WO2020142869A1 - 一种供电控制电路、供电系统及可移动平台 - Google Patents

一种供电控制电路、供电系统及可移动平台 Download PDF

Info

Publication number
WO2020142869A1
WO2020142869A1 PCT/CN2019/070635 CN2019070635W WO2020142869A1 WO 2020142869 A1 WO2020142869 A1 WO 2020142869A1 CN 2019070635 W CN2019070635 W CN 2019070635W WO 2020142869 A1 WO2020142869 A1 WO 2020142869A1
Authority
WO
WIPO (PCT)
Prior art keywords
control circuit
radar
circuit
power supply
current limiting
Prior art date
Application number
PCT/CN2019/070635
Other languages
English (en)
French (fr)
Inventor
陆龙
龙承辉
边亚斌
刘祥
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/070635 priority Critical patent/WO2020142869A1/zh
Priority to CN201980005636.6A priority patent/CN111670525B/zh
Publication of WO2020142869A1 publication Critical patent/WO2020142869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current

Definitions

  • the invention relates to the technical field of circuits, in particular to a power supply control circuit.
  • a protection circuit is usually added to the power supply system.
  • some modules in the radar have normal voltage or current fluctuations at different stages. For example, there is a large difference between the current at startup and the current during normal operation.
  • the protection circuit cannot distinguish between normal fluctuations or abnormal conditions, and all are protected. The action will make the radar unable to start normally when the normal voltage or current fluctuates.
  • Embodiments of the present invention provide a power supply control circuit, a power supply system, and a movable platform to solve the problem that the radar cannot start normally while protecting the power supply system.
  • an embodiment of the present invention provides a power supply control circuit, which is connected between a power supply circuit and a radar, and is used to control power supply to the radar.
  • the circuit includes:
  • a bypass control circuit connected between the power supply circuit and the radar, for enabling the radar to start normally
  • a current limiting control circuit is connected in parallel with the bypass control circuit to disconnect the power supply circuit from the radar when the radar is abnormal.
  • an embodiment of the present invention provides a power supply system.
  • the system includes:
  • Power circuit used to provide power
  • a power supply control circuit connected between the power supply circuit and the radar, is used to control power supply to the radar; wherein, the power supply control circuit includes:
  • a bypass control circuit connected between the power supply circuit and the radar, for enabling the radar to start normally
  • a current limiting control circuit is connected in parallel with the bypass control circuit to disconnect the power supply circuit from the radar when the radar is abnormal.
  • the present invention provides a mobile platform, including:
  • a power system is used to provide power to the movable platform.
  • the embodiment of the present invention connects the bypass control circuit and the current limiting control circuit in parallel, which can avoid the problem that the radar cannot start normally due to the excessive startup current during the radar startup process, and can also ensure that the radar power supply system is abnormal when a short circuit occurs. protection.
  • the embodiments of the present invention ensure the smooth start-up and operation of the radar, which is beneficial to improve the reliability of the radar.
  • FIG. 1 is a schematic block diagram of a power supply system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a power supply control circuit provided by an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of an example of a power supply control circuit provided by an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a distance measuring device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a distance measuring device provided by an embodiment of the present invention using a coaxial optical path.
  • a protection circuit may be added to the power supply system to prevent the power supply system from having abnormal conditions such as overvoltage, overcurrent, undervoltage, or undercurrent.
  • the current limiting control circuit is used for protection. When the current input by the power supply circuit to the current limiting control circuit exceeds the current threshold of the current limiting control circuit, the current limiting control circuit responds immediately, and disconnects the power supply circuit for overcurrent protection.
  • the current limit control circuit automatically enters the protection mode, that is, disconnect the power circuit, thereby disconnecting the power circuit and the radar to achieve power supply System protection.
  • the current limiting control circuit may cause some modules of the radar to fail to start normally.
  • FIG. 1 is a schematic frame diagram of a power supply system provided by an embodiment of the present invention.
  • the power supply system 10 includes:
  • the power circuit 12 is used to provide power to the radar 13;
  • the power supply control circuit 11 is connected between the power supply circuit 12 and the radar 13 and controls the power supply to the radar 13.
  • the power supply control circuit in the embodiment of the present invention includes a current limit control circuit and a bypass control circuit.
  • the bypass control circuit is connected in parallel with the current limit control circuit.
  • the current-limiting control circuit is in the on-state and the bypass control circuit is in the off-state.
  • the current-limiting control circuit protects the power supply system when the radar is abnormal; after confirming that the radar is normally powered on The radar starts to start.
  • the bypass control circuit is switched to the on state, the current limiting control circuit is switched to the off state, and the starting current is input to the radar through the bypass control circuit to ensure the radar
  • the normal start of the radar after the radar starts normally, the radar enters the normal working state, the current required by the radar gradually decreases and stabilizes, the current limiting control circuit is switched to the on state, and the bypass control circuit Switching to the off state, the current limiting control circuit is used to protect the power supply system.
  • the conducting state of the current limiting control circuit and the bypass control current includes that the current limiting control circuit and the bypass control current are in an enabled state.
  • the current limiting control circuit may include a current limiting protection chip.
  • the current limiting protection chip may be an electronic fuse with an integrated short-circuit protection function; the current limiting control circuit may have protection functions such as overcurrent, overvoltage, and undervoltage to protect the power supply system.
  • the electronic fuse with integrated short-circuit protection function may be reversible, that is to say, when an abnormal situation occurs, the electronic fuse may be automatically or manually reset after being disconnected.
  • the above-mentioned current-limiting protection chip and electronic fuse with integrated short-circuit protection function are only examples of the current-limiting control circuit.
  • the current-limiting control circuit may also be implemented in other ways, such as a controllable switch, etc.; It is understood that the current limit control circuit includes any implementation manner that can realize the disconnection of the circuit when the current in the circuit exceeds the threshold, and is not limited herein.
  • the radar includes laser radar, millimeter wave radar, and ultrasonic radar.
  • FIG. 2 is a schematic frame diagram of a power supply control circuit according to an embodiment of the present invention.
  • the power supply control circuit 20 is connected between the power supply circuit 23 and the radar 24, and is used to control the power supply to the radar 24.
  • the power supply control circuit 20 may include:
  • the bypass control circuit 21 is connected between the power circuit 23 and the radar 24, and is used to start the radar 24 normally;
  • a current limit control circuit 22 is connected in parallel with the bypass control circuit 21 and is used to disconnect the power supply circuit 23 and the radar 24 when the radar 24 is abnormal.
  • the current limit control circuit 22 can protect the power supply system.
  • the current limit control circuit 22 has a current threshold. When the output current of the current limit control circuit exceeds the current threshold, the current limit control circuit 22 disconnects the power circuit 23 and the radar 24 connections, thus protecting the power supply system.
  • the bypass control circuit 21 is connected between the power circuit 23 and the radar 24, and is connected in parallel with the current limiting control circuit 22 to enable the radar 24 to start normally. For example, the bypass control circuit 21 does not set a current threshold or the current threshold is greater than the starting current when each module in the radar 24 is started. Therefore, the bypass control circuit can prevent the radar 24 from starting normally by a large starting current.
  • bypass control circuit 21 and/or the current limit control circuit 22 By controlling the on and off of the bypass control circuit 21 and/or the current limit control circuit 22 at different stages of power supply, it can avoid the problem that the radar cannot start due to excessive startup current during the startup process, and can also ensure that the radar has a short circuit and other abnormalities In case of circumstances, protect the power supply system.
  • the current limiting control circuit 22 has a current threshold, and when the output current of the current limiting control circuit 22 is greater than the current threshold, the current limiting control circuit 22 is turned off to disconnect the power circuit Connection with the radar 24.
  • the current limiting control circuit 22 has an upper voltage threshold and a lower voltage threshold. When the output voltage of the current limiting control circuit 22 is less than the lower voltage threshold or greater than the upper voltage threshold, the current limit The control circuit 22 is turned off to disconnect the power supply circuit from the radar 24.
  • the power supply control circuit 20 further includes: a main control circuit 25, connected to the bypass control circuit 21 and the current limiting control circuit 22, for controlling the bypass control circuit 21 and/or the The current limit control circuit 22 is turned on or off.
  • the main control circuit 25 may include a microprocessor, a programmable controller, or other control devices.
  • the main control circuit 25 controls the on or off of the bypass control circuit 21 by sending a bypass enable signal, and/or sends a current limit enable signal to control the current limit control circuit 22 on or off.
  • the bypass enable signal and the current limit enable signal both include a high level or a low level; for example, the main control circuit 25 can send the high level, that is, the first bypass enable signal to control the The bypass control circuit 21 enters an on state; sends a low level, that is, a second bypass enable signal, to control the bypass control circuit 21 to enter an off state; the main control circuit 25 can send a high level, that is, the first A current-limiting enable signal is used to control the current-limiting control circuit 22 to enter an on state, and a low level, that is, a second current-limiting enable signal is sent to control the current-limiting control circuit 22 to enter an off state.
  • the low level may not send a signal.
  • the bypass control circuit 21 is in an off state, and the current limiting control circuit 22 is in an on state.
  • the state of the radar 24 when the power is turned on is unknown. If an abnormality such as a short circuit occurs when the radar is powered on, the current limiting control circuit 22 can cut off the connection between the power circuit 23 and the radar 24 in time to protect the power supply system. Therefore, during the power-on process of the radar 24, the current-limiting control circuit 22 is turned on to protect the power supply system, and the bypass control circuit 21 does not work.
  • the main control circuit 25 controls the bypass control circuit 21 to be in an off state, and the current limiting control circuit 22 is in an on state.
  • the main control circuit 25 sends the high-level current-limiting enable signal to make the current-limiting control circuit 22 into a conducting state, and sends a low-level bypass enable signal or does not send the bypass enable signal to The bypass control circuit 21 enters the off state.
  • bypass control circuit 21 is switched to an on state, and the current limiting control circuit 22 is switched to an off state.
  • a first monitoring circuit (not shown) is used to determine whether the radar 24 is normally powered on.
  • the first monitoring circuit is used to obtain module parameters of the sub-modules of the radar 24 to confirm the radar 24 Whether it is powered on normally.
  • the module parameters include at least one of working voltage, working current, and temperature.
  • the first monitoring circuit may be implemented in the main control circuit, or may be separately configured to implement its monitoring function, which is not limited herein.
