WO2020140744A1 - 光栅基板、显示基板、显示装置及其显示方法 - Google Patents

光栅基板、显示基板、显示装置及其显示方法 Download PDF

Info

Publication number
WO2020140744A1
WO2020140744A1 PCT/CN2019/125836 CN2019125836W WO2020140744A1 WO 2020140744 A1 WO2020140744 A1 WO 2020140744A1 CN 2019125836 W CN2019125836 W CN 2019125836W WO 2020140744 A1 WO2020140744 A1 WO 2020140744A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
control layer
grating
particles
substrate
Prior art date
Application number
PCT/CN2019/125836
Other languages
English (en)
French (fr)
Inventor
陶文昌
李宗祥
林琳琳
邱鑫茂
刘祖文
王进
石常洪
吕耀朝
廖加敏
刘耀
陈曦
周敏
洪贵春
吴振钿
程浩
黄雅雯
庄子华
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/956,074 priority Critical patent/US11774776B2/en
Publication of WO2020140744A1 publication Critical patent/WO2020140744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/1673Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by magnetophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a grating substrate, a display substrate, a display device, and a display method thereof.
  • the naked-eye 3D display screen enables users to view 3D images with naked eyes.
  • the current naked-eye 3D display technology mainly includes parallax barrier display technology and prism display technology.
  • the embodiments of the present disclosure provide a grating substrate, a display substrate, a display device, and a display method thereof.
  • the technical solution is as follows:
  • a grating substrate including: a first substrate substrate and a plurality of grating units located on the first substrate substrate;
  • the grating unit includes two control layers, a grid structure located between the two control layers, and a movable structure located in a closed cavity enclosed by the grid structure and the two control layers Particles, the two control layers include a first control layer and a second control layer, the first control layer is located on a side of the second control layer away from the first base substrate, the two control layers The layer is used to control the movement of the plurality of particles;
  • the particles satisfy at least one of the following: the refractive index of the particles is less than the refractive index of the first control layer; the particles are non-transparent particles.
  • the first control layer includes a first transparent electrode
  • the second control layer includes a second transparent electrode
  • the particles are charged particles
  • the refractive index of the particles is less than the refractive index of the first control layer, including: the refractive index of the charged particles is less than the refractive index of the first transparent electrode.
  • the first control layer includes a stacked first transparent electrode and a reflective film, the reflective film is located on a side of the first transparent electrode close to the first base substrate, and the second control layer
  • the layer includes a second transparent electrode, and the particles are charged particles
  • the refractive index of the particles is less than the refractive index of the first control layer, including: the refractive index of the charged particles is less than the refractive index of the reflective film.
  • the grating unit further includes a driving circuit for loading a voltage between the first transparent electrode and the second transparent electrode.
  • a surface of the first control layer close to the second control layer has a plurality of convex curved surfaces arranged in an array.
  • the convex curved surface is one of a hemispherical surface and a semi-ellipsoidal surface.
  • the particles are black ink particles.
  • the plurality of grating units are arranged in a matrix.
  • the plurality of grating units are arranged in a matrix
  • a surface of the first control layer close to the second control layer has a plurality of convex curved surfaces arranged in an array, the convex curved surface is one of a hemispherical surface and a semi-ellipsoidal surface, and the particles are black ink particles.
  • a display substrate including: a light-emitting substrate and the grating substrate according to any one of the aspects, the light-emitting substrate includes a second base substrate and a plurality of light-emitting elements on the second base substrate Unit, the light-emitting substrate and the grating substrate are arranged on a box, and the plurality of light-emitting units and the plurality of grating units in the grating substrate are arranged in one-to-one correspondence.
  • the first control layer in the grating unit includes a first transparent electrode
  • the light emitting unit includes a third electrode, a light emitting layer, and a fourth transparent electrode stacked in a direction away from the second base substrate ;
  • the fourth transparent electrode is multiplexed with the first transparent electrode.
  • the first control layer in the grating unit includes a first transparent electrode
  • the light emitting unit includes a third electrode, a light emitting layer, and a fourth transparent electrode stacked in a direction away from the second base substrate And insulating layer;
  • the first transparent electrode is located on a side of the insulating layer away from the second base substrate.
  • the display substrate further includes a retaining wall structure between two adjacent light emitting units, one end of the retaining wall structure is connected to the first substrate substrate in the grating substrate, and the retaining wall structure Is connected to the second base substrate.
  • the retaining wall structure is a non-transparent structure.
  • the display substrate is one of an organic light emitting diode display substrate and a quantum dot light emitting diode.
  • a display device including: the display substrate according to any one of the other aspects.
  • a display method for a display device for the display device according to yet another aspect, includes a plurality of display units arranged in a matrix, the display units including stacked Light emitting unit and grating unit, the method includes:
  • the display device When the display device is used to display a three-dimensional image, acquire the three-dimensional display direction of the display device;
  • the three-dimensional display direction is the row arrangement direction of the plurality of display units, perform a darkening operation on each display unit located in the target column, so that each display unit located in the target column is in a dark state;
  • the three-dimensional display direction is the column arrangement direction of the plurality of display units, perform a darkening operation on each display unit located in the target row, so that each display unit located in the target row is in a dark state;
  • the darkening operation includes:
  • the target surface includes one of the inner surface of the first control layer and the inner surface of the second control layer; when the refractive index of the particles is less than the refractive index of the first control layer At this time, the target surface includes the inner surface of the first control layer.
  • the first control layer includes a first transparent electrode
  • the second control layer includes a second transparent electrode
  • the particles are charged particles
  • the refractive index of the charged particles is smaller than that of the first transparent electrode Refractive index
  • the control action of the first control layer and the second control layer in the grating unit causes a plurality of particles in the enclosed cavity of the grating unit to move to the target surface, including:
  • the first control layer includes a stacked first transparent electrode and a reflective film, the reflective film is located on a side of the first transparent electrode close to the first base substrate, and the second control layer includes A second transparent electrode, the particles are charged particles, and the refractive index of the charged particles is smaller than the refractive index of the reflective film;
  • the control action of the first control layer and the second control layer in the grating unit causes a plurality of particles in the enclosed cavity of the grating unit to move to the target surface, including:
  • the method further includes:
  • a brightening operation is performed on each display unit, wherein the brightening operation includes:
  • a plurality of particles located in the enclosed cavity of the grating unit are away from the target surface, so that the first control layer transmits the light emitted from the light emitting unit .
  • FIG. 1 is a schematic structural diagram of a grating substrate provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a grating unit provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another grating unit provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is a display schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is a display schematic diagram of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display unit provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another display unit provided by an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a display method of a display device provided by an embodiment of the present disclosure.
  • the process of realizing naked-eye 3D display through parallax barrier display technology includes: setting a grating substrate (usually a slit grating) on the light exit side of the display panel.
  • the grating substrate includes a plurality of grids arranged in parallel.
  • the connection line between the left eye and the right eye is parallel to the arrangement direction of a plurality of column-shaped grids, the grating substrate can form a parallax barrier, so that there is a certain difference between the left-eye visual image and the right-eye visual image, Furthermore, the 3D display effect of the display panel is achieved through the parallax effect of the left eye and the right eye.
  • the 3D display effect can be presented to the user's eyes only when the line connecting the left and right eyes of the user is parallel to the arrangement direction of a plurality of column grids. Therefore, the 3D display flexibility of the display panel is currently poor.
  • FIG. 1 is a schematic structural diagram of a grating substrate provided by an embodiment of the present disclosure.
  • the grating substrate 10 includes a first base substrate 101 and a plurality of grating units 102 located on the first base substrate 101.
  • the plurality of grating units 102 in the grating substrate 10 are arranged in a matrix.
  • the grating unit 102 includes two control layers, a grid structure 1021 located between the two control layers, and a movable structure Q in a closed cavity Q surrounded by the grid structure 1021 and the two control layers Multiple particles M.
  • the two control layers include a first control layer 1022 and a second control layer 1023.
  • the first control layer 1022 is located on the side of the second control layer 1023 away from the first base substrate 101.
  • Two control layers are used to control the movement of multiple particles.
  • the two control layers may be used to control multiple particles M to move closer to or away from the first control layer 1022.
  • the particle M satisfies at least one of the following: the refractive index of the particle M is smaller than the refractive index of the first control layer 1022; the particle M is a non-transparent particle.
  • the refractive index of the particle M is smaller than the refractive index of the first control layer 1022.
  • the refractive index of the particles is less than the refractive index of the first control layer (ie, the first control layer is an optically dense medium, and the particles are optically sparse media)
  • the light incident from the direction of the first control layer away from the second control layer on the side of the first control layer close to the second control layer has an incident angle ⁇ greater than or equal to the critical angle (ie sin ⁇ ⁇ n 1 / n 2 , n 1 is the refractive index of the particle, and n 2 is the refractive index of the first control layer), the light is totally reflected on the side of the first control layer close to the second control layer.
