WO2020142961A1 - 检测方法、检测装置及激光雷达 - Google Patents

检测方法、检测装置及激光雷达 Download PDF

Info

Publication number
WO2020142961A1
WO2020142961A1 PCT/CN2019/071049 CN2019071049W WO2020142961A1 WO 2020142961 A1 WO2020142961 A1 WO 2020142961A1 CN 2019071049 W CN2019071049 W CN 2019071049W WO 2020142961 A1 WO2020142961 A1 WO 2020142961A1
Authority
WO
WIPO (PCT)
Prior art keywords
code wheel
code
count value
rotation
count
Prior art date
Application number
PCT/CN2019/071049
Other languages
English (en)
French (fr)
Inventor
赵进
龙承辉
黄淮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980004997.9A priority Critical patent/CN111684237B/zh
Priority to PCT/CN2019/071049 priority patent/WO2020142961A1/zh
Publication of WO2020142961A1 publication Critical patent/WO2020142961A1/zh
Priority to US17/371,676 priority patent/US20210333399A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34792Absolute encoders with analogue or digital scales with only digital scales or both digital and incremental scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/486Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by photo-electric detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present application relates to the field of motion detection, in particular to a detection method, detection device, and lidar.
  • a code wheel for detecting the angle is usually installed on the object.
  • Embodiments of the present application provide a detection method, detection device, and lidar.
  • a detection method is used to detect a rotation parameter of a rotating object, the rotating object is installed with a code wheel, the code wheel rotates with the rotation of the rotating object, and the code wheel is along the code wheel Is provided with N tested parts in the circumferential direction, where N is an integer greater than 2, the N tested parts include NK first tested parts and K second tested parts, K is an integer and 1 ⁇ K ⁇ N, along the circumferential direction of the code wheel, the width of the first inspected portion is different from the width of the second inspected portion, and the detection method includes:
  • the rotation parameter of the rotating object is determined according to the first count data and the second count data, and the rotation parameter includes a rotation angle and a rotation speed.
  • the detection method of the embodiment of the present application determines the rotation parameter of the rotating object through two count data, which can reduce the size of the detection device for detecting the rotation parameter of the rotating object, reduce the cost, and also ensure the detection of the rotation parameter of the rotating object Precision.
  • a detection device is used to detect a rotation parameter of a rotating object.
  • the detection device includes a code disk, a detection element, and a processor.
  • the rotating object is equipped with a code disk, and the code disk follows the rotation object.
  • the code disc is provided with N inspected parts along the circumferential direction of the code disc, where N is an integer greater than 2, and the N inspected parts include NK first inspected parts and K second inspected parts, K is an integer and 1 ⁇ K ⁇ N, the width of the first inspected part is different from the width of the second inspected part along the circumferential direction of the code wheel, the The detection element is used to detect the first detected part and the second detected part, and the processor is used to obtain the first count data and the phase when the detected part is detected when the code wheel rotates Adjacent second count data between the two detected parts, and a rotation parameter for determining the rotating object based on the first count data and the second count data, the rotation parameter including a rotation angle and spinning speed.
  • the detection device of the embodiment of the present application determines the rotation parameter of the rotating object through two count data, which can reduce the volume of the detection device for detecting the rotation parameter of the rotating object, reduce the cost, and also ensure the detection of the rotation parameter of the rotating object Precision.
  • the laser radar according to the embodiment of the present application includes an optical element, a driving assembly that drives the optical element to rotate, and the detection device described in the above embodiment, and the detection device is used to detect the rotation parameter of the optical element.
  • the lidar of the embodiment of the present application determines the rotation parameters of the optical element through two count data, which can reduce the size of the detection device for detecting the rotation parameters of the optical element, reduce the cost, and also ensure the detection of the rotation parameters of the optical element Precision.
  • FIG. 1 is a partial structural schematic diagram of a detection device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another part of the structure of the detection device of the embodiment of the present application.
  • FIG. 3 is a schematic plan view of a code disk according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the waveform of the detection signal when the code wheel in the embodiment of the present application rotates clockwise;
  • FIG. 6 is a schematic flowchart of a detection method according to an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of the detection method according to the embodiment of the present application.
  • FIG. 11 is another schematic flowchart of the detection method according to the embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a laser radar according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a laser radar according to an embodiment of the present application.
  • Detection device 10 code wheel 12, detection area 120, test part 122, first test part 1222, second test part 1224, code wheel part 124, first code wheel part 1242, second code wheel part 1244, Card slot 126, detecting element 14, lidar 100, ranging module 20, transmitting circuit 201, receiving circuit 203, sampling circuit 205, arithmetic circuit 207, control circuit 209, transmitter 22, collimating element 24, detector 26 , Optical path changing element 28, scanning module 30, lens barrel 31, clamping block 312, optical element 32, first optical element 322, second optical element 324, drive assembly 34, first drive assembly 342, second drive assembly 344, Rotating shaft 36, controller 40, collimated beam 50.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or integrally connected; may be mechanical, electrical, or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction of two elements relationship.
  • the detection method of the embodiment of the present application can be used to detect the rotation parameter of the rotating object, and can be implemented by the detection device 10 of the embodiment of the present application. That is to say, the rotation parameter of the rotating object during the rotation process can be detected by the detection device 10.
  • the detection device 10 includes a code wheel 12, a detection member 14 and a processor (not shown). Processor ⁇ 14.
  • a code wheel 12 is mounted on the rotating object, and the code wheel 12 rotates as the rotating object rotates. It can be understood that, in this embodiment, the rotating object and the code wheel 12 are relatively stationary. Therefore, the code wheel 12 can be used to detect the rotation parameter of the rotating object.
  • Rotation parameters include rotation direction, rotation angle, and/or rotation speed.
  • the rotating object is the optical element 32, and the optical element 32 is provided in the lens barrel 31.
  • the lens barrel 31 is provided with a clamping block 312, and the code wheel 12 is provided with a clamping groove 126.
  • the clamping block 312 is at least partially caught in the clamping groove 126 to mount the code wheel 12 on the lens barrel 31. In this way, the relative position of the code wheel 12 and the optical element 32 remains unchanged.
  • the code wheel 12 and the optical element 32 remain relatively stationary, and the code wheel 12 and the optical element 32 rotate synchronously, so that the optical element can be detected by the code wheel 12 32 rotation parameters.
  • the code wheel 12 is divided into N detection regions 120 of equal width, and each detection region 120 includes a detected portion 122 and a code disk portion 124 .
  • the detected part 122 and the code wheel part 124 are alternately distributed. That is to say, the code disc 12 is provided with N detected portions 122 and N code disc portions 124 along the circumferential direction X of the code disc 12.
  • the N tested parts 122 include NK first tested parts 1222 with the same width and K second tested parts 1224 with the same width
  • the N code wheel parts 124 include NK first code wheel parts with the same width 1242 and K second code wheel portions 1244 having the same width.
  • N is an integer greater than 2
  • K is an integer and 1 ⁇ K ⁇ N.
  • the width of the first inspected portion 1222 is different from the width of the second inspected portion 1224.
  • the code wheel is circular.
  • each detection area 120 is equal.
  • Some or some detection areas 120 include a first inspected portion 1222 and a first code wheel portion 1242, and some or some detection areas 120 include a second inspected portion 1224 and a second code wheel portion 1244.
  • the width of the first inspected portion 1222 plus the width of the first code wheel portion 1242 is equal to the width of the second inspected portion 1224 plus the width of the second code wheel portion 1244.
  • the width of the first tested portion 1222 is smaller than the width of the second tested portion 1224, and the width of the first code disk portion 1242 is larger than the second code The width of the disc portion 1244.
  • the width of the first tested portion 1222 is equal to the width of the second code wheel portion 1244, and the width of the second tested portion 1224 and the first code wheel portion 1242 are equal
  • the width of the second inspected portion 1224 and the width of the first inspected portion 1222 have a multiple relationship, which may be 2 times or other multiple relationships, and is not limited to 3 times.
  • the width refers to the circumferential X width (angle) on the circumference of the code wheel 12.
  • the number of detection areas 120 can be determined according to the size of the code wheel 12, the detection accuracy, and the data processing amount of the processor.
  • the width is 10°.
  • the number of the first inspected part 1222 and the second inspected part 1224 can be set according to requirements.
  • the following code wheel 12 includes 35 first inspected parts 1222 and 1 second inspected part 1224, 35 first code wheel parts 1242 and 1 second code wheel part 1244 as examples .
  • the width of the first inspected part 1222 and the width of the second code wheel 1244 are equal
  • the width of the second inspected part 1224 and the first code wheel 1242 are equal
  • the second The width of the inspection unit 1224 is three times the width of the first inspection unit 1222.
  • the detection member 14 is provided on the circumference of the code wheel 12 for detecting the first detected part 1222 and the second detected part 1224. Since the width of the first inspected portion 1222 is different from the width of the second inspected portion 1224, the code wheel 12 rotates once, and the detection signal detected by the detecting element 14 is different. Therefore, in the present application, the rotation parameter of the rotating object can be obtained by a detection element 14 outputting a detection signal.
  • the inspected portion 122 includes a through hole, a magnetic member, a light transmitting member, or a reflective member.
  • the detecting member 14 includes a photoelectric switch.
  • the inspected portion 122 is a reflective member, the reflectance of the reflective member is greater than the reflectivity of the code wheel portion 124.
  • the detection member 14 includes a Hall element.
  • the inspected portion 122 is a through hole, and the detecting element 14 includes a photoelectric switch. Among them, the inspected portion 122 can transmit light, and the code disc portion 124 cannot transmit light.
  • the photoelectric switch may be a slot-type photoelectric switch (ie, a through-beam photoelectric switch), which includes a base (not shown), a transmitting tube (not shown), and a receiving tube (not shown). Wherein, the transmitting tube and the receiving tube are separately arranged on the base.
  • the transmitting tube and the receiving tube are symmetrically arranged on both sides of the code wheel 12, and the centers of the transmitting tube and the receiving tube are located on the circumference of the detected part 122 and the code wheel part 124, so as to realize cooperation with the detected part 122 and the code wheel part 124 .
  • the base is provided at a preset interval on the outer circumference of the code disk 12, so as to prevent the outer circumferential surface of the code disk 12 from colliding with the base when the code disk 12 rotates.
  • the photoelectric switch may also be a reflective photoelectric switch.
  • the photoelectric switch is stationary, and the transmitting tube of the photoelectric switch emits an optical signal.
  • the detected part 122 rotates between the transmitting tube and the receiving tube, the detected part 122 is a through hole Or a light transmitting member, the receiving tube can receive the optical signal emitted by the transmitting tube.
  • the code disc portion 124 rotates between the transmitting tube and the receiving tube, the receiving tube cannot receive the optical signal transmitted by the transmitting tube, thereby making the code disc
  • the photoelectric switches output different level signals, respectively.
  • the detection signal output by the detection part 14 is the first signal
  • the detection part 14 when the code wheel part 124 turns to the detection part 14, the detection part 14 outputs Is the second signal.
  • the first signal is different from the second signal. Since the detected part 122 and the code wheel part 124 are alternately distributed, the detection signal is an alternating first signal and second signal.
  • the width of the first inspected portion 1222 is smaller than the width of the second inspected portion 1224. Therefore, the length of the first signal corresponding to the first detected portion 1222 is shorter than the length of the first signal corresponding to the second detected portion 1224.
  • the first signal may be a low-level signal
  • the second signal may be a high-level signal.
  • a low-level signal is a signal with a level of 0
  • a high-level signal is a signal with a level of 1.
  • the detection signal may be a sine wave signal, a cosine wave signal, or a triangle wave signal.
  • the detection signal is a square wave signal.
  • the rotation of the rotating object drives the code wheel 12 to rotate.
  • the code wheel 12 rotates once, that is, in one rotation period, the detection member 14 can detect a continuous first signal and a second signal of the same length.
  • the first signal and the second signal of the same and continuous length are detected first.
  • the first signal and the second signal having the same and continuous length are detected first. In this way, the rotation direction of the rotating object can be detected based on the waveform of the detection signal of FIG. 4 or FIG. 5 within one rotation period.
  • the detection methods include:
  • Step S10 When the code wheel 12 rotates, the first count data when the detected part 122 is detected and the second count data between two adjacent tested parts 122 are acquired;
  • Step S20 Determine the rotation parameters of the rotating object according to the first count data and the second count data.
  • the rotation parameters include a rotation angle and a rotation speed.
  • the detection method of the embodiment of the present application determines the rotation parameter of the rotating object through two count data, which can reduce the volume of the detection device 10 for detecting the rotation parameter of the rotating object, reduce the cost, and can also ensure the rotation parameter of the rotating object Detection accuracy.
  • the detection device 10 includes a first counter (not shown) and a second counter (not shown).
  • the first count data can be obtained by recording the first counter
  • the second count data can be obtained by recording the second counter.
