WO2020143020A1 - 充电装置和充电方法 - Google Patents

充电装置和充电方法 Download PDF

Info

Publication number
WO2020143020A1
WO2020143020A1 PCT/CN2019/071331 CN2019071331W WO2020143020A1 WO 2020143020 A1 WO2020143020 A1 WO 2020143020A1 CN 2019071331 W CN2019071331 W CN 2019071331W WO 2020143020 A1 WO2020143020 A1 WO 2020143020A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power supply
voltage
supply device
current
Prior art date
Application number
PCT/CN2019/071331
Other languages
English (en)
French (fr)
Inventor
田晨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980003866.9A priority Critical patent/CN111699604B/zh
Priority to JP2020565987A priority patent/JP7193554B2/ja
Priority to PCT/CN2019/071331 priority patent/WO2020143020A1/zh
Priority to KR1020207034255A priority patent/KR102509907B1/ko
Priority to EP19909590.2A priority patent/EP3780325B1/en
Priority to CN202111527637.2A priority patent/CN114204640A/zh
Priority to US16/928,745 priority patent/US20200343757A1/en
Publication of WO2020143020A1 publication Critical patent/WO2020143020A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of charging, and more specifically, to a charging device and charging method.
  • devices to be charged are increasingly favored by consumers, but devices to be charged consume a large amount of power and require frequent charging.
  • the present application provides a charging device and a charging method, which can improve heat generation of a device to be charged during charging.
  • a charging device including: a booster circuit for boosting an output voltage of a power supply device; a charging channel for charging a battery according to the boosted voltage; a communication control circuit, Used to communicate with a power supply device to instruct the power supply device to adjust the output voltage and/or output current so that the output voltage and/or output current of the boost circuit matches the charging requirements of the battery .
  • a device to be charged including: a battery; and a charging device as in the first aspect and each implementation manner of the first aspect.
  • a charging method including: boosting an output voltage of a power supply device using a boost circuit; charging a battery according to the boosted voltage using a charging channel; using a communication control circuit and a power supply device Communicate to instruct the power supply device to adjust the output voltage and/or output current so that the output voltage and/or output current of the booster circuit matches the charging requirements of the battery.
  • the output voltage and/or output current of the power supply device is adjusted by the power supply, so that the output voltage and/or output current of the booster circuit matches the current charging demand of the battery In this way, the voltage conversion requirements of the booster circuit can be reduced, and the heating at the booster circuit can be reduced, thereby reducing the heating of the device to be charged.
  • FIG. 1 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another charging system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of yet another charging system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of yet another charging system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of yet another charging system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a device to be charged according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a charging method provided by an embodiment of the present application.
  • a power supply device for charging the device to be charged is mentioned.
  • the power supply provides that the device works in constant voltage mode.
  • the voltage provided by the power supply device is basically kept constant, such as 5V, 9V, 12V or 20V.
  • the voltage provided by the power supply device is not suitable to be directly loaded on both ends of the battery, but needs to be transformed by the conversion circuit in the device to be charged to obtain the expected charging voltage and/or charging current of the battery in the device to be charged .
  • the conversion circuit is used to convert the voltage output by the power supply device to meet the expected charging voltage and/or charging current of the battery.
  • the conversion circuit may refer to a charging management module or charging management circuit, such as a charging integrated circuit (IC). During the charging process of the battery, it is used to manage the charging voltage and/or charging current of the battery.
  • the conversion circuit has the function of a voltage feedback module, and/or the function of a current feedback module, so as to realize the management of the charging voltage and/or charging current of the battery.
  • the battery charging process may include one or more of a trickle charging stage, a constant current charging stage, and a constant voltage charging stage.
  • the conversion circuit may use a current feedback loop to make the current that enters the battery during the trickle charging phase meet the expected charging current of the battery (such as the first charging current).
  • the conversion circuit can use a current feedback loop to make the current entering the battery during the constant current charging stage meet the expected charging current of the battery (such as the second charging current, which can be greater than the first charging current) .
  • the conversion circuit can use a voltage feedback loop to make the voltage applied to the battery terminals in the constant voltage charging stage satisfy the expected charging voltage of the battery.
  • the conversion circuit can be used to step down the voltage output by the power supply device, so that the charging voltage obtained after the step-down conversion meets the battery Expected charging voltage demand.
  • the conversion circuit may be used to boost the voltage output by the power supply device, so that the charging voltage obtained after the boost conversion meets the battery Expected charging voltage requirements.
  • a conversion circuit for example, a Buck step-down circuit may step down the voltage output by the power supply device to reduce the voltage The resulting charging voltage meets the expected charging voltage requirements of the battery.
  • a conversion circuit (such as a boost boost circuit) can provide the power supply The voltage output by the device is boosted so that the boosted charging voltage meets the expected charging voltage demand of the battery.
  • the conversion circuit is limited by the reason for the low conversion efficiency of the circuit, so that the electrical energy of the unconverted part is lost in the form of heat. This part of the heat will be focused inside the device to be charged.
  • the design space and heat dissipation space of the device to be charged are very small (for example, the physical size of the mobile terminal used by users is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal), which not only The design difficulty of the conversion circuit is increased, and the heat focused in the device to be charged is difficult to be removed in time, thereby causing an abnormality of the device to be charged.
  • the heat accumulated on the conversion circuit may cause thermal interference to the electronic components near the conversion circuit, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit may shorten the service life of the conversion circuit and nearby electronic components.
  • the heat accumulated on the conversion circuit may cause thermal interference to the battery, which may cause abnormal battery charging and discharging.
  • the heat accumulated on the conversion circuit which may cause the temperature of the device to be charged to rise, affecting the user's experience when charging.
  • the heat accumulated on the conversion circuit may cause the short circuit of the conversion circuit itself, so that the voltage output by the power supply device is directly loaded on both ends of the battery to cause abnormal charging. If the battery is in an overvoltage charging state for a long time, it may even cause The explosion of the battery endangers the safety of users.
  • the power supply device mentioned in the embodiment of the present application may be a power supply device with an adjustable output voltage.
  • the power supply device can obtain the status information of the battery.
  • the state information of the battery may include current battery power information, voltage information, temperature information, charging voltage and/or charging current, and so on.
  • the power supply device can adjust the output voltage of the power supply device according to the obtained battery state information to meet the expected charging voltage and/or charging current of the battery.
  • the output voltage adjusted by the power supply device can be directly loaded Charge the battery at both ends of the battery (hereinafter referred to as "direct charge"). Further, during the constant current charging stage of the battery charging process, the voltage output by the power supply device after adjustment can be directly loaded on both ends of the battery to charge the battery.
  • the power supply device may have the function of a voltage feedback module and the function of a current feedback module, so as to realize the management of the charging voltage and/or charging current of the battery.
  • the power supply device adjusts the output voltage of the power supply device according to the obtained battery state information. It can mean that the power supply device can obtain the battery state information in real time, and according to the real-time state information of the battery obtained every time To adjust the power supply voltage provided by the device itself to meet the expected charging voltage and/or charging current of the battery.
  • the power supply device adjusts the output voltage of the power supply device according to the battery status information obtained in real time. It can mean that as the battery voltage continues to rise during the charging process, the power supply device can obtain the current status of the battery at different times during the charging process. State information, and adjust the output voltage of the power supply device itself in real time according to the current state information of the battery to meet the expected charging voltage and/or charging current requirements of the battery.
  • the charging process of the battery may include at least one of a trickle charging stage, a constant current charging stage, and a constant voltage charging stage.
  • the power supply device may output a first charging current to charge the battery during the trickle charging stage to meet the expected charging current of the battery (the first charging current may be a constant DC current).
  • the power supply device can use the current/voltage feedback loop so that the current output by the power supply device and entering the battery during the constant current charging stage meets the expected charging current demand of the battery (such as the second charging current, can It is a pulsating waveform current.
  • the second charging current may be greater than the first charging current.
  • the power supply device may use a voltage/current feedback loop to keep the voltage (ie, constant DC voltage) output from the power supply device to the device to be charged in the constant voltage charging stage constant.
  • the charging process described above can be applied to the charging process of a battery that includes a single cell, and also to the charging process of a battery that includes multiple cells.
  • the charging stage of the battery may also include a trickle charging stage, a constant current charging stage and a constant voltage charging stage.
  • the charging process in each stage is similar to the charging process described above .
  • the size of the charging voltage/current provided by the power supply device meets the total voltage/current demand expected by the multi-cell battery at each stage.
  • the charging voltage/current of each cell in the multi-cell needs to be balanced, that is, the voltage across each cell remains the same.
  • the trickle charging stage the voltage across each cell in the multi-cell battery remains the same, and the current flowing into each cell meets the current demand expected by the cell during the trickle charging stage.
  • the constant current charging stage the voltage across each cell of the multi-cell battery remains the same, and the current flowing into each cell meets the current demand expected by the battery during the constant current charging stage.
  • the constant voltage charging stage the voltage across each cell in the multi-cell battery remains the same, and the voltage across each cell meets the voltage demand expected by the battery during the constant voltage charging stage.
  • the charging process of some batteries may only include the trickle charging stage and the constant current charging stage, and the constant voltage charging stage is omitted, which is not specifically limited in the embodiments of the present application.
  • the battery can be fully charged in a staged constant current charging mode during the constant current charging stage, and the process will be described in detail later.
  • the power supply device mentioned in the embodiments of the present application may be mainly used to control the constant current charging stage of the battery in the device to be charged.
  • the control functions of the trickle charging phase and the constant voltage charging phase of the battery in the device to be charged can also be completed by the power supply device mentioned in the embodiments of the present application and an additional charging chip in the device to be charged; phase Compared with the constant current charging stage, the battery receives less charging power in the trickle charging stage and the constant voltage charging stage, and the efficiency conversion loss and heat accumulation of the charging chip inside the device to be charged are acceptable.
  • the constant current charging stage or the constant current stage mentioned in the embodiments of the present application may refer to a charging mode that controls the output current of the power supply device, and does not require the output current of the power supply device to remain completely constant
  • it may refer to that the current peak value or average value of the pulsation waveform output by the power supply device remains substantially unchanged, or it remains substantially unchanged for a period of time.
  • the power supply device is usually charged in a segmented constant current mode during the constant current charging stage.
  • Multi-stage constant current charging may have N constant current stages (N is an integer not less than 2).
  • the multi-stage constant current charging starts the first stage charging with a predetermined charging current.
  • the N constant current stages of segment constant current charging are executed in sequence from the first stage to the Nth stage.
  • the current peak or average of the pulsating waveform The value can become smaller; when the battery voltage reaches the end-of-charge voltage threshold, the previous constant current stage in the constant current stage will be transferred to the next constant current stage.
  • the current conversion process between two adjacent constant current stages can be gradual, or it can also be a step-like jump change.
  • the constant current mode may refer to a charging mode that controls the peak or average value of the pulsating direct current, that is, the peak value of the output current of the control power supply device does not exceed the constant current mode Corresponding current.
  • the constant current mode may refer to a charging mode that controls the peak value of alternating current.
  • the device to be charged used in the embodiments of the present application may refer to a terminal, and the “terminal” may include, but is not limited to being configured to be connected via a wired line (such as via a public switched telephone network ( public switched telephone (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, wireless LAN ( wireless, local, network (WLAN), digital TV networks such as digital video broadcasting (DVB-H) networks, satellite networks, AM-FM broadcast transmitters, And/or the wireless interface of another communication terminal) means for receiving/transmitting communication signals.
  • a wired line such as via a public switched telephone network (public switched telephone (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network
  • PSTN public switched telephone
  • DSL digital subscriber line
  • digital cable direct cable connection
  • another data connection/network for example, for cellular networks, wireless LAN ( wireless
  • Terminals configured to communicate through a wireless interface may be referred to as “wireless communication terminals", “wireless terminals", and/or “mobile terminals”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radiotelephones with data processing, fax, and data communication capabilities; can include radiotelephones, pagers, and Internet/ Personal digital assistant (Personal Digital Assistant, PDA) for intranet access, web browser, notepad, calendar, and/or global positioning system (GPS) receiver; and regular laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the device or terminal to be charged used in the embodiments of the present application may further include a power bank (power bank), which can be charged by the power supply device, thereby storing energy to provide energy for other electronic devices.
  • power bank power bank
  • the charging current when the voltage of the pulsation waveform output by the power supply device is directly loaded on the battery of the device to be charged to charge the battery, the charging current may be characterized in the form of pulsation wave (such as bun wave) come out.
  • the charging current can charge the battery in an intermittent manner, and the period of the charging current can be changed according to the frequency of the input AC power, such as the AC grid, for example, the frequency corresponding to the period of the charging current is an integer multiple or reciprocal of the grid frequency Times.
  • the current waveform corresponding to the charging current may be composed of one or a group of pulses synchronized with the power grid.
  • the battery can receive the pulsating direct current (the direction is not Change, amplitude magnitude changes with time), alternating current (direction and magnitude change with time) or direct current (ie constant DC, neither amplitude magnitude nor direction change with time).
  • the switching charger can adaptively adjust the output of the switching charger according to the charging requirements of the battery
  • the current conversion circuit is implemented by using a switching charger to charge the battery through the switching charger.
  • the switching efficiency of the switching charger is limited by the voltage difference between its input voltage and output voltage.
  • the conversion efficiency is very low and the heat generation is serious.
  • the energy loss is higher and the heat generation will be more serious.
  • Embodiments of the present application provide a charging device, which can improve heat generation of a device to be charged during charging.
  • the charging device 20 includes a booster circuit 22 and a charging channel 21.
  • the boosting circuit 22 can be used to boost the first charging voltage
  • the charging channel 21 can be used to charge the battery 30 according to the boosted voltage.
  • the charging device 20 may further include a communication control circuit 23 that can be used to communicate with the power supply device 10 to instruct the power supply device 10 to adjust the output voltage and/or output current so that the booster circuit The output voltage and/or output current of 22 matches the charging requirements of the battery.
  • a communication control circuit 23 can be used to communicate with the power supply device 10 to instruct the power supply device 10 to adjust the output voltage and/or output current so that the booster circuit The output voltage and/or output current of 22 matches the charging requirements of the battery.
  • the conversion efficiency of the booster circuit 22 may be higher than the conversion efficiency of the conversion circuit described above. In other words, the conversion efficiency of the booster circuit 22 is higher than the conversion efficiency of the charging management module.
  • the embodiment of the present application does not specifically limit the form of the booster circuit, as long as its conversion efficiency is greater than that of the charging management circuit.
  • the boost circuit 22 may be a charge pump.
  • the charge pump is mainly composed of a switching device. The heat generated by the current flowing through the switching device is very small, which is almost equivalent to the current directly passing through the wire. Therefore, the use of the charge pump as the boosting circuit 22 can not only achieve the boosting effect, but also generate less heat.
  • the charging voltage and/or charging current required by the battery can be satisfied by adjusting the output voltage and/or output current of the power supply device, rather than being completely satisfied by the booster circuit,
  • a part of the boosting function of the booster circuit is implemented by the power supply device, and a small part is realized by the booster circuit, which can reduce the heating of the booster circuit due to voltage conversion.
  • the conversion efficiency of the booster circuit is higher than the conversion efficiency of the charge management module, when the booster circuit (such as a charge pump) is used for charging, the booster circuit generates less heat, so that the heat phenomenon of the device to be charged can be further Improved.