  • the light can be transmitted from the first control layer, the enclosed cavity and the second control layer in sequence.
  • the particles are transparent particles
  • the two control layers control multiple particles to move to the inner surface of the second control layer
  • the light can also sequentially pass from the first control layer, the closed cavity, and the second control layer transmission.
  • the particles M are non-transparent particles.
  • the particles may be black ink particles.
  • the black ink particles move to the inner surface of the first control layer or the second control layer, the black ink particles can completely absorb the light incident on the grating unit, that is, the light cannot be transmitted from the grating unit.
  • the black ink particles are dispersed in the closed cavity, the light incident on the grating unit can be transmitted from the grating unit.
  • the refractive index of the particle M is smaller than the refractive index of the first control layer 1022, and the particle M is a non-transparent particle.
  • the light emitting principle of the grating unit can refer to the related descriptions of the first case and the second case above, and the embodiments of the present disclosure will not be repeated here.
  • the grating substrate controls the movement of multiple particles through the two control layers in the grating unit.
  • the grating unit in the target row in the grating substrate cannot transmit light
  • the grating unit in the target row can be equivalent to a grating arranged along the column arrangement direction of the grating substrate.
  • the grating unit in the target column in the grating substrate cannot transmit light
  • the grating unit in the target column can be equivalent to a grating arranged along the row arrangement direction of the grating substrate.
  • the grating substrate provided by the embodiment of the present disclosure can realize the switching between the horizontal and vertical directions of the grating, thereby improving the flexibility of 3D display of the display substrate.
  • FIG. 2 is a schematic structural diagram of a grating unit provided by an embodiment of the present disclosure.
  • the first control layer 1022 includes a first transparent electrode 22a.
  • the second control layer 1023 includes a second transparent electrode 23a.
  • Particle M is a charged particle.
  • the refractive index of the particles in the closed cavity Q is smaller than the refractive index of the first control layer 1022, including: the refractive index of the charged particles M in the closed cavity Q is smaller than the refractive index of the first transparent electrode 22a.
  • the charged particles move to the inner surface of the first transparent electrode, and the grating unit controls the second control away from the first control layer.
  • the light incident in the direction of the layer is totally reflected.
  • the charged particles are dispersed in the enclosed cavity, and the grating unit transmits light incident from the direction of the first control layer away from the second control layer at this time
  • the second voltage is 0, that is, the potentials on the first transparent electrode and the second transparent electrode are equal.
  • the charged particles are transparent particles, the charged particles are moved to the inner surface of the second transparent electrode by applying a voltage between the first transparent electrode and the second transparent electrode.
  • FIG. 3 is a schematic structural diagram of another grating unit provided by an embodiment of the present disclosure.
  • the first control layer 1022 includes a first transparent electrode 22a and a reflective film 22b that are stacked.
  • the reflective film 22b is located on the side of the first transparent electrode 22a close to the first base substrate 101.
  • the second control layer 1023 includes a second transparent electrode 23a.
  • Particle M is a charged particle.
  • the refractive index of the particles in the closed cavity Q is smaller than the refractive index of the first control layer 1022, including: the refractive index of the charged particles M in the closed cavity Q is smaller than the refractive index of the reflective film 22b.
  • a surface of the first control layer close to the second control layer has a plurality of convex curved surfaces arranged in an array.
  • a surface of the first transparent electrode 22 a close to the second transparent electrode 23 a is composed of a plurality of convex curved surfaces arranged in an array.
  • a plurality of convex curved surfaces arranged in an array may be formed on the side of the first transparent electrode close to the second transparent electrode by means of imprinting or a patterning process.
  • the patterning process includes: photoresist coating, exposure, development, etching and photoresist stripping.
  • the surface of the reflective film 22b near the second transparent electrode 23a is composed of a plurality of convex curved surfaces arranged in an array.
  • the reflective film may be a hemispherical reflective film.
  • the first control layer is obtained by attaching a hemispherical reflective film on the side of the first transparent electrode close to the second transparent electrode.
  • the convex curved surface may be a hemispherical surface or a semi-ellipsoidal surface, or may be other convex curved surfaces.
  • the embodiment of the present disclosure does not limit the shape of the convex curved surface.
  • the surface of the first control layer close to the second control layer (that is, the inner surface of the first control layer) is composed of a plurality of convex curved surfaces arranged in an array, when light is away from the first control layer away from the second control layer When the side of is incident on the grating unit, the incident angle of the light on the inner surface of the first control layer can be increased. When the charged particles move to the inner surface of the first control layer, it can be guaranteed that the light is totally reflected on the inner surface of the first control layer.
  • the grating unit further includes a driving circuit.
  • the driving circuit is used to apply a voltage between the first transparent electrode and the second transparent electrode.
  • the driving circuit includes two mutually insulated voltage control units on the first base substrate 101, and the two voltage control units are respectively used for the first transparent electrode and the second transparent electrode powered by.
  • the first transparent electrode 22a is electrically connected to the voltage control unit D1
  • the second transparent electrode 23a is electrically connected to the voltage control unit D2. That is, the voltage control unit D1 is used to supply power to the first transparent electrode 22a, and the voltage control unit D2 is used to supply power to the second transparent electrode 23a.
  • the first control layer and the second control layer may also be a magnetic field control structure, then the particles in the closed cavity are magnetic particles.
  • the light emitting principle of the grating unit can be referred to Figure 2 or The light emitting principle of the grating unit shown in FIG. 3 will not be repeated here in the embodiments of the present disclosure.
  • the grating substrate controls the movement of multiple particles through the two control layers in the grating unit.
  • the grating unit in the target row in the grating substrate cannot transmit light
  • the grating unit in the target row can be equivalent to a grating arranged along the column arrangement direction of the grating substrate.
  • the grating unit in the target column in the grating substrate cannot transmit light
  • the grating unit in the target column can be equivalent to a grating arranged along the row arrangement direction of the grating substrate.
  • the grating substrate provided by the embodiment of the present disclosure can realize the switching between the horizontal and vertical directions of the grating, thereby improving the flexibility of 3D display of the display substrate.
  • the display substrate includes a light-emitting substrate 20 and a grating substrate 10.
  • the grating substrate 10 includes the grating unit shown in FIG. 3 as an example for description.
  • the light emitting substrate 20 includes a second base substrate 201 and a plurality of light emitting units 202 located on the second base substrate 201.
  • the light emitting substrate 20 and the grating substrate 10 are arranged on the box, that is, the second base substrate 201 is located on the side of the light emitting unit 202 away from the first base substrate 101, and the first base substrate 101 is located on the grating unit 102 away from the second base substrate 201 Side.
  • the plurality of light emitting units 202 in the light emitting substrate 20 correspond to the plurality of grating units 102 in the grating substrate 10 in one-to-one correspondence.
  • the corresponding one light-emitting unit 202 and one grating unit 102 are referred to as one display unit X, that is, one display unit X includes one light-emitting unit 202 and one grating unit 102 arranged in a stack.
  • One display unit can correspond to one pixel.
  • the display unit may correspond to red pixels, green pixels, or blue pixels.
  • the display state of the display unit is bright.
  • the display state of the display unit is a dark state.
  • FIG. 5 is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • the multi-column display units A1 in the dark state may be equivalent to gratings arranged along the first direction x.
  • a 3D display effect can be achieved in the first direction x, that is, when the line connecting the left and right eyes of the user is parallel to the first direction x, the user A 3D display effect can be presented in the eyes.
  • FIG. 6 is a schematic diagram of another display substrate provided by an embodiment of the present disclosure.
  • the multi-row display units B1 in the dark state may be equivalent to gratings arranged along the second direction y.
  • a 3D display effect can be achieved in the second direction y, that is, when the line connecting the left and right eyes of the user is parallel to the second direction y, the user A 3D display effect can be presented in the eyes.
  • the first direction is the row arrangement direction of the plurality of display units (that is, the lateral direction of the display substrate), and the second direction is the row arrangement direction of the plurality of display units (that is, the longitudinal direction of the display substrate).
  • FIG. 7 is a schematic structural diagram of a display unit provided by an embodiment of the present disclosure.
  • the light emitting unit 202 includes a third electrode 2021, a light emitting layer 2022, and a fourth transparent electrode 2023 that are stacked in a direction away from the second base substrate 201.
  • the fourth transparent electrode 2023 is multiplexed with the first transparent electrode 22a.
  • the manufacturing process of the driving circuit can be simplified, thereby simplifying the manufacturing process of the grating substrate.
  • FIG. 8 is a schematic structural diagram of another display unit provided by an embodiment of the present disclosure.
  • the light emitting unit 202 includes a third electrode 2021, a light emitting layer 2022, a fourth transparent electrode 2023, and an insulating layer 2024 that are stacked in a direction away from the second base substrate 201.
  • the first transparent electrode 22a is located on the side of the insulating layer 2024 away from the second base substrate 201.
  • the third electrode and the fourth transparent electrode are one of the anode and the cathode, respectively.
