(5/3)=1,第二图案周期分别使用图案P0,P1,P2,因为mode(3,3)=0,mode(4,3)=1,mode(5,3)=2。因此,编号为3,4,5的三个节点的图案跳变序列分别为(P1,P0),(P1,P1),(P1,P2)。
当M值大于2时,每个节点的图案跳变序列采用以下配置方法:
为每个节点分配一个编号n,而图案序列通过下面方法得到:将编号n转换为M位L进制表示,而图案跳变序列的第m个元素即为此L进制表示数的第m位,应理解,图案跳变序列的取值可以是编号n的L进制数的位的正序或反序。或者,IAB节点编号n,且
Figure PCTCN2019122265-appb-000002
或者
Figure PCTCN2019122265-appb-000003
其中,P(m)表示图案跳变序列第m个元素的值,即跳变序列中的第m个图案,取值范围为{0,1,..,L-1},可以得到编号为n的IAB节点的图案跳变序列为(P(0),P(1),…,P(M-2),P(M-1))。
上述方法可区分的节点数目为L M,即当节点数目小于或等于L M,且每个节点具有不同的编号时,每个节点能相互发现。这是因为当两个节点具有不同的编号时,把它们的编号转换至L进制后,有至少一位是不相等的,即图案跳变序列中至少有一个图案不同于其他节点,因此任意两节点之间能相互发现。
在一种可能的实现中,采用固定的L值,例如令L=2或L=3。应注意,假设需要相互测量的节点总数为N,则完成所有节点互发现所需要的收发资源集合数目为
Figure PCTCN2019122265-appb-000004
其中
Figure PCTCN2019122265-appb-000005
表示向上取整。由于一个图案周期所包含的SSB set个数为K,可以得到所需要的最少SSB set数目为
Figure PCTCN2019122265-appb-000006
假设L=K的情况,由于上述计算最少SSB set数目的公式包含向上取整操作,因此上式难以求出闭式的最优解。考虑一种简化的求解方式,即求解使得K·log LN最小的K(或L值)值,经计算,可得K等于无理数e,即e=2.718…,当K取e时,上式取最小值。与e最接近的整数K为3。
因此,选择K=3可在多数时候使得多个IAB节点相互测量所需要的时间最短。在这里,K=3不能在所有情况下保证测量时间最短的原因是计算最优K值的时候忽略了公式的向上取整。下面表1给出一些N取值下,K=2,3或4时完成所有节点间的相互测量所需要的SSB set的数量。可以看到,K=3时所需要的SSB set数目不一定在所有情况下小于K=2时的SSB set数目,但他们的值一定小于K=4的情况,因此,K的取值应为2或3,协议可规定一个值,或donor可将K配置为2和3中的一个。
表1不同N和K值时最优的SSB set数量
N K=2 K=3 K=4
8 6 6 8
9 8 6 8
12 8 9 8
16 8 9 8
20 10 9 12
30 10 12 12
60 12 12 12
80 14 12 16
100 14 15 16
上述实施例给出了节点间实现相互测量的一种优化的方法。为了进一步在IAB系统中实现上述方法,需要对上述参数进行配置以保证各节点之间相互配合,避免冲突。
图9为本申请实施例提供的同步信号图案配置方法。图9中第一节点为IAB node,第二节点可以是donor,也可以是第一节点的上级节点。同步信号图案配置包括以下步骤:
S901、第二节点向第一节点发送图案配置信息。
图案配置信息用于指示所述同步信号块的图案参数。图案参数包括图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。
图案周期信息可以是SSB set组内SSB set数目K,还可以是图案周期的索引。在一种可能的实现中,当支持的K比较多时,可以通过协议定义的方式给出可以支持的K值,并为每个K值指定一个索引。第一节点根据图案周期的索引就可以确定K的取值。
节点编号信息可以是第二节点为第一节点配置的编号n,还可以是第二节点指示第一节点使用某个其他已配置或存在的标识,或根据已经存在的标识经过计算或推导得到,标识可以是cell标识(identity,ID),物理小区标识(physical cell identity,PCI),无线网络临时识别符(radio network tempory indentity,RNTI),MAC地址,因特网协议(internet protocol,IP)地址中的一种。
在一种可能的实现中,在IAB系统中节点的编号可以重复使用。例如,在一个或多个DgNB(donor gNB)下面,当IAB node较多时,为IAB节点分配的节点编号n可以重复使用。为了避免距离接近的IAB node产生相同的图案跳变序列,可以将节点分簇(cluster)。在一个簇内的节点的编号不会出现重复,而不同的簇之间的编号可以重复。可选的,相邻的簇之间的节点编号不同。可选的,相邻的簇之间的节点编号也可以有部分相同,但是在两个簇之间的边界处没有节点编号相同。
上述通过簇来进行节点编号的方法会导致一个簇内的节点数减少,从而使得采用比较小的SSB set组,例如,K=2或3,这样,就可以通过协议定义的方式将K值的取值范围缩小,并可以将图案跳变模式变成有限的模式。
因此,在基于分簇的方案中,可以仅为IAB节点配置节点编号信息。考虑到PCI在无线接入网系统中的复用,如果每个IAB node有不同的PCI,此时,可以采用PCI来作为节点编号,从而避免节点编号的再次分配。在这一实施方式中,协议仅需要定义K,图案跳变序列的生成方法,或同步信号块的收发指示中的一种或多种。而宿主节点则仅需要为IAB节点配置初始图案周期的起始时间。
应理解,上述将节点分簇的方案可以独立作为一种实施方式,而不依赖于图9所示的实施例的步骤。而分簇可以作为一种实现方式,并不需要在协议体现,而是通过基于节点物理位置来进行节点编号的安排。协议仅需要通过定义图案和图案跳变序列。当K=2时,仅需要定义节点的初始图案为接收还是发送,或者通过节点编号的奇偶来进行确定。任何上述实现方式的变形都应该在本申请的保护范围之内。