  • the radar 24 After the radar 24 is powered on, it can be confirmed whether the radar 24 is normally powered on by monitoring the working state parameters such as voltage, current, and temperature of each module circuit inside the radar 24.
  • the working state parameters of each module circuit in the radar 24 are within the predetermined power-on range, it means that there is no abnormality such as a short circuit after the radar 24 is powered on; on the contrary, if the working state parameters of each module circuit in the radar 24 are arbitrary If it is not within the predetermined power-on range, it means that an abnormal condition may occur after the radar 24 is powered on.
  • the bypass control circuit 21 is turned on at this time, so that there is no risk of damage to the power supply system when it is turned on.
  • the bypass control circuit 21 is in an off state, and the current limiting control circuit 22 is in an on state; after determining that the radar 24 is normally powered on, in the bypass During the switching of the operating states of the control circuit 21 and the current limit control circuit 22, in order to prevent the radar 24 from being powered off, the bypass control circuit 21 may be turned on first. At this time, the bypass control circuit 21 and the current limit control circuit 22 are both in the on state. In the on state, the input current is input to the radar 24 via the bypass control circuit 21 and the current limit control circuit 22; then, the current limit control circuit 22 is turned off.
  • the bypass control circuit 21 is in the on state and the current limiting control circuit 22 is in the off state. Since the bypass control circuit 21 has no current threshold or the current threshold is greater than the starting current of the sub-module of the radar 24, so The bypass control circuit 21 will not be cut off due to the excessive starting current, and the starting current of the radar 24 can be smoothly input to the radar 24 through the bypass control circuit 21 to enable the radar 24 to start normally. In this way, the problem that the starting current cannot be input to the radar 24 due to the protection function of the current limiting control circuit 22 is solved, and the normal start of the radar 24 is ensured.
  • the bypass control circuit 21 is in an on state, and the current limiting control circuit 22 is in an off state.
  • the current limiting control circuit 22 is switched to an on state, and the bypass control circuit 21 is switched to an off state.
  • a second monitoring circuit (not shown) is used to determine whether the radar 24 is normally started.
  • the second monitoring circuit is used to obtain module parameters of the sub-module of the radar 24 to confirm whether the radar 24 Normal start.
  • the module parameters include at least one of working voltage, working current, and temperature.
  • first monitoring circuit and the second monitoring circuit may be set as the same circuit, or may be set separately as different circuits; the first monitoring circuit and the second monitoring circuit may be set in the main control circuit Implementation can also be set outside the main control circuit to achieve its monitoring function, which is not limited here.
  • the radar 24 After the radar 24 is started, it can be confirmed whether the radar 24 is normally started by monitoring the working state parameters such as voltage, current, and temperature of each module circuit inside the radar 24.
  • the working state parameters of each module circuit inside the radar 24 are within the predetermined start range, it means that the radar 24 starts normally; on the contrary, if any of the working state parameters of each module circuit inside the radar 24 is not within the predetermined start range Inside, it means that the radar 24 may start abnormally.
  • the bypass control circuit 21 does not need to be turned on at this time. At this time, the bypass control circuit is disconnected and the current limiting control circuit is turned on to protect the power supply system.
  • the bypass control circuit 21 is in an on state, and the current limiting control circuit 22 is in an off state; after the radar 24 is normally started, in the bypass control circuit
  • the current limit control circuit 22 can be turned on first.
  • the bypass control circuit 21 and the current limit control circuit 22 are both in the working state, and the current passes
  • the bypass control circuit 21 and the current limit control circuit 22 are input to the radar 24; then, the bypass control circuit 21 is turned off, and the radar 24 enters a normal working state.
  • the current limiting control circuit 22 is in an on state, and the bypass control circuit 21 is in a non-off state.
  • the bypass control circuit 21 is in the off state, and the current limit control circuit 22 is in the on state. Since the current limit control circuit 22 has a current threshold, the normal operating current of the radar 24 can smoothly pass the current limit control The circuit 22 is input to the radar 24 to make the radar 24 work normally. At the same time, due to the protection function of the current limiting control circuit 22, that is, when the radar 24 is working normally, if an abnormal state such as a short circuit occurs, the current limiting control circuit 22 can respond quickly to protect the power supply system.
  • the bypass control circuit 22 includes a controllable switching device.
  • controllable switching device includes at least one of a MOS tube, a relay, an analog switch, and a control chip.
  • the control chip includes a current limit control chip with a relatively large current limit value. It can be understood that the bypass control circuit 22 includes a device or a circuit with a switching function, and the specific implementation manner thereof is not limited herein.
  • the bypass control circuit includes a MOS tube.
  • the opening condition of the MOS tube is related to the model of the MOS tube, and is an inherent property of the MOS tube. A person skilled in the art may select the model of the MOS tube according to the actual situation to determine the opening condition of the MOS tube, which is not specifically limited in the embodiment of the present invention.
  • the radar 24 includes a laser radar, a millimeter wave radar, or an ultrasonic radar.
  • the number of the radar 24 is plural, and the number of the bypass control circuit 21 and the current limiting control circuit 22 matches the number of the radar 24.
  • the number of the bypass control circuit 21 and the current limit control circuit 22 is the same as the number of the radar 24. It can be understood that, according to different design needs and actual conditions, the number of radars 24, the number of bypass control circuits 21 and the number of current limiting control circuits 22 can be matched and set, which is not limited herein.
  • a main control circuit may control at least one of the bypass control circuit 21 and at least one current limiting control circuit 22, or at least one main control circuit may control at least one of the bypass
  • the circuit control circuit 21 is controlled with at least one of the current limiting control circuits 22; similarly, the number of main control circuits, the number of bypass control circuits 21 and the current limiting control circuits 22 can also be based on different design needs and actual Matching settings are not limited here.
  • the distributed radar system includes N radars, N is a natural number, and N power supply control circuits can be set to control the power supply of N radars, that is, each radar can be controlled independently, even if a certain If the radar is abnormal, the power supply control circuit of this way will be powered off in time for protection, so as not to affect the normal operation of other radars.
  • the power supply control circuit may be provided at the power supply circuit end or the radar end, which is not limited herein.
  • FIG. 3 is a circuit diagram of an example of a power supply control circuit according to an embodiment of the present invention.
  • the current limiting control circuit in the power supply control circuit is implemented by chip U124, and the bypass current limiting circuit is implemented by controllable switches Q68 and Q78, which specifically includes:
  • the current limiting control circuit includes a chip U124, wherein the signal input terminal 9-13 of the chip U124 is connected to the input power supply, and the signal output terminal 4-8 of the chip U124 is connected to the radar;
  • the enable terminal 14 of the chip U124 receives the current limit enable signal
  • the protection terminal 15 of the chip U124 is connected to the input power via a voltage divider circuit, and the voltage division circuit includes resistors R1724 and R1729 connected in series, and the protection terminal 15 of the chip U124 is connected to the connection end of the resistors R1724 and R1729;
  • the bypass current limiting circuit includes controllable switches Q68 and Q78, resistors R1629 and R1628, wherein the resistor R1629 is connected between the gate and source of the controllable switch Q68, and the connection terminal of the gate of the controllable switch Q68 and the resistor R1629 Receiving the bypass enable signal, the source of the controllable switch Q68 and the connection terminal of the resistor R1629 are grounded, the drain of the controllable switch Q68 is connected to the gate of the controllable switch Q78, and the gate of the controllable switch Q78 is connected to the resistance R1628 One end of the resistor, the other end of R1628 is connected to the input power supply terminal and the signal input terminal 9-13 of the chip U124, the drain of the controllable switch Q78 is connected to the radar and the signal output terminal 4-8 of the chip U124;
  • the control circuit and current limiting control bypass are in parallel;
  • the main control circuit includes a main control chip (not shown), which provides the bypass enable signal and the current limit enable signal.
  • the main control chip sends a current limiting enable signal to the enable terminal 14 of the chip U124, so that the chip U124 is in a working state, connected between the input power and the radar; the main control The chip does not send the bypass enable signal. If the gate of the controllable switch Q68 does not receive the bypass enable signal, the controllable switch Q68 is not turned on, so that the gate of the controllable switch Q78 is high, and the controllable switch Q78 Shutdown, that is, the bypass current limiting circuit is in a shutdown state.
  • the main control chip can confirm the working status of the radar by monitoring the working voltage, working current, temperature and other working state parameters of each module circuit inside the radar; when the radar is normally powered on, the main control chip issues a bypass enable Signal, when the controllable switch Q68 receives the bypass enable signal, the controllable switch Q68 is turned on, and then the gate of the controllable switch Q78 is grounded, and the gate-source voltage difference of the controllable switch Q78 is lower than The voltage difference is preset so that the controllable switch Q78 is turned on, that is, the bypass control circuit is switched to the on state; at this time, the chip U124 is also in the working state, that is, the current limiting control circuit is also on, so It can ensure that the radar is constantly powered.
  • the main control chip stops sending the current limit enable signal, the enable terminal 14 of the chip U124 cannot receive the high level, and the chip U124 switches to the non-working state, that is, the limit The flow control circuit is switched to the off state.
  • the starting current of the radar can be smoothly input to the radar through the bypass control circuit to provide the starting current for each module in the radar to enable the radar to start normally. In this way, the problem that the starting current cannot be input to the radar due to the protection function of the current limiting control circuit is solved, and the normal start of the radar is guaranteed.
  • the main control chip can confirm the working status of the radar by monitoring the working status parameters such as voltage, current and temperature of each module circuit inside the radar.
  • the working state parameters of each module circuit within the radar are within the predetermined starting range, it means that the radar has not abnormal conditions such as short circuit; on the contrary, if any of the working state parameters of each module circuit within the radar is not within the predetermined starting range , It means that the radar may start abnormally.
  • the work of each module in the radar tends to be stable.
  • the main control chip The current limiting enable signal is sent, and the enable terminal 14 of the chip U124 receives the current limiting enable signal, so that the chip U124 is in the working state, that is, the current limiting control circuit is switched to the on state; and the bypass control circuit is also on State, so that the radar can continue to power.
  • the input power is output to the radar through the bypass control circuit and the current limit control circuit.
  • the main control chip stops sending the bypass enable signal, and the bypass control circuit switches to the off state.
