WO2020140889A1 - 量化、反量化方法及装置 - Google Patents

量化、反量化方法及装置 Download PDF

Info

Publication number
WO2020140889A1
WO2020140889A1 PCT/CN2019/130400 CN2019130400W WO2020140889A1 WO 2020140889 A1 WO2020140889 A1 WO 2020140889A1 CN 2019130400 W CN2019130400 W CN 2019130400W WO 2020140889 A1 WO2020140889 A1 WO 2020140889A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
parameter
quantization parameter
inverse quantization
current
Prior art date
Application number
PCT/CN2019/130400
Other languages
English (en)
French (fr)
Inventor
余全合
郑建铧
王力强
何芸
Original Assignee
华为技术有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 清华大学 filed Critical 华为技术有限公司
Publication of WO2020140889A1 publication Critical patent/WO2020140889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock

Definitions

  • the present application relates to the field of video encoding and decoding, and more specifically, to quantization and inverse quantization methods and devices.
  • Digital video capabilities can be incorporated into a variety of devices, including digital TVs, digital live broadcast systems, wireless broadcasting systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, electronics Book readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radiotelephones (so-called "smart phones"), video teleconferencing devices, video streaming devices And the like.
  • Digital video devices implement video compression technology, such as advanced video coding (AVC) in MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4 Part 10 Advanced Video Coding
  • AVC advanced video coding
  • HEVC high efficiency video coding
  • Video devices can more efficiently transmit, receive, encode, decode, and/or store digital video information by implementing such video compression techniques.
  • Transform coding as a common compression method, aims to use images with strong spatial correlation, transform the image signal described in the spatial domain into the frequency domain, and encode the transformed coefficients to achieve decorrelation and Energy concentration.
  • quantization technology is usually introduced to further compress the transformation coefficients, thereby reducing the transmission amount of digital video signals.
  • the quantized transform coefficients can be inversely quantized by inverse quantization technology to recover the quantized transform coefficients and reduce the reduced image accuracy in the quantization process.
  • the quantization parameters (QP) used in the traditional quantization process are configured in units of the largest coding unit (LCU), that is, each LCU corresponds to a quantization parameter.
  • LCU largest coding unit
  • the parameter configuration is relatively rough, which limits the quantization effect.
  • the embodiments of the present application provide a quantization method, an inverse quantization method and a device, which are beneficial to improve the quantization effect.
  • the present application provides a quantization method, including: acquiring a size parameter of a current sub-block; and determining a first quantization parameter used when quantizing the current sub-block according to the size parameter of the current sub-block.
  • determining the first quantization parameter according to the size parameter of the current sub-block is beneficial to improve the effect of quantization, and to achieve a certain image accuracy while improving the amount of information that can be compressed during the quantization process. It avoids the traditional quantization parameter and inverse quantization parameter configuration.
  • the corresponding quantization parameter and inverse quantization parameter for each sub-block in the entire LCU are the same. For smaller sub-blocks, if larger quantization/inverse quantization is used Processing the parameters may result in lower precision of the recovered image after quantization and inverse quantization, which reduces user experience. For a subblock with a larger size, if smaller quantization parameters and inverse quantization parameters are used for processing, the amount of information that can be reduced is very limited, which limits the amount of information that can be compressed during the quantization process.
  • the determining the quantization parameter used to quantize the first sub-block according to the size parameter of the current sub-block includes: according to the size parameter of the current sub-block The second quantization parameter of the current sub-block is adjusted to the first quantization parameter, and the second quantization parameter is a quantization parameter corresponding to the largest coding unit LCU where the current sub-block is located.
  • the second quantization parameter is adjusted according to the size parameter of the current sub-block to determine the first quantization parameter, which is compatible with the traditional method for determining the quantization parameter.
  • the first quantization parameter is less than the second quantization parameter, or if the size parameter of the current subblock is less than A second size threshold, then the first quantization parameter is greater than the second quantization parameter, where the first size threshold is greater than or equal to the second size threshold.
  • the first quantization parameter less than the second quantization parameter may be used for quantization to improve the compression rate.
  • the first quantization parameter smaller than the second quantization parameter may be used for quantization, so as to reduce the accuracy loss of the quantization process.
  • the adjusting the second quantization parameter of the current sub-block to the first quantization parameter according to the size parameter of the current sub-block includes: The size parameter and the characteristic parameter of the current sub-block adjust the second quantization parameter to the first quantization parameter, and the characteristic parameter of the current sub-block includes at least one of the following parameters: the current sub-block The type of the frame where it is located and the type of the block where the current sub-block is located.
  • adjusting the second quantization parameter to determine the first quantization parameter according to the size parameter of the current sub-block and the characteristic parameter of the current sub-block is beneficial to improve the rationality of the first quantization parameter.
  • the first quantization determined when the frame to which the current subblock belongs is an I frame
  • the parameter is greater than the first quantization parameter determined when the frame to which the current subblock belongs is a P frame or a B frame.
  • adjusting the second quantization parameter to determine the first quantization parameter is beneficial to achieve a balance between accuracy and compression ratio.
  • the characteristic parameter of the current sub-block includes the type of the block where the current sub-block is located includes a chroma block or a luma block, and the current sub-block is determined when the chroma block is The first quantization parameter is smaller than the first quantization parameter determined when the current sub-block is a luma block.
  • adjusting the second quantization parameter to determine the first quantization parameter according to the size parameter of the current sub-block and the type of the frame where the current sub-block is located is beneficial to achieving a balance between the user's visual experience and compression rate.
  • the characteristic parameter of the current sub-block includes the type of the block where the current sub-block is located includes an intra block or an inter block, and the current sub block is determined when the intra block is an intra block The first quantization parameter is greater than the first quantization parameter determined when the current subblock is an inter block.
  • adjusting the second quantization parameter to determine the first quantization parameter is beneficial to achieving a balance between ensuring prediction accuracy and compression ratio.
  • the present application provides an inverse quantization method, including: obtaining a size parameter of a current subblock; determining a first inverse quantization parameter used for inverse quantization of the current subblock according to the size parameter of the current subblock .
  • determining the first inverse quantization parameter according to the size parameter of the current sub-block is beneficial to improve the effect of inverse quantization, and to achieve a certain image accuracy while improving the amount of information that can be compressed in the quantization process. It avoids the traditional quantization parameter and inverse quantization parameter configuration.
  • the corresponding quantization parameter and inverse quantization parameter for each sub-block in the entire LCU are the same. For smaller sub-blocks, if larger quantization/inverse quantization is used Processing the parameters may result in lower precision of the recovered image after quantization and inverse quantization, which reduces user experience. For a subblock with a larger size, if smaller quantization parameters and inverse quantization parameters are used for processing, the amount of information that can be reduced is very limited, which limits the amount of information that can be compressed during the quantization process.
  • the determining the inverse quantization parameter used to quantize the first subblock according to the size parameter of the current subblock includes: according to the size parameter of the current subblock, The second inverse quantization parameter of the current subblock is adjusted to the first inverse quantization parameter, and the second inverse quantization parameter is the inverse quantization parameter corresponding to the largest coding unit LCU where the current subblock is located.
  • adjusting the second inverse quantization parameter to determine the first inverse quantization parameter according to the size parameter of the current sub-block is compatible with the traditional method for determining the quantization parameter.
  • the first inverse quantization parameter is greater than the second inverse quantization parameter, or if the size of the current sub-block If the parameter is less than the second size threshold, the first quantization parameter is less than the second quantization parameter, where the first size threshold is greater than or equal to the second size threshold.
  • the first inverse quantization parameter with the larger second inverse quantization parameter may be used for quantization to match the first quantization parameter, which is beneficial to improve the quantization process. Compression ratio.
  • the first inverse quantization parameter smaller than the second inverse quantization parameter may be used for quantization to match the first quantization parameter to reduce the accuracy loss in the quantization process.
  • the adjusting the second inverse quantization parameter of the current subblock to the first inverse quantization parameter according to the size parameter of the current subblock includes: according to the current subblock The size parameter of the block and the characteristic parameter of the current sub-block adjust the second inverse quantization parameter to the first inverse quantization parameter, and the characteristic parameter of the current sub-block includes at least one of the following parameters: The type of the frame where the current sub-block is located and the type of the block where the current sub-block is located.
  • adjusting the second inverse quantization parameter to determine the first inverse quantization parameter according to the size parameter of the current subblock and the characteristic parameter of the current subblock is beneficial to improving the rationality of the first inverse quantization parameter.
  • the first inversion determined when the frame to which the current sub-block belongs is an I frame
  • the quantization parameter is smaller than the first inverse quantization parameter determined when the frame to which the current subblock belongs is a P frame or a B frame.
  • adjusting the second inverse quantization parameter to determine the first inverse quantization parameter according to the size parameter of the current subblock and the type of the frame where the current subblock is located is beneficial to achieving a balance between accuracy and compression ratio.
  • the characteristic parameter of the current sub-block includes the type of the block where the current sub-block is located includes a chroma block or a luma block, and the current sub-block is determined when the chroma block is The first inverse quantization parameter is greater than the first inverse quantization parameter determined when the current sub-block is a luma block.
  • the second inverse quantization parameter is adjusted to determine the first inverse quantization parameter.
  • the characteristic parameter of the current sub-block includes the type of the block where the current sub-block is located includes an intra block or an inter block, and the current sub block is determined when the intra block is an intra block
  • the first inverse quantization parameter is smaller than the first inverse quantization parameter determined when the current subblock is an inter block.
  • adjusting the second quantization parameter to determine the first quantization parameter is beneficial to achieving a balance between ensuring prediction accuracy and compression ratio.
  • a quantization device including a module for performing any possible implementation manner of the first aspect.
  • the quantization device may include: an acquisition module and a processing module.
  • an inverse quantization device including a module for performing any possible implementation manner of the second aspect.
  • the inverse quantization device may include: an acquisition module and a processing module.
  • an encoding device including: a memory and a processor coupled to each other, the processor calling program code stored in the memory to perform any possible implementation of the first aspect and the second aspect the way.
  • a decoding device including: a memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform any possible implementation manner of the second aspect.
  • a computer program product includes: computer program code, which, when the computer program code runs on a computer, causes the computer to execute the methods in the above aspects.
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, which is not done in the embodiments of the present application Specific restrictions.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer is caused to execute the method in the above aspects.
  • a chip system in a ninth aspect, includes a processor for quantizing a device to implement the functions involved in the above aspects, for example, generating, receiving, sending, or processing data and/or data involved in the above method. Or information.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • a chip system in a tenth aspect, includes a processor for supporting an inverse quantization device to implement the functions involved in the above aspects, for example, generating, receiving, sending, or processing data involved in the above method And/or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • a larger quantization parameter indicates a lower quantization degree
  • a smaller quantization parameter indicates a greater quantization degree
  • FIG. 1 is a block diagram of an example of a video encoding and decoding system 10 for implementing embodiments of the present application.
  • FIG. 2 is a block diagram of an example of a video coding system 40 for implementing an embodiment of the present application.
  • FIG. 3 is a block diagram of an example structure of the encoder 20 for implementing the embodiment of the present application.
  • FIG. 4 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present application.
  • FIG. 5 is a block diagram of an example of a video decoding device 400 for implementing embodiments of the present application.
  • FIG. 6 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a quantization method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a manner of dividing size parameters of an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an inverse quantization method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a quantization device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an inverse quantization device according to an embodiment of the present application.
  • the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include a step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
  • Video coding as used herein means video coding or video decoding.
  • Video encoding is performed on the source side and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the “encoding” of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • the video sequence includes a series of pictures, the picture is further divided into slices, and the slices are further divided into blocks.
  • Video coding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • MB macroblock
  • the macroblock can be further divided into multiple prediction blocks (partitions) that can be used for predictive coding.
  • HEVC high-efficiency video coding
  • the basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted.
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • a variety of block units are divided and described using a new tree-based structure.
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CUs can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and coding the encoded image.
  • the maximum coding unit LCU includes two chroma sub-blocks and one luma sub-block.
  • PU can correspond to the prediction block and is the basic unit of predictive coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • the TU can correspond to the transform block and is the basic unit for transforming the prediction residual. However, regardless of CU, PU or TU, they all belong to the concept of block (or image block) in essence.
  • the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
  • a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
  • Each CU can be further split into one, two, or four PUs according to the PU split type.
  • the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
  • the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
  • quad-tree and binary-tree (Quad-tree and binary tree, QTBT) split frames are used to split the coding blocks.
  • the CU may have a square or rectangular shape.
  • the image block to be encoded in the current encoded image may be referred to as the current block.
  • the current block in encoding, it refers to the block currently being encoded; in decoding, it refers to the block currently being decoded.
  • the current sub-block can be understood as the sub-block currently being encoded during the encoding process; and can be understood as the sub-block currently being decoded during the decoding process.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
  • further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
  • Several video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of a video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
  • the encoder side usually processes the encoded video at the block (video block) level.
  • the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra prediction and inter prediction) and/or reconstruction for processing, ie, encoding subsequent blocks.
  • FIG. 1 exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
  • Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
  • FIG. 1 depicts source device 12 and destination device 14 as separate devices
  • device embodiments may also include both source device 12 and destination device 14 or the functionality of both, ie source device 12 or corresponding And the destination device 14 or the corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20.
  • the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture pre-processor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • Picture source 16 which can include or can be any kind of picture capture device, for example to capture real-world pictures, and/or any kind of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (eg, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated memory integrated in the source device .
  • the interface When the picture source 16 includes an interface, the interface may exemplarily be an external interface that receives pictures from an external video source, and the external video source may exemplarily be an external picture capture device, such as a camera, external memory, or external picture generation device, external pictures
  • the generating device may be, for example, an external computer graphics processor, computer, or server.
  • the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of picture elements.
  • the pixels in the array can also be called sampling points.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the array or picture defines the size and/or resolution of the picture.
  • three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
  • the picture includes corresponding red, green, and blue sampling arrays.
  • each pixel is usually expressed in a luminance/chrominance format or color space. For example, for a picture in YUV format, it includes the luminance component indicated by Y (sometimes also indicated by L) and the two indicated by U and V. Chroma components.
  • the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
  • the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color toning, or denoising.
  • the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 using a related prediction mode (such as the prediction mode in various embodiments herein), thereby
  • the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 3 or FIG. 5 or FIG. 6).
  • the encoder 20 may be used to execute various embodiments described below to implement the application of the quantization and inverse quantization methods described in this application on the encoding side.
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
  • the other device may be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, and the storage device may be an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 through the link 13 between the source device 12 and the destination device 14 or through any type of network.
  • the link 13 can be a direct wired or wireless connection, any
  • the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private network and public network, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
  • the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 4 or FIG. 5 or FIG. 6 Structural details).
  • the decoder 30 may be used to execute various embodiments described below to implement the application of the inverse quantization method described in the present application on the decoding side.
  • the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to post-process the image data 33 Transmitted to the display device 34.
  • the display device 34 is used to receive post-processed picture data 33 to display pictures to a user or viewer, for example.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital light processor (digital light processor, DLP) or any other type of display.
  • FIG. 1 depicts source device 12 and destination device 14 as separate devices
  • device embodiments may also include the functionality of source device 12 and destination device 14 or both, ie source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • handheld or stationary devices such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate array
  • the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the technology of the present application . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1 is only an example, and the technology of the present application can be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (eg, video encoding or video decoding).
  • data may be retrieved from local storage, streamed on the network, and so on.
  • the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
  • FIG. 2 is an explanatory diagram of an example of a video decoding system 40 including the encoder 20 of FIG. 3 and/or the decoder 30 of FIG. 2 according to an embodiment of the present application.
  • the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
  • the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
  • the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may be implemented by the processing unit 46.
  • the processing unit 46 may include ASIC logic, a graphics processor, a general-purpose processor, and the like.
  • the video decoding system 40 may also include an optional processor 43, which may similarly include ASIC logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, etc., and the processor 43 may be implemented by general-purpose software, an operating system, or the like.
  • the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • non-volatile Memory for example, flash memory, etc.
  • the memory 44 may be implemented by cache memory.