  • the embodiment of the present application does not specifically limit the boosting multiple of the boosting circuit 22, and the boosting multiple may be a ratio between the output voltage and the input voltage of the boosting circuit.
  • the boosting multiple can be 2:1, 3:1, 3:2, 4:1, etc.
  • the boosting multiple used in a specific charging device can be based on the output voltage of the power supply device and the voltage of the battery determine.
  • a boost circuit with a boost ratio of 2:1 can be used.
  • the ratio of the output current of the boosting circuit to the input current is 1:2.
  • the battery in the embodiment of the present application may be a battery including multiple cells, and the boosting circuit may boost the first charging voltage to charge the multiple cells.
  • a power supply device that matches the voltage of the battery is generally used for charging.
  • the output voltage of the power supply device needs to be higher than 8V.
  • the output voltage of the power supply device must be greater than 10V to charge the battery. Therefore, when it is necessary to charge a battery with a higher voltage, it is necessary to redesign a matching power supply device for charging. This method may result in increased costs and is not compatible with ordinary power supply devices (such as ordinary Power Adapter).
  • the technical solutions provided in the embodiments of the present application are compatible with ordinary power supply equipment with a lower output voltage, such as a power supply equipment with an output voltage of 5V, and boost the output voltage of the power supply equipment through a boost circuit to meet The current battery charging needs to charge the battery. Therefore, the solution of the embodiment of the present application solves the problem that a common adapter cannot charge a battery with a higher battery voltage (a battery with a multi-cell series structure), and can save costs.
  • the power supply device 10 may be an adapter, a power bank, a car charger, or a computer.
  • the battery mentioned in the embodiment of the present application may be a battery including a single cell, for example, the battery including a single cell may have a higher voltage, or the battery may be a battery including multiple cells, The battery of the battery cell has a higher voltage.
  • the battery 30 in the embodiment of the present invention may include multiple cells (at least two cells) connected in series with each other.
  • the cells connected in series can divide the charging voltage provided by the power supply device 10 during the charging process.
  • the first cell 31a and the second cell 31b shown in FIG. 2 may be any two cells in the multi-cell, or may be any two groups of cells in the multi-cell.
  • the battery 30 may be one battery or multiple batteries.
  • the first battery cell and the second battery cell connected in series in the embodiment of the present application may be packaged into a battery pack to form a battery cell. It can also be packaged into multiple battery packs to form multiple batteries.
  • the battery 30 may be a battery, wherein the battery includes a first battery cell and a second battery cell connected in series with each other.
  • the battery 30 may be two batteries, where one battery includes a first battery cell and the other battery includes a second battery cell.
  • the communication control circuit 23 of the embodiment of the present application can be used to communicate with the power supply device 10 and instruct the power supply device 10 to adjust the output voltage and/or output current according to the status information of the battery 30, wherein the status information of the battery can be It includes at least one of the following information: current power, current voltage, current temperature, charging voltage and charging current.
  • the first charging voltage may be the output voltage of the power supply device 10.
  • the input terminal of the booster circuit 22 may be electrically connected to the output terminal of the power supply device 10, and the communication control circuit 23 may be used to instruct the power supply device to adjust the output voltage and/or output current according to the status information of the battery, so that the boost The output voltage and/or output current of the voltage circuit 22 matches the current charging demand of the battery 30.
  • the first charging voltage may be obtained after the output voltage of the power supply device 10 is converted by another circuit (for example, a conversion circuit).
  • a conversion circuit for example, a conversion circuit
  • the output end of the power supply device 10 is electrically connected to the input end of the conversion circuit
  • the output end of the conversion circuit is electrically connected to the input end of the booster circuit 22
  • the booster circuit 22 may be used to boost the output voltage of the converter circuit .
  • the communication control circuit 23 may be used to adjust the output voltage and/or output current of the power supply device 10 according to the status information of the battery, so that the output voltage and/or output current of the booster circuit 22 matches the current charging demand of the battery 30.
  • Matching the output voltage and/or output current of the booster circuit 22 with the current charging demand of the battery 30 may refer to the configuration of the output voltage and/or output current of the power supply device 10 after the booster circuit 22 boosts the charge channel
  • the output voltage and/or output current of 21 matches the charging voltage and/or charging current currently required by the battery 30 (or, the configuration of the output voltage and/or output current by the power supply device 10 is boosted by the booster circuit 22 , So that the output voltage and/or output current of the charging channel 21 meet the charging requirements of the battery 30 (including the battery 30's charging voltage and/or charging current requirements)).
  • the output voltage and/or output current of the charging channel 21 matches the current charging voltage and/or charging current required by the battery 30” includes: The voltage value and/or current value are equal to the charging voltage value and/or charging current value required by the battery 30 or within a preset floating range (for example, the voltage value floats up and down by 100 mV to 200 mV, and the current value floats by 0.001A ⁇ 0.005A, etc.).
  • the communication control circuit 23 instructs the power supply device 10 to adjust the output voltage and/or output current. It may mean that the communication control circuit 23 may directly send the status information of the battery to the power supply device 10, and the power supply device 10 according to the battery status information Adjust the output voltage and/or output current. In this case, it is up to the power supply device 10 to determine the increase or decrease in its output voltage.
  • the communication control circuit 23 instructs the power supply device 10 to adjust the output voltage and/or output current may refer to that the communication control circuit 23 sends adjustment information to the power supply device 10 according to the state information of the battery to instruct the power supply device 10 to increase Increase or decrease the output voltage and/or output current.
  • the power supply device 10 may directly adjust the output voltage and/or output current according to the adjustment information. In this way, the power supply device 10 does not need to pass multiple feedbacks and confirmations, and the output voltage of the power supply device can be adjusted to the required voltage through one feedback, thereby saving loop response time.
  • Adjusting the output voltage and/or output current of the power supply device 10 according to the status information of the battery may refer to determining the current charging voltage and/or charging current required by the battery 30 according to the status information of the battery, and then according to the current demand of the battery 30 Adjust the output voltage and/or charging current of the power supply device 10.
  • the embodiment of the present application does not specifically limit the manner of determining the current charging current required by the battery according to the status information of the battery.
  • the charging current required by the battery is hereinafter referred to as the target charging current.
  • the correspondence between the state information of the battery and the target charging current, or charging curve may be set in advance, and the correspondence may be obtained by the communication control circuit 23.
  • the communication control circuit 23 may search for the corresponding target charging current according to the current state information of the battery. For example, when the battery 30 is charged to a certain charging stage, the communication control circuit 23 may obtain the target charging current corresponding to the charging stage according to the corresponding relationship, and adjust the output current of the power supply device 10 so that the charging channel adopts the target The charging current charges the battery 30. This way of setting the correspondence between the battery state information and the target charging current in advance can simplify the adjustment process.
  • the communication control circuit 23 may acquire the status information of the battery 30 in real time during the charging process, and then determine the target charging current according to the acquired battery status information. In this case, the communication control circuit 23 needs to have the ability to determine the target charging current.
  • This adjustment method is more flexible, and the communication control circuit can flexibly adjust the charging voltage and/or charging current according to the charging state of the battery at any time, and adjust the charging voltage and/or charging current of the battery more accurately during the charging process.
  • the correspondence between the status information of the battery and the target charging current may refer to the correspondence between the current voltage and/or current capacity of the battery and the target charging current.
  • the charging current required by the battery may not the same.
  • the charging current required by the battery may be relatively large.
  • a larger target charging current may be set; when the voltage and/or power of the battery is large, such as the battery When it is almost full, the charging current required by the battery may be small, at this time, a small target charging current can be set.
  • the correspondence relationship between the battery state information and the target charging current may also refer to the correspondence relationship between the current temperature of the battery and the charging current, and different target charging currents may be set according to different battery temperatures. For example, when the temperature of the battery is low, a larger target charging current can be set to increase the charging speed; when the temperature of the battery is high, a smaller target charging current can be set to control the heating during the charging process.
  • the correspondence between the state information of the battery and the target charging current may refer to the correspondence between the current charging voltage of the battery and/or the charging current and the target charging current.
  • the charging process of the battery may include multiple charging stages, and each charging stage may use a different charging current for charging. After the current charging stage ends, the next charging stage is entered. Therefore, the charging current of the next charging stage can be determined according to the charging current of the current charging stage, and the charging current of the next charging stage is the target charging current.
  • the correspondence between the state information of the battery and the target charging current may also refer to any combination of the methods described above, which is not specifically limited in the embodiments of the present application.
  • the embodiment of the present application does not specifically limit the manner of adjusting the output voltage and/or output current of the power supply device 10 according to the target charging current.
  • the communication control circuit 23 may determine that the power supply device 10 increases or decreases the output current according to the target charging current and the current charging current of the battery. When the target charging current is greater than the current charging current of the battery, the communication control circuit 23 may instruct the power supply device 10 to increase the output current. When the target charging current is less than the current charging current of the battery, the communication control circuit 23 may instruct the power supply device 10 to reduce the output current.
  • the communication control circuit 23 may directly send the target charging current to the power supply device 10, and the power supply device 10 may compare the target charging current with its output current and determine to increase or decrease the output current.
  • the boost circuit is a boost circuit with a boost ratio of 2:1, that is, the output current of the boost circuit is half of the input current
  • the boost circuit can convert the output current I of the power supply device 10 to I/ 2 Charge the battery.
  • the power supply device 10 may compare half of the target charging current with its output current, and when it is determined that the output current of the power supply device 10 is greater than half of the target charging current, the power supply device 10 may reduce the output current when the power supply is determined When the output current of the supply device 10 is less than half of the target charging current, the power supply device 10 can increase the output current.
  • the output current of the power supply device 10 can be set in multiple gears.
  • the communication control circuit 23 can The output current is adjusted in multiple steps, and the voltage of each step can be set to a fixed value, for example, 5mA, 10mA, etc.; when the difference between the output current of the power supply device 10 and the target charging current is small, the communication control The circuit 23 can adjust the scale of the output current of the power supply device 10 by one grid.
  • the embodiment of the present application does not specifically limit the communication sequence between the communication control circuit 23 and the power supply device 10.
  • the communication control circuit 23 may actively initiate communication to instruct the power supply device 10 to adjust the output voltage and/or output current.
  • the power supply device 10 may initiate communication actively, inquiring whether the communication control circuit 23 needs to adjust the output voltage and/or output current of the power supply device 10, and when the output voltage and/or output current of the power supply device 10 needs to be adjusted,
  • the communication control circuit 23 may feedback the query of the power supply device 10 to instruct the power supply device 10 to adjust its output voltage and/or output current.
  • the communication control circuit 23 can detect or monitor the status information of the battery in real time.
  • the communication control circuit 23 can detect or monitor the state information of the battery 30 in various ways.
  • the state information of the battery can be detected by the detection circuit, or the state information of the battery 30 can be detected by other methods.
  • This application The embodiment is not limited to this.
  • the control function in the communication control circuit 23 can be realized by, for example, a micro control unit (MCU), or can be realized by an application processor (AP) inside the device to be charged, or can cooperate with each other through the MCU and AP Way.
  • MCU micro control unit
  • AP application processor
  • the battery can be charged in a segmented constant current mode, that is, multiple constant current charging stages can be set, different constant currents
  • the charging stage corresponds to different charging currents.
  • the booster circuit 22 may be a booster circuit with a boosting factor of 2:1.
  • the output current of the power supply device 10 needs Adjust to I1/2.
  • the output current of the power supply device needs to be adjusted to I2/2.
  • the constant current charging stage of the battery 30 includes n charging stages, and sets n charging currents [I1, I2, I3, ..., In] for multiple charging stages, n ⁇ 1, where I1 ⁇ I2 ⁇ I3... ... ⁇ In.
  • a charging cut-off voltage may also be set for each charging stage, and the charging cut-off voltages in different charging stages may be the same or different.
  • the charging cut-off voltage of the n charging stages can be set to different charging cut-off voltages according to the charging current corresponding to the charging stage. For example, when the charging current of the charging stage is larger, a smaller charging cut-off voltage can be set. When the charging current in this charging stage is small, a larger charging cut-off voltage can be set.
  • the charging cutoff voltages of the n charging stages may all be the same, and are the limiting voltage Vn higher than the standard cutoff voltage.
  • the limit voltage Vn is related to the battery system, materials used, and the like. In some embodiments, if the standard cut-off voltage of the battery is V0, Vn may be set to V0+ ⁇ V, for example, ⁇ V may take a value between 0.05V and 0.1V.
  • the values of the charging currents I1, I2, ..., In are also related to the battery system and the materials used. For example, In may be 700 mA.
  • the communication control circuit 23 may communicate with the power supply device 10 and instruct the power supply device 10 to adjust its output voltage to I1/2 to ensure that the charging voltage of the input battery is I1.
  • the communication control circuit 23 can also monitor the voltage of the battery 30 in real time. When it is detected that the battery 30 is charged to the first charging cut-off voltage, it indicates that the charging process of the battery 30 needs to enter the next charging stage. At this time, the charging current of the battery 30 needs to be adjusted to the charging current I2 corresponding to the second charging stage.
  • the communication control circuit 23 When the communication control circuit 23 detects that the voltage of the battery 30 reaches the first charging cut-off voltage, it can communicate with the power supply device 10 to instruct the power supply device 10 to reduce the output current, so that the output current of the power supply device 10 is adjusted to I2/ 2. Until the battery 30 voltage reaches the second charging cut-off voltage. Repeat the above steps until the charging current In of the last step is used to charge to the nth charging cut-off voltage.
  • the output current of the power supply device 10 described above is I1/2, which does not mean that the output current of the power supply device 10 is constant, for example, it may refer to the current peak or average value of the pulsation waveform output by the power supply device 10 It is basically unchanged, or it may mean that the output current of the power supply device 10 is around I1/2, for example, the output current of the power supply device may be (1+2%) I1/2.
  • the charge pump shown in FIG. 3 is a schematic diagram of a double boost charge pump.
  • the conversion of the voltage can be achieved in two stages. In the first stage, switches S1 and S2 are closed, while switches S3 and S4 are opened, and the capacitor is charged to its value equal to the input voltage. In the second phase, switches S3 and S4 are closed, while switches S1 and S2 are open. Because the voltage drop across the capacitor cannot be changed immediately, the output voltage jumps to twice the value of the input voltage. In this way, the voltage can be doubled.
  • the input voltage of the charge pump is Vin
  • the input current is Iin
  • the output voltage is Vout
  • the output current is Iout.
  • the input end of the charge pump can be electrically connected to the output end of the power supply device, and the output end of the charge pump can be electrically connected to the battery.
  • the battery shown in FIG. 3 includes dual cells. The controller can continuously monitor the charging state of the battery and report the charging state of the battery to the power supply device, and the power supply device adjusts its output voltage and/or output current according to the battery charge state.
  • controller in FIG. 3 may be the communication control circuit in the embodiment of the present application.
  • the constant current charging stage of the battery is usually charged in a segmented constant current manner.
  • the battery has different charging current requirements in different charging stages. Taking the battery including n charging stages as an example, the charging current from the first charging stage to the nth charging stage is Im1, Im2, ..., Imn. Among them, Im1 ⁇ Im2 ⁇ Im3... ⁇ Imn.
  • the controller detects that the battery is charged to the voltage specified in the first stage, it can control the charging current into the battery to be Im2.
  • the controller can continuously set the constant current point of the power supply device to adjust the constant current into the battery until the battery is fully charged.
  • the charging device 20 provided by the embodiment of the present application may further include a charging management circuit 24, as shown in FIG. 4, the charging management circuit 24 may be used to manage the output voltage of the booster circuit 22, wherein the input voltage of the charging management circuit 24 The voltage difference with the output voltage is smaller than the input voltage of the booster circuit 22 and the output voltage of the charge management circuit 24.