  • the light emitting layer includes a first carrier injection layer, a first carrier transport layer, a light emitting material layer, a second carrier transport layer, and a second carrier injection layer stacked in a direction away from the second base substrate .
  • the third electrode is an anode and the fourth transparent electrode is a cathode
  • the first carrier is a hole and the second carrier is an electron.
  • the third electrode is a cathode and the fourth transparent electrode is an anode
  • the first carrier is an electron and the second carrier is a hole.
  • the light-emitting material layer may be prepared from an organic light-emitting material, and the above display substrate is an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display substrate.
  • the light emitting material layer may also be prepared from quantum dot materials, and the display substrate is a quantum dot light emitting diode (Quantum Dot Light Emitting Diodes, QLED) display substrate.
  • the display unit further includes a thin-film transistor (Thin-film transistor, TFT) 203.
  • TFT thin-film transistor
  • the TFT 203 is located between the second base substrate 201 and the light emitting unit 202.
  • the TFT may be a top-gate structure or a bottom-gate structure, which is not limited in the embodiments of the present disclosure.
  • the light-emitting unit may also be a light-emitting unit in a liquid crystal display panel.
  • the light-emitting unit includes an array substrate, a color filter substrate, and a liquid crystal layer between the array substrate and the color filter substrate.
  • a blocking wall structure 30 is provided between any two adjacent display units X, and the blocking wall structure 30 is a non-light-transmitting structure. That is, the display substrate further includes a retaining wall structure 30 between two adjacent light emitting units 202. One end of the retaining wall structure 30 is connected to the first base substrate 101 in the grating substrate 10, and the other end of the retaining wall structure 30 is connected to the second base substrate 201 in the light emitting substrate 20.
  • the display substrate provided by the embodiments of the present disclosure includes the grating unit and the light emitting unit in the display unit.
  • the movement of multiple particles is controlled by the two control layers in the grating unit, so that the display unit can switch between the dark state and the bright state.
  • the display unit in the target row in the display substrate is in a dark state
  • the multi-row display unit in the dark state may be equivalent to a grating arranged along the column arrangement direction of the display unit.
  • the display unit located in the target column in the display substrate is in a dark state
  • the multi-column display unit in the dark state may be equivalent to a grating arranged along the row arrangement direction of the display unit.
  • the grating substrate can realize the switching between the horizontal and vertical directions of the grating, and thus can realize the 3D display effect of the display substrate in different directions, which improves the flexibility of the 3D display of the display substrate.
  • An embodiment of the present disclosure provides a display device, including: the display substrate shown in FIG. 4.
  • the display device provided by the embodiments of the present disclosure may be an OLED display device, a QLED display device, or a liquid crystal display device.
  • it can be an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.
  • the display device includes the grating unit and the light emitting unit in the display unit.
  • the movement of multiple particles is controlled by the two control layers in the grating unit, so that the display unit can switch between the dark state and the bright state.
  • the multi-row display unit in the dark state may be equivalent to a grating arranged along the column arrangement direction of the display unit.
  • the multi-column display unit in the dark state may be equivalent to a grating arranged along the row arrangement direction of the display unit.
  • the grating substrate can realize the switching between the horizontal and vertical directions of the grating, and thus can realize the 3D display effect of the display device in different directions, and the flexibility of the 3D display of the display device is improved.
  • FIG. 9 is a flowchart of a display method of a display device provided by an embodiment of the present disclosure. Used in the above display device.
  • the display device includes a plurality of display units arranged in a matrix. As shown in Figure 9, the method includes the following steps:
  • step 901 when the display device is used to display a three-dimensional image, the three-dimensional display direction of the display device is acquired.
  • the display direction of the image on the display device may be detected by the built-in sensor of the display device.
  • the three-dimensional display direction is determined as the row arrangement direction of the plurality of display units in the display device.
  • the three-dimensional display direction is determined as the arrangement direction of the plurality of display units in the display device.
  • step 902 when the three-dimensional display direction is the row arrangement direction of the plurality of display units, a darkening operation is performed on each display unit located in the target column, so that each display unit located in the target column is in a dark state.
  • the multi-column display unit A1 in the dark state may be equivalent to a grating arranged along the first direction x.
  • the display device displays an image through the display unit A2 in a bright state, it can achieve a 3D display effect in the first direction x. That is, when the line connecting the left and right eyes of the user is parallel to the first direction x, the 3D display effect can be presented in the user's eyes.
  • the first direction is the row arrangement direction of the plurality of display units (that is, the lateral direction of the display device).
  • step 903 when the three-dimensional display direction is the column arrangement direction of the plurality of display units, a darkening operation is performed on each display unit located in the target row, so that each display unit located in the target row is in a dark state.
  • the multi-row display unit B1 in the dark state may be equivalent to a grating arranged along the second direction y.
  • the display substrate displays an image through the display unit B2 in a bright state
  • a 3D display effect can be achieved in the second direction y. That is, when the line connecting the left and right eyes of the user is parallel to the second direction y, the 3D display effect can be presented in the user's eyes.
  • the second direction is the row arrangement direction of the plurality of display units (that is, the longitudinal direction of the display device).
  • the darkening operation includes: controlling the first control layer and the second control layer in the grating unit to move a plurality of particles in the enclosed cavity of the grating unit to the target surface, so that the grating unit cannot transmit light.
  • the target surface includes one of the inner surface of the first control layer and the inner surface of the second control layer.
  • the darkening operation includes: by controlling the first control layer and the second control layer in the grating unit, a plurality of particles in the enclosed cavity of the grating unit are moved to the inner surface of the first control layer or the second control layer ,
  • the non-transparent particles on the inner surface of the first control layer or on the inner surface of the second control layer absorb the light emitted from the light-emitting unit.
  • the target surface includes the inner surface of the first control layer.
  • the darkening operation includes: by controlling the first control layer and the second control layer in the grating unit, a plurality of particles located in the closed cavity of the grating unit are moved to the inner surface of the first control layer to enable the first control
  • the layer totally reflects the light emitted from the light emitting unit.
  • the inner surface of the first control layer refers to the surface of the first control layer opposite to the second control layer
  • the inner surface of the second control layer refers to the surface of the second control layer opposite to the first control layer.
  • the first control layer 1022 in the grating unit includes a first transparent electrode 22a
  • the second control layer 1023 includes a second transparent electrode 23a
  • the particles M are charged particles.
  • the refractive index of the charged particles is smaller than the refractive index of the first transparent electrode.
  • the first control layer 1022 includes a first transparent electrode 22a and a reflective film 22b that are stacked.
  • the reflective film 22b is located on the side of the first transparent electrode 22a close to the first base substrate 101.
  • the second control layer 1023 includes a second transparent electrode 23a.
  • Particle M is a charged particle.
  • the refractive index of the charged particles is smaller than the refractive index of the reflective film.
  • the display device provided by the embodiment of the present disclosure can also be used to display a two-dimensional image, and the two-dimensional image display mode and the three-dimensional image display mode can be switched.
  • a brightening operation is performed on each display unit.
  • the brightening operation includes: by controlling the first control layer and the second control layer in the grating unit, a plurality of particles in the enclosed cavity of the grating unit are away from the target surface, and the first control layer is transmitted through the light emitting unit Outgoing light.
  • the brightening operation includes: by applying a second voltage between the first transparent electrode and the second transparent electrode, the charged particles are dispersed in the enclosed cavity, and the transmission of the grating unit is away from the first control layer away from the second
  • the second voltage is 0 at this time, that is, the potentials on the first transparent electrode and the second transparent electrode are equal.
  • the charged particles are transparent particles, the charged particles are moved to the inner surface of the second transparent electrode by applying a voltage between the first transparent electrode and the second transparent electrode.
  • the multi-line display unit in the dark state when the display unit in the target row in the display device is in a dark state, the multi-line display unit in the dark state can be equivalent to a column along the display unit Gratings arranged in the arrangement direction.
  • the display unit located in the target column in the display device is in a dark state
  • the multi-column display unit in the dark state may be equivalent to a grating arranged along the row arrangement direction of the display unit. Therefore, the display device provided by the embodiment of the present disclosure realizes the switching between the horizontal and vertical directions of the raster, and thus can realize the 3D display effect of the display device in different directions, and improves the flexibility of the 3D display.
  • An embodiment of the present disclosure provides a computer storage medium.
  • a computer program in the storage medium is executed by a processor, a display method of the display device shown in FIG. 9 can be executed.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光栅基板(10)、显示基板、显示装置及其显示方法,属于显示技术领域。光栅基板(10)包括:第一衬底基板(101)以及位于第一衬底基板(101)上的多个光栅单元(102)。光栅单元(102)包括两个控制层(1022,1023),位于两个控制层(1022,1023)之间的格挡结构(1021),以及位于由格挡结构(1021)与两个控制层(1022,1023)围成的封闭腔体(Q)内的可移动的多个粒子(M)。两个控制层(1022,1023)包括第一控制层(1022)和第二控制层(1023)。第一控制层(1022)位于第二控制层(1023)远离第一衬底基板(101)的一侧。两个控制层(1022,1023)用于控制多个粒子(M)的运动。其中,粒子(M)满足以下至少一者:粒子(M)的折射率小于第一控制层(1022)的折射率;粒子(M)为非透明粒子。光栅基板(10)实现了光栅的横向和纵向之间的切换,进而能够在不同方向上实现显示基板的3D显示效果,提高了3D显示的灵活性。