  • the logic circuit 47 can access the memory 44 (eg, for implementing an image buffer).
  • the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers, etc.
  • the encoder 20 implemented by logic circuits may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 3 and/or any other encoder system or subsystem described herein.
  • Logic circuits can be used to perform the various operations discussed herein.
  • decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 4 and/or any other decoder systems or subsystems described herein.
  • the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 4 and/or any other decoder system or subsystem described herein.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data defining the code segmentation).
  • the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
  • encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
  • the quantization and inverse quantization methods described in the embodiments of the present application are present in both the encoder 20 and the decoder 30, where the encoder 20 and the decoder 30 in the embodiments of the present application may be, for example, H.263, H. 264, HEVC, MPEG-2, MPEG-4, VP8, VP9 and other video standard protocols or next-generation video standard protocols (such as H.266, etc.) corresponding codec/decoder.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
  • the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 3 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, the heavy
  • the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form a backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path for the decoder (see decoder 30 in FIG. 4).
  • the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, a picture in a picture sequence forming a video or a video sequence.
  • the image block 203 may also be called a current picture block or a picture block to be encoded
  • the picture 201 may be called a current picture or a picture to be encoded (especially when the current picture is distinguished from other pictures in video encoding, the other pictures are the same video sequence, for example That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
  • An embodiment of the encoder 20 may include a division unit (not shown in FIG. 3) for dividing the picture 201 into a plurality of blocks such as an image block 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and corresponding grids that define the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
  • image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
  • the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of black and white pictures 201) or three sampling arrays (for example, one brightness array and two chromaticity arrays in the case of color pictures) or An array of any other number and/or category depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 3 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
  • the transform coefficient 207 may also be called a transform residual coefficient, and represents a residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
  • the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost, and so on.
  • a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and a corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting quantization parameters (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
  • QP quantization parameters
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • a suitable quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
  • larger quantization parameters may correspond to coarse quantization (larger quantization step size)
  • the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using a fixed-point approximation including an equation of division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in fixed-point approximation of the equations for quantization step size and quantization parameter.
  • the scale of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • Y represents the above-mentioned transform coefficient to be quantized
  • Q(qp) represents the quantization parameter corresponding to the index qp
  • C Q represents the quantized transform coefficient
  • F represents the transform block area
  • n represents the bit width of the residual (transformation coefficient).
  • the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
  • the inverse quantized coefficient 211 may also be referred to as an inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
  • C Q represents the quantized transform coefficient
  • DQ(qp) represents the inverse quantization parameter corresponding to the index qp
  • F represents the logarithm value of the transform block area
  • n represents the residual
  • shift(qp) indicates the offset corresponding to the index qp.
  • the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), in the sample domain
  • the inverse transform block 213 is obtained.
  • the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
  • the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
  • a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
  • the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 3) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 3) as an input or basis for intra prediction 254.
  • the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as the filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
  • Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy encoding unit outputs after entropy encoding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (decoded picture buffer, DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access memory, DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • MRAM magnetoresistive RAM
  • RRAM resistive RAM
  • the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode eg, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • An embodiment of the mode selection unit 262 may be used to select a prediction mode (for example, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
  • the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related bit rate distortion at least meets the prediction mode selection criteria .
  • RDO rate distortion optimization
  • the entropy coding unit 270 is used to convert the entropy coding algorithm or scheme (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Coding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval partition entropy (probability interval interpartitioning entropy, PIPE) coding or other entropy Coding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters, and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
  • VLC variable length coding
  • CABAC context adaptive binary arithmetic) Coding
  • SBAC syntax-based context-adaptive binary arithmetic
  • the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • video encoder 20 may be used to encode video streams.
  • the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the quantization and inverse quantization methods described in the embodiments below.
  • the quantization unit 208 in the encoder 20 may perform the quantization method in the embodiment of the present application
  • the inverse quantization unit 210 in the encoder 20 may determine the inverse quantization parameter (for example, inverse quantization step size) in the embodiment of the present application. And implement the inverse quantization method.
  • the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
  • FIG. 4 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
  • the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
  • encoded picture data eg, encoded bitstream
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform a decoding pass that is generally inverse to the encoding pass described with reference to video encoder 20 of FIG. 3.
  • the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 4), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
  • the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110
  • the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212
  • the reconstruction unit 314 may be functionally the same as the reconstruction unit 214
  • the buffer 316 may be functionally
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and to receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
  • the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter prediction unit 344 eg, motion compensation unit
  • Other syntax elements generate a prediction block 365 for the video block of the current video slice.
  • a prediction block may be generated from a reference picture in a reference picture list.
  • the video decoder 30 may construct the reference frame lists: list 0 and list 1 based on the reference pictures stored in the DPB 330 using default construction techniques.
  • the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (eg, intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
  • the prediction mode eg, intra or inter prediction
  • the inter prediction slice type For example, B slice, P slice, or GPB slice
  • the syntax elements received by the video decoder 30 from the bitstream include an adaptive parameter set (adaptive parameter set, APS), a sequence parameter set (SPS), and a picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
  • an adaptive parameter set adaptive parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients to generate a residual block in the pixel domain.
  • an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
  • the reconstruction unit 314 (eg, summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example by The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
  • the loop filter unit 320 (during the encoding cycle or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, self-adaptive filters Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 4, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • video decoder 30 may be used to decode the compressed bitstream.
  • the decoder 30 may generate the output video stream without the loop filter unit 320.
  • the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the inverse quantization method described in the embodiments below. Specifically, the decoder 30 may perform the inverse quantization method of the embodiment of the present application through the inverse quantization unit 310.
  • video decoder 30 may be used to decode the encoded video bitstream.
  • the video decoder 30 may generate an output video stream without processing by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and for lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
  • the inter prediction unit and the intra prediction unit may be selectively enabled.
  • FIG. 5 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
  • the video coding device 400 is suitable for implementing the embodiments described herein.
  • the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1) or a video encoder (eg, encoder 20 of FIG. 1).
  • the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1 or the encoder 20 of FIG. 1 described above.
  • the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor for processing data, a logic unit or a central processing unit (CPU) 430, and a transmitter unit for transmitting data (Tx) 440 and exit port 450, and a memory 460 for storing data.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
  • the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments applied in this document to implement the chroma block prediction method provided in the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid-state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, as well as instructions and data read during program execution.
  • the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
  • FIG. 6 is a simplified block diagram of an apparatus 500 that can be used as any one or both of the source device 12 and the destination device 14 in FIG. 1 according to an embodiment of the present application.
  • the device 500 can implement the technology of the present application.
  • FIG. 6 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
  • the memory of the decoding device stores the program code
  • the processor can call the program code stored in the memory to perform various video encoding or decoding methods, especially the quantization method and the inverse quantization method in the embodiments of the present application.
  • various video encoding or decoding methods especially the quantization method and the inverse quantization method in the embodiments of the present application.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). , Off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
  • the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535, and the application program 535 includes at least one program that allows the processor 510 to perform the video encoding or decoding method described in this application (in particular, the quantization method and inverse quantization method described in this application).
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video decoding application) that performs the video encoding or decoding method described in this application.
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clarity, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may also include one or more output devices, such as a display 570.
  • the display 570 may be a tactile display that combines the display with a tactile unit that operably senses touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • a sub-block with a larger size corresponds to a region with a flat texture in the image
  • a sub-block with a smaller size corresponds to a region with a more complicated texture in the image.
  • the corresponding quantization parameter and inverse quantization parameter of each sub-block in the entire LCU are the same.
  • Processing may result in lower precision of the recovered image after quantization and inverse quantization, which reduces user experience.
  • the amount of information that can be reduced is very limited, which limits the amount of information that can be compressed during the quantization process.
  • the present application provides a configuration method for determining the quantization parameter and the inverse quantization parameter based on the size of the sub-block.
  • the schematic flowchart of the quantization method according to the embodiment of the present application is described in detail below with reference to FIG. 7. It should be noted that the quantization method shown in FIG. 7 may be performed by the above encoding device, for example, may be performed by the quantization unit in the encoding device.
  • the method shown in FIG. 7 includes steps 610 to 620.
  • the above size parameter may include at least one of the following parameters: the length of the sub-block, the width of the sub-block, and the area of the sub-block.
  • the above-mentioned size parameter may be determined according to the division information of each sub-block, for example, the size parameter of each sub-block is stored in the division information of the sub-block.
  • the above-mentioned first quantization parameter may include a quantization parameter such as a quantization step size, a quantization coefficient, etc. used to quantize the current sub-block.
  • the value of the first quantization parameter may be inversely related to the change of the size parameter of the sub-block, that is, the value of the first quantization parameter decreases and increases as the size parameter of the sub-block increases.
  • the pre-configured first quantization parameter may be used to quantize the current sub-block.
  • determining the first quantization parameter according to the size parameter of the current sub-block is beneficial to improve the effect of quantization, and to achieve a certain image accuracy while improving the amount of information that can be compressed during the quantization process. It avoids the traditional quantization parameter and inverse quantization parameter configuration.
  • the corresponding quantization parameter and inverse quantization parameter for each sub-block in the entire LCU are the same. For smaller sub-blocks, if larger quantization/inverse quantization is used Processing the parameters may result in lower precision of the recovered image after quantization and inverse quantization, which reduces user experience. For a subblock with a larger size, if smaller quantization parameters and inverse quantization parameters are used for processing, the amount of information that can be reduced is very limited, which limits the amount of information that can be compressed during the quantization process.
  • the conventional configuration method of the quantization parameter described above can also be used in combination with the method of determining the first quantity parameter provided by the embodiment of the present application, to simplify the complexity of configuring the quantization parameter of the embodiment of the present application. That is, according to the size parameter of the current sub-block, the quantization parameter (ie, the second quantization parameter) corresponding to the LCU where the sub-block is located is adjusted to obtain the first quantization parameter.
  • the quantization parameter ie, the second quantization parameter
  • Adjusting the second quantization parameter above to obtain the first quantization parameter may include increasing the second quantization parameter to obtain the first quantization parameter, may also include decreasing the second quantization parameter to obtain the first quantization parameter, and may also include The second quantization parameter is determined as the first quantization parameter, that is, the second quantization parameter may be equal to the first quantization parameter.
  • the size parameter of a sub-block in an LCU may be inversely related to the amount of change between the first quantization parameter and the second quantization parameter, that is, the larger the size parameter of the sub-block in an LCU, the first quantization parameter is The greater the degree of reduction on the basis of the second quantization parameter, that is, the smaller the quantization degree, the smaller the size parameter of the sub-block in the first LCU, and the smaller the change of the first quantization parameter from the second quantization parameter.
  • the second quantization parameter may be greater than the first quantization parameter, in which case the degree of quantization is approximately large.
  • the second quantization parameter may be adjusted to the first quantization parameter by comparing the size threshold with the size parameter of the current sub-block, where the number of the size threshold may be one or more, as described in detail below.
  • the first quantization parameter is less than the second quantization parameter, and/or if the size parameter of the current subblock is less than the second size Threshold, then the first quantization parameter is greater than the second quantization parameter, wherein the first size threshold is greater than or equal to the second size threshold.
  • first size threshold is equal to the second size threshold
  • first size threshold and the second size threshold are one size threshold.
  • first size threshold is greater than the second size threshold, it can be understood that the first size threshold and the second size threshold are two different thresholds.
  • first size threshold and second size threshold may be used alone or in combination. If the size parameter of the current sub-block is greater than the first size threshold, the second quantization parameter is adjusted to the first quantization parameter. Correspondingly, if the size parameter of the current sub-block is less than or equal to the first size threshold, the second size threshold can be directly used as the first size threshold. Alternatively, in combination with the second size threshold, the first quantization parameter is adjusted to obtain the second quantization parameter.
  • the second quantization parameter is adjusted to the first quantization parameter.
  • the second size threshold can be directly used as the first size threshold.
  • the first quantization parameter is adjusted to obtain the second quantization parameter.
  • the comparison result between the size parameter of the current sub-block and the above two thresholds can be divided into three cases.
  • the size parameter of the current sub-block is greater than the first size threshold
  • the size parameter of the current sub-block is smaller than the first size threshold and greater than the second size threshold
  • the size parameter of the current sub-block is smaller than the second size parameter threshold.
  • the size parameter of the sub-block may be further refined Points, for example, are represented by 4 size thresholds.
  • the existing quantization parameter is either not configured to the value of the quantization parameter that can match the current sub-block whose size parameter is too large, or is not configured to match If the value of the quantization parameter matching the current sub-block whose size is too small is singular, for these two special cases, in order to simplify the process of obtaining the first quantization parameter, the second quantization parameter may be directly used as the first quantization parameter.
  • a third size threshold and a fourth size threshold may be added on the basis of the above two size thresholds (see FIG. 8), that is, the second quantization parameter is adjusted by using four size thresholds.
  • the third size threshold may be the upper limit threshold corresponding to the adjustment method (710) of reducing the second quantization parameter to obtain the first quantization parameter, that is, if the size parameter of the current sub-block is greater than the third size threshold, it may be The second quantization parameter is directly used as the first quantization parameter.
  • the fourth size threshold may be the lower threshold corresponding to the adjustment method (720) in which the second quantization parameter is increased to obtain the first quantization parameter, that is, if the size parameter of the current sub-block is less than the fourth size threshold, the The second quantization parameter is used as the first quantization parameter.
  • the adjustment method 710 and the adjustment method 720 are subdivided into different The size level (or size interval) of the corresponding sub-blocks at different size levels correspond to different quantization parameters, which is not specifically limited in this embodiment of the present application.
  • the quantization parameter corresponding to the index decreases.
  • the first quantization parameter increases as the index offset ⁇ increases.
  • Y represents the transform coefficient corresponding to the current sub-block
  • Q(qp' 1 ) represents the quantization parameter corresponding to the index qp' 1
  • C Q represents the quantized transform coefficient corresponding to the current sub-block
  • r represents the middle limit bit width
  • F represents the logarithmic value of the sub-area of the transform block
  • n represents the bit width of the residual (transformation coefficient)
  • Table 1 shows the correspondence between partial quantization parameters and indexes in the quantization parameter table.
  • Table 2 shows the correspondence between different subblock size parameters and index offsets.
  • the size intervals (or area intervals) of sub-blocks corresponding to different levels are different.
  • the size interval of level 0 includes coding units greater than or equal to 16 and less than 64 coding units, and the index offset corresponding to level 0
  • the quantity is 0, that is, the first quantization parameter corresponding to the sub-block whose size parameter belongs to level 0 is the same as the second quantization parameter.
  • the size interval of level 1 includes coding units greater than or equal to 64 and coding units less than 256, and the index offset corresponding to level 1 is -2.
  • the size interval of level 2 includes coding units greater than 256 and coding units less than 512, and the index offset corresponding to level 2 is -3.
  • the first quantization parameter of the current sub-block The index is 5.
  • the first quantization parameter may also be determined in combination with other characteristic parameters of the sub-block.
  • the other characteristic parameters of the above sub-block may include one or more of the type of the frame where the current sub-block is located and the type of the block where the current sub-block is located, where the type of the frame where the current sub-block is located includes I frame, P frame and B frame ,
  • the type of the block where the current subblock is located includes a chroma block or a luma block
  • the type of the block where the current subblock is located can also include the prediction type of the block, or the type of the prediction block where the subblock is located, including inter blocks and intra blocks . In the following, they will be introduced in combination with the above three characteristic parameters.
  • Combination Method 1 The size parameter is combined with the type of the frame where the current sub-block is located.