  • the first count data includes a first count value and a first count frequency
  • the second count data includes a second count value and a second count frequency.
  • the first counter and the second counter may be counters in a field programmable gate array (Field-Programmable Gate Array, FPGA), or other counters.
  • the first count data when the detected part 122 is detected including:
  • Step S122 When the zero position of the code wheel 12 is detected, the first count value is cleared
  • Step S124 When the detected part 122 is detected, the first count value is acquired.
  • the zero position of the code wheel 12 corresponds to the position of one of the second detected parts 1224. Therefore, the zero position of the code wheel 12 can be determined based on the detected waveform.
  • the code wheel 12 includes 35 first inspected portions 1222 and one second inspected portion 1224. Since the width of the second inspected portion 1224 is greater than the width of the first inspected portion 1222, the detection The signal includes a long-length first signal (low-level signal). There is one zero position for each rotation of the code wheel 12 (for example, a specific area of the second detected portion 1224, for example, an intermediate shaft, left and right edges, etc.). In one example, the left edge of the second detected portion 1224 is used as the zero position of the code wheel.
  • the first count value corresponding to each detected part 122 is a value recorded at the falling edge of the first signal.
  • C1 is the first count value when the left edge of one second subject 1224 is detected
  • C2 to C36 are the first count value when the left edge of 35 first subjects 1222 is detected.
  • the rotation speed of the code wheel 12 is determined by the rotation speed of the rotating object.
  • the zero position of the code wheel 12 can be detected by a detecting element 14.
  • the lengths of the first signal and the second signal detected by the detection member 14 are uncertain.
  • the first counter is continuously jumping at the same frequency when counting, the first count can be combined
  • the numerical value determines the width of the detected portion 122 corresponding to each first signal or the width of the code disk portion 124 corresponding to each second signal, thereby determining the zero position of the code disk 12.
  • the zero position of the code wheel 12 can be preset to the relationship with the zero position of the rotating object.
  • the zero position of the code wheel 12 can be set as the zero position of the rotating object.
  • Step S142 When each of the first detected part 1222 and the second detected part 1224 is detected, the second count value is cleared to zero;
  • Step S144 When receiving the trigger signal, obtain the second count value.
  • the second count value is cleared, and the second counter starts counting from 0 and continuously beats at the same frequency.
  • the trigger signal is received, the second count value C C at this time is recorded.
  • the trigger signal is a signal that is triggered when the rotating object emits light and/or receives light. If the trigger signal is a signal triggered when the rotating object emits light, the second count value and the first count value may be combined to determine the rotation angle of the rotating object when the rotating object emits light. If the trigger signal is a signal triggered when the rotating object receives light, the second count value and the first count value may be combined to determine the rotation angle of the rotating object when the rotating object receives light.
  • step S20 includes: step S22: determining the time when the code wheel 12 rotates by using the first count value obtained during the previous rotation of the code wheel 12 and the second count value obtained when the code wheel 12 rotates at the current time Rotation angle.
  • step S20 includes: step S24: determining the current lap of the code wheel 12 using the average value of the first count value obtained when the code wheel 12 rotates multiple times and the second count value obtained when the code wheel 12 rotates the current time The rotation angle when rotating.
  • the rotation angle of the code wheel 12 when the first circle rotates is the rotation angle of the rotating object when the first circle rotates.
  • step S22 includes: when the trigger signal is received, the first count value when the previous detected part 122 rotates one turn on the code wheel 12 along the rotation direction of the code wheel 12, and when the code wheel 12 rotates in the current turn The sum of the obtained second count value and the first count value obtained during the previous revolution of the code wheel 12 determines the rotation angle of the code wheel 12 when the first turn rotates.
  • Step S24 includes: when the trigger signal is received, the average value of the first count value obtained when the previous detected part 122 rotates on the code wheel 12 in multiple rotations along the rotation direction of the code wheel 12, and the current rotation of the code wheel 12 The average value of the sum of the second count value obtained at the time and the first count value obtained during multiple rotations on the code wheel 12 determines the rotation angle of the code wheel 12 at the time of the first rotation.
  • step S22 determine the rotation angle of the code wheel 12 during the first rotation of the code wheel 12 using the first count value obtained by the detected part 122 when the code wheel 12 rotates one circle as a reference, and continuously calibrate the error generated by the rotation of the code wheel 12 to Obtain a more accurate rotation angle of the code wheel 12 when the first rotation.
  • step S24 the rotation angle of the code wheel 12 during the first rotation is determined, and the average value of the first count value obtained when the detected part 122 rotates on the code wheel 12 as a reference is used as a reference to calibrate the error caused by the rotation of the code wheel 12 In order to obtain a more accurate rotation angle of the code wheel 12 when the first rotation.
  • it refers to the sum of the first count value is the first count value is cleared before the value C A.
  • the last multiple laps can be the first two laps or more of the current lap (if any).
  • the second inspected part 1224 as the first inspected part 122
  • the first inspected part 122 corresponds to the zero position of the code wheel 12, if the code wheel 12 rotates counterclockwise Next, the first first inspected portion 1222 is the second inspected portion 122, the second first inspected portion 1222 is the third inspected portion 122, and so on.
  • the part between the second detected part 122 and the third detected part 122 is transferred to the detection member 14, at which time the second value C C is obtained , and
  • the first count value C of the second detected part 122 (that is, the previous detected part 122 in the counterclockwise rotation direction of the code wheel 12 when the trigger signal is received) is detected during one revolution of the code wheel 12 2.
  • the sum of the first count values obtained during the last revolution of the code wheel 12 is C A.
  • the rotation angle of the code wheel 12 at the time of the current revolution (C 2(N-1) +C C(N) )/CA (N-1) *360°, where the subscript (N-1) indicates the Nth -1 lap is the previous lap, and the subscript (N) indicates the Nth lap, which is the current lap.
  • the detection accuracy of the rotation angle of the code wheel can reach 0.01°.
  • the rotation angle of the code wheel 12 when the front wheel rotates refers to the angle difference between the zero position of the code wheel 12 when the code wheel 12 rotates and the zero position of the code wheel 12 when the code wheel 12 does not start to rotate.
  • step S20 includes: step S26: determining the rotation speed of the code wheel 12 according to the first count frequency and the first count value.
  • step S20 includes: step S28: determining the rotation speed of the code wheel 12 according to the second count frequency and the second count value.
  • the rotation speed of the code wheel 12 is the rotation speed of the rotating object.
  • step S26 includes: determining the length of time required for the code wheel 12 to rotate once according to the first count frequency and the first count value to determine the rotation speed of the code wheel 12.
  • step S28 includes: determining the time required for the code wheel 12 to rotate one revolution according to the second count frequency and the second count value to determine the rotation speed of the code wheel 12.
  • the time required for the code wheel 12 to rotate one revolution can be determined according to the first count data or the second count data, thereby determining the rotation speed of the code wheel 12.
  • the length of time required for the code wheel 12 to rotate by the detected portion 122 or the width of the code wheel portion 124 may be determined, thereby determining the rotation speed of the code wheel 12.
  • the detection device 10 of the embodiment of the present application is used to detect the rotation parameter of the rotating object.
  • the detection device 10 includes a code wheel 12, a detection member 14, and a processor.
  • the code wheel 12 is used for mounting on a rotating object, and the code wheel 12 rotates as the rotating object rotates.
  • the code wheel 12 is provided with N detected portions 122 along the circumferential direction X of the code wheel 12, where N is an integer greater than 2.
  • the N inspected parts 122 include N-K first inspected parts 1222 and K second inspected parts 1224, where K is an integer and 1 ⁇ K ⁇ N.
  • the width of the first inspected portion 1222 is different from the width of the second inspected portion 1224.
  • the detecting element 14 is used to detect the first inspected part 1222 and the second inspected part 1224.
  • the processor is used to acquire the first count data when the inspected part 122 is detected and the second count data between two adjacent inspected parts 122 when the code wheel 12 rotates, and to use the first count data and the first count data
  • the two count data determines the rotation parameters of the rotating object, and the rotation parameters include the rotation angle and the rotation speed.
  • both the steps S10 and S20 of the above detection method can be implemented by the processor.
  • the detection device 10 of the embodiment of the present application determines the rotation parameter of the rotating object through two count data, which can reduce the volume of the detection device 10 for detecting the rotation parameter of the rotating object, reduce the cost, and also ensure the rotation parameter of the rotating object Detection accuracy.
  • the first count data includes a first count value.
  • the processor is used for clearing the first count value when the zero position of the code wheel 12 is detected, and for acquiring the first count value when the detected part 122 is detected.
  • both steps S122 and S124 of the above detection method can be implemented by the processor.
  • the zero position of the code wheel 12 corresponds to the position of one of the second inspected parts 1224.
  • the second count data includes a second count value.
  • the processor is used for clearing the second count value when each of the first detected part 1222 and the second detected part 1224 is detected, and for acquiring the second count value when the trigger signal is received.
  • both the steps S142 and S144 of the above detection method can be implemented by the processor.
  • the trigger signal is a signal that is triggered when the rotating object emits light and/or receives light.
  • the first count data includes a first count value
  • the second count data includes a second count value.
  • the processor is used to determine the rotation angle of the code wheel 12 during the current rotation by using the first count value obtained during the previous rotation of the code wheel 12 and the second count value obtained during the current rotation of the code wheel 12, or to use the code wheel
  • the average value of the first count value obtained during multiple rotations on 12 and the second count value obtained during the current rotation of the code wheel 12 determine the rotation angle of the code wheel 12 during the current rotation.
  • the rotation angle of the code wheel 12 when the first circle rotates is the rotation angle of the rotating object when the first circle rotates.
  • both the steps S22 and S24 of the above detection method can be implemented by the processor.
  • the processor is configured to use the first count value, code wheel 12 obtained when the previous detected part 122 rotates one turn on the code wheel 12 along the rotation direction of the code wheel 12 when the trigger signal is received.
  • the sum of the second count value obtained during the previous rotation and the first count value obtained during the previous rotation of the code wheel 12 determines the rotation angle of the code wheel 12 during the current rotation, or is used when the trigger signal is received.
  • the average value of the first count value obtained by the previous detected part 122 when the code wheel 12 rotates multiple times, and the second count value obtained when the code wheel 12 rotates in the current circle and the code wheel 12 The average value of the sum of the first count values obtained during the multi-turn rotation determines the rotation angle of the code wheel 12 when the first turn rotates.
  • the first count data includes a first count value and a first count frequency
  • the second count data includes a second count value and a second count frequency.
  • the processor is used to determine the rotation speed of the code wheel 12 according to the first count frequency and the first count value, or to determine the rotation speed of the code wheel 12 according to the second count frequency and the second count value.
  • the rotation speed of the code wheel 12 is the rotation speed of the rotating object.
  • both the steps S26 and S28 of the above detection method can be implemented by the processor.
  • the processor is used to determine the length of time required for the code wheel 12 to rotate one revolution based on the first count frequency and the first count value, or to determine the rotation speed of the code wheel 12 according to the second count frequency and the first count value.
  • the two-count value determines the time required for the code wheel 12 to make one revolution to determine the rotation speed of the code wheel 12.
  • the code wheel 12 is divided into N detection regions 120 of equal width.
  • Each detection area 120 includes a detected part 122 and a code wheel part 124, and the detected part 122 and the code wheel part 124 are alternately distributed.
  • the N code wheel parts 124 include N-K first code wheel parts 1242 and K second code wheel parts 1244.
  • the width of the first inspected part 1222 is smaller than the width of the second inspected part 1224, and the width of the first code wheel 1242 is larger than the width of the second code wheel 1244.
  • the width of the first tested portion 1222 is equal to the width of the second code wheel portion 1244, and the width of the second tested portion 1224 and the first code wheel portion 1242 Equally, the width of the second inspected portion 1224 is three times the width of the first inspected portion 1222.
  • the inspected portion 122 includes a through hole, a magnetic member, a light transmitting member, or a reflective member.
  • the laser radar 100 includes an optical element 32, a driving assembly 34 that drives the optical element 32 to rotate, and the detection device 10 of the above embodiment.
  • the detection device 10 is used to detect the rotation parameter of the optical element 32.
  • the lidar 100 determines the rotation parameters of the optical element 32 through two count data, which can reduce the volume of the detection device 10 that detects the rotation parameters of the optical element 32, reduce the cost, and also ensure the optical element 32 The detection accuracy of the rotation parameter.
  • the optical element 32 is the rotating object in the above embodiment, and the driving component 34 may be a motor.
  • the rotor of the motor is connected to the optical element 32 to drive the optical element 32 to rotate, and the rotor of the motor rotates in synchronization with the optical element 32. That is to say, the rotor of the motor and the optical element 32 always remain relatively stationary.