  • the radar enters the normal working state
  • the bypass control circuit is in the off state
  • the current limiting control circuit is in the on state, that is, the chip U124 is in the working state, because the chip U124 has a current threshold, the normal operation of the radar
  • the current can be smoothly input to the radar through the chip U124 to make the radar work normally.
  • the current limit control circuit can respond quickly to protect the power supply system.
  • the power supply control circuit of the embodiment of the present invention can avoid the problem that the radar cannot start due to excessive startup current during the startup process by controlling the on-off of the bypass control circuit and/or the current limit control circuit at different stages It can also ensure the protection of the power supply system when the radar has a short circuit and other abnormal conditions.
  • An embodiment of the present invention also provides a power supply system.
  • the system includes:
  • Power circuit used to provide power
  • a power supply control circuit connected between the power supply circuit and the radar, is used to control power supply to the radar; wherein, the power supply control circuit includes:
  • a bypass control circuit connected between the power supply circuit and the radar, for enabling the radar to start normally
  • a current limiting control circuit is connected in parallel with the bypass control circuit to disconnect the power supply circuit from the radar when the radar is abnormal.
  • the power supply control circuit further includes:
  • the main control circuit is connected to the bypass control circuit and the current limiting control circuit, and is used to control the on or off of the bypass control circuit and/or the current limiting control circuit.
  • the main control circuit sends a bypass enable signal to control the on or off of the bypass control circuit, and/or sends a current limit enable signal to control the conduction of the current limit control circuit On or off.
  • the bypass control circuit when the radar is powered on, the bypass control circuit is in an off state, and the current limiting control circuit is in an on state.
  • the bypass control circuit is switched to an on state, and the current limiting control circuit is switched to an off state.
  • the circuit further includes a main control circuit, and the main control circuit is used to obtain module parameters of the sub-module of the radar to confirm whether the radar is normally powered on.
  • the bypass control circuit when the radar is started, the bypass control circuit is in an on state, and the current limiting control circuit is in an off state.
  • the current limiting control circuit is switched to the on state, and the bypass control circuit is switched to the off state.
  • the circuit further includes a main control circuit, which is used to obtain module parameters of the sub-module of the radar to confirm whether the radar is normally started.
  • the module parameters include at least one of working voltage, working current, and temperature.
  • the current limiting control circuit when the radar is operating normally, the current limiting control circuit is in an on state, and the bypass control circuit is in an off state.
  • the current limiting control circuit has a current threshold, and when the output current of the current limiting control circuit is greater than the current threshold, the current limiting control circuit is turned off to disconnect the power circuit and the The connection between radars.
  • the current limiting control circuit has an upper voltage threshold and a lower voltage threshold.
  • the current limiting control circuit Turn off to disconnect the power circuit from the radar.
  • the bypass control circuit includes a controllable switching device.
  • controllable switching device includes at least one of a MOS tube, a relay, an analog switch, and a control chip.
  • the bypass control circuit includes a MOS tube.
  • the bypass control circuit When the gate-source voltage difference of the MOS tube satisfies the opening condition of the MOS tube, the bypass control circuit is in an on state; otherwise, the bypass control The circuit is off.
  • the radar includes lidar, millimeter wave radar, or ultrasonic radar.
  • the number of the radar is plural, and the number of the bypass control circuit and the current limiting control circuit matches the number of the radar.
  • the power supply system provided by the embodiment of the present invention can avoid the inability of the radar to start due to excessive startup current during the radar startup process by connecting the bypass control circuit and the current limit control circuit in parallel and switching the bypass control circuit and the current limit control circuit on and off
  • the problem of normal startup can also ensure the protection of the power supply system when the radar has a short circuit and other abnormal conditions, which ensures the smooth startup and operation of the radar and is beneficial to improving the reliability of the radar.
  • An embodiment of the present invention also provides a mobile platform, including:
  • a power system is used to provide power to the movable platform.
  • the mobile platform is an unmanned aerial vehicle, car, mobile robot, or handheld device.
  • the power supply control circuits provided by the embodiments of the present invention may be applied to a distance measuring device, and the distance measuring device may be an electronic device such as a laser radar or a laser distance measuring device.
  • the distance measuring device is used to sense external environment information, for example, distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the distance measuring device can detect the distance between the detecting object and the distance measuring device by measuring the time of light propagation between the distance measuring device and the object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device may also detect the distance between the detected object and the distance measuring device through other techniques, such as a distance measuring method based on phase shift measurement, or a distance measuring method based on frequency shift measurement. There are no restrictions.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 4 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam of light for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light-emitting chips in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the die in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 100 may further include a scanning module 160 for changing the propagation direction of at least one laser pulse sequence emitted from the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a measurement A distance module, the distance measuring module may be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path may be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted from the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • FIG. 5 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the distance measuring device 200 includes a distance measuring module 210.
  • the distance measuring module 210 includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, and a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and Optical path changing element 206.
  • the distance measuring module 210 is used to emit a light beam and receive back light, and convert the back light into an electrical signal.
  • the transmitter 203 may be used to transmit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the exit optical path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted by the emitter 203 into parallel light to the scanning module.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 204 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 206 is used to combine the transmitting optical path and the receiving optical path in the distance measuring device before the collimating element 204, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the transmitter 203 and the detector 205 may respectively use respective collimating elements, and the optical path changing element 206 is disposed on the optical path behind the collimating element.
  • the light path changing element can use a small-area mirror to convert The transmitting optical path and the receiving optical path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the outgoing light of the emitter 203, and the reflector is used to reflect the return light to the detector 205. In this way, it is possible to reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 204. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit optical path of the distance measuring module 210.
  • the scanning module 202 is used to change the transmission direction of the collimated light beam 219 emitted through the collimating element 204 and project it to the outside environment, and project the return light to the collimating element 204 .
  • the returned light is converged on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, diffracting, etc. the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical element is moving, for example, the at least part of the optical element is driven to move by a driving module, and the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • multiple optical elements of the scanning module 202 may rotate or vibrate about a common axis 209, and each rotating or vibrating optical element is used to continuously change the direction of propagation of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different rotation speeds, or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate about a rotation axis 209 to change the first optical element 214 The direction of the collimated light beam 219.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated light beam 219 changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 214.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 214 includes a wedge-angle prism, aligning the straight beam 219 for refraction.
  • the scanning module 202 further includes a second optical element 215 that rotates about a rotation axis 209.
  • the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 115 is connected to another driver 217, and the driver 117 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 may be driven by the same or different drivers, so that the first optical element 214 and the second optical element 215 have different rotation speeds and/or rotations, thereby projecting the collimated light beam 219 to the outside space Different directions can scan a larger spatial range.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drives 216 and 217 may include motors or other drives.
  • the second optical element 215 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 215 includes a wedge angle prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the third optical element includes a prism whose thickness varies along at least one radial direction.
  • the third optical element includes a wedge angle prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or turns.
  • each optical element in the scanning module 202 can project light into different directions, for example, the directions of the light 211 and 213, so as to scan the space around the distance measuring device 200.
  • the light 211 projected by the scanning module 202 hits the object 201 to be detected, a part of the light object 201 is reflected to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the returned light 212 reflected by the detection object 201 passes through the scanning module 202 and enters the collimating element 204.
  • the detector 205 is placed on the same side of the collimating element 204 as the emitter 203.
  • the detector 205 is used to convert at least part of the returned light passing through the collimating element 204 into an electrical signal.
  • each optical element is coated with an antireflection coating.
  • the thickness of the antireflection film is equal to or close to the wavelength of the light beam emitted by the emitter 103, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path to transmit at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which laser pulses in the order of nanoseconds are emitted.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 200 can use the pulse reception time information and the pulse emission time information to calculate the TOF, thereby determining the distance between the detected object 201 and the distance measuring device 200.
  • the distance and orientation detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention may be applied to a mobile platform, and the distance measuring device may be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the distance measuring device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the present invention can switch between different stages of the power supply process by controlling the bypass control circuit and the current limit control circuit, which can avoid starting current overshoot during the radar startup process This will cause the problem that the radar cannot start normally, and can guarantee the protection of the power supply system when the radar has abnormal conditions such as short circuit.
  • the embodiments of the present invention ensure the smooth start-up and operation of the radar, which is beneficial to improve the reliability of the radar.