  • I frame also known as intra-coded frame, is an independent frame with all the information. It can be decoded independently without referring to other images. It can be simply understood as a static picture.
  • the first frame in the video sequence is always an I frame because it is a key frame.
  • P-frames are also called inter-frame predictive coded frames. You need to refer to the previous I-frames to encode, which means the difference between the current frame and the previous frame (the previous frame may be an I-frame or a P-frame). When decoding, you need to use the previously buffered pictures to superimpose the differences defined in this frame to generate the final picture.
  • B frame is also called bidirectional predictive coded frame.
  • B frame records the difference between the current frame and the front and back frames. That is to say, to decode B frame, not only to obtain the cached picture before, but also to decode the picture after, through the The superimposition of this frame data obtains the final picture.
  • the accuracy requirements for I-frames are higher than those for P-frames and B-frames. Therefore, larger quantization parameters can be configured for sub-blocks in I-frames to reduce The resulting loss in accuracy, and the sub-blocks in P and B frames can be configured with smaller quantization parameters to improve the compression rate.
  • the first quantization parameter determined when the frame to which the current subblock belongs is an I frame is greater than the current subblock
  • the first quantization parameter determined when the belonging frame is a P frame or a B frame.
  • the larger the quantization parameter the smaller the quantization degree, and the higher the accuracy after quantization.
  • Table 3 shows a possible implementation manner of the index offset configuration table based on the combination 1.
  • the frame types to which they belong are different, and the offsets are also different.
  • the size interval of the current subblock is level 1 and the index of the second quantization parameter of the current subblock is 3, based on the correspondence between the quantization parameter and the index shown in Table 1, the frame type to which the current subblock belongs is I frame At this time, the index of the first quantization parameter of the current sub-block is 1.
  • the index of the first quantization parameter of the current subblock is 6.
  • the above only introduces an index offset for distinguishing the sub-blocks on the I frame from the other frames (P frame and B frame).
  • it may further correspond to other frames
  • the index offset of is subdivided, that is, the index offset corresponding to the subblocks located on the P frame and the B frame may also be different.
  • the index offsets corresponding to the subblocks located on the P frame and the B frame may be the same.
  • Combination method 2 The size parameter is combined with the type of the block where the current sub-block is located.
  • the type of the block includes a chroma block or a luma block.
  • the sensitivity of the human eye to color is lower than the sensitivity to brightness.
  • the type of the block where the current sub-block is located includes a chroma block or a luma block, and the first quantization parameter determined when the current sub-block is a chroma block is smaller than when the current sub-block is a luma block The determined first quantization parameter.
  • Table 4 shows a possible implementation manner of the index offset configuration table based on the combination method 2.
  • Table 4 for sub-blocks whose size interval is at the same level, different types of blocks correspond to different offsets.
  • the block type of the block where the current sub-block is located is brightness
  • the index of the first quantization parameter of the current sub-block is 1.
  • the index of the first quantization parameter of the current sub-block is 6.
  • Combination Mode 3 The size parameter is combined with the type of the prediction block where the current sub-block is located, and the type of the prediction block includes an inter block and an intra block.
  • the accuracy of intra blocks is required to be higher than that of inter blocks. Therefore, in order to achieve a balance between compression rate and prediction accuracy, it is possible to configure smaller quantization parameters for inter blocks to ensure the compression of inter blocks. Rate, configure larger quantization parameters for intra blocks to ensure the prediction accuracy of intra blocks.
  • the type of the block where the current subblock is located includes an intra block or an inter block
  • the first quantization parameter determined when the current sub block is an intra block is greater than that the current sub block is an inter block The first quantization parameter determined in the case.
  • Table 5 shows a possible implementation manner of the index offset configuration table based on combination mode 3.
  • Table 5 shows a possible implementation manner of the index offset configuration table based on combination mode 3.
  • Table 5 for sub-blocks whose size interval is at the same level, different types of blocks correspond to different offsets.
  • the size of the current subblock corresponds to the size interval of level 1
  • the index of the second quantization parameter of the current subblock is 3, based on the correspondence between the quantization parameter and the index shown in Table 1, the block type of the block where the current subblock is located When it is an intra block, the index of the first quantization parameter of the current sub-block is 1.
  • the index of the first quantization parameter of the current sub-block is 6.
  • the size parameter of the sub-block may be combined with one or more of the above three characteristic parameters at one or more levels.
  • the index offset is determined in combination with the frame type in level 1, and the index offset is determined in combination with the prediction block type in level 2, that is, Table 2 and Table 3 are combined.
  • the index offset may be determined in combination with the prediction block type and the frame type in level 1 and level 2, which is not specifically limited in this embodiment of the present application.
  • sub-block characteristics are collectively referred to as “sub-block characteristics” here.
  • One or more parameters in different sub-block characteristics are different, and different sub-block characteristics may correspond to one Index offset, but different sub-block characteristics may correspond to the index offset may be the same or different.
  • Table 6 shows a possible implementation manner of the index offset configuration table based on sub-block characteristics.
  • Table 6 it can be seen that for the sub-blocks on the P frame, regardless of the block type, the second quantization parameter corresponding to the sub-block is directly used as the first quantization parameter.
  • the index offset between the index of the second quantization parameter and the index of the first quantization parameter is a fixed value (-6) regardless of the block type.
  • the index offset between the index of the second quantization parameter and the index of the first quantization parameter is a fixed value (2)
  • the index offset between the index of the second quantization parameter and the index of the first quantization parameter of the sub-block whose size parameter is level 0 is 2, and the size parameter is level 1
  • the index offset between the index of the second quantization parameter of the sub-block and the index of the first quantization parameter is -3.
  • sub-blocks not shown in Table 6 may directly use the second quantization parameter as the first quantization parameter, or may determine the index offset according to other configuration methods, which is not limited in this embodiment of the present application.
  • the inverse quantization method of the embodiment of the present application will be described below based on the quantization method shown in FIG. 7 with reference to FIG. 8. It should be noted that the quantization and inverse quantization processes are a set of corresponding processing procedures.
  • the quantization parameters used in the quantization process correspond to the inverse quantization parameters used in the inverse quantization process, that is, the index corresponding to the inverse quantization parameter corresponds to the quantization parameter.
  • the indexes are the same, or the inverse quantization parameters are determined according to the quantization parameters. Since there is a corresponding relationship between the quantization parameter and the inverse quantization parameter, after adjusting the quantization parameter, the inverse quantization parameter also needs to be adjusted.
  • the following dequantization parameter adjustment process can be determined by referring to the above quantization parameter adjustment process.
  • the index offsets shown in Tables 2 to 6 can be understood as taking the index of the second dequantization parameter as a reference, using To determine the index offset of the index of the first inverse quantization parameter.
  • the quantization parameter table shown in Table 1 may be different from the inverse quantization parameter table queried in the following dequantization process, but it may be two tables with corresponding relationships, or, in the two tables with corresponding relationships , The same quantization parameter and inverse quantization parameter with the same index have a corresponding relationship.
  • FIG. 9 is a schematic flowchart of an inverse quantization method according to an embodiment of the present application.
  • the method shown in FIG. 9 may be performed by an encoding device or a decoding device. Specifically, it may be performed by an inverse quantization unit in the encoding device, or may be performed by an inverse quantization unit in the decoding device.
  • the method shown in FIG. 9 includes step 810 and step 820.
  • the above size parameter may include at least one of the following parameters: the length of the sub-block, the width of the sub-block, and the area of the sub-block.
  • the above steps 610 and 810 may be one step, which may be respectively in the quantization process and the inverse quantization process
  • the steps to be executed are not limited in this embodiment of the present application.
  • the above-mentioned first inverse quantization parameter may include an inverse quantization parameter such as an inverse quantization step size, an inverse quantization coefficient, etc. used to inverse quantize the current sub-block.
  • the above first inverse quantization parameter corresponds to the above first quantization parameter.
  • step 820 includes: adjusting the second dequantization parameter of the current subblock to the first dequantization parameter according to the size parameter of the current subblock, and the second dequantization parameter is the current The inverse quantization parameter corresponding to the largest coding unit LCU where the sub-block is located.
  • Adjusting the second inverse quantization parameter to obtain the first inverse quantization parameter may include increasing the second inverse quantization parameter to obtain the first inverse quantization parameter, or may include decreasing the second inverse quantization parameter to obtain the first inverse quantization parameter , May also include determining the second inverse quantization parameter as the first inverse quantization parameter, that is, the second inverse quantization parameter may be equal to the first inverse quantization parameter.
  • the above second inverse quantization parameter and the above second quantization parameter are both the quantization parameter and the inverse quantization parameter for the LCU, therefore, the second inverse quantization parameter corresponds to the second quantization parameter.
  • the first inverse quantization parameter is greater than the second inverse quantization parameter, and/or if the size parameter of the current sub-block is less than the first Two size threshold, then the first quantization parameter is smaller than the second quantization parameter, where the first size threshold is greater than or equal to the second size threshold.
  • first size threshold is equal to the second size threshold
  • first size threshold and the second size threshold are one size threshold.
  • first size threshold is greater than the second size threshold, it can be understood that the first size threshold and the second size threshold are two different thresholds.
  • first size threshold and second size threshold may be used alone or in combination. If the size parameter of the current sub-block is greater than the first size threshold, the second dequantization parameter is adjusted to the first dequantization parameter. Correspondingly, if the size parameter of the current sub-block is less than or equal to the first size threshold, the second size threshold can be directly used as the first size threshold. Alternatively, in combination with the second size threshold, the first inverse quantization parameter is adjusted to obtain the second inverse quantization parameter.
  • the second dequantization parameter is adjusted to the first dequantization parameter.
  • the second size threshold can be directly used as the first size threshold.
  • the first inverse quantization parameter is adjusted to obtain the second inverse quantization parameter.
  • the comparison result between the size parameter of the current sub-block and the above two thresholds can be divided into three cases.
  • the size parameter of the current sub-block is greater than the first size threshold
  • the size parameter of the current sub-block is smaller than the first size threshold and greater than the second size threshold
  • the size parameter of the current sub-block is smaller than the second size parameter threshold.
  • the size parameter of the sub-block may further be Perform subdivision, for example, through 4 size thresholds.
  • the existing inverse quantization parameter is either not configured to the value of the inverse quantization parameter that can match the current sub-block whose size parameter is too large, or is not configured to The value of the inverse quantization parameter that can be matched with the current subblock whose size is too small is singular.
  • the second inverse quantization parameter can be directly used as the first inverse quantization parameter. Quantization parameters.
  • a third size threshold and a fourth size threshold may be added on the basis of the above two size thresholds (see FIG. 8), that is, the second inverse quantization parameter is adjusted by using four size thresholds.
  • the third size threshold may be the upper limit threshold corresponding to the adjustment method (710) of increasing the second inverse quantization parameter to obtain the first inverse quantization parameter, that is, if the size parameter of the current sub-block is greater than the third size threshold ,
  • the second inverse quantization parameter can be directly used as the first inverse quantization parameter.
  • the fourth size threshold may be the lower threshold corresponding to the adjustment method (720) of reducing the second inverse quantization parameter to obtain the first inverse quantization parameter, that is, if the size parameter of the current sub-block is less than the fourth size threshold, it may be directly
  • the second inverse quantization parameter is used as the first inverse quantization parameter.
  • the adjustment method 710 and the adjustment method 720 are subdivided into different The size level (or size interval) of the corresponding sub-blocks at different size levels correspond to different inverse quantization parameters, which is not specifically limited in this embodiment of the present application.
  • C Q represents the quantized transform coefficient corresponding to the current sub-block
  • DQ (qp 2 ') represents the inverse quantization parameter corresponding to the index qp 2
  • F represents the transform block area
  • n represents the bit width of the residual (transformation coefficient)
  • shift(qp 2 ') represents the offset corresponding to the index qp 2 '.
  • the first inverse quantization parameter may also be determined in combination with other characteristic parameters of the sub-block.
  • the other characteristic parameters of the above sub-block may include one or more of the type of the frame where the current sub-block is located and the type of the block where the current sub-block is located, where the type of the frame where the current sub-block is located includes I frame, P frame and B frame ,
  • the type of the block where the current subblock is located includes a chroma block or a luma block
  • the type of the block where the current subblock is located can also include the prediction type of the block, or the type of the prediction block where the subblock is located, including inter blocks and intra blocks .
  • the following are combined with three characteristic parameters.
  • Combination mode 4 The size parameter is combined with the type of the frame where the current sub-block is located.
  • the above-mentioned combination method 4 corresponds to the combination method 1 in the foregoing, and the relevant introduction about the combination method 4 can be referred to the introduction in the combination method 1.
  • the first inverse quantization parameter determined when the frame to which the current subblock belongs is an I frame is smaller than the current subblock
  • the first inverse quantization parameter determined when the frame to which the block belongs is a P frame or a B frame.
  • Combination mode 5 The size parameter is combined with the type of the block where the current sub-block is located.
  • the type of the block includes a chroma block or a luma block.
  • the above-mentioned combination method 5 corresponds to the combination method 2 above, and the related introduction of the combination method 5 can be referred to the introduction in the combination method 2.
  • the type of the block where the current sub-block is located includes a chroma block or a luma block, and the first inverse quantization parameter determined when the current sub-block is a chroma block is greater than that when the current sub-block is a luma block The first inverse quantization parameter determined below.
  • Combination Mode 6 The size parameter is combined with the type of the prediction block where the current sub-block is located.
  • the type of the prediction block includes an inter block and an intra block.
  • the above-mentioned combination mode 6 corresponds to the combination mode 3 above, and the related introduction of the combination mode 6 can be referred to the introduction in the combination mode 3.
  • the type of the block in which the current subblock is located includes an intra block or an inter block
  • the first inverse quantization parameter determined when the current sub block is an intra block is smaller than the current sub block is an inter frame
  • the determination methods of determining the quantization parameter and the inverse quantization parameter in FIG. 9 and FIG. 7 are based on the configured quantization parameter and the adjustment method of the inverse quantization parameter to determine the first quantization parameter and the first inverse Quantization parameters.
  • the inverse quantization parameter required to perform the inverse quantization process can also be determined by the quantization parameter, that is, after the quantization parameter is determined, the inverse quantization parameter can be determined according to the corresponding relationship between the quantization parameter and the inverse quantization parameter, and can also be understood as
  • the size parameter determines a possible implementation of the first inverse quantization parameter.
  • Table 7 shows the correspondence between partial quantization parameters and indexes in the inverse quantization parameter table.
  • Table 8 shows the correspondence between different subblock size parameters and index offsets. It should be noted that, among the inverse quantization parameters shown in Table 7 and the quantization parameters shown in Table 1, quantization parameters corresponding to the same index have a corresponding relationship with inverse quantization parameters.
  • Table 8 shows a possible implementation manner of the index offset configuration table based on sub-block characteristics.
  • the offset of the index in Table 8 can be understood as the offset of the index of the inverse quantization parameter, which has a corresponding relationship with the offset of the quantization parameter shown in Table 6 above.
  • the second inverse quantization parameter corresponding to the sub-block is directly used as the first inverse quantization parameter.
  • the index offset between the index of the second inverse quantization parameter and the index of the first inverse quantization parameter is a fixed value (-6) regardless of the block type.
  • the index offset between the index of the second quantization parameter and the index of the first quantization parameter is a fixed value (2)
  • the index offset between the index of the second inverse quantization parameter and the index of the first inverse quantization parameter of the sub-block whose size parameter is level 0 is 2, and the size parameter is level
  • the index offset between the index of the second inverse quantization parameter of the subblock of 1 and the index of the first inverse quantization parameter is -3.
  • sub-blocks not shown in Table 8 can directly use the second inverse quantization parameter as the first inverse quantization parameter, or can determine the index offset according to other configuration methods. This embodiment of the present application does not make this limited.
  • FIGS. 10 to 11 The method of the embodiment of the present application is described in detail above with reference to FIGS. 1 to 9, and the device of the embodiment of the present application is described below with reference to FIGS. 10 to 11. It should be noted that the devices shown in FIGS. 10 to 11 can implement the steps in the above method, and for the sake of brevity, they will not be repeated here.
  • FIG. 10 is a schematic diagram of a quantization device according to an embodiment of the present application.
  • the device shown in FIG. 10 can execute the quantization method shown in FIG. 7.
  • the device shown in FIG. 9 may be located in the encoder 20, and specifically may be the quantization unit 208.
  • the quantization device 900 shown in FIG. 10 includes an acquisition module 910 and a processing module 920.
  • the processing module 910 may be a processor 510, and the acquisition module 920 may be an input-output interface.
  • FIG. 11 is a schematic diagram of an inverse quantization device according to an embodiment of the present application.
  • the device shown in FIG. 11 may perform the inverse quantization method shown in FIG. 9.
  • the device shown in FIG. 11 may be located in the encoder 20 or the decoder 30. Specifically, it may be the inverse quantization unit 210 or the inverse quantization unit 310.
  • the inverse quantization device 1000 shown in FIG. 11 includes an acquisition module 1010 and a processing module 1020.
  • the processing module 1010 may be a processor 510, and the acquisition module 1020 may be an input-output interface.
  • Computer readable media may include computer readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
  • computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or may be used to store instructions or data structures
  • the desired program code in the form of and any other medium that can be accessed by the computer. And, any connection is properly called a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave are used to transmit instructions from a website, server, or other remote source
  • coaxial cable Wire, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media.
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
  • magnetic disks and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and Blu-ray discs, where magnetic discs usually reproduce data magnetically, while optical discs reproduce optically using lasers data. Combinations of the above should also be included in the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functions described in the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or in combination Into the combined codec.
  • the techniques can be fully implemented in one or more circuits or logic elements.
  • the technology of the present application may be implemented in a variety of devices or equipment, including wireless handsets, integrated circuits (ICs), or a set of ICs (eg, chipsets).
  • ICs integrated circuits
  • a set of ICs eg, chipsets
  • Various components, modules or units are described in this application to emphasize the functional aspects of the device for performing the disclosed technology, but do not necessarily need to be implemented by different hardware units.
  • various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) provide.