Description

光栅基板、显示基板、显示装置及其显示方法
本公开要求于2019年01月03日提交的申请号为201910005789.2、发明名称为“显示基板、显示装置及其显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种光栅基板、显示基板、显示装置及其显示方法。
背景技术
随着显示技术的快速发展,目前研发出了采用裸眼三维(Three Dimensions,3D)显示技术的裸眼3D显示屏。裸眼3D显示屏使得用户能够在裸眼的情况下观看到3D图像。目前的裸眼3D显示技术主要包括视差光栅式显示技术和棱镜式显示技术。
发明内容
本公开实施例提供了一种光栅基板、显示基板、显示装置及其显示方法。所述技术方案如下:
一方面,提供了一种光栅基板,包括:第一衬底基板以及位于所述第一衬底基板上的多个光栅单元;
所述光栅单元包括两个控制层,位于所述两个控制层之间的格挡结构,以及位于由所述格挡结构与所述两个控制层围成的封闭腔体内的可移动的多个粒子,所述两个控制层包括第一控制层和第二控制层,所述第一控制层位于所述第二控制层远离所述第一衬底基板的一侧,所述两个控制层用于控制所述多个粒子的运动;
其中,所述粒子满足以下至少一者:所述粒子的折射率小于所述第一控制层的折射率;所述粒子为非透明粒子。
可选地,所述第一控制层包括第一透明电极,所述第二控制层包括第二透明电极,所述粒子为带电粒子;
所述粒子的折射率小于所述第一控制层的折射率,包括:所述带电粒子的折射率小于所述第一透明电极的折射率。
可选地,所述第一控制层包括层叠设置的第一透明电极和反射膜,所述反射膜位于所述第一透明电极靠近所述第一衬底基板的一侧,所述第二控制层包括第二透明电极,所述粒子为带电粒子;
所述粒子的折射率小于所述第一控制层的折射率,包括:所述带电粒子的折射率小于所述反射膜的折射率。
可选地,所述光栅单元中还包括驱动电路,所述驱动电路用于在所述第一透明电极和所述第二透明电极之间加载电压。
可选地,所述第一控制层靠近所述第二控制层的一面具有阵列排布的多个凸曲面。
可选地,所述凸曲面为半球面和半椭球面中的一种。
可选地,所述粒子为黑色墨水粒子。
可选地,所述多个光栅单元呈矩阵状排布。
可选地,所述多个光栅单元呈矩阵状排布;
所述第一控制层靠近所述第二控制层的一面具有阵列排布的多个凸曲面,所述凸曲面为半球面和半椭球面中的一种,所述粒子为黑色墨水粒子。
另一方面,提供了一种显示基板,包括:发光基板和一方面任一所述的光栅基板,所述发光基板包括第二衬底基板以及位于所述第二衬底基板上的多个发光单元,所述发光基板与所述光栅基板对盒设置,且所述多个发光单元与所述光栅基板中的多个光栅单元一一对应设置。
可选地,所述光栅单元中的第一控制层包括第一透明电极,所述发光单元包括沿远离所述第二衬底基板的方向层叠设置的第三电极、发光层和第四透明电极;
所述第四透明电极与所述第一透明电极复用。
可选地,所述光栅单元中的第一控制层包括第一透明电极,所述发光单元包括沿远离所述第二衬底基板的方向层叠设置的第三电极、发光层、第四透明电极和绝缘层;
所述第一透明电极位于所述绝缘层远离所述第二衬底基板的一侧。
可选地,所述显示基板还包括位于相邻两个发光单元之间的挡墙结构,所述挡墙结构的一端与所述光栅基板中的第一衬底基板连接,所述挡墙结构的另 一端与所述第二衬底基板连接。
可选地,所述挡墙结构为非透光结构。
可选地,所述显示基板为有机发光二极管显示基板和量子点发光二极管中的一种。
又一方面,提供了一种显示装置,包括:如另一方面任一所述的显示基板。
再一方面,提供了一种显示装置的显示方法,用于如又一方面所述的显示装置,所述显示装置包括呈矩阵状排布的多个显示单元,所述显示单元包括层叠设置的发光单元和光栅单元,所述方法包括:
当所述显示装置用于显示三维图像时,获取所述显示装置的三维显示方向;
当所述三维显示方向为所述多个显示单元的行排布方向,对位于目标列的每个显示单元执行暗态化操作,使位于所述目标列的每个显示单元呈暗态;
当所述三维显示方向为所述多个显示单元的列排布方向,对位于目标行的每个显示单元执行暗态化操作,使位于所述目标行的每个显示单元呈暗态;
其中,所述暗态化操作包括:
通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,使所述光栅单元无法透射光线;当所述粒子为非透明粒子时,所述目标面包括所述第一控制层的内表面和所述第二控制层的内表面中的一面;当所述粒子的折射率小于所述第一控制层的折射率时,所述目标面包括所述第一控制层的内表面。
可选地,所述第一控制层包括第一透明电极,所述第二控制层包括第二透明电极,所述粒子为带电粒子,所述带电粒子的折射率小于所述第一透明电极的折射率;
所述通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,包括:
通过在所述第一透明电极和所述第二透明电极之间加载第一电压,使位于所述封闭腔体内的多个粒子移动至所述第一透明电极靠近所述第二控制层的一面。
可选地,所述第一控制层包括层叠设置的第一透明电极和反射膜,所述反射膜位于所述第一透明电极靠近第一衬底基板的一侧,所述第二控制层包括第二透明电极,所述粒子为带电粒子,所述带电粒子的折射率小于所述反射膜的折射率;
所述通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,包括:
通过在所述第一透明电极和所述第二透明电极之间加载第一电压,使位于所述封闭腔体内的多个粒子移动至所述反射膜靠近所述第二控制层的一面。
可选地,所述方法还包括:
当所述显示装置用于显示二维图像时,对每个所述显示单元执行亮态化操作,其中,所述亮态化操作包括:
通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子远离所述目标面,使所述第一控制层透射发光单元的出射光线。
附图说明
图1是本公开实施例提供的一种光栅基板的结构示意图;
图2是本公开实施例提供的一种光栅单元的结构示意图;
图3是本公开实施例提供的另一种光栅单元的结构示意图;
图4是本公开实施例提供的一种显示基板的结构示意图;
图5是本公开实施例提供的一种显示基板的显示示意图;
图6是本公开实施例提供的另一种显示基板的显示示意图;
图7是本公开实施例提供的一种显示单元的结构示意图;
图8是本公开实施例提供的另一种显示单元的结构示意图;
图9是本公开实施例提供的一种显示装置的显示方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
目前,通过视差式光栅显示技术实现裸眼3D显示的过程包括:在显示面板的出光侧设置光栅基板(通常为狭缝光栅)。该光栅基板包括平行排布的多个列状栅格。当左眼与右眼的连线平行于多个列状栅格的排布方向时,该光栅基板能够形成视差屏障,使得左眼的可视画面与右眼的可视画面存在一定的差异,进而通过左眼和右眼的视差作用实现显示面板的3D显示效果。但是,由于光栅基板的形状是固定的,仅当用户的左眼与右眼的连线平行于多个列状栅格的排 布方向时,才能在用户眼中呈现3D显示效果。因此目前显示面板3D显示的灵活性较差。
图1是本公开实施例提供的一种光栅基板的结构示意图。如图1所示,该光栅基板10包括第一衬底基板101以及位于第一衬底基板101上的多个光栅单元102。可选地,光栅基板10中的多个光栅单元102呈矩阵状排布。
参见图1,光栅单元102包括两个控制层,位于两个控制层之间的格挡结构1021,以及位于由格挡结构1021与两个控制层围成的封闭腔体Q内的可移动的多个粒子M。该两个控制层包括第一控制层1022和第二控制层1023。第一控制层1022位于第二控制层1023远离第一衬底基板101的一侧。两个控制层用于控制多个粒子的运动。例如,该两个控制层可以用于控制多个粒子M靠近第一控制层1022移动或远离第一控制层1022移动。其中,粒子M满足以下至少一者:粒子M的折射率小于第一控制层1022的折射率;粒子M为非透明粒子。
