WO2020140761A1 - 量子点显示面板及其制作方法、显示装置 - Google Patents

量子点显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020140761A1
WO2020140761A1 PCT/CN2019/126345 CN2019126345W WO2020140761A1 WO 2020140761 A1 WO2020140761 A1 WO 2020140761A1 CN 2019126345 W CN2019126345 W CN 2019126345W WO 2020140761 A1 WO2020140761 A1 WO 2020140761A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
quantum dot
functional layer
emitting structure
Prior art date
Application number
PCT/CN2019/126345
Other languages
English (en)
French (fr)
Inventor
梅文海
张晓远
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/767,900 priority Critical patent/US11611015B2/en
Publication of WO2020140761A1 publication Critical patent/WO2020140761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the embodiments of the present disclosure relate to a quantum dot display panel, a manufacturing method thereof, and a display device.
  • AMOLED Active-matrix organic-light-emitting diode
  • LCDs liquid crystal displays
  • organic light-emitting displays such as high-resolution AMOLED displays are difficult to compete with LCDs.
  • the organic light-emitting layer structure of an organic light-emitting display is usually prepared by mask evaporation, and the mask evaporation method has difficulties in alignment ⁇ The defect of low yield and unable to realize the light emission in a smaller area; due to the insufficient ability of the mask evaporation method to accurately control the evaporation area, the organic light emitting display such as AMOLED display cannot meet the requirements of high resolution display; it is formed by printing or printing The resolution of the organic light-emitting layer process is also limited. Therefore, high-resolution AMOLED displays have high technical difficulty, low product yield, and high price.
  • An embodiment of the present disclosure provides a method for manufacturing a quantum dot display panel, which includes: forming a first functional layer on a substrate; processing the first functional layer so that the first functional layer includes the processed area, The treated region has a first electrode ion; a second electrode quantum dot layer is formed in the treated region, and the second electrode and the first electrode have opposite electrical properties.
  • the region to be processed is a region to be processed before the first functional layer is processed, and the concentration of the first electrode ion in the region to be processed is greater than the concentration in the region to be processed.
  • the first functional layer includes the processed area and the unprocessed area, the unprocessed area is located outside the processed area;
  • the concentration of the first electrode ion in the treated area is greater than the concentration in the untreated area.
  • the material of the first functional layer includes a photodegradable substance, and further includes at least one of nanoparticles and bulk materials.
  • At least one of the nanoparticles and the bulk material is configured to interact with a substance generated by the photodegradation substance after the first functional layer is processed to form the first electrode ion.
  • the processing of the first functional layer so that the first functional layer includes the processed area includes: irradiating the first functional layer with ultraviolet light to make the first functional layer
  • the ultraviolet light irradiation area forms the processed area.
  • the forming of the second electrode quantum dot layer in the processed area includes: forming a second electrode quantum dot film on the first functional layer; and washing the second electrode quantum dot film , Removing the second electrode quantum dots that make the ultraviolet of the first functional layer located at the periphery of the region to be processed to form the second electrode quantum dot layer located at the region to be processed.
  • the manufacturing method further includes: forming a first electrode quantum dot layer on the second electrode quantum dot layer, wherein the orthographic projection of the first electrode quantum dot layer on the first functional layer is located The processed region, and the first electrode quantum dot layer is located on a side of the second electrode quantum dot layer facing away from the first functional layer.
  • the forming of the first electrode quantum dot layer on the second electrode quantum dot layer includes: forming a first electrode quantum dot film on the second electrode quantum dot layer; The first electrode quantum dot film is washed to remove the first electrode quantum dots included in the first electrode quantum dot film and located at the periphery of the processed area to form the first electrode quantum dots located in the processed area Electrode quantum dot layer.
  • the quantum dot display panel includes a quantum dot light emitting structure layer on a side of the first functional layer facing away from the substrate, the quantum dot light emitting structure layer includes the second electrode-type quantum dot layer and the For the first electrode-type quantum dot layer, the manufacturing method further includes: electrically neutralizing the quantum dot light-emitting structure layer, so that the quantum dot light-emitting structure layer does not exhibit electrical polarity to the outside.
  • the manufacturing method further includes: forming a first electrode layer, a second electrode layer, and a second functional layer on the substrate.
  • the first functional layer is located on the side of the first electrode layer facing away from the substrate
  • the second functional layer is located on the side of the quantum dot light emitting structure layer facing away from the substrate
  • the second electrode The layer is located on the side of the second functional layer facing away from the substrate.
  • the first electrode layer is a cathode layer
  • the first functional layer is an electron transport layer
  • the second functional layer is a hole transport layer
  • the second electrode layer is an anode layer
  • the first The electrode layer is an anode layer
  • the first functional layer is a hole transport layer
  • the second functional layer is an electron transport layer
  • the second electrode layer is a cathode layer.
  • the first functional layer includes an electron transport layer
  • the manufacturing method further includes forming a cathode layer on the substrate before the forming the first functional layer on the substrate.
  • the second electrodeic quantum dot layer directly contacts the first functional layer.
  • An embodiment of the present disclosure also provides a method for manufacturing a quantum dot display panel, which includes: providing a driving substrate, the driving substrate including a substrate and a first electrode layer on the substrate; by applying to the first electrode layer The electrical signal causes the region of the driving substrate where the first electrode layer is provided to exhibit first electrical polarity; a second electrodeic quantum dot layer is formed on the side of the first electrode layer facing away from the substrate, so The second polarity is opposite to the first polarity.
  • the manufacturing method further includes: the driving substrate further includes a switching element on the substrate, the switching element is electrically connected to the first electrode layer to apply an electrical signal to the first electrode layer.
  • the quantum dot display panel includes a quantum dot light emitting structure layer on the driving substrate, and the quantum dot light emitting structure layer includes the second electrode quantum dot layer; the manufacturing method further includes: A side of the quantum dot light emitting structure layer facing away from the substrate forms a second electrode layer, wherein one of the first electrode layer and the second electrode layer is an anode layer and the other is a cathode layer.
  • the manufacturing method further includes: forming a first electrode quantum dot layer on the second electrode quantum dot layer.
  • the quantum dot light emitting structure layer includes the second electrode quantum dot layer and the first electrode quantum dot layer.
  • the manufacturing method further includes: forming an electron transport layer between the quantum dot light emitting structure layer and the cathode layer, and forming a hole transport between the quantum dot light emitting structure layer and the anode layer Floor.
  • An embodiment of the present disclosure also provides a quantum dot display panel, which includes: a substrate; a first functional layer disposed on the substrate, the first functional layer has a processed area, and the first functional layer is The treated area has a first electrode ion; a quantum dot light emitting structure layer, which is disposed on a side of the first functional layer facing away from the substrate.
  • the orthographic projection of the quantum dot light emitting structure layer on the first functional layer is located in the processed region, and the quantum dot light emitting structure layer includes a second electrode quantum dot layer, the second electrode
  • the electrical properties of the first electrode are opposite.
  • the first functional layer includes the processed area and an untreated area, the untreated area is located outside the processed area; the first electrode ion in the processed area The density is greater than in the untreated area.
  • the quantum dot light-emitting structure layer further includes a first electrode-type quantum dot layer, and the first electrode-type quantum dot layer is stacked on a side of the second electrode-type quantum dot layer facing away from the substrate.
  • the material of the first functional layer includes a photodegradable substance, and further includes at least one of nanoparticles and bulk materials, and the first electrical polarity is a positive electrical polarity.
  • the display panel further includes a cathode layer disposed on a side of the first functional layer facing away from the quantum dot light emitting structure layer, and the first functional layer includes an electron transport layer.
  • An embodiment of the present disclosure also provides a display device including the above-mentioned quantum dot light-emitting panel.
  • FIG. 1 is a schematic diagram of a method for manufacturing a quantum dot display panel provided by at least one embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of the first functional layer after the formation of the first electropolar ions in the processed region of the first functional layer in at least one embodiment of the present disclosure
  • 3A is a schematic structural view of a second electrode-type quantum dot film formed on a first functional layer in at least one embodiment of the present disclosure
  • FIG. 3B is a schematic structural view of a second electrode quantum dot layer formed in a processed region in at least one embodiment of the present disclosure
  • FIG. 4A is a schematic structural view of a first electrode quantum dot film formed on a second electrode quantum dot layer in at least one embodiment of the present disclosure
  • 4B is a schematic structural view of a first electrode-type quantum dot layer located in a region to be processed on a second electrode-type quantum dot layer in at least one embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the structure after forming the nth quantum dot layer in at least one embodiment of the present disclosure, n ⁇ 3;
  • FIG. 6 is a schematic structural diagram of a second electrode layer formed in at least one embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display panel manufactured by at least one embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a display panel including a switching element manufactured by at least one embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a display panel manufactured by at least another embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a method for manufacturing a quantum dot display panel in at least one embodiment of the present disclosure.
  • the manufacturing method includes: step S1: forming a first functional layer on a substrate; step S2: processing the first functional layer so that the processed first functional layer includes the processed area, so The processed region has first electrode ions; Step S3: forming a second electrode quantum dot layer in the processed region, the second electrode and the first electrode having opposite electrical properties.
  • the region to be processed is a region to be processed before the first functional layer is processed, and the concentration of the first electrode ions in the region to be processed is greater than the concentration in the region to be processed. That is, the concentration of the first electrode ions in the treated area is increased by processing the first functional layer.
  • the first functional layer includes the processed area and the unprocessed area.
  • the unprocessed area is located outside the processed area and directly connected to the processed area (that is, the first
  • the functional layer is an integrated structure including the treated area and the untreated area); the concentration of the first electrode ions in the treated area is greater than that in the untreated area.
  • the first functional layer includes a plurality of spaced processed regions and a plurality of untreated regions, and the concentration of the first electrode ions in each processed region is greater than the first electrodes in the plurality of untreated regions Sex ion concentration.
  • the concentration of the first electrode ions in the untreated area is approximately zero.
  • the second electrode-like quantum dot layer directly contacts the first functional layer.
  • the attraction force between the second electrodetic quantum dot and the first electrode ion in the processed region of the first functional layer is strong.
  • the first functional layer by processing the first functional layer, includes the processed region having the first electrode ion and being electrically neutral, and Use the mutual attraction of the first and second electrodes to form a second electrode quantum dot layer in the treated area (for example, the second electrode quantum dot layer directly contacts the treated area of the first functional layer) to form a quantum Pattern of dot light emitting structure layer.
  • the manufacturing method of the quantum dot display panel is easy to realize the precise control of the processed area, so that the shape and position of the quantum dot light emitting structure layer pattern can be accurately controlled, the patterning of the quantum dot light emitting structure layer is realized and the accuracy of the pattern is ensured Degrees to ensure the display quality of the quantum dot display panel.
  • forming the first functional layer includes: applying a solution for forming the first functional layer on the substrate, and then developing and annealing the solution to obtain the first functional layer.
  • processing the first functional layer includes irradiating the first functional layer with ultraviolet light (UV light), so that the area irradiated with the ultraviolet light forms a processed area including the first electrode ions.
  • UV light ultraviolet light
  • the material of the first functional layer includes a photodegradable substance, and further includes at least one of nanoparticles and bulk materials.
  • at least one of the nanoparticles and the bulk material is configured to interact with a substance generated by the photodegradation substance after the first functional layer is processed to form a first electrode ion. That is to say, at least one of the nanoparticles and the bulk material is used to interact with the photodegradation substance generated after the first functional layer is processed to form the first electrode ion.
  • the ligand of the nanomaterial itself may interact with the substance generated by the photodegradation substance after the first functional layer is processed to form the first electrode ion.
  • the substance generated after the body material interacts with other substances may interact with the substance generated after the photodegradable substance is processed in the first functional layer to form the first electrode ion.
  • the nanoparticles may include zinc oxide nanoparticles.
  • the ligands of nanoparticles contain halogen atoms and quaternary ammonium ion.
  • the halogen atom is a chlorine atom (Cl), a bromine atom (Br), or an iodine atom (I).
  • the photodegradable substance may include one or more of imide-based photodegradable substances (such as trimethylaminobenzimide), oxadiazole-based photodegradable substances (such as benzophenenediazole), etc.
  • imide-based photodegradable substances such as trimethylaminobenzimide
  • oxadiazole-based photodegradable substances such as benzophenenediazole
  • photo-degradable substances can generate amino substances after being irradiated with ultraviolet light, such as primary amine, secondary amine or tertiary amine.
  • the amino-based substance interacts with the ligands of the nanoparticles to generate first electrode ions, thereby forming a region to be treated with the first electrode ions.
  • the bulk material is a material with a size in the micrometer range and above, and the material may include zinc oxide.
  • the surface of the bulk material contains many pendant groups, such as hydroxyl or carboxyl groups.
  • the first functional layer is coated with propylaminotrimethoxysilane or similar material, and then the two are irradiated with ultraviolet light together; the propylaminotrimethoxysilane or similar material reacts with the hydroxyl group on the surface of the bulk material After being irradiated with ultraviolet light, hydrogen ions can be generated, and the interaction between hydrogen ions and amino substances can also generate first electrode ions.
  • nanoparticles, photodegradable substances, and bulk materials are for illustration only, and embodiments of the present disclosure include but are not limited thereto, as long as at least one of nanoparticles and bulk materials can be achieved It is sufficient to interact with the photo-degradable substance generated after the first functional layer is processed to form the first electrode ion.
  • a quantum dot display panel provided by at least one embodiment of the present disclosure includes a quantum dot light emitting structure layer on a side of the first functional layer facing away from the substrate, and the quantum dot light emitting structure layer includes a second electrode quantum dot layer.
  • the quantum dot light emitting structure layer further includes a first electrode quantum dot layer, and the orthographic projection of the first electrode quantum dot layer on the first functional layer is located in the processed region. That is to say, the orthographic projection of the first electrode quantum dot layer on the substrate is located within the orthographic projection of the second electrode quantum dot layer on the substrate (for example, the orthographic projections of the two substantially coincide, "approximately” refers to the error Allowed). Also, the first electrode quantum dot layer is located on the side of the second electrode quantum dot layer facing away from the first functional layer.
  • the first electrodeic quantum dot layer and the second electrodetic quantum dot layer are in direct contact to improve the first electrodeic quantum dot in the material used to form the first electrodeic quantum dot layer and the second electrode The attraction between the second-electrode quantum dots in the material of the quantum dot layer.
  • the quantum dot light emitting structure layer includes n quantum dot layers, and n is greater than or equal to 1.
  • the quantum dot display panel includes a plurality of quantum dot light emitting structure layers that are spaced apart, for example, the plurality of quantum dot light emitting structure layers include quantum dot light emitting structure layers for emitting light of different colors, respectively.