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

一种供电控制电路(20)、供电系统(10)和移动平台,所述供电控制电路(20)连接于电源电路(23)和雷达(24)之间,用于控制对所述雷达(24)的供电,所述电路包括:旁路控制电路(21),连接于所述电源电路(23)和所述雷达(24)之间,用于使所述雷达(24)正常启动;限流控制电路(22),与所述旁路控制电路(21)并联,用于当所述雷达(24)异常时断开所述电源电路(23)与所述雷达(24)之间的连接。该供电控制电路(20)、供电系统(10)和移动平台,既可以避免雷达(24)启动过程中启动电流过大造成无法正常启动的问题,又可以保证雷达(24)出现短路等异常情况时,对供电系统(10)进行保护。

Description

一种供电控制电路、供电系统及可移动平台 技术领域
本发明涉及电路技术领域,尤其涉及一种供电控制电路。
背景技术
在雷达供电的相关技术中,为了防止雷达异常造成供电系统故障,通常会在供电系统中加入保护电路。然而,雷达中的某些模块在不同阶段存在正常的电压或电流波动,如在启动时的电流和正常工作时的电流差异较大,保护电路无法区分正常的波动还是存在异常情况,均进行保护动作会使得雷达在正常的电压或电流波动时也无法正常启动运行。
发明内容
本发明实施例提供一种供电控制电路、供电系统以及可移动平台,以在对供电系统进行保护的同时,解决雷达无法正常启动的问题。
第一方面,本发明实施例提供了一种供电控制电路,所述供电控制电路连接于电源电路和雷达之间,用于控制对所述雷达的供电,所述电路包括:
旁路控制电路,连接于所述电源电路和所述雷达之间,用于使所述雷达正常启动;
限流控制电路,与所述旁路控制电路并联,用于当所述雷达异常时断开所述电源电路与所述雷达之间的连接。
另一方面,本发明实施例提供了一种供电系统,所述系统包括:
电源电路,用于提供电源;
供电控制电路,连接于电源电路和雷达之间,用于控制对所述雷达的供电;其中,所述供电控制电路包括:
旁路控制电路,连接于所述电源电路和所述雷达之间,用于使所述雷达正常启动;
限流控制电路,与所述旁路控制电路并联,用于当所述雷达异常时断开所述电源电路与所述雷达之间的连接。
另一方面,本发明提供了一种移动平台,包括:
雷达;
以及如上所述的供电系统;
动力系统,用于为所述可移动平台提供动力。
本发明实施例将旁路控制电路和限流控制电路并联,既可以避免雷达启动过程中启动电流过大造成雷达无法正常启动的问题,又可以保证雷达出现短路等异常情况时,对供电系统进行保护。本发明实施例保证了雷达的顺利启动以及运行,有利于提高所述雷达的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种供电系统的示意性框图;
图2本发明实施例提供的一种供电控制电路的示意性框图;
图3是本发明实施例提供的一种供电控制电路的示例的电路图;
图4是本发明实施例提供的测距装置的示意性框图;
图5是本发明实施例提供的测距装置采用同轴光路的一种实施例的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在雷达的供电系统中,为了防止因雷达短路等异常情况造成供电系统故障,可以在供电系统中加入保护电路,以防止供电系统出现过电压、过电流、欠电压、或欠电流等异常情况。如,采用限流控制电路进行保护,当电源电路 向限流控制电路输入的电流超过限流控制电路的电流阈值时,限流控制电路则立即响应,断开电源电路进行过电流保护。
由于雷达正常工作时的工作电流小于限流控制电路的电流阈值,因此,通过监测所述限流控制电路的输出电流,可以监控雷达工作是否发生异常;一旦雷达发生短路等问题,限流控制电路的输出电流将增大到超过所述限流控制电路的阈值,所述限流控制电路自动进入保护模式,即断开电源电路,从而断开电源电路与雷达之间的连接,以实现对供电系统的保护。
然而,在实际工作过程中,所述雷达中的某些模块,如电机,在启动阶段和正常工作阶段中的电路电流差异很大,启动电流大于限流控制电路的电流阈值,而工作电流小于限流控制电路的电流阈值。因此,所述限流控制电路可能会导致雷达的部分模块无法正常启动。
基于上述考虑,本发明实施例提供的一种供电系统,请参阅图1,图1是本发明实施例提供的一种供电系统的示意性框架图。其中,该供电系统10包括:
电源电路12,用于向雷达13提供电源;
供电控制电路11,连接于电源电路12和雷达13之间,用于控制对所述雷达13的供电。
本发明实施例中的供电控制电路包括限流控制电路和旁路控制电路,旁路控制电路与所述限流控制电路并联,通过切换旁路控制电路和限流控制电路的通断,可以解决雷达无法正常启动的问题,同时实现对供电系统的保护。
在雷达上电阶段,所述限流控制电路处于导通状态,所述旁路控制电路处于关断状态,限流控制电路在雷达出现异常时对供电系统进行保护;在确认雷达正常上电后雷达开始启动,在雷达启动阶段,所述旁路控制电路切换为导通状态,所述限流控制电路切换为关断状态,启动电流通过所述旁路控制电路输入至雷达,保证所述雷达的正常启动;在所述雷达正常启动后,雷达进入正常工作状态,所述雷达所需要的电流逐渐下降并趋于平稳,所述限流控制电路切换为导通状态,所述旁路控制电路切换为关断状态,所述限流控制电路用于对所述供电系统进行保护。
需要说明的是,上述限流控制电路和旁路控制电流的导通状态包括限流控制电路和旁路控制电流处于使能状态。
可选地,所述限流控制电路可以包括限流保护芯片。所述限流保护芯片可以是一种集成短路保护功能的电子保险丝;所述限流控制电路可以具有过流、过压、欠压等保护功能,以实现对供电系统的保护。可选地,所述集成短路保护功能的电子保险丝可以是可逆的,也就是说,当出现异常情况,所述电子保险丝断开后,可以进行自动或手动复位。
需要说明的是,上述限流保护芯片以及集成短路保护功能的电子保险丝仅为对所述限流控制电路的举例,所述限流控制电路还可以是其他实现方式,例如可控开关等;可以理解,所述限流控制电路包括可以实现当电路中电流超过阈值时能断开电路的任何实现方式,在此不做限制。
可选地,所述雷达包括激光雷达、毫米波雷达、超声波雷达。
请参阅图2,图2是本发明实施例提供的一种供电控制电路的示意性框架图。其中,该供电控制电路20连接于电源电路23和雷达24之间,用于控制对所述雷达24的供电,该供电控制电路20可包括:
旁路控制电路21,连接于所述电源电路23和所述雷达24之间,用于使所述雷达24正常启动;
限流控制电路22,与所述旁路控制电路21并联,用于当所述雷达24异常时断开所述电源电路23与所述雷达24之间的连接。
其中,限流控制电路22可对供电系统进行保护,示例的,限流控制电路22具有电流阈值,当限流控制电路的输出电流超过电流阈值时,限流控制电路22断开电源电路23和雷达24之间的连接,从而对供电系统进行保护。旁路控制电路21连接于所述电源电路23和所述雷达24之间,与限流控制电路22并联,可使所述雷达24正常启动。示例的,旁路控制电路21不设置电流阈值或者电流阈值大于雷达24中各模块启动时的启动电流,因此,旁路控制电路可通过较大的启动电流以防止雷达24无法正常启动。通过在供电的不同阶段,控制旁路控制电路21和/或限流控制电路22的通断,既可以避免启动过程中启动电流过大造成雷达无法启动的问题,又可以保证雷达出现短路等异常情况时,对供电系统进行保护。
可选地,所述限流控制电路22具有电流阈值,当所述限流控制电路22的输出电流大于所述电流阈值时,所述限流控制电路22关断,以断开所述电 源电路与所述雷达24之间的连接。
可选地,所述限流控制电路22具有电压上限阈值和电压下限阈值,当所述限流控制电路22的输出电压小于所述电压下限阈值或大于所述电压上限阈值时,所述限流控制电路22关断,以断开所述电源电路与所述雷达24之间的连接。
可选地,所述供电控制电路20还包括:主控电路25,连接所述旁路控制电路21和所述限流控制电路22,用于控制所述旁路控制电路21和/或所述限流控制电路22的导通或关断。
可选地,所述主控电路25可以包括微处理器、可编程控制器或其他控制装置。
可选地,所述主控电路25通过发送旁路使能信号以控制所述旁路控制电路21的导通或关断,和/或发送限流使能信号以控制所述限流控制电路22的导通或关断。
其中,旁路使能信号和限流使能信号均包括高电平或低电平;示例的,所述主控电路25可以通过发送高电平即第一旁路使能信号以控制所述旁路控制电路21进入导通状态;发送低电平即第二旁路使能信号以控制所述旁路控制电路21进入关断状态;所述主控电路25可以通过发送高电平即第一限流使能信号以控制所述限流控制电路22进入导通状态,发送低电平即第二限流使能信号以控制所述限流控制电路22进入关断状态。可选的,所述低电平可以是不发送信号。
可选地,当所述雷达24上电时,所述旁路控制电路21为关断状态,以及所述限流控制电路22为导通状态。