在第一种情况下,粒子M的折射率小于第一控制层1022的折射率。当两个控制层控制多个粒子移动至第一控制层的内表面时,由于粒子的折射率小于第一控制层的折射率(即第一控制层为光密介质,粒子为光疏介质),当从第一控制层远离第二控制层的方向入射的光线在第一控制层靠近第二控制层的一面上的入射角θ大于或等于临界角(即sinθ≥n 1/n 2,n 1为粒子的折射率,n 2为第一控制层的折射率)时,该光线在第一控制层靠近第二控制层的一面上发生全反射。当两个控制层控制多个粒子分散在封闭腔体内时,该光线能够依次从第一控制层、封闭腔体和第二控制层透射。可选地,当粒子为透明粒子时,当两个控制层控制多个粒子移动至第二控制层的内表面时,该光线也能够依次从第一控制层、封闭腔体和第二控制层透射。
在第二种情况下,粒子M为非透明粒子。可选地,该粒子可以为黑色墨水粒子。当黑色墨水粒子移动至第一控制层或第二控制层的内表面时,黑色墨水粒子可以完全吸收入射至光栅单元的光线,即光线无法从光栅单元透射。当黑色墨水粒子分散在封闭腔体内时,入射至光栅单元的光线可以从光栅单元透射。
在第三种情况下,粒子M的折射率小于第一控制层1022的折射率,且粒子M为非透明粒子。此种情况下光栅单元的出光原理可参考上述第一种情况和第二种情况的相关描述,本公开实施例在此不做赘述。
综上所述,本公开实施例提供的光栅基板,通过光栅单元中的两个控制层 控制多个粒子运动。当光栅基板中位于目标行的光栅单元无法透射光线时,该位于目标行的光栅单元可等效为沿光栅基板的列排布方向排布的光栅。当光栅基板中位于目标列的光栅单元无法透射光线时,该位于目标列的光栅单元可等效为沿光栅基板的行排布方向排布的光栅。本公开实施例提供的光栅基板,能够实现光栅的横向和纵向之间的切换,从而提高了显示基板3D显示的灵活性。
可选地,图2是本公开实施例提供的一种光栅单元的结构示意图。如图2所示,第一控制层1022包括第一透明电极22a。第二控制层1023包括第二透明电极23a。粒子M为带电粒子。上述封闭腔体Q内的粒子的折射率小于第一控制层1022的折射率,包括:封闭腔体Q内的带电粒子M的折射率小于第一透明电极22a的折射率。
需要说明的是,通过在第一透明电极和第二透明电极之间加载第一电压,使带电粒子移动至第一透明电极的内表面,此时光栅单元对从第一控制层远离第二控制层的方向入射的光线进行全反射。通过在第一透明电极和第二透明电极之间加载第二电压,使带电粒子分散在封闭腔体内,此时光栅单元透射从第一控制层远离第二控制层的方向入射的光线,此时第二电压为0,也即是,第一透明电极和第二透明电极上的电位相等。或者,当带电粒子为透明粒子时,通过在第一透明电极和第二透明电极之间加载电压,使带电粒子移动至第二透明电极的内表面。
可选地,图3是本公开实施例提供的另一种光栅单元的结构示意图。如图3所示,第一控制层1022包括层叠设置的第一透明电极22a和反射膜22b。反射膜22b位于第一透明电极22a靠近第一衬底基板101的一侧。第二控制层1023包括第二透明电极23a。粒子M为带电粒子。上述封闭腔体Q内的粒子的折射率小于第一控制层1022的折射率,包括:封闭腔体Q内的带电粒子M的折射率小于反射膜22b的折射率。
需要说明的是,如图3所示的光栅单元的出光原理参考对如图2所示的光栅单元的出光原理的描述,本公开实施例在此不做赘述。
可选地,第一控制层靠近第二控制层的一面具有阵列排布的多个凸曲面。
请继续参见图2,第一透明电极22a靠近第二透明电极23a的一面由阵列排布的多个凸曲面构成。可选地,可以通过压印的方式或构图工艺在第一透明电极靠近第二透明电极的一面形成阵列排布的多个凸曲面。其中,构图工艺包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
请继续参见图3,反射膜22b靠近第二透明电极23a的一面由阵列排布的多个凸曲面构成。可选地,反射膜可以是半球形反射膜。通过在第一透明电极靠近第二透明电极的一侧贴附半球形反射膜,得到第一控制层。
可选地,上述凸曲面可以是半球面或半椭球面,还可以是其他凸曲面,本公开实施例对凸曲面的形状不做限定。
需要说明的是,由于第一控制层靠近第二控制层的一面(即第一控制层的内表面)由阵列排布的多个凸曲面构成,当光线从第一控制层远离第二控制层的一侧入射至光栅单元时,可以增大该光线在第一控制层的内表面上的入射角。当带电粒子移动至第一控制层的内表面时,可以保证该光线在第一控制层的内表面上发生全反射。
可选地,光栅单元中还包括驱动电路。该驱动电路用于在第一透明电极和第二透明电极之间加载电压。示例地,参见图2和图3,驱动电路包括位于第一衬底基板101上的相互绝缘的两个电压控制单元,该两个电压控制单元分别用于向第一透明电极和第二透明电极供电。第一透明电极22a与电压控制单元D1电连接,第二透明电极23a与电压控制单元D2电连接。也即是,电压控制单元D1用于向第一透明电极22a供电,电压控制单元D2用于向第二透明电极23a供电。
可选地,上述第一控制层和第二控制层也可以是磁场控制结构,则封闭腔体内的粒子为带有磁性的粒子,此种结构下光栅单元的出光原理可参考对如图2或图3所示的光栅单元的出光原理,本公开实施例在此不做赘述。
综上所述,本公开实施例提供的光栅基板,通过光栅单元中的两个控制层控制多个粒子运动。当光栅基板中位于目标行的光栅单元无法透射光线时,该位于目标行的光栅单元可等效为沿光栅基板的列排布方向排布的光栅。当光栅基板中位于目标列的光栅单元无法透射光线时,该位于目标列的光栅单元可等效为沿光栅基板的行排布方向排布的光栅。本公开实施例提供的光栅基板,能够实现光栅的横向和纵向之间的切换,从而提高了显示基板3D显示的灵活性。
图4是本公开实施例提供的一种显示基板的结构示意图。如图4所示,该显示基板包括发光基板20和光栅基板10。本公开实施例中,以光栅基板10中包括如图3所示的光栅单元为例进行说明。
参见图4,发光基板20包括第二衬底基板201以及位于第二衬底基板201 上的多个发光单元202。发光基板20与光栅基板10对盒设置,即第二衬底基板201位于发光单元202远离第一衬底基板101的一侧,第一衬底基板101位于光栅单元102远离第二衬底基板201的一侧。发光基板20中的多个发光单元202与光栅基板10中的多个光栅单元102一一对应设置。本公开实施例中,将对应设置的一个发光单元202和一个光栅单元102称为一个显示单元X,也即是,一个显示单元X包括层叠设置的一个发光单元202和一个光栅单元102。一个显示单元可以对应一个像素。例如,显示单元可以对应红色像素、绿色像素或蓝色像素。
需要说明的是,当显示单元中的光栅单元能够透射发光单元的出射光线时,该显示单元的显示状态为亮态。当显示单元中的光栅单元无法透射发光单元的出射光线,例如光栅单元将发光单元的出射光线进行全反射或者吸收发光单元的出射光线时,该显示单元的显示状态为暗态。
示例地,图5是本公开实施例提供的一种显示基板的显示示意图。如图5所示,当显示基板中位于目标列的显示单元A1呈暗态时,该呈暗态的多列显示单元A1可等效为沿第一方向x排布的光栅。此时显示基板通过呈亮态的显示单元A2显示图像时,能够在第一方向x上实现3D显示效果,即当用户的左眼和右眼的连线平行于该第一方向x时,用户眼中能够呈现3D显示效果。
又示例地,图6是本公开实施例提供的另一种显示基板的显示示意图。如图6所示,当显示基板中位于目标行的显示单元B1呈暗态时,该呈暗态的多行显示单元B1可等效为沿第二方向y排布的光栅。此时显示基板通过呈亮态的显示单元B2显示图像时,能够在第二方向y上实现3D显示效果,即当用户的左眼和右眼的连线平行于该第二方向y时,用户眼中能够呈现3D显示效果。其中,第一方向为多个显示单元的行排布方向(即显示基板的横向),第二方向为多个显示单元的列排布方向(即显示基板的纵向)。
可选地,图7是本公开实施例提供的一种显示单元的结构示意图。如图7所示,发光单元202包括沿远离第二衬底基板201的方向层叠设置的第三电极2021、发光层2022和第四透明电极2023。第四透明电极2023与第一透明电极22a复用。
需要说明的是,当第一透明电极与第四透明电极复用时,在制备光栅基板的过程中,无需在第一衬底基板上单独制备用于向第一透明电极加载电压的电压控制单元,可以简化驱动电路的制备工艺,进而简化光栅基板的制备工艺。
可选地,图8是本公开实施例提供的另一种显示单元的结构示意图。如图8所示,发光单元202包括沿远离第二衬底基板201的方向层叠设置的第三电极2021、发光层2022、第四透明电极2023和绝缘层2024。第一透明电极22a位于绝缘层2024远离第二衬底基板201的一侧。
