WO2020140843A1 - 可变压缩比机构、发动机和汽车 - Google Patents

可变压缩比机构、发动机和汽车 Download PDF

Info

Publication number
WO2020140843A1
WO2020140843A1 PCT/CN2019/129241 CN2019129241W WO2020140843A1 WO 2020140843 A1 WO2020140843 A1 WO 2020140843A1 CN 2019129241 W CN2019129241 W CN 2019129241W WO 2020140843 A1 WO2020140843 A1 WO 2020140843A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
center
compression ratio
variable compression
ratio mechanism
Prior art date
Application number
PCT/CN2019/129241
Other languages
English (en)
French (fr)
Inventor
尹吉
刘涛
刘俊杰
林文
杨乐
张树旻
渠娜
刘君宇
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811646188.1A external-priority patent/CN110671199B/zh
Priority claimed from CN201811646189.6A external-priority patent/CN110657024A/zh
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to CN201980087088.6A priority Critical patent/CN113795656B/zh
Publication of WO2020140843A1 publication Critical patent/WO2020140843A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke

Definitions

  • the present disclosure relates to the technical field of engines, and particularly to a variable compression ratio mechanism.
  • the present disclosure also relates to a variable compression ratio engine having the above variable compression ratio mechanism and an automobile having the variable compression ratio engine.
  • the engines used in automobiles are all fixed compression ratio engines, that is, the compression ratio of the engine does not change with the load.
  • the determination of the compression ratio should be a compromise between power, economy, and combustion. It can neither be too large nor too small.
  • the compression ratio is too small, the combustible mixture Insufficient mixing will result in low combustion efficiency, high fuel consumption, and insufficient combustion emissions.
  • knocking is likely to occur, which will affect the power output. Damage caused by parts.
  • the multi-link variable compression ratio mechanism is the only engine technology that achieves mass production conditions. It continuously changes the engine piston top dead center position, thereby changing the engine compression ratio to meet different engine load requirements, so that the engine always works in the most It can improve the power of the engine, reduce fuel consumption, and reduce emissions. It can solve the contradiction between power and economy, and emissions.
  • the existing multi-link type variable compression ratio mechanism generally consists of a piston, a crankshaft and an eccentric shaft with an eccentric wheel, and an adjustment link rotating on a crankpin, hinged to both ends of the adjustment link, and respectively
  • the piston and the eccentric shaft are connected by an execution connecting rod and a driving connecting rod.
  • the top dead center of the piston can be changed by the linkage of the multi-link structure, so that the compression ratio can be changed.
  • the link wear loss is large and the wear is serious. Over time, it will affect the reliability of the mechanism.
  • the adjusting connecting rod generally adopts a split structure of an expansion type, and is connected into a whole through a connecting member such as a connecting member.
  • a connecting member such as a connecting member.
  • the present disclosure aims to propose a variable compression ratio mechanism to be able to reduce the swing angle of the connecting rod during engine operation, thereby reducing the wear of the connecting rod.
  • a variable compression ratio mechanism includes a piston slidingly arranged in an engine block, rotating a crankshaft provided in the engine block and an eccentric shaft having an eccentric wheel, and rotating an adjustment coupling on a crank pin provided in the crankshaft A lever, and an execution link and a drive link that are hingedly connected to both ends of the adjustment link and are hingedly connected to the piston and the eccentric, respectively; and the hinge axis between the execution link and the piston
  • the swing angle of the execution link is set to be lower than 30°
  • the swing angle of the drive link is set to be less than 27° with the eccentric wheel as the swing center.
  • the distance L3 between the center of the crank pin and the center of the hinge shaft between the adjustment link and the drive link, the distance L4 between the centers of the hinge shafts at both ends of the drive link, the center of the eccentric wheel and The distance L5 between the center of rotation of the crankshaft and the distance r between the center of rotation of the crankshaft and the center of the crank pin are set to satisfy the value of (L42+L32-r2)/L52 between 0.9-1.1.
  • piston and the execution link, the execution link and the drive link, and the adjustment link are all hingedly connected by a connecting pin.
  • bushes that are press-fitted into the corresponding pin holes are respectively provided at the connection pins.
  • the adjusting link includes an upper rod portion and a lower rod portion that are fixed together by a connecting member, and a joint surface between the upper rod portion and the lower rod portion is orthogonal to the axis of the connecting member, and is A mounting hole for the crank pin to pass through is formed between the upper rod portion and the lower rod portion, and the connecting members are provided on two opposite sides of the mounting hole.
  • the connecting piece is a bolt.
  • the upper rod part and the lower rod part are formed by a powder forging process.
  • an engaging portion that constitutes the upper lever portion and the lower lever portion to engage with each other is provided at the coupling surface.
  • the engaging portion includes a positioning protrusion integrally formed on the upper rod portion, and a groove corresponding to the positioning protrusion constructed on the lower rod portion, the positioning projection is embedded in the Inside the groove.
  • the engaging portion includes pin holes correspondingly provided on the upper and lower lever portions, and positioning at both ends of the pin holes inserted into the upper and lower lever portions, respectively. pin.
  • the engaging portion includes a positioning groove that surrounds the connecting member and is configured on the upper rod portion, a positioning collar with a positioning protrusion embedded in the positioning groove and sleeved on the connecting member, And a positioning hole formed on the lower rod part by the connecting piece, the positioning hole is matched with the positioning protrusion, and the positioning protrusion is embedded in the positioning hole.
  • the upper rod part and the lower rod part are formed by a powder forging process.
  • the vertical distance e between the movement locus of the center of the hinge shaft between the piston and the execution link and the rotation center of the crankshaft is set to the movement locus between the center of the hinge shaft between the piston and the execution link and the crankshaft
  • the included angle CA between the rotation center and the connecting line of the crank pin is 30°-40°
  • the connecting line between the centers of the hinge shafts at both ends of the connecting rod is parallel to or nearly parallel to the axis of the connecting member.
  • the present disclosure has the following advantages:
  • variable compression ratio mechanism of the present disclosure can reduce the friction loss of the link and its reciprocating inertial force by limiting the swing angle of the link during operation, and can reduce the wear of the link.
  • the swing angle of the connecting rod during operation can be reduced, so that the reduction of the swing angle can reduce the friction loss of the connecting rod, and can reduce the connecting rod To reduce the reciprocating inertial force of the connecting rod, thereby reducing the wear of the connecting rod.
  • variable compression ratio mechanism of the present disclosure makes the execution connecting rod parallel or nearly parallel to the axis of the connecting rod when the included angle CA is 30°-40°, that is, when the crankshaft rotates until the cylinder burst pressure is at its maximum In this way, the burst pressure of the cylinder transmitted from the actuating connecting rod to the adjusting connecting rod can be transmitted along the axial direction of the connecting member, the tangential force received by the connecting member can be reduced, so that the connecting member can be prevented from being damaged, and the reliability of the connection can be guaranteed.