  • the optical element 32 is a prism or lens.
  • the prism includes a wedge-shaped prism.
  • the thickness of the prism in the radial direction is different, and a second inspected portion 1224 on the code wheel 12 is uniquely aligned with the position of the prism in the radial minimum or maximum thickness.
  • the position of the prism in the radial minimum thickness or the position of the maximum thickness can be used as the zero position of the prism, and the zero position of the prism is calibrated using the zero position of the code wheel 12, so as to indirectly calibrate the prism radial minimum thickness or At the maximum thickness, so that the prism forms the specified optical path.
  • the zero position of the prism is aligned with the zero position of the code wheel 12.
  • the lidar 100 of the embodiment of the present application can be applied to ranging.
  • the lidar 100 is used to sense external environmental information, for example, distance information, azimuth information, reflection intensity information, speed information, etc. of environmental targets.
  • the lidar 100 can detect the probe 200 to the lidar 100 by measuring the time of light propagation between the lidar 100 and the probe 200, that is, Time-of-Flight (TOF). the distance.
  • TOF Time-of-Flight
  • the lidar 100 can also detect the distance between the detection object 200 and the lidar 100 through other techniques, such as a ranging method based on phase shift measurement or a ranging method based on frequency shift measurement, There are no restrictions here.
  • the laser radar 100 may include a ranging module 20 and a scanning module 30.
  • the ranging module 20 may include a transmitting circuit 201, a receiving circuit 203, a sampling circuit 205, and an arithmetic circuit 207.
  • the transmission circuit 201 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 203 can receive the optical pulse sequence reflected by the object to be detected 200, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 205 after processing the electrical signal.
  • the sampling circuit 205 can sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 207 may determine the distance between the lidar 100 and the object to be detected 200 based on the sampling result of the sampling circuit 205.
  • the ranging module 20 may further include a control circuit 209, which may control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 209 may control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • the ranging module 20 shown in FIG. 13 includes a transmitting circuit 201, a receiving circuit 203, a sampling circuit 205, and an arithmetic circuit 207, it is used to emit a beam of light for detection.
  • the embodiments of the present application are not limited to this, and the number of any one of the transmitting circuit 201, the receiving circuit 203, the sampling circuit 205, and the arithmetic circuit 207 may also be at least two, and are used in the same direction or respectively in different directions At least two beams of light are emitted; wherein, at least two beams of light may be emitted simultaneously or at different times.
  • at least two light emitting chips in the transmitting circuit 201 are packaged in the same module.
  • each emitting circuit 201 includes one laser emitting chip, and the die of at least two laser emitting chips in the emitting circuit 201 are packaged together and housed in the same packaging space.
  • the scanning module 30 includes an optical element 32 and a driving assembly 34 that drives the optical element 32 to rotate.
  • the scanning module 30 is used for emitting at least one laser pulse sequence emitted from the transmitting circuit 201 by changing the propagation direction.
  • the laser radar 100 may use a coaxial optical path, that is, the light beam emitted by the laser radar 100 and the reflected light beam share at least part of the optical path in the laser radar 100. For example, after at least one laser pulse sequence exiting from the transmitting circuit 201 passes through the scanning module 30 to change its propagation direction, the laser pulse sequence reflected back from the detection object 200 passes through the scanning module 30 and enters the receiving circuit 203.
  • the laser radar 100 may also adopt an off-axis optical path, that is, the light beam emitted by the laser radar 100 and the reflected light beam are transmitted along different optical paths in the laser radar 100 respectively.
  • FIG. 14 shows a schematic diagram of an embodiment of the laser radar 100 of the present application adopting a coaxial optical path.
  • the laser radar 100 includes a ranging module 20 and a scanning module 30.
  • the ranging module 20 includes a transmitter 22 (which may include the above-mentioned transmitting circuit 201), a collimating element 24, a detector 26 (which may include the above-mentioned receiving circuit 203, sampling circuit 205, and arithmetic circuit 207) and an optical path changing element 28.
  • the distance measuring module 20 is used to emit a light beam and receive back light, and convert the back light into an electrical signal.
  • the transmitter 22 may be used to transmit a sequence of light pulses. In one embodiment, the transmitter 22 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 22 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 24 is disposed on the exit optical path of the emitter 22 and is used to collimate the light beam emitted from the emitter 22 and collimate the light beam emitted by the emitter 22 into parallel light to the scanning module 30.
  • the collimating element 24 is also used to converge at least a part of the return light reflected by the detection object 200.
  • the collimating element 24 may be a collimating lens or other element capable of collimating the light beam 50.
  • the optical path changing element 28 is used to merge the transmitting optical path and the receiving optical path in the lidar 100 before the collimating element 24, so that the transmitting optical path and the receiving optical path can share the same collimating element 24, making the optical path more compact.
  • the transmitter 22 and the detector 26 may respectively use respective collimating elements 24, and the optical path changing element 28 is disposed on the optical path behind the collimating element 24.
  • the light path changing element 28 may use a small-area mirror to emit The optical path and the receiving optical path are merged.
  • the optical path changing element 28 may also use a reflector with a through hole, where the through hole is used to transmit the outgoing light of the emitter 22 and the reflector is used to reflect the return light to the detector 26. In this way, it is possible to reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element 28 is offset from the optical axis of the collimating element 24. In other embodiments, the optical path changing element 28 may also be located on the optical axis of the collimating element 24.
  • the scanning module 30 is placed on the exit optical path of the distance measuring module 20.
  • the scanning module 30 is used to change the transmission direction of the collimated light beam 50 emitted through the collimating element 24 and project it to the external environment, and project the return light to the collimating element 24.
  • the returned light is converged on the detector 26 via the collimating element 24.
  • the scanning module 30 may include at least one optical element 32 for changing the propagation path of the light beam, wherein the optical element 32 may change the propagation path of the light beam by reflecting, refracting, diffracting, etc. the light beam.
  • the scanning module 30 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements 32.
  • at least part of the optical element 32 is moving.
  • at least part of the optical element 32 is driven by the driving assembly 34 to move.
  • the moving optical element 32 can reflect, refract or diffract the light beam to different directions at different times.
  • the multiple optical elements 32 of the scanning module 30 may rotate or vibrate about a common axis, and each rotating or vibrating optical element 32 is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements 32 of the scanning module 30 may rotate at different rotation speeds, or vibrate at different speeds.
  • at least part of the optical elements 32 of the scanning module 30 can rotate at substantially the same rotational speed.
  • the plurality of optical elements 32 of the scanning module 30 may rotate around different axes.
  • the multiple optical elements 32 of the scanning module 30 may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 30 includes a first optical element 322 and a first drive assembly 342 connected to the first optical element 322.
  • the first drive assembly 342 is used to drive the first optical element 322 to rotate about the rotation axis 36 so that The first optical element 322 changes the direction of the collimated light beam 50.
  • the first optical element 322 projects the collimated light beam 50 in different directions.
  • the angle between the direction of the collimated light beam 50 changed by the first optical element 322 and the rotation axis 36 changes as the first optical element 322 rotates.
  • the first optical element 322 includes a pair of opposed non-parallel surfaces through which the collimated beam 50 passes.
  • the first optical element 322 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 322 includes a wedge-shaped prism that aligns the straight beam 50 for refraction.
  • the scanning module 30 further includes a second optical element 324 that rotates about a rotation axis 36.
  • the rotation speed of the second optical element 324 is different from the rotation speed of the first optical element 322.
  • the second optical element 324 is used to change the direction of the light beam projected by the first optical element 322.
  • the second optical element 324 is connected to the second drive assembly 344, and the second drive assembly 344 drives the second optical element 324 to rotate.
  • the first optical element 322 and the second optical element 324 may be driven by the same or different driving assembly 34, so that the rotational speed and/or the steering of the first optical element 322 and the second optical element 324 are different, thereby projecting the collimated light beam 50 to Different directions in the external space can scan a larger spatial range.
  • the controller 40 controls the first driving component 342 and the second driving component 344 to drive the first optical element 322 and the second optical element 324 respectively.
  • the rotation speeds of the first optical element 322 and the second optical element 324 may be determined according to the area and pattern expected to be scanned in practical applications.
  • the first driving assembly 342 and the second driving assembly 344 may include a motor or other driving assembly 34.
  • the second optical element 324 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 324 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 324 includes a wedge prism.
  • the scanning module 30 further includes a third optical element 32 (not shown) and a third drive assembly 34 (not shown) for driving the third optical element 32 to move.
  • the third optical element 32 includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the third optical element 32 includes a prism whose thickness varies along at least one radial direction.
  • the third optical element 32 includes a wedge prism. At least two of the first optical element 322, the second optical element 324, and the third optical element 32 rotate at different rotational speeds and/or turns.
  • each optical element 32 in the scanning module 30 can project the collimated light beam 50 into different directions, such as directions 52 and 56, so as to scan the space around the lidar 100.
  • the detection object 200 When the light projected by the scanning module 30 hits the detection object 200, part of the light is reflected by the detection object 200 to the optical element 32 of the scanning module 30 in the direction 58 opposite to the projected light.
  • the returned light reflected by the detection object 200 passes through the scanning module 30 and enters the collimating element 24, and then is received by the detector 26.
  • the detector 26 is placed on the same side of the collimating element 24 as the emitter 22.
  • the detector 26 is used to convert at least part of the returned light passing through the collimating element 24 into an electrical signal.
  • the transmitter 22 may include a laser diode through which laser pulses in the order of nanoseconds are emitted.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse.
  • the lidar 100 can use the pulse reception time information and the pulse emission time information to calculate the TOF, thereby determining the distance between the detection object 200 and the lidar 100.
  • the code wheel 12 of the detection device 10 is mounted on the first optical element 322, the second optical element 324, and the third optical element 32.
  • the code wheel 12 rotates with the rotation of each optical element 32 to detect the rotation parameter of each optical element 32, such as the absolute position of the optical element 32 (taking the zero position of the optical element 32 as a reference).
  • the first optical element 322, the second optical element 324, and the third optical element 32 are all wedge-shaped prisms.
  • Trigger signals when each optical element 32 emits light and receives light to detect the absolute position of each optical element 32, the angle of each optical element 32 when light exits and the angle of each optical element 32 when light returns can be obtained
  • the direction of the light beam emitted by the element 32 and the direction of the light beam returned to each optical element 32 can determine the specific orientation and distance of the detection object 200.
  • each optical element 32 is coated with an antireflection coating.
  • the thickness of the AR coating is equal to or close to the wavelength of the light beam emitted by the emitter 22, which can increase the intensity of the transmitted light beam.
  • a surface of an element on the beam propagation path of the lidar 100 is coated with a filter layer, or a filter is provided on the beam propagation path for transmitting at least the beam emitted by the emitter 22 Band, reflecting other bands, to reduce the noise caused by ambient light to the receiver.
  • the distance and orientation detected by the lidar 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and so on. It can be understood that the laser radar 100 according to the embodiment of the present application can be applied to a mobile platform, and the laser radar 100 can be installed on the platform body of the mobile platform.
  • the mobile platform with lidar 100 can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the lidar 100 When the lidar 100 is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the lidar 100 is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-autonomous car, and there is no restriction here.
  • the laser radar 100 is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the laser radar 100 is applied to a robot, the platform body is a robot.
  • the laser radar 100 When the laser radar 100 is applied to a camera, the platform body is the camera itself.
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for performing specific logical functions or steps of a process , And the scope of the preferred embodiment of the present application includes additional executions, where the order may not be shown or discussed, including performing the functions in a substantially simultaneous manner or in reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed using software or firmware stored in memory and executed by a suitable instruction execution system.
  • a logic gate circuit for performing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units are integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is executed in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Transform (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种检测方法、检测装置(10)及激光雷达(100)。检测方法用于检测旋转物的旋转参数。旋转物安装有码盘(12),码盘(12)随旋转物的转动而转动。码盘(12)上沿码盘(12)的周向设置有N个被检部(122),N为大于2的整数。N个被检部(122)包括N-K个第一被检部(1222)和K个第二被检部(1224),K为整数且1≤K<N。沿码盘(12)的周向,第一被检部(1222)的宽度不同于第二被检部(1224)的宽度。检测方法包括:在码盘(12)转动时,获取检测到被检部(122)时的第一计数数据和相邻两个被检部(122)之间的第二计数数据(S10);根据第一计数数据和第二计数数据确定旋转物的旋转参数(S20)。旋转参数包括旋转角度和旋转速度。