如果上述分簇的方案中,所需要互测量的节点数目被减少了,因此可以仅采用有限的K值,如K=2或K=3。K可以通过系统消息获取,还可以通过专用信令进行配置,专用信令可以是如RRC信令,或者F1-AP,或者F1-AP增强协议。具体的通知方式及消息格式本申请不做限定。
在一种可能的实现中,第二节点为第一节点配置节点的编号n将会是一种优化的实现方式。因为同步节点编号的配置,可以将一个区域中的节点配置为互不相同的,分布均匀的节点组,利于各个节点的图案跳变序列在一个序列周期内互不重复。如果是使用已有的节点标识,可能处于各个不同组的节点分布不均匀,不利于缩短测量时延和开销。
同步信号块的收发指示用于指示一个图案周期中接收或发送的SSB set的个数和/或位置。典型地,当只有一个SSB set用于接收或发送时,同步信号块的收发指示用于指示K1还是K2为1,即,是一个接收还是一个发送SSB set。典型地,也可以通过协议定义一个图案周期中定义一个SSB set用于接收,此时,同步信号块的收发指示则不需要发送给第一节点。K1和K2如前所述,不再赘述。
在一种可能的实现中,协议定义具有默认的K取值,例如,默认K为3,当K不被配置时,K的值为默认取值。在这一实现中,K值也不是必须需要发送给第一节点的。
重复因子的定义如前所述。由于重复因子的配置,可能会导致测量时延增加,但是也可以保证测量的可靠性。因此,重复因子的配置是可选的。
初始图案的起始时间用于指示图案跳变序列中第一个图案开始的时间,可以通过帧号、时隙号来进行指示,也可以根据同步信号的配置参数,如工作频点,确定SSB set中SSB的索引,通过帧号和/或子帧号以及SSB的索引来确定,子帧号也可以是时隙编号。还可以是其他的表示方法,例如,从收到当前指示的帧号之后的第q个帧开始,q为整数。本申请对具体的图案开始的时间的表示方法不做约束。
图案跳变序列的初始图案用于指示图案跳变序列从哪个图案开始。在默认情况下,当图案序列通过节点编号n自动确定时,也可以不指定初始图案。如果第二节点指定初始图案,则第一节点从初始图案开始,依据后续步骤中确定的图案跳变序列进行跳变。
图案序列顺序指示用于指示图案跳变序列是采用L进制表示的节点编号的各个位的高位优先还是低位优先,即,从节点编号的L进制表示的各个位的高位开始图案跳变序列,还是从低位开始图案跳变序列。应理解,图案跳变序列也可以默认定义从L进制表示的各个位的低位或高位开始图案跳变序列。当协议定义时,图案序列顺序指示不是必须通过信令通知的。
序列周期信息为图案跳变序列的周期信息,即,图案跳变序列包含的元素个数,也即图案周期的个数。通过序列周期信息,可以控制序列重复的时间长度。
在一种可能的实现中,图案配置信息包含指示第一节点所有的SSB set处于接收模式。此时可以认为图案是一种特殊的图案。当第一节点的所有的SSB set处于接收模式时,其他节点不能发现该第一节点的存在。这在某些特殊情况下会非常有用,例如,第一节点的回传链路出现质量问题的时候,该节点不能为其他节点进行中继传输服务,且该节点需要尽快对其余节点进行测量。此时,可通过事件触发而导致该消息的传输,例如,当第一节点发生波束失败或链路失败时,该节点自动转换为全接收模式,或者,当第一节点收到其上级节点的第一通知信令时,第一节点自动转换为全接收模式,所述第一通知信令指示上级节点出现波束失败或链路失败或所述第一通知信令直接触发第一节点进行全接收状态。
应理解,当第一节点所有的SSB set处于接收模式时,对其回传链路SSB set的配置可以是独立的实施例,不依赖于其他步骤。
在一种可能的实现中,第二节点向第一节点发送其他节点的图案配置信息。例如,其他节点为第一节点的邻节点,第一节点的邻节点在回传链路上发送的SSB set可能会被第一节点接收到。第一节点根据其他节点的图案配置信息确定可测量到其他节点的图案周期。其他节点的图案配置信息可以包括上述图案参数中的一种或多种,不再赘述。
图案周期信息还可以包括:第一节点发送和接收同步信号块持续的时间或次数以实现 节点或节点组之间的相互测量。第一节点发送和接收同步信号块持续的时间或次数可以通过同步信号块持续的时间或次数来进行配置,也可以通过图案周期持续的时间或次数来进行配置,本申请不做约束。通过第一节点发送和接收同步信号块持续的时间或次数,可以限定图案周期发送或持续的时间。
S902、第一节点获取同步信号块的图案信息。
第一节点获取同步信号块的图案配置信息可以通过S901获得图案配置信息,从而可以根据图案配置信息确定图案。图案可以是图案周期中的任何一个图案。第一节点确定的图案主要是图案周期中SSB set的接收或发送模式。
第一节点还可以通过预配置的参数获取同步信号块的图案配置信息。如果步骤S901中所有的图案参数都是协议定义或预配置的,则第一节点无需第二节点通过信令对第一节点的图案配置信息进行显式配置。例如,节点编号使用PCI,K使用协议定义的默认值3,默认一个图案周期内配置一个SSB set进行接收。第一节点完成启动后,或者开始进行接入链路的SSB的发送开始进行回传链路SSB的接收或发送。此时,第一节点仅通过获取预配置图案参数即可获得图案。
应理解,全部使用默认图案参数可能不能得到比较优化的配置,因此,上述通过预配置或协议定义的图案参数只是一种极端的情况。通常需要对基本参数进行配置,如节点编号信息,初始图案周期的起始时间等。
在一种可能的实现中,SSB set的发送配置由donor或上级节点发送至IAB节点的DU功能,而SSB set的接收配置由donor或上级节点发送至IAB节点的MT功能。而IAB节点根据发送和接收配置隐式的确定上述SSB set收发图案。进一步的,所述收发图案可通过协议定义或上级节点配置的SSB set发送和接收优先级实现。
SB set的发送或接收可以是半持续的,周期性的,或者是动态的。半持续包括SSB set配置之后,通过激活和/或去激活的过程(信令)来使能SSB set的发送和/或接收过程。