  • the plurality of quantum dot light-emitting structure layers include a red light-emitting structure layer, a green light-emitting structure layer, and a blue light-emitting structure layer.
  • forming the second electrode quantum dot layer includes: coating a solution for forming the second electrode quantum dot layer on the first functional layer, and then performing annealing treatment and washing treatment on the solution in order to form the second electrode polarity Quantum dot solution.
  • forming the first electrodeic quantum dot layer includes: coating a solution for forming the first electrodeic quantum dot layer on the second electrodeic quantum dot layer, and then performing annealing treatment and washing treatment on the solution in sequence to form The first electrode quantum dot solution. For example, hexane or the like can be used for washing treatment.
  • the manufacturing method provided by the embodiment of the present disclosure further includes: forming a first electrode layer, a second electrode layer, and a second functional layer on the substrate.
  • the first functional layer is located on the side of the first electrode layer facing away from the substrate
  • the second functional layer is located on the side of the quantum dot light emitting structure layer facing away from the substrate
  • the second electrode layer is located on the side of the second functional layer facing away from the substrate.
  • one of the first functional layer and the second functional layer is an electron transport layer and the other is a hole transport layer.
  • one of the first electrode layer and the second electrode layer is an anode layer and the other is a cathode layer.
  • the first electrode layer is a cathode layer
  • the first functional layer is an electron transport layer
  • the second functional layer is a hole transport layer
  • the second electrode layer is an anode layer
  • the first electrode layer is an anode layer
  • the first function The layer is a hole transport layer
  • the second functional layer is an electron transport layer
  • the second electrode layer is a cathode layer.
  • the plurality of first electrode layers corresponding to the plurality of quantum dot light emitting structure layers are disconnected from each other (for example, the plurality of quantum dot light emitting structure layers and the plurality of The first electrode layers correspond one-to-one); and, the plurality of quantum dot light-emitting structure layers may share a second electrode layer, and/or share a first functional layer, and/or share a second functional layer.
  • the manufacturing process can be simplified.
  • at least one of the cathode layer, the electron transport layer, and the hole transport layer may not be common.
  • the quantum dot light-emitting display panel may further include a plurality of switching elements on the substrate, and the plurality of switching elements are electrically connected to the plurality of first electrode layers respectively corresponding to the plurality of quantum dot light-emitting structure layers (for example, the plurality of switches The elements are electrically connected to the plurality of first electrode layers in a one-to-one correspondence) to control the light emitting states of the plurality of quantum dot light emitting structure layers through the plurality of switching elements, respectively.
  • the plurality of switching elements are transistors or other types of switches.
  • the embodiments of the present disclosure are not limited.
  • the manufacturing method of the quantum dot display panel in at least one embodiment of the present disclosure includes the following steps S11 and S12.
  • FIG. 2 is a schematic diagram of the structure after forming first electrode ions in the processed region of the first functional layer in at least one embodiment of the present disclosure.
  • Step S11 As shown in FIG. 2, the first functional layer 100 is formed on the substrate 10.
  • the material of the first functional layer 100 formed on the substrate 10 includes at least one of nanoparticles and bulk materials and includes photodegradable substances.
  • a first functional solution ie, a solution for forming the first functional layer 100
  • the first functional solution contains a photodegradable substance, and further includes nanoparticles and/or bulk materials .
  • the spin coating speed is 3500 rpm to 4500 rpm, preferably 4000 rpm; the spin coating time is 35 s to 45 s, preferably 40 s.
  • the first functional solution is sequentially developed and annealed to obtain the first functional layer. For example, after developing the first functional solution with toluene for 5 minutes, and performing annealing treatment at, for example, 85°C, the first functional layer can be obtained.
  • Step S12 forming a quantum dot light emitting structure layer, the quantum dot light emitting structure layer including a second electrode quantum dot layer.
  • step S12 includes step S121: processing the first functional layer 100 so that the processed first functional layer 100 includes the processed region 20, and the processed region 20 has first electrode ions, as shown in FIG.
  • the first electrode ions are positively charged ions, and multiple “+”s are shown in FIG. 2 to schematically represent the positive electrode ions; or, the first electrode ions are negatively charged ions.
  • the processed first functional layer 100 includes the processed area 20 and the unprocessed area 2.
  • the unprocessed area 2 is located outside the processed area 20 and directly connected to the processed area 20 ( That is, the first functional layer 100 is an integrated structure); the concentration of the first electrode ions in the treated region 20 is greater than that in the untreated region 2.
  • step S121 includes: irradiating the first functional layer with UV light, so that the area irradiated with UV light forms the processed area 20, and the processed area 20 has the first electrode ion.
  • a mask can be used to control the range of ultraviolet light irradiated onto the first functional layer.
  • a mask plate is provided above the first functional layer, so that the light-transmitting area of the mask plate corresponds to the area to be processed of the first functional layer, and the non-light-transmitting area of the mask plate corresponds to the first function The area outside the area to be processed of the layer; after that, ultraviolet light is transmitted through the light-transmitting area of the mask plate and irradiated onto the first functional layer.
  • step S121 the formation principle of the processed region 20 is: after the first functional layer 100 is irradiated with UV light, the photodegradable substance in the region irradiated with UV light decomposes to generate an amino-based substance; due to the nanoparticle ligand Contains halogen atoms and quaternary ammonium salt ions, halogen atoms such as chlorine atom (Cl), bromine atom (Br), iodine atom (I), amino species and nanoparticle ligands interact to produce the first electrode ion, thereby forming The processed region 20 having the first electrode ion.
  • the surface of the body material contains a lot of pendant groups, such as hydroxyl, carboxyl, etc.
  • the irradiation area of the UV light on the first functional layer can be precisely controlled, so that the processed area can be precisely controlled, thereby achieving precise control of the pattern of the quantum dot light emitting structure layer.
  • step S121 further includes: annealing the first functional layer.
  • Annealing the first functional layer causes the molecules in the first functional layer to be rearranged, which is beneficial for carrier transport.
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min. In at least one embodiment of the present disclosure, for example, the annealing temperature is 85° C., and the annealing time is 20 min.
  • step S12 further includes step S122: forming a second electrode quantum dot layer 211 in the processed region 20.
  • the second electrode and the first electrode have opposite electrical properties, as shown in FIG. 3B.
  • FIG. 3B a schematic diagram of the structure after forming the second electrode quantum dot layer in the processed region.
  • step S122 includes the following steps.
  • Step S1221 A second electrode quantum dot film 2110 is formed on the first functional layer 100, as shown in FIG. 3A.
  • a spin-coating process may be used to coat the second functional quantum dots on the first functional layer 100 (for example, the first functional layer 100 is an electron transport layer) to form a second polar quantum dot film 2110.
  • the spin coating speed is 2000 rpm to 3000 rpm, preferably 2500 rpm; the spin coating time is 40 s to 50 s, preferably 45 s.
  • the second electrode polarity quantum dot includes one or more of CdSe having the second electrode polarity and ZnS having the second electrode polarity.
  • Step S1222 Annealing the second electrode quantum dot film 2110.
  • Annealing the second-electrode quantum dot film can remove the solvent in the second-electrode quantum dot film and rearrange the molecules of the second-electrode quantum dot film, which is conducive to carrier transport.
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min.
  • the annealing temperature is 85°C and the annealing time is 20 min.
  • Step S1223 Washing the second electrode quantum dot film 2110 to remove the second electrode quantum dots located in the peripheral area of the processed region 20 to form the second electrode quantum dot layer 221 located in the processed region 20, as shown in FIG. 3B.
  • the second electrode quantum dot film may be washed with hexane.
  • the second polarity is opposite to the first polarity. Therefore, when the second-electrode quantum dot film is washed with hexane, the second-electrode quantum dots located in the region to be treated 20 are The ions attract each other, so that the second polarized quantum dots located in the processed area 20 cannot be washed away by hexane.
  • the second polarized quantum dots located in the periphery of the processed area 20 do not exist with the first functional layer (such as electrons).
  • the interaction of the transport layer) is washed away by hexane, so that the second electrode quantum dot layer 221 located in the region to be processed 20 is formed.
  • the quantum dot light emitting structure layer further includes a first electrode quantum dot layer.
  • the manufacturing method provided in at least one embodiment of the present disclosure may further include step S123: forming on the second electrode quantum dot layer 211
  • the first electrode quantum dot layer 212 located in the processed region 20 is shown in FIG. 4B.
  • FIG. 4B is a first electrode polarity located in the processed region formed on the second electrode quantum dot layer in at least one embodiment of the present disclosure. Schematic diagram of the structure of the quantum dot layer.
  • step S123 includes the following steps.
  • Step S1231 A first electrode quantum dot film 2120 is formed on the second electrode quantum dot layer 211, as shown in FIG. 4A.
  • a spin-coating process may be used to form a first electrode quantum dot film on the second electrode quantum dot layer 211, and the first electrode quantum dot film may cover the first functional layer 100.
  • the spin coating speed is 2000 rpm to 3000 rpm, preferably 2500 rpm; the spin coating time is 40 s to 50 s, preferably 45 s.
  • the first electrode polarity quantum dot includes one or more of CdSe having the first electrode polarity and ZnS having the first electrode polarity.
  • Step S1232 Annealing the first electrode-type quantum dot thin film 2120.
  • Annealing the first-electrode quantum dot film can remove the solvent in the first-electrode quantum dot film and rearrange the molecules of the first-electrode quantum dot film, which is beneficial to carrier transport.
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min.
  • the annealing temperature is 85°C and the annealing time is 20 min.
  • Step S1233 washing the first electrode quantum dot film 2120 to remove the first electrode quantum dots located in the peripheral region of the processed region 20 to form the first electrode quantum dot layer 212 located in the processed region 20, the first The electrode quantum dot layer 212 is stacked on the second electrode quantum dot layer 211 (that is, the side of the second electrode quantum dot layer 211 away from the first functional layer 100), as shown in FIG. 4B.
  • hexane may be used to wash the first electrode quantum dot film.
  • the second electrode polarity is opposite to the first electrode polarity. Therefore, when the first electrode quantum dot film is washed with hexane, the first electrode quantum dots and the second electrode The quantum dots attract each other, so that the first electrode quantum dots located in the processed region 20 cannot be washed away by hexane.
  • the first electrode quantum dots located in the periphery of the processed region 20 do not exist with the first functional layer (for example The interaction of the electron transport layer) is washed away by hexane, thus forming a first electrode quantum dot layer 212 located in the processed region 20, the first electrode quantum dot layer 212 is stacked on the second electrode quantum dot Above layer 211.
  • FIG. 5 is a schematic diagram of the structure after forming the n-th quantum dot layer in at least one embodiment of the present disclosure, n ⁇ 3.
  • the method of S123 repeats the production of the second electrode quantum dot layer and the first electrode quantum dot layer in sequence until the nth layer quantum dot layer is completed to complete the production of the quantum dot light emitting structure layer, as shown in FIG. 5.
  • FIG. 5 only schematically shows that the quantum dot light emitting structure layer 21 includes an n-layer quantum dot layer, and the n-th quantum dot layer may be the first electrode quantum dot layer or the second electrode quantum The point layer needs to be determined according to the actual situation.
  • the method for manufacturing a quantum dot display panel may further include step S124: electrically neutralizing the quantum dot light emitting structure layer, so that the quantum dot light emitting structure layer is not external Shows polarity.
  • the first polarity is positive polarity and the second polarity is negative polarity.
  • the n-th layer quantum dots are quantum dots with positive polarity, that is, positive polarity
  • a solution with corresponding negative ions can be used for soaking.
  • the amino group of the quantum dot ligand generates ammonium salt ions that are positively charged.
  • a dilute alkaline solution (potassium hydroxide) is used for immersion. The hydroxide is reacted with the hydrogen positive ion of the ammonium salt group to obtain electricity.
  • Quantum dots are quantum dots with positive polarity, that is, positive polarity
  • a solution with corresponding negative ions can be used for soaking.
  • the amino group of the quantum dot ligand generates ammonium salt ions that are positively charged.
  • a dilute alkaline solution (potassium hydroxide) is used for immersion. The hydroxide is reacted with the hydrogen positive ion of the ammonium salt group to obtain electricity
  • the n-th layer quantum dots are the second-electrode or negative-electrode quantum dots
  • a solution with corresponding positive ions can be used for soaking.
  • the quantum dot ligand contains sulfonate ions that are negatively charged.
  • a dilute acid solution dilute hydrochloric acid
  • the surface of the quantum dots is negatively charged by combining hydrogen ions and sulfonate ions.
  • the quantum dot light-emitting structure layer is electrically neutralized so that the quantum dot light-emitting structure layer does not exhibit electrical polarity to the outside, so that other corresponding color quantum dot light emission can be produced by the same method
  • the structure layer will not affect the quantum dot light-emitting structure layer that has been completed previously.
  • the method for manufacturing a quantum dot display panel may further include step S125: forming a second functional layer 200 on the quantum dot light emitting structure layer.
  • a second functional layer 200 may be formed by a deposition or coating method, as shown in FIG. 6, which is a schematic structural diagram of the second electrode layer after forming the second electrode layer in at least one embodiment of the present disclosure.
  • the manufacturing method provided by at least one embodiment of the present disclosure may further include: forming a second electrode layer 400 on the second functional layer 200.
  • the method for manufacturing a quantum dot display panel provided by at least one embodiment of the present disclosure, before forming the first functional layer 100, may further include: forming a first electrode layer 300 on the substrate 10.
  • the first electrode polarity includes one of positive and negative electrode polarities
  • the second electrode polarity includes the other.
  • the first electrode layer includes one of an anode layer and a cathode layer
  • the second electrode layer includes the other of the anode layer and the cathode layer.
  • the first functional layer includes one of the electron transport layer and the hole transport layer
  • the second functional layer includes the other of the electron transport layer and the hole transport layer.
  • the first polarity is positive polarity
  • the second polarity is negative polarity
  • the second polarity is opposite to the polarity of the first polarity.
  • the first electrode layer is a cathode layer
  • the second electrode layer is an anode layer.
  • the first functional layer is an electron transport layer
  • the second functional layer is a hole transport layer.
  • the light-emitting structure layer formed is an inverted light-emitting structure layer, that is, along the direction away from the substrate 10, the light-emitting structure layer includes a cathode layer, an electron transport layer, a quantum dot light-emitting structure layer, and holes in this order Transport layer and anode layer.