Description

检测方法、检测装置及激光雷达 技术领域
本申请涉及运动检测领域,特别涉及一种检测方法、检测装置及激光雷达。
背景技术
目前,电机被广泛地应用于驱动物体旋转。而为了得到物体旋转时的角度,通常会在物体上安装检测角度的码盘。为了提高物体旋转角度的检测精度,需要提高码盘的齿数,同时还需要提高检测装置的精度,比如使用激光管或者使用透镜进行准直,然而,这样会增加成本和整个传感器的体积。
发明内容
本申请的实施方式提供一种检测方法、检测装置及激光雷达。
本申请实施方式的检测方法,用于检测旋转物的旋转参数,所述旋转物安装有码盘,所述码盘随所述旋转物的转动而转动,所述码盘上沿所述码盘的周向设置有N个被检部,所述N为大于2的整数,所述N个被检部包括N-K个第一被检部和K个第二被检部,K为整数且1≤K<N,沿所述码盘的周向,所述第一被检部的宽度不同于所述第二被检部的宽度,所述检测方法包括:
在所述码盘转动时,获取检测到所述被检部时的第一计数数据和相邻两个所述被检部之间的第二计数数据;
根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,所述旋转参数包括旋转角度和旋转速度。
本申请实施方式的检测方法,通过两个计数数据来确定旋转物的旋转参数,这样可缩小检测旋转物的旋转参数的检测装置的体积,降低成本,并且也能保证旋转物的旋转参数的检测精度。
本申请实施方式的检测装置,用于检测旋转物的旋转参数,所述检测装置包括码盘、检测件和处理器,所述旋转物安装有码盘,所述码盘随所述旋转物的转动而转动,所述码盘上沿所述码盘的周向设置有N个被检部,所述N为大于2的整数,所述N个被检部包括N-K个第一被检部和K个第二被检部,K为整数且1≤K<N,沿所述码盘的周向,所述第一被检部的宽度不同于所述第二被检部的宽度,所述检测件用于检测所述第一被检部和所述第二被检部,所述处理器用于在所述码盘转动时,获取检测到所述被检部时的第一计数数据和相邻两个所述被检部之间的第二计数数据,以及用于根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,所述旋转参数包括旋转角度和旋转速度。
本申请实施方式的检测装置,通过两个计数数据来确定旋转物的旋转参数,这样可缩小检测旋转物的旋转参数的检测装置的体积,降低成本,并且也能保证旋转物的旋转参数 的检测精度。
本申请实施方式的激光雷达包括光学元件、驱动所述光学元件旋转的驱动组件和上述实施方式所述的检测装置,所述检测装置用于检测所述光学元件的旋转参数。
本申请实施方式的激光雷达,通过两个计数数据来确定光学元件的旋转参数,这样可缩小检测光学元件的旋转参数的检测装置的体积,降低成本,并且也能保证光学元件的旋转参数的检测精度。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的检测装置的部分结构示意图;
图2是本申请实施方式的检测装置的另一部分结构示意图;
图3是本申请实施方式的码盘的平面结构示意图;
图4是本申请实施方式的码盘顺时针旋转时检测信号的波形示意图;
图5是本申请实施方式的码盘逆时针旋转时检测信号的波形示意图;
图6是本申请实施方式的检测方法的流程示意图;
图7是本申请实施方式的检测方法的另一流程示意图;
图8是本申请实施方式的检测方法的又一流程示意图;
图9是本申请实施方式的检测方法的再一流程示意图;
图10是本申请实施方式的检测方法的又一流程示意图;
图11是本申请实施方式的检测方法的再一流程示意图;
图12是本申请实施方式的检测方法的又一流程示意图;
图13是本申请实施方式的激光雷达的模块示意图;
图14是本申请实施方式的激光雷达的结构示意图。
主要元件符号附图说明:
检测装置10、码盘12、检测区域120、被检部122、第一被检部1222、第二被检部1224、码盘部124、第一码盘部1242、第二码盘部1244、卡接槽126、检测件14、激光雷达100、测距模块20、发射电路201、接收电路203、采样电路205、运算电路207、控制电路209、发射器22、准直元件24、探测器26、光路改变元件28、扫描模块30、镜筒31、卡块312、光学元件32、第一光学元件322、第二光学元件324、驱动组件34、第一驱动组件342、第二驱动组件344、转动轴36、控制器40、准直光束50。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
本申请实施方式的检测方法可用检测于旋转物的旋转参数,可由本申请实施方式的检测装置10实现。也即是说,旋转物在旋转过程中的旋转参数可以通过检测装置10来检测。请参阅图1和图2,检测装置10包括码盘12、检测件14和处理器(图未示)。处理器连接检测件14。旋转物安装有码盘12,码盘12随旋转物的转动而转动。可以理解,在本实施方式中,旋转物和码盘12之间是相对静止的。因此,可以利用码盘12对旋转物的旋转参数进行检测。旋转参数包括旋转方向、旋转角度和/或旋转速度。
在图1和图2的示例中,旋转物是光学元件32,光学元件32设置在镜筒31内。镜筒31设置有卡块312,码盘12开设有卡接槽126,卡块312至少部分地卡在卡接槽126中以将码盘12安装在镜筒31。如此,码盘12与光学元件32的相对位置不变,在旋转过程中,码盘12与光学元件32保持相对静止,码盘12与光学元件32同步转动,从而可以通过码盘12检测光学元件32的旋转参数。
请参阅图3,在本申请中,沿码盘12的周向X,码盘12分为宽度相等的N个检测区域120,每个检测区域120包括一个被检部122和一个码盘部124。被检部122和码盘部124交替分布。也即是说,码盘12上沿码盘12的周向X设置有N个被检部122和N个码 盘部124。其中,N个被检部122包括N-K个宽度相同的第一被检部1222和K个宽度相同的第二被检部1224,N个码盘部124包括N-K个宽度相同的第一码盘部1242和K个宽度相同的第二码盘部1244。N为大于2的整数,K为整数且1≤K<N。沿码盘12的周向X,第一被检部1222的宽度不同于第二被检部1224的宽度。在图3中,码盘呈圆形。
可以理解,沿码盘12的周向X,每个检测区域120的宽度相等。某个或某些检测区域120包括一个第一被检部1222和一个第一码盘部1242,某个或某些检测区域120包括一个第二被检部1224和一个第二码盘部1244。对于检测区域120来说,第一被检部1222的宽度加上第一码盘部1242的宽度等于第二被检部1224的宽度加上第二码盘部1244的宽度。
具体地,在图示的实施方式中,沿码盘12的周向X,第一被检部1222的宽度小于第二被检部1224的宽度,第一码盘部1242的宽度大于第二码盘部1244的宽度。在一个实施例中,沿码盘12的周向X,第一被检部1222的宽度与第二码盘部1244的宽度相等,第二被检部1224与第一码盘部1242的宽度相等,第二被检部1224的宽度为第一被检部1222的宽度的3倍,即第二被检部1224的宽度:第一被检部1222的宽度=3:1。当然,第二被检部1224的宽度和第一被检部1222的宽度成倍数关系,可以为2倍或其他倍数关系,不限制于3倍。
需要说明的是,在本实施方式中,宽度指的是,码盘12圆周上的周向X宽度(角度)。检测区域120的数量可以根据码盘12的尺寸、检测精度以及处理器的数据处理量等来确定。检测区域120的数量N可以为360°的等分数量,例如N=18个、36个或72个等。较佳地,考虑到码盘12的尺寸不宜过大,且不增加处理器负担,并能够满足精度要求,码盘12上设置的检测区域120的数量N=36个,即每个检测区域120的宽度为10°。第一被检部1222和第二被检部1224的数量可以根据需求设置。较佳地,第二被检部1224的数量设为1个,即K=1,第一被检部1222的数量为35个。可以理解,宽度可用其他数值单位表示,例如毫米。
为了方便理解,下文皆以码盘12包括35个第一被检部1222和1个第二被检部1224,35个第一码盘部1242和1个第二码盘部1244为例进行说明。其中,沿码盘12的周向X,第一被检部1222的宽度与第二码盘部1244的宽度相等,第二被检部1224与第一码盘部1242的宽度相等,第二被检部1224的宽度为第一被检部1222的宽度的3倍。
在本申请中,检测件14设置在码盘12的圆周以用于检测第一被检部1222和第二被检部1224。由于第一被检部1222的宽度与第二被检部1224的宽度不同,码盘12旋转一圈,检测件14检测到的检测信号存在不同。因此,在本申请中,可以通过一个检测件14输出检测信号来获得旋转物的旋转参数。
在某些实施方式中,被检部122包括通孔、磁性件、透光件或反光件。当被检部122为通孔、透光件或反光件时,对应的,检测件14包括光电开关。当被检部122为反光件时,反光件的反射率大于码盘部124的反射率。当被检部122为磁性件时,对应的,检测件14包括霍尔元件。较佳地,被检部122为通孔,检测件14包括光电开关。其中,被检部122 可以透光,码盘部124无法透光。
光电开关可为槽式光电开关(即对射式光电开关),其包括底座(图未示)、发射管(图未示)和接收管(图未示)。其中,发射管和接收管分别间隔设于底座。发射管和接收管对称设于码盘12的两侧,且发射管和接收管的中心位于被检部122和码盘部124所在圆周,以实现与被检部122和码盘部124的配合。底座于码盘12外圆周预设间距处设置,从而防止码盘12转动时码盘12的外圆周面与底座的碰撞。当然,光电开关也可以是反射式光电开关。
在旋转物带动码盘12转动的过程中,光电开关是静止的,光电开关的发射管发射光信号,被检部122旋转至发射管和接收管之间时,在被检部122是通孔或透光件时,接收管即可接收到发射管发射的光信号,码盘部124旋转至发射管和接收管之间时,接收管无法接收到发射管发射的光信号,从而使得码盘12的被检部122和码盘部124转动至光电开关的位置时,光电开关分别输出不同的电平信号。
在一个实施例中,当被检部122转到检测件14(光电开关)处,检测件14输出的检测信号为第一信号,当码盘部124转到检测件14处,检测件14输出的检测信号为第二信号。第一信号不同于第二信号。由于被检部122和码盘部124交替分布,检测信号为交替的第一信号和第二信号。在本实施例中,沿码盘12的周向X,第一被检部1222的宽度小于第二被检部1224的宽度。因此,第一被检部1222对应的第一信号的长度小于第二被检部1224对应的第一信号的长度。
第一信号可为低电平信号,第二信号可为高电平信号。例如,低电平信号是电平为0的信号,高电平信号是电平为1的信号。检测信号可为正弦波信号、余弦波信号、三角波信号。较佳地,检测信号为方波信号。
请参阅图4和图5,旋转物转动带动码盘12转动。码盘12旋转一圈,即在一个旋转周期内,检测件14可以检测到一个长度相同且连续的第一信号和第二信号。当顺时针旋转时,长度相同且连续的第一信号和第二信号中,先检测到第一信号。当逆时针旋转时,长度相同且连续的第一信号和第二信号中,先检测到第二信号。如此,基于图4或图5的检测信号在一个旋转周期内的波形可以检测出旋转物的旋转方向。
请参阅图6,检测方法包括:
步骤S10:在码盘12转动时,获取检测到被检部122时的第一计数数据和相邻两个被检部122之间的第二计数数据;
步骤S20:根据第一计数数据和第二计数数据确定旋转物的旋转参数,旋转参数包括旋转角度和旋转速度。
本申请实施方式的检测方法,通过两个计数数据来确定旋转物的旋转参数,这样可缩小检测旋转物的旋转参数的检测装置10的体积,降低成本,并且也能保证旋转物的旋转参数的检测精度。
可以理解,检测装置10包括第一计数器(图未示)和第二计数器(图未示)。第一计 数数据可由第一计数器记录获得,第二计数数据可由第二计数器记录获得。其中,第一计数数据包括第一计数值和第一计数频率,第二计数数据包括第二计数值和第二计数频率。第一计数器和第二计数器可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA)内的计数器,也可以是其它计数器。
具体地,请参阅图7,获取检测到被检部122时的第一计数数据,包括:
步骤S122:在检测到码盘12的零位时,对第一计数值清零;