在一种可能的实现中,donor或上级节点为IAB node的DU配置一个周期性的SSB set,还可以配置set组中的SSB set的个数K。由于SSB set是周期性的,将周期性的SSB set分成K个一组,每K个SSB set之间形成图案周期。此时,图案周期(或者SSB set组的周期)为SSB set周期的K倍,一个SSB set组的K个SSB set为SSB set的K个周期,如图7所示。
在一种可能的实现中,donor或上级节点为IAB node的DU配置多个周期或半持续的SSB set,如图8所示。以IAB node 0为例,配置有三个周期性的SSB set,如图中的SSB set 801、SSB set 802、SSB set 803分别为3个周期性的SSB set。其中,SSB set 801和SSB set 804为同一个SSB set配置,周期为SSB set 801和SSB set 804之间的间隔;SSB set 802和SSB set 805为同一个SSB set配置,周期为SSB set 802和SSB set 805之间的间隔;SSB set 803和SSB set 806为同一个SSB set配置,周期为SSB set 803和SSB set 806之间的间隔。对IAB node 1和IAB node 2是一样的,不再赘述。
在图8所示的配置中,SSB set组或图案周期与连续的SSB set的周期没有固定关系。连续的SSB set包括时域上相邻的两个SSB set,可能来自于不同的SSB set的配置。此时,SSB set组中的SSB来自于不同的周期性的SSB set配置。应理解,不同的SSB set的周期可能相同,可能不同,且在时域上互不重叠。
上述实施例中,K的数目与SSB set的配置个数相同。如图8所示,每个SSB set的周期相同,SSB set组的周期(图案周期)与SSB set的周期相同,而一个SSB set组中的SSB set分别来自于不同的SSB set的配置。这一配置方式可以很好适应当前的SSB set的配置方式,仅需要对现有的配置方式进行扩展即可。
本申请不对DU的SSB set发送配置的具体形式加以限定。一般情况下,上级节点对IAB DU的配置通过F1-AP接口或F1-AP增强接口进行,但不排除通过RRC信令进行的情况。
同样地,donor或上级节点也可以为IAB node的MT配置SSB set的接收。同样的,图案信息(SSB set组)中SSB set的接收模式可以由一套SSB set的配置完成,也可由多套配置完成。具体方法类似于上述图7或8的方法,仅仅在于SSB set的接收或发送模式不同,不再赘述。
在一种可能的实现中,donor或上级节点直接为IAB节点配置接收图案。在另外一种可能的实现中,donor或上级节点为MT配置周期性的SSB set接收,此时,SSB set的接收周期等于SSB set组的周期,即SSB set图案的周期。而SSB set的接收可进行移位(offset)跳变,从而实现图案的跳变。可选的,上级节点可通知IAB节点在不同图案或不同SSB set接收周期内的可测量节点或目标测量节点。
以图6为例,IAB节点采用的收发图案序列为{P0,P1,P2},对应的SSB set接收周期为SSB set组的周期,而在不同的接收周期内采用不同的测量移位,可得到不同的收发图案。因此,此时SSB set图案的跳变序列可通过测量配置的移位值跳变来体现。由于SSB set接收周期为SSB set组的周期,因此,在这种情况下,SSB set组的周期可能不需要显式配置。一般情况下,上级节点对IAB DU的配置通过RRC信令进行,但不排除通过F1-AP进行的情况。
在另一种可能的实现中,上级节点为IAB节点配置多套SSB set的接收,例如M套(其中M为pattern跳变序列长度),不同的SSB set的接收配置可以具有不同的周期和/或移位值。作为一个示例,每套SSB set接收的周期为图案周期的M倍,而不同的SSB set接收采用不同的配置,从而实现上文所述的SSB set收发图案和收发图案的跳变。可选的,上级节点可通知IAB节点在不同SSB set接收配置下的可测量节点或目标测量节点。
SSB set的发送和接收应具有优先级,此优先级可由协议定义,也可由donor或上级节点配置。在分别配置了IAB节点的SSB set发送和SSB set接收后,根据SSB set发送和接收的优先级,IAB节点可得到SSB set的收发图案和收发图案的跳变。
应注意,上述示例不排除IAB节点仅被配置了SSB set的发送或接收的两种情况。
在一种可能的实现中,IAB节点在所有的SSB set位置进行接收,即处于全接收状态。可通过多种方式使得IAB节点进入全接收状态,例如上级节点的信令触发,或本身状态变化后进行的自动触发,例如,IAB节点在链路失败或波束失败后自动进入全接收状态。在全接收状态下,IAB节点的SSB set接收行为与通常情况下不同。示例性的,全接收状态可通过三种方式达到:1).SSB set接收周期缩小;2).SSB set的接收周期不变,但IAB节点在周期内的所有移位上进行测量。3).激活一套额外的SSB set接收配置,此套SSB set接收专门用于全接收,且在正常情况处于非激活状态。根据上述三种方式,在一些特殊的情况下,部分SSB set的接收位置可能不存在任何SSB set的发送,此时,IAB节点 无法检测到任何节点的SSB set,从而造成资源浪费。因此,可增加如下约束:在一种可能的实现中,当SSB set的接收不与任一SSB set的发送时域重合时,IAB节点可不进行SSB set的接收。所述SSB set发送位置可以是IAB节点自身的SSB set发送位置,也可以是上级节点为IAB节点通知的其余节点的SSB set发送位置。
S903、第一节点确定同步信号块的图案跳变序列。