  • the engagement portion can also be used to cut through the engagement portion when the cylinder burst pressure is less than the maximum value.
  • the tangential force can also reduce the tangential force of the connecting piece to avoid damage to the connecting piece and ensure the reliability of the connection.
  • Another object of the present disclosure is to propose a variable compression ratio engine, which includes an engine block, and further includes the variable compression ratio mechanism described above provided in the engine block.
  • Yet another object of the present disclosure is to propose an automobile including the variable compression ratio engine described above.
  • FIG. 1 is a schematic structural diagram of a variable compression ratio mechanism according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural diagram of an adjusting link according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic structural view of a bite portion formed by positioning protrusions and grooves according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic structural view of a bite portion formed by a positioning pin and a pin hole according to Embodiment 1 of the present disclosure
  • FIG. 5 is a schematic structural diagram of an engaging portion formed by a positioning collar and a positioning hole according to Embodiment 1 of the present disclosure
  • FIG. 6 is a relationship diagram between the distances and angles of the components in the variable compression ratio mechanism according to Embodiment 1 of the present disclosure
  • FIG 7 is a schematic diagram of the swing of the execution link according to the first embodiment of the present disclosure (the dotted line structure in the figure shows the execution link when swinging to the extreme position on the other side);
  • FIG 8 is a schematic view of the swing of the driving link according to the first embodiment of the present disclosure (the dotted line structure in the figure shows the driving link when swinging to the extreme position on the other side);
  • FIG. 9 is a schematic diagram of adjusting the angle of the connecting rod according to Embodiment 1 of the present disclosure.
  • variable compression ratio mechanism which is a multi-link type variable compression ratio mechanism, and as shown in FIG. 1, the mechanism includes a sliding set in an engine block not shown in the figure
  • the piston 1 rotates the crankshaft 4 provided in the engine block and the eccentric shaft 6 with the eccentric 7, rotates the adjusting connecting rod 3 provided on the crank pin of the crankshaft 4, and hinges at both ends of the adjusting connecting rod 3,
  • the execution connecting rod 2 and the driving connecting rod 5 are hingedly connected to the piston 1 and the eccentric 7 respectively.
  • FIG. 2 specifically includes an upper rod portion 301 and a lower rod portion 302 that are fixedly connected together by a connecting member 8.
  • the upper rod portion 301 and the lower rod portion 302 The structure is preferably set to be the same, and both can be formed by the powder forging process, and the joint surface M is formed due to the contact between the two, and the joint surface M is also arranged orthogonally to the axis of the connecting member 8.
  • a mounting hole 303 for passing the crank pin of the crankshaft 4 is also formed between the upper rod portion 301 and the lower rod portion 302, that is, the adjustment connecting rod 3 is rotatably installed on the crank by the mounting hole 303
  • the connecting pieces 8 are two on the opposite sides of the mounting hole 303.
  • the connecting member 8 used to fix the two rod portions of the adjusting link 3 is preferably a bolt, and both the upper rod portion 301 and the lower rod portion 302 as the main structure of the adjusting link 3 can be made of powder Formed by the forging process, and at the same time, after being connected by the connecting member 8, the upper rod portion 301 and the lower rod portion 302 are center-symmetrical with respect to the center of the mounting hole 303.
  • the upper lever portion 301 and the lower lever portion 302 are also provided with transparent adjustment link pin holes 304, respectively, the execution link 2 and the driving link 5 are respectively connected to the upper lever portion 301 and the lower lever portion 302 On the adjusting link pin hole 304.
  • the upper lever portion 301 and the coupling surface M are also provided with an engaging portion that constitutes the upper lever portion 301 and the lower lever portion 302 to engage with each other.
  • the setting of the bite portion can share the force of the burst pressure along the joint surface through the bite portion when the burst pressure in the cylinder is transmitted to the adjusting link 3 through the execution link 2 during engine operation. This can reduce the tangential force that the connecting member 8 constituted by the bolt bears, and can achieve the purpose of avoiding the damage of the bolt.
  • the above-mentioned engaging portion includes a positioning protrusion 3011 integrally formed on the upper rod portion 301, and corresponds to the positioning protrusion 3011, under
  • the rod portion 302 is also configured with a groove, and the positioning protrusion 3011 is embedded in the groove, thereby achieving the mutual engagement between the upper rod portion 301 and the lower rod portion 302.
  • the above-mentioned engaging portion may also include a pin hole correspondingly provided on the upper rod portion 301 and the lower rod portion 302, and both ends are separately inserted and installed on the upper rod
  • the positioning pin 9 in the pin hole on the portion 301 and the lower lever portion 302. In this way, by inserting the two ends of the positioning pin 9 into the pin holes on the two rods, the upper rod 301 and the lower rod 302 can be engaged with each other.
  • the shape of the above-mentioned positioning protrusion 3011 is not limited to that shown in FIG. 3, and its matching groove may be any shape that enables the two rod portions to exhibit a bite-like shape.
  • the positioning pin 9 is also the same as the positioning protrusion 3011, and the cross-sectional shape of the matching pin hole is not limited, so that it can achieve the bite function.
  • the distribution number and arrangement rules at the joint surface M can be selected according to the shape and size of the joint surface of the upper rod portion 301 and the lower rod portion 302, and it does not affect the two The structural strength of the contact surface of each rod part can ensure that the required bite force is obtained.
  • the above-mentioned bite portion in this embodiment may further include a surrounding connecting member 8
  • the positioning holes are arranged to match the positioning protrusions 101 on the positioning collar 10 in shape, number and position arrangement, so that the positioning protrusions 101 can be embedded in the positioning holes, and the engagement between the two rod portions can also be achieved.
  • other components such as the execution link 2, the drive link 5, and other components can refer to the related structure in the existing engine.
  • between the piston 1 and the actuating link 2, between the actuating link 2 and the adjusting link 3, and between the driving link 5 and the adjusting link 3 may be hingedly connected by a connecting pin.
  • the concrete piston 1 and the actuating link 2 are hingedly connected through the piston connecting pin 11, and the adjusting link 3 is connected to the actuating link 2 and the driving link through the actuating link connecting pin 12 and the driving link connecting pin 13, respectively
  • the rod 5 is hingedly connected.
  • bushings press-fitted in the corresponding pin holes can also be provided at each connecting pin, thereby reducing the wear of the connecting pin and each connecting rod structure.
