WO2021180220A1 - 图像编码和解码方法及装置 - Google Patents

图像编码和解码方法及装置 Download PDF

Info

Publication number
WO2021180220A1
WO2021180220A1 PCT/CN2021/080541 CN2021080541W WO2021180220A1 WO 2021180220 A1 WO2021180220 A1 WO 2021180220A1 CN 2021080541 W CN2021080541 W CN 2021080541W WO 2021180220 A1 WO2021180220 A1 WO 2021180220A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer information
enhancement layer
information
decoding
symbol set
Prior art date
Application number
PCT/CN2021/080541
Other languages
English (en)
French (fr)
Inventor
李佳徽
马梦瑶
颜敏
林伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021180220A1 publication Critical patent/WO2021180220A1/zh
Priority to US17/941,552 priority Critical patent/US20230017934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/34Scalability techniques involving progressive bit-plane based encoding of the enhancement layer, e.g. fine granular scalability [FGS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation

Definitions

  • the embodiments of the present application relate to multimedia communication technology, and in particular, to an image encoding and decoding method and device.
  • Video is an important part of multimedia data. It has a series of advantages such as accuracy, real-time, intuitiveness, specificity, and vividness, which brings users an audiovisual experience.
  • wireless video services will have broader development prospects, and wireless video coding and transmission technologies have also become the current research hotspots in the field of multimedia communications. Due to the limited bandwidth of the wireless channel, video data needs to be compressed efficiently. However, the predictive coding and variable-length coding used in video coding make high-efficiency compression while also making the bit stream very high on the bit error rate of the channel.
  • Coding is one of the key issues. Coding is mainly divided into source coding and channel coding: the main indicator of source coding is coding efficiency; the main goal of channel coding is to improve the reliability of information transmission.
  • a digital video communication system based on joint source and channel coding can realize soft transmission of adaptive channel coding, but the compression efficiency of its source coding is low, which in turn leads to low overall transmission efficiency.
  • the embodiments of the present application provide an image encoding and decoding method and device to ensure robustness during transmission and improve overall compression efficiency and performance.
  • an embodiment of the present application provides an image encoding method, including: compressing and encoding an image to obtain base layer information; obtaining enhancement layer information according to the base layer information and the image; obtaining control layer information, the control The layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; channel coding and modulation are performed on the control layer information, the base layer information, and the enhancement layer information to obtain multiple Symbol set; the multiple symbol sets are mapped to the resource and sent out.
  • the basic layer information obtained after encoding the information source, the residual information between the original information source and the basic layer information is used as the enhancement layer information, and then combined with the control layer information generated during the processing and from the higher layers, Separate and different encoding/decoding algorithms and modulation/demodulation methods are used.
  • the basic layer information contains the outline or rough information of the image. The image restored based on this information can be used by the user to obtain the general image conveyed by the original image. Meaning, and the basic layer information has a very low data volume, which is hundreds or even thousands of times lower than the bit rate of the original source. Lower bit rate encoding/decoding algorithms and low-level modulation/demodulation methods can be used. Complete follow-up processing to ensure robustness in the transmission process.
  • the enhancement layer information cannot recover a recognizable image alone. It should be used to enhance the visual effect of the basic layer on the basis of the basic layer information. It can be used according to the importance of the sub-enhancement layer information in the enhancement layer information.
  • the higher code rate encoding/decoding algorithm of the basic layer information and the higher order modulation/demodulation method complete the subsequent processing.
  • the control layer information includes high-level control information, and control information involved in the processing of basic layer information and enhancement layer information. Based on its importance, lower code rate encoding/decoding algorithms and low-level modulation/ The demodulation method is used to complete the subsequent processing to ensure the robustness in the transmission process. This layered processing method can obtain a more sparse information bit stream to be compressed, which is beneficial to improve the overall compression efficiency and performance.
  • the obtaining enhancement layer information according to the base layer information and the image includes: decoding the base layer information to obtain a restored image; calculating the difference between the image and the restored image The residual obtains residual information; the residual information is divided into blocks, transformed, and quantized to obtain the enhancement layer information.
  • the channel coding and modulation of the control layer information, the base layer information, and the enhancement layer information to obtain multiple symbol sets includes: using the control layer information
  • the first coding algorithm performs channel coding, and uses the first modulation method to perform modulation to obtain a first symbol set; uses the second coding algorithm to perform channel coding on the base layer information, and uses the second modulation method to perform modulation to obtain a second symbol set
  • the at least one coding algorithm does not include the first coding algorithm and the For the second encoding algorithm, the at least one modulation method does not include the first modulation method and the second modulation method.
  • the enhancement layer information includes N sub-enhancement layer information, and the N sub-enhancement layer information is graded according to importance, and the importance means that the corresponding sub-enhancement layer information affects the image
  • the use of at least one coding algorithm for channel coding on the enhancement layer information, and at least one modulation method for modulation to obtain a third symbol set includes: using all of the N sub-enhancement layer information respectively One of the at least one coding algorithm performs channel coding to obtain N bit streams, and the coding algorithm used for the sub-enhancement layer information is related to the importance of the sub-enhancement layer information; Streams are spliced, interleaved, or scrambled to obtain M modulation objects; each of the at least one modulation method is used to modulate the M modulation objects to obtain M symbol sets, and the modulation objects are The modulation mode of is related to the importance of the modulation object; the third symbol set is obtained by splicing the M symbol sets
  • the mapping the plurality of symbol sets to resources and sending out includes: sending the plurality of symbol sets in a first frame, and the first frame includes: pilot, frame Header, the control information of the base layer information, the base layer information, the control information of the enhancement layer information, and the enhancement layer information; wherein the enhancement layer information includes N sub-enhancement layer information, and the enhancement layer
  • the control information of the information includes N pieces of sub-control layer information respectively corresponding to the N pieces of sub-enhancement layer information.
  • an embodiment of the present application provides an image decoding method, including: receiving a signal carried on a resource, and demapping the signal to obtain a first symbol set corresponding to control layer information, and a second symbol set corresponding to base layer information.
  • the control layer information is obtained by demodulating and channel decoding the first symbol set, and the control layer information includes high-level control information, and the base layer information and The control information of the enhancement layer information; according to the control layer information, the second symbol set and the third symbol set are respectively demodulated and channel decoded to obtain the base layer information and the enhancement layer information; according to The base layer information and the enhancement layer information obtain an image.
  • the performing demodulation and channel decoding on the first symbol set to obtain the control layer information includes: performing demodulation on the first symbol set using a first demodulation method, The first decoding algorithm is used to perform channel decoding to obtain the control layer information.
  • the second symbol set and the third symbol set are respectively demodulated and channel decoded according to the control layer information to obtain the base layer information and the enhancement layer information , Including: using a second demodulation method to demodulate the second set of symbols according to the control layer information, and using a second decoding algorithm to perform channel decoding to obtain the base layer information;
  • the third symbol set adopts at least one demodulation method for demodulation, and adopts at least one decoding algorithm for channel decoding to obtain the enhancement layer information, and the at least one demodulation method does not include the first demodulation method
  • the at least one decoding algorithm does not include the first decoding algorithm and the second decoding algorithm.
  • the third symbol set is demodulated by using at least one demodulation method according to the control layer information, and at least one decoding algorithm is used for channel decoding to obtain the enhancement layer
  • the information includes: splitting the third symbol set according to the control layer information to obtain M symbol sets; and respectively adopting one of the at least one demodulation method for the M symbol sets Perform demodulation to obtain M demodulation objects, and the demodulation method used for the symbol set is related to the importance of the symbol set; perform descrambling, deinterleaving or splitting on the M demodulation objects to obtain N demodulation objects Bitstream; the N bitstreams are respectively decoded using one of the at least one decoding algorithm to obtain N sub-enhancement layer information, the decoding algorithm used for the bitstream and the importance of the bitstream
  • the enhancement layer information includes the N sub-enhancement layer information, and the N sub-enhancement layer information is graded according to importance, and the importance refers to the degree of influence of the corresponding
  • the obtaining an image according to the base layer information and the enhancement layer information includes: decoding the base layer information to obtain a restored image; performing information merging on the enhancement layer information, Dequantization, inverse transformation, and block merging processing obtain residual information; the image is obtained according to the restored image and the residual information.
  • an embodiment of the present application provides an encoding device, including: a processing module configured to compress and encode an image to obtain base layer information; obtain enhancement layer information according to the base layer information and the image; obtain control layer information ,
  • the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; channel coding and channel coding are performed on the control layer information, the base layer information, and the enhancement layer information, respectively
  • a plurality of symbol sets are obtained by modulation; a sending module is used to map the plurality of symbol sets to resources and send them out.
  • the processing module is specifically configured to decode the base layer information to obtain a restored image; calculate the residual of the image and the restored image to obtain residual information;
  • the difference information is divided into blocks, transformed, and quantized to obtain the enhancement layer information.
  • the processing module is specifically configured to use a first coding algorithm to perform channel coding on the control layer information, and use a first modulation method to perform modulation to obtain a first symbol set;
  • the layer information adopts the second coding algorithm for channel coding, and adopts the second modulation method for modulation to obtain a second symbol set; adopts at least one coding algorithm for the channel coding of the enhancement layer information, and adopts at least one modulation method for modulation Obtain a third symbol set, the at least one encoding algorithm does not include the first encoding algorithm and the second encoding algorithm, and the at least one modulation method does not include the first modulation method and the second modulation Way.
  • the enhancement layer information includes N sub-enhancement layer information, and the N sub-enhancement layer information is graded according to importance, and the importance means that the corresponding sub-enhancement layer information affects the image
  • the processing module is specifically configured to perform channel coding on the N sub-enhancement layer information using one of the at least one coding algorithm to obtain N bit streams, and perform channel coding on the sub-enhancement layer information.
  • the coding algorithm used for the information is related to the importance of the sub-enhancement layer information; the N bit streams are spliced, interleaved, or scrambled to obtain M modulation objects; the at least one modulation object is respectively used for the M modulation objects.
  • One of the modulation methods is modulated to obtain a set of M symbols, and the modulation method adopted for the modulation object is related to the importance of the modulation object; the third set of symbols is obtained by splicing the M symbol sets. Symbol collection.
  • the sending module is specifically configured to send the multiple symbol sets in a first frame, where the first frame includes: pilot, frame header, and control information of the base layer information , The base layer information, the control information of the enhancement layer information, and the enhancement layer information; wherein the enhancement layer information includes N sub-enhancement layer information, and the control information of the enhancement layer information includes the control information corresponding to the N sub-control layer information of N sub-enhancement layer information.
  • an embodiment of the present application provides a decoding device, including: a receiving module for receiving a signal carried on a resource; a processing module for demapping the signal to obtain a first set of symbols corresponding to control layer information , A second set of symbols corresponding to the base layer information and a third set of symbols corresponding to the enhancement layer information; demodulating and channel decoding the first set of symbols to obtain the control layer information, and the control layer information includes high-level control information , And control information of the base layer information and the enhancement layer information; according to the control layer information, the second symbol set and the third symbol set are respectively demodulated and channel decoded to obtain the base layer information And the enhancement layer information; obtaining an image according to the base layer information and the enhancement layer information.
  • the processing module is specifically configured to use a first demodulation method to demodulate the first symbol set, and use a first decoding algorithm to perform channel decoding to obtain the control layer information.
  • the processing module is specifically configured to use a second demodulation method to demodulate the second set of symbols according to the control layer information, and use a second decoding algorithm to perform channel decoding.
  • the base layer information; according to the control layer information, the third symbol set is demodulated by using at least one demodulation method, and at least one decoding algorithm is used for channel decoding to obtain the enhancement layer information, the at least A demodulation method does not include the first demodulation method and the second demodulation method, and the at least one decoding algorithm does not include the first decoding algorithm and the second decoding algorithm.
  • the processing module is specifically configured to split the third symbol set according to the control layer information to obtain M symbol sets; respectively use the M symbol sets At least one of the demodulation methods is demodulated to obtain M demodulation objects, and the demodulation method used for the symbol set is related to the importance of the symbol set;
  • the object is descrambled, de-interleaved or split to obtain N bit streams; the N bit streams are respectively decoded using one of the at least one decoding algorithm to obtain N sub-enhancement layer information, and the The decoding algorithm used by the bitstream is related to the importance of the bitstream,
  • the enhancement layer information includes the N sub-enhancement layer information, and the N sub-enhancement layer information is ranked according to importance, and the importance refers to the corresponding The degree of influence of the sub-enhancement layer information on the image.
  • the processing module is specifically configured to decode the base layer information to obtain a restored image; perform information merging, dequantization, inverse transformation, and block merging processing on the enhancement layer information to obtain Residual information; the image is obtained according to the restored image and the residual information.
  • an embodiment of the present application provides an encoding device for implementing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an encoding device for implementing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a decoding device for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • a decoding device for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides an encoding device.
  • the device includes a processing circuit and an output interface for internal communication with the processing circuit.
  • the processing circuit is used to compress and encode an image to obtain base layer information;
  • the base layer information and the image are enhanced layer information;
  • the control layer information is acquired, the control layer information includes high-level control information, and the control information of the base layer information and the enhancement layer information;
  • Channel coding and modulation of layer information, the base layer information, and the enhancement layer information to obtain a plurality of symbol sets; the plurality of symbol sets are mapped to resources to generate a first frame; the output interface is used to transmit the The first frame.
  • an embodiment of the present application provides a decoding device.
  • the device includes a processing circuit and an input interface for internal communication with the processing circuit.
  • the input interface is used to receive a first frame;
  • the processing circuit is used to Demapping the first frame to obtain a first symbol set corresponding to control layer information, a second symbol set corresponding to base layer information, and a third symbol set corresponding to enhancement layer information; demodulate the first symbol set And channel decoding to obtain the control layer information, the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; and the second symbol set is respectively set according to the control layer information Perform demodulation and channel decoding with the third symbol set to obtain the base layer information and the enhancement layer information; obtain an image according to the base layer information and the enhancement layer information.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer program, and the computer program includes instructions for executing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program, and the computer program includes instructions for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a communication system, which includes the encoding device provided in the third aspect, the fifth aspect, or the seventh aspect, and the fourth aspect, the sixth aspect, or the fourth aspect, or the seventh aspect.
  • the decoding device provided by eight aspects.
  • FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 used to implement an embodiment of the present application;
  • FIG. 1B is a block diagram of an example of a video decoding system 40 used to implement an embodiment of the present application
  • FIG. 2 is a block diagram of an example structure of an encoder 20 used to implement an embodiment of the present application
  • FIG. 3 is a block diagram of an example structure of a decoder 30 used to implement an embodiment of the present application
  • FIG. 4 is a block diagram of an example of a video decoding device 400 used to implement an embodiment of the present application
  • Fig. 5 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present application
  • Fig. 6 is a schematic flowchart of an image encoding and decoding method used to implement the present application
  • Figure 7 is a pixel distribution diagram of a 16 ⁇ 16 image
  • Figure 8 is a schematic diagram of transform coefficients
  • Figure 9 is a schematic diagram of quantized transform coefficients
  • Figure 10 is a schematic diagram of the coefficient reading sequence
  • Figure 11 is a schematic diagram of a bit plane
  • FIG. 12 is a schematic flowchart of an image encoding and decoding method used to implement the present application.
  • FIG. 13 is a schematic diagram of a data flow layering of the present application.
  • FIG. 14 is a schematic block diagram of an encoding device in an embodiment of the application.
  • FIG. 15 is a schematic block diagram of a decoding device in an embodiment of this application.
  • the corresponding device may include one or more units such as functional units to perform the described one or more method steps (for example, one unit performs one or more steps). , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include one step to perform the functionality of one or more units (for example, one step performs one or more units). The functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” can be used as synonyms.
  • the video encoding used in this application means video encoding or video decoding.
  • Video encoding is performed on the source side, and usually includes processing (for example, by compressing) the original video picture to reduce the amount of data required to represent the video picture, so as to store and/or transmit more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the “encoding” of video pictures involved in the embodiments should be understood as involving the “encoding” or “decoding” of the video sequence.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • a video sequence includes a series of pictures, the pictures are further divided into slices, and the slices are further divided into blocks.
  • Video coding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • macroblocks MB
  • the macroblocks can be further divided into multiple prediction blocks (partitions) that can be used for predictive coding.
  • HEVC high-efficiency video coding
  • basic concepts such as coding unit (CU), prediction unit (PU), and transform unit (TU) are adopted, which are functionally Divide a variety of block units, and use a new tree-based description.
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CUs can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and encoding the coded image.
  • the PU and TU also have a similar tree structure.
  • the PU can correspond to the prediction block and is the basic unit of prediction coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
  • no matter CU, PU or TU they all belong to the concept of block (or image block) in nature.
  • the image block to be encoded in the currently encoded image may be referred to as the current block.
  • the decoded image block used for predicting the current block in the reference image is called a reference block, that is, a reference block is a block that provides a reference signal for the current block, where the reference signal represents the pixel value in the image block.
  • the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal in the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide prediction for the current block, and this block is called a prediction block.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming that there is no transmission loss or other data loss during storage or transmission).