第一节点确定所述同步信号块的图案跳变序列包括:第一节点接收第二节点发送的图案跳变序列的信息;或者,第一节点根据节点编号信息,图案周期信息,序列周期信息确定图案跳变序列。图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的一个或多个,用于辅助确定图案跳变序列。
在一种可能的实现中,图案跳变序列的信息也可以是第二节点配置的图案序列或者图案序列的索引。具体地,可以通过协议定义有限的图案跳变序列,并对这些图案跳变序列进行编号(索引),通过图案跳变序列索引可以唯一确定图案跳变序列。例如可以定义不同的K值以及M值所对应的图案跳变序列,并为不同的序列编排一个索引。第二节点通过图案跳变序列索引来指示第一节点使用的图案序列。
具体地,第一节点可以根据前述实施例中确定图案跳变序列的方法获得图案跳变序列。例如,一个图案周期内图案数目为L=3时,如果序列周期M=2,根据前述对节点编号进行f loor函数和mod函数运算,可以获得图案跳变序列。或者根据节点编号,将节点编号用三进制表示,根据序列周期信息和图案序列指示,确定从三进制的低位开始取两个图案作为序列元素。具体的确定方式依赖于参数的配置,本申请不做限定。
此外,如果第二节点指定了图案跳变序列的初始图案,则第一节点确定的图案跳变序列的第一个元素从指定的初始图案开始,再依照上述通过数学方法确定的图案跳变序列生成的图案顺序,依次取M个元素即可获得图案跳变序列。例如,通过上述数学方法确定图案跳变序列生成的图案顺序为(P0,P1,P2),如果指定的初始图案为P2,M=2时,则得到图案跳变序列为(P2,P0)。
当第二节点没有指定图案跳变序列的初始图案,或者协议定义从节点编号的L进制表示的低位或高位开始的时候,仅需要根据序列周期从节点编号的L进制表示的低位或高位开始即可。
在一种可能的实现中,第二节点为第一节点通知多个第三节点的图案跳变序列。其中,第三节点为其余IAB节点或其余网络设备。具体的通知方式包括,第二节点通知第三节点的标识和图案跳变序列的对应关系,其中第三节点的表示可以是PCI等标识信息,本申请不对第三节点的标识加以限定。而图案跳变序列的通知与上述方案相同,不再赘述。
S904、第一节点确定所述同步信号块的接收和/或发送。
第一节点获得了图案跳变序列,初始图案周期的起始时间后,就可以开始在回传链路上进行SSB set的接收或发送。根据图案跳变序列中的图案,在一个图案周期内,根据对应的图案确定接收或发送的SSB set的时域信息。
例如,对K=3,在第一图案周期中,节点使用图案P0,图案P0表示第0个SSB set为接收,第1和第2个SSB set为发送,则第一节点在第0个SSB set的位置对其他节点的SSB set进行测量。
S905、第一节点向第二节点发送图案配置信息响应。
通过图案配置信息响应通知第二节点接收到图案配置信息。
通过上述实施例,第一节点可以获得回传链路上SSB set在一个图案周期内的接收或发送模式,并通过图案跳变,使得处于同一组的节点在经过图案跳变后可以相互测量。上述方法可以减小节点间相互测量的时延,解决了系统中IAB node较多时完成相互测量的时间过长,系统配置复杂的问题。
图10为本申请实施例提供的图案配置信息更新的示意图。在IAB系统中,可能由于IAB node的增加或减少,可以对IAB node间的测量进行优化。因此,可以对节点的图案配置信息进行更新。具体包括:
S1001-S1005同步骤S901-S905,不再赘述。
S1006、第二节点向第一节点发送图案重配置指示。
图案重配指示用于指示第一节点重新配置图案配置信息。通过重新配置图案配置信息,可以使得第一节点更新图案和/或图案跳变序列。
具体地,图案重配置指示可以包括前述图案配置信息中的图案参数中的一个或多个参数,具体的参数不再赘述。
应理解,当第二节点对第一节点的图案配置信息进行重新配置时,可能很多参数不需要重新配置,而仅需要配置一些更新的参数,例如,节点编号信息并不需要重新配置,图案周期信息K可能也不需要重新配置,但是序列周期信息需要重新配置。当然,图案周期信息K也可能会被重新配置,如,系统中的IAB node急剧增加或减少时,会导致K需要被重新配置。
图案重配指示还可以包括:更新的图案跳变序列和/或图案配置信息的起始时间。如果不指定新的起始时间,则可以协议定义从收到图案重配指示后的q个帧或子帧或时隙之后开始新的图案跳变序列和/或图案的同步信号的传输或接收,q可以是协议指定的值,一般q为整数。图案跳变序列和/或图案配置信息的起始时间即为新的初始图案周期的起始时间,初始图案周期的起始时间如前所述,不再赘述。
当图案配置信息被重新配置时,第一节点需要根据新的图案配置信息确定新的图案跳变序列和/或图案,并根据初始图案周期的起始时间,在指定的起始时间开始新的SSB set的接收或发送模式。
S1007、第一节点向第二节点发送图案重配指示响应。
第一节点接收到图案重配指示后,向第二节点发送图案重配指示响应。
通过上述实施例,解决IAB系统中IAB node出现变化后,节点相互测量的图案和/或图案跳变序列可能不是最优的问题。通过上述方案,当IAB系统中IAB node出现变化时,优化回传链路上同步信号的接收和/或发送模式,减小测量时延和资源消耗。
在上述图9或图10所述的实施例中,图案配置信息,图案配置信息响应,图案重配指示,图案重配指示响应可以通过RRC或者F1-AP协议或者F1-AP协议的增强版本进行传输。具体的信令接口依赖于协议定义,本申请不做约束。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理 解的是,各个网元,例如第一节点和第二节点,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一节点、第二节点进行功能模块的划分,例如,可以划分成各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。应理解,第二节点可以是IAB节点,也可以是宿主基站。