  • the booster circuit 22 can share the function of boosting the output voltage of the power supply device 10 by the charging management circuit 24, which can be reduced compared to the conventional technology that only uses the charging management circuit for charging
  • the voltage difference between the input voltage and the output voltage of the charge management circuit 24 can reduce the heat generation of the charge management circuit 24.
  • the conversion efficiency of the booster circuit 22 is higher than the conversion efficiency of the charge management circuit 24.
  • the charge management circuit 24 may be an inductance-based charge management circuit.
  • the charge management circuit 24 may use an inductive step-down circuit to step down the voltage, or an inductive step-up circuit to step up the voltage.
  • the booster circuit 22 may use a capacitive booster circuit (such as a charge pump) to boost, or the booster circuit may use a booster circuit that combines an inductive booster circuit and a capacitive booster circuit to boost.
  • the charging management circuit 24 can be used to perform constant voltage and/or constant current control on the output voltage of the booster circuit 22 to obtain the expected charging voltage and/or charging current of the battery.
  • the input terminal of the charging management circuit 24 may be electrically connected to the output terminal of the boosting circuit 22, and the output terminal of the charging management circuit 24 is electrically connected to the battery.
  • the charging management circuit 24 may receive the output voltage and/or output current of the booster circuit 22 and convert the output voltage and/or output current of the booster circuit 22 to the charging voltage and/or charging current currently required by the battery 30, as The battery 30 is charged.
  • the charge management circuit 24 may be a charge management circuit having a boost function, or may be a charge management circuit having a step-down function.
  • the charge management circuit may charge the battery 30 after boosting the output voltage of the booster circuit.
  • the charge management circuit 24 may step down the output voltage of the booster circuit to charge the battery.
  • Whether the charge management circuit 24 uses the step-up or step-down function can be determined according to the output voltage of the step-up circuit 22 and the voltage of the battery 30.
  • the charge management circuit 24 may use the step-down function to step down the output voltage of the booster circuit 22.
  • the charge management circuit 24 may use the booster function to boost the output voltage of the booster circuit 22.
  • the communication control circuit 23 may also communicate with the power supply device 10 and instruct the power supply device 10 to adjust its output voltage and/or output current to adjust the voltage between the input voltage and the output voltage of the charging management circuit 24 Differential pressure.
  • the communication control circuit 23 can also communicate with the power supply device 10 based on the voltage difference between the input voltage and the output voltage of the charge management circuit 24 and instruct the power supply device 10 to adjust its output voltage to reduce the charge management circuit 24 The voltage difference between the input voltage and the output voltage.
  • the conversion efficiency of the charge management circuit 24 is positively related to the voltage difference between its input and output. Therefore, reducing the voltage difference between the input voltage and the output voltage of the charging management circuit 24 can further reduce the heat generation at the charging management circuit 24, thereby further reducing the heat generation of the device to be charged.
  • the power supply device 10 adjusts its output voltage may include: the power supply device 10 adjusts its output voltage so that the voltage difference between the input voltage and the output voltage of the charging management circuit 24 is within a preset range.
  • the communication control circuit 23 can detect or monitor the voltage difference between the input voltage and the output voltage of the charging management circuit 24 in real time.
  • the communication control circuit 23 can detect or monitor the voltage difference between the input voltage and the output voltage in real time in various ways.
  • the voltage difference can be detected by the voltage detection circuit, or the pressure difference can be detected by other methods. This embodiment of the present application is not limited thereto.
  • the control function in the communication control circuit 23 may be realized by, for example, an MCU, or may be realized by an AP inside the device to be charged, or may be realized by a way in which the MCU and the AP cooperate with each other.
  • the embodiment of the present application does not specifically limit the communication sequence between the communication control circuit 23 and the power supply device 10.
  • the communication control circuit 23 may actively initiate communication to instruct the power supply device 10 to adjust the output voltage and/or output current to reduce the voltage difference between the input voltage and the output voltage of the charging management circuit 24.
  • the power supply device 10 may initiate communication actively and inquire whether the communication control circuit 23 needs to reduce the voltage difference between the input voltage and the output voltage of the charging management circuit 24. When the voltage difference needs to be reduced, the communication control circuit 23 may The inquiry of the providing device 10 is fed back to instruct the power supply device 10 to reduce the voltage difference between the input voltage and the output voltage of the charging management circuit 24.
  • a preset range of the pressure difference may be preset, and within the preset range, the conversion efficiency of the charging management circuit is high.
  • the power supply device 10 adjusts its output voltage so that the voltage difference between the input voltage and the output voltage of the charge management circuit 24 is within a preset range, which is beneficial to improve the conversion efficiency of the charge management circuit 24 and reduce the charge management circuit fever.
  • the preset range may be a range where the conversion efficiency of the charge management circuit 24 is high. For example, when the voltage difference is between 0 and 500 mV, the conversion efficiency of the charging management circuit 24 is relatively high. Therefore, the preset range can be set to 0 to 500 mV.
  • the communication control circuit 23 can detect the voltage difference between the input voltage and the output voltage of the charging management circuit 24, and when the voltage difference is not within a preset range, can instruct the power supply device 10 to adjust the output voltage to reduce the charging management circuit 24 The voltage difference between the input voltage and the output voltage. In this way, it can be ensured that the charge management circuit 24 always operates at a higher efficiency point, so that the heat generation of the charge management circuit 24 can be controlled, and further, the heat generation of the device to be charged can be reduced.
  • the power supply device 10 with an output voltage of 5V is used as an example to charge a dual-cell battery.
  • the booster circuit 22 may use a booster circuit with a boosting factor of 2:1.
  • the communication control circuit 23 can communicate with the charging management circuit 24, knowing that in the current charging state, when its input voltage is set to less, its efficiency is higher. For example, when the output voltage of the charge management circuit 24 is V1, and its input voltage is between V1 and V1 ⁇ 500mV, its conversion efficiency is high. Since the boosting circuit 22 has a boosting multiple of 2:1, when the input voltage of the boosting circuit 22 is between (V1 to V1 ⁇ 500 mV)/2, the conversion efficiency of the charge management circuit 24 is high.
  • the communication control circuit 23 can communicate with the power supply device 10 and instruct the power supply device 10 to adjust its output voltage so that the output voltage of the power supply device 10 is in the range of (V1 to V1 ⁇ 500mV)/2, so charging
  • the management circuit 24 can obtain the desired input voltage, and can ensure that the voltage difference between the input voltage and the output voltage of the charge management circuit 24 is between 0 and 500 mV, and the conversion efficiency of the charge management circuit 24 can be improved.
  • the communication control circuit 23 can communicate differently with the power supply device 10 and the charging management circuit 24, so that the charging management circuit 24 has always been at a higher conversion efficiency, so that the conversion efficiency of the charging device 20 will be higher and can Reduce heat during charging.
  • the charging device provided by the embodiment of the present application will be described below with reference to FIG. 5.
  • the charge pump shown in FIG. 5 is a schematic diagram of a double boost charge pump.
  • the input voltage of the charge pump is Vin
  • the input current is Iin
  • the output voltage is Vout
  • the output current is Iout.
  • the input terminal of the charge pump can be electrically connected to the output terminal of the power supply device, and the output terminal of the charge pump can be electrically connected to the input terminal of the charging management circuit.
  • the output of the charging management circuit can be electrically connected to the battery.
  • the battery shown in FIG. 5 includes dual cells.
  • the charging management circuit can be used to perform constant voltage and/or constant current control on the output voltage and output current of the charge pump, so that the output voltage and output current of the charging management circuit match the charging voltage and charging current required by the battery.
  • the charge pump can share part of the boosting function, which can reduce the boosting demand of the charging device for the charging management circuit, thereby reducing the heat generation of the charging management circuit.
  • the conversion efficiency of the charge pump is higher than the conversion efficiency of the charge management circuit, the charge pump generates less heat than the charge management circuit for raising a voltage of the same magnitude. Therefore, the introduction of a charge pump in the charging device can reduce the heat generation of the charging device.
  • the output voltage is generally about 5V
  • the voltage of the dual-cell battery is generally above 8V. If you want to use the ordinary power supply equipment to charge the dual-cell, you usually need to use a voltage greater than 10V to give Dual batteries are charged. Assuming that the charging voltage of the dual cell is 11V, if the charging device only uses the charging management circuit for boosting, the charging management circuit needs to increase the output voltage of the power supply device by 6V, and between the input voltage and the output voltage of the charging management circuit The pressure difference is 6V. If the charging device uses a double boost charge pump and a charge management circuit to boost, the charge pump can bear a 5V boost pressure difference, and the charge management circuit only needs to increase the output voltage of the charge pump by 1V to meet the battery. Charging needs.
  • the charge management circuit's Fever has also improved.
  • the heat generated by the charge management circuit by raising the 5V voltage is higher than the heat generated by the charge pump by raising the 5V voltage. Therefore, after the charge pump is added to the charging device, the charge pump The heat generated by the charging management circuit by raising the voltage by 6V is also smaller than the heat generated by the previous charging management circuit by raising the voltage by 6V, so the heating of the charging device can be reduced.
  • the conversion efficiency of the charge management circuit is related to the voltage difference between the input voltage and the output voltage, when the voltage difference between the input voltage and the output voltage of the charge management circuit is within a certain range, the conversion efficiency is high. During the charging process, we hope that the higher the conversion efficiency of the charging management circuit, the better, which can reduce heat generation.
  • a controller can be used in the charging device to control the voltage difference between the input voltage and the output voltage of the charging management circuit, so that the conversion efficiency of the charging management circuit is high.
  • the controller may be the communication control device described in the embodiments of the present application.
  • the controller may communicate with the charging management circuit to obtain status information of the charging management circuit, and the status information may include output voltage of the charging management circuit and/or voltage difference information between the input voltage and the output voltage.
  • the controller can adjust the output voltage and/or output current of the power supply device according to the state information of the charging management circuit, and then adjust the input voltage of the power supply device, so that the voltage difference between the input voltage and the output voltage of the charging management circuit is controlled at a reasonable Within range.
  • the controller may know in advance that the voltage difference between the input voltage and the output voltage of the charging management circuit is within the first preset range, and its conversion efficiency is better.
  • the controller may determine, according to the first preset range, how much the input voltage of the charging management circuit is set, and its conversion efficiency is better. Assuming that the controller determines that the input voltage of the charging management circuit is within the first range, further, the controller may control the power supply device to adjust its output voltage and/or output current according to the determined input voltage of the charging management circuit, such that The input voltage of the charging management circuit is within the first range.
  • the controller determines that the input voltage of the charging management circuit is Vm, its efficiency is higher. Due to the existence of a 2x boost charge pump, the controller can control the output voltage of the power supply device to Vm/2 without considering the path loss. In this way, the charging management circuit can obtain the desired input voltage, so that the conversion efficiency of the charging management circuit is higher.
  • the controller may compare the actual pressure difference of the charge management circuit with the first preset range, if the actual pressure difference is greater than the first The preset range, and the input voltage is lower than the output voltage, you can control the power supply equipment to increase its output voltage. If the actual voltage difference is greater than the first preset range and the input voltage is actually higher than the output voltage, the power supply device can be controlled to reduce its output voltage. If the actual voltage is within the first preset range, the output voltage of the power supply device may not be adjusted first.
  • the controller can continuously communicate with the charging management circuit and the power supply device throughout the charging cycle, so that the charging management circuit has always been in a state of high conversion efficiency, so that the efficiency of the charging system can always be in a better state to ensure charging Efficiency and reduce heat generation.
  • the charge management circuit 24 may precede the boost circuit 22, that is, the input terminal of the charge management circuit 24 may be electrically connected to the output terminal of the power supply device 10, and the output terminal of the charge management circuit 24 and the boost circuit 22 The input terminals are electrically connected.
  • the charging management circuit 24 can perform constant voltage and/or constant current control on the output voltage and/or output current of the power supply device 10.
  • the boosting factor of the boosting circuit 22 is 2:1
  • the current charging current required by the battery 30 is Ix
  • the charging management circuit 24 can perform constant current control on the output current of the power supply device 10, so that the charging management circuit 24 The output current is stabilized at Ix/2. In this way, it can be ensured that the output current of the charging management circuit 24 is boosted by the boosting circuit 22 to output a stable current Ix to meet the current charging requirements of the battery 30.
  • an embodiment of the present application further provides a device to be charged, the device to be charged includes a battery, and the charging device in any one of the implementation manners described above.
  • the battery may include multiple cells.
  • the device embodiments of the present application are described in detail above with reference to FIGS. 1 to 6, and the method embodiments of the present application are described in detail below with reference to FIG. 7.
  • the method embodiments and the device embodiments correspond to each other, so parts that are not described in detail may be See previous device embodiments.
  • FIG. 7 is a schematic flowchart of a charging method provided by an embodiment of the present application.
  • the method can be applied to a charging device, such as the charging device 20 described above.
  • the method of FIG. 7 includes steps S510-S530.
  • S530 Communicate with the power supply device by using a communication control circuit to instruct the power supply device to adjust the output voltage and/or output current so that the output voltage and/or output current of the booster circuit and the battery Match the charging needs.
  • the instructing the power supply device to adjust the output voltage and/or output current includes: instructing the power supply device to adjust the output voltage and/or output current according to the state information of the battery, wherein
  • the state information of the battery includes at least one of the following information: charging voltage, charging current, current power, current voltage, and current temperature.
  • the input terminal of the booster circuit is electrically connected to the output terminal of the power supply device
  • the output terminal of the booster circuit is electrically connected to the battery
  • the power supply device provides an output voltage and/or The output current is adjusted so that the output voltage and/or output current of the booster circuit matches the charging voltage and/or charging current required by the battery.
  • instructing the power supply device to adjust the output voltage and/or output current according to the battery state information includes: determining a target charging current according to the battery state information; and according to the target charging current , Instruct the power supply device to adjust the output voltage and/or output current.
  • the instructing the power supply device to adjust the output voltage and/or output current according to the target charging current includes: according to the difference between the target charging current and the output current of the power supply device , Sending adjustment information to the power supply device to instruct the power supply device to adjust the output voltage and/or output current.
  • the charging method further includes: using a charging management circuit to manage the output voltage of the boosting circuit, wherein the voltage difference between the input voltage and the output voltage of the charging management circuit is smaller than that of the boosting circuit The voltage difference between the input voltage and the output voltage of the charging management circuit.
  • the charging method further includes: using a communication control circuit to communicate with the power supply device, instructing the power supply device to adjust the output voltage of the power supply device to adjust the charging management circuit The voltage difference between the input voltage and the output voltage.
  • the communication control circuit communicates with the power supply device and instructs the power supply device to adjust the output voltage of the power supply device includes: using the communication control circuit according to the charging management circuit The voltage difference between the input voltage and the output voltage, communicates with the power supply device, and instructs the power supply device to adjust the output voltage of the power supply device to reduce the input voltage of the charging management circuit and The voltage difference between the output voltages.
  • the power supply device adjusting the output voltage of the power supply device includes: the power supply device adjusting the output voltage of the power supply device so that the input voltage of the charging management circuit is The voltage difference between the output voltages is within the preset range.
  • the conversion efficiency of the boosting circuit is higher than the conversion efficiency of the charging management circuit.
  • the boost circuit is a charge pump.
  • the charging stage of the battery is a constant current charging stage.
  • the battery includes multiple cells.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种充电装置(20)和充电方法。该充电装置(20)包括:升压电路(22),用于对电源提供设备(10)的输出电压进行升压;充电通道(21),用于根据升压后的电压,对电池(30)进行充电;通信控制电路(23),用于与电源提供设备(10)进行通信,以指示电源提供设备(10)对输出电压和/或输出电流进行调整,使得升压电路(22)的输出电压和/或输出电流与电池(30)当前的充电需求相匹配。该充电装置(20)在对电池(30)进行充电的过程中,通过调整电源提供设备(10)的输出电压和/或输出电流,使得升压电路(22)与电池(30)当前的充电需求相匹配,这样能够减小升压电路(22)对电压的转换需求,能够降低升压电路(22)处的发热,从而降低待充电设备的发热。