  • quantization is performed to perform further compression to reduce the amount of data required to represent the video picture, and the decoder side cannot completely reconstruct the video picture, that is, the quality of the reconstructed video picture is compared with the original video picture. The quality is low or poor.
  • Video coding standards of H.261 belong to "lossy hybrid video coding and decoding” (that is, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of a video sequence is usually divided into a set of non-overlapping blocks, and is usually coded at the block level.
  • the encoder side usually processes the video at the block (video block) level, that is, encodes the video.
  • the prediction block is generated through spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the processed block subtracts the prediction block to obtain the residual block, transforms the residual block in the transform domain and quantizes the residual block to reduce the amount of data to be transmitted (compressed), and the decoder side will process the inverse of the encoder Partially applied to the coded or compressed block to reconstruct the current block for representation.
  • the encoder duplicates the decoder processing loop, so that the encoder and the decoder generate the same prediction (for example, intra prediction and inter prediction) and/or reconstruction for processing, that is, encoding subsequent blocks.
  • FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14.
  • the source device 12 generates encoded video data. Therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 can decode the encoded video data generated by the source device 12, and therefore, the destination device 14 can be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
  • the memory may include, but is not limited to, RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store the desired program code in the form of instructions or data structures that can be accessed by a computer, as described in this application.
  • the source device 12 and the destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (for example, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones. , Televisions, cameras, display devices, digital media players, video game consoles, on-board computers, wireless communication equipment, or the like.
  • FIG. 1A shows the source device 12 and the destination device 14 as separate devices
  • the device embodiment may also include the source device 12 and the destination device 14 or the functionality of both, that is, the source device 12 or the corresponding function. And the destination device 14 or the corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality.
  • the source device 12 and the destination device 14 can communicate with each other via a link 13, and the destination device 14 can receive encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (for example, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (e.g., the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20, and optionally, the source device 12 may also include a picture source 16, a picture preprocessor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • the picture source 16 which can include or can be any type of picture capture device, for example to capture real-world pictures, and/or any type of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Picture or part of an image) generating equipment, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures), and/or any combination thereof (for example, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type (internal or external) interface for storing previously captured or generated pictures and/or acquiring or receiving pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or an integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be local or, for example, an integrated camera integrated in the source device. Memory.
  • the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
  • the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device, such as It is an external computer graphics processor, computer or server.
  • the interface can be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, and an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of picture elements.
  • the pixel points in the array can also be called sampling points.
  • the number of sampling points of the array or picture in the horizontal and vertical directions (or axis) defines the size and/or resolution of the picture.
  • three color components are usually used, that is, pictures can be represented as or contain three sample arrays.
  • a picture includes corresponding red, green, and blue sample arrays.
  • each pixel is usually expressed in a luminance/chrominance format or color space.
  • a picture in the YUV format includes the luminance component indicated by Y (which may also be indicated by L) and the two indicated by U and V. Chrominance components.
  • the luma component Y represents brightness or gray level intensity (for example, the two are the same in a gray level picture), and the two chroma components U and V represent chroma or color information components.
  • a picture in the YUV format includes a luminance sample array of luminance sample values (Y), and two chrominance sample arrays of chrominance values (U and V).
  • Pictures in RGB format can be converted or converted to YUV format, and vice versa. This process is also called color conversion or conversion. If the picture is black and white, the picture may only include the luminance sample array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture preprocessor 18 is configured to receive the original picture data 17 and perform preprocessing on the original picture data 17 to obtain the preprocessed picture 19 or the preprocessed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (for example, conversion from RGB format to YUV format), toning, or denoising.
  • the encoder 20 (or video encoder 20) is configured to receive the pre-processed picture data 19, and process the pre-processed picture data 19 using a relevant prediction mode (such as the prediction mode in each embodiment of the present application), Thereby, the encoded picture data 21 is provided (the structure details of the encoder 20 will be described further based on FIG. 2 or FIG. 4 or FIG. 5).
  • a relevant prediction mode such as the prediction mode in each embodiment of the present application
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
  • the other device can be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may also include a communication interface 28, a picture post processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, for example, a storage device, and the storage device is, for example, an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 through the link 13 between the source device 12 and the destination device 14 or through any type of network.
  • the link 13 is, for example, a direct wired or wireless connection, of any type.
  • the network of is, for example, a wired or wireless network or any combination thereof, or any type of private network and public network, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish connections, confirm and exchange any other communication links and/or, for example, encoded picture data Information about the transmission of data transmission.
  • the decoder 30 (or called the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (the following will further describe the decoder 30 based on FIG. 3 or FIG. 4 or FIG. 5 Structural details).
  • the picture post processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the picture post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), toning, trimming or resampling, or any other processing, and can also be used to convert the post-processed picture data 33 is transmitted to the display device 34.
  • the display device 34 is used to receive the post-processed picture data 33 to display the picture to, for example, a user or a viewer.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital light processor (digital light processor, DLP) or any other type of display.
  • FIG. 1A shows the source device 12 and the destination device 14 as separate devices
  • the device embodiment may also include the source device 12 and the destination device 14 or the functionality of both, that is, the source device 12 or the corresponding Functionality and destination device 14 or corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality.
  • the source device 12 and the destination device 14 may include any of a variety of devices, including any types of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smart phones, tablets or tablet computers, cameras, desktop computers , Set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices, etc. , And can not use or use any type of operating system.
  • Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits (application-specific integrated circuits). circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • the device can store the instructions of the software in a suitable non-transitory computer-readable storage medium, and can use one or more processors to execute the instructions in hardware to execute the technology of the present disclosure. . Any of the foregoing (including hardware, software, a combination of hardware and software, etc.) can be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the present application can be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video encoding). decoding).
  • the data can be retrieved from local storage, streamed on the network, etc.
  • the video encoding device can encode data and store the data to the memory, and/or the video decoding device can retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from the memory and decode the data.
  • FIG. 1B is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
  • the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
  • the video coding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), and an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
  • the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the encoder 20 and the decoder 30 are used to illustrate the video coding system 40, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may be implemented by the processing unit 46.
  • the processing unit 46 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the video decoding system 40 may also include an optional processor 43, and the optional processor 43 may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, and the processor 43 may be implemented by general-purpose software, an operating system, and the like.
  • the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile memory. Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • Memory for example, flash memory, etc.
  • the memory 44 may be implemented by a cache memory.
  • the logic circuit 47 may access the memory 44 (e.g., to implement an image buffer).
  • the logic circuit 47 and/or the processing unit 46 may include a memory (for example, a cache, etc.) for implementing an image buffer and the like.
  • the encoder 20 implemented by logic circuits may include an image buffer (e.g., implemented by the processing unit 46 or the memory 44) and a graphics processing unit (e.g., implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include an encoder 20 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 2 and/or any other encoder systems or subsystems described in this application.
  • Logic circuits can be used to perform various operations discussed in this application.
  • the decoder 30 may be implemented in a similar manner by the logic circuit 47 to implement the various modules discussed with reference to the decoder 30 of FIG. 3 and/or any other decoder system or subsystem described in this application .
  • the decoder 30 implemented by logic circuits may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (implemented by the processing unit 46, for example).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described in this application.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data, indicators, index values, mode selection data, etc., related to encoded video frames discussed in this application, such as data related to encoding partitions (e.g., transform coefficients or quantized transforms). Coefficients, (as discussed) optional indicators, and/or data defining code partitions).
  • the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 can be used to receive and parse such syntax elements, and decode related video data accordingly.
  • the encoder 20 may entropy encode the syntax elements into an encoded video bitstream. In such instances, the decoder 30 may parse such syntax elements and decode the related video data accordingly.
  • the image encoding and decoding methods described in the embodiments of the present application are mainly used in the joint encoding and decoding process of the source and channel.
  • both the encoder 20 and the decoder 30 exist.
  • the encoder in the embodiment of the present application 20 and decoder 30 can be, for example, H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9 and other video standard protocols or the codecs corresponding to next-generation video standard protocols (such as H.266, etc.) decoder.
  • FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
  • the encoder 20 includes a residual calculation unit 204, a transformation processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transformation processing unit 212, a reconstruction unit 214, a buffer 216, and a loop filter.
  • Unit 220 a decoded picture buffer (DPB) 230, a prediction processing unit 260, and an entropy coding unit 270.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, and for example, the inverse quantization unit 210, the inverse transform processing unit 212, and the The structure unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form the backward signal path of the encoder, wherein the backward signal path of the encoder corresponds to The signal path of the decoder (see decoder 30 in FIG. 3).
  • the encoder 20 receives the picture 201 or the image block 203 of the picture 201 through, for example, the input 202, for example, a picture in a picture sequence forming a video or a video sequence.
  • the image block 203 may also be called the current picture block or the picture block to be coded
  • the picture 201 may be called the current picture or the picture to be coded (especially when the current picture is distinguished from other pictures in video coding, the other pictures are for example the same video sequence). That is, the previous coded and/or decoded picture in the video sequence that also includes the current picture).
  • the embodiment of the encoder 20 may include a segmentation unit (not shown in FIG. 2) for segmenting the picture 201 into a plurality of blocks such as the image block 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and the corresponding grid that defines the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or groups of pictures, and divide each picture into Corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the aforementioned segmentation techniques.
  • the image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than that of the picture 201.
  • the image block 203 may include, for example, one sampling array (for example, a luminance array in the case of a black-and-white picture 201) or three sampling arrays (for example, one luminance array and two chrominance arrays in the case of a color picture) or Any other number and/or type of array depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel). The sample values of the block 265 are de-predicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is configured to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain.
  • a transform such as discrete cosine transform (DCT) or discrete sine transform (DST)
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the transform coefficient 207 may also be referred to as a transform residual coefficient, and represents the residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply an integer approximation of DCT/DST, such as the transform specified for HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transformation, an additional scaling factor is applied as part of the transformation process.
  • the scaling factor is usually selected based on certain constraints. For example, the scaling factor is a trade-off between the power of 2 used for the shift operation, the bit depth of the transform coefficient, accuracy, and implementation cost.
  • the inverse transform processing unit 212 for the inverse transform (and on the encoder 20 side, for example, the inverse transform processing unit 212 for the corresponding inverse transform) designate a specific scaling factor, and accordingly, the encoder The 20 side uses the transformation processing unit 206 to specify a corresponding scaling factor for the positive transformation.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by applying scalar quantization or vector quantization, for example, to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as a quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting the quantization parameter (QP). For example, for scalar quantization, different scales can be applied to achieve finer or coarser quantization.
  • QP quantization parameter
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • the appropriate quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • a smaller quantization parameter can correspond to fine quantization (smaller quantization step size)
  • a larger quantization parameter can correspond to coarse quantization (larger quantization step size)
  • Quantization may include division by a quantization step size and corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplication by a quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using a fixed-point approximation of an equation including division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in the fixed-point approximation of the equations for the quantization step size and the quantization parameter.
  • the scales of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in, for example, a bitstream. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • the inverse quantization unit 210 is configured to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or use the same quantization step size as the quantization unit 208, and apply the quantization scheme applied by the quantization unit 208 The inverse quantification scheme.
  • the inversely quantized coefficient 211 may also be referred to as the inversely quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually different from the transform coefficient.
  • the inverse transform processing unit 212 is configured to apply the inverse transform of the transform applied by the transform processing unit 206, for example, an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), so as to be in the sample domain. Obtain the inverse transform block 213.
  • the inverse transformation block 213 may also be referred to as an inverse transformation and inverse quantization block 213 or an inverse transformation residual block 213.
  • the reconstruction unit 214 (for example, the summer 214) is used to add the inverse transform block 213 (that is, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample value of the reconstructed residual block 213 and the sample value of the prediction block 265 are added.
  • the buffer unit 216 (or “buffer” 216 for short) such as the line buffer 216 is used to buffer or store the reconstructed block 215 and the corresponding sample value for, for example, intra prediction.
  • the encoder can be used to use the unfiltered reconstructed block and/or the corresponding sample value stored in the buffer unit 216 to perform any type of estimation and/or prediction, such as intra-frame predict.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only for storing the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2 Out), and/or, for example, make the buffer unit 216 and the decoded picture buffer unit 230 form one buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (none of which are shown in FIG. 2) as the input or basis for the intra prediction 254.
  • the loop filter unit 220 (or “loop filter” 220 for short) is used to filter the reconstructed block 215 to obtain the filtered block 221, thereby smoothly performing pixel conversion or improving video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, auto Adaptive loop filter (ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as a filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed coded block after the loop filter unit 220 performs a filtering operation on the reconstructed coded block.
  • the embodiment of the encoder 20 can be used to output loop filter parameters (e.g., sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy coding unit is output after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (DPB) 230 may be a reference picture memory that stores reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (DRAM) (including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM)), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • MRAM magnetoresistive RAM
  • RRAM resistive RAM
  • the DPB 230 and the buffer 216 may be provided by the same memory device or a separate memory device.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as the previously reconstructed picture, such as the previously reconstructed and filtered block 221, and may provide a complete previous Reconstruction is a decoded picture (and corresponding reference blocks and samples) and/or a partially reconstructed current picture (and corresponding reference blocks and samples), for example, for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also referred to as the block prediction processing unit 260, is used to receive or obtain the image block 203 (the current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216
  • the reference samples and/or the reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, the provision can be an inter-predicted block 245 or a The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (for example, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode for example, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • the embodiment of the mode selection unit 262 may be used to select a prediction mode (for example, from those supported by the prediction processing unit 260) that provides the best match or minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimal signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance the two at the same time.
  • the mode selection unit 262 may be configured to determine a prediction mode based on rate distortion optimization (RDO), that is, select a prediction mode that provides the smallest rate-distortion optimization, or select a prediction mode whose related rate-distortion at least meets the prediction mode selection criteria .
  • RDO rate distortion optimization
  • the encoder 20 is used to determine or select the best or optimal prediction mode from a set of (predetermined) prediction modes.
  • the prediction mode set may include, for example, an intra prediction mode and/or an inter prediction mode.
  • the set of intra prediction modes may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra-frame prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.266 under development.
  • the set of inter-frame prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least part of the decoded pictures stored in the DBP 230) and other inter-frame prediction parameters, such as whether to use the entire reference picture or only Use a part of the reference picture, such as the search window area surrounding the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied
  • the set of inter prediction modes may include, for example, an advanced motion vector (Advanced Motion Vector Prediction, AMVP) mode and a merge mode.
  • AMVP Advanced Motion Vector Prediction
  • the set of inter-frame prediction modes may include the improved AMVP mode based on control points in the embodiments of the present application, and the improved merge mode based on control points.
  • the intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
  • the embodiments of the present application may also apply skip mode and/or direct mode.
  • the prediction processing unit 260 may be further used to divide the image block 203 into smaller block partitions or sub-blocks, for example, by iteratively using quad-tree (QT) segmentation and binary-tree (BT) segmentation. Or triple-tree (TT) segmentation, or any combination thereof, and used to perform prediction, for example, for each of the block partitions or sub-blocks, where the mode selection includes selecting the tree structure of the segmented image block 203 and selecting the application The prediction mode for each of the block partitions or sub-blocks.
  • QT quad-tree
  • BT binary-tree
  • TT triple-tree
  • the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
  • the motion estimation unit is used to receive or obtain the picture image block 203 (the current picture image block 203 of the current picture 201) and the decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
  • the reconstructed block of the previously decoded picture 231 is used for motion estimation.
  • the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of the picture sequence forming the video sequence, or form the picture sequence.
  • the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide the reference picture and/or provide a reference to the motion estimation unit (not shown in FIG. 2)
  • the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called a motion vector (MV).
  • the motion compensation unit is used to obtain inter-frame prediction parameters, and perform inter-frame prediction based on or using the inter-frame prediction parameters to obtain the inter-frame prediction block 245.
  • the motion compensation performed by the motion compensation unit may include fetching or generating a prediction block based on a motion/block vector determined by motion estimation (interpolation of sub-pixel accuracy may be performed). Interpolation filtering can generate additional pixel samples from known pixel samples, thereby potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
  • the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list.
  • the motion compensation unit 246 may also generate syntax elements associated with the block and the video slice for use by the decoder 30 when decoding the picture block of the video slice.
  • the aforementioned inter-prediction unit 244 may transmit syntax elements to the entropy encoding unit 270, and the syntax elements include inter-prediction parameters (for example, after traversing multiple inter-prediction modes and selecting the inter-prediction mode used for the prediction of the current block) Instructions).
  • the inter-frame prediction parameter may not be carried in the syntax element.
  • the decoder 30 can directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
  • the intra prediction unit 254 is used to obtain, for example, receive the picture block 203 (current picture block) of the same picture and one or more previously reconstructed blocks, for example reconstructed adjacent blocks, for intra estimation.
  • the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
  • the embodiment of the encoder 20 may be used to select an intra prediction mode based on optimization criteria, for example, based on a minimum residual (for example, an intra prediction mode that provides a prediction block 255 most similar to the current picture block 203) or a minimum rate distortion.
  • a minimum residual for example, an intra prediction mode that provides a prediction block 255 most similar to the current picture block 203
  • a minimum rate distortion for example, an intra prediction mode that provides a prediction block 255 most similar to the current picture block 203
  • the intra prediction unit 254 is further configured to determine the intra prediction block 255 based on the intra prediction parameters of the selected intra prediction mode. In any case, after selecting the intra prediction mode for the block, the intra prediction unit 254 is also used to provide intra prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
  • the aforementioned intra-prediction unit 254 may transmit syntax elements to the entropy encoding unit 270, where the syntax elements include intra-prediction parameters (for example, after traversing multiple intra-prediction modes and selecting the intra-prediction mode used for prediction of the current block) Instructions).
  • the syntax elements include intra-prediction parameters (for example, after traversing multiple intra-prediction modes and selecting the intra-prediction mode used for prediction of the current block) Instructions).
  • the intra-frame prediction parameter may not be carried in the syntax element.
  • the decoder 30 can directly use the default prediction mode for decoding.
  • the entropy coding unit 270 is configured to use entropy coding algorithms or schemes (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Coding (context adaptive binary arithmetic coding, CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval partitioning entropy (PIPE) coding or other entropy Coding method or technique) applied to quantized residual coefficients 209, inter-frame prediction parameters, intra-frame prediction parameters, and/or loop filter parameters, or all of them (or not applied), to obtain data that can be output by output 272
  • VLC variable length coding
  • CAVLC context adaptive VLC
  • CABAC context adaptive binary arithmetic
  • SBAC syntax-based context-adaptive binary arithmetic coding
  • PIPE probability interval partitioning entropy Coding method or technique
  • the encoded bitstream can be transmitted to the video decoder 30, or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • the non-transform-based encoder 20 can directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the image coding method described in the following embodiments.
  • the video encoder 20 can directly quantize the residual signal without being processed by the transform processing unit 206, and accordingly does not need to be processed by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, the quantization unit 208, the inverse quantization unit 210, and the inverse transform processing unit 212 are optional. It should be understood that, according to different application scenarios, the inter prediction unit 244 and the intra prediction unit 254 may be selectively activated.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
  • the video decoder 30 is used to receive, for example, encoded picture data (for example, an encoded bit stream) 21 encoded by the encoder 20 to obtain a decoded picture 231.
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements that represent picture blocks of an encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (for example, a summer 314), a buffer 316, a loop filter 320, and The decoded picture buffer 330 and the prediction processing unit 360.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform decoding passes that are substantially reciprocal of the encoding passes described with video encoder 20 of FIG. 2.
  • the entropy decoding unit 304 is configured to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Loop filter parameters and/or any one or all of other syntax elements (decoded).
  • the entropy decoding unit 304 is further configured to forward the inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • the video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 can be functionally the same as the inverse quantization unit 110
  • the inverse transformation processing unit 312 can be functionally the same as the inverse transformation processing unit 212
  • the reconstruction unit 314 can be functionally the same as the reconstruction unit 214
  • the buffer 316 can be functionally identical.
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354.
  • the inter prediction unit 344 may be functionally similar to the inter prediction unit 244, and the intra prediction unit 354 may be functionally similar to the intra prediction unit 254.
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain a prediction block 365 from the encoded data 21, and to receive or obtain (explicitly or implicitly) prediction-related parameters and/or related parameters from, for example, the entropy decoding unit 304. Information about the selected prediction mode.
  • the intra-prediction unit 354 of the prediction processing unit 360 is used to predict the intra-prediction mode based on the signal and the information from the previous decoded block of the current frame or picture. Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter-prediction unit 344 e.g., motion compensation unit
  • the prediction processing unit 360 is used to based on the motion vector and received from the entropy decoding unit 304
  • the other syntax elements generate a prediction block 365 for the video block of the current video slice.
  • a prediction block can be generated from a reference picture in a reference picture list.
  • the video decoder 30 may use the default construction technique to construct a list of reference frames based on the reference pictures stored in the DPB 330: list 0 and list 1.
  • the prediction processing unit 360 is configured to determine prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (for example, intra or inter prediction) and the inter prediction slice type ( For example, B slice, P slice or GPB slice), construction information for one or more of the reference picture list for the slice, motion vector for each inter-coded video block of the slice, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
  • the syntax elements received by the video decoder 30 from the bitstream include receiving adaptive parameter set (APS), sequence parameter set (sequence parameter set, SPS), and picture parameter set (picture parameter set). parameter set, PPS) or a syntax element in one or more of the slice headers.
  • APS adaptive parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameter calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (for example, an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process) to transform coefficients in order to generate a residual block in the pixel domain.
  • an inverse transform for example, an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process
  • the reconstruction unit 314 (for example, the summer 314) is used to add the inverse transform block 313 (that is, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example by adding The sample value of the reconstructed residual block 313 and the sample value of the prediction block 365 are added.
  • the loop filter unit 320 (during the encoding cycle or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321, thereby smoothly performing pixel transformation or improving video quality.
  • the loop filter unit 320 may be used to perform any combination of the filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters or other filters, such as bilateral filters, auto Adaptive loop filter (ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • the decoder 30 may generate an output video stream without the loop filter unit 320.
  • the non-transform-based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the image decoding method described in the following embodiments.
  • the video decoder 30 may generate an output video stream without processing by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and in the case of lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
  • the inter prediction unit and the intra prediction unit may be selectively activated.
  • the processing result for a certain link can be further processed and output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc.
  • operations such as Clip or shift are further performed on the processing results of the corresponding link.
  • FIG. 4 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
  • the video decoding device 400 is suitable for implementing the embodiments described in this application.
  • the video coding device 400 may be a video decoder (for example, the decoder 30 of FIG. 1A) or a video encoder (for example, the encoder 20 of FIG. 1A).
  • the video coding device 400 may be one or more components of the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
  • the video decoding device 400 includes: an entrance port 410 for receiving data and a receiving unit (Rx) 420, a processor, logic unit or central processing unit (CPU) 430 for processing data, and a transmitter unit for transmitting data (Tx) 440 and outlet port 450, and a memory 460 for storing data.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled with the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of optical or electrical signals.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (for example, multi-core processors), FPGAs, ASICs, and DSPs.
  • the processor 430 communicates with the ingress port 410, the receiver unit 420, the transmitter unit 440, the egress port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments disclosed in the present application to implement the chrominance block prediction method provided in the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement to the function of the video decoding device 400, and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented by instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid-state hard disks, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and storing instructions and data read during program execution.
  • the memory 460 may be volatile and/or non-volatile, and may be read-only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory, TCAM) and/or static Random Access Memory (SRAM).
  • FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
  • the device 500 can implement the technology of the present application.
  • FIG. 5 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to as a decoding device 500 for short) according to an embodiment of the application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected by a bus system, the memory is used to store instructions, and the processor is used to execute instructions stored in the memory.
  • the memory of the decoding device stores program codes, and the processor can call the program codes stored in the memory to execute various video encoding or decoding methods described in this application. To avoid repetition, it will not be described in detail here.
  • the processor 510 may be a central processing unit (Central Processing Unit, referred to as "CPU” for short), and the processor 510 may also be other general-purpose processors, digital signal processors (DSP), and dedicated integration Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device can also be used as the memory 530.
  • the memory 530 may include code and data 531 that are accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535.
  • the application program 535 includes at least one program that allows the processor 510 to execute the video encoding or decoding method described in this application.
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video coding application) that executes the video encoding or decoding method described in this application.
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clear description, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may further include one or more output devices, such as a display 570.
  • the display 570 may be a touch-sensitive display that merges the display with a touch-sensitive unit operable to sense touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • FIG. 6 is a schematic flowchart of an image encoding and decoding method used to implement the present application.
  • the process 600 can be executed by the source device 12 and the destination device 14.
  • the process 600 is described as a series of steps or operations. It should be understood that the process 600 may be executed in various orders and/or occur simultaneously, and is not limited to the execution order shown in FIG. 6.
  • the method includes:
  • Step 601 The source device compresses and encodes the image to obtain basic layer information.
  • the source device encodes the image with a higher compression rate. It can use encoding algorithms such as H.26x, JPEG or JPEG2000, or it can use image space downsampling, video downsampling (real-time domain downsampling) and other methods. For the specific encoding process, please refer to the above description of the encoder, which will not be repeated here.
  • the characteristics of the basic layer information obtained include: (1) Contains the outline or rough information of the image. Based on the image restored by this information, the user can obtain the general meaning conveyed by the original image; (2) It has a very low amount of data and is relatively The bit rate of the original image is reduced by hundreds or even thousands of times, which facilitates the use of lower bit rates and low-level modulation to complete the subsequent processing and ensure the robustness of the transmission process.
  • information source processed by this application is not limited to images, but may also include other information such as video, voice, and instructions, which is not specifically limited.
  • Step 602 The source device obtains enhancement layer information according to the basic layer information and the image.
  • the source device decodes the base layer information to obtain the restored image, calculates the residual of the image and the restored image to obtain the residual information, and performs block, transform, and quantization processing on the residual information to obtain the enhancement layer information.
  • the size of the block can be 8 ⁇ 8, 16 ⁇ 16, 32 ⁇ 32, etc.
  • the conversion can adopt DCT, DWT and other methods.
  • Quantization can use a uniform or non-uniform quantization table.
  • the block division, transformation, and quantization can all refer to the description of the image block, transformation processing unit, quantization unit, etc. in the foregoing embodiment, which will not be repeated here. After the above processing, each transform coefficient will get a fixed-digit quantized bit stream.
  • bit streams can be divided into multiple bit-planes of high importance to low importance through the bit-plane layering technology, for example, the high-order bit-plane The importance is higher, and the importance of the lower bit plane is lower.
  • one bit-plane can be used as one sub-enhancement layer information, or multiple bit-planes can be used as one sub-enhancement layer information.
  • a specific embodiment is used to describe the method for acquiring the bit plane as follows.
  • Figure 7 shows the pixel distribution of a 16 ⁇ 16 image. As shown in Figure 7, each small square corresponds to a pixel. The image is divided into 4 8 ⁇ 8 blocks. The thick black line represents the dividing line of the block. . The pixel value in each block is offset by -128, and then the DCT transformation is performed to obtain the transformation coefficient as shown in FIG. 8. This operation can reduce the amplitude of the DC coefficient in the upper left corner of the image, thereby reducing the length of the converted binary bit. Since the transform coefficients in Fig. 8 are all real numbers and require longer binary bits to accurately represent them, this is not conducive to compression, so quantization is required before being converted to binary.
  • the quantized transform coefficient rounding (transform coefficient/quantization step length 5), as shown in FIG. 9.
  • the quantized transform coefficient is converted into a binary bit stream, assuming that each transform coefficient is represented by 8 bits, the first bit is the sign bit (0 represents a positive number, 1 represents a negative number), and the last 7 bits are digital bits.
  • the coefficients in the block are read as a vector in the order of Zigzag, and the reading order is shown by the arrows in Figure 10.
  • the binary bit stream corresponding to the transform coefficients in the block is shown in FIG. 11, where each column corresponds to a bit plane, and there are 8 bit planes (numbered 1-8) in total.
  • the enhancement layer information is mainly through binary conversion of the quantized transform coefficients, and the resulting bit stream is split into multiple bit planes to achieve layering.
  • the enhancement layer information cannot be recovered separately.
  • the recognized image should be used to enhance the visual effect of the basic layer on the basis of the basic layer information.
  • Step 603 The source device obtains control layer information.
  • the control layer information includes the voice information and instruction information sent by the higher layer, as well as the control information involved in the processing of the basic layer information and the enhancement layer information, such as the length of the basic layer information, the block size of the enhancement layer information, and each sub-enhancement
  • Step 604 The source device respectively performs channel coding and modulation on the control layer information, the base layer information, and the enhancement layer information to obtain multiple symbol sets.
  • the source device uses the first coding algorithm to perform channel coding on the control layer information, and uses the first modulation method to perform modulation to obtain the first symbol set.
  • the second coding algorithm is used to perform channel coding on the base layer information, and the second modulation mode is used to perform modulation to obtain a second set of symbols.
  • the source device can use independent and different levels of coding algorithms and modulation methods to encode and modulate the control layer information and the base layer information. Based on the importance of the control layer information and the base layer information, the control layer information And the base layer information can use low bit rate coding algorithms and low-order modulation methods (such as 1/2Rate, BPSK, etc.). It should be noted that the above-mentioned first coding algorithm and second coding algorithm can be the same algorithm or different algorithms. The first modulation method and the second modulation method can be the same modulation method or different modulation methods. This application does not specifically limit this.
  • the source device uses at least one coding algorithm to perform channel coding on the enhancement layer information, and uses at least one modulation method to perform modulation to obtain a third symbol set.
  • the at least one coding algorithm does not include the first coding algorithm and the second coding algorithm, and at least one This modulation method does not include the first modulation method and the second modulation method. That is, the N sub-enhancement layer information is channel-encoded using at least one encoding algorithm in at least one encoding algorithm to obtain N bit streams.
  • the encoding algorithm used for the sub-enhancement layer information is related to the importance of the sub-enhancement layer information, and then the N bit streams are spliced, interleaved or scrambled to obtain M modulation objects, and then the M modulation objects are respectively modulated by at least one of the modulation methods to obtain M symbol sets, and the modulation used for the modulation objects
  • the mode is related to the importance of the modulation object, and finally the M symbol sets are spliced to obtain the third symbol set.
  • the at least one encoding algorithm may also include the first encoding algorithm and/or the second encoding algorithm
  • the at least one modulation method may also include the first modulation method and/or the second modulation method, which is not specific. limited.
  • the source device uses independent and different levels of coding algorithms and modulation methods to encode and modulate the N sub-enhancement layer information included in the enhancement layer information.
  • the sub-enhancement layer information corresponding to the higher bit plane uses a medium code rate encoding algorithm.
  • medium-level modulation methods such as 3/4Rate, 16QAM, etc.
  • the sub-enhancement layer information corresponding to the low-bit bit plane uses high-rate coding algorithms and high-level modulation methods (such as 7/8Rate, 64QAM, etc.).
  • bit streams obtained after encoding the N sub-enhancement layer information are spliced, interleaved and scrambled, and then respectively mapped to M different constellations (M ⁇ 1) to obtain M modulation objects. Interleaving can enhance the signal's ability to resist channel burst errors, and scrambling can make the 0/1 bit distribution more uniform, ensuring the stability of the instantaneous power of the transmitted signal.
  • Step 605 The source device maps multiple symbol sets to resources and sends them to the destination device.
  • the source device splices the multiple symbol sets (including the first symbol set, the second symbol set, and the third symbol set) obtained after encoding and modulation, and maps them to the time domain, frequency domain, or space domain (multi-antenna) according to specific rules. System) resources are sent out to further improve the reliability of transmission.
  • Table 1 shows a frame format of multiple symbol sets. As shown in Table 1, the frame includes pilot, frame header, basic layer information control information (control layer information 0), basic layer information, and enhancement layer information.
  • control layer information 0 basic layer information control information
  • enhancement layer information The control information and enhancement layer information of the enhancement layer; wherein the enhancement layer information includes N sub-enhancement layer information (1-N), and the control information of the enhancement layer information includes N sub-control layer information (1-N ).
  • Step 606 The destination device demaps the received signal to obtain a first symbol set corresponding to the control layer information, a second symbol set corresponding to the base layer information, and a third symbol set corresponding to the enhancement layer information.
  • the destination device synchronizes the received signal, and after channel estimation and equalization processing, the symbol sets corresponding to the control layer information, the base layer information, and the enhancement layer information are obtained through demapping.
  • Step 607 The destination device performs demodulation and channel decoding on the first symbol set to obtain control layer information.
  • the destination device uses the first demodulation method to demodulate the first symbol set corresponding to the control layer information, and uses the first decoding algorithm to perform channel decoding to obtain the control layer information.
  • the control layer information includes high-level control information, and control information of basic layer information and enhanced layer information.
  • Step 608 The target device respectively performs demodulation and channel decoding on the second symbol set and the third symbol set according to the control layer information to obtain base layer information and enhancement layer information.
  • the target device uses the second demodulation method to demodulate the second symbol set according to the control layer information, and uses the second decoding algorithm to perform channel decoding to obtain the basic layer information, and uses at least one demodulation method to demodulate the third symbol set , And use at least one decoding algorithm to perform channel decoding to obtain enhancement layer information.
  • At least one demodulation method does not include the first demodulation method and the second demodulation method, and at least one decoding algorithm does not include the first decoding algorithm and the second demodulation method. Decoding algorithm.
  • the target device can use independent and different levels of demodulation methods and decoding algorithms to demodulate and decode the control layer information, base layer information, and enhancement layer information.
  • the target device is the reverse processing of the source device. Therefore, the demodulation method and decoding algorithm used by the target device for the control layer information, base layer information, and enhancement layer information correspond to the modulation method and coding algorithm adopted by the source device.
  • the first coding algorithm corresponds to the first decoding algorithm
  • the second coding algorithm corresponds to the second decoding algorithm
  • the first modulation method corresponds to the first demodulation method
  • the second modulation method corresponds to the first decoding algorithm.
  • the second demodulation mode corresponds.
  • the destination device splits the third symbol set according to the control layer information to obtain M symbol sets, and then demodulates the M symbol sets by using at least one of the demodulation methods.
  • M demodulation objects the demodulation method used for the symbol set is related to the importance of the symbol set, then M demodulation objects are descrambled, deinterleaved or split to obtain N bit streams, and finally N bit streams
  • Each decoding algorithm of at least one decoding algorithm is used to decode to obtain N sub-enhancement layer information.
  • the decoding algorithm used for the bit stream is related to the importance of the bit stream.
  • the enhancement layer information includes N sub-enhancement layer information and N sub-enhancements.
  • the layer information is graded according to the importance. The importance refers to the degree of influence of the corresponding sub-enhancement layer information on the image.
  • Step 609 The destination device obtains an image according to the basic layer information and the enhancement layer information.
  • the target device decodes the base layer information to obtain the restored image, performs information merging, dequantization, inverse transformation, and block merging processing on the enhancement layer information to obtain residual information, and finally obtains the image based on the restored image and residual information.
  • the target device can perform symbol splitting, demodulation, etc. until the soft information corresponding to the check bit bit, and then use the confidence transmission method (using the 0/1 bit probability distribution before encoding in the control layer information as the initial iterative value) to perform channel decoding to obtain the original
  • the 0/1 bit probability of the bit stream is then reconstructed according to this probability and the original residual information is inversely transformed to recover the original residual information, and the residual information and the recovered image are combined to obtain the original image.
  • the source device will firstly layer the information of the source according to the importance and purpose.
  • the source is not limited to images/videos, but may also contain voice, instructions and other information.
  • This layering operation is mainly Contains two levels. First, the base layer and residual information are obtained through high compression rate source coding, and then the residual information is further layered to obtain several sub-enhancement layer information, and finally one base layer information and several sub-enhancement layer information are generated And a control layer information.
  • Information bits of different layers have different importance, and will undergo different encoding and modulation processing, which mainly include channel coding, bit stream splicing, interleaving, scrambling, modulation, symbol sequence splicing and other operations. Finally, the symbols obtained in different layers are mapped to the designated resource block and sent out.
  • the destination device performs synchronization, channel estimation and equalization processing on the received signal. Then get basic layer information, enhancement layer information and control layer information through de-resource mapping. Basic layer information and control layer information are directly obtained through operations such as demodulation and channel decoding. The enhancement layer information is divided into symbols and demodulated to obtain soft information, and then channel decoding is performed through the confidence transmission method to obtain a probability of 0/1 bit, and the information is combined according to this probability to recover the residual information. Finally, the basic layer information and residual information are combined to obtain the original information source.
  • FIG. 12 is a schematic flowchart of an image encoding and decoding method used to implement the present application.
  • the encoder in the source device performs high compression rate compression on the image/video to obtain base layer information and residual information, and performs channel coding and low-level modulation on the base layer information (such as Pi/2-BPSK modulation) .
  • the decoder in the target device demaps the received signal, demodulates and decodes symbols corresponding to the base layer information and the control layer information, respectively, to obtain the base layer information and the control layer information.
  • the symbols corresponding to the enhancement layer information are first split and demodulated separately, the bit stream is descrambled, de-interleaved and split and then decoded separately, and the residuals are obtained through information merging, dequantization, inverse transformation and block merging processing Information, combining the decompressed base layer information and residual information to obtain an image.
  • the basic layer information obtained after encoding the information source, the residual information between the original information source and the basic layer information is used as the enhancement layer information, and then combined with the control layer information generated during the processing and from the higher layers, Separate and different encoding/decoding algorithms and modulation/demodulation methods are used.
  • the basic layer information contains the outline or rough information of the image. The image restored based on this information can be used by the user to obtain the general image conveyed by the original image. Meaning, and the basic layer information has a very low data volume, which is hundreds or even thousands of times lower than the bit rate of the original source. Lower bit rate encoding/decoding algorithms and low-level modulation/demodulation methods can be used. Complete follow-up processing to ensure robustness in the transmission process.
  • the enhancement layer information cannot recover a recognizable image alone. It should be used to enhance the visual effect of the basic layer on the basis of the basic layer information. It can be used according to the importance of the sub-enhancement layer information in the enhancement layer information.
  • the higher code rate encoding/decoding algorithm of the basic layer information and the higher order modulation/demodulation method complete the subsequent processing.
  • the control layer information includes high-level control information, and control information involved in the processing of basic layer information and enhancement layer information. Based on its importance, lower code rate encoding/decoding algorithms and low-level modulation/ The demodulation method is used to complete the subsequent processing to ensure the robustness in the transmission process. This layered processing method can obtain a more sparse information bit stream to be compressed, which is beneficial to improve the overall compression efficiency and performance.
  • Figure 13 is a schematic diagram of a data stream layering of the present application.
  • Compress the original video for example, 1080P, 60 frames/second
  • the source device decodes the base layer information and calculates the residual from the original video to obtain the residual information.
  • the residual information is further divided into several 8 ⁇ 8 blocks, and each block is subjected to DCT transformation to obtain frequency domain transform coefficients. From the upper left corner to the lower right corner, they correspond to the low-frequency to high-frequency coefficients. The energy is generally concentrated in the lower frequency.
  • Basic layer control means quantization order, spatial resolution, time resolution, etc.
  • Enhancement layer control method adjust by the quantization step Q step , the ratio of the number of high-frequency coefficients discarded in the frequency domain, and the subsequent joint coding rate.
  • the larger the quantization step the number of high-frequency coefficients discarded in the frequency domain.
  • the reconstruction of transform coefficients by the destination device can adopt two methods: hard reconstruction and soft reconstruction:
  • Hard reconstruction The destination device will directly make a hard decision on the 0/1 bit probability of the original bit sequence obtained by channel decoding, that is, the decision is 0 when p(0)>0.5, and the decision is 1 when p(0) ⁇ 0.5 , And then use the decided bit sequence to calculate the reconstructed transform coefficient value.
  • I represents the number of bits of binary quantization of the transform coefficient
  • the first bit is the sign bit, followed by the digital bit
  • the soft reconstruction method is more adaptable to the channel and can more smoothly reflect the influence of channel noise.
  • the image encoding and decoding methods of the embodiments of the application are described above.
  • the devices of the embodiments of the application are described below.
  • the devices of the embodiments of the application include an encoding device applied to the transmitting end and a decoding device applied to the receiving end. It should be understood that the application
  • the encoding device on the transmitting end is the source device in the above method, which has any function of the transmitting end in the above method
  • the decoding device applied to the receiving end is the target device in the above method, which has any function of the receiving end in the above method .
  • the encoding device applied to the sending end includes: a processing module 1401 and a sending module 1402.
  • the processing module 1401 is configured to compress and encode an image to obtain base layer information; obtain enhancement layer information according to the base layer information and the image; obtain control layer information, where the control layer information includes high-level control information, and all The control information of the base layer information and the enhancement layer information; channel coding and modulation are performed on the control layer information, the base layer information, and the enhancement layer information to obtain multiple symbol sets; the sending module 1402 is configured to The multiple symbol sets are mapped to the resource and sent out.
  • the processing module 1401 is specifically configured to decode the base layer information to obtain a restored image; calculate the residual of the image and the restored image to obtain residual information;
  • the residual information is divided into blocks, transformed, and quantized to obtain the enhancement layer information.
  • the processing module 1401 is specifically configured to use the first coding algorithm to perform channel coding on the control layer information, and use the first modulation method to perform modulation to obtain the first symbol set;
  • the basic layer information is channel-coded using the second coding algorithm, and the second modulation mode is used for modulation to obtain a second symbol set;
  • the enhancement layer information is channel-coded using at least one coding algorithm, and at least one modulation mode is used for channel coding.
  • the third symbol set is obtained by modulation, the at least one encoding algorithm does not include the first encoding algorithm and the second encoding algorithm, and the at least one modulation method does not include the first modulation method and the second modulation method. Modulation.
  • the enhancement layer information includes N sub-enhancement layer information, and the N sub-enhancement layer information is graded according to importance, and the importance means that the corresponding sub-enhancement layer information affects the image
  • the processing module 1401 is specifically configured to perform channel coding on the N sub-enhancement layer information using one of the at least one coding algorithm to obtain N bit streams, and to perform channel coding on the sub-enhancement layer information.
  • the coding algorithm used for the layer information is related to the importance of the sub-enhancement layer information; the N bit streams are spliced, interleaved, or scrambled to obtain M modulation objects; the M modulation objects are respectively used for the at least One of the modulation methods is modulated to obtain a set of M symbols, and the modulation method used for the modulation object is related to the importance of the modulation object; the M symbol sets are spliced to obtain the first set of symbols. Three symbols collection.
  • the sending module 1402 is specifically configured to send the multiple symbol sets in a first frame, and the first frame includes: pilot, frame header, and control of the basic layer information Information, the base layer information, the control information of the enhancement layer information, and the enhancement layer information; wherein the enhancement layer information includes N sub-enhancement layer information, and the control information of the enhancement layer information includes the control information corresponding to all The N sub-control layer information of the N sub-enhancement layer information.
  • the encoding device applied to the transmitting end provided by the embodiment of the present application is the source device in the foregoing method, and it has any function of the transmitting end in the foregoing method. For details, please refer to the foregoing method, and will not be repeated here.
  • the decoding device applied to the receiving end includes: a receiving module 1501 and a processing module 1502.
  • the receiving module 1501 is used to receive signals carried on resources; and the processing module 1502 is used to decode the signals.
  • the first symbol set corresponding to the control layer information, the second symbol set corresponding to the base layer information, and the third symbol set corresponding to the enhancement layer information are obtained by mapping;
  • the control layer is obtained by demodulating and channel decoding the first symbol set Information, the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information;
  • the second symbol set and the third symbol set are respectively performed according to the control layer information Demodulation and channel decoding obtain the base layer information and the enhancement layer information; obtain an image according to the base layer information and the enhancement layer information.
  • the processing module 1502 is specifically configured to use a first demodulation method to demodulate the first symbol set, and use a first decoding algorithm to perform channel decoding to obtain the control layer information. .
  • the processing module 1502 is specifically configured to use a second demodulation method to demodulate the second set of symbols according to the control layer information, and use a second decoding algorithm for channel decoding Obtain the base layer information; use at least one demodulation method to demodulate the third symbol set according to the control layer information, and use at least one decoding algorithm to perform channel decoding to obtain the enhancement layer information, the At least one demodulation method does not include the first demodulation method and the second demodulation method, and the at least one decoding algorithm does not include the first decoding algorithm and the second decoding algorithm.
  • the processing module 1502 is specifically configured to split the third symbol set according to the control layer information to obtain M symbol sets; and use all the symbol sets for the M symbol sets.
  • One of the at least one demodulation methods is demodulated to obtain M demodulation objects, and the demodulation method used for the symbol set is related to the importance of the symbol set; De-scrambling, de-interleaving or splitting the tuned object to obtain N bit streams; each of the N bit streams is decoded using one of the at least one decoding algorithm to obtain N sub-enhancement layer information, and all
  • the decoding algorithm adopted by the bitstream is related to the importance of the bitstream
  • the enhancement layer information includes the N sub-enhancement layer information
  • the N sub-enhancement layer information is ranked according to importance
  • the importance refers to The degree of influence of the corresponding sub-enhancement layer information on the image.
  • the processing module 1502 is specifically configured to decode the base layer information to obtain a restored image; perform information merging, dequantization, inverse transformation, and block merging processing on the enhancement layer information Obtain residual information; and obtain the image according to the restored image and the residual information.
  • the decoding device applied to the receiving end provided in the embodiment of the present application is the target device in the above method, and it has any function of the receiving end in the above method. For details, please refer to the above method, and will not be repeated here.
  • the encoding device applied to the transmitting end and the decoding device applied to the receiving end of the embodiments of the present application are described above.
  • the following introduces possible product forms of the encoding device applied to the transmitting end and the decoding device applied to the receiving end. It should be understood that all products of any form that have the characteristics of the encoding device applied to the transmitting end described in FIG. 14 and products of any form that have the characteristics of the decoding device applied to the receiving end described in FIG. 15 fall into The scope of protection of this application. It should also be understood that the following introduction is only an example, and does not limit the product form of the encoding device applied to the transmitting end and the product form of the decoding device applied to the receiving end in the embodiments of the present application.
  • the encoding device applied to the transmitting end and the decoding device applied to the receiving end described in the embodiments of the present application can be implemented by a general bus architecture.
  • the encoding device applied to the transmitting end includes a processor and a transceiver that communicates with the processor internally; the processor is used to compress and encode an image to obtain base layer information; according to the base layer information and the image Obtain enhancement layer information; Obtain control layer information, the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; respectively, the control layer information, the base layer information and The enhancement layer information is channel-coded and modulated to obtain multiple symbol sets; the multiple symbol sets are mapped to resources to generate a first frame; the transceiver is used to send the first frame.
  • the encoding device applied to the sending end may further include a memory, and the memory is configured to store instructions executed by the processor.
  • the decoding device applied to the receiving end includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a first frame; the processor is used to demap the first frame to obtain A first symbol set corresponding to the control layer information, a second symbol set corresponding to the base layer information, and a third symbol set corresponding to the enhancement layer information; demodulating and channel decoding the first symbol set to obtain the control layer information,
  • the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; demodulate the second symbol set and the third symbol set according to the control layer information And channel decoding to obtain the base layer information and the enhancement layer information; obtain an image according to the base layer information and the enhancement layer information.
  • the decoding device applied to the receiving end may further include a memory, and the memory is configured to store instructions executed by the processor.
  • the encoding device applied to the transmitting end and the decoding device applied to the receiving end described in the embodiments of the present application may be implemented by a general-purpose processor.
  • the general-purpose processor implementing the encoding device applied to the transmitting end includes a processing circuit and an output interface for internal communication with the processing circuit; the processing circuit is used to compress and encode images to obtain basic layer information; Information and the image to obtain enhancement layer information; obtain control layer information, the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; The base layer information and the enhancement layer information are channel-coded and modulated to obtain multiple symbol sets; the multiple symbol sets are mapped to resources to generate a first frame; the output interface is used to send the first frame.
  • the general-purpose processor may further include a storage medium for storing instructions executed by the processing circuit.
  • the general-purpose processor implementing the decoding device applied to the receiving end includes a processing circuit and an input interface for internal communication with the processing circuit.
  • the input interface is used for receiving the first frame;
  • the processing circuit is used for processing the first frame.
  • Demap one frame to obtain the first symbol set corresponding to the control layer information, the second symbol set corresponding to the base layer information, and the third symbol set corresponding to the enhancement layer information;
  • the first symbol set is demodulated and channel decoded to obtain
  • the control layer information, the control layer information includes high-level control information, and control information of the base layer information and the enhancement layer information; according to the control layer information, the second symbol set and the first
  • the three-symbol set performs demodulation and channel decoding to obtain the base layer information and the enhancement layer information; and an image is obtained according to the base layer information and the enhancement layer information.
  • the general-purpose processor may further include a storage medium for storing instructions executed by the processing circuit.
  • the encoding device applied to the transmitting end and the decoding device applied to the receiving end described in the embodiments of the present application can also be implemented using the following: one or more FPGAs (Field Programmable Gate Array), PLDs (programmable logic devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Array
  • PLDs programmable logic devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • the encoding device applied to the transmitting end and the decoding device applied to the receiving end of the above various product forms respectively have any functions of the transmitting end and the receiving end in the foregoing method embodiments, and will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请公开了图像编码和解码方法及装置,该方法包括:源设备对图像进行压缩编码得到基本层信息;根据基本层信息和图像得到增强层信息;获取控制层信息;分别对控制层信息、基本层信息和增强层信息进行编码和调制得到多个符号集合;将多个符号集合映射至资源上发送。目的设备对信号进行解映射得到控制层信息的第一符号集合、基本层信息的第二符号集合以及增强层信息的第三符号集合;对第一符号集合进行解调制和解码得到控制层信息;根据控制层信息分别对第二符号集合和第三符号集合进行解调制和信道解码得到基本层信息和增强层信息;根据基本层信息和增强层信息得到图像。实施本申请能够保障传输过程中的鲁棒性并提升总体压缩效率和性能。

Description

图像编码和解码方法及装置
本申请要求于2020年3月13日提交中国专利局、申请号为202010177478.7、申请名称为“图像编码和解码方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及多媒体通信技术,尤其涉及一种图像编码和解码方法及装置。
背景技术
随着信息技术的发展,人们提出随时随地享受诸如语音、数据、图像、视频等综合业务及不同种类多媒体业务的更高要求,因此多媒体通信己成为人们关注的焦点。视频是多媒体数据的重要组成部分,它具有确切、实时、直观、具体、生动等一系列的优点,给用户带来视听上的体验。未来几年,无线视频服务将会有更为广阔的发展前景,而无线视频的编码与传输技术也成为当前多媒体通信领域的研究热点。由于无线信道带宽有限,视频数据需要高效压缩,然而,视频编码采用的预测编码和变长编码等技术在高效压缩的同时也使得码流对信道的误码率的要求非常高。由于无线信道存在各种噪声干扰,因此如何在无线信道上传输高品质视频是一项极具挑战的课题。编码是其中的关键问题之一。编码主要分为信源编码和信道编码:信源编码的主要指标是编码效率;信道编码的主要目标是提高信息传送的可靠性。
相关技术中,采用基于信源和信道联合编码的数字视频通信系统,可以实现自适应信道编码的软传输,但是其信源编码的压缩效率低,进而导致总体传输效率低。
发明内容
本申请实施例提供一种图像编码和解码方法及装置,以保障传输过程中的鲁棒性并提升总体压缩效率和性能。
第一方面,本申请实施例提供一种图像编码方法,包括:对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;将所述多个符号集合映射至资源上发送出去。
本申请对信源进行编码处理后得到的基本层信息,将原始信源与该基本层信息之间的残差信息作为增强层信息,再结合处理过程中产生的以及来自高层的控制层信息,分别采用独立的、且各不相同的编码/解码算法和调制/解调方式,其中基本层信息包含了图像的轮廓或粗略信息,基于该信息恢复的图像,用户可以从中获得原始图像传达的大体意思,而且基本层信息具有极低的数据量,相比原始信源的比特率降低几百甚至上千倍,可以采用较低码率的编码/解码算法和低阶的调制/解调方式来完成后续处理,保障传输过程中的鲁棒性。增强层信息无法单独恢复出可以识别的图像,其要在基本层信息的基础上,用于增强基本层的视觉效果,可以根据增强层信息中各子增强层信息的重要性,采用相较于基 本层信息更高码率的编码/解码算法和更高阶的调制/解调方式来完成后续处理。而控制层信息包括高层的控制信息,及基本层信息和增强层信息在处理过程中涉及的控制信息,基于其重要性,也可以采用较低码率的编码/解码算法和低阶的调制/解调方式来完成后续处理,保障传输过程中的鲁棒性。这种分层的处理方式,可以得到稀疏性更强的待压缩信息比特流,有利于提升总体压缩效率和性能。
在一种可能的实现方式中,所述根据所述基本层信息和所述图像得到增强层信息,包括:对所述基本层信息进行解码得到恢复图像;计算所述图像和所述恢复图像的残差得到残差信息;对所述残差信息进行分块、变换和量化处理得到所述增强层信息。
在一种可能的实现方式中,所述分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合,包括:对所述控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合;对所述基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集合;对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,所述至少一种编码算法不包括所述第一编码算法和所述第二编码算法,所述至少一种调制方式不包括所述第一调制方式和所述第二调制方式。
在一种可能的实现方式中,所述增强层信息包括N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度;所述对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,包括:对所述N个子增强层信息分别采用所述至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对所述子增强层信息采用的编码算法与所述子增强层信息的重要性相关;对所述N个比特流进行拼接、交织或加扰得到M个调制对象;对所述M个调制对象分别采用所述至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对所述调制对象采用的调制方式与所述调制对象的重要性相关;对所述M个符号集合进行拼接得到所述第三符号集合。
在一种可能的实现方式中,所述将所述多个符号集合映射至资源上发送出去,包括:用第一帧发送所述多个符号集合,所述第一帧包括:导频、帧头、所述基本层信息的控制信息、所述基本层信息、所述增强层信息的控制信息和所述增强层信息;其中,所述增强层信息包括N个子增强层信息,所述增强层信息的控制信息包括分别对应于所述N个子增强层信息的N个子控制层信息。
第二方面,本申请实施例提供一种图像解码方式,包括:接收资源上承载的信号,并对所述信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
在一种可能的实现方式中,所述对所述第一符号集合进行解调制和信道解码得到所述控制层信息,包括:对所述第一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到所述控制层信。
在一种可能的实现方式中,所述根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息,包括:根据所述控制层信息对所述第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到所述基本层信息;根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,所述至少一种解调方式不包括所述第一解调方式和所述第二解调方式,所述至少一种解码算法不包括所述第一解码算法和所述第二解码算法。
在一种可能的实现方式中,所述根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,包括:根据所述控制层信息对所述第三符号集合进行拆分得到M个符号集合;对所述M个符号集合分别采用所述至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对所述符号集合采用的解调方式与所述符号集合的重要性相关;对所述M个解调对象进行解扰、解交织或拆分得到N个比特流;对所述N个比特流分别采用所述至少一种解码算法中的一种解码算法进行解码得到N个子增强层信息,对所述比特流采用的解码算法与所述比特流的重要性相关,所述增强层信息包括所述N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度。
在一种可能的实现方式中,所述根据所述基本层信息和所述增强层信息得到图像,包括:对所述基本层信息进行解码得到恢复图像;对所述增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息;根据所述恢复图像和所述残差信息得到所述图像。
第三方面,本申请实施例提供一种编码装置,包括:处理模块,用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;发送模块,用于将所述多个符号集合映射至资源上发送出去。
在一种可能的实现方式中,所述处理模块,具体用于对所述基本层信息进行解码得到恢复图像;计算所述图像和所述恢复图像的残差得到残差信息;对所述残差信息进行分块、变换和量化处理得到所述增强层信息。
在一种可能的实现方式中,所述处理模块,具体用于对所述控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合;对所述基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集合;对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,所述至少一种编码算法不包括所述第一编码算法和所述第二编码算法,所述至少一种调制方式不包括所述第一调制方式和所述第二调制方式。
在一种可能的实现方式中,所述增强层信息包括N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度;所述处理模块,具体用于对所述N个子增强层信息分别采用所述至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对所述子增强层信息采用的编码算法与所述子增强层信息的重要性相关;对所述N个比特流进行拼接、交织或加扰得到M个调制 对象;对所述M个调制对象分别采用所述至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对所述调制对象采用的调制方式与所述调制对象的重要性相关;对所述M个符号集合进行拼接得到所述第三符号集合。
在一种可能的实现方式中,所述发送模块,具体用于用第一帧发送所述多个符号集合,所述第一帧包括:导频、帧头、所述基本层信息的控制信息、所述基本层信息、所述增强层信息的控制信息和所述增强层信息;其中,所述增强层信息包括N个子增强层信息,所述增强层信息的控制信息包括分别对应于所述N个子增强层信息的N个子控制层信息。
第四方面,本申请实施例提供一种解码装置,包括:接收模块,用于接收资源上承载的信号;处理模块,用于对所述信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
在一种可能的实现方式中,所述处理模块,具体用于对所述第一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到所述控制层信。
在一种可能的实现方式中,所述处理模块,具体用于根据所述控制层信息对所述第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到所述基本层信息;根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,所述至少一种解调方式不包括所述第一解调方式和所述第二解调方式,所述至少一种解码算法不包括所述第一解码算法和所述第二解码算法。
在一种可能的实现方式中,所述处理模块,具体用于根据所述控制层信息对所述第三符号集合进行拆分得到M个符号集合;对所述M个符号集合分别采用所述至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对所述符号集合采用的解调方式与所述符号集合的重要性相关;对所述M个解调对象进行解扰、解交织或拆分得到N个比特流;对所述N个比特流分别采用所述至少一种解码算法中的一种解码算法进行解码得到N个子增强层信息,对所述比特流采用的解码算法与所述比特流的重要性相关,所述增强层信息包括所述N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度。
在一种可能的实现方式中,所述处理模块,具体用于对所述基本层信息进行解码得到恢复图像;对所述增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息;根据所述恢复图像和所述残差信息得到所述图像。
第五方面,本申请实施例提供一种编码装置,用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第六方面,本申请实施例提供一种解码装置,用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第七方面,本申请实施例提供一种编码装置,所述装置包括处理电路和与所述处理电路内部连接通信的输出接口,所述处理电路用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;将所述多个符号集合映射至资源上生成第一帧;所述输出接口用于发送所述第一帧。
第八方面,本申请实施例提供一种解码装置,所述装置包括处理电路和与所述处理电路内部连接通信的输入接口,所述输入接口用于接收第一帧;所述处理电路用于对所述第一帧进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
第九方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面任意可能的实现方式的指令。
第十方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面任意可能的实现方式的指令。
第十一方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面任意可能的实现方式的指令。
第十二方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面任意可能的实现方式的指令。
第十三方面,本申请实施例提供一种通信系统,所述通信系统包括上述第三方面或第五方面或第七方面所提供的编码装置,和,上述第四方面或第六方面或第八方面所提供的解码装置。
附图说明
图1A是用于实现本申请实施例的视频编码及解码系统10实例的框图;
图1B是用于实现本申请实施例的视频译码系统40实例的框图;
图2是用于实现本申请实施例的编码器20实例结构的框图;
图3是用于实现本申请实施例的解码器30实例结构的框图;
图4是用于实现本申请实施例的视频译码设备400实例的框图;
图5是用于实现本申请实施例的另一种编码装置或解码装置实例的框图;
图6是用于实现本申请的一种图像编码和解码方法的流程示意图;
图7是16×16图像的一个像素分布图;
图8是变换系数的一个示意图;
图9是量化后的变换系数的一个示意图;
图10是系数读取顺序的一个示意图;
图11是比特平面的一个示意图;
图12是用于实现本申请的一种图像编码和解码方法的流程示意图;
图13是本申请的一种数据流分层示意图;
图14为本申请实施例中的编码装置的一种示意性框图;
图15为本申请实施例中的解码装置的一种示意性框图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本申请中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可以应用于现有的视频编码标准中(如H.264、HEVC等标准),还可以应用于未来的视频编码标准中(如H.266标准),甚至未来的蜂窝、WIFI等通信标准。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例在可能的涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本申请中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。例如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。例如CU可以按照四叉树进行划分为更小的CU,而 更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的设备14可被称为视频解码装置。源设备12、目的设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本申请所描述。源设备12和目的设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1A将源设备12和目的设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的设备14 或对应的功能性。
源设备12和目的设备14之间可通过链路13进行通信连接,目的设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,例如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输 至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本申请各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的设备14包括解码器30,另外可选地,目的设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的设备14的功能性的存在和(准确)划分在可能的根据实际设备和应用有所不同。源设备12和目的设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可 以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本申请中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本申请所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本申请中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本申请中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本申请所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例描述的图像编码和解码方法主要用于信源和信道的联合编解码过程,此过程中编码器20和解码器30均存在,本申请实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization  parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例 如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模 式集合例如可包括先进运动矢量(Advanced Motion Vector Prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(例如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。在可能的应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧 内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(例如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。在可能的应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的图像编码方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测 单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的图像解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本申请所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元 420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本申请中所公开的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
基于上述实施例的描述,本申请提供了一种图像编码和解码方法。图6是用于实现本申请的一种图像编码和解码方法的流程示意图。该过程600可由源设备12和目的设备14执行。过程600描述为一系列的步骤或操作,应当理解的是,过程600可以以各种顺序执行和/或同时发生,不限于图6所示的执行顺序。如图6所示,该方法包括:
步骤601、源设备对图像进行压缩编码得到基本层信息。
源设备对图像进行较高压缩率的信源编码,既可以采用H.26x、JPEG或JPEG2000等编码算法,也可以采用图像空间降采样、视频降帧(即时域降采样)等方法。具体编码过程可参考上述关于编码器的描述,此处不再赘述。
得到的基本层信息的特点包括:(1)包含了图像的轮廓或粗略信息,基于该信息恢复的图像,用户可以从中获得原始图像传达的大体意思;(2)具有极低的数据量,相比原始图像的比特率降低几百甚至上千倍,有利于采用较低码率和低阶调制来完成后续处理,保障传输过程中的鲁棒性。
需要说明的是,本申请处理的信源不仅局限于图像,还可能包括视频、语音、指令等其他信息,对此不作具体限定。
步骤602、源设备根据基本层信息和图像得到增强层信息。
源设备对基本层信息进行解码得到恢复图像,计算图像和恢复图像的残差得到残差信息,对残差信息进行分块、变换和量化处理得到增强层信息。分块的大小可采用8×8、16×16、32×32等尺寸。变换可以采用DCT、DWT等方式。量化可以使用均匀或非均匀的量化表。分块、变换和量化均可参考上述实施例关于图像块、变换处理单元、量化单元等部分的描述,此处不再赘述。经上述处理后,每个变换系数将会得到固定位数的量化比特流,这些比特流通过比特平面分层技术可分为重要性由高到低的多个比特平面,例如,高位比特平面的重要性较高,而低位比特平面的重要性较低。此时一个比特平面可以作为一个子增强层信息,也可以多个比特平面作为一个子增强层信息。示例性的,以下以一个具体实施例对比特平面的获取方法进行描述。
图7示出了一个16×16图像的像素分布,如图7所示,每个小方格对应一个像素,该图像被分成4个8×8的块,黑色粗实线表示块的分界线。对各个块中的像素值偏置-128,再进行DCT变换得到如图8所示的变换系数,该操作可以降低图像左上角的直流系数的幅度,进而降低转换后二进制比特的长度。由于图8中的变换系数全是实数,需要较长的二进制比特才能准确表示,这不利于压缩,因此在转化为二进制之前需要进行量化。假设量化步长为5,可以得到量化后的变换系数=四舍五入(变换系数/量化步长5),如图9所示。最后将量化后的变换系数转化为二进制比特流,假设每个变换系数由8位比特表示,第1位为符号位(0表示正数,1表示负数),后面7位为数字位。以左上角的块为例,将该块中的系数按照Zigzag的顺序读取为一个向量,读取顺序如图10中的箭头所示。读取后得到该块中的变换系数对应的二进制比特流如图11所示,其中,每一列对应一个比特平面,共有8个比特平面(编号1-8)。
与基本层信息不同的是,增强层信息主要是通过对量化后的变换系数进行二进制转换,将得到的比特流拆分成多个比特平面来实现分层的,增强层信息无法单独恢复出可以识别的图像,其要在基本层信息的基础上,用于增强基本层的视觉效果。通过优化增强层的编码码率、调制阶数等参数,可以实现更加平滑的信道自适应效果。
步骤603、源设备获取控制层信息。
控制层信息包括高层发送的语音信息、指令信息等,还包括基本层信息和增强层信息在处理过程中涉及的控制信息,例如基本层信息的长度、增强层信息的分块大小、各子增强层信息的长度及编码前0/1比特概率分布、编码码率、调制阶数、比特流和符号的拼接规则指示、资源映射规则指示等。
步骤604、源设备分别对控制层信息、基本层信息和增强层信息进行信道编码和调制得到多个符号集合。
源设备对控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合。对基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集合。
本申请中,源设备可以对控制层信息和基本层信息分别采用独立的、且不同级别的编码算法和调制方式进行编码和调制,基于控制层信息和基本层信息的重要性,对控制层信息和基本层信息可以采用低码率的编码算法和低阶的调制方式(例如1/2Rate、BPSK等)。需要说明的是,上述第一编码算法和第二编码算法可以是相同的算法,也可以是不同的算法,第一调制方式和第二调制方式可以是相同的调制方式,也可以是不同的调制方式,本申请对此均不做具体限定。
源设备对增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,至少一种编码算法不包括第一编码算法和第二编码算法,至少一种调制方式不包括第一调制方式和第二调制方式。即对N个子增强层信息分别采用至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对子增强层信息采用的编码算法与子增强层信息的重要性相关,然后对N个比特流进行拼接、交织或加扰得到M个调制对象,再对M个调制对象分别采用至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对调制对象采用的调制方式与调制对象的重要性相关,最后对M个符号集合进行拼接得到第三符号集合。需要说明的是,至少一种编码算法也可以包括第一编码算法和/或第二编码算法,至少一种调制方式也可以包括第一调制方式和/或第二调制方式,对此不做具体限定。
源设备对增强层信息包括的N个子增强层信息分别采用独立的、且不同级别的编码算法和调制方式进行编码和调制,其中,高位比特平面对应的子增强层信息采用中等码率的编码算法和中等阶的调制方式(例如3/4Rate、16QAM等),低位比特平面对应的子增强层信息采用高码率的编码算法和高阶的调制方式(例如7/8Rate、64QAM等)。将N个子增强层信息分别编码后得到的比特流进行拼接、交织和加扰,再分别映射到M个不同星座图(M≥1)得到M个调制对象。交织可以使得信号抗信道突发错误的能力得到增强,加扰可以使得0/1比特的分布更加均匀,确保发送信号的瞬时功率的稳定性。
步骤605、源设备将多个符号集合映射至资源上发送给目的设备。
源设备将编码和调制后得到的多个符号集合(包括上述第一符号集合、第二符号集合和第三符号集合)拼接起来,并依照特定规则映射到时域、频域或者空域(多天线系统)资源上发送出去,以进一步提升传输的可靠性。表1示出了多个符号集合的一个帧格式,如表1所示,该帧中包括导频、帧头、基本层信息的控制信息(控制层信息0)、基本层信息、增强层信息的控制信息和增强层信息;其中,增强层信息包括N个子增强层信息(1-N),增强层信息的控制信息包括分别对应于N个子增强层信息的N个子控制层信息(1-N)。
表1
Figure PCTCN2021080541-appb-000001
步骤606、目的设备对接收的信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合。
目的设备将接收到的信号进行同步,信道估计以及均衡处理之后,通过解映射得到控制层信息、基本层信息和增强层信息分别对应的符号集合。
步骤607、目的设备对第一符号集合进行解调制和信道解码得到控制层信息。
目的设备对控制层信息对应的第一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到控制层信。该控制层信息包括高层控制信息,及基本层信息和增强层信息的控制信息。
步骤608、目的设备根据控制层信息分别对第二符号集合和第三符号集合进行解调制和信道解码得到基本层信息和增强层信息。
目的设备根据控制层信息对第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到基本层信息,对第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到增强层信息,至少一种解调方式不包括第一解调方式和第二解调方式,至少一种解码算法不包括第一解码算法和第二解码算法。
目标设备可以对控制层信息、基本层信息和增强层信息分别采用独立的、且不同级别的解调方式和解码算法进行解调和解码。目标设备为源设备的逆向处理,因此目标设备对控制层信息、基本层信息和增强层信息采用的解调方式和解码算法与源设备所采用的的调制方式和编码算法是相对应的。例如,上述第一编码算法和上述第一解码算法对应,上述第二编码算法和上述第二解码算法对应,上述第一调制方式和上述第一解调方式对应,上述第二调制方式和上述第二解调方式对应。
针对增强层信息,目的设备根据控制层信息对第三符号集合进行拆分得到M个符号集合,然后对M个符号集合分别采用至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对符号集合采用的解调方式与符号集合的重要性相关,再对M个解调对象进行解扰、解交织或拆分得到N个比特流,最后对N个比特流分别采用至少一种解码算法中的一种解码算法进行解码得到N个子增强层信息,对比特流采用的解码算法与比特流的重要性相关,增强层信息包括N个子增强层信息,N个子增强层信息依重要性划分等级,重要性是指对应的子增强层信息对图像的影响程度。
步骤609、目的设备根据基本层信息和增强层信息得到图像。
目的设备对基本层信息进行解码得到恢复图像,对增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息,最后根据恢复图像和残差信息得到图像。目的设备可以通过符号拆分、解调等到校验位比特对应的软信息,然后通过置信传输方法(以控制层信息中的编码前0/1比特概率分布作为初始迭代值)进行信道解码得到原始比特流的0/1比特概率,接着根据此概率做变换系数重建、逆变换恢复出原始残差信息,将残差信息和恢复图像合并得到原始的图像。
图像编码和解码的过程中,源设备首先将对信源根据重要性、用途进行信息分层,这里信源不仅局限于图像/视频,还可能包含语音、指令等其他信息,该分层操作主要包含两级,首先通过高压缩率的信源编码得到基本层和残差信息,然后对残差信息进行进一步分层处理得到若干个子增强层信息,最终产生一个基本层信息、若干个子增强层信息以及 一个控制层信息。不同层的信息比特具有不同的重要性,将会进行不同的编码和调制处理,主要包含信道编码、比特流拼接、交织、加扰、调制、符号序列拼接等操作。最后将不同层得到的符号映射到指定资源块上发送出去。
目的设备对接收到的信号进行同步,信道估计与均衡处理。然后通过解资源映射得到基本层信息、增强层信息和控制层信息。基本层信息和控制层信息直接通过解调、信道解码等操作得到。增强层信息则通过符号拆分,解调得到软信息,然后通过置信传输方法进行信道解码得到0/1比特的概率,并根据此概率做信息合并恢复出残差信息。最后将基本层信息和残差信息进行合并得到原始信源。
结合源设备和目的设备,以及二者之间的信道,图12是用于实现本申请的一种图像编码和解码方法的流程示意图。如图12所示,源设备中的编码器对图像/视频进行高压缩率压缩得到基本层信息和残差信息,对基本层信息进行信道编码、低阶调制(例如Pi/2-BPSK调制)。根据控制层信息对残差信息进行残差帧分块、变换、量化,再根据重要性分层得到N个子增强层信息,分别对N个子增强层信息进行信道编码,经过比特流拼接、交织和加扰后分别进行调制,然后进行符号集合拼接。对控制层信息同样进行信道编码、低阶调制(例如Pi/2-BPSK调制)。最后把调制后的符号映射到资源上。
目的设备中的解码器对接收到的信号进行解映射,对基本层信息和控制层信息对应的符号分别进行解调和解码得到基本层信息和控制层信息。对增强层信息对应的符号先进行拆分并分别进行解调,将比特流解扰、解交织和拆分后分别进行解码,经过信息合并、解量化、逆变换和分块合并处理得到残差信息,将解压缩后的基本层信息和残差信息合并后得到图像。
本申请对信源进行编码处理后得到的基本层信息,将原始信源与该基本层信息之间的残差信息作为增强层信息,再结合处理过程中产生的以及来自高层的控制层信息,分别采用独立的、且各不相同的编码/解码算法和调制/解调方式,其中基本层信息包含了图像的轮廓或粗略信息,基于该信息恢复的图像,用户可以从中获得原始图像传达的大体意思,而且基本层信息具有极低的数据量,相比原始信源的比特率降低几百甚至上千倍,可以采用较低码率的编码/解码算法和低阶的调制/解调方式来完成后续处理,保障传输过程中的鲁棒性。增强层信息无法单独恢复出可以识别的图像,其要在基本层信息的基础上,用于增强基本层的视觉效果,可以根据增强层信息中各子增强层信息的重要性,采用相较于基本层信息更高码率的编码/解码算法和更高阶的调制/解调方式来完成后续处理。而控制层信息包括高层的控制信息,及基本层信息和增强层信息在处理过程中涉及的控制信息,基于其重要性,也可以采用较低码率的编码/解码算法和低阶的调制/解调方式来完成后续处理,保障传输过程中的鲁棒性。这种分层的处理方式,可以得到稀疏性更强的待压缩信息比特流,有利于提升总体压缩效率和性能。
图13是本申请的一种数据流分层示意图,如图13所示,源设备首先采用H.264编码器,使用较大的量化步长,例如,量化参数QP=44,对应量化步长104,将原始视频(例如1080P,60帧/秒)压缩562倍,得到基本层信息。然后源设备将基本层信息解码,并与原始视频求残差,得到残差信息。残差信息进一步分割为若干个8×8的块,各块依次做DCT变换得到频域变换系数,从左上角到右下角依次对应低频到高频的系数,其能量一般集中在较低频的部分,因此可以直接丢弃部分能量较小的高频系数。之后源设备将保留 的变换系数x经过量化操作得到量化系数x quant=round(x/Q step),其中Q step为选择的量化步长,x quant为整数。将量化系数x quant转化为二进制比特可得到宽度为L的比特序列(L的取值由x quant的最大取值范围决定),对比特序列从高位到低位可拆分为N个比特层,依次对应到N个增强层。为了控制整体信源压缩率,可以分别通过调整基本层信息和增强层信息的比特流长度实现:(1)基本层调控手段:通过信源编码器量化阶数、空间分辨率、时间分辨率等来进行调节,其量化阶数越高、空间/时间分辨率越低,则比特流长度越短,压缩率越高。(2)增强层调控手段:通过量化步长Q step、频域丢弃的高频系数个数比例以及后续联合编码码率来进行调节,其量化步长越大、频域丢弃的高频系数个数比例越高、后续联合编码码率越高,则比特流长度越短,压缩率越高。
目的设备对变换系数的重建可采用硬重建和软重建两种方法:
(1)硬重建:目的设备将直接对信道解码得到的原始比特序列的0/1比特概率进行硬判决,即p(0)>0.5时判决为0,p(0)<0.5时判决为1,然后利用判决出的比特序列计算出重建的变换系数取值。
(2)软重建:目的设备根据译码得到的概率,计算各变换系数如下:
Figure PCTCN2021080541-appb-000002
其中,I表示变换系数二进制量化的位数,第1位为符号位,后面为数字位,p i(b)表示第i个比特为b(b=0,1)的概率。相比硬重建方法,软重建方法对信道的适应能力更强,可以更加平滑地反映信道噪声产生的影响。
以上介绍了本申请实施例的图像编码和解码方法,以下介绍本申请实施例的装置,本申请实施例的装置包括应用于发送端的编码装置和应用于接收端的解码装置,应理解,所述应用于发送端的编码装置即为上述方法中的源设备,其具有上述方法中发送端的任意功能,所述应用于接收端的解码装置即为上述方法中的目的设备,其具有上述方法中接收端的任意功能。
如图14所示,应用于发送端的编码装置,包括:处理模块1401和发送模块1402。其中,处理模块1401,用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;发送模块1402,用于将所述多个符号集合映射至资源上发送出去。
在一种可能的实现方式中,所述处理模块1401,具体用于对所述基本层信息进行解码得到恢复图像;计算所述图像和所述恢复图像的残差得到残差信息;对所述残差信息进行分块、变换和量化处理得到所述增强层信息。
在一种可能的实现方式中,所述处理模块1401,具体用于对所述控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合;对所述基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集 合;对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,所述至少一种编码算法不包括所述第一编码算法和所述第二编码算法,所述至少一种调制方式不包括所述第一调制方式和所述第二调制方式。
在一种可能的实现方式中,所述增强层信息包括N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度;所述处理模块1401,具体用于对所述N个子增强层信息分别采用所述至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对所述子增强层信息采用的编码算法与所述子增强层信息的重要性相关;对所述N个比特流进行拼接、交织或加扰得到M个调制对象;对所述M个调制对象分别采用所述至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对所述调制对象采用的调制方式与所述调制对象的重要性相关;对所述M个符号集合进行拼接得到所述第三符号集合。
在一种可能的实现方式中,所述发送模块1402,具体用于用第一帧发送所述多个符号集合,所述第一帧包括:导频、帧头、所述基本层信息的控制信息、所述基本层信息、所述增强层信息的控制信息和所述增强层信息;其中,所述增强层信息包括N个子增强层信息,所述增强层信息的控制信息包括分别对应于所述N个子增强层信息的N个子控制层信息。
本申请实施例提供的应用于发送端的编码装置即为上述方法中的源设备,其具有上述方法中发送端的任意功能,具体细节可参见上述方法,此处不再赘述。
如图15所示,应用于接收端的解码装置,包括:接收模块1501和处理模块1502,其中,接收模块1501,用于接收资源上承载的信号;处理模块1502,用于对所述信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
在一种可能的实现方式中,所述处理模块1502,具体用于对所述第一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到所述控制层信。
在一种可能的实现方式中,所述处理模块1502,具体用于根据所述控制层信息对所述第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到所述基本层信息;根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,所述至少一种解调方式不包括所述第一解调方式和所述第二解调方式,所述至少一种解码算法不包括所述第一解码算法和所述第二解码算法。
在一种可能的实现方式中,所述处理模块1502,具体用于根据所述控制层信息对所述第三符号集合进行拆分得到M个符号集合;对所述M个符号集合分别采用所述至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对所述符号集合采用的解调方式与所述符号集合的重要性相关;对所述M个解调对象进行解扰、解交织或拆分得到N个比特流;对所述N个比特流分别采用所述至少一种解码算法中的一种解码算法进行解码 得到N个子增强层信息,对所述比特流采用的解码算法与所述比特流的重要性相关,所述增强层信息包括所述N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度。
在一种可能的实现方式中,所述处理模块1502,具体用于对所述基本层信息进行解码得到恢复图像;对所述增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息;根据所述恢复图像和所述残差信息得到所述图像。
本申请实施例提供的应用于接收端的解码装置即为上述方法中的目的设备,其具有上述方法中接收端的任意功能,具体细节可参见上述方法,此处不再赘述。
以上介绍了本申请实施例的应用于发送端的编码装置和应用于接收端的解码装置,以下介绍所述应用于发送端的编码装置和所述应用于接收端的解码装置可能的产品形态。应理解,但凡具备上述图14所述的应用于发送端的编码装置的特征的任何形态的产品,和但凡具备上述图15所述应用于接收端的解码装置的特征的任何形态的产品,都落入本申请的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的应用于发送端的编码装置的产品形态和应用于接收端的解码装置的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的应用于发送端的编码装置和应用于接收端的解码装置,可以由一般性的总线体系结构来实现。
所述应用于发送端的编码装置,包括处理器和与所述处理器内部连接通信的收发器;所述处理器用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;将所述多个符号集合映射至资源上生成第一帧;所述收发器用于发送所述第一帧。可选地,所述应用于发送端的编码装置还可以包括存储器,所述存储器用于存储处理器执行的指令。
所述应用于接收端的解码装置,包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于接收第一帧;所述处理器用于对所述第一帧进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。可选地,所述应用于接收端的解码装置还可以包括存储器,所述存储器用于存储处理器执行的指令。
作为一种可能的产品形态,本申请实施例所述的应用于发送端的编码装置和应用于接收端的解码装置,可以由通用处理器来实现。
实现所述应用于发送端的编码装置的通用处理器包括处理电路和与所述处理电路内部连接通信的输出接口;所述处理电路用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;将所述多个符号集合映射至资源上生成第一帧;所述输出接口用于发送所述第一帧。可选地,该通用处理器 还可以包括存储介质,所述存储介质用于存储处理电路执行的指令。
实现所述应用于接收端的解码装置的通用处理器包括处理电路和与所述处理电路内部连接通信的输入接口,所述输入接口用于接收第一帧;所述处理电路用于对所述第一帧进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。可选地,该通用处理器还可以包括存储介质,所述存储介质用于存储处理电路执行的指令。
作为一种可能的产品形态,本申请实施例所述的应用于发送端的编码装置和应用于接收端的解码装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
应理解,上述各种产品形态的应用于发送端的编码装置和应用于接收端的解码装置,分别具有上述方法实施例中发送端和接收端的任意功能,此处不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参见前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元 既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种图像编码方法,其特征在于,包括:
    对图像进行压缩编码得到基本层信息;
    根据所述基本层信息和所述图像得到增强层信息;
    获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;
    分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;
    将所述多个符号集合映射至资源上发送出去。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述基本层信息和所述图像得到增强层信息,包括:
    对所述基本层信息进行解码得到恢复图像;
    计算所述图像和所述恢复图像的残差得到残差信息;
    对所述残差信息进行分块、变换和量化处理得到所述增强层信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合,包括:
    对所述控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合;
    对所述基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集合;
    对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,所述至少一种编码算法不包括所述第一编码算法和所述第二编码算法,所述至少一种调制方式不包括所述第一调制方式和所述第二调制方式。
  4. 根据权利要求3所述的方法,其特征在于,所述增强层信息包括N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度;
    所述对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,包括:
    对所述N个子增强层信息分别采用所述至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对所述子增强层信息采用的编码算法与所述子增强层信息的重要性相关;
    对所述N个比特流进行拼接、交织或加扰得到M个调制对象;
    对所述M个调制对象分别采用所述至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对所述调制对象采用的调制方式与所述调制对象的重要性相关;
    对所述M个符号集合进行拼接得到所述第三符号集合。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述将所述多个符号集合映射至资源上发送出去,包括:
    用第一帧发送所述多个符号集合,所述第一帧包括:导频、帧头、所述基本层信息的 控制信息、所述基本层信息、所述增强层信息的控制信息和所述增强层信息;其中,所述增强层信息包括N个子增强层信息,所述增强层信息的控制信息包括分别对应于所述N个子增强层信息的N个子控制层信息。
  6. 一种图像解码方法,其特征在于,包括:
    接收资源上承载的信号,并对所述信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;
    对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;
    根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;
    根据所述基本层信息和所述增强层信息得到图像。
  7. 根据权利要求6所述的方法,其特征在于,所述对所述第一符号集合进行解调制和信道解码得到所述控制层信息,包括:
    对所述第一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到所述控制层信。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息,包括:
    根据所述控制层信息对所述第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到所述基本层信息;
    根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,所述至少一种解调方式不包括所述第一解调方式和所述第二解调方式,所述至少一种解码算法不包括所述第一解码算法和所述第二解码算法。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,包括:
    根据所述控制层信息对所述第三符号集合进行拆分得到M个符号集合;
    对所述M个符号集合分别采用所述至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对所述符号集合采用的解调方式与所述符号集合的重要性相关;
    对所述M个解调对象进行解扰、解交织或拆分得到N个比特流;
    对所述N个比特流分别采用所述至少一种解码算法中的一种解码算法进行解码得到N个子增强层信息,对所述比特流采用的解码算法与所述比特流的重要性相关,所述增强层信息包括所述N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述根据所述基本层信息和所述增强层信息得到图像,包括:
    对所述基本层信息进行解码得到恢复图像;
    对所述增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息;
    根据所述恢复图像和所述残差信息得到所述图像。
  11. 一种编码装置,其特征在于,包括:
    处理模块,用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;
    发送模块,用于将所述多个符号集合映射至资源上发送出去。
  12. 根据权利要求11所述的装置,其特征在于,所述处理模块,具体用于对所述基本层信息进行解码得到恢复图像;计算所述图像和所述恢复图像的残差得到残差信息;对所述残差信息进行分块、变换和量化处理得到所述增强层信息。
  13. 根据权利要求11或12所述的装置,其特征在于,所述处理模块,具体用于对所述控制层信息采用第一编码算法进行信道编码,并采用第一调制方式进行调制得到第一符号集合;对所述基本层信息采用第二编码算法进行信道编码,并采用第二调制方式进行调制得到第二符号集合;对所述增强层信息采用至少一种编码算法进行信道编码,并采用至少一种调制方式进行调制得到第三符号集合,所述至少一种编码算法不包括所述第一编码算法和所述第二编码算法,所述至少一种调制方式不包括所述第一调制方式和所述第二调制方式。
  14. 根据权利要求13所述的装置,其特征在于,所述增强层信息包括N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度;所述处理模块,具体用于对所述N个子增强层信息分别采用所述至少一种编码算法中的一种编码算法进行信道编码得到N个比特流,对所述子增强层信息采用的编码算法与所述子增强层信息的重要性相关;对所述N个比特流进行拼接、交织或加扰得到M个调制对象;对所述M个调制对象分别采用所述至少一种调制方式中的一种调制方式进行调制得到M个符号集合,对所述调制对象采用的调制方式与所述调制对象的重要性相关;对所述M个符号集合进行拼接得到所述第三符号集合。
  15. 根据权利要求11-14中任一项所述的装置,其特征在于,所述发送模块,具体用于用第一帧发送所述多个符号集合,所述第一帧包括:导频、帧头、所述基本层信息的控制信息、所述基本层信息、所述增强层信息的控制信息和所述增强层信息;其中,所述增强层信息包括N个子增强层信息,所述增强层信息的控制信息包括分别对应于所述N个子增强层信息的N个子控制层信息。
  16. 一种解码装置,其特征在于,包括:
    接收模块,用于接收资源上承载的信号;
    处理模块,用于对所述信号进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块,具体用于对所述第 一符号集合采用第一解调方式进行解调制,并采用第一解码算法进行信道解码得到所述控制层信。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块,具体用于根据所述控制层信息对所述第二符号集合采用第二解调方式进行解调制,并采用第二解码算法进行信道解码得到所述基本层信息;根据所述控制层信息对所述第三符号集合采用至少一种解调方式进行解调制,并采用至少一种解码算法进行信道解码得到所述增强层信息,所述至少一种解调方式不包括所述第一解调方式和所述第二解调方式,所述至少一种解码算法不包括所述第一解码算法和所述第二解码算法。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块,具体用于根据所述控制层信息对所述第三符号集合进行拆分得到M个符号集合;对所述M个符号集合分别采用所述至少一种解调方式中的一种解调方式进行解调得到M个解调对象,对所述符号集合采用的解调方式与所述符号集合的重要性相关;对所述M个解调对象进行解扰、解交织或拆分得到N个比特流;对所述N个比特流分别采用所述至少一种解码算法中的一种解码算法进行解码得到N个子增强层信息,对所述比特流采用的解码算法与所述比特流的重要性相关,所述增强层信息包括所述N个子增强层信息,所述N个子增强层信息依重要性划分等级,所述重要性是指对应的子增强层信息对所述图像的影响程度。
  20. 根据权利要求16-19中任一项所述的装置,其特征在于,所述处理模块,具体用于对所述基本层信息进行解码得到恢复图像;对所述增强层信息进行信息合并、解量化、逆变换和分块合并处理得到残差信息;根据所述恢复图像和所述残差信息得到所述图像。
  21. 一种编码装置,其特征在于,包括:处理电路和与所述处理电路内部连接通信的输出接口;
    所述处理电路用于对图像进行压缩编码得到基本层信息;根据所述基本层信息和所述图像得到增强层信息;获取控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;分别对所述控制层信息、所述基本层信息和所述增强层信息进行信道编码和调制得到多个符号集合;将所述多个符号集合映射至资源上生成第一帧;
    所述输出接口用于发送所述第一帧。
  22. 一种解码装置,其特征在于,包括:处理电路和与所述处理电路内部连接通信的输入接口;
    所述输入接口用于接收第一帧;
    所述处理电路用于对所述第一帧进行解映射得到控制层信息对应的第一符号集合、基本层信息对应的第二符号集合以及增强层信息对应的第三符号集合;对所述第一符号集合进行解调制和信道解码得到所述控制层信息,所述控制层信息包括高层控制信息,及所述基本层信息和所述增强层信息的控制信息;根据所述控制层信息分别对所述第二符号集合和所述第三符号集合进行解调制和信道解码得到所述基本层信息和所述增强层信息;根据所述基本层信息和所述增强层信息得到图像。
  23. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序用于执行权利要求1-10中任一项所述的方法。
  24. 一种计算机程序,其特征在于,所述计算机程序包括用于执行权利要求1-10中 任一项所述的方法。
  25. 一种通信系统,其特征在于,所述通信系统包括权利要求11-15中任一项所述的编码装置,和,权利要求16-20中任一项所述的解码装置。
PCT/CN2021/080541 2020-03-13 2021-03-12 图像编码和解码方法及装置 WO2021180220A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/941,552 US20230017934A1 (en) 2020-03-13 2022-09-09 Image encoding and decoding methods and apparatuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177478.7 2020-03-13
CN202010177478.7A CN113395521A (zh) 2020-03-13 2020-03-13 图像编码和解码方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/941,552 Continuation US20230017934A1 (en) 2020-03-13 2022-09-09 Image encoding and decoding methods and apparatuses

Publications (1)

Publication Number Publication Date
WO2021180220A1 true WO2021180220A1 (zh) 2021-09-16

Family

ID=77616196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080541 WO2021180220A1 (zh) 2020-03-13 2021-03-12 图像编码和解码方法及装置

Country Status (3)

Country Link
US (1) US20230017934A1 (zh)
CN (1) CN113395521A (zh)
WO (1) WO2021180220A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242362A1 (zh) * 2021-05-19 2022-11-24 Oppo广东移动通信有限公司 图像数据的发送和接收方法、终端、芯片及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070000631A (ko) * 2005-06-28 2007-01-03 에스케이 텔레콤주식회사 채널 환경에 따라 차등적인 품질을 갖는 신호 전송 방법 및장치
CN101394555A (zh) * 2008-10-24 2009-03-25 清华大学 适用于深空通信的高容错低延时的视频传输方法及装置
CN101690224A (zh) * 2007-05-02 2010-03-31 韩国电子通信研究院 数字多媒体广播发射机的用于增强层的信道编码的设备、数字多媒体广播发射机系统、数字多媒体广播接收系统和子信道配置字段的扩展形式
CN101729910A (zh) * 2008-10-15 2010-06-09 国家广播电影电视总局广播科学研究院 一种基于可分级比特流的数据传输方法和装置
CN102098542A (zh) * 2010-12-15 2011-06-15 中兴通讯股份有限公司 一种多媒体数据传输的方法、系统和装置
US20140019830A1 (en) * 2012-07-16 2014-01-16 Broadcom Corporation Joint application-layer forward error/erasure correction (FEC) and video coding
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703774B1 (ko) * 2005-04-13 2007-04-06 삼성전자주식회사 인트라 코딩을 선택적으로 적용하여 인트라 bl 예측모드의 비디오 신호를 인코딩 및 디코딩하는 방법 및 장치
KR101087634B1 (ko) * 2009-12-31 2011-11-30 연세대학교 산학협력단 무선 자원 할당 장치 및 방법
WO2012086141A1 (ja) * 2010-12-20 2012-06-28 パナソニック株式会社 送信装置、受信装置及び送信方法
US9584808B2 (en) * 2013-02-22 2017-02-28 Qualcomm Incorporated Device and method for scalable coding of video information
CN104104956B (zh) * 2013-04-08 2017-10-17 华为技术有限公司 用于分层视频编码和解码的方法、编码装置和解码装置
WO2017011946A1 (zh) * 2015-07-17 2017-01-26 华为技术有限公司 基于不等差错保护的数据传输方法、装置和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070000631A (ko) * 2005-06-28 2007-01-03 에스케이 텔레콤주식회사 채널 환경에 따라 차등적인 품질을 갖는 신호 전송 방법 및장치
CN101690224A (zh) * 2007-05-02 2010-03-31 韩国电子通信研究院 数字多媒体广播发射机的用于增强层的信道编码的设备、数字多媒体广播发射机系统、数字多媒体广播接收系统和子信道配置字段的扩展形式
CN101729910A (zh) * 2008-10-15 2010-06-09 国家广播电影电视总局广播科学研究院 一种基于可分级比特流的数据传输方法和装置
CN101394555A (zh) * 2008-10-24 2009-03-25 清华大学 适用于深空通信的高容错低延时的视频传输方法及装置
CN102098542A (zh) * 2010-12-15 2011-06-15 中兴通讯股份有限公司 一种多媒体数据传输的方法、系统和装置
US20140019830A1 (en) * 2012-07-16 2014-01-16 Broadcom Corporation Joint application-layer forward error/erasure correction (FEC) and video coding
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242362A1 (zh) * 2021-05-19 2022-11-24 Oppo广东移动通信有限公司 图像数据的发送和接收方法、终端、芯片及存储介质

Also Published As

Publication number Publication date
US20230017934A1 (en) 2023-01-19
CN113395521A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN111327904B (zh) 图像重建方法和装置
WO2021109978A1 (zh) 视频编码的方法、视频解码的方法及相应装置
WO2020244579A1 (zh) Mpm列表构建方法、色度块的帧内预测模式获取方法及装置
WO2020114394A1 (zh) 视频编解码方法、视频编码器和视频解码器
CN111385572A (zh) 预测模式确定方法、装置及编码设备和解码设备
CN113660489B (zh) 用于帧内子划分的解码方法、装置、解码器和存储介质
US11758134B2 (en) Picture partitioning method and apparatus
JP2023126795A (ja) ビデオコーディングにおけるクロマイントラ予測のための方法及び装置
WO2022166462A1 (zh) 编码、解码方法和相关设备
WO2021164014A1 (zh) 视频编码方法及装置
WO2020253681A1 (zh) 融合候选运动信息列表的构建方法、装置及编解码器
WO2021180220A1 (zh) 图像编码和解码方法及装置
WO2021027799A1 (zh) 视频编码器及qp设置方法
WO2020224476A1 (zh) 一种图像划分方法、装置及设备
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
WO2020134817A1 (zh) 预测模式确定方法、装置及编码设备和解码设备
CN111372086B (zh) 视频图像解码方法及装置
WO2020114393A1 (zh) 变换方法、反变换方法以及视频编码器和视频解码器
WO2020147514A1 (zh) 视频编码器、视频解码器及相应方法
WO2020114508A1 (zh) 视频编解码方法及装置
WO2020114509A1 (zh) 视频图像解码、编码方法及装置
CN111405279B (zh) 量化、反量化方法及装置
WO2020259330A1 (zh) 非可分离变换方法以及设备
WO2020108168A1 (zh) 一种视频图像预测方法及装置
WO2020143292A1 (zh) 一种帧间预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767724

Country of ref document: EP

Kind code of ref document: A1