图11为本申请的提供的上述实施例中所涉及的IAB node的一种可能的结构示意图。在本申请中,第一节点是IAB节点。第一节点包括:接收单元1101,获取单元1102、发送单元1103。接收单元1101,用于支持第一节点执行图9中S901,或者图10中的S1001,S1006,以及用于支持前述实施例中的第一节点接收第二节点发送的图案重配指示以进行图案和图案跳变序列的重配功能,以及支持接收其他IAB节点发送的SSB set以实现测量和节点发现的功能,接收第二节点发送的图案跳变序列的信息的功能,还用于支持接收第二节点发送的其他节点的图案配置信息的功能;获取单元1102,用于支持第一节点执行图9中的S902,或者图10中的S1002;处理单元1103,用于支持第一节点执行图9中S903和S904,或者图10中的S1003和S1004,以及用于支持前述实施例中的第一节点对接收的消息或信令进行处理。
第一节点还包括:发送单元1104,用于支持第一节点执行图9中S905,或者图10中的S1005和S1007,以及用于支持前述实施例中第一节点在同步信号块的接收和/或发送后,在回传链路上发送同步信号块。
在硬件实现上,上述发送单元1101可以为发送器,接收单元1103可以为接收器,接收器和发送器集成在通信单元中构成通信接口。
图12为本申请的实施例提供的上述实施例中所涉及的第一节点的一种可能的逻辑结构示意图。第一节点包括:处理器1202。在本申请的实施例中,处理器1202用于对该第一节点的动作进行控制管理,例如,处理器1202用于支持第一节点执行前述实施例中图9中的S903和S904,图10中的S1003和S1004,以及用于支持前述实施例中的第一节点对接收的消息或信令进行处理;处理器1202还可以用于支持前述实施例中第一节点执行的图9中的S902以及图10中的S1002以获取同步信号块的图案配置信息。可选的,第一节点还可以包括:存储器1201和通信接口1203;处理器1202、通信接口1203以及存储器1201可以相互连接或者通过总线1204相互连接。其中,通信接口1203用于支持该第一节点进行通信,存储器1201用于存储第一节点的程序代码和数据。处理器1202调用存储器1201中存储的代码进行控制管理。该存储器1501可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1202可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其 任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述处理器1202、通信接口1203以及存储器1201也可以集成在一个集成电路中,执行前述实施例中所有第一节点执行的动作或功能。
图13为本申请的提供的上述实施例中所涉及的第二节点的一种可能的结构示意图。在本申请中,第二节点为中继节点。第二节点包括:发送单元1301和接收单元1303。其中,发送单元1301用于支持第二节点执行图9中的S901,图10中的S1001,S1006,以及用于支持第二节点执行前述实施例中向第一节点发送图案重配指示和第一节点发送其他节点的图案配置信息;接收单元1303用于支持第二节点执行图9中的S905,或图10中S1005和S1007。第二节点还包括:处理单元1302,处理单元1302,用于支持第二节点执行图9中对接收消息的处理,或者为发送的消息确定参数,如图案配置信息中的相关参数。
在硬件实现上,上述发送单元1301可以为发送器,接收单元1303可以为发送器,接收器和发送器集成在通信单元中构成通信接口。
图14为本申请的实施例提供的上述实施例中所涉及的第二节点的一种可能的逻辑结构示意图。第二节点包括:处理器1402。在本申请的实施例中,处理器1402用于对该第二节点的动作进行控制管理,例如,处理器1402用于支持第二节点执行前述实施例中图9中的对各种接收或发送消息的处理,为第一节点准备相关的图案配置信息的相关参数。可选的,第二节点还可以包括:存储器1401和通信接口1403;处理器1402、通信接口1403以及存储器1401可以相互连接或者通过总线1404相互连接。其中,通信接口1403用于支持该第二节点进行通信,存储器1401用于存储第二节点的程序代码和数据。处理器1402调用存储器1401中存储的代码进行控制管理。该存储器1701可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1402可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述处理器1402、通信接口1403以及存储器1401也可以集成在一个集成电路中,执行前述实施例中所有第二节点执行的动作或功能。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机 执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图9和图10及对第一节点的图案配置信息进行重新配置时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图9和图10所提供的同步信号的发送和接收方法中第一节点、第二节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统至少包括第一节点、第二节点。其中,第一节点可以为图11或图12所提供的第一节点,用于执行图9和图10所提供的同步信号的发送和接收方法中第一节点的步骤;和/或,第二节点可以为图13或图14所提供的第二节点,且用于执行图9和图10所提供的同步信号的发送和接收方法中由第二节点执行的步骤。应理解,该通信系统可以包括多个第一节点以及第二节点,或者包括多个第一节点以及一个第二节点,第二节点对多个第一节点进行图案配置信息的配置,使得系统中的多个第一节点之间可以相互测量和发现,并最小化测量时延和资源开销。