Abstract

本申请提供了一种量化方法、反量化方法及装置,该方法包括:获取当前子块的尺寸参数;根据所述当前子块的尺寸参数确定对所述当前子块进行量化时使用的第一量化参数。在本申请实施例中,根据当前子块的尺寸参数确定第一量化参数,有利于提高量化的效果,有利于达到在提高量化过程能够压缩的信息量的同时,保证一定的图像精度。避免了基于传统的量化参数、反量化参数的配置方式,整个LCU中每个子块对应的量化参数和反量化参数相同,限制了量化过程能够压缩的信息量。

Description

量化、反量化方法及装置
本申请要求于2019年01月03日提交中国专利局、申请号为201910005657.X、申请名称为“量化、反量化方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及视频编解码领域,并且更具体地,涉及量化、反量化方法及装置。
背景技术
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(personal digital assistant,PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分高级视频编码(advanced video coding,AVC)定义的标准、视频编码标准H.265/高效视频编码(high efficiency video coding,HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。
目前,对数字视频信号的压缩技术是一个热点问题。变换编码作为常见的一种压缩方式,旨在利用图像在空间上具有较强的相关性,将空间域描述的图像信号变换到频率域后,对变换后的系数进行编码,可以实现去相关和能量集中。在变换的过程中,通常引入量化技术以对变换系数进行进一步压缩,从而降低数字视频信号的传送量。相应地,对于量化后的变换系数,可以通过反量化技术对量化后的变换系数进行反量化,以对量化后的变换系数进行恢复,减少量化过程中降低的图像精度。
然而,传统的量化过程中使用的量化参数(quantization parameter,QP)是以最大编码单元(large coding unit,LCU)为单位进行配置的,也就是说,每个LCU对应一个量化参数,这种量化参数的配置方式比较粗糙,限制了量化效果。
发明内容
本申请实施例提供一种量化方法、反量化方法及装置,有利于提高量化的效果。
第一方面,本申请提供了一种量化方法,包括:获取当前子块的尺寸参数;根据所述当前子块的尺寸参数确定对所述当前子块进行量化时使用的第一量化参数。
在本申请实施例中,根据当前子块的尺寸参数确定第一量化参数,有利于提高量化的效果,有利于达到在提高量化过程能够压缩的信息量的同时,保证一定的图像精度。避免了基于传统的量化参数、反量化参数的配置方式,整个LCU中每个子块对应的量化参数 和反量化参数相同,对于尺寸较小的子块而言,如果使用较大的量化/反量化参数进行处理,可能会导致量化、反量化后恢复的图像的精度较低,降低用户体验。尺寸较大的子块而言,如果使用较小的量化参数、反量化参数进行处理,能够减少的信息量非常有限,限制了量化过程能够压缩的信息量。
在一种可能的实现方式中,所述根据所述当前子块的尺寸参数确定对所述第一子块进行量化时使用的量化参数,包括:根据所述当前子块的尺寸参数,将所述当前子块的第二量化参数调整为所述第一量化参数,所述第二量化参数为所述当前子块所在的最大编码单元LCU对应的量化参数。
在本申请实施例中,根据当前子块的尺寸参数,调整第二量化参数以确定第一量化参数,可以兼容传统的确定量化参数的方法。
在一种可能的实现方式中,若所述当前子块的尺寸参数大于第一尺寸阈值,则所述第一量化参数小于所述第二量化参数,或若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数大于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
在本申请实施例中,对于尺寸参数大于第一尺寸阈值的当前子块,可以采用小于第二量化参数的第一量化参数进行量化,以提高压缩率。对于尺寸参数大于第二尺寸阈值的当前子块,可以采用比第二量化参数小的第一量化参数进行量化,以减小量化过程的精度损失。在一种可能的实现方式中,所述根据所述当前子块的尺寸参数,将所述当前子块的第二量化参数调整为所述第一量化参数,包括:根据所述当前子块的尺寸参数,以及所述当前子块的特性参数,将所述第二量化参数调整为所述第一量化参数,所述当前子块的特性参数包括以下参数中至少一种:所述当前子块所在帧的类型、所述当前子块所在块的类型。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块的特性参数,调整第二量化参数以确定第一量化参数,有利于提高第一量化参数的合理性。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一量化参数大于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所在帧的类型,调整第二量化参数以确定第一量化参数,有利于在精度和压缩率之间取得平衡。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一量化参数小于所述当前子块为亮度块情况下确定的所述第一量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所在帧的类型,调整第二量化参数以确定第一量化参数,有利于在用户视觉体验和压缩率之间取得平衡。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一量化参数大于所述当前子块为帧间块情况下确定的所述第一量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所属预测块的类型,调整第二量化参数以确定第一量化参数,有利于在保证预测精度和压缩率之间取得平衡。
第二方面,本申请提供一种反量化方法,包括:获取当前子块的尺寸参数;根据所述 当前子块的尺寸参数确定对所述当前子块进行反量化时使用的第一反量化参数。
在本申请实施例中,根据当前子块的尺寸参数确定第一反量化参数,有利于提高反量化的效果,有利于达到在提高量化过程能够压缩的信息量的同时,保证一定的图像精度。避免了基于传统的量化参数、反量化参数的配置方式,整个LCU中每个子块对应的量化参数和反量化参数相同,对于尺寸较小的子块而言,如果使用较大的量化/反量化参数进行处理,可能会导致量化、反量化后恢复的图像的精度较低,降低用户体验。尺寸较大的子块而言,如果使用较小的量化参数、反量化参数进行处理,能够减少的信息量非常有限,限制了量化过程能够压缩的信息量。
在一种可能的实现方式中,所述根据所述当前子块的尺寸参数确定对所述第一子块进行量化时使用的反量化参数,包括:根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,所述第二反量化参数为所述当前子块所在的最大编码单元LCU对应的反量化参数。
在本申请实施例中,根据当前子块的尺寸参数,调整第二反量化参数以确定第一反量化参数,可以兼容传统的确定量化参数的方法。
在一种可能的实现方式中,若所述当前子块的尺寸参数大于第一尺寸阈值,则所述第一反量化参数大于所述第二反量化参数,或若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数小于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
在本申请实施例中,对于尺寸参数大于第一尺寸阈值的当前子块,可以采用第二反量化参数大的第一反量化参数进行量化,以匹配第一量化参数,有利于提高量化过程的压缩率。对于尺寸参数小于第二尺寸阈值的当前子块,可以采用比第二反量化参数小的第一反量化参数进行量化,以匹配第一量化参数,以减小量化过程的精度损失。
在一种可能的实现方式中,所述根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,包括:根据所述当前子块的尺寸参数,以及所述当前子块的特性参数,将所述第二反量化参数调整为所述第一反量化参数,所述当前子块的特性参数包括以下参数中至少一种:所述当前子块所在帧的类型、所述当前子块所在块的类型。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块的特性参数,调整第二反量化参数以确定第一反量化参数,有利于提高第一反量化参数的合理性。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一反量化参数小于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一反量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所在帧的类型,调整第二反量化参数以确定第一反量化参数,有利于在精度和压缩率之间取得平衡。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一反量化参数大于所述当前子块为亮度块情况下确定的所述第一反量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所在帧的类型,调整第二反量化参数以确定第一反量化参数,有利于在用户视觉体验和压缩率之间取得平衡。
在一种可能的实现方式中,所述当前子块的特性参数包括所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一反量化参数小于所述当前子块为帧间块情况下确定的所述第一反量化参数。
在本申请实施例中,根据当前子块的尺寸参数以及当前子块所属预测块的类型,调整第二量化参数以确定第一量化参数,有利于在保证预测精度和压缩率之间取得平衡。
第三方面,提供一种量化装置,包括用于执行第一方面中任一种可能的实现方式的模块。举例来说,量化装置可以包括:获取模块以及处理模块。
第四方面,提供一种反量化装置,包括用于执行第二方面中任一种可能的实现方式的模块。举例来说,反量化装置可以包括:获取模块以及处理模块。
第五方面,提供一种编码设备,包括:相互耦合的存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面和第二方面中任一种可能的实现方式。
第六方面,提供一种解码设备,包括:相互耦合的存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第二方面中任一种可能的实现方式。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第九方面,提供了一种芯片系统,该芯片系统包括处理器,用于量化装置实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持反量化装置实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在本申请实施例中,量化参数越大说明量化程度越低,量化参数越小说明量化程度越大。应当理解的是,本申请的第三至十方面与本申请的第一方面以及第二方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是用于实现本申请实施例的视频编码及解码系统10实例的框图。
图2是用于实现本申请实施例的视频译码系统40实例的框图。
图3是用于实现本申请实施例的编码器20实例结构的框图。
图4是用于实现本申请实施例的解码器30实例结构的框图。
图5是用于实现本申请实施例的视频译码设备400实例的框图。
图6是用于实现本申请实施例的另一种编码装置或解码装置实例的框图。
图7是本申请实施例的量化方法的示意性流程图。
图8是本申请实施例的尺寸参数的划分方式的示意图。
图9是本申请实施例的反量化方法的示意性流程图。
图10是本申请实施例的量化装置的示意图。
图11是本申请实施例的反量化装置的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本申请一部分并以说明的方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的 基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。最大编码单元LCU包括两个色度子块和一个亮度子块。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。相应地,当前子块在编码过程中可以理解为当前正在编码的子块;在解码过程中可以理解为当前正在解码的子块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1,图1示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一个或多个处理器以及耦合到所述一个或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备 12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一个或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一个或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一个或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一个或多个物理传输线。所述一个或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一个或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可示例地为从外部视频源接收图片的外部接口,外部视频源可示例地为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备可示例地为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个 采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图3或图5或图6描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的量化、反量化方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源设备,例如为存储设备,存储设备可以为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13可以为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图4或图5或图6描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的反量化方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于 将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一个或多个处理器以硬件执行指令从而执行本申请的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一个或多个处理器。
在一些情况下,图1中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图2,图2是本申请实施例的包含图3的编码器20和/或图2的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图2所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器 20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含ASIC逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含ASIC逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图3和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图4的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图4和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例描述的量化、反量化方法在编码器20和解码器30均存在,其中本申请实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVC、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。
