WO2020142934A1 - 电路板组件、图像接收装置和激光雷达 - Google Patents

电路板组件、图像接收装置和激光雷达 Download PDF

Info

Publication number
WO2020142934A1
WO2020142934A1 PCT/CN2019/071001 CN2019071001W WO2020142934A1 WO 2020142934 A1 WO2020142934 A1 WO 2020142934A1 CN 2019071001 W CN2019071001 W CN 2019071001W WO 2020142934 A1 WO2020142934 A1 WO 2020142934A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing member
image sensor
circuit board
board assembly
fixing
Prior art date
Application number
PCT/CN2019/071001
Other languages
English (en)
French (fr)
Inventor
周琨
徐春林
Original Assignee
深圳市欢创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市欢创科技有限公司 filed Critical 深圳市欢创科技有限公司
Priority to PCT/CN2019/071001 priority Critical patent/WO2020142934A1/zh
Priority to JP2021600088U priority patent/JP3235652U/ja
Publication of WO2020142934A1 publication Critical patent/WO2020142934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers

Definitions

  • the embodiments of the present application relate to the field of information technology, and in particular, to a circuit board assembly, an image receiving device, and a laser radar.
  • space positioning technology is becoming more and more popular, for example, in the field of autonomous navigation such as home robots, drones, and unmanned driving.
  • optical positioning technology is widely used because of its high precision and fast response.
  • the optical measurement module based on geometric measurement includes: a laser emitting device and a laser receiving device, the laser is emitted by the laser emitting device, and the target reflected light is reflected by the object to be measured, and the laser receiving device Receive to take measurements.
  • the inventor of the present application found that the current optical measurement module is prone to measurement errors.
  • Embodiments of the present application provide a circuit board assembly, an image receiving device, and a laser radar, which can greatly reduce measurement errors.
  • a circuit board assembly including: a circuit board, an image sensor and a first fixing device;
  • the image sensor is provided on the circuit board
  • the first fixing device is used to fix the circuit board.
  • the first fixing device includes a first fixing member and a second fixing member.
  • the first fixing member and the second fixing member are provided on the image
  • the main scanning direction of the sensor is provided on the first and second sides of the image sensor opposite to each other, wherein the distance between the first fixing member and the edge of the first side of the image sensor is less than 2 cm, and The distance between the second fixing member and the second side edge of the image sensor is less than 2 cm.
  • An image receiving device includes the above-mentioned circuit board assembly.
  • a laser radar includes: a mounting bracket, a laser emitting device, and the above-mentioned circuit board assembly;
  • the circuit board assembly is fixed to the mounting bracket, and the laser emitting device is installed on the mounting bracket, and the laser emitting device is used to emit laser light, which is reflected by the object to be measured and then reflected by the image sensor of the circuit board assembly receive.
  • the circuit board is fixed by the first fixing device, so that when the image sensor generates heat, the deformation of the circuit board when heated is reduced, thereby the position of the image sensor is deviated
  • the shift is small, which can reduce the measurement error;
  • the first fixing device is fixed in the main scanning direction of the image sensor, which can effectively reduce the influence of the deformation of the circuit board in the horizontal direction on the measurement result during geometric measurement.
  • the distance between the first fixing device and the edge of the image sensor is within 2 cm, which can effectively ensure that the measurement error is within a preset range.
  • FIG. 1 is a schematic structural diagram of a laser radar provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a circuit board assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an image sensor of the circuit board assembly shown in FIG. 2;
  • 4a to 4d are schematic structural diagrams of a circuit board assembly according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an image receiving apparatus provided by an embodiment of the present application.
  • an optical measurement module based on geometric measurement includes a laser emitting device and a laser receiving device.
  • the laser emits laser light through the laser emitting device, and the target reflected light is reflected by the object to be measured, which is received by the laser receiving device to perform measurement.
  • current optical measurement modules are prone to measurement errors.
  • embodiments of the present application provide a circuit board assembly, an image receiving device, and a laser radar, which can greatly reduce measurement errors.
  • the light source fixing device will be described below through embodiments.
  • FIG. 1 is a schematic structural diagram of a laser radar according to an embodiment of the present application.
  • the laser radar 100 includes: a circuit board assembly 10, a laser emitting device 20, a lens assembly 30 and a mounting bracket 40.
  • the laser emitting device 20 may be one or more lasers, such as a TO packaged or patch packaged semiconductor laser transmitter.
  • the laser emitting device 20 is used to emit a measuring laser signal.
  • the lens assembly 30 may be composed of one or more optical devices, which can adjust the received laser signal.
  • the mounting bracket 40 is provided with a first mounting hole 41 and a second mounting hole 42.
  • the first mounting hole 41 and the second mounting hole 42 are opened on the same side of the mounting bracket 40.
  • the laser emitting device 20 is installed at the first mounting hole 41, and the lens assembly 30 is installed at one end of the second mounting hole 42, so that the measurement laser signal emitted by the laser emitting device 20 is incident on the object to be diffusely reflected and returns The laser signal is received by the lens assembly 30.
  • the circuit board assembly 10 is fixed to the side of the mounting bracket 40 facing away from the emission direction of the laser emitting device 20, and the image sensor of the circuit board assembly 10 is located at the other end of the second mounting hole 42 and is opposed to the lens assembly 30, so that the lens The laser signal processed by the assembly 30 is received by the image sensor of the circuit board assembly 10.
  • the inventor found that the current lidar is prone to large measurement errors.
  • the inventor suspected that when the lidar was working, the mounting bracket was heated and expanded, which caused the circuit board assembly to deform, so the material of the mounting bracket was replaced with aluminum alloy, Kovar, Invar, etc., which have a smaller expansion coefficient.
  • the measurement error is not caused by the thermal expansion of the mounting bracket, but caused by the deformation of the circuit board assembly due to the heat generated by the image sensor.
  • the deviation distance of the circuit board assembly is 1 micrometer
  • the deviation distance of the measurement result calculated by the lidar is 40 cm. It can be seen that the deformation of the circuit board assembly seriously affects the measurement results of the lidar.
  • the embodiments of the present application provide a circuit board assembly.
  • the deformation of the circuit board assembly is reduced, so that the measurement error can be greatly reduced.
  • FIG. 2 is a schematic structural diagram of a circuit board assembly provided by an embodiment of the present application.
  • the circuit board assembly 10 includes: a circuit board 11, an image sensor 12 and a first fixing device 13.
  • the image sensor 12 is provided on the circuit board 11, the first fixing device 13 is provided in the main scanning direction of the image sensor 12, and the first fixing device 13 is used to fix the circuit board 11.
  • the circuit board 11 is a printed circuit board.
  • the circuit board 11 includes: a substrate, which may be prepared from the following materials: Cu alloys such as brass and bronze; stainless steel, specifically low alloy stainless steel; magnesium alloy; aluminum; aluminum alloy, specifically wrought aluminum alloy, Such as for example EN AW-6061, etc.
  • the substrate of the circuit board 11 can also be prepared by using materials such as glass, glass ceramics or ceramics.
  • the substrate of the circuit board 11 is made of a metal material, it can dissipate heat well and offset the thermal tension.
  • the circuit board 11 may further include: a circuit layer (not shown).
  • the number of circuit layers may be one or more.
  • the circuit board may be provided on the side of the substrate facing the image sensor 12, when the number of circuit boards is plural, the circuit board may be provided on the substrate The side facing the image sensor 12 and the side of the substrate facing away from the image sensor 12.
  • an equal number of circuit layers may be provided on both sides of the substrate.
  • the circuit layer is adhered to the substrate so as to be fixedly connected. By providing the circuit layer, the hardness and thickness of the circuit board 11 are increased, and the deformation of the circuit board 11 can be effectively reduced.