所述雷达24接通电源时的状态未知,如果雷达上电时出现短路等异常,限流控制电路22可以及时切断电源电路23和雷达24之间的连接,以保护供电系统。因此,雷达24的上电过程中,限流控制电路22为导通状态,以对供电系统进行保护,而旁路控制电路21不工作。可选地,当所述雷达24上电时,主控电路25控制所述旁路控制电路21为关断状态,以及所述限流控制电路22为导通状态。示例的,主控电路25通过发送高电平的限流使能信号使所述限流控制电路22进入导通状态,发送低电平的旁路使能信号或不发送旁路使 能信号使所述旁路控制电路21进入关断状态。
可选地,当所述雷达24正常上电后,所述旁路控制电路21切换为导通状态,所述限流控制电路22切换为关断状态。
可选地,通过第一监测电路(未示出)确定所述雷达24是否正常上电,所述第一监测电路用于获取所述雷达24的子模块的模块参数,以确认所述雷达24是否正常上电。
可选地,所述模块参数包括工作电压、工作电流、温度中的至少一个。
需要说明的是,所述第一监测电路可以设置于所述主控电路中实现,也可以单独设置实现其监测功能,在此不做限制。
其中,当雷达24上电后,通过监测雷达24内部各个模块电路的电压、电流、温度等工作状态参数可以确认雷达24是否正常上电。当雷达24内部各个模块电路的工作状态参数均在预定的上电范围之内,则说明雷达24上电后没有发生短路等异常情况;相反,如果雷达24内部各个模块电路的工作状态参数中任意一个不处于预定的上电范围之内,则说明雷达24上电后可能出现异常情况。当确定雷达24没有发生异常情况,处于正常上电时,说明此时导通旁路控制电路21,让其进入导通状态不会存在供电系统损坏的风险。
同时,由前述可知,在雷达24上电过程中,旁路控制电路21为关断状态,所述限流控制电路22为导通状态;在确定雷达24正常上电后,在所述旁路控制电路21和限流控制电路22的工作状态的切换过程中,为了防止雷达24断电,可以先导通旁路控制电路21,此时,旁路控制电路21和限流控制电路22同时处于导通状态,输入电流经过旁路控制电路21和限流控制电路22输入至雷达24;然后,关断限流控制电路22。此时,所述旁路控制电路21处于导通状态,所述限流控制电路22处于关断状态,由于旁路控制电路21没有电流阈值或电流阈值大于雷达24中子模块的启动电流,所以不会由于启动电流过大导致旁路控制电路21的切断,雷达24的启动电流可以顺利通过旁路控制电路21输入到雷达24,使雷达24正常启动。这样,就解决了由于限流控制电路22的保护功能,导致启动电流不能输入至雷达24的问题,保证了雷达24的正常启动。
可选地,当所述雷达24启动时,所述旁路控制电路21为导通状态,以及所述限流控制电路22为关断状态。
可选地,当所述雷达24正常启动后,所述限流控制电路22切换为导通状态,所述旁路控制电路21切换为关断状态。
可选地,通过第二监测电路(未示出)确定所述雷达24是否正常启动,所述第二监测电路用于获取所述雷达24的子模块的模块参数,以确认所述雷达24是否正常启动。
同样地,所述模块参数包括工作电压、工作电流、温度中的至少一个。
需要说明的是,所述第一监测电路和第二监测电路可以设置为同一电路,也可以分开设置为不同电路;所述第一监测电路和第二监测电路可以设置于所述主控电路中实现,也可以设置于所述主控电路之外以实现其监测功能,在此不做限制。
其中,当雷达24启动后,通过监测雷达24内部各个模块电路的电压、电流、温度等工作状态参数可以确认雷达24是否正常启动。当雷达24内部各个模块电路的工作状态参数均在预定的启动范围之内,则说明雷达24正常启动;相反,如果雷达24内部各个模块电路的工作状态参数中任意一个不处于预定的启动范围之内,则说明雷达24的启动可能出现异常情况。当确定雷达24没有发生异常情况,已经正常启动后,雷达24内部各个模块电路的工作趋于平稳,不需要通过较大的启动电流,即此时不需要导通旁路控制电路21。此时,断开旁路控制电路,导通限流控制电路,以对供电系统进行保护。
同时,由前述可知,在雷达24启动过程中,旁路控制电路21为导通状态,所述限流控制电路22为关断状态;在雷达24处于正常启动后,在所述旁路控制电路21和限流控制电路22的状态切换过程中,为了防止雷达24断电,可以先导通限流控制电路22,此时,旁路控制电路21和限流控制电路22同时处于工作状态,电流经过旁路控制电路21和限流控制电路22输入至雷达24;然后,关断旁路控制电路21,雷达24进入正常工作状态。
可选地,当所述雷达24正常工作时,所述限流控制电路22为导通状态,以及所述旁路控制电路21为非关断状态。
此时,所述旁路控制电路21处于关断状态,所述限流控制电路22处于导 通状态,由于限流控制电路22具有电流阈值,所以雷达24的正常工作电流可以顺利通过限流控制电路22输入到雷达24,使雷达24正常工作。同时,由于限流控制电路22的保护功能,即保证了雷达24正常工作时,如果出现短路等异常状态,限流控制电路22即可迅速响应以保护供电系统。
可选地,所述旁路控制电路22包括可控开关器件。
可选地,所述可控开关器件包括MOS管,继电器,模拟开关,控制芯片中的至少一个。而控制芯片包括限流值比较大的限流控制芯片。可以理解,所述旁路控制电路22包括具有开关功能的器件或电路,其具体实现方式在此不做限制。
可选的,旁路控制电路包括MOS管,当所述MOS管的栅源极电压差满足MOS管开启条件时,所述旁路控制电路为导通状态,否则,所述旁路控制电路为关断状态。可选的,所述MOS管开启条件与MOS管的型号有关,为MOS管的固有属性。本领域技术人员可根据实际情况选择MOS管的型号以确定所述MOS管开启条件,本发明实施例不对此做具体限制。
可选地,所述雷达24包括激光雷达、毫米波雷达、或超声波雷达。
可选地,所述雷达24的数量为多个,所述旁路控制电路21与所述限流控制电路22的数量与所述雷达24的数量相匹配。例如,所述旁路控制电路21与所述限流控制电路22的数量与所述雷达24的数量相同。可以理解,根据不同的设计需要和实际情况,可以对雷达24的数量、旁路控制电路21与所述限流控制电路22的数量进行匹配设置,在此不作限制。
同时,需要说明的是,可以是一个主控电路对至少一个所述旁路控制电路21与至少一个所述限流控制电路22进行控制,也可以是至少一个主控电路对至少一个所述旁路控制电路21与至少一个所述限流控制电路22进行控制;同样地,主控电路的数量、旁路控制电路21与所述限流控制电路22的数量也可以根据不同的设计需要和实际情况进行匹配设置,在此不做限制。
在一个实施例中,分布式雷达系统中包括N个雷达,N为自然数,可以设置N个供电控制电路,分别对N个雷达的供电进行控制,即每一路雷达都可以单独控制,即使某个雷达发生异常,该路供电控制电路则及时断电以进行保护,从而不会影响其他雷达的正常工作。
需要说明的是,所述供电控制电路可以设置于电源电路端,也可以设置在雷达端,在此不做限制。
请参阅图3,图3是本发明实施例提供的一种供电控制电路的示例的电路图。该供电控制电路中限流控制电路由芯片U124实现,旁路限流电路由可控开关Q68和Q78实现,具体包括:
限流控制电路包括芯片U124,其中,芯片U124的信号输入端9-13与输入电源连接,芯片U124的信号输出端4-8与雷达连接;
芯片U124的使能端14接收限流使能信号;
芯片U124的保护端15经分压电路连接至输入电源,所述分压电路包括串联连接的电阻R1724和R1729,芯片U124的保护端15连接于电阻R1724和R1729的连接端;
旁路限流电路包括可控开关Q68和Q78、电阻R1629和R1628,其中,电阻R1629连接于可控开关Q68的栅极和源极之间,可控开关Q68的栅极与电阻R1629的连接端接收旁路使能信号,可控开关Q68的源极与电阻R1629的连接端接地,可控开关Q68的漏极连接与可控开关Q78的栅极,可控开关Q78的栅极连接电阻R1628的一端电阻,R1628的另一端连接至输入电源端和芯片U124的信号输入端9-13,可控开关Q78的漏极连接至雷达和芯片U124的信号输出端4-8;由此可知,旁路控制电路和限流控制旁路为并联;
主控电路包括主控芯片(未示出),提供所述旁路使能信号和限流使能信号。
基于上述图3所述的电路图,其工作原理如下:
首先,接通输入电源,雷达上电;此时,主控芯片发送限流使能信号至芯片U124的使能端14,使芯片U124处于工作状态,连接于输入电源和雷达之间;主控芯片不发送旁路使能信号,可控开关Q68的栅极没有接收到旁路使能信号则可控开关Q68不导通,从而使得可控开关Q78的栅极为高电平,可控开关Q78关断,即旁路限流电路处于关断状态。
然后,所述主控芯片通过监测雷达内部各个模块电路的工作电压、工作电流、温度等工作状态参数可以确认雷达的工作状态;当所述雷达正常上电后,主控芯片发出旁路使能信号,当所述可控开关Q68接收到所述旁路使能信号, 所述可控开关Q68导通,进而可控开关Q78的栅极接地,可控开关Q78的栅源极电压差低于预设电压差,从而所述可控开关Q78导通,即所述旁路控制电路切换为导通状态;此时,芯片U124也处于工作状态,即限流控制电路也为导通状态,这样可以保证雷达不断电。当旁路控制电路处于导通状态后,主控芯片停止发送限流使能信号,所述芯片U124的使能端14接收不到高电平,所述芯片U124切换为非工作状态,即限流控制电路切换为关断状态。