  • the eccentric shaft 6 in it can be driven to rotate by the motor mounted on the engine block via the speed reducer, and the rotation of the eccentric shaft 6 is supported by the driving link 5 through the eccentric 7
  • the support point of the drive link 5 changes, and by adjusting the linkage of the link 3 and the execution link 2, the top dead center of the piston 1 can be changed, thereby adjusting the engine compression ratio.
  • the hinge shaft between the actuating connecting rod 2 and the piston 1, that is, the piston connecting pin 11 is set as the swing center, and the swing angle of the actuating connecting rod 2 is set below 30 °, and with the eccentric 7 as the swing center, the swing angle of the driving link 5 is set to be less than 27°.
  • the execution link 2 that swings during operation
  • the distance L1 between the centers of the hinge shafts at both ends of the connecting rod 2 is the distance between the center of the piston connecting pin 11 and the center of the connecting rod connecting pin 12, the center of the crank pin 14 and the adjusting link
  • the distance L2 between the center of the hinge shaft between 3 and the actuating link 2 is the distance between the center of the crank pin 14 and the center of the connecting pin 12 of the actuating link
  • the center of the crank pin 14 is between the adjusting link 3 and the driving link 5
  • the distance between the pin 13 and the center of the eccentric 7 is set to satisfy L1/
  • the setting of the above relational expression can make the angle ⁇ between the limit positions (2a and 2b) on both sides to which the connecting rod 2 swings when it is working can be within 30°, and the swing angle of the connecting rod 2 is small Therefore, the frictional loss during the swing can be reduced, and the inertial force of the reciprocating swing can be reduced, thereby achieving the above-mentioned purpose of reducing wear.
  • the distance L3 between the center of the crank pin 14 and the center of the hinge shaft between the adjusting link 3 and the drive link 2 is the distance between the center of the crank pin 14 and the center of the drive link connecting pin 13, and the drive link 5 is hinged at both ends
  • the distance r is set to satisfy the value of (L42+L32-r2)/L52 between 0.9-1.1.
  • the value of the expression (L42+L32-r2)/L52 composed of the above distances may be, for example, 0.9, 0.95, 1.0, 1.02, 1.05, 1.08, or 1.1.
  • the angle ⁇ between the extreme positions (5a and 5b) on both sides to which the swinging link 5 swings can be within 27°, and the driving link 5
  • the swing angle is small, which can reduce the friction loss during swing, and can reduce the inertial force of its reciprocating swing, and thus also achieve the above-mentioned purpose of reducing wear.
  • the value of the above expression is not within the above numerical range, the more it exceeds this range, the greater the swing angle ⁇ of the driving link 5 will be, and the amount of wear due to swing will be greatly increased at this time.
  • variable compression ratio mechanism of this embodiment can reduce the friction loss and reciprocating inertial force of both the working link 2 and the driving link 5 by limiting the swing angle of the operating link 2 and the driving link 5, thereby reducing their wear and tear to improve the two
  • the service life of each connecting rod structure has good practicality.
  • this embodiment also makes the distance L1 between the centers of the hinge shafts at both ends of the actuating link 2, that is, the piston connecting pin
  • the distance between the center of 11 and the center of the connecting pin 12 of the actuating rod, the distance L2 between the center of the crank pin 14 and the center of the hinge shaft between the adjusting link 3 and the actuating link 2 is the connection between the center of the crank pin 14 and the actuating link
  • the distance between the center of the pin 12 and the distance between the center of the crank pin 14 and the center of the hinge shaft between the adjusting link 3 and the driving link 5 is L3, that is, the distance between the center of the crank pin 14 and the center of the driving link connecting pin 13
  • the distance L4 between the center of the articulated shaft at both ends of the drive link 5, that is, the distance between the drive pin 13 and the center of the eccentric 7, and the center of the articulated shaft between the piston 1 and the actuator 2 ie, the piston connection The vertical distance e between
  • the crankshaft 4 in the engine rotates to fuel in the engine cylinder
  • the burst pressure is near the maximum value.
  • the distances L1, L2, L3, L4, and e make the connection line between the center of the piston connecting pin 11 and the center of the connecting rod connecting pin 12 parallel or nearly parallel to the axis of the connecting member 8, that is The angle A7+A8 is equal to or close to 90°.
  • the direction of the force FB transmitted to the adjusting link 3 is parallel to the bolt because the actuating link 2 and the bolt are parallel or nearly parallel.
  • the force on the bolt is mainly the force F7y along the axial direction, and the tangential force F7x perpendicular to the axial direction of the bolt is small, so that the effect of avoiding damage to the bolt can be achieved.
  • the above-mentioned angle A7 is the angle between the adjustment plane of the connecting surface of the connecting rod 3 and the center connecting line of the actuating link connecting pin 11 and the center of the driving link connecting pin 12, and the angle A8 is the center and driving of the connecting rod connecting pin 11 The angle between the center connecting line of the connecting rod connecting pin 12 and the center connecting line of the piston connecting pin 11 and the executive connecting rod connecting pin 12.
  • the crankshaft 4 rotates so that the CA is at an angle other than the above 30°-40° interval, at this time, the deviation of the sum of the angles A7 and A8 is larger than 90°, which makes the transmission of the connecting rod 2
  • the direction of the force FB on the adjusting link 3 is at a certain angle with the axial direction of the bolt, and can be decomposed into two component forces along the axial direction and the tangential direction of the bolt (that is, along the extending direction of the joint surface M).
  • the design of the engaging portion at the joint surface M between the upper lever portion 301 and the lower lever portion 302 of the aforementioned adjusting link 3 is adopted by the positioning protrusions on the positioning protrusion 3011 or the positioning pin 9 or the positioning collar 10
  • the head 101 can share the component force transmitted to the upper rod part 301 and the lower rod part 302 along the joint surface, so that the tangential force received by the bolt can be reduced, and the purpose of avoiding damage to the bolt can also be achieved .
  • variable compression ratio mechanism of this embodiment makes the driving link 2 and the bolt axially substantially parallel, and the adjusting link 3 is provided with an engaging portion.
  • the two designs can reduce the connecting member 8 formed by the bolt
  • the tangential force received can avoid the damage of the connecting member 8, and the bolt can be selected to a smaller size, which has good practicality.
  • the present embodiment relates to a variable compression ratio engine, which includes an engine block, and further includes a variable compression ratio mechanism provided in the engine block as in the first embodiment.
  • the engine of this embodiment can reduce the wear of the actuating connecting rod 2 and the driving connecting rod 5, can improve the service life of the two connecting rod structures, and has good practicality.
  • the engine of this embodiment can reduce the tangential force on the connecting member formed by adjusting the bolts in the connecting rod, which can avoid damage to the connecting member and can ensure the reliability of the connection. And it has good practicality.
  • This embodiment relates to an automobile, which includes the variable compression ratio engine as in Embodiment 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