  • the manufacturing method of the quantum dot display panel proposed by the embodiments of the present disclosure is also applicable to the upright light-emitting structure layer, that is, along the direction away from the substrate 10, the light-emitting structure layer includes an anode layer, a hole transport layer, Quantum dot light emitting structure layer, electron transport layer and cathode layer.
  • FIG. 7 is a schematic structural diagram of a display panel manufactured by at least one embodiment of the present disclosure.
  • the manufacturing method of the display panel proposed in at least another embodiment of the present disclosure may include: manufacturing the light emitting structure layer corresponding to each pixel region by using the manufacturing method described in any of the above embodiments.
  • the following takes a display panel containing three pixels as an example to explain the specific manufacturing process of the display panel.
  • the first pixel is a red (R) pixel
  • the second pixel is a green (G) pixel
  • the third pixel is a blue (B) pixel.
  • the light emitting structure layer corresponding to each pixel includes n layers of quantum dots, where n is a natural number.
  • the method for manufacturing the display panel shown in FIG. 7 includes the following steps.
  • Step S21 As shown in FIG. 7, a first functional layer (for example, the electron transport layer 11) is formed on the substrate 10.
  • a first functional layer for example, the electron transport layer 11
  • the material of the first functional layer (eg, electron transport layer) formed on the substrate 10 includes at least one of nanoparticles and bulk materials, and a photodegradable substance.
  • a solution for forming a first functional layer may be coated on the substrate 10 using a spin coating process, the solution containing a photodegradable substance, and further including nanoparticles and/or bulk materials.
  • the spin coating speed is 3500 rpm to 4500 rpm, preferably 4000 rpm; the spin coating time is 35 s to 45 s, preferably 40 s.
  • the nanoparticles may include zinc oxide nanoparticles.
  • the photodegradable substance may include one or more of imides (such as trimethylaminobenzimide), oxadiazoles (such as benzophenadiazole), and the like.
  • imides such as trimethylaminobenzimide
  • oxadiazoles such as benzophenadiazole
  • the bulk material is a material with a size in the micrometer range and above, and the material may include zinc oxide.
  • photo-degradable substances can generate amino substances such as primary amines, secondary amines, tertiary amines, etc. after being irradiated with UV light.
  • Step S22 forming a red quantum dot light emitting structure layer.
  • the red quantum dot light emitting structure layer includes a second electrode-like red quantum dot layer.
  • step S22 includes the following steps.
  • Step S221 processing the first functional layer 100 to form a first processed region on the first functional layer 100, the first processed region having a first electrode ion.
  • the first processed area is called a red pixel area.
  • step S221 includes the following steps S2211 to S2212.
  • Step S2211 irradiate the first functional layer (for example, the electron transport layer) with UV light, and form a first processed area in the UV light irradiation area, the first processed area has the first electrode ion, and the first processed The area is the red pixel area.
  • the first functional layer for example, the electron transport layer
  • the photodegradable substances in the UV light irradiated area are decomposed to produce amino substances
  • the ligands of the nanoparticles contain halogen atoms and quaternary ammonium ion, halogen Atoms such as chlorine atom (Cl), bromine atom (Br), iodine atom (I).
  • the amino-based substance interacts with the ligand of the nanoparticles to generate first electrode ions, thereby forming a red pixel region that is the first processed region having the first electrode ions.
  • the surface of the body material contains many pendant groups, such as hydroxyl group, carboxyl group, etc.
  • hydroxyl group as an example, using alanyl trimethoxysilane to react with the hydroxyl group on the surface of the body material, it can generate hydrogen ions, hydrogen ions and amino groups after UV light irradiation
  • the action of the substance can also generate first electrode ions.
  • the UV light irradiation time is 4 min to 6 min, preferably 5 min.
  • Step S2211 Perform annealing treatment on the first functional layer irradiated with UV light (for example, the electron transport layer).
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min. In at least one embodiment of the present disclosure, for example, the annealing temperature is 85° C., and the annealing time is 20 min.
  • Step S222 forming a second-electrode red quantum dot layer 311 in the red pixel area, the second-electrode and the first-electrode having opposite electrical properties.
  • step S222 includes the following steps.
  • Step S2221 A second electrode-like red quantum dot thin film is formed on the first functional layer (for example, the electron transport layer 11).
  • a spin-coating process may be used to coat the second-electrode red quantum dots on the electron transport layer to form a second-electrode red quantum dot thin film.
  • the spin coating speed is 2000 rpm to 3000 rpm, preferably 2500 rpm; the spin coating time is 40 s to 50 s, preferably 45 s.
  • the second-electrode red quantum dots include one or more of CdSe having the second polarity and ZnS having the second polarity.
  • Step S2222 Annealing the second-electrode red quantum dot film.
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min. In at least one embodiment of the present disclosure, for example, the annealing temperature is 85° C., and the annealing time is 20 min.
  • Step S2223 washing the second electrode-like red quantum dot film to remove the second electrode-like red quantum dots located in the peripheral area of the red pixel area, and forming the second electrode-like red quantum dot layer 311 in the red pixel area.
  • the second electrode red quantum dot film may be washed with hexane.
  • the second electrode polarity is opposite to that of the first electrode polarity. Therefore, when the second electrode red quantum dot film is rinsed with hexane, the second electrode red quantum dots located in the red pixel area and the first electrode The sex ions attract each other, so that the second electrode-like red quantum dots located in the red pixel area cannot be washed away by hexane, and the second electrode-like red quantum dots located in the periphery of the red pixel area do not interact with the electron transport layer It is washed away by hexane, and a second electrode-like red quantum dot layer 311 located in the red pixel region is formed.
  • the red quantum dot light-emitting structure layer may further include a first electrode-type red quantum dot layer.
  • the manufacturing method provided in at least one embodiment of the present disclosure may further include step S223: forming a second pixel region in the red pixel area.
  • step S223 includes the following steps.
  • Step S2231 forming a first electrode red quantum dot film on the second electrode red quantum dot layer 311.
  • a spin-coating process may be used to form a first electrode-like red quantum dot film having a first electrode polarity on the second electrode red-quantum dot layer 311, and the first electrode-like red quantum dot film may cover the electron transport layer 11.
  • the spin coating speed is 2000 rpm to 3000 rpm, preferably 2500 rpm; the spin coating time is 40 s to 50 s, preferably 45 s.
  • the first-electrode red quantum dots include one or more of CdSe having the first polarity and ZnS having the first polarity.
  • Step S2232 Annealing the first electrode-like red quantum dot film.
  • the annealing temperature is 75°C to 90°C, and the annealing time is 15min to 25min.
  • the annealing temperature is 85°C and the annealing time is 20 min.
  • Step S2233 Washing the first electrode-like red quantum dot film to remove the first electrode-like red quantum dots located in the peripheral area of the red pixel area to form the first electrode-like red quantum dot layer 312 in the red pixel area, the first The electrode-like red quantum dot layer 312 is stacked on the second electrode-like red quantum dot layer 311.
  • the first electrode red quantum dot film may be washed with hexane.
  • the second electrode polarity is opposite to that of the first electrode polarity. Therefore, when the first electrode red quantum dot film is washed with hexane, the first electrode red quantum dot and the second electrode located in the red pixel area The sexual red quantum dots attract each other, so that the first polar red quantum dots located in the red pixel area cannot be washed away by hexane.
  • the first polar red quantum dots located in the periphery of the red pixel area are The interaction is washed away by hexane, so that the first electrode-like red quantum dot layer 312 located in the red pixel area is formed.
  • the first electrode-like red quantum dot layer 312 is stacked on the second electrode-like red quantum dot layer 311 Above, the first electrode polarity red quantum dot layer 312 has the first electrode polarity.
  • the methods of S222 and S223 repeatedly manufacture the second electrode-like red quantum dot layer and the first electrode-like red quantum dot layer in sequence until the n-layer red quantum dot layer is completed to complete the production of the red quantum dot light-emitting structure layer.
  • the manufacturing method of the red quantum dot light-emitting structure layer may further include step S224: electrically neutralizing the red quantum dot light-emitting structure layer so that the red quantum dot light-emitting structure layer does not exhibit electrical polarity to the outside .
  • the first polarity is positive polarity and the second polarity is negative polarity.
  • a solution with corresponding negative ions may be used for soaking.
  • the amino group of the quantum dot ligand generates ammonium salt ions that are positively charged.
  • a dilute alkaline solution (potassium hydroxide) is used for immersion. The hydroxide is reacted with the hydrogen positive ion of the ammonium salt group to obtain electricity.
  • the n-th layer of quantum dots is a red quantum dot of negative polarity, that is, negative polarity
  • a solution with corresponding positive ions can be used for soaking.
  • the quantum dot ligand contains sulfonate ions that are negatively charged.
  • a dilute acid solution dilute hydrochloric acid
  • the surface of the quantum dots is negatively charged by combining hydrogen ions and sulfonate ions.
  • the red quantum dot light-emitting structure layer is electrically neutralized so that the red quantum dot light-emitting structure layer does not exhibit electrical polarity to the outside, so that the same method can be used to fabricate in other pixel areas
  • the quantum dot light-emitting structure layer of the corresponding color will not affect the red quantum dot light-emitting structure layer that has been previously manufactured.
  • Step S23 forming a green quantum dot light emitting structure layer.
  • the green quantum dot light emitting structure layer includes a second electrode-like green quantum dot layer and a first electrode-like green quantum dot layer.
  • step S23 includes at least the following steps.
  • Step S231 processing the first functional layer 100 to form a second processed region on the first functional layer 100, and the second processed region has a first electrode ion.
  • the second processed region is called a green pixel region.
  • the method of forming the green pixel area on the first functional layer 100 is the same as the method of forming the red pixel area on the first functional layer 100, and will not be repeated here.
  • Step S232 forming a second electrode-like green quantum dot layer 411 in the green pixel area, and the second electrode and the first electrode have opposite electrical properties.
  • the method of forming the second electrode-like green quantum dot layer 411 in the green pixel area is the same as the method of forming the second electrode-like red quantum dot layer 311 in the red pixel area, and will not be repeated here.
  • the green quantum dot light emitting structure layer may further include a first electrode-like green quantum dot layer.
  • the manufacturing method provided in at least one embodiment of the present disclosure may further include step S233: forming a second pixel in the green pixel area.
  • the method used in this step is the same as the method used to form the first electrode-like red quantum dot layer 312 on the second pixel-like red quantum dot layer 311 in the red pixel area, and will not be repeated here.
  • the methods of S232 and S233 repeatedly manufacture the second electrode green quantum dot layer and the first electrode green quantum dot layer in sequence until the n-layer green quantum dot layer is completed to complete the production of the green quantum dot light-emitting structure layer.
  • the manufacturing method of the green quantum dot light emitting structure layer may further include step S234: electrically neutralizing the green quantum dot light emitting structure layer 41, so that the green quantum dot light emitting structure layer 41 does not present an electrode to the outside Sex.
  • the method of electrically neutralizing the green quantum dot light-emitting structure layer 41 may be the same as the method of electrically neutralizing the red quantum dot light-emitting structure layer 31, which will not be repeated here.
  • Step S24 forming a blue quantum dot light emitting structure layer.
  • the blue quantum dot light emitting structure layer includes a second electrode blue quantum dot layer and a first electrode blue quantum dot layer.
  • step S24 includes the following steps.
  • Step S241 processing the first functional layer 100 to form a third processed region on the first functional layer 100, and the third processed region has a first electrode ion.
  • the third processed region is called a blue pixel region.
  • the method of forming the blue pixel area on the first functional layer 100 is the same as the method of forming the red pixel area on the first functional layer 100, and will not be repeated here.
  • Step S242 forming a second electrode blue quantum dot layer 511 in the blue pixel area.
  • the second electrode and the first electrode have opposite electrical properties.
  • the method of forming the second electrode-like blue quantum dot layer 511 in the blue pixel region is the same as the method of forming the second electrode-like red quantum dot layer 311 in the red pixel region, and details are not described herein again.
  • the blue quantum dot light emitting structure layer may further include a first electrode-type blue quantum dot layer.
  • the manufacturing method provided by at least one embodiment of the present disclosure may further include step S243: forming in the blue pixel region The first electrode blue quantum dot layer 512 located above the second electrode blue quantum dot layer 511. The method used in this step is the same as the method used to form the first electrode-like red quantum dot layer 312 on the second pixel-like red quantum dot layer 311 in the red pixel area, and will not be repeated here.
  • the second electrode blue quantum dot layer and the first electrode blue quantum dot layer can be repeatedly manufactured in sequence according to the methods of S242 and S243 until the n-layer blue quantum dot layer is completed to complete the blue quantum dot light emitting structure layer Production.
  • the manufacturing method of the blue quantum dot light emitting structure layer may further include step S244: electrically neutralizing the blue quantum dot light emitting structure layer 51, so that the blue quantum dot light emitting structure layer 51 is external Does not exhibit electrical polarity.
  • the method of electrically neutralizing the blue quantum dot light-emitting structure layer 51 may be the same as the method of electrically neutralizing the red quantum dot light-emitting structure layer 31, which will not be repeated here.
  • Step S25 forming a hole transport layer 12 on the red quantum dot light emitting structure layer, the green quantum dot light emitting structure layer, and the blue quantum dot light emitting structure layer, as shown in FIG. 5.
  • the manufacturing method provided by at least one embodiment of the present disclosure may further include: forming an anode layer 14 on the hole transport layer 12 (an example of the second electrode layer 400).
  • the manufacturing method provided by at least one embodiment of the present disclosure may further include: before forming the electron transport layer 11, forming a cathode layer 13 (an example of the first electrode layer 300) on the substrate 10.
  • the red light emitting structure layer, the green light emitting structure layer and the blue light emitting structure layer share the electron transport layer 11 and the hole transport layer 12; alternatively, the three light emitting structure layers may not share electrons Transport layer and hole transport layer.
  • the cathode layers corresponding to the three light emitting structure layers are usually electrically connected to each other, and the anode layers corresponding to the three light emitting structure layers are disconnected from each other.
  • the light emitting structure layer is an inverted light emitting structure layer, that is, along the direction away from the substrate 10, the light emitting structure layer includes a cathode layer, an electron transport layer, a quantum dot light emitting structure layer, and holes in this order Transport layer and anode layer.
  • the manufacturing method of the display panel proposed by the embodiments of the present disclosure is also suitable for manufacturing a display panel including an upright light-emitting structure layer, that is, along the direction away from the substrate 10, the light-emitting structure layer sequentially includes an anode layer and holes Transport layer, quantum dot light emitting structure layer, electron transport layer and cathode layer.