雷达启动时,雷达的启动电流可以顺利通过旁路控制电路输入到雷达,为所述雷达中各个模块提供启动电流,使雷达正常启动。这样,就解决了由于限流控制电路的保护功能,导致启动电流不能输入至雷达的问题,保证了雷达的正常启动。
雷达正常启动后,主控芯片通过监测雷达内部各个模块电路的电压、电流、温度等工作状态参数可以确认雷达的工作状态。当雷达内部各个模块电路的工作状态参数均在预定的启动范围之内,则说明雷达没有发生短路等异常情况;相反,如果雷达内部各个模块电路的工作状态参数中任意一个不处于预定的启动范围,则说明雷达的启动可能出现异常情况。当确定雷达没有发生异常情况,已经正常启动后,雷达中各个模块的工作趋于平稳,此时,不需要通过较大的启动电流,说明此时不需要导通旁路控制电路,主控芯片发送限流使能信号,芯片U124的使能端14接收所述限流使能信号,使芯片U124处于工作状态,即限流控制电路切换为导通状态;而旁路控制电路也处于导通状态,这样可以保证雷达不断电。输入电源通过旁路控制电路和限流控制电路输出至雷达。在芯片U124进入工作状态后,主控芯片停止发送旁路使能信号,所述旁路控制电路切换至关断状态。
然后,雷达进入正常工作状态,所述旁路控制电路处于关断状态,而限流控制电路处于导通状态,即所述芯片U124处于工作状态,由于芯片U124具有电流阈值,所以雷达的正常工作电流可以顺利通过芯片U124输入到雷达,使雷达正常工作。在雷达进入正常工作状态之后,由于限流控制电路的保护功能,如果雷达出现短路等异常状态,限流控制电路即可迅速响应以保护供电系统。
由上述过程可知,本发明实施例的供电控制电路通过在不同阶段,控制旁路控制电路和/或限流控制电路的通断,既可以避免启动过程中启动电流过大造成雷达无法启动的问题,又可以保证雷达出现短路等异常情况时,对供电系 统进行保护。
本发明实施例还提供一种供电系统,所述系统包括:
电源电路,用于提供电源;
供电控制电路,连接于电源电路和雷达之间,用于控制对所述雷达的供电;其中,所述供电控制电路包括:
旁路控制电路,连接于所述电源电路和所述雷达之间,用于使所述雷达正常启动;
限流控制电路,与所述旁路控制电路并联,用于当所述雷达异常时断开所述电源电路与所述雷达之间的连接。
可选地,所述供电控制电路还包括:
主控电路,连接所述旁路控制电路和所述限流控制电路,用于控制所述旁路控制电路和/或所述限流控制电路的导通或关断。
可选地,所述主控电路通过发送旁路使能信号以控制所述旁路控制电路的导通或关断,和/或发送限流使能信号以控制所述限流控制电路的导通或关断。
可选地,当所述雷达上电时,所述旁路控制电路为关断状态,以及所述限流控制电路为导通状态。
可选地,当所述雷达正常上电后,所述旁路控制电路切换为导通状态,所述限流控制电路切换为关断状态。
可选地,所述电路还包括主控电路,所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常上电。
可选地,当所述雷达启动时,所述旁路控制电路为导通状态,以及所述限流控制电路为关断状态。
可选地,当所述雷达正常启动后,所述限流控制电路切换为导通状态,所述旁路控制电路切换为关断状态。
可选地,所述电路还包括主控电路,所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常启动。
可选地,所述模块参数包括工作电压、工作电流、温度中的至少一个。
可选地,当所述雷达正常工作时,所述限流控制电路为导通状态,以及所述旁路控制电路为关断状态。
可选地,所述限流控制电路具有电流阈值,当所述限流控制电路的输出电 流大于所述电流阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
可选地,所述限流控制电路具有电压上限阈值和电压下限阈值,当所述限流控制电路的输出电压小于所述电压下限阈值或大于所述电压上限阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
可选地,所述旁路控制电路包括可控开关器件。
可选地,所述可控开关器件包括MOS管,继电器,模拟开关,控制芯片中的至少一个。
可选地,所述旁路控制电路包括MOS管,当所述MOS管的栅源极电压差满足MOS管开启条件时,所述旁路控制电路为导通状态,否则,所述旁路控制电路为关断状态。
可选地,所述雷达包括激光雷达、毫米波雷达、或超声波雷达。
可选地,所述雷达的数量为多个,所述旁路控制电路与所述限流控制电路的数量与所述雷达的数量相匹配。
本发明实施例提供的供电系统,通过将旁路控制电路和限流控制电路并联,并切换旁路控制电路和限流控制电路的通断,既可以避免雷达启动过程中启动电流过大造成无法正常启动的问题,又可以保证雷达出现短路等异常情况时,对供电系统进行保护,保证了雷达的顺利启动以及运行,有利于提高所述雷达的可靠性。
本发明实施例还提供一种移动平台,包括:
雷达;
以及如上所述的供电系统;
动力系统,用于为所述可移动平台提供动力。
可选地,所述移动平台为无人飞行器、汽车、移动机器人或手持设备。
本发明各个实施例提供的供电控制电路可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施例中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距 装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图4所示的测距装置100对测距的工作流程进行举例描述。
如图4所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图4示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图4所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的 光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图5示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图5所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图5所示实施例中,由于发射器203出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图5所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202。扫描模块202放置于测距模块210的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传 输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器217连接,驱动器117驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相 同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如光211和213的方向,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到被探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至测距装置200。被探测物201反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器103发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从 而确定被探测物201到测距装置200的距离。
测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施例中,本发明实施例的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施例中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
本发明通过提供上述供电控制电路、供电系统、测距装置及可移动平台,通过控制旁路控制电路和限流控制电路在供电过程的不同阶段进行切换,既可以避免雷达启动过程中启动电流过大造成雷达无法正常启动的问题,又可以保证雷达出现短路等异常情况时,对供电系统进行保护。本发明实施例保证了雷达的顺利启动以及运行,有利于提高所述雷达的可靠性。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。本发明中所描述的流程图仅仅 为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (36)