步骤S124:在检测到被检部122时,获取第一计数值。
在本实施方式中,码盘12的零位与其中一个第二被检部1224的位置对应。因此,可以根据检测到的波形确定码盘12的零位。以图3为例,码盘12包括35个第一被检部1222和1个第二被检部1224,由于第二被检部1224的宽度大于第一被检部1222的宽度,因此,检测信号包括一个长度较长的第一信号(低电平信号)。码盘12每旋转一圈存在一个零位(例如第二被检部1224的特定区域,例如,中间轴、左右边缘等)。在一个例子中,将第二被检部1224的左边缘作为码盘的零位,在码盘12逆时针旋转,在检测到长度较长的第一信号的下降时,即检测到码盘12的零位,此时将第一计数值清零,然后第一计数器从0开始不间断地以相同的频率跳动计数。码盘12旋转一圈,第一计数值清零一次。零位对应的第一计数值记为C 1,即C 1=0。当检测到下一个被检部122,记录其对应的第一计数值C 2。如此,分别记录每个被检部122对应的第一计数值C 1、C 2、C 3、……C 36以及被第一计数值被清零前的数值C A,其中,C 1<C 2<C 3<……<C 36<C A。每个被检部122对应的第一计数值均是在第一信号的下降沿时记录的数值。在本实施方式中,C1为检测到一个第二被检部1224左边缘时的第一计数值,C2至C36为检测到35个第一被检部1222左边缘时的第一计数值。
进一步地,由于检测件14检测到的第一信号和第二信号的长度与码盘12的转速相关,而码盘12的转速是由旋转物的转速决定的。当旋转物匀速转动时,利用一个检测件14就可以检测码盘12的零位。当旋转物变速转动时,检测件14检测到的第一信号和第二信号的长度存在不确定性,由于第一计数器在计数时是不间断地以相同的频率跳动的,可以结合第一计数数值确定每个第一信号所对应的被检部122的宽度或每个第二信号所对应的码盘部124的宽度,从而确定码盘12的零位。而码盘12的零位可预先设定与旋转物的零位之间的关系,较佳地,码盘12的零位可设为旋转物的零位。
请参阅图8,获取相邻两个被检部122之间的第二计数数据,包括:
步骤S142:在检测到第一被检部1222和第二被检部1224中的每一个时,对第二计数值清零;
步骤S144:在接收到触发信号时,获取第二计数值。
可以理解,在每次检测到第一被检部1222和第二被检部1224时,将第二计数值清零,第二计数器从0开始不间断地以相同的频率跳动计数。当接收到触发信号时,记录此时的第二计数数值C C。触发信号为旋转物出射光和/或接收光时触发的信号。若触发信号为旋转 物出射光时触发的信号,可以结合第二计数值和第一计数值确定在旋转物出射光时,旋转物的旋转角度。若触发信号为旋转物接收光时触发的信号,可以结合第二计数值和第一计数值确定在旋转物接收光时,旋转物的旋转角度。
请参阅图9,步骤S20包括:步骤S22:利用码盘12上一圈旋转时获得的第一计数值与码盘12当前圈旋转时获得的第二计数值确定码盘12当前圈旋转时的旋转角度。
请参阅图10,步骤S20包括:步骤S24:利用码盘12上多圈旋转时获得的第一计数值的平均值与码盘12当前圈旋转时获得的第二计数值确定码盘12当前圈旋转时的旋转角度。
其中,码盘12当前圈旋转时的旋转角度为旋转物当前圈旋转时的旋转角度。
具体地,步骤S22包括:在接收到触发信号时,利用沿码盘12旋转方向,上一个被检部122在码盘12上一圈旋转时的第一计数值、码盘12当前圈旋转时获得的第二计数值与码盘12上一圈旋转时获得的第一计数值的总和确定码盘12当前圈旋转时的旋转角度。步骤S24包括:在接收到触发信号时,利用沿码盘12旋转方向,上一个被检部122在码盘12上多圈旋转时获得的第一计数值的平均值、码盘12当前圈旋转时获得的第二计数值与码盘12上多圈旋转时获得的第一计数值的总和的平均值确定码盘12当前圈旋转时的旋转角度。
可以理解,由于码盘12的机械加工有一定的误差,N-K个第一被检部之间的宽度可能存在差别,K个第二被检部之间(K大于1时)的宽度也可能存在差别。另外,码盘12在转动的过程中,实际转速与检测到的转速也可能存在误差。这会影响码盘12当前圈旋转时的旋转角度的准确度。在步骤S22中,确定码盘12当前圈旋转时的旋转角度采用被检部122在码盘12上一圈旋转时获得的第一计数值作为基准,不断地校准码盘12转动产生的误差以获得较为准确的码盘12当前圈旋转时的旋转角度。在步骤S24中,确定码盘12当前圈旋转时的旋转角度采用被检部122在码盘12上多圈旋转时获得的第一计数值的平均值作为基准来校准码盘12转动产生的误差以获得较为准确的码盘12当前圈旋转时的旋转角度。在本申请中,第一计数值的总和指的是,第一计数值被清零前的数值C A。上多圈可为当前圈的前两圈或前两圈以上(若有)。
在一个实施例中,请结合图3,设定第二被检部1224为第一个被检部122,第一个被检部122对应码盘12的零位,若码盘12逆时针旋转,接下来的第一个第一被检部1222为第二个被检部122、第二个第一被检部1222为第三个被检部122,以此类推。在码盘12逆时针旋转,接收到触发信号时,第二个被检部122和第三个被检部122之间的部位转到检测件14处,此时获取第二数值C C,以及在码盘12上一圈旋转时检测到第二个被检部122(即在接收到触发信号时,沿码盘12逆时针旋转方向的上一个被被检部122)的第一计数值C 2,码盘12上一圈旋转时获得的第一计数值的总和为C A。码盘12当前圈旋转时的旋转角度=(C 2(N-1)+C C(N))/C A(N-1)*360°,其中,下标(N-1)表示第N-1圈,即上一圈,下标(N)表示第N圈,即当前圈。在本实施方式中,码盘的旋转角度的检测精度可达0.01°。
需要说明的是,码盘12当前圈旋转时的旋转角度指的是,码盘12旋转时码盘12的零 位与码盘12未开始旋转时码盘12的零位之间的角度差。
请参阅图11,步骤S20包括:步骤S26:根据第一计数频率和第一计数值确定码盘12的旋转速度。
请参阅图12,步骤S20包括:步骤S28:根据第二计数频率和第二计数值确定码盘12的旋转速度。
其中,码盘12的旋转速度为旋转物的旋转速度。
具体地,步骤S26包括:根据第一计数频率和第一计数值确定码盘12旋转一圈所需的时长以确定码盘12的旋转速度。步骤S28包括:根据第二计数频率和第二计数数值确定码盘12旋转一圈所需的时长以确定码盘12的旋转速度。
可以理解,当码盘12匀速转动时,可以根据第一计数数据或第二计数数据确定码盘12旋转一圈所需的时长,从而确定码盘12的旋转速度。当然,也可以根据第一计数数据或第二计数数据可以确定码盘12旋转一个被检部122的宽度或旋转一个码盘部124的宽度所需的时长,从而确定码盘12的旋转速度。
请参阅图1和图2,本申请实施方式的检测装置10用于检测旋转物的旋转参数。检测装置10包括码盘12、检测件14和处理器。码盘12用于安装在旋转物,码盘12随旋转物的转动而转动。码盘12上沿码盘12的周向X设置有N个被检部122,N为大于2的整数。N个被检部122包括N-K个第一被检部1222和K个第二被检部1224,K为整数且1≤K<N。沿码盘12的周向X,第一被检部1222的宽度不同于第二被检部1224的宽度。检测件14用于检测第一被检部1222和第二被检部1224。处理器用于在码盘12转动时,获取检测到被检部122时的第一计数数据和相邻两个被检部122之间的第二计数数据,以及用于根据第一计数数据和第二计数数据确定旋转物的旋转参数,旋转参数包括旋转角度和旋转速度。
也即是说,上述检测方法的步骤S10和步骤S20均可由处理器实现。
本申请实施方式的检测装置10,通过两个计数数据来确定旋转物的旋转参数,这样可缩小检测旋转物的旋转参数的检测装置10的体积,降低成本,并且也能保证旋转物的旋转参数的检测精度。
需要说明的是,上述实施方式的检测方法的解释说明和有益效果也适用于本实施方式的检测装置10,为避免冗余,在此不再详细展开。
在某些实施方式中,第一计数数据包括第一计数值。处理器用于在检测到码盘12的零位时,对第一计数值清零,及用于在检测到被检部122时,获取第一计数值。
也即是说,上述检测方法的步骤S122和步骤S124均可由处理器实现。
在某些实施方式中,码盘12的零位与其中一个第二被检部1224的位置对应。
在某些实施方式中,第二计数数据包括第二计数值。处理器用于在检测到第一被检部1222和第二被检部1224中的每一个时,对第二计数值清零,及用于在接收到触发信号时,获取第二计数值。
也即是说,上述检测方法的步骤S142和步骤S144均可由处理器实现。
在某些实施方式中,触发信号为旋转物出射光和/或接收光时触发的信号。
在某些实施方式中,第一计数数据包括第一计数值,第二计数数据包括第二计数值。处理器用于利用码盘12上一圈旋转时获得的第一计数值与码盘12当前圈旋转时获得的第二计数值确定码盘12当前圈旋转时的旋转角度,或用于利用码盘12上多圈旋转时获得的第一计数值的平均值与码盘12当前圈旋转时获得的第二计数值确定码盘12当前圈旋转时的旋转角度。其中,码盘12当前圈旋转时的旋转角度为旋转物当前圈旋转时的旋转角度。
也即是说,上述检测方法的步骤S22和步骤S24均可由处理器实现。
在某些实施方式中,处理器用于在接收到触发信号时,利用沿码盘12旋转方向,上一个被检部122在码盘12上一圈旋转时获得的第一计数值、码盘12当前圈旋转时获得的第二计数值与码盘12上一圈旋转时获得的第一计数值的总和确定码盘12当前圈旋转时的旋转角度,或用于在接收到触发信号时,利用沿码盘12旋转方向,上一个被检部122在码盘12上多圈旋转时获得的第一计数值的平均值、码盘12当前圈旋转时获得的第二计数值与码盘12上多圈旋转时获得的第一计数值的总和的平均值确定码盘12当前圈旋转时的旋转角度。
在某些实施方式中,第一计数数据包括第一计数值和第一计数频率,第二计数数据包括第二计数值和第二计数频率。处理器用于根据第一计数频率和第一计数值确定码盘12的旋转速度,或用于根据第二计数频率和第二计数值确定码盘12的旋转速度。其中,码盘12的旋转速度为旋转物的旋转速度。
也即是说,上述检测方法的步骤S26和步骤S28均可由处理器实现。
在某些实施方式中,处理器用于根据第一计数频率和第一计数值确定码盘12旋转一圈所需的时长以确定码盘12的旋转速度,或用于根据第二计数频率和第二计数数值确定码盘12旋转一圈所需的时长以确定码盘12的旋转速度。
在某些实施方式中,沿码盘12的周向X,码盘12分为宽度相等的N个检测区域120。每个检测区域120包括被检部122和码盘部124,被检部122和码盘部124交替分布。
在某些实施方式中,N个码盘部124包括N-K个第一码盘部1242和K个第二码盘部1244。沿码盘12的周向X,第一被检部1222的宽度小于第二被检部1224的宽度,第一码盘部1242的宽度大于第二码盘部1244的宽度。
在某些实施方式中,沿码盘12的周向X,第一被检部1222的宽度与第二码盘部1244的宽度相等,第二被检部1224与第一码盘部1242的宽度相等,第二被检部1224的宽度为第一被检部1222的宽度的3倍。
在某些实施方式中,被检部122包括通孔、磁性件、透光件或反光件。
请参阅图13和图14,本申请实施方式的激光雷达100包括光学元件32、驱动光学元件32旋转的驱动组件34和上述实施方式的检测装置10。检测装置10用于检测光学元件32的旋转参数。
本申请实施方式的激光雷达100,通过两个计数数据来确定光学元件32的旋转参数,这样可缩小检测光学元件32的旋转参数的检测装置10的体积,降低成本,并且也能保证光学元件32的旋转参数的检测精度。
需要说明的是,光学元件32即上述实施方式的旋转物,驱动组件34可以是电机。电机的转子连接光学元件32以驱动光学元件32旋转,电机的转子与光学元件32同步转动。也即是说,电机的转子与光学元件32始终保持相对静止。光学元件32为棱镜或透镜。棱镜包括楔形棱镜。
在某些实施方式中,棱镜沿径向上的厚度不同,码盘12上的一个第二被检部1224与棱镜径向最小或最大厚度处的位置唯一对准。
可以理解,棱镜径向最小厚度处的位置或最大厚度处的位置可作为棱镜的零位,利用码盘12的零位对棱镜的零位进行标定,从而间接标定出棱镜径向最小厚度处或最大厚度处,以使得棱镜形成指定光路。在本实施方式中,棱镜的零位与码盘12的零位对准。
本申请实施方式的激光雷达100可应用于测距。在某些实施方式中,激光雷达100用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。在某些实施方式中,激光雷达100可以通过测量激光雷达100和探测物200之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物200到激光雷达100的距离。或者,激光雷达100也可以通过其他技术来探测探测物200到激光雷达100的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图13所示的激光雷达100对测距的工作流程进行举例描述。
如图13所示,激光雷达100可以包括测距模块20和扫描模块30。测距模块20可以包括发射电路201、接收电路203、采样电路205和运算电路207。
发射电路201可以发射光脉冲序列(例如激光脉冲序列)。接收电路203可以接收经过被探测物200反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路205。采样电路205可以对电信号进行采样,以获取采样结果。运算电路207可以基于采样电路205的采样结果,以确定激光雷达100与被探测物200之间的距离。
可选地,测距模块20还可以包括控制电路209,控制电路209可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图13示出的测距模块20中包括一个发射电路201、一个接收电路203、一个采样电路205和一个运算电路207,用于出射一路光束进行探测。但是本申请实施例并不限于此,发射电路201、接收电路203、采样电路205、运算电路207中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,至少两个发射电路201中的发光芯片封装在同一个模块中。例如,每个发射电路201包括一个激光发 射芯片,至少两个发射电路201中的激光发射芯片中的芯片裸片(die)封装到一起,容置在同一个封装空间中。
扫描模块30包括光学元件32和驱动光学元件32旋转的驱动组件34。扫描模块30用于将发射电路201出射的至少一路激光脉冲序列改变传播方向出射。
激光雷达100中可以采用同轴光路,也即激光雷达100出射的光束和经反射回来的光束在激光雷达100内共用至少部分光路。例如,发射电路201出射的至少一路激光脉冲序列经扫描模块30改变传播方向出射后,经探测物200反射回来的激光脉冲序列经过扫描模块30后入射至接收电路203。或者,激光雷达100也可以采用异轴光路,也即激光雷达100出射的光束和经反射回来的光束在激光雷达100内分别沿不同的光路传输。图14示出了本申请的激光雷达100采用同轴光路的一种实施例的示意图。
激光雷达100包括测距模块20和扫描模块30。测距模块20包括发射器22(可以包括上述的发射电路201)、准直元件24、探测器26(可以包括上述的接收电路203、采样电路205和运算电路207)和光路改变元件28。测距模块20用于发射光束,且接收回光,将回光转换为电信号。其中,发射器22可以用于发射光脉冲序列。在一个实施例中,发射器22可以发射激光脉冲序列。可选的,发射器22发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件24设置于发射器22的出射光路上,用于准直从发射器22发出的光束,将发射器22发出的光束准直为平行光出射至扫描模块30。准直元件24还用于会聚经探测物200反射的回光的至少一部分。准直元件24可以是准直透镜或者是其他能够准直光束50的元件。
在图14的示例中,通过光路改变元件28来将激光雷达100内的发射光路和接收光路在准直元件24之前合并,使得发射光路和接收光路可以共用同一个准直元件24,使得光路更加紧凑。在其他一些实现方式中,也可以是发射器22和探测器26分别使用各自的准直元件24,将光路改变元件28设置在准直元件24之后的光路上。
在图14的示例中,由于发射器22出射的光束的光束孔径较小,激光雷达100所接收到的回光的光束孔径较大,所以光路改变元件28可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件28也可以采用带通孔的反射镜,其中通孔用于透射发射器22的出射光,反射镜用于将回光反射至探测器26。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图14的示例中,光路改变元件28偏离了准直元件24的光轴。在其他实施方式中,光路改变元件28也可以位于准直元件24的光轴上。
扫描模块30放置于测距模块20的出射光路上。扫描模块30用于改变经准直元件24出射的准直光束50的传输方向并投射至外界环境,并将回光投射至准直元件24。回光经准直元件24汇聚到探测器26上。
在某些实施方式中,扫描模块30可以包括至少一个光学元件32,用于改变光束的传播路径,其中,光学元件32可以通过对光束进行反射、折射、衍射等等方式来改变光束传 播路径。例如,扫描模块30包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件32的任意组合。在本申请中,至少部分光学元件32是运动的,例如通过驱动组件34来驱动至少部分光学元件32进行运动,运动的光学元件32可以在不同时刻将光束反射、折射或衍射至不同的方向。
在某些实施方式中,扫描模块30的多个光学元件32可以绕共同的轴旋转或振动,每个旋转或振动的光学元件32用于不断改变入射光束的传播方向。在一个实施例中,扫描模块30的多个光学元件32可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块30的至少部分光学元件32可以以基本相同的转速旋转。
在其他实施方式中,扫描模块30的多个光学元件32也可以是绕不同的轴旋转。扫描模块30的多个光学元件32也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块30包括第一光学元件322和与第一光学元件322连接的第一驱动组件342,第一驱动组件342用于驱动第一光学元件322绕转动轴36转动,使第一光学元件322改变准直光束50的方向。第一光学元件322将准直光束50投射至不同的方向。在一个实施例中,准直光束50经第一光学元件322改变后的方向与转动轴36的夹角随着第一光学元件322的转动而变化。在一个实施例中,第一光学元件322包括相对的非平行的一对表面,准直光束50穿过对表面。在一个实施例中,第一光学元件322包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件322包括楔形棱镜,对准直光束50进行折射。
在一个实施例中,扫描模块30还包括第二光学元件324,第二光学元件324绕转动轴36转动,第二光学元件324的转动速度与第一光学元件322的转动速度不同。第二光学元件324用于改变第一光学元件322投射的光束的方向。在一个实施例中,第二光学元件324与第二驱动组件344连接,第二驱动组件344驱动第二光学元件324转动。第一光学元件322和第二光学元件324可以由相同或不同的驱动组件34驱动,使第一光学元件322和第二光学元件324的转速和/或转向不同,从而将准直光束50投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器40控制第一驱动组件342、第二驱动组件344,分别驱动第一光学元件322和第二光学元件324。第一光学元件322和第二光学元件324的转速可以根据实际应用中预期扫描的区域和样式确定。第一驱动组件342、第二驱动组件344可以包括电机或其他驱动组件34。
在一个实施例中,第二光学元件324包括相对的非平行的一对表面,光束穿过对表面。在一个实施例中,第二光学元件324包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件324包括楔形棱镜。
在一个实施例中,扫描模块30还包括第三光学元件32(图未示)和用于驱动第三光学元件32运动的第三驱动组件34(图未示)。可选地,第三光学元件32包括相对的非平行的一对表面,光束穿过对表面。在一个实施例中,第三光学元件32包括厚度沿至少一个 径向变化的棱镜。在一个实施例中,第三光学元件32包括楔形棱镜。第一光学元件322、第二光学元件324和第三光学元件32中的至少两个光学元件32以不同的转速和/或转向转动。
可以理解,扫描模块30中的各光学元件32旋转可以将准直光束50投射至不同的方向,例如方向52和56,如此对激光雷达100周围的空间进行扫描。当扫描模块30投射出的光打到探测物200时,一部分光被探测物200沿与投射的光相反的方向58反射至扫描模块30的光学元件32。探测物200反射的回光经过扫描模块30后入射至准直元件24,然后被探测器26接收。
探测器26与发射器22放置于准直元件24的同一侧,探测器26用于将穿过准直元件24的至少部分回光转换为电信号。
在某些实施方式中,发射器22可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光雷达100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物200到激光雷达100的距离。
需要说明的是,第一光学元件322、第二光学元件324、第三光学元件32均安装有检测装置10的码盘12。码盘12随各个光学元件32的转动而转动以检测各个光学元件32的旋转参数,如光学元件32的绝对位置(以光学元件32的零位为参考)。在一个实施例中,第一光学元件322、第二光学元件324、第三光学元件32均为楔形棱镜。在各个光学元件32出射光和接收光时触发信号,检测各个光学元件32的绝对位置,可以获得光线出射时各个光学元件32的角度和光线返回时各个光学元件32的角度,以获得从各个光学元件32出射的光线的方向和返回各个光学元件32的光线的方向,从而可以确定探测物200的具体方位和距离。
在一个实施例中,各光学元件32上镀有增透膜。可选的,增透膜的厚度与发射器22发射出的光束的波长相等或接近,能够增加透射光束的强度。
在一个实施例中,激光雷达100中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器22所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
激光雷达100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。可以理解,本申请实施方式的激光雷达100可应用于移动平台,激光雷达100可安装在移动平台的平台本体。具有激光雷达100的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。
在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当激光雷达100应用于无人飞行器时,平台本体为无人飞行器的机身。当激光雷达100应用于汽车时,平台本体为汽车的车身。汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当激光雷达100应用于遥控车时,平台本体为遥控车的车身。当激 光雷达100应用于机器人时,平台本体为机器人。当激光雷达100应用于相机时,平台本体为相机本身。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施方式所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施方式的步骤之一或其组合。
此外,在本申请各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块 既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (30)

  1. 一种检测方法,用于检测旋转物的旋转参数,其特征在于,所述旋转物安装有码盘,所述码盘随所述旋转物的转动而转动,所述码盘上沿所述码盘的周向设置有N个被检部,所述N为大于2的整数,所述N个被检部包括N-K个第一被检部和K个第二被检部,K为整数且1≤K<N,沿所述码盘的周向,所述第一被检部的宽度不同于所述第二被检部的宽度,所述检测方法包括:
    在所述码盘转动时,获取检测到所述被检部时的第一计数数据和相邻两个所述被检部之间的第二计数数据;
    根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,所述旋转参数包括旋转角度和旋转速度。
  2. 根据权利要求1所述的检测方法,其特征在于,所述第一计数数据包括第一计数值,获取检测到所述被检部时的第一计数数据,包括:
    在检测到所述码盘的零位时,对所述第一计数值清零;
    在检测到所述被检部时,获取所述第一计数值。
  3. 根据权利要求2所述的检测方法,其特征在于,所述码盘的零位与其中一个所述第二被检部的位置对应。
  4. 根据权利要求1所述的检测方法,其特征在于,所述第二计数数据包括第二计数值,获取相邻两个所述被检部之间的第二计数数据,包括:
    在检测到所述第一被检部和所述第二被检部中的每一个时,对所述第二计数值清零;
    在接收到触发信号时,获取所述第二计数值。
  5. 根据权利要求4所述的检测方法,其特征在于,所述触发信号为所述旋转物出射光和/或接收光时触发的信号。
  6. 根据权利要求4所述的检测方法,其特征在于,所述第一计数数据包括第一计数值,所述第二计数数据包括第二计数值,根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,包括:
    利用所述码盘上一圈旋转时获得的所述第一计数值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度;或
    利用所述码盘上多圈旋转时获得的所述第一计数值的平均值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度;
    其中,所述码盘当前圈旋转时的旋转角度为所述旋转物当前圈旋转时的旋转角度。
  7. 根据权利要求6所述的检测方法,其特征在于,利用所述码盘上一圈旋转时获得的所述第一计数值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度,包括:
    在接收到所述触发信号时,利用沿所述码盘旋转方向,上一个所述被检部在所述码盘上一圈旋转时获得的所述第一计数值、所述码盘当前圈旋转时获得的所述第二计数值与所述码盘上一圈旋转时获得的所述第一计数值的总和确定所述码盘当前圈旋转时的旋转角度;
    利用所述码盘上多圈旋转时获得的所述第一计数值的平均值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度,包括:
    在接收到所述触发信号时,利用沿所述码盘旋转方向,上一个所述被检部在所述码盘上多圈旋转时获得的所述第一计数值的平均值、所述码盘当前圈旋转时获得的所述第二计数值与所述码盘上多圈旋转时获得的所述第一计数值的总和的平均值确定所述码盘当前圈旋转时的旋转角度。
  8. 根据权利要求1所述的检测方法,其特征在于,所述第一计数数据包括第一计数值和第一计数频率,所述第二计数数据包括第二计数值和第二计数频率,根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,包括:
    根据所述第一计数频率和所述第一计数值确定所述码盘的旋转速度;或
    根据所述第二计数频率和所述第二计数值确定所述码盘的旋转速度;
    其中,所述码盘的旋转速度为所述旋转物的旋转速度。
  9. 根据权利要求8所述的检测方法,其特征在于,根据所述第一计数频率和所述第一计数值确定所述码盘的旋转速度,包括:
    根据所述第一计数频率和所述第一计数值确定所述码盘旋转一圈所需的时长以确定所述码盘的旋转速度;
    根据所述第二计数频率和所述第二计数值确定所述码盘的旋转速度,包括:
    根据所述第二计数频率和所述第二计数数值确定所述码盘旋转一圈所需的时长以确定所述码盘的旋转速度。
  10. 根据权利要求1所述的检测方法,其特征在于,沿所述码盘的周向,所述码盘分为宽度相等的N个检测区域,每个所述检测区域包括所述被检部和码盘部,所述被检部和所述码盘部交替分布。
  11. 根据权利要求10所述的检测方法,其特征在于,N个所述码盘部包括N-K个第一 码盘部和K个第二码盘部,沿所述码盘的周向,所述第一被检部的宽度小于所述第二被检部的宽度,所述第一码盘部的宽度大于所述第二码盘部的宽度。
  12. 根据权利要求11所述的检测方法,其特征在于,沿码盘的周向,所述第一被检部的宽度与所述第二码盘部的宽度相等,所述第二被检部与所述第一码盘部的宽度相等,所述第二被检部的宽度为所述第一被检部的宽度的3倍。
  13. 根据权利要求1所述的检测方法,其特征在于,所述被检部包括通孔、磁性件、透光件或反光件。
  14. 一种检测装置,用于检测旋转物的旋转参数,其特征在于,所述检测装置包括码盘、检测件和处理器,所述码盘用于安装在所述旋转物,所述码盘随所述旋转物的转动而转动,所述码盘上沿所述码盘的周向设置有N个被检部,所述N为大于2的整数,所述N个被检部包括N-K个第一被检部和K个第二被检部,K为整数且1≤K<N,沿所述码盘的周向,所述第一被检部的宽度不同于所述第二被检部的宽度,所述检测件用于检测所述第一被检部和所述第二被检部,所述处理器用于在所述码盘转动时,获取检测到所述被检部时的第一计数数据和相邻两个所述被检部之间的第二计数数据,以及用于根据所述第一计数数据和所述第二计数数据确定所述旋转物的旋转参数,所述旋转参数包括旋转角度和旋转速度。
  15. 根据权利要求14所述的检测装置,其特征在于,所述第一计数数据包括第一计数值,所述处理器用于在检测到所述码盘的零位时,对所述第一计数值清零,及用于在检测到所述被检部时,获取所述第一计数值。
  16. 根据权利要求15所述的检测装置,其特征在于,所述码盘的零位与其中一个所述第二被检部的位置对应。
  17. 根据权利要求14所述的检测装置,其特征在于,所述第二计数数据包括第二计数值,所述处理器用于在检测到所述第一被检部和所述第二被检部中的每一个时,对所述第二计数值清零,及用于在接收到触发信号时,获取所述第二计数值。
  18. 根据权利要求17所述的检测装置,其特征在于,所述触发信号为所述旋转物出射光和/或接收光时触发的信号。
  19. 根据权利要求17所述的检测装置,其特征在于,所述第一计数数据包括第一计数 值,所述第二计数数据包括第二计数值,所述处理器用于利用所述码盘上一圈旋转时获得的所述第一计数值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度,或用于利用所述码盘上多圈旋转时获得的所述第一计数值的平均值与所述码盘当前圈旋转时获得的所述第二计数值确定所述码盘当前圈旋转时的旋转角度,其中,所述码盘当前圈旋转时的旋转角度为所述旋转物当前圈旋转时的旋转角度。
  20. 根据权利要求19所述的检测装置,其特征在于,所述处理器用于在接收到所述触发信号时,利用沿所述码盘旋转方向,上一个所述被检部在所述码盘上一圈旋转时获得的所述第一计数值、所述码盘当前圈旋转时获得的所述第二计数值与所述码盘上一圈旋转时获得的所述第一计数值的总和确定所述码盘当前圈旋转时的旋转角度,或用于在接收到所述触发信号时,利用沿所述码盘旋转方向,上一个所述被检部在所述码盘上多圈旋转时获得的所述第一计数值的平均值、所述码盘当前圈旋转时获得的所述第二计数值与所述码盘上多圈旋转时获得的所述第一计数值的总和的平均值确定所述码盘当前圈旋转时的旋转角度。
  21. 根据权利要求14所述的检测装置,其特征在于,所述第一计数数据包括第一计数值和第一计数频率,所述第二计数数据包括第二计数值和第二计数频率,所述处理器用于根据所述第一计数频率和所述第一计数值确定所述码盘的旋转速度,或用于根据所述第二计数频率和所述第二计数值确定所述码盘的旋转速度,其中,所述码盘的旋转速度为所述旋转物的旋转速度。
  22. 根据权利要求21所述的检测装置,其特征在于,所述处理器用于根据所述第一计数频率和所述第一计数值确定所述码盘旋转一圈所需的时长以确定所述码盘的旋转速度,或用于根据所述第二计数频率和所述第二计数数值确定所述码盘旋转一圈所需的时长以确定所述码盘的旋转速度。
  23. 根据权利要求14所述的检测装置,其特征在于,沿所述码盘的周向,所述码盘分为宽度相等的N个检测区域,每个所述检测区域包括所述被检部和码盘部,所述被检部和所述码盘部交替分布。
  24. 根据权利要求23所述的检测装置,其特征在于,N个所述码盘部包括N-K个第一码盘部和K个第二码盘部,沿所述码盘的周向,所述第一被检部的宽度小于所述第二被检部的宽度,所述第一码盘部的宽度大于所述第二码盘部的宽度。
  25. 根据权利要求24所述的检测装置,其特征在于,沿码盘的周向,所述第一被检部 的宽度与所述第二码盘部的宽度相等,所述第二被检部与所述第一码盘部的宽度相等,所述第二被检部的宽度为所述第一被检部的宽度的3倍。
  26. 根据权利要求14所述的检测装置,其特征在于,所述被检部包括通孔、磁性件、透光件或反光件。
  27. 一种激光雷达,其特征在于,包括光学元件、驱动所述光学元件旋转的驱动组件和权利要求14-26任一项所述的检测装置,所述检测装置用于检测所述光学元件的旋转参数。
  28. 根据权利要求27所述的激光雷达,其特征在于,所述光学元件为棱镜或透镜。
  29. 根据权利要求28所述的激光雷达,其特征在于,所述棱镜沿径向上的厚度不同,所述码盘上的一个所述第二被检部与所述棱镜径向最小或最大厚度处的位置唯一对准。
  30. 根据权利要求27所述的激光雷达,其特征在于,所述光学元件设置在镜筒内,所述镜筒设置有卡块,所述码盘开设有卡接槽,所述卡块至少部分地卡在所述卡接槽中以将所述码盘安装在所述镜筒。
PCT/CN2019/071049 2019-01-09 2019-01-09 检测方法、检测装置及激光雷达 WO2020142961A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004997.9A CN111684237B (zh) 2019-01-09 2019-01-09 检测方法、检测装置及激光雷达
PCT/CN2019/071049 WO2020142961A1 (zh) 2019-01-09 2019-01-09 检测方法、检测装置及激光雷达
US17/371,676 US20210333399A1 (en) 2019-01-09 2021-07-09 Detection method, detection device, and lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071049 WO2020142961A1 (zh) 2019-01-09 2019-01-09 检测方法、检测装置及激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,676 Continuation US20210333399A1 (en) 2019-01-09 2021-07-09 Detection method, detection device, and lidar