Description

充电装置和充电方法 技术领域
本申请涉及充电领域,更为具体地,涉及一种充电装置和充电方法。
背景技术
目前,待充电设备(例如智能手机)越来越受到消费者的青睐,但是待充电设备耗电量大,需要经常充电。
但是传统的充电方式,待充电设备的发热较严重,尤其是在大功率充电的情况下,发热现象更为突出。因此,如何降低待充电设备的发热是目前亟待解决的问题。
发明内容
本申请提供一种充电装置和充电方法,能够改善待充电设备在充电过程中的发热。
第一方面,提供一种充电装置,包括:升压电路,用于对电源提供设备的输出电压进行升压;充电通道,用于根据升压后的电压,对电池进行充电;通信控制电路,用于与电源提供设备进行通信,以指示所述电源提供设备对输出电压和/或输出电流进行调整,使得所述升压电路的输出电压和/或输出电流与所述电池的充电需求相匹配。
第二方面,提供一种待充电设备,包括:电池;以及如第一方面及第一方面各实现方式中的充电装置。
第三方面,提供一种充电方法,包括:利用升压电路对电源提供设备的输出电压进行升压;利用充电通道根据升压后的电压,对电池进行充电;利用通信控制电路与电源提供设备进行通信,以指示所述电源提供设备对输出电压和/或输出电流进行调整,使得所述升压电路的输出电压和/或输出电流与所述电池的充电需求相匹配。
本申请提供的技术方案,在对电池进行充电的过程中,通过调整电源提供设备的输出电压和/或输出电流,使得升压电路的输出电压和/或输出电流与电池当前的充电需求相匹配,这样能够减小升压电路对电压的转换需求,能够降低升压电路处的发热,从而降低待充电设备的发热。
附图说明
图1是本申请实施例提供的一种充电系统的示意性结构图。
图2是本申请实施例提供的另一种充电系统的示意性结构图。
图3是本申请实施例提供的又一种充电系统的示意性结构图。
图4是本申请实施例提供的又一种充电系统的示意性结构图。
图5是本申请实施例提供的又一种充电系统的示意性结构图。
图6是本申请实施例提供的一种待充电设备的示意图。
图7是本申请实施例提供的一种充电方法的示意性流程图。
具体实施方式
相关技术中提到了用于为待充电设备进行充电的一电源提供设备。该电源提供设备工作在恒压模式下。在恒压模式下,该电源提供设备输出的电压基本维持恒定,比如5V,9V,12V或20V等。
该电源提供设备输出的电压并不适合直接加载到电池两端,而是需要先经过待充电设备内的变换电路进行变换,以得到待充电设备内的电池所预期的充电电压和/或充电电流。
变换电路用于对电源提供设备输出的电压进行变换,以满足电池所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路可指充电管理模块或称充电管理电路,例如充电集成电路(integrated circuit,IC)。在电池的充电过程中,用于对电池的充电电压和/或充电电流进行管理。该变换电路具有电压反馈模块的功能,和/或,具有电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路可利用电流反馈环使得在涓流充电阶段进入到电池的电流满足电池所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路可利用电流反馈环使得在恒流充电阶段进入电池的电流满足电池所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路可利用电压反馈环使得在恒压充电阶段加载到电池两端的电压的大小满足电池所预期的充电电压大小。
作为一种示例,当电源提供设备输出的电压大于电池所预期的充电电压时,变换电路可用于对电源提供设备输出的电压进行降压处理,以使降压转换后得到的充电电压满足电池所预期的充电电压需求。作为又一种示例,当电源提供设备输出的电压小于电池所预期的充电电压时,变换电路可用于对电源提供设备输出的电压进行升压处理,以使升压转换后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供设备输出5V恒定电压为例,当电池包括单个电芯时,变换电路(例如Buck降压电路)可对电源提供设备输出的电压进行降压处理,以使得降压后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供设备输出5V恒定电压为例,当电源提供设备为串联有两个及两个以上单电芯的电池充电时,变换电路(例如Boost升压电路)可对电源提供设备输出的电压进行升压处理,以使得升压后得到的充电电压满足电池所预期的充电电压需求。
变换电路受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备内部。待充电设备的设计 空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路的设计难度,还会导致聚焦在待充电设备内的热量很难及时移除,进而引发待充电设备的异常。
例如,变换电路上聚集的热量可能会对变换电路附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路上聚集的热量,可能会缩短变换电路及附近电子元件的使用寿命。又如,变换电路上聚集的热量,可能会对电池造成热干扰,进而导致电池充放电异常。又如变换电路上聚集的热量,可能会导致待充电设备的温度升高,影响用户在充电时的使用体验。又如,变换电路上聚集的热量,可能会导致变换电路自身的短路,使得电源提供设备输出的电压直接加载在电池两端而引起充电异常,如果电池长时间处于过压充电状态,甚至会引发电池的爆炸,危及用户安全。
因此,如何降低待充电设备的发热成为亟需解决的问题。
本申请实施例提及的电源提供设备可以是输出电压可调的电源提供设备。该电源提供设备能够获取电池的状态信息。电池的状态信息可以包括电池当前的电量信息、电压信息、温度信息、充电电压和/或充电电流等。该电源提供设备可以根据获取到的电池的状态信息来调节电源提供设备自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求,电源提供设备调节后输出的电压可直接加载到电池两端为电池充电(下称“直充”)。进一步地,在电池充电过程的恒流充电阶段,电源提供设备调节后输出的电压可直接加载在电池的两端为电池充电。
该电源提供设备可以具有电压反馈模块的功能和电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
该电源提供设备根据获取到的电池的状态信息来调节电源提供设备自身的输出电压可以指:该电源提供设备能够实时获取到电池的状态信息,并根据每次所获取到的电池的实时状态信息来调节电源提供设备自身输出的电压,以满足电池所预期的充电电压和/或充电电流。
该电源提供设备根据实时获取到的电池的状态信息来调节电源提供设备自身的输出电压可以指:随着充电过程中电池电压的不断上升,电源提供设备能够获取到充电过程中不同时刻电池的当前状态信息,并根据电池的当前状态信息来实时调节电源提供设备自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。
举例来说,电池的充电过程可包括涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个。在涓流充电阶段,电源提供设备可在涓流充电阶段输出一第一充电电流对电池进行充电以满足电池所预期的充电电流的需求(第一充电电流可为恒定直流电流)。在恒流充电阶段,电源提供设备可利用电流/电压反馈环使得在恒流充电阶段由电源提供设备输出且进入到电池的电流满足电池所预期的充电电流的需求(譬如第二充电电流,可为脉动波形的电流,该第二充电电流可大于第一充电电流,可以是恒流充电阶段的脉 动波形的电流峰值大于涓流充电阶段的恒定直流电流大小,而恒流充电阶段的恒流可以指的是脉动波形的电流峰值或平均值保持基本不变)。在恒压充电阶段,电源提供设备可利用电压/电流反馈环使得在恒压充电阶段由电源提供设备输出到待充电设备的电压(即恒定直流电压)保持恒定。
上文描述的充电过程可以适用于包含单节电芯的电池的充电过程,也适用于包含多节电芯的电池的充电过程。
对于包含多节相互串联的电芯的电池而言,电池的充电阶段也可包括涓流充电阶段、恒流充电阶段和恒压充电阶段,每个阶段的充电过程与上文描述的充电过程类似。在每个充电阶段,电源提供设备提供的充电电压/电流的大小满足多节电芯在该每个阶段所预期的总电压/电流的需求。
举例说明,在不同充电阶段,多节电芯中的每节电芯的充电电压/电流需要保持均衡,即每节电芯两端的电压保持一致。在涓流充电阶段,多节电芯中每节电芯两端的电压保持一致,且流入每节电芯的电流均满足电芯在涓流充电阶段所预期的电流的需求。在恒流充电阶段,多节电芯中每节电芯两端的电压保持一致,且流入每节电芯的电流均满足电芯在恒流充电阶段所预期的电流的需求。在恒压充电阶段,多节电芯中每节电芯两端的电压保持一致,且每节电芯两端的电压均满足电芯在恒压充电阶段所预期的电压的需求。
需要说明的是,有些电池的充电过程可能仅包括涓流充电阶段和恒流充电阶段,而省去了恒压充电阶段,本申请实施例对此不做具体限定。例如,可以在恒流充电阶段采用分段恒流充电的方式将电池充满,后续会详细描述该过程。
举例来说,本申请实施例中提及的电源提供设备可主要用于控制待充电设备内电池的恒流充电阶段。在其他实施例中,待充电设备内电池的涓流充电阶段和恒压充电阶段的控制功能也可由本申请实施例提及的电源提供设备和待充电设备内额外的充电芯片来协同完成;相较于恒流充电阶段,电池在涓流充电阶段和恒压充电阶段接受的充电功率较小,待充电设备内部充电芯片的效率转换损失和热量累积是可以接受的。需要说明的是,本申请实施例中提及的恒流充电阶段或恒流阶段可以是指对电源提供设备的输出电流进行控制的充电模式,并非要求电源提供设备的输出电流保持完全恒定不变,例如可以是泛指电源提供设备输出的脉动波形的电流峰值或平均值保持基本不变,或者是一个时间段保持基本不变。例如,实际中,电源提供设备在恒流充电阶段通常采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)可具有N个恒流阶段(N为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的N个恒流阶段从第一阶段到第N个阶段依次被执行,当恒流阶段中的前一个恒流阶段转到下一个恒流阶段后,脉动波形的电流峰值或平均值可变小;当电池电压到达充电终止电压阈值时,恒流阶段中的前一个恒流阶段会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,或,也可以是台阶式的跳跃变化。
进一步地,在电源提供设备的输出电流为脉动直流电的情况下,恒流模式可以指对脉动直流电的峰值或均值进行控制的充电模式,即控制电源提供设备的输出电流的峰值不超过恒流模式对应的电流。此外,电源提供设备的输出电流为交流电的情况下,恒流模式可以指对交流电的峰值进行控制的充电模式。
进一步地,需要说明的是,本申请实施例中所使用到的待充电设备可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。另外,本申请实施例中所使用到的待充电设备或终端还可包括移动电源(power bank),该移动电源能够接受电源提供设备的充电,从而将能量存储起来,以为其他电子装置提供能量。
此外,在本申请的实施例中,电源提供设备输出的脉动波形的电压直接加载到待充电设备的电池上以对电池进行充电时,充电电流可以是以脉动波(如馒头波)的形式表征出来。可以理解是,充电电流可以以间歇的方式为电池充电,该充电电流的周期可以跟随输入交流电例如交流电网的频率进行变化,例如,充电电流的周期所对应的频率为电网频率的整数倍或倒数倍。并且,充电电流以间歇的方式为电池充电时,该充电电流对应的电流波形可以是与电网同步的一个或一组脉冲组成。
作为一种示例,本申请实施例中,电池在充电过程中(例如涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个),可以接受电源提供设备输出的脉动直流电(方向不变、幅值大小随时间变化)、交流电(方向和幅值大小都随时间变化)或直流电(即恒定直流,幅值大小和方向都不随时间变化)。
目前,由于转换充电器(switching charger)可以根据电池的充电需求来自适应地调整switching charger的输出,因此,目前的变换电路都是采用switching charger来实现,通过switching charger来给电池进行充电。但是 switching charger的转换效率受限于其输入电压和输出电压之间的压差。当switching charger的输入电压和输出电压之间的压差较大时,转换效率很低,发热严重。尤其是需要采用大功率进行充电时,损失的能量就更高,发热会更严重。对于形态轻薄和对温度要求高的产品时,比如手机,无法满足性能的要求。本申请实施例提供一种充电装置,能够改善待充电设备在充电过程中的发热。
如图1所示,该充电装置20包括升压电路22和充电通道21。升压电路22可用于对第一充电电压进行升压,充电通道21可用于根据升压后的电压,对电池30进行充电。
此外,该充电装置20还可以包括通信控制电路23,该通信控制电路23可用于与电源提供设备10进行通信,以指示电源提供设备10对输出电压和/或输出电流进行调整,使得升压电路22的输出电压和/或输出电流与所述电池的充电需求相匹配。