一种可变压缩比机构、可变压缩比发动机和汽车,其包括滑动设于发动机缸体中的活塞(1),转动设于发动机缸体中的曲轴(4)和具有偏心轮(7)的偏心轴(6),转动设于曲轴(4)中的曲柄销(14)上的调节连杆(3),以及铰接于调节连杆(3)的两端、并分别与活塞(1)和偏心轮(7)铰接相连的执行连杆(2)与驱动连杆(5);且以执行连杆(2)和活塞(1)间铰接轴为摆动中心,执行连杆(2)的摆角被设置为低于30°,以偏心轮(7)为摆动中心,驱动连杆(5)的摆角被设置为小于27°。

Description

可变压缩比机构、发动机和汽车
相关申请的交叉引用
本公开要求申请日为2019年12月30日、申请号为201811646188.1、专利申请名称为“可变压缩比机构与发动机”的优先权,以及申请日为2019年12月30日、申请号为201811646189.6、专利申请名称为“可变压缩比机构与发动机”的优先权。
技术领域
本公开涉及发动机技术领域,特别涉及一种可变压缩比机构,本公开还涉及一种具有上述可变压缩比机构的可变压缩比发动机以及具有上述可变压缩比发动机的汽车。
背景技术
目前,汽车上使用的发动机均是固定压缩比发动机,也即发动机的压缩比不会随负荷大小变化。不过,压缩比的确定应是兼顾动力性、经济性和燃烧后的折中结果,其既不能太大也不能太小,在低速小负荷或部分负荷时,若压缩比偏小,可燃混合气不能充分混合,会造成燃烧效率低油耗高,以及燃烧不充分排放高,而在高速大负荷时,如果发动机压缩比偏大,则很容易产生爆震,轻则影响动力输出,重则对发动机零部件造成损坏。
多连杆式可变压缩比机构是唯一达到量产条件的发动机技术,其是通过连续改变发动机活塞上止点位置,进而改变发动机压缩比,以满足不同发动机负荷需求,使发动机始终工作在最佳工作区,进而既可提高发动机动力性降低油耗,又能够减少排放,能够很好的解决动力性与经济性、排放性之间的矛盾。
现有的多连杆式可变压缩比机构一般由活塞、曲轴和具有偏心轮的偏心轴,以及转动于曲轴曲柄销上的调节连杆,铰接于该调节连杆的两端,并分别与活塞及偏心轴铰接相连的执行连杆和驱动连杆构成。
在偏心轴的转动下,通过多连杆结构的联动可使得活塞的上止点发生变化,从而可实现压缩比的改变。不过现有的多连杆结构可变压缩比机构中,因连杆的摆动角度较大,使得连杆的磨损损失较大,磨损严重,时间久了会对机构的可靠性带来影响。
此外,调节连杆一般会采用胀断式的分体结构,且通过诸如连接件等连接件连接成为一体。在发动机运行中,因活塞承受的气缸内燃烧爆发力会传递至多连杆结构中,由此使得调节连杆中的连接件受力较大,特别是连接件会承受较大的切向力,其使得连接件容易损坏并进而发生连接失效,而影响发动机正常工作的进行。
发明内容
有鉴于此,本公开旨在提出一种可变压缩比机构,以能够在发动机运行中,减小连杆的摆动角度,从而减轻连杆的磨损。
为达到上述目的,本公开的技术方案是这样实现的:
一种可变压缩比机构,包括滑动设于发动机缸体中的活塞,转动设于所述发动机缸体中的曲轴和具有偏心轮的偏心轴,转动设于曲轴中的曲柄销上的调节连杆,以及铰接于所述调节连杆的两端、并分别与所述活塞和所述偏心轮铰接相连的执行连杆与驱动连杆;且以所述执行连杆和所述活塞间铰接轴为摆动中心,所述执行连杆的摆角被设置为低于30°,以所述偏心轮为摆动中心,所述驱动连杆的摆角被设置为小于27°。
进一步的,所述执行连杆两端铰接轴中心之间的距离L1、所述曲柄销中心与所述调节连杆和执行连杆间铰接轴中心之间的距离L2、所述曲柄销中心与所述调节连杆和驱动连杆间铰接轴中心之间的距离L3、以及所述驱动连杆两端铰接轴中心之间的距离L4被设置为满足如下的关系式:L1/L3=L4/L2。
进一步的,所述曲柄销中心与所述调节连杆和驱动连杆间铰接轴中心之间的距离L3、所述驱动连杆两端铰接轴中心之间的距离L4、所述偏心轮中心和曲轴转动中心间的距离L5、以及曲轴转动中心和曲柄销中心间的距离r被设置为满足(L42+L32-r2)/L52的值在0.9-1.1之间。
进一步的,所述活塞与执行连杆,所述执行连杆和驱动连杆与调节连杆之间均通过连接销铰接相连。
进一步的,于各所述连接销处分别设有压装于相应销孔内的衬套。
进一步的,所述调节连杆包括由连接件固连于一起的上杆部和下杆部,所述上杆部和下杆部间的结合面与所述连接件轴线正交,并于所述上杆部和所述下杆部之间围构形成有供所述曲柄销穿过的安装孔,所述连接件为分设于所述安装孔两相对侧的两个。
进一步的,所述连接件为螺栓。
进一步的,所述上杆部和下杆部由粉末锻造工艺成型。
进一步的,于所述结合面处设有构成所述上杆部与所述下杆部之间相互咬合的咬合部。
进一步的,所述咬合部包括一体构造于所述上杆部上的定位凸起,以及对应于所述定位凸起构造于所述下杆部上的凹槽,所述定位凸起嵌入所述凹槽内。
进一步的,所述咬合部包括对应设置于所述上杆部与下杆部上的销孔,以及两端分设插装于所述上杆部和下杆部上的所述销孔内的定位销。
进一步的,所述咬合部包括环所述连接件构造于所述上杆部上的定位槽,嵌入所述定 位槽中并套设于所述连接件上的具有定位凸头的定位套环,以及环所述连接件形成于所述下杆部上的定位孔,所述定位孔匹配于所述定位凸头设置,且所述定位凸头嵌入所述定位孔中。
进一步的,所述上杆部和下杆部由粉末锻造工艺成型。
进一步的,所述活塞和执行连杆间铰接轴中心的运动轨迹与所述曲轴转动中心的垂线距离e被设置为于所述活塞和执行连杆间铰接轴中心的运动轨迹与所述曲轴转动中心和曲柄销中心连线间的夹角CA为30°-40°时,所述执行连杆两端铰接轴中心间连线与所述连接件轴线平行或接近于平行。
相对于现有技术,本公开具有以下优势:
(1)本公开的可变压缩比机构通过限定连杆在工作时的摆动角度,可降低连杆的摩擦损失及其往复惯性力,而能够减轻连杆的磨损。
此外,本公开中通过对各构件间距离间关系的设置,可实现连杆在工作时摆动角度的减小,从而由摆动角度的减小可降低连杆的摩擦损失,并能够减小连杆的摆动加速度以降低连杆的往复惯性力,由此能够减轻连杆的磨损。
(2)本公开的可变压缩比机构,通过在夹角CA为30°-40°,也即曲轴转至气缸爆发压力处于最大附近时,使得执行连杆与连接件轴线间平行或接近平行,以此可使得由执行连杆传导至调节连杆的气缸爆发压力沿连接件的轴向传递,连接件承受的切向力降低,从而可避免连接件损坏,以能够保障连接的可靠性。
此外,本公开中通过在调节连杆中的上杆部与下杆部间的结合面处设置咬合部,也可在气缸爆发压力小于最大值时,通过该咬合部分担连接件所承受的切向力,因而亦可降低连接件的切向受力,以避免连接件损坏,而可保障其连接的可靠性。
本公开的另一目的在于提出一种可变压缩比发动机,其包括发动机缸体,还包括设于所述发动机缸体中的如上所述的可变压缩比机构。
本公开的又一个目的在于提出一种汽车,包括上述的可变压缩比发动机。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例一所述的可变压缩比机构的结构示意图;
图2为本公开实施例一所述的调节连杆的结构示意图;
图3为本公开实施例一所述的定位凸起与凹槽构成的咬合部的结构示意图;
图4为本公开实施例一所述的定位销与销孔构成的咬合部的结构示意图;
图5为本公开实施例一所述的定位套环与定位孔构成的咬合部的结构示意图;
图6为本公开实施例一所述的可变压缩比机构中部件间距离及角度关系图;
图7为本公开实施例一所述的执行连杆的摆动示意图(图中虚线结构为示意出摆动至另一侧极限位置时的执行连杆);
图8为本公开实施例一所述的驱动连杆的摆动示意图(图中虚线结构为示意出摆动至另一侧极限位置时的驱动连杆);
图9为本公开实施例一所述的调节连杆角度示意图;
附图标记说明:
1-活塞,2-执行连杆,3-调节连杆,4-曲轴,5-驱动连杆,6-偏心轴,7-偏心轮,8-连接件,9-定位销,10-定位套环,11-活塞连接销,12-执行连杆连接销,13-驱动连杆连接销,14-曲柄销;
101-定位凸头;
301-上杆部,3011-定位凸起,302-下杆部,303-安装孔,304-调节连杆连接销孔。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
实施例一
本实施例涉及一种可变压缩比机构,其为多连杆式可变压缩比机构,且如图1中所示的,该机构包括滑动设于图中未示出的发动机缸体中的活塞1,转动设于发动机缸体中的曲轴4和具有偏心轮7的偏心轴6,转动设于曲轴4中的曲柄销上的调节连杆3,以及铰接于调节连杆3的两端、并分别与活塞1和偏心轮7铰接相连的执行连杆2与驱动连杆5。
其中,上述调节连杆3的结构进一步的如图2中所示,其具体包括由连接件8固连于一起的上杆部301和下杆部302,上杆部301与下杆部302的结构优选为设置成相同的,并均可采用粉末锻造工艺成型,且两者间因相接而形成了结合面M,而该结合面M也正与连接件8的轴线间正交设置。此外,在上杆部301和下杆部302之间也围构形成有用于曲轴4上的曲柄销穿过的安装孔303,也即调节连杆3即由该安装孔303转动装设于曲柄销上,而连接件8则为分设于该安装孔303两相对侧的两个。
本实施例中上述用于调节连杆3中的两个杆部固连在一起的连接件8优选为螺栓,且作为调节连杆3主体结构的上杆部301和下杆部302均可由粉末锻造工艺成型,同时,在通过连接件8连接后,上杆部301与下杆部302间也即为相对于安装孔303的中心间呈中 心对称状结构。在上杆部301和下杆部302上还分别设置有为通透状的调节连杆销孔304,执行连杆2和驱动连杆5便是分别连接在上杆部301以及下杆部302上的调节连杆销孔304处。
另外,本实施例中在上杆部301与结合面M处亦设置有构成上杆部301与下杆部302之间相互咬合的咬合部。该咬合部的设置,可在发动机运行中,经由执行连杆2将气缸内爆发压力传递至调节连杆3时,通过咬合部能够对所述爆发压力的沿结合面的分力进行分担,以此可使螺栓所构成的连接件8所承受的切向力减小,而可达到避免螺栓损坏的目的。
而在结构上,作为一种可行的结构形式,如图3中所示的,例如上述咬合部为包括一体构造于上杆部301上的定位凸起3011,且对应于定位凸起3011,在下杆部302上也构造有凹槽,定位凸起3011即嵌入该凹槽内,由此实现上杆部301和下杆部302之间的相互咬合。
而作为另一种可行的结构形式,如图4中所示,上述咬合部也可为包括对应设置于上杆部301与下杆部302上的销孔,以及两端分设插装于上杆部301和下杆部302上的销孔内的定位销9。以此,通过定位销9两端分别于两个杆部上的销孔中的插装,也能够实现上杆部301和下杆部302之间的相互咬合。
应注意的是,上述定位凸起3011的形状不限于图3中所示的,其与相配合的凹槽可为任意的能够使两个杆部呈现咬合状的形状。同时,定位销9也与定位凸起3011一样,其与相匹配的销孔的截面形状亦不受限制,以其能实现咬合功能便可。另外,对于定位凸起3011或者定位销9,其在结合面M处的分布数量和排布规则可视上杆部301与下杆部302结合面形状及尺寸进行选择,且以其不影响两个杆部相接面的结构强度,并能够保证获得所需的咬合力即可。
当然除了采用上述的定位凸起3011与定位销9,进一步的,作为又一种可行的结构形式,再如图5中所示的,本实施例上述的咬合部还可为包括环绕连接件8而构造于上杆部301上的定位槽,嵌设于该定位槽中并套设于连接件8上的具有定位凸头101的定位套环10,以及同样环绕连接件8而形成于下杆部302上的定位孔。定位孔在形状与数量以及位置排布上匹配于定位套环10上的定位凸头101设置,由此可使得定位凸头101嵌入定位孔中,而同样实现两个杆部之间的咬合。