在本申请实施例中,通过在对第一节点的图案配置信息进行配置,使得系统中的节点获得图案跳变序列,并根据获得的图案跳变序列以及序列中的图案实现SSB set的接收或发送,减小IAB系统中节点之间相互发现的时延,并减小开销,同时使得系统的配置得到简化。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种同步信号的发送与接收方法,其特征在于,包括:
    第一节点获取同步信号块的图案配置信息,所述图案配置信息用于指示所述同步信号块的图案参数;
    所述第一节点确定所述同步信号块的图案跳变序列,所述图案跳变序列指示所述同步信号块在不同图案周期内的图案;
    所述第一节点根据所述图案配置信息和所述图案跳变序列确定所述同步信号块的接收和/或发送。
  2. 根据权利要求1所述的方法,其特征在于,所述图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点获取同步信号块的图案配置信息包括:
    所述第一节点接收第二节点发送的图案配置信息;或者,
    所述图案配置信息是预定义的。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一节点确定所述同步信号块的图案跳变序列包括:
    所述第一节点接收第二节点发送的图案跳变序列的信息;或者,
    所述第一节点根据节点编号信息,图案周期信息,序列周期信息确定图案跳变序列。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,包括:
    所述第一节点接收所述第二节点发送的图案重配指示,所述图案重配指示用于指示所述第一节点重新配置所述图案跳变序列和/或图案配置信息。
  6. 根据权利要求5所述的方法,其特征在于,所述图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述图案周期信息包括:所述第一节点发送和接收所述同步信号块持续的时间或次数以实现节点或节点组之间的相互测量。
  8. 根据权利要求3所述的方法,其特征在于,所述图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的至少一种。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述节点编号信息包括:
    配置的节点编号,cell ID,PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种。
  10. 根据权利权利要求1-9任一项所述的方法,其特征在于,包括:
    所述第一节点接收第二节点发送的其他节点的图案配置信息。
  11. 一种同步信号的发送与接收方法,其特征在于,包括:
    第二节点向第一节点发送同步信号块的图案配置信息,所述图案配置信息用于指示所述第一节点在回传链路上的同步信号块的图案参数;
    所述第二节点接收所述第一节点发送的图案配置信息响应。
  12. 根据权利要求11所述的方法,其特征在于,所述图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。
  13. 根据权利要求11或12所述的方法,其特征在于,包括:
    所述第二节点向所述第一节点发送图案重配指示,所述图案重配指示用于指示所述第一节点重新配置所述图案跳变序列和/或图案配置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述图案周期信息包括:所述第一节点发送和接收所述同步信号块持续的时间或次数以实现节点或节点组之间的相互测量。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述图案配置信息包括图案跳变序列的信息,图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的至少一种。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述节点编号信息包括:
    配置的节点编号,小区标识cell ID,物理小区标识PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,包括:
    所述第二节点向所述第一节点发送其他节点的图案配置信息。
  19. 一种第一节点设备,其特征在于,包括:
    获取单元,用于获取同步信号块的图案配置信息,所述图案配置信息用于指示所述同步信号块的图案参数;
    处理单元,用于确定所述同步信号块的图案跳变序列,所述图案跳变序列指示所述同步信号块在不同图案周期内的图案;
    所述处理单元,还用于根据所述图案配置信息和所述图案跳变序列确定所述同步信号块的接收和/或发送。
  20. 根据权利要求19所述的第一节点设备,其特征在于,所述图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。
  21. 根据权利要求19或20所述的第一节点设备,其特征在于,还包括:
    接收单元,用于接收第二节点设备发送的图案配置信息。
  22. 根据权利要求19或20所述的第一节点设备,其特征在于,还包括:
    接收单元,用于接收第二节点发送的图案跳变序列的信息。
  23. 根据权利要求19或20所述的第一节点设备,其特征在于,还包括:
    接收单元,用于接收所述第二节点发送的图案重配指示,所述图案重配指示用于指示所述第一节点重新配置所述图案跳变序列和/或图案配置信息。
  24. 根据权利要求23所述的第一节点设备,其特征在于,所述图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。
  25. 根据权利要求20-24任一项所述的第一节点设备,其特征在于,所述图案周期信 息包括:所述第一节点设备发送和接收所述同步信号块持续的时间或次数以实现节点设备或节点设备组之间的相互测量。