参见图3,图3示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。 在图3的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图3所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图4中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图3中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图3所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。 比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
上述量化单元208对变换系数207进行量化的过程,可以通过公式(1)表示:
C Q=(Y×Q(qp)+(1<<(s-1)*m))>>s,s=15+r-n-F
其中,Y表示上述待量化的变换系数,Q(qp)表示索引为qp对应的量化参数,C Q表示量化后的变换系数,r表示中间限制位宽,通常r=16,F表示变换块面积的对数值,n表示残差(变换系数)的位宽,若上述变换系数对应帧内编码块,则m=10/31,若上述变换系数对应帧间编码块,则m=10/62。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
上述逆量化单元210对量化后的变换系数进行逆量化的过程,可以通过公式(2)表示:
C=(C Q×DQ(qp)+1<<(s-1))>>s,s=shift(qp)+n+F+1-r
其中,C Q表示量化后的变换系数,DQ(qp)表示索引为qp对应的反量化参数,r表示中间限制位宽,通常r=16,F表示变换块面积的对数值,n表示残差(变换系数)的位宽,shift(qp)表示索引为qp对应的偏移量。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散 余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图3中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图3中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前 图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
在本申请实施例中,编码器20可用于实现后文实施例中描述的量化、反量化方法。例如,可以通过编码器20中的量化单元208执行本申请实施例的量化方法,通过编码器20中的逆量化单元210确定本申请实施例中的反量化参数(例如,反量化步长),并执行反量化方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图4,图4示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图4的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图3的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图4中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本申请的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence  parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图4中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
在本申请实施例中,解码器30用于实现后文实施例中描述的反量化方法,具体地,解码器30可以通过逆量化单元310执行本申请实施例的反量化方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
图5是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1的解码器30)或视频编码器(例如图1的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1的解码器30或图1的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx) 440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所申请的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
图6是本申请实施例的可用作图1中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图6为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行各种视频编码或解码方法,尤其是本申请实施例中的量化方法和反量化方法。例如,下文中的图7和图9所示的方法,为了简洁,请参见下文中的详细介绍。
在本申请实施例中,该处理器510可以是中央处理单元(central processing unit,CPU),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的量化方法以及反量化方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合 并。显示器570可以经由总线550连接到处理器510。
通常,在将图像划分为多个子块后,尺寸较大的子块对应图像中纹理比较平坦的区域,尺寸较小的子块对应图像中纹理比较复杂的区域。如果基于传统的量化参数、反量化参数的配置方式,整个LCU中每个子块对应的量化参数和反量化参数相同,对于尺寸较小的子块而言,如果使用较大的量化/反量化参数进行处理,可能会导致量化、反量化后恢复的图像的精度较低,降低用户体验。尺寸较大的子块而言,如果使用较小的量化参数、反量化参数进行处理,能够减少的信息量非常有限,限制了量化过程能够压缩的信息量。
为了避免上述问题,本申请提供了一种基于子块的尺寸确定量化参数、反量化参数的配置方式,下文结合图7详细介绍本申请实施例的量化方法的示意性流程图。需要说明的是,图7所示的量化方法可以由上文中的编码设备执行,例如可以由编码设备中的量化单元执行。图7所示的方法包括步骤610至步骤620。
610,获取当前子块的尺寸参数。
上述尺寸参数可以包括下列参数中的至少一种:子块的长、子块的宽以及子块的面积等。
上述尺寸参数可以根据各个子块的划分信息确定,例如子块的划分信息中存储有各个子块的尺寸参数。
620,根据所述当前子块的尺寸参数确定对所述当前子块进行量化时使用的第一量化参数。
上述第一量化参数可以包括量化步长、量化系数等对当前子块进行量化时使用的量化参数。
需要说明的是,上述根据当前子块的尺寸参数确定第一量化参数的方式有很多种,本申请实施例对此不作具体限定,例如,由于量化程度越大对应的量化参数越小,因此,第一量化参数的取值可以与子块的尺寸参数的变化反相关,即第一量化参数的取值随着子块的尺寸参数递增而减小增。又例如,当前子块的尺寸参数满足预设条件时,可以使用预配置的第一量化参数对当前子块进行量化。
在本申请实施例中,根据当前子块的尺寸参数确定第一量化参数,有利于提高量化的效果,有利于达到在提高量化过程能够压缩的信息量的同时,保证一定的图像精度。避免了基于传统的量化参数、反量化参数的配置方式,整个LCU中每个子块对应的量化参数和反量化参数相同,对于尺寸较小的子块而言,如果使用较大的量化/反量化参数进行处理,可能会导致量化、反量化后恢复的图像的精度较低,降低用户体验。尺寸较大的子块而言,如果使用较小的量化参数、反量化参数进行处理,能够减少的信息量非常有限,限制了量化过程能够压缩的信息量。
上文中介绍的传统的量化参数的配置方式,还可以与本申请实施例提供的确定第一量参数的方式结合使用,以简化本申请实施例配置量化参数的复杂度。即,根据当前子块的尺寸参数,对子块所在的LCU对应的量化参数(即第二量化参数)进行调整,以得到第一量化参数。
上述对第二量化参数进行调整得到第一量化参数,可以包括增大第二量化参数以得到第一量化参数,还可以包括减小第二量化参数以得到第一量化参数,还可以包括将第二量化参数确定为第一量化参数,即第二量化参数可以与第一量化参数相等。
上述根据当前子块的尺寸参数,对第二量化参数进行调整以得到第一量化参数的具体方式很多,本申请实施例对此不作具体限定。例如,一个LCU中的子块的尺寸参数可以与第一量化参数与第二量化参数之间的变化量反相关,也就是说,一个LCU中的子块的尺寸参数越大第一量化参数在第二量化参数的基础上减小的程度越大,即量化程度约小,第一LCU中的子块的尺寸参数越小,第一量化参数相对于第二量化参数的变化越小,甚至第二量化参数可以大于第一量化参数,此时量化程度约大。又例如,还可以通过比较尺寸阈值与当前子块的尺寸参数,调整第二量化参数为第一量化参数,其中,上述尺寸阈值的数量可以为一个也可以为多个,下文具体说明。
可选地,若所述当前子块的尺寸参数大于第一尺寸阈值,则所述第一量化参数小于所述第二量化参数,和/或若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数大于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
上述第一尺寸阈值等于第二尺寸阈值时,可以理解为第一尺寸阈值与第二尺寸阈值为一个尺寸阈值。上述第一尺寸阈值大于第二尺寸阈值时,可以理解为第一尺寸阈值与第二尺寸阈值为两个不同的阈值。
上述第一尺寸阈值和第二尺寸阈值可以单独使用,也可以结合使用。若所述当前子块的尺寸参数大于第一尺寸阈值,调整第二量化参数为第一量化参数。相应地,若当前子块的尺寸参数小于或等于第一尺寸阈值,可以直接将第二尺寸阈值作为第一尺寸阈值使用。或者结合第二尺寸阈值,对第一量化参数进行调整得到第二量化参数。
若所述当前子块的尺寸参数大于第一尺寸阈值,调整第二量化参数为第一量化参数。相应地,若当前子块的尺寸参数小于或等于第一尺寸阈值,可以直接将第二尺寸阈值作为第一尺寸阈值使用。或者结合第一尺寸阈值,对第一量化参数进行调整得到第二量化参数。
在结合第一尺寸阈值与第二尺寸阈值的情况下,当前子块的尺寸参数与上述两个阈值的比较结果可以分为三种情况,分别是当前子块的尺寸参数大于第一尺寸阈值,当前子块的尺寸参数小于第一尺寸阈值且大于第二尺寸阈值,以及当前子块的尺寸参数小于第二尺寸参数阈值。在本申请实施例中,除了基于上述两个尺寸阈值,将子块的尺寸参数划分为上述三种情况,调整第二量化参数得到第一量化参数,还可以进一步将子块的尺寸参数进行细分,例如,通过4个尺寸阈值体现。
对于尺寸参数过小或者尺寸参数过大的当前子块而言,现有的量化参数要么没有配置到可以与尺寸参数过大的当前子块相匹配的量化参数的值,要么没有配置到可以与尺寸单数过小的当前子块相匹配的量化参数的值,那么针对这两种特殊情况,为了简化得到第一量化参数的过程,可以直接将第二量化参数作为第一量化参数。
为了划分上述两种特殊情况,可以在上述两种尺寸阈值的基础上新增第三尺寸阈值与第四尺寸阈值(参见图8),即通过4个尺寸阈值,调整第二量化参数。其中,第三尺寸阈值可以为减小第二量化参数得到第一量化参数这一调整方式(710)对应的上限阈值,也就是说,若当前子块的尺寸参数大于第三尺寸阈值时,可以直接将第二量化参数作为第一量化参数使用。第四尺寸阈值可以为增大第二量化参数得到第一量化参数这一调整方式(720)对应的下限阈值,也就是说,若当前子块的尺寸参数小于第四尺寸阈值时,可以直接将第二量化参数作为第一量化参数使用。
需要说明的是,上述通过尺寸阈值划分子块尺寸的方式有很多种,还可以在上述的划 分的基础上,进一步细分,即继续增加尺寸阈值,调整方式710以及调整方式720细分为不同的尺寸等级(或者说尺寸区间),位于不同尺寸等级的子块对应的量化参数不同,本申请实施例对此不作具体限定。
上述调整第二量化参数得到第一量化参数的方式,可以基于现有的量化参数索引表实现。即,以第二量化参数对应的索引为基准,通过第一量化参数的索引与第二量化参数的索引之间的索引偏移量,确定第一量化参数。例如,可以通过公式qp' 1=qp 1-Δ表示,其中,qp' 1表示第一量化参数的索引,qp 1表示第二量化参数的索引,Δ表示第一量化参数的索引与第二量化参数的索引之间的索引偏移量。
需要说明的是,现有的量化参数表中,随着索引编号的增大,索引对应的量化参数减小,如此,基于上述公式,随着索引偏移量Δ的增大,第一量化参数减小,随着索引偏移量Δ的减小,第一量化参数增大。
基于上文介绍的通过索引偏移量表示调整后的量化参数(即第一量化参数),在本申请实施例中,量化原理的一种可能的实现形式可以在公式(1)的基础上进行修改,并通过下面公式(3)描述,即:
C Q=(Y×Q(qp' 1)+(1<<(s-1)*m))>>s,s=15+r-n-F
其中,Y表示当前子块对应的变换系数,Q(qp' 1)表示索引为qp' 1对应的量化参数,C Q表示当前子块对应的量化后的变换系数,r表示中间限制位宽,通常r=16,F表示变换块子面积的对数值,n表示残差(变换系数)的位宽,若当前子块属于帧内编码块,则m=10/31,若当前子块为帧间编码块,则m=10/62。
下文结合表1,表2说明本申请实施例的调整量化参数的方法。表1示出了量化参数表中的部分量化参数与索引的对应关系。表2示出了不同的子块尺寸参数与索引偏移量之间的对应关系。
表1
Figure PCTCN2019130400-appb-000001
在表2中,不同等级对应的子块的尺寸区间(或者说面积区间)不同,等级0的尺寸区间包括大于等于16的编码单元,且小于64的编码单元,且等级0对应的索引偏移量为0,即尺寸参数属于等级0的子块对应的第一量化参数与第二量化参数相同。等级1的尺寸区间包括大于等于64的编码单元,且小于256的编码单元,等级1对应的索引偏移量为-2。等级2的尺寸区间包括大于256的编码单元,且小于512的编码单元,等级2对应的索引偏移量为-3。
表2
尺寸区间 等级0[16,64) 等级1[64,256) 等级2[256,512]
索引偏移量Δ 0 -2 -3
假设当前子块的第二量化参数的索引为3,且当前子块的尺寸参数为64,属于等级1,等级1对应的索引偏移量为-2,则当前子块的第一量化参数的索引为5。
在上文介绍的基于尺寸参数确定第一量化参数的基础上,还可以结合子块的其他特性参数确定第一量化参数。上述子块的其他特性参数可以包括当前子块所在帧的类型、当前子块所在块的类型中的一种或多种,其中,当前子块所在帧的类型包括I帧、P帧和B帧,当前子块所在块的类型包括色度块或亮度块,当前子块所在块的类型还可以包括块的预测类型,或者说子块所在的预测块的类型,包括帧间块和帧内块。下文结合上文中的三种特性参数分别接介绍。
需要说明的是,上述基于特性参数和尺寸参数,调整第二量化参数确定第一量化参数的过程,可以参见上文中的相关介绍,为了简洁,在此不再具体赘述。下文主要介绍结合不同的特性参数,调整第二量化参数以确定第一量化参数的方式。
结合方式一、尺寸参数与当前子块所在帧的类型结合。
I帧又称帧内编码帧,是一种自带全部信息的独立帧,无需参考其他图像便可独立进行解码,可以简单理解为一张静态画面。视频序列中的第一个帧始终都是I帧,因为它是关键帧。
P帧又称帧间预测编码帧,需要参考前面的I帧才能进行编码,表示的是当前帧画面与前一帧(前一帧可能是I帧也可能是P帧)的差别。解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。
B帧又称双向预测编码帧,B帧记录的是本帧与前后帧的差别,也就是说要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。
从上述三种帧的类型可以看出,对I帧的精度要求高于对P帧和B帧的精度要求,因此,可以为I帧中的子块配置较大的量化参数,以减少通过量化带来的精度上的损失,而P帧和B帧中的子块可以配置较小的量化参数,以提高压缩率。
即,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一量化参数大于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一量化参数。相应地,量化参数越大,量化程度越小,量化后的精度越高。
表3示出了一种基于结合方式一的索引偏移量配置表的可能的实现方式。在表3中,对于尺寸区间在同一等级的子块而言,所属的帧类型不同,偏移也不同。假设当前子块的尺寸区间为等级1,且当前子块的第二量化参数的索引为3,基于表1所示的量化参数与索引的对应关系,则当前子块所属的帧类型为I帧时,当前子块的第一量化参数的索引为1。当前子块所属的帧类型为P帧或B帧时,当前子块的第一量化参数的索引为6。
表3
Figure PCTCN2019130400-appb-000002
需要说明的是,上文仅介绍了一种区分I帧与其他帧(P帧和B帧)上的子块对应的索引偏移量,在本申请实施例中,还可以进一步对其他帧对应的索引偏移量进行细分,即对位于P帧和B帧上的子块对应的索引偏移量也可以不同。当然,如果为了简化配置的复杂度,上述位于P帧和B帧上的子块对应的索引偏移量可以相同。
结合方式二、尺寸参数与当前子块所在块的类型结合,块的类型包括色度块或亮度块。
通常,人眼对于颜色的敏感度低于对亮度的敏感度,为了在压缩率和用户体验之间取得平衡,可以为色度块配置较小的量化参数,以确保色度块的压缩率,为亮度块配置较大的量化参数,以确保亮度块的精度。
即,所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一量化参数小于所述当前子块为亮度块情况下确定的所述第一量化参数。
表4示出了一种基于结合方式二的索引偏移量配置表的可能的实现方式。在表4中,对于尺寸区间在同一等级的子块而言,不同类型的块对应的偏移也不同。假设当前子块的尺寸区间为等级2,且当前子块的第二量化参数的索引为3,基于表1所示的量化参数与索引的对应关系,则当前子块所在块的块类型为亮度块时,当前子块的第一量化参数的索引为1。当前子块所在块的块类型为色度块时,当前子块的第一量化参数的索引为6。
表4
Figure PCTCN2019130400-appb-000003
结合方式三、尺寸参数与当前子块所在预测块的类型结合,预测块的类型包括帧间块和帧内块。
通常,对帧内块的精度要求高于帧间块的精度,因此,为了在压缩率和预测精度之间取得平衡,可以为帧间块配置较小的量化参数,以确保帧间块的压缩率,为帧内块配置较大的量化参数,以确保帧内块的预测精度。
即,所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一量化参数大于所述当前子块为帧间块情况下确定的所述第一量化参数。
表5示出了一种基于结合方式三的索引偏移量配置表的可能的实现方式。在表5中,对于尺寸区间在同一等级子块而言,不同类型的块对应的偏移也不同。假设当前子块的尺寸对应尺寸区间为等级1,且当前子块的第二量化参数的索引为3,基于表1所示的量化参数与索引的对应关系,则当前子块所在块的块类型为帧内块时,当前子块的第一量化参数的索引为1。当前子块所在块的块类型为帧间块时,当前子块的第一量化参数的索引为6。
表5
Figure PCTCN2019130400-appb-000004
需要说明的是,子块的尺寸参数可以在一个或多个等级与上述三种的特性参数中的一种或多种特性参数结合。例如,在等级1中结合帧类型确定索引偏移量,在等级2中结合预测块类型确定索引偏移量,即表2和表3相结合。又例如,可以在等级1和等级2中同时结合预测块类型和帧类型确定索引偏移量,本申请实施例对此不作具体限定。
还需要说明的是,为了便于说明,在这里先将尺寸参数与上述特性参数统称为“子块特性”,不同的子块特性中有一个或多个参数不同,不同的子块特性可以对应一个索引偏移量,但是不同的子块特性可以对应的索引偏移量可以相同也可以不同。
表6示出了一种基于子块特性的索引偏移量配置表的可能的实现方式。在表6中,可以看出对于P帧上的子块而言,无论块的类型都直接将子块对应的第二量化参数作为第一量化参数。对于B帧上的子块而言,无论块的类型第二量化参数的索引与第一量化参数的索引之间的索引偏移量为固定值(-6)。对于I帧上的子块而言,块的类型为帧内块且色度块时,第二量化参数的索引与第一量化参数的索引之间的索引偏移量为固定值(2),块的类型为帧间块且亮度块时,尺寸参数为等级0的子块的第二量化参数的索引与第一量化参数的索引之间的索引偏移量为2,尺寸参数为等级1的子块的第二量化参数的索引与第一量化参数的索引之间的索引偏移量为-3。
表6
Figure PCTCN2019130400-appb-000005
需要说明的是,表6中未示出的子块可以直接将第二量化参数作为第一量化参数使用,也可以按照其他的配置方式确定索引偏移量,本申请实施例对此不作限定。
下文基于图7所示的量化方法,结合图8介绍本申请实施例的反量化方法。需要说明的是,量化和反量化过程是一组对应的处理过程,量化过程中使用的量化参数与反量化过程中使用的反量化参数对应,即,反量化参数对应的索引与量化参数对应的索引相同,或者反量化参数是根据量化参数确定的。既然量化参数与反量化参数存在对应关系,那么在调整了量化参数后,同样也需要调整反量化参数。
为了简洁,下文反量化参数的调整过程可以参见上文量化参数的调整过程确定,在表2至表6中示出的索引偏移量可以理解为以第二反量化参数的索引为基准,用于确定第一反量化参数的索引的索引偏移量。应理解,表1中所示的量化参数表可以与下文反量化过程中查询的反量化参数表不同,但是可以是具有对应关系的两种表,或者说,在具有对应关系的两种表中,相同的索引相同的量化参数和反量化参数具有对应关系。
需要说明的是,基于上述量化原理、反量化原理,量化系数越大对应的反量化系数越小,量化系数越小对应的反量化系数越大。
图9是本申请实施例的反量化方法的示意性流程图。图9所示的方法可以由编码设备执行也可以由解码设备执行,具体地,可以由编码设备中的逆量化单元执行,还可以由解码设备中的逆量化单元执行。图9所示的方法包括步骤810和步骤820。
810,获取当前子块的尺寸参数。
上述尺寸参数可以包括下列参数中的至少一种:子块的长、子块的宽以及子块的面积等。
需要说明的是,如果图7所示的量化过程与图9所示的反量化过程由编码设备执行时,上述步骤610和步骤810可以是一个步骤,可以是在量化过程、反量化过程中分别执行的步骤,本申请实施例对此不作限定。
820,根据所述当前子块的尺寸参数确定对所述当前子块进行反量化时使用的第一反量化参数。
上述第一反量化参数可以包括反量化步长、反量化系数等对当前子块进行反量化时使用的反量化参数。
上述第一反量化参数与上文中的第一量化参数对应。
上文中介绍的传统的反量化参数的配置方式,还可以与本申请实施例提供的确定第一反量参数的方式结合使用,以简化本申请实施例配置反量化参数的复杂度。即,步骤820,包括:根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,所述第二反量化参数为所述当前子块所在最大编码单元LCU对应的反量化参数。
上述对第二反量化参数进行调整得到第一反量化参数,可以包括增大第二反量化参数以得到第一反量化参数,还可以包括减小第二反量化参数以得到第一反量化参数,还可以包括将第二反量化参数确定为第一反量化参数,即第二反量化参数可以与第一反量化参数相等。
上述第二反量化参数与上文中的第二量化参数都是针对LCU的量化参数和反量化参数,因此,第二反量化参数与第二量化参数是对应的。
需要说明的是,上述根据当前子块的尺寸参数确定第一反量化参数的方式有很多种,本申请实施例对此不作具体限定,详细介绍可以参见前文根据当前子块的尺寸参数确定第一量化参数的方法。
可选地,若所述当前子块的尺寸参数大于第一尺寸阈值,则所述第一反量化参数大于所述第二反量化参数,和/或若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数小于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
上述第一尺寸阈值等于第二尺寸阈值时,可以理解为第一尺寸阈值与第二尺寸阈值为一个尺寸阈值。上述第一尺寸阈值大于第二尺寸阈值时,可以理解为第一尺寸阈值与第二尺寸阈值为两个不同的阈值。
上述第一尺寸阈值和第二尺寸阈值可以单独使用,也可以结合使用。若所述当前子块的尺寸参数大于第一尺寸阈值,调整第二反量化参数为第一反量化参数。相应地,若当前子块的尺寸参数小于或等于第一尺寸阈值,可以直接将第二尺寸阈值作为第一尺寸阈值使用。或者结合第二尺寸阈值,对第一反量化参数进行调整得到第二反量化参数。
若所述当前子块的尺寸参数大于第一尺寸阈值,调整第二反量化参数为第一反量化参数。相应地,若当前子块的尺寸参数小于或等于第一尺寸阈值,可以直接将第二尺寸阈值作为第一尺寸阈值使用。或者结合第一尺寸阈值,对第一反量化参数进行调整得到第二反量化参数。
在结合第一尺寸阈值与第二尺寸阈值的情况下,当前子块的尺寸参数与上述两个阈值的比较结果可以分为三种情况,分别是当前子块的尺寸参数大于第一尺寸阈值,当前子块的尺寸参数小于第一尺寸阈值且大于第二尺寸阈值,以及当前子块的尺寸参数小于第二尺寸参数阈值。在本申请实施例中,除了基于上述两个尺寸阈值,将子块的尺寸参数划分为上述三种情况,调整第二反量化参数得到第一反量化参数,还可以进一步将子块的尺寸参数进行细分,例如,通过4个尺寸阈值体现。
对于尺寸参数过小或者尺寸参数过大的当前子块而言,现有的反量化参数要么没有配置到可以与尺寸参数过大的当前子块相匹配的反量化参数的值,要么没有配置到可以与尺 寸单数过小的当前子块相匹配的反量化参数的值,那么针对这两种特殊情况,为了简化得到第一反量化参数的过程,可以直接将第二反量化参数作为第一反量化参数。
为了划分上述两种特殊情况,可以在上述两种尺寸阈值的基础上新增第三尺寸阈值与第四尺寸阈值(参见图8),即通过4个尺寸阈值,调整第二反量化参数。其中,第三尺寸阈值可以为增大第二反量化参数得到第一反量化参数这一调整方式(710)对应的上限阈值,也就是说,若当前子块的尺寸参数大于第三尺寸阈值时,可以直接将第二反量化参数作为第一反量化参数使用。第四尺寸阈值可以为减少第二反量化参数得到第一反量化参数这一调整方式(720)对应的下限阈值,也就是说,若当前子块的尺寸参数小于第四尺寸阈值时,可以直接将第二反量化参数作为第一反量化参数使用。
需要说明的是,上述通过尺寸阈值划分子块尺寸的方式有很多种,还可以在上述的划分的基础上,进一步细分,即继续增加尺寸阈值,调整方式710以及调整方式720细分为不同的尺寸等级(或者说尺寸区间),位于不同尺寸等级的子块对应的反量化参数不同,本申请实施例对此不作具体限定。
上述调整第二反量化参数得到第一反量化参数的方式,可以基于现有的反量化参数索引表实现。即,以第二反量化参数对应的索引为基准,通过第一反量化参数的索引与第二反量化参数的索引之间的索引偏移量,确定第一反量化参数。例如,可以通过公式qp 2'=qp 2-Δ表示,其中,qp 2'表示第一反量化参数的索引,qp 2表示第二反量化参数的索引,Δ表示第一反量化参数的索引与第二反量化参数的索引之间的索引偏移量。
基于上文介绍的通过偏移量表示调整后的反量化参数(即第一反量化参数),在本申请实施例中,反量化原理的一种可能的实现形式可以在公式(2)的基础上进行修改,并通过下面公式(4)描述,即:
C=(C Q×DQ(qp 2')+1<<(s-1))>>s,s=shift(qp 2')+n+F+1-r
其中,C Q表示当前子块对应的量化后的变换系数,DQ(qp 2')表示索引为qp 2对应的反量化参数,r表示中间限制位宽,通常r=16,F表示变换块面积的对数值,n表示残差(变换系数)的位宽,shift(qp 2')表示索引为qp 2'对应的偏移量。
在上文介绍的基于尺寸参数确定第一反量化参数的基础上,还可以结合子块的其他特性参数确定第一反量化参数。上述子块的其他特性参数可以包括当前子块所在帧的类型、当前子块所在块的类型中的一种或多种,其中,当前子块所在帧的类型包括I帧、P帧和B帧,当前子块所在块的类型包括色度块或亮度块,当前子块所在块的类型还可以包括块的预测类型,或者说子块所在的预测块的类型,包括帧间块和帧内块。下文结合三种特性参数分别接介绍。
结合方式四、尺寸参数与当前子块所在帧的类型结合。上述结合方式四对应于上文中的结合方式一,关于结合方式四的相关介绍都可以参见结合方式一中的介绍。
即,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一反量化参数小于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一反量化参数。
结合方式五、尺寸参数与当前子块所在块的类型结合,块的类型包括色度块或亮度块。上述结合方式五对应于上文中的结合方式二,关于结合方式五的相关介绍都可以参见结合方式二中的介绍。
即,所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一反量化参数大于所述当前子块为亮度块情况下确定的所述第一反量化参数。
结合方式六、尺寸参数与当前子块所在预测块的类型结合,预测块的类型包括帧间块和帧内块。上述结合方式六对应于上文中的结合方式三,关于结合方式六的相关介绍都可以参见结合方式三中的介绍。
即,所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一反量化参数小于所述当前子块为帧间块情况下确定的所述第一反量化参数。
需要说明的是,图9结合图7的中关于确定量化参数以及反量化参数的确定方式,都是基于配置好的量化参数、反量化参数的调整方式相应地确定第一量化参数以及第一反量化参数。执行反量化过程所需的反量化参数也可以由量化参数确定,即在确定了量化参数后,可以根据量化参数与反量化参数的对应关系确定反量化参数,也可以理解为,根据子块的尺寸参数确定第一反量化参数的一种可能的实现方式。
下文结合具体的例子介绍本申请实施例的反量化方法,表7示出了反量化参数表中的部分量化参数与索引的对应关系。表8示出了不同的子块尺寸参数与索引偏移量之间的对应关系。需要说明的是,表7中所示的反量化参数中与表1所示的量化参数中,对应相同索引的量化参数与反量化参数具有对应关系。
表7
Figure PCTCN2019130400-appb-000006
表8示出了一种基于子块特性的索引偏移量配置表的可能的实现方式。表8中的索引的偏移量可以理解为反量化参数的索引的偏移量,与上文中表6中示出的量化参数的偏移量具有对应关系。
在表8中,可以看出对于P帧上的子块而言,无论块的类型都直接将子块对应的第二反量化参数作为第一反量化参数。对于B帧上的子块而言,无论块的类型第二反量化参数的索引与第一反量化参数的索引之间的索引偏移量为固定值(-6)。对于I帧上的子块而言,块的类型为帧内块且色度块时,第二量化参数的索引与第一量化参数的索引之间的索引偏移量为固定值(2),块的类型为帧间块且亮度块时,尺寸参数为等级0的子块的第二反量化参数的索引与第一反量化参数的索引之间的索引偏移量为2,尺寸参数为等级1的子块的第二反量化参数的索引与第一反量化参数的索引之间的索引偏移量为-3。
表8
Figure PCTCN2019130400-appb-000007
需要说明的是,表8中未示出的子块可以直接将第二反量化参数作为第一反量化参数 使用,也可以按照其他的配置方式确定索引偏移量,本申请实施例对此不作限定。
上文结合图1至图9详细介绍了本申请实施例的方法,下文结合图10至图11描述本申请实施例的装置。需要说明的是,图10至图11所示的装置可以实现上述方法中各个步骤,为了简洁,在此不再赘述。
图10是本申请实施例的量化装置的示意图,图10所示的装置可以执行图7所示的量化方法。图9所示的装置可以位于编码器20,具体地可以是量化单元208。图10所示的量化装置900包括获取模块910和处理模块920。
在可选的实施例中,所述处理模块910可以为处理器510,所述获取模块920可以为输入输出接口。
图11是本申请实施例的反量化装置的示意图,图11所示的装置可以执行图9所示的反量化方法。图11所示的装置可以位于编码器20,还可以位于解码器30。具体地可以是逆量化单元210,或者逆量化单元310。图11所示的反量化装置1000包括获取模块1010和处理模块1020。
在可选的实施例中,所述处理模块1010可以为处理器510,所述获取模块1020可以为输入输出接口。
本领域技术人员能够领会,结合本文申请描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一个或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一个或多个计算机或一个或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一个或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一个或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的 技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一个或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一个或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (16)

  1. 一种反量化方法,其特征在于,包括:
    获取当前子块的尺寸参数;
    根据所述当前子块的尺寸参数确定对所述当前子块进行反量化时使用的第一反量化参数。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述当前子块的尺寸参数确定对所述第一子块进行量化时使用的反量化参数,包括:
    根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,所述第二反量化参数为所述当前子块所在的最大编码单元LCU对应的反量化参数。
  3. 如权利要求2所述的方法,其特征在于,若所述当前子块的尺寸参数大于第一尺寸阈值,则所述第一反量化参数大于所述第二反量化参数,或
    若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数小于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
  4. 如权利要求2或3所述的方法,其特征在于,所述根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,包括:
    根据所述当前子块的尺寸参数,以及所述当前子块的特性参数,将所述第二反量化参数调整为所述第一反量化参数,所述当前子块的特性参数包括以下参数中至少一种:所述当前子块所在帧的类型或所述当前子块所在块的类型。
  5. 如权利要求4所述的方法,其特征在于,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一反量化参数小于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一反量化参数。
  6. 如权利要求4所述的方法,其特征在于,所述当前子块的特性参数包括所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一反量化参数大于所述当前子块为亮度块情况下确定的所述第一反量化参数。
  7. 如权利要求4所述的方法,其特征在于,所述当前子块的特性参数包括所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一反量化参数小于所述当前子块为帧间块情况下确定的所述第一反量化参数。
  8. 一种反量化装置,其特征在于,包括:
    获取模块,用于获取当前子块的尺寸参数;
    处理模块,用于根据所述获取模块获取的所述当前子块的尺寸参数确定对所述当前子块进行反量化时使用的第一反量化参数。
  9. 如权利要求8所述的装置,其特征在于,
    所述处理模块,用于根据所述当前子块的尺寸参数,将所述当前子块的第二反量化参数调整为所述第一反量化参数,所述第二反量化参数为所述当前子块所在的最大编码单元LCU对应的反量化参数。
  10. 如权利要求9所述的装置,其特征在于,若所述当前子块的尺寸参数大于第一尺 寸阈值,则所述第一反量化参数大于所述第二反量化参数,或
    若所述当前子块的尺寸参数小于第二尺寸阈值,则所述第一量化参数小于所述第二量化参数,其中所述第一尺寸阈值大于或等于所述第二尺寸阈值。
  11. 如权利要求8或9所述的装置,其特征在于,
    所述处理模块,用于根据所述当前子块的尺寸参数,以及所述当前子块的特性参数,将所述第二反量化参数调整为所述第一反量化参数,所述当前子块的特性参数包括以下参数中至少一种:所述当前子块所在帧的类型、所述当前子块所在块的类型。
  12. 如权利要求11所述的装置,其特征在于,所述当前子块的特性参数包括所述当前子块所在帧的类型时,所述当前子块所属的帧为I帧的情况下确定的所述第一反量化参数小于所述当前子块所属的帧为P帧或B帧的情况下确定的所述第一反量化参数。
  13. 如权利要求11所述的装置,其特征在于,所述当前子块的特性参数包括所述当前子块所在块的类型包括色度块或亮度块,所述当前子块为色度块的情况下确定的所述第一反量化参数大于所述当前子块为亮度块情况下确定的所述第一反量化参数。
  14. 如权利要求11所述的装置,其特征在于,所述当前子块的特性参数包括所述当前子块所在块的类型包括帧内块或帧间块,所述当前子块为帧内块的情况下确定的所述第一反量化参数小于所述当前子块为帧间块情况下确定的所述第一反量化参数。
  15. 一种编码设备,其特征在于,包括:相互耦合的存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-7中任一项所述的方法。
  16. 一种解码设备,其特征在于,包括:相互耦合的存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-7中任一项所述的方法。
PCT/CN2019/130400 2019-01-03 2019-12-31 量化、反量化方法及装置 WO2020140889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005657.X 2019-01-03
CN201910005657.XA CN111405279B (zh) 2019-01-03 2019-01-03 量化、反量化方法及装置

Publications (1)

Publication Number Publication Date
WO2020140889A1 true WO2020140889A1 (zh) 2020-07-09

Family

ID=71406686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130400 WO2020140889A1 (zh) 2019-01-03 2019-12-31 量化、反量化方法及装置

Country Status (2)

Country Link
CN (1) CN111405279B (zh)
WO (1) WO2020140889A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848953A (zh) * 2005-04-11 2006-10-18 华为技术有限公司 一种h263编码中码率的控制方法
CN101094411A (zh) * 2007-07-03 2007-12-26 芯瀚电子技术(上海)有限公司 一种视频编码的码率控制方法
CN101959065A (zh) * 2009-10-19 2011-01-26 香港应用科技研究院有限公司 在数字视频编码内进行自适应量化的方法和装置
US20110268180A1 (en) * 2010-04-29 2011-11-03 Naveen Srinivasamurthy Method and System for Low Complexity Adaptive Quantization
WO2013008459A1 (en) * 2011-07-13 2013-01-17 Canon Kabushiki Kaisha Image encoding apparatus, image encoding method, image decoding apparatus, image decoding method, and program
CN105898299A (zh) * 2015-12-14 2016-08-24 乐视云计算有限公司 基于变换块大小的自适应量化方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114034A1 (en) * 2010-11-08 2012-05-10 Mediatek Inc. Method and Apparatus of Delta Quantization Parameter Processing for High Efficiency Video Coding
US10218975B2 (en) * 2015-09-29 2019-02-26 Qualcomm Incorporated Transform precision manipulation in video coding
EP3334160A4 (en) * 2015-11-06 2018-06-13 Huawei Technologies Co., Ltd. Method and apparatus for de-quantization of transform coefficients, and decoding device
AU2015261734A1 (en) * 2015-11-30 2017-06-15 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding video data according to local luminance intensity
CN106028032B (zh) * 2016-05-24 2019-03-26 西安电子科技大学 一种系数级自适应量化方法
CN106101706B (zh) * 2016-06-30 2019-11-19 华为技术有限公司 一种图像编码方法及装置
CN106851280B (zh) * 2017-01-04 2018-04-13 西安万像电子科技有限公司 图像压缩的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848953A (zh) * 2005-04-11 2006-10-18 华为技术有限公司 一种h263编码中码率的控制方法
CN101094411A (zh) * 2007-07-03 2007-12-26 芯瀚电子技术(上海)有限公司 一种视频编码的码率控制方法
CN101959065A (zh) * 2009-10-19 2011-01-26 香港应用科技研究院有限公司 在数字视频编码内进行自适应量化的方法和装置
US20110268180A1 (en) * 2010-04-29 2011-11-03 Naveen Srinivasamurthy Method and System for Low Complexity Adaptive Quantization
WO2013008459A1 (en) * 2011-07-13 2013-01-17 Canon Kabushiki Kaisha Image encoding apparatus, image encoding method, image decoding apparatus, image decoding method, and program
CN105898299A (zh) * 2015-12-14 2016-08-24 乐视云计算有限公司 基于变换块大小的自适应量化方法及装置

Also Published As

Publication number Publication date
CN111405279A (zh) 2020-07-10
CN111405279B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN111327903B (zh) 色度块的预测方法和装置
WO2020211765A1 (en) An encoder, a decoder and corresponding methods harmonzting matrix-based intra prediction and secoundary transform core selection
US11849109B2 (en) Image prediction method, apparatus, and system, device, and storage medium
US11924438B2 (en) Picture reconstruction method and apparatus
WO2021109978A1 (zh) 视频编码的方法、视频解码的方法及相应装置
CN111277828B (zh) 视频编解码方法、视频编码器和视频解码器
WO2020244579A1 (zh) Mpm列表构建方法、色度块的帧内预测模式获取方法及装置
CN116193132A (zh) 色度块的预测方法和装置
CA3114341C (en) An encoder, a decoder and corresponding methods using compact mv storage
WO2020143589A1 (zh) 视频图像解码、编码方法及装置
CN110858903A (zh) 色度块预测方法及装置
WO2021164014A1 (zh) 视频编码方法及装置
WO2020253681A1 (zh) 融合候选运动信息列表的构建方法、装置及编解码器
WO2023051156A1 (zh) 视频图像的处理方法及装置
WO2021180220A1 (zh) 图像编码和解码方法及装置
WO2020224476A1 (zh) 一种图像划分方法、装置及设备
WO2021027799A1 (zh) 视频编码器及qp设置方法
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
WO2020114393A1 (zh) 变换方法、反变换方法以及视频编码器和视频解码器
WO2020147514A1 (zh) 视频编码器、视频解码器及相应方法
CN110876061B (zh) 色度块预测方法及装置
WO2020114508A1 (zh) 视频编解码方法及装置
WO2020151274A1 (zh) 图像显示顺序的确定方法、装置和视频编解码设备
WO2020135371A1 (zh) 一种标志位的上下文建模方法及装置
WO2020140889A1 (zh) 量化、反量化方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907454

Country of ref document: EP

Kind code of ref document: A1