在图7和图8所示的显示单元中,第三电极和第四透明电极分别是阳极和阴极中的一个。发光层包括沿远离第二衬底基板的方向层叠设置的第一载流子注入层、第一载流子传输层、发光材料层、第二载流子传输层和第二载流子注入层。当第三电极为阳极,第四透明电极为阴极时,第一载流子为空穴,第二载流子为电子。当第三电极为阴极,第四透明电极为阳极时,第一载流子为电子,第二载流子为空穴。
可选地,发光材料层可以由有机发光材料制备得到,则上述显示基板为有机发光二极管(Organic Light-Emitting Diode,OLED)显示基板。或者,发光材料层也可以由量子点材料制备得到,则上述显示基板为量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示基板。
可选地,请继续参见图7和图8,显示单元还包括薄膜晶体管(Thin-film transistor,TFT)203。TFT203位于第二衬底基板201与发光单元202之间。其中,TFT可以是顶栅结构,也可以是底栅结构,本公开实施例对此不做限定。
可选地,上述发光单元还可以为液晶显示面板中的发光单元。该发光单元包括阵列基板、彩膜基板和位于阵列基板和彩膜基板之间的液晶层。
可选地,参见图4,显示基板的多个显示单元中,任意相邻两个显示单元X之间设置有挡墙结构30,挡墙结构30为非透光结构。也即是,显示基板还包括位于相邻两个发光单元202之间的挡墙结构30。该挡墙结构30的一端与光栅基板10中的第一衬底基板101连接,该挡墙结构30的另一端与发光基板20中的第二衬底基板201连接。
需要说明的是,通过在相邻两个显示单元之间设置非透光的挡墙结构,可以防止相邻显示单元之间发生光线串扰,以保证每个显示单元的独立显示状态。
综上所述,本公开实施例提供的显示基板,显示单元中包括光栅单元和发光单元。通过光栅单元中的两个控制层控制多个粒子运动,使得显示单元能够在暗态和亮态之间切换。当显示基板中位于目标行的显示单元呈暗态时,该呈暗态的多行显示单元可等效为沿显示单元的列排布方向排布的光栅。当显示基板中位于目标列的显示单元呈暗态时,该呈暗态的多列显示单元可等效为沿显 示单元的行排布方向排布的光栅。由于本公开实施例提供的显示基板中,光栅基板能够实现光栅的横向和纵向之间的切换,进而能够在不同方向上实现显示基板的3D显示效果,提高了显示基板3D显示的灵活性。
本公开实施例提供了一种显示装置,包括:如图4所示的显示基板。
可选地,本公开实施例提供的显示装置可以是OLED显示装置、QLED显示装置或液晶显示装置。其具体可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框和导航仪等。
综上所述,本公开实施例提供的显示装置,显示单元中包括光栅单元和发光单元。通过光栅单元中的两个控制层控制多个粒子运动,使得显示单元能够在暗态和亮态之间切换。当显示基板中位于目标行的显示单元呈暗态时,该呈暗态的多行显示单元可等效为沿显示单元的列排布方向排布的光栅。当显示基板中位于目标列的显示单元呈暗态时,该呈暗态的多列显示单元可等效为沿显示单元的行排布方向排布的光栅。由于本公开实施例提供的显示装置中,光栅基板能够实现光栅的横向和纵向之间的切换,进而能够在不同方向上实现显示装置的3D显示效果,提高了显示装置3D显示的灵活性。
图9是本公开实施例提供的一种显示装置的显示方法的流程图。用于上述显示装置。该显示装置包括呈矩阵状排布的多个显示单元。如图9所示,该方法包括以下步骤:
在步骤901中,当显示装置用于显示三维图像时,获取显示装置的三维显示方向。
可选地,可以通过显示装置的内置传感器检测显示装置上图像的显示方向。当显示装置上的图像纵屏显示时,确定三维显示方向为显示装置中多个显示单元的行排布方向。当显示装置上的图像横屏显示时,确定三维显示方向为显示装置中多个显示单元的列排布方向。
在步骤902中,当三维显示方向为多个显示单元的行排布方向,对位于目标列的每个显示单元执行暗态化操作,使位于目标列的每个显示单元呈暗态。
示例地,参见图5,当显示装置中位于目标列的显示单元A1呈暗态时,该呈暗态的多列显示单元A1可等效为沿第一方向x排布的光栅。此时显示装置通过呈亮态的显示单元A2显示图像时,能够在第一方向x上实现3D显示效果。 即当用户的左眼和右眼的连线平行于该第一方向x时,用户眼中能够呈现3D显示效果。其中,第一方向为多个显示单元的行排布方向(即显示装置的横向)。
在步骤903中,当三维显示方向为多个显示单元的列排布方向,对位于目标行的每个显示单元执行暗态化操作,使位于目标行的每个显示单元呈暗态。
示例地,参见图6,当显示基板中位于目标行的显示单元B1呈暗态时,该呈暗态的多行显示单元B1可等效为沿第二方向y排布的光栅。此时显示基板通过呈亮态的显示单元B2显示图像时,能够在第二方向y上实现3D显示效果。即当用户的左眼和右眼的连线平行于该第二方向y时,用户眼中能够呈现3D显示效果。其中,第二方向为多个显示单元的列排布方向(即显示装置的纵向)。
其中,暗态化操作包括:通过光栅单元中第一控制层和第二控制层的控制作用,使位于光栅单元的封闭腔体内的多个粒子移动至目标面,使光栅单元无法透射光线。当封闭腔体内的粒子为非透明粒子时,目标面包括第一控制层的内表面和第二控制层的内表面中的一面。即暗态化操作包括:通过光栅单元中第一控制层和第二控制层的控制作用,使位于光栅单元的封闭腔体内的多个粒子移动至第一控制层的内表面或第二控制层的内表面,使位于第一控制层的内表面或位于第二控制层的内表面上的非透明粒子吸收发光单元的出射光线。当封闭腔体内的粒子的折射率小于第一控制层的折射率时,目标面包括第一控制层的内表面。即暗态化操作包括:通过光栅单元中第一控制层和第二控制层的控制作用,使位于光栅单元的封闭腔体内的多个粒子移动至第一控制层的内表面,使第一控制层对发光单元的出射光线进行全反射。其中,第一控制层的内表面指第一控制层与第二控制层相对的面,第二控制层的内表面指第二控制层与第一控制层相对的面。
可选地,参见图2,光栅单元中第一控制层1022包括第一透明电极22a,第二控制层1023包括第二透明电极23a,粒子M为带电粒子。带电粒子的折射率小于第一透明电极的折射率。则通过光栅单元中第一控制层和第二控制层的控制作用,使位于光栅单元的封闭腔体内的多个粒子移动至目标面的实现过程,包括:通过在第一透明电极和第二透明电极之间加载第一电压,使位于封闭腔体内的多个粒子移动至第一透明电极的内表面(即第一透明电极靠近第二控制层的一面)。
可选地,参见图3,第一控制层1022包括层叠设置的第一透明电极22a和反射膜22b。反射膜22b位于第一透明电极22a靠近第一衬底基板101的一侧。 第二控制层1023包括第二透明电极23a。粒子M为带电粒子。带电粒子的折射率小于反射膜的折射率。则通过第一控制层和第二控制层的控制作用,使位于封闭腔体内的多个粒子移动至目标面的实现过程,包括:通过在第一透明电极和第二透明电极之间加载第一电压,使位于封闭腔体内的多个粒子移动至反射膜靠近第二控制层的一面。
可选地,本公开实施例提供的显示装置还可以用于显示二维图像,二维图像显示模式和三维图像显示模式之间可切换。当显示装置用于显示二维图像时,对每个显示单元执行亮态化操作。其中,亮态化操作包括:通过光栅单元中第一控制层和第二控制层的控制作用,使位于光栅单元的封闭腔体内的多个粒子远离目标面,使第一控制层透射发光单元的出射光线。可选地,亮态化操作包括:通过在第一透明电极和第二透明电极之间加载第二电压,使带电粒子分散在封闭腔体内,此时光栅单元透射从第一控制层远离第二控制层的方向入射的光线,此时第二电压为0,也即是,第一透明电极和第二透明电极上的电位相等。或者,当带电粒子为透明粒子时,通过在第一透明电极和第二透明电极之间加载电压,使带电粒子移动至第二透明电极的内表面。
需要说明的是,本公开实施例提供的显示装置的显示方法的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的显示装置的显示方法,当显示装置中位于目标行的显示单元呈暗态时,该呈暗态的多行显示单元可等效为沿显示单元的列排布方向排布的光栅。当显示装置中位于目标列的显示单元呈暗态时,该呈暗态的多列显示单元可等效为沿显示单元的行排布方向排布的光栅。因此,本公开实施例提供的显示装置,实现了光栅的横向和纵向之间的切换,进而能够在不同方向上实现显示装置的3D显示效果,提高了3D显示的灵活性。