  • the quantum dot display panel provided by at least one embodiment of the present disclosure further includes a plurality of switching elements 70 on the substrate 10, and the plurality of switching elements 70 respectively correspond to the above-mentioned plurality of quantum dot light emitting structure layers
  • the plurality of cathode layers 13 are electrically connected (for example, the plurality of switching elements 70 and the plurality of cathode layers 13 are electrically connected in a one-to-one correspondence) to control the plurality of quantum dot light emitting structure layers through the plurality of switching elements 70, respectively Glowing state.
  • At least one embodiment of the present disclosure provides a quantum dot display panel, which includes a substrate 10, a first functional layer 100, and a quantum dot light emitting structure layer 21, as shown in FIGS. 3B, 4B, 5, 6, and 7.
  • the first functional layer 100 is provided on the substrate 10, the first functional layer 100 has a processed region 20, and the processed region 20 has a first electrode ion; the quantum dot light emitting structure layer 21 is located in the processed region 20 (ie, quantum dot
  • the orthographic projection of the light emitting structure layer 21 on the first functional layer 100 is located in the processed region 20) and is disposed on the first functional layer 100 (that is, on the side of the first functional layer 100 facing away from the substrate 10), the quantum dots emit light
  • the structural layer 21 includes a second electrode quantum dot layer 211, and the second electrode and the first electrode have opposite electrical properties.
  • the second electrode quantum dot layer 211 directly contacts the first functional layer 100. In this way, in the process of forming the second electrodeic quantum dot layer 211, the attraction force between the second electrodetic quantum dot and the first electrode ion in the processed region 20 of the first functional layer 100 is strong.
  • the first functional layer 100 includes the processed area 20 and the unprocessed area 2, which is located outside the processed area 20 and directly connects to the processed area 20 (hence the first functional layer 100 is an integrated structure); the concentration of the first electrode ion in the treated region 20 is greater than that in the untreated region 2.
  • the quantum dot display panel includes a plurality of quantum dot light emitting structure layers 21, for example, the plurality of quantum dot light emitting structure layers 21 include quantum dot light emitting structure layers for emitting light of different colors, respectively.
  • the plurality of quantum dot light-emitting structure layers 21 include a red light-emitting structure layer 31, a green light-emitting structure layer 41, and a blue light-emitting structure layer 51 as shown in FIG.
  • the quantum dot light emitting structure layer further includes a first electrode-type quantum dot layer 212, which is located in the region to be processed 20 and is stacked above the second electrode-type quantum dot layer 211.
  • the quantum dot light emitting structure layer does not exhibit electrical polarity to the outside, that is, the quantum dot light emitting structure layer is electrically neutral as a whole.
  • the quantum dot display panel includes: a first functional layer 100, which is disposed on the substrate 10, and the first function
  • the layer 100 has a processed region 20 with a first electrode ion in the processed region 20; a quantum dot light emitting structure layer located in the processed region 20 and disposed on the first functional layer 100, the quantum dot light emitting structure layer including n
  • the second electrode quantum dot layer 211 and the first electrode quantum dot layer 212 are alternately arranged in this order, and the quantum dot layer in contact with the first functional layer 100 is the second electrode quantum dot layer 211, where n ⁇ 3.
  • the quantum dot light emitting structure layer 21 includes n quantum dot layers, and n is greater than or equal to 1.
  • the display panel may further include: a second functional layer 200 disposed on the quantum dot light emitting structure layer, and a second electrode layer 400 disposed on the second functional layer 200.
  • the display panel may further include a first electrode layer 300 disposed between the substrate 10 and the first functional layer 100.
  • the quantum dot light-emitting structure layer does not exhibit electrical polarity to the outside.
  • the first electrode polarity may include one of positive and negative electrode polarities
  • the second electrode polarity may include the other of positive and negative electrode polarities
  • the first electrode layer may include one of an anode layer and a cathode layer
  • the second electrode layer may include the other of the anode layer and the cathode layer.
  • the first functional layer includes one of the electron transport layer and the hole transport layer
  • the second functional layer includes the other of the electron transport layer and the hole transport layer.
  • the first electrode polarity may be positive electrode polarity
  • the second electrode polarity may be negative electrode polarity
  • the second electrode polarity is opposite to the first electrode polarity.
  • the first electrode layer may be an anode layer
  • the second electrode layer may be a cathode layer.
  • the first functional layer may be an electron transport layer
  • the second functional layer may be a hole transport layer.
  • At least one embodiment of the present disclosure further provides a display device including the quantum dot display panel of the foregoing embodiments.
  • the display device may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • At least one embodiment of the present disclosure also provides a method for manufacturing a quantum dot display panel.
  • the manufacturing method includes: providing a driving substrate 10A, which includes a substrate 10 and a substrate 10 On the first electrode layer 300; by applying an electrical signal to the first electrode layer 300, the area of the driving substrate 10A where the first electrode layer 300 is provided exhibits first electrical polarity; A second electrode polarity quantum dot layer 211 is formed on one side, and the second electrode polarity is opposite to the first electrode polarity.
  • the region of the driving substrate 10A where the first electrode layer 300 is provided exhibits the first electrical polarity to the outside;
  • the second-electrode quantum dot in the material is retained by being attracted to this area of the driving substrate 10A to form the second-electrode quantum dot layer 211.
  • the quantum dot display panel includes a quantum dot light emitting structure layer 21 on the driving substrate 10A, and the quantum dot light emitting structure layer 21 includes a second electrode-type quantum dot layer 211.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: forming a first electrode quantum dot layer 212 on the second electrode quantum dot layer 211.
  • the quantum dot light emitting structure layer 21 includes a second electrode quantum dot layer 211 and a first electrode quantum dot layer 212.
  • the orthographic projection of the first electrodeic quantum dot layer 212 on the substrate 10 is within the orthographic projection of the second electrodeic quantum dot layer 211 on the substrate 10 (for example, the orthographic projections of the two substantially coincide), and the first electrodeic quantum dots
  • the layer 212 is located on the side of the second electrode quantum dot layer 211 facing away from the substrate 10.
  • the first electrodeic quantum dot layer 212 and the second electrodetic quantum dot layer 211 are in direct contact to improve the first electrodeic quantum dot and the material used to form the first The attractive force between the second-electrode quantum dots in the material of the two-electrode quantum dot layer 212.
  • the quantum dot light emitting structure layer 21 includes n quantum dot layers, and n is greater than or equal to 1.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: electrically neutralizing the quantum dot light-emitting structure layer 21 so that the quantum dot light-emitting structure layer 21 does not exhibit electrical polarity to the outside.