该升压电路22的转换效率可以是高于上文描述的变换电路的转换效率,换句话说,该升压电路22的转换效率高于充电管理模块的转换效率。本申请实施例对升压电路的形式不做具体限定,只要其转换效率大于充电管理电路的转换效率即可。可选地,作为一种实现方式,该升压电路22可以是电荷泵。电荷泵主要由开关器件组成,电流流过开关器件产生的热量很小,几乎与电流直接经过导线相当,所以采用电荷泵作为升压电路22,不但可以起到升压效果,而且发热较低。
采用升压电路为电池进行充电的过程中,电池所需要的充电电压和/或充电电流可以通过电源提供设备调节其输出电压和/或输出电流来满足,而不是完全由升压电路来满足,也就是说,升压电路的一部分升压功能由电源提供设备来实现,另外很小的一部分由升压电路来实现,这样能够减小升压电路由于电压转换造成的发热。
另外,由于升压电路的转换效率高于充电管理模块的转换效率,因此,采用升压电路(例如电荷泵)进行充电时,升压电路的发热较少,从而待充电设备的发热现象能够进一步得到改善。
本申请实施例对升压电路22的升压倍数不做具体限定,升压倍数可以是升压电路的输出电压与输入电压之间的比值。例如,该升压倍数可以为2:1,3:1,3:2,4:1等等,具体的充电装置中所使用的升压倍数可以根据电源提供设备的输出电压以及电池的电压进行确定。
例如,在电源提供设备的输出电压近似为电池电压的一半时,可以采用升压倍数为2:1的升压电路。
以升压倍数为2:1为例,在不考虑转换效率的情况下,升压电路的输出电流与输入电流的比值为1:2。
本申请实施例中的电池可以是包括多节电芯的电池,升压电路可以对第一充电电压进行升压,以对该多节电芯进行充电。
传统方案中,在对包含多节电芯的电池进行充电时,一般是采用与电池 的电压相匹配的电源提供设备进行充电。例如,当电池的电压在8V左右时,需要电源提供设备的输出电压高于8V,如电源提供设备的输出电压至少要大于10V,才能够给电池进行充电。因此,当需要给一个电压较高的电池进行充电时,需要重新设计一个与其匹配的电源提供设备进行充电,这种方式可能会导致成本增加本,且不能兼容普通的电源提供设备(如普通的电源适配器)。而本申请实施例提供的技术方案,能够兼容普通的输出电压较低的电源提供设备,如输出电压为5V的电源提供设备,通过升压电路对电源提供设备的输出电压进行升压,以满足电池当前的充电需求,为电池进行充电。因此,本申请实施例的方案解决了普通适配器无法为电池电压较高的电池(具有多电芯串联结构的电池)充电的问题,且能够节约成本。
本申请对电源提供设备10的类型不做具体限定。例如,电源提供设备10可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
本申请实施例提及的电池可以是包含单节电芯的电池,例如该包含单节电芯的电池可以具有较高的电压,或者该电池可以是包含多节电芯的电池,该包含多节电芯的电池的电压较高。
如图2所示,本发明实施例中的电池30可以包含相互串联的多节电芯(至少两节电芯)。相互串联的电芯在充电过程中可以对电源提供设备10提供的充电电压进行分压。图2所示的第一电芯31a和第二电芯31b可以是该多节电芯中的任意两节电芯,也可以是该多节电芯中的任意两组电芯。
电池30可以是一节电池,也可以是多节电池,换句话说,本申请实施例中的相互串联的第一电芯和第二电芯可以封装至一个电池包中,形成一节电池,也可以封装至多个电池包中,形成多节电池。例如,电池30可以是一节电池,其中一节电池包含相互串联的第一电芯和第二电芯。又如,电池30可以是两节电池,其中一节电池包含第一电芯,另一节电池包含第二电芯。
本申请实施例的通信控制电路23可用于与电源提供设备10进行通信,并根据电池30的状态信息,指示电源提供设备10对输出电压和/或输出电流进行调整,其中,电池的状态信息可以包括以下信息中的至少一种:当前电量、当前电压、当前温度、充电电压和充电电流。
本申请实施例中,第一充电电压可以是电源提供设备10的输出电压。具体地,升压电路22的输入端可以与电源提供设备10的输出端电连接,通信控制电路23可用于根据电池的状态信息指示电源提供设备对输出电压和/或输出电流进行调整,使得升压电路22的输出电压和/或输出电流与电池30当前的充电需求相匹配。
或者,第一充电电压可以是电源提供设备10的输出电压经过其他电路(例如变换电路)转换之后得到的。具体地,电源提供设备10的输出端与变换电路的输入端电连接,变换电路的输出端与升压电路22的输入端电连接,升压电路22可用于对变换电路的输出电压进行升压。通信控制电路23可用于根据电池的状态信息对电源提供设备10的输出电压和/或输出电流进行调整,使得升压电路22输出电压和/或输出电流与电池当前30的充电需求 相匹配。
升压电路22的输出电压和/或输出电流与电池30当前的充电需求相匹配可以指,电源提供设备10对输出电压和/或输出电流的配置经过升压电路22升压后,使得充电通道21的输出电压和/或输出电流与电池30当前所需的充电电压和/或充电电流相匹配(或者,电源提供设备10对输出电压和/或输出电流的配置经过升压电路22升压后,使得充电通道21的输出电压和/或输出电流满足电池30的充电需求(包括电池30对充电电压和/或充电电流的需求))。
应理解,在本公开的一实施例中,“充电通道21的输出电压和/或输出电流与电池30当前所需的充电电压和/或充电电流相匹配”包括:充电通道21输出的直流电的电压值和/或电流值与电池30所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
通信控制电路23指示电源提供设备10对输出电压和/或输出电流进行调整可以指,通信控制电路23可以将电池的状态信息直接发送给电源提供设备10,由电源提供设备10根据电池的状态信息对输出电压和/或输出电流进行调整。在该情况下,是由电源提供设备10自行确定其输出电压的增大或减小。
或者,通信控制电路23指示电源提供设备10对输出电压和/或输出电流进行调整可以指,通信控制电路23根据电池的状态信息,向电源提供设备10发送调整信息,以指示电源提供设备10增大或减小输出电压和/或输出电流。电源提供设备10可以直接根据该调整信息,对输出电压和/或输出电流进行调整。这样,电源提供设备10不需要通过多次反馈和确认,可以通过一次反馈就可以将电源提供设备的输出电压调整到需要的电压,从而能够节省环路响应时间。
根据电池的状态信息,调整电源提供设备10的输出电压和/或输出电流可以指,根据电池的状态信息,确定电池30当前所需的充电电压和/或充电电流,再根据电池30当前所需的充电电压和/或充电电流,调整电源提供设备10的输出电压和/或充电电流。
本申请实施例对根据电池的状态信息,确定电池当前所需的充电电流的方式不做具体限定。为方便描述,下文将电池当前所需的充电电流称为目标充电电流。
作为一个示例,可以提前设置好电池的状态信息与目标充电电流的对应关系,或者称为充电曲线,通信控制电路23可以获得该对应关系。在充电过程中,通信控制电路23可以根据电池当前的状态信息,查找对应的目标充电电流。例如,当电池30被充电到某个充电阶段时,通信控制电路23可以根据该对应关系,获取该充电阶段对应的目标充电电流,并调整电源提供设备10的输出电流,使得充电通道采用该目标充电电流为电池30进行充电。这种提前设置好电池的状态信息与目标充电电流的对应关系的方式,能够简 化调整过程。
作为另一个示例,通信控制电路23可以在充电过程中,实时地获取电池30的状态信息,然后再根据获取到的电池状态信息,自行确定目标充电电流。这种情况下,需要通信控制电路23具备确定目标充电电流的能力。这种调节方式更为灵活,通信控制电路可以随时根据电池的充电状态灵活调整充电电压和/或充电电流,在充电过程中对电池的充电电压和/或充电电流的调整更为准确。
电池的状态信息与目标充电电流的对应关系可以指,电池的当前电压和/或当前电量与目标充电电流的对应关系,电池的电压和/或电量不同时,电池所需的充电电流可能就不相同。例如,当电池的电压和/或电量较小时,电池所需的充电流可能会比较大,此时,可以设置较大的目标充电电流;当电池的电压和/或电量较大时,如电池快充满时,电池所需的充电电流可能较小,此时可以设置较小的目标充电电流。或者,电池的状态信息与目标充电电流的对应关系还可以指,电池的当前温度与充电电流的对应关系,可以根据不同电池的温度,设置不同的目标充电电流。例如,当电池的温度较低时,可以设置较大的目标充电电流,以提高充电速度;当电池的温度较高时,可以设置较小的目标充电电流,以控制充电过程的发热。或者,电池的状态信息与目标充电电流的对应关系可以指,电池的当前充电电压和/或充电电流与目标充电电流的对应关系。具体地,电池的充电过程可以包括多个充电阶段,每个充电阶段可以使用不同的充电电流进行充电,当前的充电阶段充电结束后,进入下一个充电阶段。因此,可以根据当前充电阶段的充电电流确定下一个充电阶段的充电电流,该下一个充电阶段的充电电流即为目标充电电流。
当然,电池的状态信息与目标充电电流的对应关系也可以是指,上文描述的任意方式的组合,本申请实施例对此不做具体限定。
本申请实施例对根据目标充电电流,调整电源提供设备10的输出电压和/或输出电流的方式不做具体限定。
作为一个示例,通信控制电路23可以根据目标充电电流以及电池当前的充电电流,确定电源提供设备10增大或减小输出电流。当目标充电电流大于电池当前的充电电流时,通信控制电路23可以指示电源提供设备10增大输出电流。当目标充电电流小于电池当前的充电电流时,通信控制电路23可以指示电源提供设备10减小输出电流。
作为另一示例,通信控制电路23可以直接将目标充电电流发送给电源提供设备10,电源提供设备10可以将目标充电电流与其输出电流进行比较,确定增大或减小输出电流。例如,当升压电路为升压倍数为2:1的升压电路时,即升压电路的输出电流为输入电流的一半,升压电路可以将电源提供设备10的输出电流I转换为I/2为电池进行充电。此时,电源提供设备10可以将目标充电电流的一半与其输出电流进行比较,当确定电源提供设备10的输出电流大于目标充电电流的一半时,电源提供设备10可以减小输出电 流,当确定电源提供设备10的输出电流小于目标充电电流的一半时,电源提供设备10可以增大输出电流。
可选地,电源提供设备10的输出电流可以设置多个档位,当电源提供设备10的输出电流与目标充电电流的之间的差异很大时,通信控制电路23可以将电源提供设备10的输出电流的档位调整多格,每格档位的电压可以设置为固定值,例如,5mA、10mA等;当电源提供设备10的输出电流与目标充电电流的之间的差异较小时,通信控制电路23可以将电源提供设备10的输出电流的档位调整一格。
本申请实施例对通信控制电路23与电源提供设备10之间的通信顺序不做具体限定。例如,可以由通信控制电路23主动发起通信,指示电源提供设备10对输出电压和/或输出电流进行调整。或者,可以由电源提供设备10主动发起通信,询问通信控制电路23是否需要调整电源提供设备10的输出电压和/或输出电流,在需要调整电源提供设备10的输出电压和/或输出电流时,通信控制电路23可以对电源提供设备10的询问进行反馈,以指示电源提供设备10对其输出电压和/或输出电流进行调整。
通信控制电路23可以实时检测或监控电池的状态信息。通信控制电路23对电池30的状态信息进行检测或监控的方式可以由多种,例如可以通过检测电路对电池的状态信息进行检测,也可以通过其他方式对电池30的状态信息进行检测,本申请实施例对此并不限定。
通信控制电路23中的控制功能例如可以通过微控制单元(micro control unit,MCU)实现,或者可以通过待充电设备内部的应用处理器(application processor,AP)实现,也可以通过MCU与AP相互配合的方式实现。
以对双节电芯进行恒流充电为例,作为一个具体的实现方式,对电池的充电可以采用分段恒流的方式,也就是说,可以设置多个恒流充电阶段,不同的恒流充电阶段对应不同的充电电流。升压电路22可以是升压倍数为2:1的升压电路,在不考虑电压转换效率和通路损耗的情况下,当电池所需的充电电流为I1时,电源提供设备10的输出电流需要调整为I1/2,当电池所需的充电电流为I2时,电源提供设备的输出电流需要调整为I2/2。
电池30的恒流充电阶段包括n个充电阶段,并为多个充电阶段分别设置n个充电电流[I1、I2、I3、……、In],n≥1,其中,I1≥I2≥I3……≥In。可选地,还可以为每个充电阶段设置一充电截止电压,不同充电阶段的充电截止电压可以相同,也可以不同。例如,该n个充电阶段的充电截止电压可以根据该充电阶段对应的充电电流,设置不同的充电截止电压,如当该充电阶段的充电电流较大时,可以设置较小的充电截止电压,当该充电阶段的充电电流较小时,可以设置较大的充电截止电压。又例如,该n个充电阶段的充电截止电压可以均相同,且为高于标准截止电压的限制电压Vn。该限制电压Vn跟电池的体系、采用的材料等相关。在一些实施例中,若电池的标准截止电压为V0,可将Vn设置为V0+△V,例如,△V可在0.05V到0.1V之间取值。充电电流I1、I2、……、In的值也跟电池的体系、采用的材料等 相关。例如,In可为700mA。
在第一充电阶段,通信控制电路23可以与电源提供设备10进行通信,指示电源提供设备10将其输出电压调整为I1/2,以保证输入电池的充电电压为I1。此外,通信控制电路23还可以对电池30的电压进行实时监控,当检测到电池30充电至第一充电截止电压时,表示电池30的充电过程需要进入到下一个充电阶段。此时,需要将电池30的充电电流调整为第二充电阶段对应的充电电流I2。当通信控制电路23检测到电池30的电压达到第一充电截止电压时,可以与电源提供设备10进行通信,以指示电源提供设备10降低输出电流,使得电源提供设备10的输出电流调整为I2/2,直到电池30电压达到第二充电截止电压。重复上述步骤,直至使用最后一个步次的充电电流In充电至第n个充电截止电压。