  • the image sensor 12 can be a charge coupled device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor (Complementary Metal-Oxide Semi-conductor, CMOS), which can convert the light on the photosensitive surface through the photoelectric conversion function of the photoelectric device The image is converted into an electrical signal in a proportional relationship with the light image.
  • the image sensor 12 may be provided on the substrate or circuit layer of the circuit board 11 by conductive connection such as welding or soldering. Of course, the image sensor 12 may also be connected to the circuit board 11 by any type of conductive connection, for example, a conductive adhesive , Conductive rubber, spring contacts, flexible printed circuit boards, bonding wires or plug-in connections (THT), etc., or a combination thereof.
  • the image sensor 12 can also be connected to the circuit board 11 in other ways. Supports are provided between the image sensor 12 and the circuit board 11, and the supports are respectively connected to the image sensor 12 and the circuit board 11, so that the image sensor 12 and the circuit board 11 are fixedly connected.
  • the supporting member may be made of the same material as the circuit board 11 to further reduce the thermal effect. Compared with the conductive connection method, the fixing effect of the connection method provided with the supporting member is better, so that the image sensor 12 can be stably fixed on the circuit board 11.
  • the shape of the image sensor 12 is generally a rectangle, the center of the rectangle is the center of the image sensor 12, and the sides of the rectangle are the edges of the image sensor 12.
  • the horizontal direction X is the main scanning direction of the image sensor 12
  • the vertical direction Y is the sub-scanning direction of the image sensor 12.
  • the first fixing device 13 is provided in the main scanning direction of the image sensor 12 for fixing the circuit board 11.
  • the first fixing device 13 is used to fix the circuit board 11 to the mounting bracket 40, and when the circuit board 11 is fixed to the mounting bracket 40, the circuit board 11
  • the side provided with the image sensor 12 faces the mounting bracket 40, the image sensor 12 and the second mounting hole 42 are positioned opposite, and the center of the image sensor 12 passes through the optical axis of the lens assembly 30 so that the received laser signal passes through the lens assembly 30 After being captured by the image sensor 12.
  • the first fixing device 13 includes a first fixing member 131 and a second fixing member 132 that are oppositely arranged.
  • the first fixing member 131 and the second fixing member 132 are provided in the main scanning direction of the image sensor 12, and the first fixing member 131 and the second fixing member 132 are respectively provided on the first and second sides of the image sensor 12 opposite to each other .
  • the relative settings are respectively set on the opposite (non-adjacent) sides of the image sensor. Taking the rectangular image sensor as an example, the left and right sides are the opposite sides of the set. Similarly, the upper and lower sides The sides are also opposite sides.
  • the distance L between the center of the first fixing member 131 and the first side edge of the image sensor 12 is greater than 0 and less than 2 cm, and the distance between the center of the second fixing member 132 and the second side edge of the image sensor 12 L is greater than 0 and less than 2 cm.
  • the distance L between the first fixing member 131 and the second fixing member 132 to the left and right edges of the image sensor 12, respectively, is 1 cm.
  • the distance L between the center of the first fixing member 131 and the first side edge of the image sensor 12 and the distance L between the center of the second fixing member 132 and the second side edge of the image sensor 12 may be the same or different.
  • the distance L between the center of the first fixing member 131 and the first side edge of the image sensor 12 and the distance L between the second fixing member 132 and the second side edge of the image sensor 12 are all 2.1 mm.
  • the distance L between the second fixing member 132 and the second side edge of the image sensor 12 may be greater than or equal to 2.1 mm, as long as the first fixing device 13 can be brought close to the image sensor 12.
  • the center of the first fixing member 131 and the center of the second fixing member 132 pass through the center of the image sensor 12, so that the first fixing member 131 and the second fixing member 132 can uniformly fix the circuit board 11, thereby Fix the image sensor 12 to prevent the side of the circuit board 11 from arching and tilting the image sensor 12.
  • the first The fixing device 13 is provided in the main scanning direction of the image sensor 12 and can effectively reduce measurement errors.
  • the distance between the target and the image sensor is estimated by calculating the center position of the area and the relative angle and distance between the known laser emitting device and the image sensor, thereby measuring the position of the object.
  • b and f are generally fixed values, and z is mainly affected by x. Therefore, when the circuit board is deformed in the horizontal direction, x will have a large error, resulting in a large calculated distance Of error.
  • the circuit board assembly 10 fixes the circuit board by the first fixing device 13 so that when the image sensor 12 generates heat, the deformation of the circuit board 11 due to heat is reduced, so that the positional deviation of the image sensor 12 is small, Furthermore, the measurement error can be reduced; moreover, fixing the first fixing device 13 in the main scanning direction of the image sensor 12 can effectively reduce the influence of the deformation of the circuit board 11 in the horizontal direction on the measurement result during geometric measurement, and The distance between the first fixing device 13 and the edge of the image sensor 12 is within 0-2 cm, which can effectively ensure that the measurement error is within a preset range.
  • the circuit board assembly 10 includes the first fixing member 131 and the second fixing member 132
  • the first fixing member 131 and the second fixing member 132 are both located in the image sensor 12 on the horizontal symmetry axis; in Comparative Examples 2-4, the first fixing member 131 and the second fixing member 132 are both located on the longitudinal symmetry axis of the image sensor 12.
  • the test results are shown in Table 1.
  • the circuit board assembly 10 in this embodiment can control the measurement error of the lidar 100 within a preset range, for example, the measurement error of the lidar 100 at 6 meters does not exceed 12 cm, which can Greatly reduce measurement error.
  • the reason for this embodiment is to define the distance between the first fixing member 131 and the second fixing member 132 to the edge of the image sensor 12 (the distance between the first fixing member 131 and the second fixing member 132 to the edge of the image sensor 12 are both greater than 0 is less than 2 cm), because if the distance between the first fixing member 131 and the second fixing member 132 to the edge of the image sensor 12 exceeds 2 cm, the measurement error will exceed the standard defined in this embodiment, and the comparison cannot be achieved. Good measurement results; and, when the distance between the first fixing member 131 and the second fixing member 132 to the edge of the image sensor 12 is 2.1 mm, a better measurement effect can be obtained, and at the same time, the wiring of the image sensor 12 is facilitated.
  • the reason why the present embodiment limits the installation direction of the first fixing member 131 and the second fixing member 132 (the first fixing member 131 and the second fixing member 132 are arranged on the horizontal symmetry axis of the image sensor 12) is because : Although the arrangement of the first fixing member 131 and the second fixing member 132 on the longitudinal symmetry axis of the image sensor 12 can also meet the standard, the arrangement of the first fixing member 131 and the second fixing member 132 is transverse to the image sensor 12 The effect on the axis of symmetry is better than that provided on the longitudinal axis of symmetry of the image sensor 12.
  • FIG. 4a is a schematic structural diagram of a circuit board assembly provided by an embodiment of the present application. As shown in FIG. 4a, the difference from the circuit board assembly 10 of FIG. 2 is that the first fixing device 13 further includes: a third fixing member 133 and a fourth fixing member 134.
  • the third fixing member 133 and the fourth fixing member 134 are provided in the main scanning direction of the image sensor 12, and the third fixing member 133 and the fourth fixing member 134 are respectively provided on the first side and the first Two sides. That is, the third fixing member 133 and the first fixing member 131 are located on the first side of the image sensor 12, and the fourth fixing member 134 and the second fixing member 132 are located on the second side of the image sensor 12.