  26. 根据权利要求22所述的第一节点设备,其特征在于,图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息,图案跳变序列索引中的至少一种。
  27. 根据权利要求20-26任一项所述的第一节点设备,其特征在于,所述节点编号信息包括:
    所述第一节点使用cell ID,PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种作为节点编号。
  28. 根据权利要求19-20任一项所述的第一节点设备,其特征在于,还包括:
    接收单元,用于接收第二节点发送的其他节点的图案配置信息。
  29. 一种第二节点设备,其特征在于,包括:
    发送单元,用于向第一节点设备发送同步信号块的图案配置信息,所述图案配置信息用于指示所述第一节点在回传链路上的同步信号块的图案参数;
    接收单元,用于接收所述第一节点设备发送的图案配置信息响应。
  30. 根据权利要求29所述的第二节点设备,其特征在于,所述图案配置信息包括:图案周期信息,节点编号信息,同步信号块的收发指示,初始图案周期的起始时间,重复因子,图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中的至少一种。
  31. 根据权利要求29或30所述的第二节点设备,其特征在于,包括:
    所述发送单元,还用于向所述第一节点发送图案重配指示,所述图案重配指示用于指示所述第一节点重新配置所述图案跳变序列和/或图案配置信息。
  32. 根据权利要求31所述的第二节点设备,其特征在于,所述图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。
  33. 根据权利要求30-32任一项所述的第二节点设备,其特征在于,所述图案周期信息包括:所述第一节点发送和接收所述同步信号块持续的时间或次数以实现节点或节点组之间的相互测量。
  34. 根据权利要求30-32任一项所述的第二节点设备,其特征在于,所述图案配置信息包括图案跳变序列的信息,图案跳变序列的信息包括图案跳变序列的初始图案,图案序列顺序指示,序列周期信息中,图案跳变序列索引的至少一种。
  35. 根据权利要求30-34任一项所述的第二节点设备,其特征在于,所述节点编号信息包括:
    所述第一节点使用cell ID,PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种作为节点编号。
  36. 根据权利要求30-34任一项所述的第二节点设备,其特征在于,包括:
    所述发送单元,还用于向所述第一节点发送其他节点的图案配置信息。
  37. 一种设备,其特征在于,所述设备包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述设备执行权利要求1-10任一项所述的同步信号的发送与接收方法,或者执行权利要求11-18任一项所述的同步信号的发送与接收方法。
  38. 一种可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述可读存储介质在设备上运行时,使得所述设备执行权利要求1-10任一项所述的同步信号的发送与接收方法,或者执行权利要求10-18任一项所述的同步信号的发送与接收方法。
  39. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-10任一项所述的同步信号的发送与接收方法,或者执行权利要求11-18任一项所述的同步信号的发送与接收方法。
PCT/CN2019/122265 2019-01-11 2019-11-30 一种同步信号发送和接收的方法及装置 WO2020143360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910027850.3A CN111436062B (zh) 2019-01-11 2019-01-11 一种同步信号发送和接收的方法及装置
CN201910027850.3 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020143360A1 true WO2020143360A1 (zh) 2020-07-16

Family

ID=71520876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122265 WO2020143360A1 (zh) 2019-01-11 2019-11-30 一种同步信号发送和接收的方法及装置

Country Status (2)

Country Link
CN (1) CN111436062B (zh)
WO (1) WO2020143360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973364A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 同步信号块ssb的传输方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449528A (zh) * 2020-11-06 2022-05-06 维沃移动通信有限公司 识别节点方法、装置、设备及可读存储介质
CN116368879B (zh) * 2023-02-16 2024-09-24 上海移远通信技术股份有限公司 被用于无线通信的节点的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472744A (zh) * 2014-09-02 2016-04-06 中兴通讯股份有限公司 一种数据传输方法和装置
CN107105475A (zh) * 2016-02-19 2017-08-29 中兴通讯股份有限公司 一种无线回程网接入控制方法和装置