Publications (1)

Publication Number Publication Date
WO2020142961A1 true WO2020142961A1 (zh) 2020-07-16

Family

ID=71521879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071049 WO2020142961A1 (zh) 2019-01-09 2019-01-09 检测方法、检测装置及激光雷达

Country Status (3)

Country Link
US (1) US20210333399A1 (zh)
CN (1) CN111684237B (zh)
WO (1) WO2020142961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093280A (zh) * 2021-11-22 2022-02-25 马努(上海)艺术设计有限公司 角度校正方法、角度限位器、显示单元和显示系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100133423A1 (en) * 2006-05-31 2010-06-03 Delphi Technologies, Inc. Out-of-round coder
CN101984328A (zh) * 2010-08-20 2011-03-09 西南交通大学 一种单码道光电编码器
CN104457806A (zh) * 2014-12-02 2015-03-25 佛山轻子精密测控技术有限公司 一种复合型旋转编码器及其测量方法
CN104567956A (zh) * 2014-12-22 2015-04-29 佛山轻子精密测控技术有限公司 一种相对式旋转编码器及其测量方法
CN105723179A (zh) * 2013-10-18 2016-06-29 上海交通大学 主动式位置编码器及其操作方法
CN205643711U (zh) * 2016-05-13 2016-10-12 北醒(北京)光子科技有限公司 一种多线旋转扫描探测装置
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN206235877U (zh) * 2016-12-13 2017-06-09 泉州市进光贸易有限公司 一种数控机床用简便测量装置
CN207937597U (zh) * 2018-01-18 2018-10-02 深圳市镭神智能系统有限公司 一种激光探测雷达

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693198B2 (ja) * 1996-07-10 2005-09-07 極東産機株式会社 部屋の寸法測定装置
CN102495226B (zh) * 2011-10-26 2013-03-13 深圳市三艾科技有限公司 基于增量式光电编码器的速度测量方法及速度测量系统
CN108700410B (zh) * 2017-04-28 2021-07-20 深圳市大疆创新科技有限公司 位置检测装置、方法及转动系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100133423A1 (en) * 2006-05-31 2010-06-03 Delphi Technologies, Inc. Out-of-round coder
CN101984328A (zh) * 2010-08-20 2011-03-09 西南交通大学 一种单码道光电编码器
CN105723179A (zh) * 2013-10-18 2016-06-29 上海交通大学 主动式位置编码器及其操作方法
CN104457806A (zh) * 2014-12-02 2015-03-25 佛山轻子精密测控技术有限公司 一种复合型旋转编码器及其测量方法
CN104567956A (zh) * 2014-12-22 2015-04-29 佛山轻子精密测控技术有限公司 一种相对式旋转编码器及其测量方法
CN205643711U (zh) * 2016-05-13 2016-10-12 北醒(北京)光子科技有限公司 一种多线旋转扫描探测装置
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN206235877U (zh) * 2016-12-13 2017-06-09 泉州市进光贸易有限公司 一种数控机床用简便测量装置
CN207937597U (zh) * 2018-01-18 2018-10-02 深圳市镭神智能系统有限公司 一种激光探测雷达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093280A (zh) * 2021-11-22 2022-02-25 马努(上海)艺术设计有限公司 角度校正方法、角度限位器、显示单元和显示系统
CN114093280B (zh) * 2021-11-22 2024-01-09 马努(上海)艺术设计有限公司 角度校正方法、角度限位器、显示单元和显示系统

Also Published As

Publication number Publication date
CN111684237B (zh) 2022-06-21
US20210333399A1 (en) 2021-10-28
CN111684237A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
JP2021131539A (ja) センサーシステム及びその方法
JP5137104B2 (ja) 光波距離計
US8643828B2 (en) Laser surveying instrument
CN111771136A (zh) 异常检测方法、报警方法、测距装置及可移动平台
WO2021243612A1 (zh) 测距方法、测距装置和可移动平台
CN111982028A (zh) 一种激光雷达扫描振镜三维角度测量装置和方法
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
CN111542766A (zh) 一种测距系统及移动平台
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
WO2020142961A1 (zh) 检测方法、检测装置及激光雷达
WO2021056470A1 (zh) 电机模组、扫描模块、测距装置及控制方法
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
CN111712734A (zh) 一种激光测距装置及移动平台
JP2021025993A (ja) 測量装置
CN111902732A (zh) 一种探测装置初始状态标定方法及装置
CN111670380A (zh) 测距装置的异常记录方法、测距装置及可移动平台
US20210341588A1 (en) Ranging device and mobile platform
CN111670375A (zh) 一种测距装置及移动平台
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台
CN112654893A (zh) 扫描模块的电机转速控制方法、装置和测距装置
CN111556972A (zh) 测距模组和测距装置
WO2020142879A1 (zh) 数据处理方法、探测装置、数据处理装置、可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909385

Country of ref document: EP

Kind code of ref document: A1