本实施例中除了以上介绍的调节连杆3,其它诸如执行连杆2、驱动连杆5以及其它部件均可参考现有发动机中的相关结构。而作为优选的实施方式,活塞1与执行连杆2之间,执行连杆2与调节连杆3之间,以及驱动连杆5与调节连杆3之间均可为通过连接销铰接相连。此时,具体的活塞1和执行连杆2之间通过活塞连接销11铰接相连,调节连杆3则通过执行连杆连接销12及驱动连杆连接销13分别与执行连杆2以及驱动连杆5铰接相连。 而本实施例在各连接销处还可分别设置压装于相应销孔内的衬套,以此降低连接销及各连杆结构的磨损。
本实施例的可变压缩比机构在工作时,其内的偏心轴6可由安装于发动机缸体上的电机经由减速器驱使转动,偏心轴6的转动通过偏心轮7使得驱动连杆5的支撑点上下移动,驱动连杆5支撑点的变化,通过调节连杆3和执行连杆2的联动,便能够使得活塞1的上止点发生改变,由此便能够实现对发动机压缩比的调节。
此外,本实施例的可变压缩比机构,在设置上以执行连杆2和活塞1间铰接轴、也即活塞连接销11为摆动中心,执行连杆2的摆角被设置为低于30°,而以偏心轮7为摆动中心,驱动连杆5的摆角则被设置为小于27°。通过限定两个连杆在工作时的摆动角度,可降低连杆的摩擦损失及其往复惯性力,进而能够达到减轻连杆磨损的效果。
基于以上摆角的设置,作为一种实施方式,参见于图6并结合图7所示的,对于该可变压缩比机构中的各构件而言,以在工作中进行摆动的执行连杆2为例,本实施例中执行连杆2两端铰接轴中心之间的距离L1,也即活塞连接销11中心与执行连杆连接销12中心之间的距离,曲柄销14中心与调节连杆3和执行连杆2间铰接轴中心之间的距离L2,也即曲柄销中心14和执行连杆连接销12中心之间的距离,曲柄销14中心与调节连杆3和驱动连杆5间铰接轴中心之间的距离L3,也即曲柄销14中心与驱动连杆连接销13中心之间的距离,以及驱动连杆5两端铰接轴中心之间的距离L4,也即驱动连杆连接销13和偏心轮7中心之间的距离,该四个距离被设置为满足L1/L3=L4/L2。
以上关系式的设置,可使得执行连杆2在工作时,其摆动所至的两侧极限位置(2a与2b)之间的夹角β可在30°以内,执行连杆2摆动角度较小,从而能够减小其在摆动中的磨擦损失,且能够减小其往复摆动的惯性力,进而达到上述的降低磨损的目的。而当上述关系式L1/L3=L4/L2不满足时,L1/L3和L4/L2之间的偏差越大,则执行连杆2的摆动角度β便会越大,此时会大大增加其因摆动所带来的磨损量。
与上述执行连杆2的摆动角度的设置相类似的,对于在工作中亦为摆动状的驱动连杆5的摆角的设置,作为可行实施方式,本实施例结合于图8所示的,曲柄销14中心与调节连杆3和驱动连杆2间铰接轴中心之间的距离L3,也即曲柄销14中心与驱动连杆连接销13中心之间的距离,驱动连杆5两端铰接轴中心之间的距离L4,也即驱动连杆连接销13和偏心轮7中心之间的距离,偏心轮7中心和曲轴4转动中心间的距离L5,以及曲轴4转动中心和曲柄销14中心间的距离r则被设置为满足(L42+L32-r2)/L52的值在0.9-1.1之间。
此时,上述各距离所组成的表达式(L42+L32-r2)/L52的值例如可为0.9、0.95、1.0、1.02、1.05、1.08或1.1。而使得以上表达式的值处于上述区间,可使得驱动连杆5在工 作时,其摆动所至的两侧极限位置(5a与5b)之间的夹角α可在27°以内,驱动连杆5摆动角度较小,从而能够减小其在摆动中的磨擦损失,且能够减小其往复摆动的惯性力,进而亦达到上述的降低磨损的目的。而当上述表达式的值不在以上数值区间内时,其超出该区间越多,则驱动连杆5的摆动角度α便会越大,此时会大大增加其因摆动所带来的磨损量。
本实施例的可变压缩比机构通过对执行连杆2及驱动连杆5摆动角度的限制,能够减少两者在工作中的摩擦损失及往复惯性力,由此可降低其磨损,以提高两个连杆结构的使用寿命,而有着很好的实用性。
此外,参见于图6中所示的,对于该可变压缩比机构中的各构件而言,本实施例也使得执行连杆2两端铰接轴中心之间的距离L1,也即活塞连接销11中心与执行连杆连接销12中心之间的距离,曲柄销14中心与调节连杆3和执行连杆2间铰接轴中心之间的距离L2,也即曲柄销中心14和执行连杆连接销12中心之间的距离,曲柄销14中心与调节连杆3和驱动连杆5间铰接轴中心之间的距离L3,也即曲柄销14中心与驱动连杆连接销13中心之间的距离,驱动连杆5两端铰接轴中心之间的距离L4,也即驱动连杆连接销13和偏心轮7中心之间的距离,以及活塞1和执行连杆2间铰接轴中心(即活塞连接销11中心)的运动轨迹与曲轴4转动中心的垂线距离e,该五个距离设置为在活塞连接销11中心的运动轨迹与曲轴4转动中心和曲柄销14中心连线间的夹角CA为30°-40°时,执行连杆2两端铰接轴中心间连线与连接件8、也即调节连杆3上的螺栓的轴线平行或接近于平行。
具体来说,如图9中示出的,当上述夹角CA为30°-40°,例如32°、35°、36.5°或38°时,发动机中的曲轴4转动至发动机缸体内燃料爆发压力处于最大值附近,此时上述距离L1、L2、L3、L4及e使活塞连接销11中心和执行连杆连接销12中心间连线与连接件8轴线平行或接近于平行,也即角度A7+A8等于或接近90°。如此,气缸爆发压力通过执行连杆2传导至调节连杆3处时,因执行连杆2和螺栓平行或近于平行,传递至调节连杆3处的力FB的方向也便与螺栓平行或近于平行,以此便可使得螺栓所受力主要为沿其轴向的力F7y,而与螺栓轴向垂直的切向力F7x较小,由此便能够达到避免螺栓损坏的效果。
上述角度A7为调节连杆3结合面所属平面与执行连杆连接销11中心和驱动连杆连接销12中心连线间的夹角角度,而角度A8则为执行连杆连接销11中心和驱动连杆连接销12中心连线与活塞连接销11和执行连杆连接销12中心连线间夹角的角度。
另外,当曲轴4转动而使CA处于上述30°-40°区间之外的其它角度时,此时,因角度A7与A8的和相较90°偏差较大,这样就使得执行连杆2传递至调节连杆3上的力FB的方向与螺栓的轴向成一定角度,而可分解为沿螺栓轴向及切向(也即沿结合面M延展方向)的两个分力。这时承接于前述的调节连杆3中上杆部301与下杆部302间结合面M处 的咬合部的设计,通过上述定位凸起3011或定位销9或定位套环10上的定位凸头101,便能够对传递至上杆部301和下杆部302上的沿结合面的分力进行分担,如此即能够使螺栓所承受的切向力减小,以也可达到避免螺栓损坏的目的。
本实施例的可变压缩比机构,通过以上的使驱动连杆2和螺栓轴向基本平行,以及在调节连杆3上设置咬合部,由该两个设计可减小螺栓构成的连接件8所受的切向力,从而可避免连接件8损坏,且能够将螺栓选为较小的规格,而有着很好的实用性。
实施例二
本实施例涉及一种可变压缩比发动机,其包括发动机缸体,并还包括设于该发动机缸体中的如实施例一中的可变压缩比机构。
本实施例的发动机通过采用实施例一中可变压缩比机构,可降低执行连杆2与驱动连杆5的磨损,能够提高两个连杆结构的使用寿命,而有着很好的实用性。
本实施例的发动机通过采用实施例一中可变压缩比机构,可降低调节连杆中的螺栓构成的连接件所受的切向力,其可避免连接件损坏,能够保障连接的可靠性,而有着很好的实用性。
实施例三
本实施例涉及一种汽车,其包括如实施例二中的可变压缩比发动机。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种可变压缩比机构,包括滑动设于发动机缸体中的活塞(1),转动设于所述发动机缸体中的曲轴(4)和具有偏心轮(7)的偏心轴(6),转动设于曲轴(4)中的曲柄销(14)上的调节连杆(3),以及铰接于所述调节连杆(3)的两端、并分别与所述活塞(1)和所述偏心轮(7)铰接相连的执行连杆(2)与驱动连杆(5);其特征在于:以所述执行连杆(2)和所述活塞(1)间铰接轴为摆动中心,所述执行连杆(2)的摆角被设置为低于30°,以所述偏心轮(7)为摆动中心,所述驱动连杆(5)的摆角被设置为小于27°。
  2. 根据权利要求1所述的可变压缩比机构,其特征在于:所述执行连杆(2)两端铰接轴中心之间的距离L1、所述曲柄销(14)中心与所述调节连杆(3)和执行连杆(2)间铰接轴中心之间的距离L2、所述曲柄销(14)中心与所述调节连杆(3)和驱动连杆(5)间铰接轴中心之间的距离L3、以及所述驱动连杆(5)两端铰接轴中心之间的距离L4被设置为满足如下的关系式:L1/L3=L4/L2。
  3. 根据权利要求1所述的可变压缩比机构,其特征在于:所述曲柄销(14)中心与所述调节连杆(3)和驱动连杆(5)间铰接轴中心之间的距离L3、所述驱动连杆(5)两端铰接轴中心之间的距离L4、所述偏心轮中心和曲轴转动中心间的距离L5、以及曲轴转动中心和曲柄销中心间的距离r被设置为满足(L42+L32-r2)/L52的值在0.9-1.1之间。
  4. 根据权利要求1所述的可变压缩比机构,其特征在于:所述活塞(1)与执行连杆(2),所述执行连杆(2)和驱动连杆(5)与调节连杆(3)之间均通过连接销铰接相连。
  5. 根据权利要求4所述的可变压缩比机构,其特征在于:于各所述连接销处分别设有压装于相应销孔内的衬套。
  6. 根据权利要求1至5中任一项所述的可变压缩比机构,其特征在于:所述调节连杆(3)包括由连接件(8)固连于一起的上杆部(301)和下杆部(302),所述上杆部(301)和下杆部(302)间的结合面与所述连接件(8)轴线正交,并于所述上杆部(301)和所述下杆部(302)之间围构形成有供所述曲柄销(14)穿过的安装孔(303),所述连接件(8)为分设于所述安装孔(303)两相对侧的两个。
  7. 根据权利要求6所述的可变压缩比机构,其特征在于:所述连接件(8)为螺栓。
  8. 根据权利要求6的可变压缩机机构,其特征在于:于所述结合面处设有构成所述上杆部(301)与所述下杆部(302)之间相互咬合的咬合部。
  9. 根据权利要求8所述的可变压缩比机构,其特征在于:所述咬合部包括一体构造于所述上杆部(301)上的定位凸起(3011),以及对应于所述定位凸起(3011)构造于所述下杆部(302)上的凹槽,所述定位凸起(3011)嵌入所述凹槽内。
  10. 根据权利要求8所述的可变压缩比机构,其特征在于:所述咬合部包括对应设置于所述上杆部(301)与下杆部(302)上的销孔,以及两端分设插装于所述上杆部(301)和下杆部(302)上的所述销孔内的定位销(9)。
  11. 根据权利要求8所述的可变压缩比机构,其特征在于:所述咬合部包括环所述连接件(8)构造于所述上杆部(301)上的定位槽,嵌入所述定位槽中并套设于所述连接件(8)上的具有定位凸头(101)的定位套环(10),以及环所述连接件(8)形成于所述下杆部(302)上的定位孔,所述定位孔匹配于所述定位凸头(101)设置,且所述定位凸头(101)嵌入所述定位孔中。
  12. 根据权利要求6所述的可变压缩比机构,其特征在于:所述上杆部(301)和下杆部(302)由粉末锻造工艺成型。
  13. 根据权利要求6所述的可变压缩比机构,其特征在于:所述活塞(1)和执行连杆(2)间铰接轴中心的运动轨迹与所述曲轴(4)转动中心的垂线距离e被设置为于所述活塞(1)和执行连杆(2)间铰接轴中心的运动轨迹与所述曲轴(4)转动中心和曲柄销(14)中心连线间的夹角CA为30°-40°时,所述执行连杆(2)两端铰接轴中心间连线与所述连接件(8)轴线平行或接近于平行。
  14. 一种可变压缩比发动机,包括发动机缸体,其特征在于:还包括设于所述发动机缸体中的如权利要求1至13中任一项所述的可变压缩比机构。
  15. 一种汽车,其特征在于:包括如权利要求14所述的可变压缩比发动机。
PCT/CN2019/129241 2018-12-30 2019-12-27 可变压缩比机构、发动机和汽车 WO2020140843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980087088.6A CN113795656B (zh) 2018-12-30 2019-12-27 可变压缩比机构、发动机和汽车

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811646189.6 2018-12-30
CN201811646188.1 2018-12-30
CN201811646188.1A CN110671199B (zh) 2018-12-30 2018-12-30 可变压缩比机构与发动机
CN201811646189.6A CN110657024A (zh) 2018-12-30 2018-12-30 可变压缩比机构与发动机

Publications (1)

Publication Number Publication Date
WO2020140843A1 true WO2020140843A1 (zh) 2020-07-09

Family

ID=71407291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129241 WO2020140843A1 (zh) 2018-12-30 2019-12-27 可变压缩比机构、发动机和汽车

Country Status (2)

Country Link
CN (1) CN113795656B (zh)
WO (1) WO2020140843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893295A (zh) * 2022-05-25 2022-08-12 一汽解放汽车有限公司 一种发动机连杆及发动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317383A (ja) * 2000-05-09 2001-11-16 Nissan Motor Co Ltd 内燃機関の可変圧縮比機構
CN1619107A (zh) * 2003-11-19 2005-05-25 日产自动车株式会社 内燃机
CN103765040A (zh) * 2011-06-18 2014-04-30 奥迪股份公司 内燃机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175110B2 (ja) * 2002-12-27 2008-11-05 日産自動車株式会社 可変圧縮比機構付き内燃機関
JP2009108708A (ja) * 2007-10-26 2009-05-21 Nissan Motor Co Ltd マルチリンクエンジンのリンクジオメトリ
CN101701548B (zh) * 2009-11-20 2012-09-05 天津大学 压缩比可调发动机
DE102013021980A1 (de) * 2013-12-20 2015-06-25 Audi Ag Koppelglied für einen Mehrgelenkskurbeltrieb sowie Mehrgelenkskurbeltrieb
CN107023386B (zh) * 2017-05-17 2022-12-30 广州汽车集团股份有限公司 可变压缩比装置及可变压缩比发动机
CN206889097U (zh) * 2017-05-17 2018-01-16 广州汽车集团股份有限公司 可变压缩比装置及可变压缩比发动机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317383A (ja) * 2000-05-09 2001-11-16 Nissan Motor Co Ltd 内燃機関の可変圧縮比機構
CN1619107A (zh) * 2003-11-19 2005-05-25 日产自动车株式会社 内燃机
CN103765040A (zh) * 2011-06-18 2014-04-30 奥迪股份公司 内燃机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893295A (zh) * 2022-05-25 2022-08-12 一汽解放汽车有限公司 一种发动机连杆及发动机

Also Published As

Publication number Publication date
CN113795656B (zh) 2023-01-06
CN113795656A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US8307792B2 (en) Mechanism for internal combustion piston engines
US4517931A (en) Variable stroke engine
KR20090027603A (ko) 풀링 로드 엔진
WO2015060117A1 (ja) 可変バルブタイミング機構及び可変バルブタイミング機構を備えたエンジン
WO2020135670A1 (zh) 发动机及具有其的车辆
WO2020140843A1 (zh) 可变压缩比机构、发动机和汽车
JP2001050362A (ja) ピストン・クランク機構
WO2009119643A1 (ja) 内燃機関
DE3638040A1 (de) Bewegungswandler fuer brennkraftmaschinen und dergleichen
WO2020135672A1 (zh) 发动机及具有其的汽车
CN110671199B (zh) 可变压缩比机构与发动机
WO2020135671A1 (zh) 发动机及具有其的车辆
US7213545B2 (en) Reciprocating engine
US20180216520A1 (en) An internal combustion engine
CN110657024A (zh) 可变压缩比机构与发动机
US11933245B2 (en) Reciprocating-piston assembly, internal combustion engine, and related methods
CN210003388U (zh) 下连杆及具有其的发动机
US9243556B2 (en) Transmission mechanism for a vehicle internal combustion engine
CN210122986U (zh) 下连杆及具有其的发动机
CN204457910U (zh) 一种新型摇臂结构
CN203488654U (zh) 带压缩杆的内燃机增力器
CN110285136A (zh) 下连杆和具有它的发动机
JP2009180276A (ja) リンク機構の軸受構造
CN112601880B (zh) 往复式活塞组合件、内燃机及相关方法
CN103104353A (zh) 可变压缩比装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907541

Country of ref document: EP

Kind code of ref document: A1