WO2018063892A1 (en) * 2016-09-29 2018-04-05 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817084B2 (ja) * 2010-03-30 2011-11-16 株式会社安川電機 モータ駆動システム及びモータ制御装置
CN103458512B (zh) * 2012-05-31 2017-06-27 华为技术有限公司 小区上下行时隙配比配置方法、装置、基站设备及系统
US10362610B2 (en) * 2016-09-19 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for mapping initial access signals in wireless systems
CN108809570B (zh) * 2017-05-04 2020-04-17 维沃移动通信有限公司 一种参考信号传输方法、相关设备及系统
CN109150338B (zh) * 2017-06-16 2020-10-09 华为技术有限公司 信号传输方法、相关装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472744A (zh) * 2014-09-02 2016-04-06 中兴通讯股份有限公司 一种数据传输方法和装置
CN107105475A (zh) * 2016-02-19 2017-08-29 中兴通讯股份有限公司 一种无线回程网接入控制方法和装置
WO2018063892A1 (en) * 2016-09-29 2018-04-05 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS,: "Discussions on NR IAB Support,", R1-1804583, 7 April 2018 (2018-04-07), XP051414004 *
ZTE,: "Discussion on IAB Node Initial Access Process,", R1-1806026, 12 May 2018 (2018-05-12), XP051462294 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973364A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 同步信号块ssb的传输方法、终端设备和网络设备
CN113973364B (zh) * 2020-07-22 2023-06-16 维沃移动通信有限公司 同步信号块ssb的传输方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN111436062B (zh) 2022-02-01
CN111436062A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2020029777A1 (zh) 一种资源配置的方法及装置
JP5602239B2 (ja) 柔軟な搬送波集約のための信号方式
US20220272699A1 (en) Time domain resource format configuration method, communication apparatus, and communication system
JP7374221B2 (ja) 通信方法および装置
CN110099021B (zh) 一种同步信号配置方法及装置
US12041006B2 (en) Data transmission method and apparatus
US20210212007A1 (en) Measurement signal configuration method and apparatus
KR20200058533A (ko) 통신 방법 및 통신 장치
WO2019205970A1 (zh) 一种资源配置方法及节点
WO2020143360A1 (zh) 一种同步信号发送和接收的方法及装置
JP2016500991A (ja) セルラワイヤレス通信におけるフレキシブルスペクトルサポート
CN112399585B (zh) 一种资源复用方法及装置
TWI736239B (zh) 在iab節點間之量測中之靜音模式信號
TW201926936A (zh) 在5g網路中用信號發送載波資訊
WO2012077938A2 (ko) 다중 노드 시스템에서 자원 할당 방법 및 장치
JP2016537840A (ja) セル発見のための修正参照信号伝送のための方法および装置
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
US20230164757A1 (en) Communication method and apparatus
EP4096312A1 (en) Terminal and base station
JP2024125425A (ja) 端末、基地局、通信システム、及び通信方法
CN113766648A (zh) 一种ssb传输方法和装置及设备
JP7488368B2 (ja) リソース多重化方法及び装置
KR20230133879A (ko) 통합 액세스 및 백홀에 기초한 통신 방법 및 장치
WO2015042954A1 (zh) 站间同步的方法及基站
JP2021521669A (ja) クリアチャネルのリスニング方法、装置及び機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908541

Country of ref document: EP

Kind code of ref document: A1