上文描述的电源提供设备10的输出电流为I1/2,并非指电源提供设备10的输出电流恒定不变,例如,可以是泛指电源提供设备10输出的脉动波形的电流峰值或平均值保持基本不变,或者,可以是指电源提供设备10的输出电流在I1/2左右,例如,电源提供设备的输出电流可以为(1+2%)I1/2。
下面结合图3,对本申请实施例的充电过程进行描述。图3所示的电荷泵为2倍升压电荷泵的一个示意图。电荷泵在工作过程中,对电压的变换可以在两个阶段内得以实现。在第一个阶段,开关S1和S2关闭,而开关S3和S4打开,电容充电到其值等于输入电压。在第二阶段,开关S3和S4关闭,而开关S1和S2打开。因为电容两端的电压降不能立即改变,因此,输出电压则跳变到输入电压值的两倍,使用这种方式可以实现电压的倍压。
该电荷泵的输入电压为Vin,输入电流为Iin,输出电压为Vout,输出电流为Iout。电荷泵的输入端可以与电源提供设备的输出端电连接,电荷泵的输出端可以与电池电连接。图3所示的电池包括双电芯。控制器可以不断地监测电池的充电状态,并将电池的充电状态上报给电源提供设备,由电源提供设备根据电池的充电状态调整自身的输出电压和/或输出电流。
可以理解的是,图3中的控制器可以是本申请实施例中的通信控制电路。
图3所示的电荷泵,在不考虑转换效率的情况下,Vout=2*Vin,Iout=Iin/2。在对电池进行恒流充电时,如果电池期望的充电电流为Im,则可将电源提供设备的输出恒流点设为Iin=Im/2,这样经过电荷泵倍压后,电荷泵的输出电流可以为Iout=Im,能够满足电池对充电电流的需求。
电池的恒流充电阶段通常是采用分段恒流的方式进行充电。电池在不同的充电阶段具有不同的充电电流需求。以电池包括n个充电阶段为例,第一充电阶段至第n个充电阶段的充电电流为Im1、Im2、……、Imn。其中,Im1≥Im2≥Im3……≥Imn。在第一充电阶段,如果想要进入电池的充电电流为恒流Im1,则可将电源提供设备的输出恒流点设为Iin=Im1/2。当控制器检测到电池充电到第一阶段规定的电压时,可以控制进入电池的充电电流为Im2。此时,控制器可以告知电源提供设备降低输出电流,将电源提供设备的输出恒流点调整为Iin=Im2/2,依次类推。控制器可以不断地设置电源提供设备 的恒流点,来调整进入电池的恒流电流,直至电池充满。
本申请实施例提供的充电装置20还可以包括充电管理电路24,如图4所示,该充电管理电路24可用于对升压电路22的输出电压进行管理,其中,充电管理电路24的输入电压与输出电压之间的压差小于升压电路22的输入电压与充电管理电路24的输出电压。
本申请实施例提供的技术方案,升压电路22能够分担充电管理电路24对电源提供设备10的输出电压进行升压的功能,相比于传统技术仅使用充电管理电路进行充电的方案,能够降低充电管理电路24的输入电压和输出电压之间的压差,从而能够减小充电管理电路24的发热。
可选地,升压电路22的转换效率高于充电管理电路24的转换效率。充电管理电路24可以是基于电感的充电管理电路,该充电管理电路24可以采用电感式降压电路进行降压,或者采用电感式升压电路进行升压。升压电路22可以采用电容式升压电路(如电荷泵)进行升压,或者,升压电路可以采用电感式升压电路与电容式升压电路相结合的升压电路进行升压。
充电管理电路24可用于对升压电路22的输出电压进行恒压和/或恒流控制,以得到电池所预期的充电电压和/或充电电流。具体地,充电管理电路24的输入端可以与升压电路22的输出端电连接,充电管理电路24的输出端与电池电连接。充电管理电路24可以接收升压电路22的输出电压和/或输出电流,并将升压电路22的输出电压和/或输出电流转换为电池30当前所需的充电电压和/或充电电流,为电池30进行充电。
该充电管理电路24可以是具有升压功能的充电管理电路,或者也可以是具有降压功能的充电管理电路。例如,该充电管理电路可以对升压电路的输出电压进行升压之后,为电池30进行充电。或者,该充电管理电路24可以对升压电路的输出电压进行降压,为电池进行充电。
充电管理电路24是使用升压还是降压功能,可以根据升压电路22的输出电压与电池30的电压来进行确定。当升压电路22的输出电压高于电池30的电压时,充电管理电路24可以采用降压功能,对升压电路22的输出电压进行降压。当升压电路22的输出电压小于电池30的电压时,充电管理电路24可以采用升压功能,对升压电路22的输出电压进行升压。
可选地,通信控制电路23还可以与电源提供设备10进行通信,指示电源提供设备10对其输出电压和/或输出电流进行调整,以调整充电管理电路24的输入电压和输出电压之间的压差。
通信控制电路23还可以基于充电管理电路24的输入电压与输出电压之间的压差,与电源提供设备10进行通信,指示电源提供设备10对其输出电压进行调整,以降低充电管理电路24的输入电压和输出电压之间的压差。
充电管理电路24的转换效率与其输入端与输出端之间的压差正相关。因此,降低充电管理电路24的输入电压和输出电压之间的压差,可以进一步降低充电管理电路24处的发热,从而进一步降低待充电设备的发热。
电源提供设备10对其输出电压进行调整可以包括:电源提供设备10对 其输出电压进行调整,使得充电管理电路24的输入电压与输出电压之间的压差在预设范围内。
通信控制电路23可以实时检测或监控充电管理电路24的输入电压和输出电压之间的压差。通信控制电路23对输入电压和输出电压之间压差的实时检测或监控方式可以有多种,例如可以通过电压检测电路对该压差进行检测,也可以通过其他方式对该压差进行检测,本申请实施例对此并不限定。
通信控制电路23中的控制功能例如可以通过MCU实现,或者可以通过待充电设备内部的AP实现,也可以通过MCU与AP相互配合的方式实现。
本申请实施例对通信控制电路23与电源提供设备10之间的通信顺序不做具体限定。例如,可以由通信控制电路23主动发起通信,指示电源提供设备10对输出电压和/或输出电流进行调整,以降低充电管理电路24的输入电压和输出电压之间的压差。或者,可以由电源提供设备10主动发起通信,询问通信控制电路23是否需要降低充电管理电路24的输入电压和输出电压之间的压差,在需要降低压差时,通信控制电路23可以对电源提供设备10的询问进行反馈,以指示电源提供设备10降低充电管理电路24的输入电压和输出电压之间的压差。
本申请实施例中,可以预先设置一个压差的预设范围,在该预设范围内,充电管理电路的转换效率较高。电源提供设备10对其输出电压的调整,使得充电管理电路24的输入电压和输出电压之间的压差在预设范围内,有利于提高充电管理电路24的转换效率,减小充电管理电路的发热。
该预设范围可以是充电管理电路24的转换效率较高的范围。例如,在压差在0~500mV之间,充电管理电路24的转换效率较高,因此,可以设置预设范围为0~500mV。
通信控制电路23可以检测充电管理电路24的输入电压和输出电压之间的压差,当该压差不在预设范围内时,可以指示电源提供设备10对输出电压进行调整,以降低充电管理电路24的输入电压和输出电压之间的压差。这样,能够保证充电管理电路24一直工作在效率较高点,从而能够控制充电管理电路24的发热,进一步地,可以减小待充电设备的发热。
作为一个实施例,以输出电压为5V的电源提供设备10对双电芯的电池充电为例进行举例说明,该升压电路22可以采用升压倍数为2:1的升压电路。通信控制电路23可以与充电管理电路24进行通信,知晓在当前充电状态下,其输入电压设置为所少时,其效率较高。例如,当充电管理电路24的输出电压为V1时,其输入电压在V1~V1±500mV之间时,其转换效率较高。由于升压电路22具有2:1的升压倍数,因此,升压电路22的输入电压在(V1~V1±500mV)/2之间时,充电管理电路24的转换效率较高。因此,通信控制电路23可以与电源提供设备10进行通信,指示电源提供设备10对其输出电压进行调整,使得电源提供设备10的输出电压在(V1~V1±500mV)/2范围内,这样充电管理电路24能够得到其希望的输入电压,能够保证充电管理电路24的输入电压与输出电压之间的压差在0~500mV之间,能够提 高充电管理电路24的转换效率。
在充电过程中,通信控制电路23可以与电源提供设备10和充电管理电路24不同地沟通,使得充电管理电路24一直处于转换效率较高点,这样充电装置20的转换效率就会较高,能够减小充电过程中的发热。
下面结合图5,对本申请实施例提供的充电装置进行描述。图5所示的电荷泵为2倍升压电荷泵的一个示意图。该电荷泵的输入电压为Vin,输入电流为Iin,输出电压为Vout,输出电流为Iout。电荷泵的输入端可以与电源提供设备的输出端电连接,电荷泵的输出端可以与充电管理电路的输入端电连接。充电管理电路的输出端可以与电池电连接。图5所示的电池包括双电芯。
充电管理电路可用于对电荷泵的输出电压和输出电流进行恒压和/或恒流控制,使得充电管理电路的输出电压和输出电流与电池所需的充电电压和充电电流相匹配。
根据电荷泵的工作原理,在不考虑转换效率的情况下,Vout=2*Vin,Iout=Iin/2。
电荷泵能够分担一部分的升压功能,能够减小充电装置对充电管理电路的升压需求,从而减小充电管理电路的发热。另外,由于电荷泵的转换效率高于充电管理电路的转换效率,因此,对于升高同样大小的电压,电荷泵的发热小于充电管理电路。因此,在充电装置中引入电荷泵,能够减小充电装置的发热。
下面结合具体的例子进行说明。对于普通的电源提供设备,其输出电压一般在5V左右,双电芯电池的电压一般在8V以上,如果要使用普通电源提供设备对双电芯进行充电,通常需要采用大于10V的电压才能够给双电芯进行充电。假设双电芯的充电电压为11V,如果充电装置仅采用充电管理电路进行升压,则充电管理电路需要将电源提供设备的输出电压升高6V,充电管理电路的输入电压和输出电压之间的压差为6V。如果充电装置采用2倍升压电荷泵和充电管理电路进行升压,则电荷泵能够承担5V的升压压差,而充电管理电路仅需将电荷泵的输出电压升高1V,就可以满足电池的充电需求。
在增加电荷泵之后,充电管理电路的输入电压和输出电压之间的压差明显减小,而充电管理电路的转换效率又与其压差有关,因此,在压差减小后,充电管理电路的发热也有所改善。
另外,由于电荷泵的转换效率高于充电管理电路,因此,充电管理电路升高5V电压产生的热量高于电荷泵升高5V电压产生的热量,因此,在充电装置中增加电荷泵之后电荷泵和充电管理电路升高6V电压产生的热量,也比之前充电管理电路升高6V电压产生的热量小,因此能够减小充电装置的发热。
另外,由于充电管理电路的转换效率与其输入电压和输出电压之间的压差有关,充电管理电路的输入电压和输出电压之间的压差在一定范围的情况 下,其转换效率较高。在充电过程中,我们希望充电管理电路的转换效率越高越好,这样能够减小发热。
因此,可以在充电装置中采用控制器对充电管理电路的输入电压和输出电压之间的压差进行控制,使得充电管理电路的转换效率较高。其中,该控制器可以是本申请实施例描述的通信控制装置。
在充电过程中,控制器可以与充电管理电路进行通信,以获取充电管理电路的状态信息,该状态信息可以包括充电管理电路的输出电压和/或输入电压与输出电压之间的压差信息。控制器可以根据充电管理电路的状态信息,调整电源提供设备的输出电压和/或输出电流,进而调整电源提供设备的输入电压,使得充电管理电路的输入电压与输出电压的压差控制在合理的范围内。
可选地,控制器可以提前获知充电管理电路的输入电压和输出电压的压差在第一预设范围内时,其转换效率较好。在获取到充电管理电路当前的输出电压之后,控制器可以根据第一预设范围,确定充电管理电路的输入电压设置为多少时,其转换效率较好。假设控制器确定出充电管理电路的输入电压在第一范围内较好,进一步地,控制器可以根据确定的充电管理电路的输入电压,控制电源提供设备调整其输出电压和/或输出电流,使得充电管理电路的输入电压在第一范围内。
如果控制器确定出充电管理电路的输入电压为Vm时,其扎UN哈UN效率较高。由于2倍升压电荷泵的存在,在不考虑通路损耗的情况下,控制器可以控制电源提供设备的输出电压为Vm/2。这样充电管理电路就能够得到希望得到的输入电压,使得充电管理电路的转换效率较高。
对于控制器获取的是充电管理电路的输入电压与输出电压之间的压差的情况,控制器可以将充电管理电路的实际压差与第一预设范围进行比较,如果实际压差大于第一预设范围,且是输入电压低于输出电压的情况,则可以控制电源提供设备升高其输出电压。如果实际压差大于第一预设范围,切实输入电压高于输出电压的情况,则可以控制电源提供设备降低其输出电压。如果实际电压在第一预设范围内,则可以先不调节电源提供设备的输出电压。
控制器可以在整个充电周期里,不断地与充电管理电路和电源提供设备进行通信,使得充电管理电路一直处于转换效率较高的状态,这样充电系统的效率可以一直处于较优的状态,保证充电效率和减小发热。
上文是以充电管理电路24的输入端与升压电路22的输出端电连接进行描述的,本申请实施例并不限于此。例如,充电管理电路24可以在升压电路22之前,也就是说,充电管理电路24的输入端可以与电源提供设备10的输出端进行电连接,充电管理电路24的输出端与升压电路22的输入端电连接。充电管理电路24可以对电源提供设备10的输出电压和/或输出电流进行恒压和/或恒流控制。