  • the distance between the center of the third fixing member 133 and the first side edge of the image sensor 12 and the distance between the center of the fourth fixing member 134 and the second side edge of the image sensor 12 may or may not be the same.
  • the distance between the center of the third fixing member 133 and the first side edge of the image sensor 12 and the distance between the center of the fourth fixing member 134 and the second side edge of the image sensor 12 are both 2.1 mm.
  • the first fixing member 131, the second fixing member 132, the third fixing member 133, and the fourth fixing member 134 are evenly distributed on both sides of the image sensor 12, so that the first fixing device 13 can evenly fix the circuit
  • the board 11 thereby fixes the image sensor 12 to prevent the side of the circuit board 11 from arching and tilting the image sensor 12.
  • the fixing effect of the first fixing device 13 is better, thereby further reducing the measurement error.
  • two fixing members are provided on the left and right sides of the rectangular image sensor.
  • it is not limited to two fixing members, but can be on the left and right sides of the image sensor (that is, In the main scanning direction), a plurality of (more than 2) fixing members are relatively arranged, so as to achieve the same or better fixing effect.
  • FIG. 4b is a schematic structural diagram of a circuit board assembly provided by an embodiment of the present application.
  • the difference from the circuit board assembly 10 of FIG. 2 or FIG. 4a is that the circuit board assembly 10 further includes: a second fixing device 14, which is disposed in the sub-scanning direction of the image sensor 12. Among them, the main scanning direction is perpendicular to the sub-scanning direction.
  • the second fixing device 14 includes a fifth fixing member 141 and a sixth fixing member 142.
  • the fifth fixing member 141 and the sixth fixing member 142 are provided in the sub-scanning direction of the image sensor 12, and the fifth fixing member 141 and the sixth fixing member 142 are respectively provided on the third and fourth sides of the image sensor 12 opposite to each other .
  • the distance between the center of the fifth fixing member 141 and the third side edge of the image sensor 12 and the distance between the center of the sixth fixing member 142 and the fourth side edge of the image sensor 12 are greater than 0 and less than 2 cm,
  • the distance between the center of the fifth fixing member 141 and the center of the sixth fixing member 142 to the edge of the image sensor 12 is 1 cm.
  • the distance between the center of the fifth fixing member 141 and the third side edge of the image sensor 12 and the distance between the center of the sixth fixing member 142 and the fourth side edge of the image sensor 12 may be the same or different, in this embodiment
  • the distances from the center of the fifth fixing member 141 and the center of the sixth fixing member 142 to the edge of the image sensor 12 are the same, both of which are 2.1 mm.
  • the center of the fifth fixing member 141 and the center of the sixth fixing member 142 pass through the center of the image sensor 12, so that the fifth fixing member 141 and the sixth fixing member 142 can fix the circuit board 11 uniformly, thereby fixing
  • the image sensor 12 prevents the side of the circuit board 11 from arching and tilting the image sensor 12.
  • the first fixing device 13 includes only the first fixing member 131 and the second fixing member 132, and the connection line between the first fixing member 131 and the second fixing member 132 passes through the center of the image sensor 12, the center of the first fixing member 131
  • the line connecting the center of the second fixing member 132 and the center of the fifth fixing member 141 and the center of the sixth fixing member 142 may be perpendicular, so that the first fixing member 131, the second fixing member 132, and the fifth fixing member 141.
  • the sixth fixing member 142 forms a "cross shape", so that the fixing force around the image sensor 12 is more uniform and the effect is better.
  • the first fixing member 131 and the second fixing member 132 may be located on both sides of the horizontal symmetry axis of the image sensor 12, and the fifth fixing member 141 and the sixth fixing member 142 may be located on the image sensor 12.
  • connection of the first fixing member 131 and the second fixing member 132 is not perpendicular to the connection of the fifth fixing member 141 and the sixth fixing member 142, so that the first fixing member 131 and the second fixing member
  • the piece 132, the fifth fixing piece 141, and the sixth fixing piece 142 form a "cross-like shape" (a cross-like shape is a shape whose cross shape is similar to a cross shape, but the center line is not exactly a 90-degree vertical intersection, that is, the center line intersects There is a certain error in the angle, such as 5 degrees).
  • the first fixing device 13 and the second fixing device 14 may be various types of fixing devices, as long as the circuit board 11 can be fixed to the mounting bracket 40.
  • both the first fixing device 13 and the second fixing device 14 include screws.
  • the circuit board 11 and the mounting bracket 40 may be provided with screw holes correspondingly, so that the screws can be screwed, The circuit board 11 is fixed to the mounting bracket 40.
  • the first fixing device 13 and the second fixing device 14 may also be press-fitting fixing devices, riveting fixing devices, and the like.
  • the second fixing device 14 by providing the second fixing device 14, the horizontal and vertical directions of the image sensor 12 are locked, and the circuit board 11 is more stably fixed, so that when the image sensor 12 generates heat, the deformation of the circuit board 11 when heated is reduced , So that the position deviation of the image sensor 12 is small, and the measurement error can be greatly reduced.
  • FIG. 4d is a schematic structural diagram of a circuit board assembly provided by an embodiment of the present application. As shown in FIG. 4d, the difference from the circuit board assembly 10 of FIG. 2, FIG. 4a or FIG. 4b is that the circuit board assembly 10 further includes: a reinforcement rod 15. In this embodiment, the circuit board assembly 10 in FIG. 2 is exemplified.
  • the reinforcing rod 15 is made of a material with a certain hardness, such as a metal material, etc., so that the hardness of the reinforcing rod 15 is large, and it is not easy to deform.
  • the reinforcing rod 15 may be in the shape of a column or a long plate.
  • the reinforcing rod 15 is provided on the side of the circuit board 11 facing away from the image sensor 12.
  • the two ends of the reinforcing rod 15 are respectively connected to the first fixing member 131 and the first fixing member 13 of the first fixing device 13.
  • the two fixing members 132 are fixedly connected.
  • the fixed connection may be welding or integral molding and so on.
  • the reinforcing bar 15 is connected to the first fixing device 13 and is used to reinforce the first fixing device 13.
  • the image receiving device 200 works to cause the image sensor 12 to generate heat
  • the circuit board 11 tends to arch away from the mounting bracket 40, and by providing the reinforcing rod 15, the arch deformation of the circuit board 11 can be further reduced, thereby further reducing the image sensor 12 The position is shifted to further reduce measurement errors.
  • the circuit board assembly 10 (as shown in FIG. 2, FIG. 4a, FIG. 4b, FIG. 4c or FIG. 4d) in the above embodiments can be installed not only in the lidar, but also in other devices that need to use an image sensor (such as a mobile terminal Wait).
  • FIG. 5 is a schematic structural diagram of an image receiving device according to an embodiment of the present application.
  • the image receiving device 200 includes: a circuit board assembly 10.
  • the circuit board assembly 10 has the same structure as the above embodiment, and will not be repeated here.
  • the image receiving device 200 may further include: an objective lens 210 and an objective lens holder 220.
  • the objective lens 210 may include a lens barrel 211 and at least one objective lens 212 disposed in the lens barrel.
  • the objective lens 210 is used to receive an image and adjust the image.
  • the objective lens holder 220 is used to mount the objective lens 210, the circuit board assembly 10 is fixed on the objective lens holder 220, and the image sensor 12 on the circuit board assembly 10 corresponds to the objective lens 210, so that the image received by the objective lens 210 can be captured by the image sensor 12 receive.
  • the image sensor 12 is stably fixed to the objective lens holder 220, so that when the image receiving device 200 operates to heat the image sensor 12, the circuit can be reduced
  • the plate 11 is deformed by heat, so that the positional deviation of the image sensor 12 is small, so that the image receiving device 200 can receive an accurate image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种电路板组件(10)、图像接收装置(200)和激光雷达(100)。其中,电路板组件(10)包括电路板(11)、图像传感器(12)和第一固定装置(13);图像传感器(12)设于电路板(11)上;第一固定装置(13)用于使电路板(11)固定,第一固定装置(13)包括第一固定件(131)和第二固定件(132),第一固定件(131)、第二固定件(132)设于图像传感器(12)的主扫描方向上,并分别设于图像传感器(12)相对设置的第一侧和第二侧,其中,第一固定件(131)与图像传感器(12)第一侧边缘的距离小于2厘米,且第二固定件(132)到图像传感器(12)第二侧边缘的距离小于2厘米。通过以上方式,能够大大地减少测量误差。