关于上述方法实施例中涉及的各个结构,已经在装置实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供了一种计算机存储介质,当存储介质中的计算机程序由处理器执行时,能够执行如图9所示的显示装置的显示方法。
本领域普通技术人员可以理解实现上述方法实施例的全部或部分步骤可以 通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本公开实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种光栅基板,包括:第一衬底基板(101)以及位于所述第一衬底基板(101)上的多个光栅单元(102);
    所述光栅单元(102)包括两个控制层,位于所述两个控制层之间的格挡结构(1021),以及位于由所述格挡结构(1021)与所述两个控制层围成的封闭腔体内的可移动的多个粒子,所述两个控制层包括第一控制层(1022)和第二控制层(1023),所述第一控制层(1022)位于所述第二控制层(1023)远离所述第一衬底基板(101)的一侧,所述两个控制层用于控制所述多个粒子的运动;
    其中,所述粒子满足以下至少一者:所述粒子的折射率小于所述第一控制层(1022)的折射率;所述粒子为非透明粒子。
  2. 根据权利要求1所述的光栅基板,所述第一控制层(1022)包括第一透明电极,所述第二控制层(1023)包括第二透明电极,所述粒子为带电粒子;
    所述粒子的折射率小于所述第一控制层(1022)的折射率,包括:所述带电粒子的折射率小于所述第一透明电极的折射率。
  3. 根据权利要求1所述的光栅基板,所述第一控制层(1022)包括层叠设置的第一透明电极和反射膜,所述反射膜位于所述第一透明电极靠近所述第一衬底基板(101)的一侧,所述第二控制层(1023)包括第二透明电极,所述粒子为带电粒子;
    所述粒子的折射率小于所述第一控制层(1022)的折射率,包括:所述带电粒子的折射率小于所述反射膜的折射率。
  4. 根据权利要求2或3所述的光栅基板,所述光栅单元(102)中还包括驱动电路,所述驱动电路用于在所述第一透明电极和所述第二透明电极之间加载电压。
  5. 根据权利要求1至4任一所述的光栅基板,所述第一控制层(1022)靠近所述第二控制层(1023)的一面具有阵列排布的多个凸曲面。
  6. 根据权利要求5所述的光栅基板,所述凸曲面为半球面和半椭球面中的一种。
  7. 根据权利要求1至6任一所述的光栅基板,所述粒子为黑色墨水粒子。
  8. 根据权利要求1至7任一所述的光栅基板,所述多个光栅单元(102)呈矩阵状排布。
  9. 根据权利要求4所述的光栅基板,所述多个光栅单元(102)呈矩阵状排布;
    所述第一控制层(1022)靠近所述第二控制层(1023)的一面具有阵列排布的多个凸曲面,所述凸曲面为半球面和半椭球面中的一种,所述粒子为黑色墨水粒子。
  10. 一种显示基板,包括:发光基板(20)和如权利要求1至9任一所述的光栅基板(10),所述发光基板(20)包括第二衬底基板(201)以及位于所述第二衬底基板(201)上的多个发光单元(202),所述发光基板(20)与所述光栅基板(10)对盒设置,且所述多个发光单元(202)与所述光栅基板(10)中的多个光栅单元(102)一一对应设置。
  11. 根据权利要求10所述的显示基板,所述光栅单元(102)中的第一控制层(1022)包括第一透明电极,所述发光单元(202)包括沿远离所述第二衬底基板(201)的方向层叠设置的第三电极(2021)、发光层(2022)和第四透明电极(2023);
    所述第四透明电极(2023)与所述第一透明电极复用。
  12. 根据权利要求10所述的显示基板,所述光栅单元(102)中的第一控制层(1022)包括第一透明电极,所述发光单元(202)包括沿远离所述第二衬底基板(201)的方向层叠设置的第三电极(2021)、发光层(2022)、第四透明电极(2023)和绝缘层(2024);
    所述第一透明电极位于所述绝缘层(2024)远离所述第二衬底基板(201)的一侧。
  13. 根据权利要求10至12任一所述的显示基板,所述显示基板还包括位于相邻两个发光单元(202)之间的挡墙结构(30),所述挡墙结构(30)的一端与所述光栅基板(10)中的第一衬底基板(101)连接,所述挡墙结构(30)的另一端与所述第二衬底基板(201)连接。
  14. 根据权利要求13所述的显示基板,所述挡墙结构(30)为非透光结构。
  15. 根据权利要求10至14任一所述的显示基板,所述显示基板为有机发光二极管显示基板和量子点发光二极管中的一种。
  16. 一种显示装置,包括:如权利要求10至15任一所述的显示基板。
  17. 一种显示装置的显示方法,用于如权利要求16所述的显示装置,所述显示装置包括呈矩阵状排布的多个显示单元,所述显示单元包括层叠设置的发光单元和光栅单元,所述方法包括:
    当所述显示装置用于显示三维图像时,获取所述显示装置的三维显示方向;
    当所述三维显示方向为所述多个显示单元的行排布方向,对位于目标列的每个显示单元执行暗态化操作,使位于所述目标列的每个显示单元呈暗态;
    当所述三维显示方向为所述多个显示单元的列排布方向,对位于目标行的每个显示单元执行暗态化操作,使位于所述目标行的每个显示单元呈暗态;
    其中,所述暗态化操作包括:
    通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,使所述光栅单元无法透射光线;当所述粒子为非透明粒子时,所述目标面包括所述第一控制层的内表面和所述第二控制层的内表面中的一面;当所述粒子的折射率小于所述第一控制层的折射率时,所述目标面包括所述第一控制层的内表面。
  18. 根据权利要求17所述的方法,所述第一控制层包括第一透明电极,所述第二控制层包括第二透明电极,所述粒子为带电粒子,所述带电粒子的折射率小于所述第一透明电极的折射率;
    所述通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,包括:
    通过在所述第一透明电极和所述第二透明电极之间加载第一电压,使位于所述封闭腔体内的多个粒子移动至所述第一透明电极靠近所述第二控制层的一面。
  19. 根据权利要求17所述的方法,所述第一控制层包括层叠设置的第一透明电极和反射膜,所述反射膜位于所述第一透明电极靠近第一衬底基板的一侧,所述第二控制层包括第二透明电极,所述粒子为带电粒子,所述带电粒子的折射率小于所述反射膜的折射率;
    所述通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子移动至目标面,包括:
    通过在所述第一透明电极和所述第二透明电极之间加载第一电压,使位于所述封闭腔体内的多个粒子移动至所述反射膜靠近所述第二控制层的一面。
  20. 根据权利要求17至19任一所述的方法,所述方法还包括:
    当所述显示装置用于显示二维图像时,对每个所述显示单元执行亮态化操作,其中,所述亮态化操作包括:
    通过光栅单元中第一控制层和第二控制层的控制作用,使位于所述光栅单元的封闭腔体内的多个粒子远离所述目标面,使所述第一控制层透射发光单元的出射光线。
PCT/CN2019/125836 2019-01-03 2019-12-17 光栅基板、显示基板、显示装置及其显示方法 WO2020140744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/956,074 US11774776B2 (en) 2019-01-03 2019-12-17 Grating substrate, display substrate, display device and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005789.2A CN109541813B (zh) 2019-01-03 2019-01-03 显示基板、显示装置及其显示方法
CN201910005789.2 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140744A1 true WO2020140744A1 (zh) 2020-07-09