  1. 一种雷达供电控制电路,其特征在于,所述供电控制电路连接于电源电路和雷达之间,用于控制对所述雷达的供电,所述电路包括:
    旁路控制电路,连接于所述电源电路和所述雷达之间,用于使所述雷达正常启动;
    限流控制电路,与所述旁路控制电路并联,用于当所述雷达异常时断开所述电源电路与所述雷达之间的连接。
  2. 如权利要求1所述的电路,其特征在于,所述电路还包括:
    主控电路,连接所述旁路控制电路和所述限流控制电路,用于控制所述旁路控制电路和/或所述限流控制电路的导通或关断。
  3. 如权利要求2所述的电路,其特征在于,所述主控电路通过发送旁路使能信号以控制所述旁路控制电路的导通或关断,和/或发送限流使能信号以控制所述限流控制电路的导通或关断。
  4. 如权利要求1所述的电路,其特征在于,当所述雷达上电时,所述旁路控制电路为关断状态,以及所述限流控制电路为导通状态。
  5. 如权利要求4所述的电路,其特征在于,当所述雷达正常上电后,所述旁路控制电路切换为导通状态,所述限流控制电路切换为关断状态。
  6. 如权利要求5所述的电路,其特征在于,所述电路还包括主控电路,所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常上电。
  7. 如权利要求1所述的电路,其特征在于,当所述雷达启动时,所述旁路控制电路为导通状态,以及所述限流控制电路为关断状态。
  8. 如权利要求7所述的电路,其特征在于,当所述雷达正常启动后,所 述限流控制电路切换为导通状态,所述旁路控制电路切换为关断状态。
  9. 如权利要求8所述的电路,其特征在于,所述电路还包括主控电路,所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常启动。
  10. 如权利要求6或9所述的电路,其特征在于,所述模块参数包括工作电压、工作电流、温度中的至少一个。
  11. 如权利要求1所述的电路,其特征在于,当所述雷达正常工作时,所述限流控制电路为导通状态,以及所述旁路控制电路为关断状态。
  12. 如权利要求1所述的电路,其特征在于,所述限流控制电路具有电流阈值,当所述限流控制电路的输出电流大于所述电流阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
  13. 如权利要求1所述的电路,其特征在于,所述限流控制电路具有电压上限阈值和电压下限阈值,当所述限流控制电路的输出电压小于所述电压下限阈值或大于所述电压上限阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
  14. 如权利要求1所述的电路,其特征在于,所述旁路控制电路包括可控开关器件,所述可控开关器件包括MOS管,继电器,模拟开关,控制芯片中的至少一个。
  15. 如权利要求1所述的电路,其特征在于,所述旁路控制电路包括MOS管,当所述MOS管的栅源极电压差满足MOS管开启条件时,所述旁路控制电路为导通状态,否则,所述旁路控制电路为关断状态。
  16. 如权利要求1所述的电路,其特征在于,所述雷达包括激光雷达、毫米波雷达、或超声波雷达。
  17. 如权利要求1所述的电路,其特征在于,所述雷达的数量为多个,所述旁路控制电路与所述限流控制电路的数量与所述雷达的数量相匹配。
  18. 一种供电系统,其特征在于,所述系统包括:
    电源电路,用于提供电源;
    供电控制电路,连接于电源电路和雷达之间,用于控制对所述雷达的供电;其中,所述供电控制电路包括:
    旁路控制电路,连接于所述电源电路和所述雷达之间,用于使所述雷达正常启动;
    限流控制电路,与所述旁路控制电路并联,用于当所述雷达异常时断开所述电源电路与所述雷达之间的连接。
  19. 如权利要求18所述的系统,其特征在于,所述供电控制电路还包括:
    主控电路,连接所述旁路控制电路和所述限流控制电路,用于控制所述旁路控制电路和/或所述限流控制电路的导通或关断。
  20. 如权利要求19所述的系统,其特征在于,所述主控电路通过发送旁路使能信号以控制所述旁路控制电路的导通或关断,和/或发送限流使能信号以控制所述限流控制电路的导通或关断。
  21. 如权利要求18所述的系统,其特征在于,当所述雷达上电时,所述旁路控制电路为关断状态,以及所述限流控制电路为导通状态。
  22. 如权利要求21所述的系统,其特征在于,当所述雷达正常上电后,所述旁路控制电路切换为导通状态,所述限流控制电路切换为关断状态。
  23. 如权利要求22所述的系统,其特征在于,所述电路还包括主控电路, 所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常上电。
  24. 如权利要求18所述的系统,其特征在于,当所述雷达启动时,所述旁路控制电路为导通状态,以及所述限流控制电路为关断状态。
  25. 如权利要求24所述的系统,其特征在于,当所述雷达正常启动后,所述限流控制电路切换为导通状态,所述旁路控制电路切换为关断状态。
  26. 如权利要求25所述的系统,其特征在于,所述电路还包括主控电路,所述主控电路用于获取所述雷达的子模块的模块参数,以确认所述雷达是否正常启动。
  27. 如权利要求23或26所述的系统,其特征在于,所述模块参数包括工作电压、工作电流、温度中的至少一个。
  28. 如权利要求18所述的系统,其特征在于,当所述雷达正常工作时,所述限流控制电路为导通状态,以及所述旁路控制电路为关断状态。
  29. 如权利要求18所述的系统,其特征在于,所述限流控制电路具有电流阈值,当所述限流控制电路的输出电流大于所述电流阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
  30. 如权利要求18所述的系统,其特征在于,所述限流控制电路具有电压上限阈值和电压下限阈值,当所述限流控制电路的输出电压小于所述电压下限阈值或大于所述电压上限阈值时,所述限流控制电路关断,以断开所述电源电路与所述雷达之间的连接。
  31. 如权利要求18所述的系统,其特征在于,所述旁路控制电路包括可控开关器件,所述可控开关器件包括MOS管,继电器,模拟开关,控制芯片中 的至少一个。
  32. 如权利要求18所述的系统,其特征在于,所述旁路控制电路包括MOS管,当所述MOS管的栅源极电压差满足MOS管开启条件时,所述旁路控制电路为导通状态,否则,所述旁路控制电路为关断状态。
  33. 如权利要求18所述的系统,其特征在于,所述雷达包括激光雷达、毫米波雷达、或超声波雷达。
  34. 如权利要求18所述的系统,其特征在于,所述雷达的数量为多个,所述旁路控制电路与所述限流控制电路的数量与所述雷达的数量相匹配。
  35. 一种移动平台,其特征在于,包括:
    雷达;
    以及如权利要求18-34中任一项所述的供电系统;
    动力系统,用于为所述可移动平台提供动力。
  36. 如权利要求35所述的移动平台,其特征在于,所述移动平台为无人飞行器、汽车、移动机器人或手持设备。
PCT/CN2019/070635 2019-01-07 2019-01-07 一种供电控制电路、供电系统及可移动平台 WO2020142869A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/070635 WO2020142869A1 (zh) 2019-01-07 2019-01-07 一种供电控制电路、供电系统及可移动平台
CN201980005636.6A CN111670525B (zh) 2019-01-07 2019-01-07 一种供电控制电路、供电系统及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070635 WO2020142869A1 (zh) 2019-01-07 2019-01-07 一种供电控制电路、供电系统及可移动平台