例如,升压电路22的升压倍数为2:1,电池30当前所需的充电电流为 Ix,充电管理电路24可以对电源提供设备10的输出电流进行恒流控制,使得充电管理电路24的输出电流稳定在Ix/2,这样,能够保证充电管理电路24的输出电流经过升压电路22升压后,输出稳定的电流Ix,以满足电池30当前的充电需求。
如图6所示,本申请实施例还提供一种待充电设备,该待充电设备包括电池,以及上文描述的任一种实现方式中的充电装置。
可选地,该电池可以包括多节电芯。
上文结合图1-图6,详细描述了本申请的装置实施例,下面结合图7,详细描述本申请的方法实施例,方法实施例与装置实施例相互对应,因此未详细描述的部分可以参见前面各装置实施例。
图7是本申请实施例提供的充电方法的示意性流程图。所述方法可应用于充电装置中,例如可以是上文描述的充电装置20。图7的方法包括步骤S510-S530。
S510、利用升压电路对电源提供设备的输出电压进行升压。
S520、利用充电通道根据升压后的电压,对电池进行充电。
S530、利用通信控制电路与电源提供设备进行通信,以指示所述电源提供设备对输出电压和/或输出电流进行调整,使得所述升压电路的输出电压和/或输出电流与所述电池的充电需求相匹配。
可选地,所述指示所述电源提供设备对输出电压和/或输出电流进行调整包括:根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,其中,所述电池的状态信息包括以下信息中的至少一种:充电电压、充电电流、当前电量、当前电压和当前温度。
可选地,所述升压电路的输入端与所述电源提供设备的输出端电连接,所述升压电路的输出端与所述电池电连接,所述电源提供设备对输出电压和/或输出电流的调整,使得所述升压电路的输出电压和/或输出电流与电池所需的充电电压和/或充电电流相匹配。
可选地,所述根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,包括:根据所述电池的状态信息,确定目标充电电流;根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整。
可选地,所述根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整包括:根据所述目标充电电流与所述电源提供设备的输出电流之间的差异,向所述电源提供设备发送调整信息,以指示所述电源提供设备对输出电压和/或输出电流进行调整。
可选地,所述充电方法还包括:利用充电管理电路对所述升压电路的输出电压进行管理,其中,所述充电管理电路的输入电压与输出电压之间的压差小于升压电路的输入电压与充电管理电路的输出电压之间的压差。
可选地,所述充电方法还包括:利用通信控制电路与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调 整,以调整所述充电管理电路的输入电压与输出电压之间的压差。
可选地,所述利用通信控制电路与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整包括:利用所述通信控制电路根据所述充电管理电路的输入电压和输出电压之间的压差,与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整,以降低所述充电管理电路的输入电压和输出电压之间的压差。
可选地,所述电源提供设备对所述电源提供设备的输出电压进行调整,包括:所述电源提供设备对所述电源提供设备的输出电压进行调整,使得所述充电管理电路的输入电压与输出电压之间的压差在预设范围内。
可选地,所述升压电路的转换效率高于所述充电管理电路的转换效率。
可选地,所述升压电路为电荷泵。
可选地,所述电池的充电阶段为恒流充电阶段。
可选地,所述电池包括多节电芯。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种充电装置,其特征在于,包括:
    升压电路,用于对电源提供设备的输出电压进行升压;
    充电通道,用于根据升压后的电压,对电池进行充电;
    通信控制电路,用于与电源提供设备进行通信,以指示所述电源提供设备对输出电压和/或输出电流进行调整,使得所述升压电路的输出电压和/或输出电流与所述电池的充电需求相匹配。
  2. 根据权利要求1所述的充电装置,其特征在于,所述指示所述电源提供设备对输出电压和/或输出电流进行调整,包括:
    根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,其中,所述电池的状态信息包括以下信息中的至少一种:充电电压、充电电流、当前电量、当前电压和当前温度。
  3. 根据权利要求2所述的充电装置,其特征在于,所述升压电路的输入端与所述电源提供设备的输出端电连接,所述升压电路的输出端与所述电池电连接,所述电源提供设备对输出电压和/或输出电流的调整,使得所述升压电路的输出电压和/或输出电流与电池所需的充电电压和/或充电电流相匹配。
  4. 根据权利要求2或3所述的充电装置,其特征在于,所述根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,包括:
    根据所述电池的状态信息,确定目标充电电流;
    根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整。
  5. 根据权利要求4所述的充电装置,其特征在于,所述根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整包括:
    根据所述目标充电电流与所述电源提供设备的输出电流之间的差异,向所述电源提供设备发送调整信息,以指示所述电源提供设备对输出电压和/或输出电流进行调整。
  6. 根据权利要求1所述的充电装置,其特征在于,所述充电装置还包括充电管理电路,用于对所述升压电路的输出电压进行管理,其中,所述充电管理电路的输入电压与输出电压之间的压差小于升压电路的输入电压与充电管理电路的输出电压之间的压差。
  7. 根据权利要求6所述的充电装置,其特征在于,所述通信控制电路还用于指示所述电源提供设备对所述电源提供设备的输出电压进行调整,以调整所述充电管理电路的输入电压与输出电压之间的压差。
  8. 根据权利要求7所述的充电装置,其特征在于,所述通信控制电路用于根据所述充电管理电路的输入电压和输出电压之间的压差,与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整,以降低所述充电管理电路的输入电压和输出电压之间的压差。
  9. 根据权利要求7或8所述的充电装置,其特征在于,所述电源提供设备对所述电源提供设备的输出电压进行调整,包括:
    所述电源提供设备对所述电源提供设备的输出电压进行调整,使得所述充电管理电路的输入电压与输出电压之间的压差在预设范围内。
  10. 根据权利要求6-9中任一项所述的充电装置,其特征在于,所述升压电路的转换效率高于所述充电管理电路的转换效率。
  11. 根据权利要求1-10中任一项所述的充电装置,其特征在于,所述升压电路为电荷泵。
  12. 根据权利要求1-11中任一项所述的充电装置,其特征在于,所述电池的充电阶段为恒流充电阶段。
  13. 根据权利要求1-12中任一项所述的充电装置,其特征在于,所述电池包括多节电芯。
  14. 一种待充电设备,其特征在于,包括:
    电池;
    如权利要求1-13中任一项所述的充电装置。
  15. 一种充电方法,其特征在于,包括:
    利用升压电路对电源提供设备的输出电压进行升压;
    利用充电通道根据升压后的电压,对电池进行充电;
    利用通信控制电路与电源提供设备进行通信,以指示所述电源提供设备对输出电压和/或输出电流进行调整,使得所述升压电路的输出电压和/或输出电流与所述电池的充电需求相匹配。
  16. 根据权利要求15所述的充电方法,其特征在于,所述指示所述电源提供设备对输出电压和/或输出电流进行调整包括:
    根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,其中,所述电池的状态信息包括以下信息中的至少一种:充电电压、充电电流、当前电量、当前电压和当前温度。
  17. 根据权利要求16所述的充电方法,其特征在于,所述升压电路的输入端与所述电源提供设备的输出端电连接,所述升压电路的输出端与所述电池电连接,所述电源提供设备对输出电压和/或输出电流的调整,使得所述升压电路的输出电压和/或输出电流与电池所需的充电电压和/或充电电流相匹配。
  18. 根据权利要求16或17所述的充电方法,其特征在于,所述根据所述电池的状态信息,指示电源提供设备对输出电压和/或输出电流进行调整,包括:
    根据所述电池的状态信息,确定目标充电电流;
    根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整。
  19. 根据权利要求18所述的充电方法,其特征在于,所述根据所述目标充电电流,指示所述电源提供设备对输出电压和/或输出电流进行调整包 括:
    根据所述目标充电电流与所述电源提供设备的输出电流之间的差异,向所述电源提供设备发送调整信息,以指示所述电源提供设备对输出电压和/或输出电流进行调整。
  20. 根据权利要求15所述的充电方法,其特征在于,所述充电方法还包括:
    利用充电管理电路对所述升压电路的输出电压进行管理,其中,所述充电管理电路的输入电压与输出电压之间的压差小于升压电路的输入电压与充电管理电路的输出电压之间的压差。
  21. 根据权利要求20所述的充电方法,其特征在于,所述充电方法还包括:
    利用所述通信控制电路与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整,以调整所述充电管理电路的输入电压与输出电压之间的压差。
  22. 根据权利要求21所述的充电方法,其特征在于,所述利用通信控制电路与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整包括:
    利用所述通信控制电路根据所述充电管理电路的输入电压和输出电压之间的压差,与所述电源提供设备进行通信,指示所述电源提供设备对所述电源提供设备的输出电压进行调整,以降低所述充电管理电路的输入电压和输出电压之间的压差。
  23. 根据权利要求21或22所述的充电方法,其特征在于,所述电源提供设备对所述电源提供设备的输出电压进行调整,包括:
    所述电源提供设备对所述电源提供设备的输出电压进行调整,使得所述充电管理电路的输入电压与输出电压之间的压差在预设范围内。
  24. 根据权利要求20-23中任一项所述的充电方法,其特征在于,所述升压电路的转换效率高于所述充电管理电路的转换效率。
  25. 根据权利要求15-24中任一项所述的充电方法,其特征在于,所述升压电路为电荷泵。
  26. 根据权利要求15-25中任一项所述的充电方法,其特征在于,所述电池的充电阶段为恒流充电阶段。
  27. 根据权利要求15-26中任一项所述的充电方法,其特征在于,所述电池包括多节电芯。
PCT/CN2019/071331 2019-01-11 2019-01-11 充电装置和充电方法 WO2020143020A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980003866.9A CN111699604B (zh) 2019-01-11 2019-01-11 充电装置和充电方法
JP2020565987A JP7193554B2 (ja) 2019-01-11 2019-01-11 充電装置、充電方法及び被充電機器
PCT/CN2019/071331 WO2020143020A1 (zh) 2019-01-11 2019-01-11 充电装置和充电方法
KR1020207034255A KR102509907B1 (ko) 2019-01-11 2019-01-11 충전 장치, 충전 방법 및 충전 대기 설비
EP19909590.2A EP3780325B1 (en) 2019-01-11 2019-01-11 Charging device and charging method
CN202111527637.2A CN114204640A (zh) 2019-01-11 2019-01-11 充电装置和充电方法
US16/928,745 US20200343757A1 (en) 2019-01-11 2020-07-14 Charging apparatus, charging method, and device to-be-charged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071331 WO2020143020A1 (zh) 2019-01-11 2019-01-11 充电装置和充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,745 Continuation US20200343757A1 (en) 2019-01-11 2020-07-14 Charging apparatus, charging method, and device to-be-charged