Description

电路板组件、图像接收装置和激光雷达 技术领域
本申请实施例涉及信息技术领域,尤其涉及一种电路板组件、图像接收装置和激光雷达。
背景技术
随着元器件的小型化、成本低廉化,空间定位技术越来越普及,例如,家用机器人、无人机、无人驾驶等自主导航领域。在空间定位技术中,光学定位技术因其具有精度高、响应快的特点,被广泛应用。
一般地,基于几何测量(如三角测量、结构光测量)的光学测量模块包括:激光发射装置和激光接收装置,通过激光发射装置发出激光,经待测物反射形成目标反射光,被激光接收装置接收,以进行测量。
本申请的发明人在实现本申请实施例的过程中,发现:目前的光学测量模块容易产生测量误差。
发明内容
本申请实施例提供一种电路板组件、图像接收装置和激光雷达,能够大大地减少测量误差。
本申请实施例解决其技术问题提供以下技术方案:
一种电路板组件,包括:电路板、图像传感器和第一固定装置;
所述图像传感器设于所述电路板上;
所述第一固定装置用于使所述电路板固定,所述第一固定装置包括第一固定件和第二固定件,所述第一固定件、所述第二固定件设于所述图像传感器的主扫描方向上,并分别设于所述图像传感器相对设置的第一侧和第二侧,其中,所述第一固定件与所述图像传感器第一侧边缘的距离小于2厘米,且所述第二固定件与所述图像传感器第二侧边缘的距离小于2厘米。
本申请实施例解决其技术问题还提供以下技术方案:
一种图像接收装置,包括上述的电路板组件。
本申请实施例解决其技术问题还提供以下技术方案:
一种激光雷达,包括:安装支架、激光发射装置以及上述的电路板组件;
所述电路板组件固定于所述安装支架,所述激光发射装置安设于所述安装支架,所述激光发射装置用于发出激光,经待测物反射后被所述电路板组件的图像传感器接收。
与现有技术相比较,在本申请实施例提供的电路板组件,通过第一固定装置使电路板固定,以使得当图像传感器发热时,减少电路板受热的形变,从而使图像传感器的位置偏移较小,进而能够减小测量误差;而且,使第一固定装置固定在图像传感器的主扫描方向上,能够有效减小在几何测量时电路板水平方向上的形变对测量结果的误差影响,并且,使第一固定装置到图像传感器的边缘的距离在2厘米内,能够有效保证测量误差在预设范围内。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种激光雷达的结构示意图;
图2为本申请实施例提供的一种电路板组件的结构示意图;
图3为图2所示的电路板组件的图像传感器的结构示意图;
图4a至图4d为根据本申请不同的一些实施例示出的一种电路板组件的结构示意图;
图5为本申请实施例提供的一种图像接收装置的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。 当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,例如严格垂直定义为90度,而在一定误差范围(例如85度-95度)内的相对垂直也属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
一般地,基于几何测量的光学测量模块包括:激光发射装置和激光接收装置,通过激光发射装置发出激光,经待测物反射形成目标反射光,被激光接收装置接收,从而进行测量。但是,目前的光学测量模块容易产生测量误差。
基于此,本申请实施例提供一种电路板组件、图像接收装置和激光雷达,能够大大地减少测量误差。
具体地,下面将通过实施例对光源固定装置进行阐述。
请参阅图1,为本申请实施例提供的一种激光雷达的结构示意图。如图1所示,激光雷达100包括:电路板组件10、激光发射装置20、镜头组件30和安装支架40。
其中,激光发射装置20可以为一个或多个激光器,例如TO封装或贴片封装的半导体激光发射器。激光发射装置20用于发射测量激光信号。
其中,镜头组件30可以为一个或多个光学器件组成,能够对接收 到的激光信号进行调整。
其中,安装支架40设有第一安装孔41和第二安装孔42。第一安装孔41和第二安装孔42开设于安装支架40的同一侧。激光发射装置20安设于第一安装孔41,镜头组件30安设于第二安装孔42的一端,以使得激光发射装置20发射的测量激光信号,入射到待测物上发生漫反射,返回激光信号被镜头组件30接收。电路板组件10固定于安装支架40背向激光发射装置20的发射方向的一侧,并且,电路板组件10的图像传感器位于第二安装孔42的另一端并与镜头组件30相对,从而使得镜头组件30处理后的激光信号被电路板组件10的图像传感器接收。
在本实施例中,发明人在实现实施例的过程中,发现:目前的激光雷达容易产生较大测量误差。一开始,发明人怀疑是在激光雷达工作时,安装支架受热膨胀,导致电路板组件变形,于是将安装支架的材料替换成膨胀系数较小的铝合金、可伐合金、因瓦合金等等,经过大量的实验后发现,测量结果仍然存在较大的误差。因此,推定测量误差不是由于安装支架的受热膨胀造成的,而是由于图像传感器的发热使电路板组件变形造成的。根据实验结果,当电路板组件偏差的距离为1微米时,激光雷达计算得到的测量结果偏差的距离为40厘米。可见,电路板组件的变形严重影响着激光雷达的测量结果。
基于此,本申请实施例提供一种电路板组件,通过改变电路板组件的安装固定方式,以减少电路板组件的形变,从而能够大大地减少测量误差。
请参阅图2,为本申请实施例提供的一种电路板组件的结构示意图。如图2所示,电路板组件10包括:电路板11、图像传感器12和第一固定装置13。图像传感器12设于电路板11,第一固定装置13设于图像传感器12的主扫描方向上,第一固定装置13用于使电路板11固定。
电路板11为印刷电路板。电路板11包括:基板,基板可以为以下材料制备而成:Cu合金,诸如黄铜和青铜;不锈钢,具体为低合金不锈钢;镁合金;铝;铝合金,具体为锻造(wrought)铝合金,诸如例如EN  AW-6061,等等。其中,电路板11的基板还可以利用玻璃、玻璃陶瓷或陶瓷等材料制备而成。当电路板11的基板由金属材料制成时,能够很好地耗散热量,抵消热张力。
当然,在一些其他实施例中,电路板11还可以包括:电路层(图未示)。电路层的数量可以为一个或多个,当电路板的数量为一个时,电路板可以设于基板朝向图像传感器12的一侧,当电路板的数量为多个时,电路板可以设于基板朝向图像传感器12的一侧和基板背向图像传感器12的一侧。可选地,基板两侧可以设置相等数量的电路层。其中,电路层与基板进行粘合,从而进行固定连接。通过设置电路层,增加电路板11的硬度和厚度,能够有效减少电路板11的形变。
图像传感器12可以为电荷藕合器件(Charge Coupled Device,CCD)或互补型金属氧化物半导体(Complementary Metal-Oxide Semi-conductor,CMOS),能够通过光电器件的光电转换功能,将感光面上的光像转换为与光像成相应比例关系的电信号。图像传感器12可以通过熔接、焊接等导电连接方式设置在电路板11的基板或电路层上,当然,图像传感器12还可以以任何类型的导电连接与电路板11进行连接,例如,导电粘合剂、导电橡胶、弹簧触点、柔性印刷电路板、接合线或插入式连接(THT)等、或其组合。
当然,在一些其他实施例中,图像传感器12还可以其他方式与电路板11进行连接。图像传感器12与电路板11之间设置支撑件,支撑件分别与图像传感器12、电路板11连接,从而使图像传感器12与电路板11进行固定连接。其中,支撑件可以由与电路板11相同的材料制备而成,以进一步减少热效应。相比导电连接方式,设置支撑件的连接方式的固定效果更好,从而使得图像传感器12能稳定地固定在电路板11上。
需要说明的是,由于实际使用需求,图像传感器12的形状一般为矩形,则矩形中心为图像传感器12的中心,矩形的边为图像传感器12的边缘。其中,在本实施例中,如图3所示,当图像传感器12正常放置时,水平方向X为图像传感器12的主扫描方向,竖直方向Y为图像传感器12的副扫描方向。
第一固定装置13设置于图像传感器12的主扫描方向上,用于使电路板11固定。在本实施例中,当电路板组件10用于激光雷达100时,第一固定装置13用于使电路板11固定于安装支架40,并且,当电路板11固定于安装支架40时,电路板11设有图像传感器12的一面朝向安装支架40,图像传感器12与第二安装孔42位置相对,而且,图像传感器12的中心经过镜头组件30的光轴,以使得接收的激光信号经过镜头组件30后被图像传感器12捕获。
其中,在本实施例中,第一固定装置13包括:相对设置的第一固定件131和第二固定件132。第一固定件131、第二固定件132设于图像传感器12的主扫描方向上,并且第一固定件131、第二固定件132分别设于图像传感器12相对设置的第一侧和第二侧。需要说明的是,相对设置即分别设置在图像传感器的相对(非相邻)两侧,以矩形图像传感器为例,左侧和右侧即为相对设置的两侧,同理,上侧和下侧也为相对设置的两侧。
其中,在本实施例中,第一固定件131的中心与图像传感器12第一侧边缘的距离L大于0且小于2厘米,第二固定件132的中心与图像传感器12第二侧边缘的距离L大于0且小于2厘米,例如,第一固定件131、第二固定件132分别到图像传感器12的左侧边缘和右侧边缘的距离L均为1厘米。
可选地,第一固定件131的中心与图像传感器12第一侧边缘的距离L、第二固定件132的中心与图像传感器12第二侧边缘的距离L可以相同也可以不相同,在本实施例中,第一固定件131的中心与图像传感器12第一侧边缘的距离L、第二固定件132与图像传感器12第二侧边缘的距离L相同,均为2.1毫米。当然,在其他实施例中,当电路板11的材料、硬度、厚度,或者安装支架40的材料、硬度、厚度等情况不相同时,第一固定件131与图像传感器12第一侧边缘的距离L、第二固定件132与图像传感器12第二侧边缘的距离L可以大于或者等于2.1毫米,只要能够使第一固定装置13靠近图像传感器12即可。
可选地,第一固定件131的中心与第二固定件132的中心连线经过 图像传感器12的中心,使得第一固定件131、第二固定件132能够均匀地固定住电路板11,从而固定住图像传感器12,避免电路板11一侧拱起而使得图像传感器12倾斜。
需要说明的是,在本实施例中,当电路板组件10用于激光雷达100时,在几何测量时,电路板11水平方向上的形变对测量结果的误差影响较大,因此,将第一固定装置13设置于图像传感器12的主扫描方向上,能够有效减少测量误差。例如在三角测量中,通过计算区域的中心位置以及已知的激光发射装置和图像传感器相对角度及间距,从而推算目标到图像传感器的距离,从而测量物体的位置。三角测量的基本测量公式为:z=b*f/x,其中,b表示激光发射装置与图像传感器的间距,f为图像传感器前的镜头组件的焦距,x为求得反射光投影在图像传感器上列坐标的重心位置,z为计算得到目标到图像传感器的距离。从公式上看,b、f一般为定值,z主要受x的影响,因此,当电路板在水平方向上有形变时,x会存在较大的误差,从而导致计算的距离也存在较大的误差。
在本实施例中,电路板组件10通过第一固定装置13使电路板固定,以使得当图像传感器12发热时,减少电路板11受热的形变,从而使图像传感器12的位置偏移较小,进而能够减小测量误差;而且,使第一固定装置13固定在图像传感器12的主扫描方向上,能够有效减小在几何测量时电路板11水平方向上的形变对测量结果的误差影响,并且,使第一固定装置13到图像传感器12的边缘的距离在0-2厘米内,能够有效保证测量误差在预设范围内。
如图2所示,当电路板组件10包括第一固定件131和第二固定件132,在示例1-9和对比例1中,第一固定件131和第二固定件132均位于图像传感器12的横对称轴上;在对比例2-4中,第一固定件131和第二固定件132均位于图像传感器12的纵对称轴上。
假设第一固定件131与第二固定件132到图像传感器12的边缘的距离均为X,测量误差为Y,在6米处设置测试物体,使用激光雷达100进行测量(温度为25℃,湿度为60%),测试结果见表1。
表1
Figure PCTCN2019071001-appb-000001
由表1可知,根据实验结果,本实施例中的电路板组件10能够使激光雷达100的测量误差控制在预设范围以内,例如,激光雷达100在6米处的测量误差不超过12cm,能够大大地减少测量误差。
本实施例之所以对第一固定件131与第二固定件132到图像传感器12的边缘的距离做出限定(第一固定件131与第二固定件132到图像传感器12的边缘的距离均大于0小于2厘米),原因在于:如果第一固定件131与第二固定件132到图像传感器12的边缘的距离超出2厘米,会使得测量误差超出本实施例中限定的标准,从而不能达到较好的测量结果;并且,当第一固定件131与第二固定件132到图像传感器12的边缘的距离为2.1毫米时,能够取得较佳的测量效果,同时方便图像传感器12的走线。
本实施例之所以对第一固定件131与第二固定件132的设置方向做 出限定(第一固定件131与第二固定件132的设置在图像传感器12的横对称轴上),原因在于:虽然第一固定件131与第二固定件132的设置在图像传感器12的纵对称轴上也能符合标准,但是,第一固定件131与第二固定件132的设置在图像传感器12的横对称轴上比设置在图像传感器12的纵对称轴上取得的效果更好。
请参阅图4a,为本申请实施例提供的一种电路板组件的结构示意图。如图4a所示,与图2的电路板组件10的区别在于,第一固定装置13还包括:第三固定件133和第四固定件134。
其中,第三固定件133、第四固定件134设于图像传感器12的主扫描方向上,并且第三固定件133、第四固定件134分别设于图像传感器12相对设置的第一侧和第二侧。即,第三固定件133、第一固定件131位于图像传感器12的第一侧,第四固定件134、第二固定件132位于图像传感器12的第二侧。
可选地,第三固定件133的中心与图像传感器12第一侧边缘的距离、第四固定件134的中心与图像传感器12第二侧边缘的距离可以相同也可以不相同,在本实施例中,第三固定件133的中心与图像传感器12第一侧边缘的距离、第四固定件134的中心与图像传感器12第二侧边缘的距离相同,均为2.1毫米。
可选地,第一固定件131、第二固定件132、第三固定件133、第四固定件134分别均匀地分布在图像传感器12的两侧,使得第一固定装置13能够均匀地固定电路板11,从而固定图像传感器12,避免电路板11一侧拱起而使得图像传感器12倾斜。
在本实施例中,通过设置第三固定件133、第四固定件134,使第一固定装置13的固定效果更好,从而进一步减少了测量误差。
需要说明的是,本实施例中在矩形图像传感器的左右两侧分别提供了2个固定件,在实际的电路板安装结构上,不仅限于2个固定件,可在图像传感器左右两侧(即主扫描方向上)分别相对设置多个(大于2)固定件,从而达到相同或更好的固定效果。
请参阅图4b,为本申请实施例提供的一种电路板组件的结构示意图。如图4b所示,与图2或图4a的电路板组件10的区别在于,电路板组件10还包括:第二固定装置14,第二固定装置14设于图像传感器12的副扫描方向上。其中,主扫描方向与副扫描方向垂直。
其中,第二固定装置14包括:第五固定件141和第六固定件142。第五固定件141、第六固定件142设于图像传感器12的副扫描方向上,并且第五固定件141、第六固定件142分别设于图像传感器12相对设置的第三侧和第四侧。
其中,在本实施例中,第五固定件141的中心与图像传感器12第三侧边缘的距离、第六固定件142的中心与图像传感器12第四侧边缘的距离大于0且小于2厘米,例如,第五固定件141的中心、第六固定件142的中心到图像传感器12的边缘的距离均为1厘米。
可选地,第五固定件141的中心与图像传感器12第三侧边缘的距离、第六固定件142的中心与图像传感器12第四侧边缘距离可以相同也可以不相同,在本实施例中,第五固定件141的中心、第六固定件142的中心到图像传感器12边缘的距离相同,均为2.1毫米。
可选地,第五固定件141的中心和第六固定件142的中心连线经过图像传感器12的中心,使得第五固定件141、第六固定件142能够均匀地固定电路板11,从而固定图像传感器12,避免电路板11一侧拱起而使得图像传感器12倾斜。当第一固定装置13只包括第一固定件131和第二固定件132时,且第一固定件131、第二固定件132的连线经过图像传感器12的中心,第一固定件131的中心、第二固定件132的中心的连线与第五固定件141的中心、第六固定件142的中心的连线可以垂直,使得第一固定件131、第二固定件132、第五固定件141、第六固定件142构成“十字形”,从而使得图像传感器12四周的固定作用力更均匀,效果更好。
可选地,如图4c所示,第一固定件131、第二固定件132可以位于图像传感器12的横对称轴的两侧,第五固定件141、第六固定件142可 以位于图像传感器12的纵对称轴的两侧,第一固定件131、第二固定件132的连线与第五固定件141、第六固定件142的连线不垂直,使得第一固定件131、第二固定件132、第五固定件141、第六固定件142构成“类十字形”(类十字形即为其形状类似为十字形但中心连线并非完全是90度垂直相交,即中心连线的相交夹角存在一定误差,如5度)。
其中,第一固定装置13和第二固定装置14可以为各种类型的固定装置,只要能够使电路板11固定于安装支架40即可。可选地,第一固定装置13、第二固定装置14均包括螺钉。例如,第一固定件131、第二固定件132、第五固定件141、第六固定件142均为螺钉,则电路板11和安装支架40可相应设置螺纹孔,使得螺钉能够进行螺纹连接,以使电路板11固定于安装支架40。当然,在一些其他实施例中,第一固定装置13和第二固定装置14还可以为压入固定装置、铆接固定装置等等。
在本实施例中,通过设置第二固定装置14,使得图像传感器12的横向和纵向均被锁附,更稳定地固定电路板11,从而当图像传感器12发热时,减少电路板11受热的形变,从而使图像传感器12的位置偏移较小,进而能够大大地减少测量误差。
请参阅图4d,为本申请实施例提供的一种电路板组件的结构示意图。如图4d所示,与图2、图4a或图4b的电路板组件10的区别在于,电路板组件10还包括:加固杆15。在本实施例中,基于图2中的电路板组件10举例说明。
其中,加固杆15由具有一定硬度的材料制备而成,例如金属材料等等,以使得加固杆15的硬度大,不容易发生形变。加固杆15可以为柱状或长板状形状,加固杆15设于电路板11背向图像传感器12的一侧,加固杆15的两端分别与第一固定装置13的第一固定件131和第二固定件132固定连接。例如,当第一固定件131和第二固定件132均为螺钉时,加固杆15的两端分别固定连接两个螺钉头。其中,固定连接可以为焊接或者一体成型等等。
在本实施例中,加固杆15与第一固定装置13连接,用于加固第一固定装置13。当图像接收装置200工作使图像传感器12发热时,电路板11往往向远离安装支架40的方向拱起,通过设置加固杆15,能够进一步减少电路板11的拱起变形,从而进一步减少图像传感器12的位置偏移,进一步减少测量误差。
上述实施例中的电路板组件10(如图2、图4a、图4b、图4c或图4d)不仅可以设置在激光雷达中,还可以应用于其他需要使用图像传感器的装置中(例如移动终端等)。
请参阅图5,为本申请实施例提供的一种图像接收装置的结构示意图。如图5所示,图像接收装置200包括:电路板组件10。
其中,电路板组件10与上述实施例的结构相同,此处不再赘述。
其中,图像接收装置200还可以包括:物镜210、物镜支架220。物镜210可以包括镜筒211和设置在镜筒内的至少一个物镜透镜212,物镜210用于接收图像,并对图像进行调整。物镜支架220用于安装物镜210,电路板组件10固定于物镜支架220上,并且使电路板组件10上的图像传感器12与物镜210相对应,以使物镜210接收的图像能够被图像传感器12所接收。
在本实施例中,通过在图像接收装置200设置过电路板组件10,使图像传感器12稳定地固定于物镜支架220上,以使得当图像接收装置200工作使图像传感器12发热时,能够减少电路板11受热的形变,从而使图像传感器12的位置偏移较小,从而使图像接收装置200能够接收到准确的图像。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种电路板组件,其特征在于,包括:电路板、图像传感器和第一固定装置;
    所述图像传感器设于所述电路板上;
    所述第一固定装置用于使所述电路板固定,所述第一固定装置包括第一固定件和第二固定件,所述第一固定件、所述第二固定件设于所述图像传感器的主扫描方向上,并分别设于所述图像传感器相对设置的第一侧和第二侧,其中,所述第一固定件与所述图像传感器第一侧边缘的距离小于2厘米,且所述第二固定件与所述图像传感器第二侧边缘的距离小于2厘米。
  2. 根据权利要求1所述的电路板组件,其特征在于,所述第一固定件的中心与所述第二固定件的中心连线经过所述图像传感器的中心。
  3. 根据权利要求1所述的电路板组件,其特征在于,所述第一固定件与所述图像传感器第一侧边缘的距离为2.1毫米,且所述第二固定件与所述图像传感器第二侧边缘的距离为2.1毫米。
  4. 根据权利要求1所述的电路板组件,其特征在于,所述第一固定装置还包括:第三固定件和第四固定件;
    所述第三固定件、所述第四固定件设于所述图像传感器的主扫描方向上,并且所述第三固定件、所述第四固定件分别设于所述图像传感器相对设置的第一侧和第二侧。
  5. 根据权利要求1所述的电路板组件,其特征在于,所述固定装置还包括:加固杆;
    所述加固杆设于所述电路板背向所述图像传感器的一侧,所述加固杆分别与所述第一固定件、所述第二固定件固定连接,所述加固杆用于加固所述第一固定装置。
  6. 根据权利要求1-5任一项所述的电路板组件,其特征在于,所述固定装置还包括:第二固定装置;
    所述第二固定装置设于所述图像传感器的副扫描方向上。
  7. 根据权利要求6所述的电路板组件,其特征在于,所述第二固定装置包括:第五固定件和第六固定件;
    所述第五固定件、所述第六固定件设于所述图像传感器的副扫描方向上,并且所述第五固定件、所述第六固定件分别设于所述图像传感器的相对设置的第三侧和第四侧。
  8. 根据权利要求7所述的电路板组件,其特征在于,所述第五固定件的中心与所述第六固定件的中心连线经过所述图像传感器的中心。
  9. 根据权利要求8所述的电路板组件,其特征在于,所述第五固定件的中心与所述第六固定件的中心连线和所述第一固定件的中心与所述第二固定件的中心连线互相垂直。
  10. 根据权利要求7所述的电路板组件,其特征在于,所述第五固定件与所述图像传感器第三侧边缘的距离小于2厘米,且所述第六固定件与所述图像传感器第四侧边缘的距离小于2厘米。
  11. 根据权利要求10所述的电路板组件,其特征在于,所述第五固定件与所述图像传感器第三侧边缘的距离为2.1毫米,且所述第六固定件与所述图像传感器的边缘第四侧距离为2.1毫米。
  12. 根据权利要求6所述的电路板组件,其特征在于,所述第一固定装置、所述第二固定装置均包括螺钉。
  13. 一种图像接收装置,其特征在于,包括权利要求1-12任一项所 述的电路板组件。
  14. 一种激光雷达,其特征在于,包括:安装支架、激光发射装置以及如权利要求1-12任一项所述的电路板组件;
    所述电路板组件固定于所述安装支架,所述激光发射装置安设于所述安装支架,所述激光发射装置用于发出激光,经待测物反射后被所述电路板组件的图像传感器接收。
  15. 根据权利要求14所述的激光雷达,其特征在于,所述激光雷达还包括:镜头组件;
    所述镜头组件安设于所述安装支架,所述激光发射装置用于发出激光,经所述待测物反射后经过所述镜头组件,被所述图像传感器接收。
PCT/CN2019/071001 2019-01-09 2019-01-09 电路板组件、图像接收装置和激光雷达 WO2020142934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/071001 WO2020142934A1 (zh) 2019-01-09 2019-01-09 电路板组件、图像接收装置和激光雷达
JP2021600088U JP3235652U (ja) 2019-01-09 2019-01-09 回路板アセンブリー、画像受信装置及びレーザーレーダー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071001 WO2020142934A1 (zh) 2019-01-09 2019-01-09 电路板组件、图像接收装置和激光雷达

Publications (1)

Publication Number Publication Date
WO2020142934A1 true WO2020142934A1 (zh) 2020-07-16

Family

ID=71520632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071001 WO2020142934A1 (zh) 2019-01-09 2019-01-09 电路板组件、图像接收装置和激光雷达

Country Status (2)

Country Link
JP (1) JP3235652U (zh)
WO (1) WO2020142934A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105174A1 (en) * 2002-12-02 2004-06-03 Chien-Liang Yeh Fine-tuning structure of sensing element
CN102129150A (zh) * 2010-01-15 2011-07-20 鸿富锦精密工业(深圳)有限公司 可共用两类传感器的影像设备
CN202150457U (zh) * 2011-07-14 2012-02-22 杭州海康威视数字技术股份有限公司 一种固定电荷耦合元件的组件
US20150124098A1 (en) * 2013-11-07 2015-05-07 Magna Electronics Inc. Camera for vehicle vision system
CN206479691U (zh) * 2016-12-16 2017-09-08 深圳乐行天下科技有限公司 激光传感器基座、激光传感器和激光测距雷达
CN207665054U (zh) * 2017-09-20 2018-07-27 深圳英飞拓科技股份有限公司 枪机摄像头
CN208174833U (zh) * 2018-06-04 2018-11-30 杭州海康机器人技术有限公司 一种相机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105174A1 (en) * 2002-12-02 2004-06-03 Chien-Liang Yeh Fine-tuning structure of sensing element
CN102129150A (zh) * 2010-01-15 2011-07-20 鸿富锦精密工业(深圳)有限公司 可共用两类传感器的影像设备
CN202150457U (zh) * 2011-07-14 2012-02-22 杭州海康威视数字技术股份有限公司 一种固定电荷耦合元件的组件
US20150124098A1 (en) * 2013-11-07 2015-05-07 Magna Electronics Inc. Camera for vehicle vision system
CN206479691U (zh) * 2016-12-16 2017-09-08 深圳乐行天下科技有限公司 激光传感器基座、激光传感器和激光测距雷达
CN207665054U (zh) * 2017-09-20 2018-07-27 深圳英飞拓科技股份有限公司 枪机摄像头
CN208174833U (zh) * 2018-06-04 2018-11-30 杭州海康机器人技术有限公司 一种相机

Also Published As

Publication number Publication date
JP3235652U (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
WO2018121009A1 (zh) 多线激光雷达和多线激光雷达控制方法
US9888157B2 (en) Lens mounting mechanism, lens mounting method, and image pickup device
JP6636918B2 (ja) 共通基板を用いた測距カメラ
JP4510930B2 (ja) 撮像装置及び半導体回路素子
US20110170086A1 (en) Ranging device and ranging module and image-capturing device using the ranging device or the ranging module
WO2020135802A1 (zh) 一种激光测量模组和激光雷达
CN105627933B (zh) 测距模组、三维扫描系统以及测距方法
CN113196739B (zh) 光学系统及其制造方法
US20240170466A1 (en) Optical navigation module performing lateral detection
US20180321575A1 (en) Optical fixing device, light source device, and projection equipment
TW201837438A (zh) 3d成像光電模組
WO2020142934A1 (zh) 电路板组件、图像接收装置和激光雷达
EP2538172B1 (en) Method for adjusting optical displacement sensor and method for manufacturing optical displacement sensor
TW201708863A (zh) 鏡頭調焦方法與光學模組
JP5350906B2 (ja) 光学指向特性測定装置
US20230069195A1 (en) Camera module manufacturing device
CN209861277U (zh) 电路板组件、图像接收装置和激光雷达
US10585335B1 (en) Camera module
WO2017202384A1 (zh) 激光测距装置及其感光芯片的安装方法
WO2018161387A1 (zh) 用于三维成像的多镜头合成转接件组件及相机
CN116067305A (zh) 一种结构光测量系统和测量方法
CN213843524U (zh) 光学测量模块、激光雷达和移动机器人
WO2019080344A1 (zh) 一种光组件耦合装置及其使用方法
WO2021206027A1 (ja) 撮像装置
US10446501B2 (en) Semiconductor device, method of positioning semiconductor device, and positioning apparatus for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908250

Country of ref document: EP

Kind code of ref document: A1