Publications (1)

Publication Number Publication Date
WO2020142869A1 true WO2020142869A1 (zh) 2020-07-16

Family

ID=71521919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070635 WO2020142869A1 (zh) 2019-01-07 2019-01-07 一种供电控制电路、供电系统及可移动平台

Country Status (2)

Country Link
CN (1) CN111670525B (zh)
WO (1) WO2020142869A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2840439Y (zh) * 2005-10-13 2006-11-22 深圳桑达百利电器有限公司 一种直流电源负载短路自恢复电路
US20110022858A1 (en) * 2009-07-23 2011-01-27 Feeling Technology Corp. Control circuit for power supplying
CN104917283A (zh) * 2014-03-11 2015-09-16 广东易事特电源股份有限公司 一种具有强制旁路保护功能的ups电源
CN204928078U (zh) * 2015-08-11 2015-12-30 国家电网公司 一种设有短路保护电路的智能电能表工作电源
CN107901855A (zh) * 2017-10-31 2018-04-13 吉利汽车研究院(宁波)有限公司 一种车辆雷达电源控制系统及方法
CN108539708A (zh) * 2018-03-15 2018-09-14 陕西斯达防爆安全科技股份有限公司 一种多重的过流过压本安保护电路
CN208334637U (zh) * 2018-06-29 2019-01-04 杭州海康威视数字技术股份有限公司 一种网络摄像机雷达测距装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
CN2659006Y (zh) * 2003-10-13 2004-11-24 重庆先锋电子有限公司 摩托车双路输出调压器
US20090085684A1 (en) * 2007-10-01 2009-04-02 Silicon Laboratories Inc. Low power rtc oscillator
CN101738600B (zh) * 2008-11-14 2012-05-30 武汉大学 高频地波雷达组网的时钟同步控制装置
CN201369698Y (zh) * 2009-03-16 2009-12-23 西安启功电气有限公司 具有智能旁路控制功能的电机软启动器
CN102263402B (zh) * 2010-05-31 2014-11-05 研祥智能科技股份有限公司 一种dc电源的过流保护电路及过流保护方法
CN203180807U (zh) * 2013-01-22 2013-09-04 云南中翼鼎东能源科技开发有限公司 一种高粘物料大扭矩启动装置
CN105656063B (zh) * 2014-12-05 2018-08-14 苏州银蕨电力科技有限公司 一种自适应取能装置及方法
CN105307085B (zh) * 2015-11-05 2019-05-14 深圳市桑达无线通讯技术有限公司 一种可充电的音频放大装置
US10637229B2 (en) * 2016-09-02 2020-04-28 Magna Electronics Inc. Electronic fuse module with built in microcontroller and centralized power management bus
CN109144044A (zh) * 2017-06-28 2019-01-04 深圳灵喵机器人技术有限公司 一种机器人自主导航及运动控制系统与方法
CN108712113A (zh) * 2018-05-04 2018-10-26 云南兆富科技有限公司 一种电机在线软启动装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2840439Y (zh) * 2005-10-13 2006-11-22 深圳桑达百利电器有限公司 一种直流电源负载短路自恢复电路
US20110022858A1 (en) * 2009-07-23 2011-01-27 Feeling Technology Corp. Control circuit for power supplying
CN104917283A (zh) * 2014-03-11 2015-09-16 广东易事特电源股份有限公司 一种具有强制旁路保护功能的ups电源
CN204928078U (zh) * 2015-08-11 2015-12-30 国家电网公司 一种设有短路保护电路的智能电能表工作电源
CN107901855A (zh) * 2017-10-31 2018-04-13 吉利汽车研究院(宁波)有限公司 一种车辆雷达电源控制系统及方法
CN108539708A (zh) * 2018-03-15 2018-09-14 陕西斯达防爆安全科技股份有限公司 一种多重的过流过压本安保护电路
CN208334637U (zh) * 2018-06-29 2019-01-04 杭州海康威视数字技术股份有限公司 一种网络摄像机雷达测距装置

Also Published As

Publication number Publication date
CN111670525A (zh) 2020-09-15
CN111670525B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
US10712433B2 (en) Compact chip scale LIDAR solution
US20210333362A1 (en) Light emitting device, distance measuring device and mobile platform
US20210333370A1 (en) Light emission method, device, and scanning system
WO2021190260A1 (zh) 激光雷达的探测单元、激光雷达及其探测方法
US11567182B2 (en) LiDAR safety systems and methods
WO2020147116A1 (zh) 异常检测方法、报警方法、测距装置及可移动平台
US20210341610A1 (en) Ranging device
WO2020061968A1 (zh) 一种光发射装置及测距装置、移动平台
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
CN111868551A (zh) 测距装置及其扫描机构、控制方法、可移动平台
WO2020142942A1 (zh) 电机的控制方法及其控制器、测距传感器、移动平台
WO2020142869A1 (zh) 一种供电控制电路、供电系统及可移动平台
WO2020142957A1 (zh) 一种测距装置及移动平台
WO2020223879A1 (zh) 一种测距装置及移动平台
WO2020142950A1 (zh) 测距装置的异常记录方法、测距装置及可移动平台
US20210341580A1 (en) Ranging device and mobile platform
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
RU2753616C1 (ru) Система обнаружения препятствия
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2020142956A1 (zh) 用于测距装置的放电电路、分布式雷达系统及可移动平台
CN116784005A (zh) 散热装置、激光雷达、散热控制方法及移动平台
CN113567999A (zh) 一种激光装置和激光雷达系统及其控制方法
US20230084222A1 (en) Sensor device, housing, and cover portion
CN211718524U (zh) 一种可拆卸探测装置及移动平台
CN210142186U (zh) 转发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909559

Country of ref document: EP

Kind code of ref document: A1