Family

ID=65833938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125836 WO2020140744A1 (zh) 2019-01-03 2019-12-17 光栅基板、显示基板、显示装置及其显示方法

Country Status (3)

Country Link
US (1) US11774776B2 (zh)
CN (1) CN109541813B (zh)
WO (1) WO2020140744A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541813B (zh) * 2019-01-03 2022-05-24 京东方科技集团股份有限公司 显示基板、显示装置及其显示方法
CN112133811B (zh) * 2019-06-25 2022-03-29 成都辰显光电有限公司 显示面板、显示装置及显示面板的制备方法
CN110797382B (zh) * 2019-11-08 2022-04-29 福州京东方光电科技有限公司 显示面板
CN111258146A (zh) * 2020-02-25 2020-06-09 京东方科技集团股份有限公司 光栅及其驱动方法、和光场显示装置
CN112099284B (zh) * 2020-09-28 2024-01-23 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置
CN114360385B (zh) * 2022-01-14 2023-10-31 Oppo广东移动通信有限公司 显示器件、其制备方法、壳体组件及电子设备
CN117613061B (zh) * 2023-12-12 2024-09-10 惠科股份有限公司 显示面板及其制备方法、电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408696B2 (en) * 2000-03-03 2008-08-05 Sipix Imaging, Inc. Three-dimensional electrophoretic displays
JP2009053392A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 表示素子
CN102654706A (zh) * 2011-05-13 2012-09-05 京东方科技集团股份有限公司 一种3d显示用器件及其驱动方法、制作方法和显示面板
CN106154678A (zh) * 2016-09-29 2016-11-23 京东方科技集团股份有限公司 一种显示器件
CN106292120A (zh) * 2016-09-29 2017-01-04 京东方科技集团股份有限公司 显示面板及其驱动方法
CN106328016A (zh) * 2016-09-29 2017-01-11 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN109541813A (zh) * 2019-01-03 2019-03-29 京东方科技集团股份有限公司 显示基板、显示装置及其显示方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446004B (zh) * 2005-06-14 2014-07-21 Koninkl Philips Electronics Nv 結合型單一/多個檢視顯示器
KR101508588B1 (ko) * 2008-06-13 2015-04-03 삼성전자주식회사 전기영동 소자
US8823695B2 (en) * 2011-01-25 2014-09-02 Hannstar Display Corp. 3D display, barrier device and driving method therefor
CN103246123B (zh) * 2013-05-15 2015-09-09 福州大学 基于电子墨的动态光栅及控制方法和立体显示装置
CN103941391A (zh) * 2014-04-11 2014-07-23 京东方科技集团股份有限公司 一种光栅结构及显示装置
EP3420410A4 (en) * 2016-02-24 2019-10-23 Clearink Displays, Inc. METHOD AND APPARATUS FOR TWO-PARTICLE TOTAL INTERNAL REFLECTION INTERNAL IMAGE DISPLAY
CN105789256A (zh) * 2016-03-18 2016-07-20 京东方科技集团股份有限公司 一种 oled 双面显示基板、制作方法及显示器
CN105700212A (zh) * 2016-04-11 2016-06-22 京东方科技集团股份有限公司 一种显示装置
CN106200198A (zh) * 2016-09-29 2016-12-07 京东方科技集团股份有限公司 电子纸及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408696B2 (en) * 2000-03-03 2008-08-05 Sipix Imaging, Inc. Three-dimensional electrophoretic displays
JP2009053392A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 表示素子
CN102654706A (zh) * 2011-05-13 2012-09-05 京东方科技集团股份有限公司 一种3d显示用器件及其驱动方法、制作方法和显示面板
CN106154678A (zh) * 2016-09-29 2016-11-23 京东方科技集团股份有限公司 一种显示器件
CN106292120A (zh) * 2016-09-29 2017-01-04 京东方科技集团股份有限公司 显示面板及其驱动方法
CN106328016A (zh) * 2016-09-29 2017-01-11 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN109541813A (zh) * 2019-01-03 2019-03-29 京东方科技集团股份有限公司 显示基板、显示装置及其显示方法

Also Published As

Publication number Publication date
CN109541813A (zh) 2019-03-29
US11774776B2 (en) 2023-10-03
CN109541813B (zh) 2022-05-24
US20210199986A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2020140744A1 (zh) 光栅基板、显示基板、显示装置及其显示方法
US10630964B2 (en) Light field display device and method of manufacturing the same
US10451906B2 (en) Display device and driving method
CA2891383C (en) Autostereoscopic display device
US10616564B2 (en) Display device and display control method
US11747646B2 (en) Directional OLED display
US11087666B2 (en) 3D display substrate, 3D display device and display method
CN109541831B (zh) 防窥结构及调节方法、显示面板、显示装置
US20170214906A1 (en) 3d display device and driving method thereof
US20180027228A1 (en) Display Module, Display Device and Driving Method
CN105679232A (zh) 触控式立体有机电致发光显示装置
US9041999B2 (en) Electrowetting device and method of manufacturing the same
US10462453B2 (en) Display device and display control method
CN108873312A (zh) 显示面板、显示装置及其显示方法、存储介质
CN104251421B (zh) 背光模组、显示装置及其显示方法
KR102225478B1 (ko) 입체영상 표시장치
CN114551763A (zh) 显示基板及显示装置
KR20140141877A (ko) 3차원 표시 장치 및 3차원 표시 장치용 전환부
CN107632452B (zh) 显示面板及显示器
CN109407331B (zh) 立体显示装置、立体显示面板及其制备方法
KR102210375B1 (ko) 디스플레이 표시장치
KR20210081536A (ko) 3차원 디스플레이 장치 및 디스플레이 패널
TW202419931A (zh) 具有透光孔遮罩的主動發射器多視像背光件、顯示器和方法
CN117998928A (zh) 防窥基板和防窥显示装置
WO2012164496A1 (en) Autostereoscopic display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907421

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19907421

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19907421

Country of ref document: EP

Kind code of ref document: A1