  • the quantum dot display panel includes a plurality of spaced apart quantum dot light emitting structure layers 21 on the driving substrate 10A, in this case, the driving substrate 10A includes a plurality of spaced first electrode layers 300, the plurality of quantum The point light emitting structure layers 21 respectively correspond to (for example, one-to-one correspondence) the plurality of first electrode layers 300.
  • the plurality of quantum dot light-emitting structure layers 21 include quantum dot light-emitting structure layers for emitting light of different colors, respectively.
  • the plurality of quantum dot light-emitting structure layers 21 include a red light-emitting structure layer 31, a green light-emitting structure layer 41, and a blue light-emitting structure layer 51.
  • the driving substrate 10A includes a plurality of switching elements 70 on the substrate 10, the plurality of switching elements 70 and the above-mentioned plurality of quantum dot light-emitting structures
  • the plurality of first electrode layers 300 corresponding to the layers 21 are electrically connected (for example, the plurality of switching elements 70 are electrically connected to the plurality of first electrode layers 300 in one-to-one correspondence) to control the plurality of switching elements 70 respectively The light emitting state of the plurality of quantum dot light emitting structure layers 21.
  • the driving substrate 10A further includes a switching element 70 on the substrate 10, and the switching element 70 is electrically connected to the first electrode layer 300 to apply an electrical signal to the first electrode layer 300.
  • the switching element is a transistor or other type of switch. The embodiments of the present disclosure are not limited.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: forming a second electrode layer 400 on the side of the quantum dot light emitting structure layer 21 facing away from the substrate 10.
  • One of the first electrode layer 300 and the second electrode layer 400 is an anode layer and the other is a cathode layer.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: forming a first functional layer 100 between the quantum dot light emitting structure layer 21 and the first electrode layer 300, and between the quantum dot light emitting structure layer 21 and the second electrode
  • the second functional layer 200 is formed between the layers 400.
  • One of the first functional layer 100 and the second functional layer 200 is an electron transport layer and the other is a hole transport layer.
  • the first electrode layer 300 is a cathode layer
  • the first functional layer 100 is an electron transport layer
  • the second electrode layer 400 is an anode layer
  • the second functional layer 200 is a hole transport layer
  • the manufacturing method includes: forming an electron transport layer between the quantum dot light emitting structure layer 21 and the cathode layer, and forming a hole transport layer between the quantum dot light emitting structure layer 21 and the anode layer.
  • a plurality of first electrode layers 300 corresponding to the plurality of quantum dot light-emitting structure layers 21 are disconnected from each other; and, the plurality of quantum dot light-emitting structure layers may
  • the second electrode layer 400 is shared, and/or the first functional layer 100 is shared, and/or the second functional layer 200 is shared. By sharing the same layer, the manufacturing process can be simplified. However, in other embodiments, at least one of the second electrode layer 400, the first functional layer 100, and the second functional layer 200 may not be common.
  • the manufacturing method and the setting method of each structure in the manufacturing method shown in FIG. 9 can respectively adopt the manufacturing method and the setting method of the same structure in the manufacturing method provided in any one of the above embodiments, and the repetition is not repeated.
  • the first functional layer includes the processed region having the first electrode ion or the region of the driving substrate provided with the first electrode layer exhibits the first electrode polarity, thereby Utilizing the mutual attraction of the first and second polarities, a second polarized quantum dot layer is formed in the region to be processed, thereby forming a pattern of the quantum dot light emitting structure layer.
  • the manufacturing method of the quantum dot display panel is easy to realize the precise control of the processed area, so that the shape and position of the quantum dot light emitting structure layer pattern can be accurately controlled, the patterning of the quantum dot light emitting structure layer is realized and the accuracy of the pattern is ensured Degrees to ensure the display quality of the quantum dot display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点显示面板及其制作方法、显示装置。该制作方法包括:在基板(10)上形成第一功能层(100);对第一功能层(100)进行处理,使第一功能层(100)包括被处理区域(20),被处理区域(20)中具有第一电极性离子;在被处理区域(20)形成第二电极性量子点层(211),第二电极性和第一电极性的电性相反。该方法可以精确控制量子点发光结构层图案的形状和位置,实现了量子点发光结构层的图案化并保证了图案的精确度。

Description

量子点显示面板及其制作方法、显示装置
对相关申请的交叉参考
本申请要求于2019年01月03日递交的中国专利申请第201910005380.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种量子点显示面板及其制作方法、显示装置。
背景技术
AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体)显示器曾被公认为有希望成为取代液晶显示器(Liquid Crystal Display,LCD)的下一代显示器。随着消费者消费水平的提升,高分辨率的显示产品成为显示产品的重点发展方向。然而,高分辨率的AMOLED显示器等有机发光显示器很难同LCD竞争,主要原因有:有机发光显示器的有机发光层结构通常采用掩膜蒸镀的方法制备,而掩膜蒸镀方法存在对位困难、良品率低、无法实现更小面积发光的缺陷;由于掩膜蒸镀方法精确控制蒸镀区域的能力不足,导致AMOLED显示器等有机发光显示器无法满足高分辨率显示的要求;采用印刷或打印形成有机发光层的工艺,其获得的分辨力也是有限的。因此,高分辨率的AMOLED显示器的技术难度高、产品良率低、价格高。
随着量子点技术的深入发展,电致量子点发光二极管(Quantum Dot Light-Emitting Diodes,QLED)的研究日益深入,量子效率不断提升,已基本达到产业化水平,从而,通过采用新的工艺和技术来实现电致量子点发光二极管的产业化已成为未来发展的趋势。目前,还没有记载形成电致量子点发光结构层图案的具体方法,因此,如何形成电致量子点发光结构层图案成为研究热点。
发明内容
本公开实施例提供了一种量子点显示面板的制作方法,其包括:在基板上形成第一功能层;对所述第一功能层进行处理,使所述第一功能层包括被处理区域,所述被处理区域中具有第一电极性离子;在所述被处理区域形成第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
例如,所述被处理区域在所述第一功能层被处理之前为待处理区域,所述第一电极性离子在所述被处理区域中的浓度大于在所述待处理区域中的浓度。
例如,通过对所述第一功能层进行所述处理,使所述第一功能层包括所述被处理区域以及未被处理区域,所述未被处理区域位于所述被处理区域之外;所述第一电极性离子在所述被处理区域中的浓度大于在所述未被处理区域中的浓度。
例如,所述第一功能层的材料包括光降解物质,还包括纳米粒子和体材料中的至少一种。
例如,所述纳米粒子和所述体材料中的至少一种被配置为与所述光降解物质在所述第一功能层被处理后产生的物质发生作用以形成所述第一电极性离子。
例如,所述对所述第一功能层进行处理,使所述第一功能层包括被处理区域,包括:采用紫外光对所述第一功能层进行照射,使所述第一功能层的被所述紫外光照射区域形成所述被处理区域。
例如,所述在所述被处理区域形成第二电极性量子点层,包括:在所述第一功能层上形成第二电极性量子点薄膜;对所述第二电极性量子点薄膜进行洗涤,除去使所述第一功能层的被所述紫外位于所述被处理区域外围的第二电极性量子点,以形成位于所述被处理区域的第二电极性量子点层。
例如,所述制作方法还包括:在所述第二电极性量子点层上形成第一电极性量子点层,其中,所述第一电极性量子点层在第一功能层上的正投影位于所述被处理区域,并且所述第一电极性量子点层位于所述第二电极性量子点层的背离所述第一功能层的一侧。
例如,所述在所述第二电极性量子点层上形成所述第一电极性量子点层,包括:在所述第二电极性量子点层上形成第一电极性量子点薄膜;通过对所 述第一电极性量子点薄膜进行洗涤,除去所述第一电极性量子点薄膜包括的位于所述被处理区域外围的第一电极性量子点,以形成位于所述被处理区域的第一电极性量子点层。
例如,所述量子点显示面板包括位于所述第一功能层的背离所述基板一侧的量子点发光结构层,所述量子点发光结构层包括所述第二电极性量子点层和所述第一电极性量子点层,所述制作方法还包括:对所述量子点发光结构层进行电性中和,使得所述量子点发光结构层对外不呈现电极性。
例如,所述的制作方法还包括:在所述基板上形成第一电极层、第二电极层和第二功能层。所述第一功能层位于所述第一电极层的背离所述基板的一侧,所述第二功能层位于所述量子点发光结构层的背离所述基板的一侧,所述第二电极层位于所述第二功能层的背离所述基板的一侧。
例如,所述第一电极层为阴极层,所述第一功能层为电子传输层,所述第二功能层为空穴传输层,所述第二电极层为阳极层;或者所述第一电极层为阳极层,所述第一功能层为空穴传输层,所述第二功能层为电子传输层,所述第二电极层为阴极层。
例如,所述第一功能层包括电子传输层,所述制作方法还包括:在所述在基板上形成所述第一功能层之前,在所述基板上形成阴极层。
例如,所述第二电极性量子点层直接接触所述第一功能层。
本公开实施例还提供一种量子点显示面板的制作方法,其包括:提供驱动基板,所述驱动基板包括基板和位于所述基板上的第一电极层;通过对所述第一电极层施加电信号,使所述驱动基板的设置有所述第一电极层的区域呈现第一电极性;在所述第一电极层的背离所述基板的一侧形成第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
例如,所述的制作方法还包括:所述驱动基板还包括位于所述基板上的开关元件,所述开关元件与所述第一电极层电连接以对所述第一电极层施加电信号。
例如,所述量子点显示面板包括位于所述驱动基板上的量子点发光结构层,所述量子点发光结构层包括所述第二电极性量子点层;所述制作方法还包括:在所述量子点发光结构层的背离所述基板的一侧形成第二电极层,其中,所述第一电极层和所述第二电极层之一为阳极层且另一个为阴极层。
例如,所述的制作方法还包括:在所述第二电极性量子点层上形成第一电极性量子点层。所述量子点发光结构层包括所述第二电极性量子点层和所述第一电极性量子点层。
例如,所述的制作方法还包括:在所述量子点发光结构层与所述阴极层之间形成电子传输层,以及在所述量子点发光结构层与所述阳极层之间形成空穴传输层。
本公开实施例还提供了一种量子点显示面板,其包括:基板;第一功能层,其设置在所述基板上,所述第一功能层具有被处理区域,所述第一功能层在所述被处理区域内具有第一电极性离子;量子点发光结构层,其设置在所述第一功能层的背离所述基板的一侧。所述量子点发光结构层在所述第一功能层上的正投影位于所述被处理区域内,所述量子点发光结构层包括第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
例如,所述第一功能层包括所述被处理区域以及未被处理区域,所述未被处理区域位于所述被处理区域之外;所述第一电极性离子在所述被处理区域中的浓度大于在所述未被处理区域中的浓度。
例如,所述量子点发光结构层还包括第一电极性量子点层,所述第一电极性量子点层叠设在所述第二电极性量子点层的背离所述基板的一侧。
例如,所述第一功能层的材料中包括光降解物质,还包括纳米粒子和体材料中的至少一种,所述第一电极性为正电极性。
例如,所述显示面板还包括设置在所述第一功能层的背离所述量子点发光结构层一侧的阴极层,所述第一功能层包括电子传输层。
本公开实施例还提供了一种显示装置,包括以上所述的量子点发光面板。
附图说明
例如为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一个实施例提供的量子点显示面板的制作方法的示意图;
图2为本公开至少一个实施例中在第一功能层的被处理区域形成第一电 极性离子后的结构示意图;
图3A为本公开至少一个实施例中在第一功能层上形成第二电极性量子点薄膜后的结构示意图;
图3B为本公开至少一个实施例中在被处理区域形成第二电极性量子点层后的结构示意图;
图4A为本公开至少一个实施例中在第二电极性量子点层上形成第一电极性量子点薄膜后的结构示意图;
图4B为本公开至少一个实施例中在第二电极性量子点层上形成位于被处理区域的第一电极性量子点层后的结构示意图;
图5为本公开至少一个实施例中形成第n层量子点层后的结构示意图,n≥3;
图6为本公开至少一个实施例中形成第二电极层后的结构示意图;
图7为本公开至少一个实施例制作出的显示面板的结构示意图;
图8为本公开至少一个实施例制作出的显示面板包括开关元件的结构示意图;
图9为本公开至少另一个实施例制作出的显示面板的结构示意图。
附图标记说明:
Figure PCTCN2019126345-appb-000001
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为本公开至少一个实施例中的量子点显示面板的制作方法的示意图。如图1所示,该制作方法包括:步骤S1:在基板上形成第一功能层;步骤S2:对所述第一功能层进行处理,使经过处理的第一功能层包括被处理区域,所述被处理区域中具有第一电极性离子;步骤S3:在所述被处理区域形成第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
例如,被处理区域在第一功能层被处理之前为待处理区域,第一电极性离子在被处理区域中的浓度大于在待处理区域中的浓度。也就是说,通过对第一功能层进行处理增大了被处理区域中的第一电极性离子的浓度。这使得被处理区域中的第一电极性离子与用于形成第二电极性量子点层的材料中的第二电极性量子点之间的吸引力更强,从而对该材料进行处理(例如洗涤处理)后位于被处理区域中的第二电极性量子点被保留以形成第二电极性量子点层。
例如,通过对第一功能层进行处理,使第一功能层包括被处理区域以及未被处理区域,未被处理区域位于被处理区域之外且与被处理区域直接连接(也就是说,第一功能层为包括被处理区域和未被处理区域的一体化结构);第一电极性离子在被处理区域中的浓度大于在未被处理区域中的浓度。例如, 第一功能层包括多个间隔的被处理区域和多个未被处理区域,每个被处理区域中的第一电极性离子的浓度都大于该多个未被处理区域中的第一电极性离子的浓度。例如,未被处理区域中的第一电极性离子的浓度大致为0。因此,在将用于形成第二电极性量子点层的材料形成于第一功能层上时,该材料中的第二电极性量子点与被处理区域的第一电极性离子之间的吸引力较大,从而对该材料进行洗涤处理后,被处理区域的材料中的第二电极性量子点被保留,而未被处理区域的材料中的第二电极性量子点被去除,由此形成第二电极性量子点层。
例如,第二电极性量子点层直接接触第一功能层。这样,在形成第二电极性量子点层的过程中,第二电极性量子点与第一功能层的被处理区域中的第一电极性离子之间的吸引力较强。
在本公开至少一个实施例提出的量子点显示面板的制作方法中,通过对第一功能层进行处理,使第一功能层包括具有第一电极性离子且呈电中性的被处理区域,并且利用第一电极性和第二电极性的相互吸引作用在被处理区域形成第二电极性量子点层(例如第二电极性量子点层直接接触第一功能层的被处理区域),从而形成量子点发光结构层的图案。该量子点显示面板的制作方法,容易实现对被处理区域的精确控制,从而可以精确控制量子点发光结构层图案的形状和位置,实现了量子点发光结构层的图案化并保证了图案的精确度,保证了量子点显示面板的显示品质。
例如,形成第一功能层包括:在基板上涂覆用于形成第一功能层的溶液,之后对该溶液进行显影以及退火,以得到第一功能层。
例如,对第一功能层进行处理包括对第一功能层进行紫外光(UV光)照射,以使被紫外光照射的区域形成包括第一电极性离子的被处理区域。
例如,第一功能层的材料包括光降解物质,还包括纳米粒子和体材料中的至少一种。例如,纳米粒子和体材料中的至少一种被配置为与光降解物质在第一功能层被处理后产生的物质发生作用以形成第一电极性离子。也就是说,纳米粒子和体材料中的至少一种用于与光降解物质在第一功能层被处理后产生的物质发生作用以形成第一电极性离子。例如,纳米材料的配体本身可以与光降解物质在第一功能层被处理后产生的物质发生作用以形成第一电极性离子。例如,体材料在与其它物质发生作用后生成的物质可以与光降解 物质在第一功能层被处理后产生的物质发生作用以形成第一电极性离子。
例如,纳米粒子可以包括氧化锌纳米粒子。例如,纳米粒子的配体中包含卤素原子和季铵盐离子。例如,卤素原子为氯原子(Cl)、溴原子(Br)或者碘原子(I)等。
例如,光降解物质可以包括酰亚胺类光降解物质(如三甲基氨基苯甲酰亚胺)、烯二唑类光降解物质(如苯并苯烯二唑)等中的一种或多种。例如,光降解物质经紫外光照射后可以生成氨基类物质,如伯胺、仲胺或叔胺等。例如,氨基类物质与纳米粒子的配体发生作用产生第一电极性离子,从而形成具有第一电极性离子的被处理区域。
例如,体材料为尺寸在微米级及以上的材料,材质可以包括氧化锌。例如,体材料表面含有很多悬挂基团,诸如羟基或者羧基等。例如,以羟基为例,在第一功能层上涂覆丙胺基三甲氧基硅烷或类似材料,之后二者一起被紫外光照射;丙胺基三甲氧基硅烷或类似材料与体材料表面的羟基反应,经紫外光照射后可以产生氢离子,氢离子与氨基类物质发生作用也可以产生第一电极性离子。
需要说明的是,上述所列举的关于纳米粒子、光降解物质以及体材料的实施例仅用于举例说明,本公开实施例包括但不限于此,只要能够实现纳米粒子和体材料中的至少一种用于与光降解物质在第一功能层被处理后产生的物质发生作用以形成第一电极性离子即可。
例如,本公开至少一个实施例提供的量子点显示面板包括位于第一功能层的背离基板一侧的量子点发光结构层,量子点发光结构层包括第二电极性量子点层。
例如,量子点发光结构层还包括第一电极性量子点层,第一电极性量子点层在第一功能层上的正投影位于被处理区域。也就是说,第一电极性量子点层在基板上的正投影位于第二电极性量子点层在基板上的正投影内(例如二者的正投影大致重合,“大致”指的是在误差允许范围内)。并且,第一电极性量子点层位于第二电极性量子点层的背离第一功能层的一侧。例如,第一电极性量子点层与第二电极性量子点层直接接触,以提高用于形成第一电极性量子点层的材料中的第一电极性量子点与用于形成第二电极性量子点层的材料中的第二电极性量子点之间的吸引力。
例如,量子点发光结构层包括n层量子点层,且n大于或等于1。当n=1时,量子点发光结构层只包括一个第二电极性量子点层,如图3B所示;当n=2时,量子点发光结构层只包括一个第二电极性量子点层和一个第一电极性量子点层,如图4B所示;当n=3时,量子点发光结构层包括两个第二电极性量子点层以及夹设于该两个第二电极性量子点层之间的第一电极性量子点层;依此类推。这里不再赘述。
例如,量子点显示面板包括间隔开的多个量子点发光结构层,例如,该多个量子点发光结构层包括分别用于发出不同颜色光的量子点发光结构层。例如,该多个量子点发光结构层包括红色发光结构层、绿色发光结构层和蓝色发光结构层。
例如,形成第二电极性量子点层包括:在第一功能层上涂覆用于形成第二电极性量子点层的溶液,之后对该溶液依次进行退火处理以及洗涤处理以形成第二电极性量子点溶液。类似地,形成第一电极性量子点层包括:在第二电极性量子点层上涂覆用于形成第一电极性量子点层的溶液,之后对该溶液依次进行退火处理以及洗涤处理以形成第一电极性量子点溶液。例如,可以采用己烷或类似材料进行洗涤处理。
例如,本公开实施例提供的制作方法还包括:在基板上形成第一电极层、第二电极层和第二功能层。第一功能层位于第一电极层的背离基板的一侧,第二功能层位于量子点发光结构层的背离基板的一侧,第二电极层位于第二功能层的背离基板的一侧。例如,第一功能层和第二功能层之一为电子传输层且另一为空穴传输层。例如,第一电极层和第二电极层之一为阳极层且另一为阴极层。
例如,第一电极层为阴极层,第一功能层为电子传输层,第二功能层为空穴传输层,第二电极层为阳极层;或者,第一电极层为阳极层,第一功能层为空穴传输层,第二功能层为电子传输层,第二电极层为阴极层。
例如,在包括多个量子点发光结构层的情况下,该多个量子点发光结构层分别对应的多个第一电极层彼此断开(例如,该多个量子点发光结构层与该多个第一电极层一一对应);并且,该多个量子点发光结构层可以共用第二电极层,和/或共用第一功能层,和/或共用第二功能层。通过共用同一层,可以简化制作工艺。然而,在其它实施例中,阴极层、电子传输层和空穴传 输层中的至少一个也可以不是共用的。
例如,量子点发光显示面板还可以包括位于基板上的多个开关元件,该多个开关元件与上述多个量子点发光结构层分别对应的多个第一电极层电连接(例如该多个开关元件与该多个第一电极层一一对应地电连接),以通过该多个开关元件分别控制该多个量子点发光结构层的发光状态。
例如,该多个开关元件为晶体管或者其它类型的开关。本公开实施例不做限定。
下面结合附图详细说明本公开至少一个实施例中量子点显示面板的制作方法。例如,本公开至少一个实施例提供的制作方法包括以下步骤S11和步骤S12。
图2为本公开至少一个实施例中在第一功能层的被处理区域形成第一电极性离子后的结构示意图。
步骤S11:如图2所示,在基板10上形成第一功能层100。
例如,在基板10上形成的第一功能层100的材质包括纳米粒子和体材料(bulk material)中的至少一种并且包括光降解物质。
例如,可以采用旋涂工艺在基板10上涂覆第一功能溶液(即用于形成第一功能层100的溶液),第一功能溶液中包含光降解物质,还包括纳米粒子和/或体材料。例如,在旋涂工艺中,旋涂速度为3500rpm~4500rpm,优选为4000rpm;旋涂时间为35s~45s,优选为40s。之后,对第一功能溶液依次进行显影和退火处理,可以得到第一功能层。例如,利用甲苯对第一功能溶液进行显影处理5分钟后,在例如85℃下进行退火处理,可以得到第一功能层。
步骤S12:形成量子点发光结构层,量子点发光结构层包括第二电极性量子点层。
例如,步骤S12包括步骤S121:对第一功能层100进行处理,使经过处理的第一功能层100包括被处理区域20,被处理区域20中具有第一电极性离子,如图2所示。
例如,第一电极性离子为正电离子,图2中示出了多个“+”以示意性地表示正电极性;或者,第一电极性离子为负电离子。
例如,如图2所示,被处理后的第一功能层100包括被处理区域20以及未被处理区域2,未被处理区域2位于被处理区域20之外且与被处理区域20 直接连接(即第一功能层100为一体化结构);第一电极性离子在被处理区域20中的浓度大于在未被处理区域2中的浓度。
例如,步骤S121包括:采用UV光对第一功能层进行照射,使被UV光照射的区域形成被处理区域20,被处理区域20中具有第一电极性离子。
例如,可以利用掩膜板控制紫外光照射到第一功能层上的范围。在这种情况下,例如,在第一功能层上方设置掩膜板,使掩膜板的透光区域对应第一功能层的待处理区域,使掩膜板的非透光区域对应第一功能层的待处理区域之外的区域;之后,使紫外光透过掩膜板的透光区域后照射到第一功能层上。
在步骤S121中,被处理区域20的形成原理为:采用UV光对第一功能层100照射后,被UV光照射的区域中的光降解物质分解产生氨基类物质;由于纳米粒子的配体中包含卤素原子和季铵盐离子,卤素原子如氯原子(Cl)、溴原子(Br)、碘原子(I),氨基类物质与纳米粒子的配体发生作用产生第一电极性离子,从而形成具有第一电极性离子的被处理区域20。例如,体材料表面含有很多悬挂基团,诸如羟基,羧基等,以羟基为例,使用丙胺基三甲氧基硅烷与体材料表面的羟基反应,经UV光照射后可以产生氢离子,氢离子与氨基类物质发生作用也可以产生第一电极性离子。在本公开至少一个实施例中,例如,UV光照射时间为4min~6min,优选为5min。容易理解的是,在实际实施中,可以精确控制UV光在第一功能层上的照射区域,从而可以精确控制被处理区域,从而实现对量子点发光结构层图案的精确控制。
例如,步骤S121还包括:对第一功能层进行退火处理。对第一功能层进行退火处理,使得第一功能层中的分子进行重排,有利于载流子传输。
例如,退火温度为75℃~90℃,退火时间为15min~25min。在本公开至少一个实施例中,例如,退火温度为85℃,退火时间为20min。
例如,步骤S12还包括步骤S122:在被处理区域20形成第二电极性量子点层211,第二电极性和第一电极性的电性相反,如图3B所示,图3B为本公开至少一个实施例中在被处理区域形成第二电极性量子点层后的结构示意图。
例如,步骤S122包括以下步骤。
步骤S1221:在第一功能层100上形成第二电极性量子点薄膜2110,如 图3A所示。
例如,可以采用旋涂工艺将第二电极性量子点涂覆在第一功能层100(例如,第一功能层100为电子传输层)上,以形成第二电极性量子点薄膜2110。例如,在旋涂工艺中,旋涂速度为2000rpm~3000rpm,优选为2500rpm;旋涂时间为40s~50s,优选为45s。
例如,第二电极性量子点包括具有第二电极性的CdSe、具有第二电极性的ZnS中的一种或多种。
步骤S1222:对第二电极性量子点薄膜2110进行退火处理。对第二电极性量子点薄膜进行退火处理,可以除去第二电极性量子点薄膜中的溶剂,并且使得第二电极性量子点分子重排,有利于载流子传输。
例如,退火温度为75℃~90℃,退火时间为15min~25min。例如,在本公开至少一个实施例中,退火温度为85℃,退火时间为20min。
步骤S1223:对第二电极性量子点薄膜2110进行洗涤,以除去位于被处理区域20外围区域的第二电极性量子点,形成位于被处理区域20的第二电极性量子点层221,如图3B所示。
在本公开至少一个实施例中,例如,可以采用己烷对第二电极性量子点薄膜进行洗涤。第二电极性与第一电极性的电极性相反,因此,当采用己烷对第二电极性量子点薄膜进行冲洗时,由于位于被处理区域20的第二电极性量子点与第一电极性离子相互吸引作用,从而,位于被处理区域20的第二电极性量子点无法被己烷冲洗掉,位于被处理区域20外围的第二电极性量子点由于不存在与第一功能层(例如电子传输层)的相互作用而被己烷冲洗掉,这样就形成了位于被处理区域20的第二电极性量子点层221。
例如,量子点发光结构层还包括第一电极性量子点层,在这种情况下,本公开至少一个实施例提供的制作方法还可以包括步骤S123:在第二电极性量子点层211上形成位于被处理区域20的第一电极性量子点层212,如图4B所示,图4B为本公开至少一个实施例中在第二电极性量子点层上形成位于被处理区域的第一电极性量子点层的结构示意图。
例如,步骤S123包括以下步骤。
步骤S1231:在第二电极性量子点层211上形成第一电极性量子点薄膜2120,如图4A所示。
例如,可以采用旋涂工艺在第二电极性量子点层211上形成第一电极性量子点薄膜,第一电极性量子点薄膜可以覆盖第一功能层100。例如,在旋涂工艺中,旋涂速度为2000rpm~3000rpm,优选为2500rpm;旋涂时间为40s~50s,优选为45s。
例如,第一电极性量子点包括具有第一电极性的CdSe、具有第一电极性的ZnS中的一种或多种。
步骤S1232:对第一电极性量子点薄膜2120进行退火处理。对第一电极性量子点薄膜进行退火处理,可以除去第一电极性量子点薄膜中的溶剂,并且使得第一电极性量子点分子重排,有利于载流子传输。
例如,退火温度为75℃~90℃,退火时间为15min~25min。例如,在本公开至少一个实施例中,退火温度为85℃,退火时间为20min。
步骤S1233:对第一电极性量子点薄膜2120进行洗涤,以除去位于被处理区域20外围区域的第一电极性量子点,形成位于被处理区域20的第一电极性量子点层212,第一电极性量子点层212叠设于第二电极性量子点层211的上方(即第二电极性量子点层211的远离第一功能层100的一侧),如图4B所示。
在本公开至少一个实施例中,例如,可以采用己烷对第一电极性量子点薄膜进行洗涤。第二电极性与第一电极性的电极性相反,因此,当采用己烷对第一电极性量子点薄膜进行冲洗时,由于位于被处理区域20的第一电极性量子点与第二电极性量子点相互吸引作用,从而,位于被处理区域20的第一电极性量子点无法被己烷冲洗掉,位于被处理区域20外围的第一电极性量子点由于不存在与第一功能层(例如电子传输层)的相互作用而被己烷冲洗掉,这样就形成了位于被处理区域20的第一电极性量子点层212,第一电极性量子点层212叠设于第二电极性量子点层211的上方。
图5为本公开至少一个实施例中形成第n层量子点层后的结构示意图,n≥3。当n=1时,完成步骤S122后即完成量子点发光结构层的制作;当n=2时,完成步骤S123后即完成量子点发光结构层的制作;当n≥3时,可以按照S122和S123的方法依次重复制作第二电极性量子点层和第一电极性量子点层,直至制作完成第n层量子点层,以完成量子点发光结构层的制作,如图5所示。
容易理解的是,图5只是示意性地示出量子点发光结构层21包括n层量子点层,第n层量子点层可以是第一电极性量子点层,也可以是第二电极性量子点层,需要根据实际情况确定。
例如,当n≥2时,本公开至少一个实施例提供的量子点显示面板的制作方法还可以包括步骤S124:对量子点发光结构层进行电性中和,以使得量子点发光结构层对外不呈现电极性。
在本公开至少一个实施例中,例如,第一电极性为正电极性,第二电极性为负电极性。当第n层量子点为第一电极性即正电极性量子点时,可以采用带有相对应负离子的溶液进行浸泡。例如,量子点配体氨基生成铵盐离子带正电,中和正电时采用稀碱溶液(氢氧化钾)进行浸泡,利用氢氧根与铵盐基团的氢正电离子反应,得到电中性量子点。当第n层量子点为第二电极性即负电极性量子点时,可以采用带有对应正离子的溶液浸泡。例如,量子点配体上含有磺酸根离子带负电,中和负电时采用稀酸溶液(稀盐酸)进行浸泡,利用氢离子和磺酸根离子结合去除量子点的表面负电。
在制作完成量子点发光结构层后,对量子点发光结构层电性中和,以使得量子点发光结构层对外不呈现电极性,这样,就可以采用同样的方法制作其它对应颜色的量子点发光结构层,不会影响到先前制作完成的量子点发光结构层。
例如,本公开至少一个实施例提供的量子点显示面板的制作方法还可以包括步骤S125:在量子点发光结构层上形成第二功能层200。
例如,可以采用沉积或涂覆方法形成第二功能层200,如图6所示,图6为本公开至少一个实施例中形成第二电极层后的结构示意图。
例如,本公开至少一个实施例提供的制作方法还可以包括:在第二功能层200上形成第二电极层400。
例如,本公开至少一个实施例提供的量子点显示面板的制作方法,在形成第一功能层100之前,还可以包括:在基板10上形成第一电极层300。
在本公开至少一个实施中,第一电极性包括正电极性和负电极性中的一个,第二电极性包括另一个。第一电极层包括阳极层和阴极层中的一个,第二电极层包括阳极层和阴极层中的另一个。第一功能层包括电子传输层和空穴传输层中的一个,第二功能层包括电子传输层和空穴传输层中的另一个。
在本公开至少一个实施例中,第一电极性为正电极性,第二电极性为负电极性,第二电极性和第一电极性的电极性相反。第一电极层为阴极层,第二电极层为阳极层。第一功能层为电子传输层,第二功能层为空穴传输层。本公开至少一个实施例中,形成的发光结构层为倒置型发光结构层,即:沿着远离基板10的方向,发光结构层依次包括阴极层、电子传输层、量子点发光结构层、空穴传输层和阳极层。容易理解的是,本公开实施例提出的量子点显示面板的制作方法同样适用于正置型发光结构层,即:沿着远离基板10的方向,发光结构层依次包括阳极层、空穴传输层、量子点发光结构层、电子传输层和阴极层。
图7为本公开至少一个实施例制作出的显示面板的结构示意图。
例如,本公开至少另一个实施例提出的显示面板的制作方法可以包括:采用以上任一实施例所述的制作方法分别制作每个像素区域对应的发光结构层。下面以包含三个像素的显示面板为例,说明显示面板的具体制作过程。如图7所示,在本公开至少一个实施例中,第一像素为红色(R)像素,第二像素为绿色(G)像素,第三像素为蓝色(B)像素。在本公开至少一个实施例中,每个像素对应的发光结构层包括n层量子点层,其中n为自然数。
例如,本公开至少一个实施例提供的如图7所示的显示面板的制作方法包括以下步骤。
步骤S21:如图7所示,在基板10上形成第一功能层(例如,电子传输层11)。
例如,在基板10上形成的第一功能层(例如电子传输层)的材质包括纳米粒子和体材料中的至少一种、和光降解物质。
例如,可以采用旋涂工艺在基板10上涂覆用于形成第一功能层(例如电子传输层)的溶液,该溶液包含光降解物质,还包括纳米粒子和/或体材料。例如,旋涂速度为3500rpm~4500rpm,优选为4000rpm;旋涂时间为35s~45s,优选为40s。
例如,纳米粒子可以包括氧化锌纳米粒子。
例如,光降解物质可以包括酰亚胺类(如三甲基氨基苯甲酰亚胺)、烯二唑类(如苯并苯烯二唑)等中的一种或多种。
例如,体材料为尺寸在微米级及以上的材料,材质可以包括氧化锌。例 如,光降解物质经UV光照射后可以生成氨基类物质,如伯胺、仲胺、叔胺等。
步骤S22:形成红色量子点发光结构层,红色量子点发光结构层包括第二电极性红色量子点层。
例如,步骤S22包括以下步骤。
步骤S221:对所述第一功能层100进行处理,在所述第一功能层100上形成第一被处理区域,所述第一被处理区域中具有第一电极性离子。例如,将第一被处理区域称作红色像素区域。
例如,步骤S221包括以下步骤S2211至S2212。
步骤S2211:采用UV光对第一功能层(例如,电子传输层)进行照射,在UV光照射区域形成第一被处理区域,第一被处理区域中具有第一电极性离子,第一被处理区域即为红色像素区域。
例如,采用UV光对第一功能层(例如,电子传输层)照射后,UV光照射区域的光降解物质分解产生氨基类物质,纳米粒子的配体中包含卤素原子和季铵盐离子,卤素原子如氯原子(Cl)、溴原子(Br)、碘原子(I)。氨基类物质与纳米粒子的配体发生作用产生第一电极性离子,从而形成具有第一电极性离子的第一被处理区域即红色像素区域。体材料表面含有很多悬挂基团,诸如羟基,羧基等,以羟基为例,使用丙胺基三甲氧基硅烷与体材料表面的羟基反应,经UV光照射后可以产生氢离子,氢离子与氨基类物质发生作用也可以产生第一电极性离子。
在本公开至少一个实施例中,例如,UV光照射时间为4min~6min,优选为5min。
步骤S2211:对经过UV光照射的第一功能层(例如电子传输层)进行退火处理。
例如,退火温度为75℃~90℃,退火时间为15min~25min。在本公开至少一个实施例中,例如,退火温度为85℃,退火时间为20min。
步骤S222:在红色像素区域形成第二电极性红色量子点层311,第二电极性和第一电极性的电性相反。
例如,步骤S222包括以下步骤。
步骤S2221:在第一功能层(例如,电子传输层11)上形成第二电极性 红色量子点薄膜。
例如,可以采用旋涂工艺将第二电极性红色量子点涂覆在电子传输层上,以形成第二电极性红色量子点薄膜。例如,旋涂速度为2000rpm~3000rpm,优选为2500rpm;旋涂时间为40s~50s,优选为45s。
例如,第二电极性红色量子点包括具有第二电极性的CdSe、具有第二电极性的ZnS中的一种或多种。
步骤S2222:对第二电极性红色量子点薄膜进行退火处理。
例如,退火温度为75℃~90℃,退火时间为15min~25min。在本公开至少一个实施例中,例如,退火温度为85℃,退火时间为20min。
步骤S2223:对第二电极性红色量子点薄膜进行洗涤,以除去位于红色像素区域外围区域的第二电极性红色量子点,形成位于红色像素区域的第二电极性红色量子点层311。
在本公开至少一个实施例中,例如,可以采用己烷对第二电极性红色量子点薄膜进行洗涤。第二电极性与第一电极性的电极性相反,因此,当采用己烷对第二电极性红色量子点薄膜进行冲洗时,由于位于红色像素区域的第二电极性红色量子点与第一电极性离子相互吸引作用,从而,位于红色像素区域的第二电极性红色量子点无法被己烷冲洗掉,位于红色像素区域外围的第二电极性红色量子点由于不存在与电子传输层的相互作用而被己烷冲洗掉,这样就形成了位于红色像素区域的第二电极性红色量子点层311。
例如,红色量子点发光结构层还可以包括第一电极性红色量子点层,在这种情况下,本公开至少一个实施例提供的制作方法还可以包括步骤S223:在红色像素区域形成位于第二电极性红色量子点层311之上的第一电极性红色量子点层312。
例如,步骤S223包括以下步骤。
步骤S2231:在第二电极红色量子点层311上形成第一电极性红色量子点薄膜。
例如,可以采用旋涂工艺在第二电极红色量子点层311上形成具有第一电极性的第一电极性红色量子点薄膜,第一电极性红色量子点薄膜可以覆盖电子传输层11。例如,旋涂速度为2000rpm~3000rpm,优选为2500rpm;旋涂时间为40s~50s,优选为45s。
例如,第一电极性红色量子点包括具有第一电极性的CdSe、具有第一电极性的ZnS中的一种或多种。
步骤S2232:对第一电极性红色量子点薄膜进行退火处理。例如,退火温度为75℃~90℃,退火时间为15min~25min。例如,在本公开至少一个实施例中,退火温度为85℃,退火时间为20min。
步骤S2233:对第一电极性红色量子点薄膜进行洗涤,以除去位于红色像素区域外围区域的第一电极性红色量子点,形成位于红色像素区域的第一电极性红色量子点层312,第一电极性红色量子点层312叠设于第二电极性红色量子点层311的上方。
在本公开至少一个实施例中,例如,可以采用己烷对第一电极性红色量子点薄膜进行洗涤。第二电极性与第一电极性的电极性相反,因此,当采用己烷对第一电极性红色量子点薄膜进行冲洗时,由于位于红色像素区域的第一电极性红色量子点与第二电极性红色量子点相互吸引作用,从而,位于红色像素区域的第一电极性红色量子点无法被己烷冲洗掉,位于红色像素区域外围的第一电极性红色量子点由于不存在与电子传输层的相互作用而被己烷冲洗掉,这样就形成了位于红色像素区域的第一电极性红色量子点层312,第一电极性红色量子点层312叠设于第二电极性红色量子点层311的上方,第一电极性红色量子点层312具有第一电极性。
当n=1时,完成步骤S222后即完成红色量子点发光结构层的制作;当n=2时,完成步骤S223后即完成红色量子点发光结构层的制作;当n≥3时,可以按照S222和S223的方法依次重复制作第二电极性红色量子点层和第一电极性红色量子点层,直至制作完成n层红色量子点层,以完成红色量子点发光结构层的制作。
例如,当n≥2时,红色量子点发光结构层的制作方法,还可以包括步骤S224:对红色量子点发光结构层进行电性中和,以使得红色量子点发光结构层对外不呈现电极性。
在本公开至少一个实施例中,例如,第一电极性为正电极性,第二电极性为负电极性。当第n层红色量子点为第一电极性即正电极性红色量子点时,可以采用带有相对应负离子的溶液进行浸泡。例如,量子点配体氨基生成铵盐离子带正电,中和正电时采用稀碱溶液(氢氧化钾)进行浸泡,利用氢氧 根与铵盐基团的氢正电离子反应,得到电中性量子点。当第n层量子点为第二电极性即负电极性红色量子点时,可以采用带有对应正离子的溶液浸泡。例如,量子点配体上含有磺酸根离子带负电,中和负电时采用稀酸溶液(稀盐酸)进行浸泡,利用氢离子和磺酸根离子结合去除量子点的表面负电。
在制作完成红色量子点发光结构层后,对红色量子点发光结构层电性中和,以使得红色量子点发光结构层对外不呈现电极性,这样,就可以采用同样的方法在其它像素区域制作对应颜色的量子点发光结构层,不会影响到先前制作完成的红色量子点发光结构层。
步骤S23:形成绿色量子点发光结构层,绿色量子点发光结构层包括第二电极性绿色量子点层和第一电极性绿色量子点层。
例如,步骤S23包括至少包括以下步骤。
步骤S231:对所述第一功能层100进行处理,在所述第一功能层100上形成第二被处理区域,所述第二被处理区域中具有第一电极性离子。例如,将第二被处理区域称作绿色像素区域。在第一功能层100上形成绿色像素区域的方法与在第一功能层100上形成红色像素区域的方法相同,在此不再赘述。
步骤S232:在绿色像素区域形成第二电极性绿色量子点层411,第二电极性和第一电极性的电性相反。在绿色像素区域形成第二电极性绿色量子点层411的方法与在红色像素区域形成第二电极性红色量子点层311的方法相同,在此不再赘述。
例如,绿色量子点发光结构层还可以包括第一电极性绿色量子点层,在这种情况下,本公开至少一个实施例提供的制作方法还可以包括步骤S233:在绿色像素区域形成位于第二电极性绿色量子点层411之上的第一电极性绿色量子点层412。该步骤所采用的方法与在红色像素区域形成位于第二电极性红色量子点层311之上的第一电极性红色量子点层312所采用的方法相同,在此不再赘述。
当n=1时,完成步骤S232后即完成绿色量子点发光结构层的制作;当n=2时,完成步骤S233后即完成绿色量子点发光结构层的制作;当n≥3时,可以按照S232和S233的方法依次重复制作第二电极性绿色量子点层和第一电极性绿色量子点层,直至制作完成n层绿色量子点层,以完成绿色量子点 发光结构层的制作。
例如,当n≥2时,绿色量子点发光结构层的制作方法还可以包括步骤S234:对绿色量子点发光结构层41进行电性中和,以使得绿色量子点发光结构层41对外不呈现电极性。对绿色量子点发光结构层41进行电性中和的方法可以与对红色量子点发光结构层31进行电性中和的方法相同,在此不再赘述。
步骤S24:形成蓝色量子点发光结构层,蓝色量子点发光结构层包括第二电极性蓝色量子点层和第一电极性蓝色量子点层。
例如,步骤S24包括以下步骤。
步骤S241:对所述第一功能层100进行处理,在所述第一功能层100上形成第三被处理区域,所述第三被处理区域中具有第一电极性离子。例如,将第三被处理区域称作蓝色像素区域。在第一功能层100上形成蓝色像素区域的方法与在第一功能层100上形成红色像素区域的方法相同,在此不再赘述。
步骤S242:在蓝色像素区域形成第二电极性蓝色量子点层511,第二电极性和第一电极性的电性相反。在蓝色像素区域形成第二电极性蓝色量子点层511的方法与在红色像素区域形成第二电极性红色量子点层311的方法相同,在此不再赘述。
例如,蓝色量子点发光结构层还可以包括第一电极性蓝色量子点层,在这种情况下,本公开至少一个实施例提供的制作方法还可以包括步骤S243:在蓝色像素区域形成位于第二电极性蓝色量子点层511之上的第一电极性蓝色量子点层512。该步骤所采用的方法与在红色像素区域形成位于第二电极性红色量子点层311之上的第一电极性红色量子点层312所采用的方法相同,在此不再赘述。
当n=1时,完成步骤S242后即完成蓝色量子点发光结构层的制作;当n=2时,完成步骤S243后即完成蓝色量子点发光结构层的制作;当n≥3时,可以按照S242和S243的方法依次重复制作第二电极性蓝色量子点层和第一电极性蓝色量子点层,直至制作完成n层蓝色量子点层,以完成蓝色量子点发光结构层的制作。
例如,当n≥2时,蓝色量子点发光结构层的制作方法还可以包括步骤 S244:对蓝色量子点发光结构层51进行电性中和,以使得蓝色量子点发光结构层51对外不呈现电极性。对蓝色量子点发光结构层51进行电性中和的方法可以与对红色量子点发光结构层31进行电性中和的方法相同,在此不再赘述。
步骤S25:在红色量子点发光结构层上、绿色量子点发光结构层上、蓝色量子点发光结构层上形成空穴传输层12,如图5所示。
例如,本公开至少一个实施例提供的制作方法还可以包括:在空穴传输层12上形成阳极层14(第二电极层400的一个示例)。
例如,本公开至少一个实施例提供的制作方法还可以包括:在形成电子传输层11之前,在基板10上形成阴极层13(第一电极层300的一个示例)。
本公开至少一个实施例形成的显示面板,红色发光结构层、绿色发光结构层和蓝色发光结构层共用电子传输层11和空穴传输层12;或者,三个发光结构层也可以不共用电子传输层和空穴传输层。例如,三个发光结构层分别对应的阴极层通常相互电连接,三个发光结构层分别对应的阳极层彼此断开。
本公开实施例形成的显示面板中,发光结构层为倒置型发光结构层,即:沿着远离基板10的方向,发光结构层依次包括阴极层、电子传输层、量子点发光结构层、空穴传输层和阳极层。容易理解的是,本公开实施例提出的显示面板的制作方法同样适用于制作包括正置型发光结构层的显示面板,即:沿着远离基板10的方向,发光结构层依次包括阳极层、空穴传输层、量子点发光结构层、电子传输层和阴极层。
例如,如图8所示,本公开至少一个实施例提供的量子点显示面板还包括位于基板10上的多个开关元件70,该多个开关元件70与上述多个量子点发光结构层分别对应的多个阴极层13电连接(例如该多个开关元件70与该多个阴极层13一一对应地电连接),以通过该多个开关元件70分别控制该多个量子点发光结构层的发光状态。
本公开至少一个实施例提供了一种量子点显示面板,其包括基板10、第一功能层100和量子点发光结构层21,如图3B、4B、5、6和7所示。第一功能层100设置在基板10上,第一功能层100具有被处理区域20,被处理区域20内具有第一电极性离子;量子点发光结构层21位于被处理区域20 内(即量子点发光结构层21在第一功能层100上的正投影位于被处理区域20内)且设置在第一功能层100上(即位于第一功能层100的背离基板10的一侧),量子点发光结构层21包括第二电极性量子点层211,第二电极性和第一电极性的电性相反。
例如,第二电极性量子点层211直接接触第一功能层100。这样,在形成第二电极性量子点层211的过程中,第二电极性量子点与第一功能层100的被处理区域20中的第一电极性离子之间的吸引力较强。
例如,如图2所示,第一功能层100包括被处理区域20以及未被处理区域2,未被处理区域2位于被处理区域20之外且直接连接被处理区域20(因此第一功能层100为一体化结构);第一电极性离子在被处理区域20中的浓度大于在未被处理区域2中的浓度。
例如,量子点显示面板包括多个量子点发光结构层21,例如,该多个量子点发光结构层21包括分别用于发出不同颜色光的量子点发光结构层。例如,该多个量子点发光结构层21包括如图7所示的红色发光结构层31、绿色发光结构层41和蓝色发光结构层51。
例如,量子点发光结构层还包括第一电极性量子点层212,第一电极性量子点层212位于被处理区域20内且叠设在第二电极性量子点层211的上方。
例如,量子点发光结构层对外不呈现电极性,即量子点发光结构层整体上是电中性的。
例如,本公开至少一个实施例还提出了一种量子点显示面板,如图5和图6所示,该量子点显示面板包括:第一功能层100,其设置在基板10上,第一功能层100具有被处理区域20,被处理区域20内具有第一电极性离子;量子点发光结构层,其位于被处理区域20内且设置在第一功能层100上,量子点发光结构层包括n层依次交替设置的第二电极性量子点层211和第一电极性量子点层212,与第一功能层100接触的量子点层为第二电极性量子点层211,其中,n≥3。
需要说明的是,根据以上描述可知,量子点发光结构层21包括n层量子点层,且n大于或等于1。当n=1时,量子点发光结构层21只包括第二电极性量子点层211,如图3B所示;当n=2时,量子点发光结构层21只包括第 二电极性量子点层211和第一电极性量子点层212,如图4B所示;当n=3时,量子点发光结构层21包括两个第二电极性量子点层211以及夹设于该两个第二电极性量子点层211之间的第一电极性量子点层212;依此类推。这里不再赘述。
例如,显示面板还可以包括:设置在量子点发光结构层上的第二功能层200,以及设置在第二功能层200上的第二电极层400。
例如,显示面板还可以包括设置在基板10和第一功能层100之间的第一电极层300。
例如,当n≥3时,量子点发光结构层对外不呈现电极性。
在本公开至少一个实施例中,第一电极性可以包括正电极性和负电极性中的一个,第二电极性可以包括正电极性和负电极性中的另一个。第一电极层可以包括阳极层和阴极层中的一个,第二电极层可以包括阳极层和阴极层中的另一个。第一功能层包括电子传输层和空穴传输层中的一个,第二功能层包括电子传输层和空穴传输层中的另一个。
例如,在至少一个实施例中,第一电极性可以为正电极性,第二电极性可以为负电极性,第二电极性和第一电极性的电极性相反。第一电极层可以为阳极层,第二电极层可以为阴极层。第一功能层可以为电子传输层,第二功能层可以为空穴传输层。
需要说明的是,关于量子点显示面板的实施中各结构的设置方式可以采用上述制作方法中相同部件的设置方式,重复之处不再赘述。
基于前述实施例的发明构思,本公开至少一个实施例还提供了一种显示装置,该显示装置包括前述实施例的量子点显示面板。
例如,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开至少一个实施例还提供一种量子点显示面板的制作方法,以如图9所示的量子点显示面板为例,该制作方法包括:提供驱动基板10A,其包括基板10和位于基板10上的第一电极层300;通过对第一电极层300施加电信号,使驱动基板10A的设置有第一电极层300的区域呈现第一电极性;在第一电极层300的背离基板10的一侧形成第二电极性量子点层211,第二电极性和第一电极性的电性相反。在本公开实施例中,通过对第一电极层300 施加电信号,使驱动基板10A的设置有第一电极层300的区域对外呈现第一电极性;在该驱动基板10A上形成用于形成第二电极性量子点层211的材料并对其进行洗涤时,该材料中的第二电极性量子点因被驱动基板10A的该区域吸引而保留下来从而形成第二电极性量子点层211。
例如,量子点显示面板包括位于驱动基板10A上的量子点发光结构层21,量子点发光结构层21包括第二电极性量子点层211。
例如,本公开至少一个实施例提供的制作方法还包括:在第二电极性量子点层211上形成第一电极性量子点层212。量子点发光结构层21包括第二电极性量子点层211和第一电极性量子点层212。第一电极性量子点层212在基板10上的正投影位于第二电极性量子点层211在基板10上的正投影内(例如二者的正投影大致重合),并且第一电极性量子点层212位于第二电极性量子点层211的背离基板10的一侧。
例如,第一电极性量子点层212与第二电极性量子点层211直接接触,以提高用于形成第一电极性量子点层211的材料中的第一电极性量子点与用于形成第二电极性量子点层212的材料中的第二电极性量子点之间的吸引力。
例如,量子点发光结构层21包括n层量子点层,且n大于或等于1。当n=1时,量子点发光结构层21只包括一个第二电极性量子点层211;当n=2时,量子点发光结构层只包括一个第二电极性量子点层211和一个第一电极性量子点层212;当n=3时,量子点发光结构层21包括两个第二电极性量子点层211以及夹设于该两个第二电极性量子点层211之间的第一电极性量子点层212;依此类推。这里不再赘述。
例如,本公开至少一个实施例提供的制作方法还包括:对量子点发光结构层21进行电性中和,使得量子点发光结构层21对外不呈现电极性。
例如,量子点显示面板包括位于驱动基板10A上且间隔开的多个量子点发光结构层21,在这种情况下,驱动基板10A包括间隔开的多个第一电极层300,该多个量子点发光结构层21分别对应(例如一一对应)该多个第一电极层300。例如,该多个量子点发光结构层21包括分别用于发出不同颜色光的量子点发光结构层。例如,该多个量子点发光结构层21包括红色发光结构层31、绿色发光结构层41和蓝色发光结构层51。
例如,在量子点发光显示面板包括多个量子点发光结构层21的情况下,驱动基板10A包括位于基板10上的多个开关元件70,该多个开关元件70与上述多个量子点发光结构层21分别对应的多个第一电极层300电连接(例如该多个开关元件70与该多个第一电极层300一一对应地电连接),以通过该多个开关元件70分别控制该多个量子点发光结构层21的发光状态。
例如,如图9所示,驱动基板10A还包括位于基板10上的开关元件70,使开关元件70与第一电极层300电连接以对第一电极层300施加电信号。例如,该开关元件为晶体管或者其它类型的开关。本公开实施例不做限定。
本公开至少一个实施例提供的制作方法还包括:在量子点发光结构层21的背离基板10的一侧形成第二电极层400。第一电极层300和第二电极层400之一为阳极层且另一个为阴极层。
例如,本公开的至少一个实施例提供的制作方法还包括:在量子点发光结构层21与第一电极层300之间形成第一功能层100,以及在量子点发光结构层21与第二电极层400之间形成第二功能层200。第一功能层100和第二功能层200之一为电子传输层且另一为空穴传输层。
例如,第一电极层300为阴极层,第一功能层100为电子传输层,第二电极层400为阳极层,第二功能层200为空穴传输层;或者,第一电极层300为阳极层,第一功能层100为空穴传输层,第二电极层400为阴极层,第二功能层200为电子传输层。也就是说,该制作方法包括:在量子点发光结构层21与阴极层之间形成电子传输层,以及在量子点发光结构层21与阳极层之间形成空穴传输层。
例如,在包括多个量子点发光结构层21的情况下,该多个量子点发光结构层21分别对应的多个第一电极层300彼此断开;并且,该多个量子点发光结构层可以共用第二电极层400,和/或共用第一功能层100,和/或共用第二功能层200。通过共用同一层,可以简化制作工艺。然而,在其它实施例中,第二电极层400、第一功能层100和第二功能层200中的至少一个也可以不是共用的。
需要说明的是,如图9所示制作方法中各结构的制作方法和设置方式可以分别采用以上任一实施例提供的制作方法中相同结构的制作方法和设置方式,重复之处不再赘述。
综上所述,在本公开至少一个实施例中,使第一功能层包括具有第一电极性离子的被处理区域或者使驱动基板的设置有第一电极层的区域呈现第一电极性,从而,利用第一电极性和第二电极性的相互吸引作用,在被处理区域形成第二电极性量子点层,由此形成量子点发光结构层的图案。该量子点显示面板的制作方法,容易实现对被处理区域的精确控制,从而可以精确控制量子点发光结构层图案的形状和位置,实现了量子点发光结构层的图案化并保证了图案的精确度,保证了量子点显示面板的显示品质。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种量子点显示面板的制作方法,包括:
    在基板上形成第一功能层;
    对所述第一功能层进行处理,使所述第一功能层包括被处理区域,所述被处理区域中具有第一电极性离子;
    在所述被处理区域形成第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
  2. 根据权利要求1所述的制作方法,其中,
    所述被处理区域在所述第一功能层被处理之前为待处理区域,所述第一电极性离子在所述被处理区域中的浓度大于在所述待处理区域中的浓度。
  3. 根据权利要求1或2所述的制作方法,其中,
    通过对所述第一功能层进行所述处理,使所述第一功能层包括所述被处理区域以及未被处理区域,所述未被处理区域位于所述被处理区域之外;
    所述第一电极性离子在所述被处理区域中的浓度大于在所述未被处理区域中的浓度。
  4. 根据权利要求1-3中任一项所述的制作方法,其中,所述第一功能层的材料包括光降解物质,还包括纳米粒子和体材料中的至少一种。
  5. 根据权利要求4所述的制作方法,其中,所述纳米粒子和所述体材料中的至少一种被配置为与所述光降解物质在所述第一功能层被处理后产生的物质发生作用以形成所述第一电极性离子。
  6. 根据权利要求1-5中任一项所述的制作方法,其中,所述对所述第一功能层进行处理,使所述第一功能层包括所述被处理区域,包括:
    采用紫外光对所述第一功能层进行照射,使所述第一功能层的被所述紫外光照射的区域形成所述被处理区域。
  7. 根据权利要求1-6中任一项所述的制作方法,其中,所述在所述被处理区域形成第二电极性量子点层,包括:
    在所述第一功能层上形成第二电极性量子点薄膜;
    通过对所述第二电极性量子点薄膜进行洗涤,除去所述第二电极性量子点薄膜包括的位于所述被处理区域外围的第二电极性量子点,以形成位于所 述被处理区域的第二电极性量子点层。
  8. 根据权利要求1-7中任一项所述的制作方法,还包括:
    在所述第二电极性量子点层上形成第一电极性量子点层,其中,所述第一电极性量子点层在第一功能层上的正投影位于所述被处理区域,并且所述第一电极性量子点层位于所述第二电极性量子点层的背离所述第一功能层的一侧。
  9. 根据权利要求8所述的制作方法,其中,所述在所述第二电极性量子点层上形成所述第一电极性量子点层,包括:
    在所述第二电极性量子点层上形成第一电极性量子点薄膜;
    通过对所述第一电极性量子点薄膜进行洗涤,除去所述第一电极性量子点薄膜包括的位于所述被处理区域外围的第一电极性量子点,以形成位于所述被处理区域的第一电极性量子点层。
  10. 根据权利要求8或9所述的制作方法,其中,
    所述量子点显示面板包括位于所述第一功能层的背离所述基板一侧的量子点发光结构层,所述量子点发光结构层包括所述第二电极性量子点层和所述第一电极性量子点层,
    所述制作方法还包括:对所述量子点发光结构层进行电性中和,使得所述量子点发光结构层对外不呈现电极性。
  11. 根据权利要求10所述的制作方法,还包括:
    在所述基板上形成第一电极层、第二电极层和第二功能层,其中,所述第一功能层位于所述第一电极层的背离所述基板的一侧,所述第二功能层位于所述量子点发光结构层的背离所述基板的一侧,所述第二电极层位于所述第二功能层的背离所述基板的一侧。
  12. 根据权利要求11所述的制作方法,其中,
    所述第一电极层为阴极层,所述第一功能层为电子传输层,所述第二功能层为空穴传输层,所述第二电极层为阳极层;或者
    所述第一电极层为阳极层,所述第一功能层为空穴传输层,所述第二功能层为电子传输层,所述第二电极层为阴极层。
  13. 根据权利要求1-10中任一项所述的制作方法,其中,所述第一功能层包括电子传输层,
    所述制作方法还包括:所述在基板上形成所述第一功能层之前,在所述基板上形成阴极层。
  14. 根据权利要求1-13中任一项所述的制作方法,其中,所述第二电极性量子点层直接接触所述第一功能层。
  15. 一种量子点显示面板的制作方法,包括:
    提供驱动基板,其中,所述驱动基板包括基板和位于所述基板上的第一电极层;
    通过对所述第一电极层施加电信号,使所述驱动基板的设置有所述第一电极层的区域呈现第一电极性;
    在所述第一电极层的背离所述基板的一侧形成第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
  16. 根据权利要求15所述的制作方法,其中,所述驱动基板还包括位于所述基板上的开关元件,所述开关元件与所述第一电极层电连接以对所述第一电极层施加电信号。
  17. 一种量子点显示面板,包括:
    基板;
    第一功能层,其设置在所述基板上,所述第一功能层具有被处理区域,所述第一功能层在所述被处理区域内具有第一电极性离子;以及
    量子点发光结构层,其设置在所述第一功能层的背离所述基板的一侧,其中,所述量子点发光结构层在所述第一功能层上的正投影位于所述被处理区域内,所述量子点发光结构层包括第二电极性量子点层,所述第二电极性和所述第一电极性的电性相反。
  18. 根据权利要求17所述的量子点显示面板,其中,
    所述第一功能层包括所述被处理区域以及未被处理区域,所述未被处理区域位于所述被处理区域之外;
    所述第一电极性离子在所述被处理区域中的浓度大于在所述未被处理区域中的浓度。
  19. 根据权利要求17或18所述的量子点显示面板,其中,所述第一功能层的材料包括光降解物质,还包括纳米粒子和体材料中的至少一种,所述第一电极性为正电极性。
  20. 一种显示装置,包括权利要求17-19中任意一项所述的量子点显示面板。
PCT/CN2019/126345 2019-01-03 2019-12-18 量子点显示面板及其制作方法、显示装置 WO2020140761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/767,900 US11611015B2 (en) 2019-01-03 2019-12-18 Quantum dot display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005380.0A CN109671874B (zh) 2019-01-03 2019-01-03 一种量子点显示面板及其制作方法、显示装置
CN201910005380.0 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140761A1 true WO2020140761A1 (zh) 2020-07-09

Family

ID=66149293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126345 WO2020140761A1 (zh) 2019-01-03 2019-12-18 量子点显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11611015B2 (zh)
CN (1) CN109671874B (zh)
WO (1) WO2020140761A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671874B (zh) * 2019-01-03 2020-04-28 京东方科技集团股份有限公司 一种量子点显示面板及其制作方法、显示装置
CN114342560B (zh) * 2019-09-04 2024-06-21 夏普株式会社 发光元件、发光装置、发光元件的制造方法
CN112234149B (zh) * 2020-10-14 2024-04-16 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100093858A (ko) * 2009-02-17 2010-08-26 삼성전자주식회사 양자점층 제조 방법 및 이를 적용하여 제조된 양자점 발광소자
CN104021735A (zh) * 2014-05-23 2014-09-03 京东方科技集团股份有限公司 一种量子点发光显示屏及其制备方法
CN105514238A (zh) * 2016-02-04 2016-04-20 天津理工大学 一种基于碳量子点的电致发光器件及其制备方法
US20170115561A1 (en) * 2015-10-21 2017-04-27 Samsung Electronics Co., Ltd. Photosensitive compositions and quantum dot polymer composite patterns including the same
CN107799672A (zh) * 2017-10-30 2018-03-13 京东方科技集团股份有限公司 量子点层图案化的方法、量子点发光器件及其制作方法
CN109671874A (zh) * 2019-01-03 2019-04-23 京东方科技集团股份有限公司 一种量子点显示面板及其制作方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907176B (zh) * 2010-05-24 2015-10-07 株式会社村田制作所 发光元件、发光元件的制造方法以及显示装置
CN110023236A (zh) * 2016-11-29 2019-07-16 南洋理工大学 基于金属/碳材料的多层纳米结构
CN106816539B (zh) * 2016-12-08 2018-10-12 瑞声科技(南京)有限公司 量子点发光二极管装置及其制造方法
US10978658B2 (en) * 2018-08-24 2021-04-13 Samsung Electronics Co., Ltd. Light emitting device and display device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100093858A (ko) * 2009-02-17 2010-08-26 삼성전자주식회사 양자점층 제조 방법 및 이를 적용하여 제조된 양자점 발광소자
CN104021735A (zh) * 2014-05-23 2014-09-03 京东方科技集团股份有限公司 一种量子点发光显示屏及其制备方法
US20170115561A1 (en) * 2015-10-21 2017-04-27 Samsung Electronics Co., Ltd. Photosensitive compositions and quantum dot polymer composite patterns including the same
CN105514238A (zh) * 2016-02-04 2016-04-20 天津理工大学 一种基于碳量子点的电致发光器件及其制备方法
CN107799672A (zh) * 2017-10-30 2018-03-13 京东方科技集团股份有限公司 量子点层图案化的方法、量子点发光器件及其制作方法
CN109671874A (zh) * 2019-01-03 2019-04-23 京东方科技集团股份有限公司 一种量子点显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US11611015B2 (en) 2023-03-21
CN109671874A (zh) 2019-04-23
US20210226084A1 (en) 2021-07-22
CN109671874B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2020140761A1 (zh) 量子点显示面板及其制作方法、显示装置
US9748317B2 (en) Organic light emitting display device, organic light emitting display panel and method of manufacturing the same
WO2018120365A1 (zh) Oled背板及其制作方法
KR101680780B1 (ko) 더블 디스플레이, 더블 디스플레이의 제어장치 및 그 제조방법
CN105374748B (zh) 薄膜晶体管基板的制作方法及制得的薄膜晶体管基板
CN107394062B (zh) 一种有机发光二极管显示面板及其制作方法、显示装置
US7582894B2 (en) Organic thin film transistor
CN108565352B (zh) 有机发光二极管显示面板及其制造方法、显示装置
CN109192661A (zh) 薄膜晶体管及其制备方法、阵列基板和显示面板
US9679953B2 (en) WOLED back panel and method of manufacturing the same
CN104218041A (zh) 阵列基板及制备方法和显示装置
EP3528299A1 (en) Transparent oled display and manufacturing method therefor
WO2015096292A1 (zh) 阵列基板及其制造方法、显示装置
US20180034007A1 (en) Electrode Structure and Organic Light Emitting Unit and Manufacturing Method Thereof
US11711948B2 (en) Display panel, preparation method thereof, and display apparatus
CN110400861A (zh) 显示面板的制备方法、显示面板及显示装置
WO2019090837A1 (zh) 双面显示器及其制作方法
WO2016119380A1 (zh) 薄膜晶体管及制备方法、阵列基板及制备方法、显示装置
US11239293B2 (en) Array substrate, display panel, display device and method for preparing array substrate
CN113725234B (zh) 像素驱动电路及其制备方法、阵列基板和显示装置
CN110534660A (zh) 一种显示基板及制备方法、显示装置
CN110164944A (zh) 显示基板及其制造方法、掩膜版、显示装置
CN110459582A (zh) 显示面板及其制备方法、驱动控制方法、显示装置
CN104992961B (zh) 有机电致发光晶体管阵列基板及其制作方法、显示装置
US20170221967A1 (en) Flexible array substrate structure and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906806

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19906806

Country of ref document: EP

Kind code of ref document: A1