Publications (1)

Publication Number Publication Date
WO2020143020A1 true WO2020143020A1 (zh) 2020-07-16

Family

ID=71520847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071331 WO2020143020A1 (zh) 2019-01-11 2019-01-11 充电装置和充电方法

Country Status (6)

Country Link
US (1) US20200343757A1 (zh)
EP (1) EP3780325B1 (zh)
JP (1) JP7193554B2 (zh)
KR (1) KR102509907B1 (zh)
CN (2) CN114204640A (zh)
WO (1) WO2020143020A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019014925A (es) * 2018-05-31 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de carga y aparato de carga.
CN112736311B (zh) * 2021-01-08 2022-07-19 恒大新能源汽车投资控股集团有限公司 蓄电池的充电方法、装置和电子设备
CN113809796B (zh) * 2021-08-31 2024-05-14 北京中海技创科技发展有限公司 一种用于电源管理器的输出功率自适应系统和方法
TWI764828B (zh) * 2021-09-10 2022-05-11 禾瑞亞科技股份有限公司 可偵測飛跨電容短路之倍壓開關式電容電路及其偵測方法
DE102021212511A1 (de) * 2021-11-08 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Ladeverfahren und Ladeanordnung für einen Energiereservespeicher
WO2023245575A1 (zh) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备及存储介质
CN116388350B (zh) * 2023-06-05 2023-10-10 闪极科技(深圳)有限公司 充电控制方法、储能设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070019347A1 (en) * 2005-07-19 2007-01-25 Asustek Computer Inc. Electrical device with adjustable voltage
CN104993562A (zh) * 2015-08-05 2015-10-21 青岛海信移动通信技术股份有限公司 可直充电源适配器
CN105375538A (zh) * 2014-08-19 2016-03-02 苏州力生美半导体有限公司 快速充电装置
CN107437826A (zh) * 2016-05-23 2017-12-05 华为终端(东莞)有限公司 一种电池充电装置、方法、终端、电源适配器及存储介质
CN108233460A (zh) * 2017-09-04 2018-06-29 珠海市魅族科技有限公司 一种充电方法、充电装置及终端设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM406872U (en) * 2011-02-24 2011-07-01 Richtek Technology Corp Power management circuit
CN103236568B (zh) * 2013-05-03 2016-03-30 努比亚技术有限公司 充电方法和充电系统
US10797500B2 (en) * 2016-09-20 2020-10-06 Richtek Technology Corporation Charger circuit and capacitive power conversion circuit and charging control method thereof
US10177588B2 (en) * 2016-09-20 2019-01-08 Richtek Technology Corporation Charging circuit and capacitive power conversion circuit and charging control method thereof
EP3462565B1 (en) * 2017-04-13 2021-02-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged and charging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070019347A1 (en) * 2005-07-19 2007-01-25 Asustek Computer Inc. Electrical device with adjustable voltage
CN105375538A (zh) * 2014-08-19 2016-03-02 苏州力生美半导体有限公司 快速充电装置
CN104993562A (zh) * 2015-08-05 2015-10-21 青岛海信移动通信技术股份有限公司 可直充电源适配器
CN107437826A (zh) * 2016-05-23 2017-12-05 华为终端(东莞)有限公司 一种电池充电装置、方法、终端、电源适配器及存储介质
CN108233460A (zh) * 2017-09-04 2018-06-29 珠海市魅族科技有限公司 一种充电方法、充电装置及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780325A4 *

Also Published As

Publication number Publication date
JP2021525499A (ja) 2021-09-24
EP3780325A4 (en) 2021-03-10
CN111699604B (zh) 2021-12-31
CN114204640A (zh) 2022-03-18
KR20210005198A (ko) 2021-01-13
EP3780325B1 (en) 2022-08-17
JP7193554B2 (ja) 2022-12-20
EP3780325A1 (en) 2021-02-17
KR102509907B1 (ko) 2023-03-15
US20200343757A1 (en) 2020-10-29
CN111699604A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
JP6752943B2 (ja) 被充電機器と充電方法
WO2020143020A1 (zh) 充电装置和充电方法
US10541541B2 (en) Equalization circuit, device to be charged and charging control method
WO2020223880A1 (zh) 充电方法和充电装置
US11462931B2 (en) Charging method and charging apparatus
JP7187632B2 (ja) 被充電機器及び充電方法
US20220006312A1 (en) Device to be charged, and charging and discharging control method
WO2020191540A1 (zh) 供电装置、电子设备和供电方法
WO2018068523A1 (zh) 电池管理电路和方法、均衡电路和方法以及待充电设备
WO2019227419A1 (zh) 充电方法和充电装置
WO2019056303A1 (zh) 电源提供电路、电源提供设备以及控制方法
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019909590

Country of ref document: EP

Effective date: 20201028

ENP Entry into the national phase

Ref document number: 2020565987

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034255

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE