WO2020140606A1 - 触控显示面板的驱动方法及装置 - Google Patents

触控显示面板的驱动方法及装置 Download PDF

Info

Publication number
WO2020140606A1
WO2020140606A1 PCT/CN2019/116650 CN2019116650W WO2020140606A1 WO 2020140606 A1 WO2020140606 A1 WO 2020140606A1 CN 2019116650 W CN2019116650 W CN 2019116650W WO 2020140606 A1 WO2020140606 A1 WO 2020140606A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
sub
tile
data
polarity
Prior art date
Application number
PCT/CN2019/116650
Other languages
English (en)
French (fr)
Inventor
方志祥
郑亮亮
杨光磊
丁鹏
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19907200.0A priority Critical patent/EP3907599A4/en
Priority to US16/766,677 priority patent/US11237664B2/en
Publication of WO2020140606A1 publication Critical patent/WO2020140606A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a method and device for driving a touch display panel.
  • TDDI Touch and Display Driver Integration
  • the TDDI display screen usually has multiple touch electrodes, and the touch electrodes and the data lines are generally disposed on different film layers.
  • the TDDI display screen can adopt a column inversion driving method, and the polarities of the data signals applied by two adjacent data lines are opposite, thereby driving the liquid crystal to invert to realize image display.
  • the gray scale span of the adjacent color blocks in the reload screen is large, which will cause the touch electrode to be differently coupled by the data line in different areas, and some areas can be quickly restored, while some The area recovers slowly, which causes horizontal stripes due to uneven coupling recovery when displaying heavy-loaded images, which affects the display effect.
  • the default polarity mode includes: the polarity of the image data corresponding to each adjacent two data lines is opposite, and the same The polarity of the image data corresponding to the data line is the same;
  • the touch display panel is driven to display an image.
  • the judging whether the acquired image data is a reload screen with the default polarity mode includes:
  • the acquired image data determine the number of the first data line and the second data line to load the image data; wherein, the first data line is from the image data loaded at the first moment to the second moment A data line with an increase in voltage of image data greater than or equal to a threshold; the second data line is a decrease in voltage of image data loaded at the first moment to image data loaded at the second moment greater than or equal to The threshold data line; the first time is the time when the nth gate line is loaded with the gate-on signal, and the second time is the time when the n+1th gate line is loaded with the gate-on signal, n is greater than or An integer equal to 1; the threshold is the voltage difference between the first image data and the second image data having the same polarity, and the gray scale corresponding to the first image data is different from the gray scale corresponding to the second image data At least 2 gray levels;
  • the ratio of the number of the first data lines to the second data lines is less than or equal to 1/2, or the ratio of the number of the first data lines to the second data lines is greater than 2
  • determine the The image data is the reload picture with the default polarity mode, otherwise it is determined that the image data is not the reload picture with the default polarity mode.
  • the overloaded picture includes one or a combination of a checkerboard picture and a striped picture.
  • the overloaded picture includes: a checkerboard picture; the judging whether the acquired image data is the checkerboard picture with a default polarity mode includes:
  • a row of sub-pixels of the touch display panel corresponds to the same gate line;
  • the first tile includes: 2k+1 columns of sub-pixels arranged in the row direction;
  • the first Two tiles include: 2k+1 columns of sub-pixels arranged in the row direction;
  • k is a positive integer;
  • each of the data line groups includes a data line, and a is a multiple of 2;
  • the polarity adjustment of the image data includes:
  • the number of sub-pixels in the first tile is one; or,
  • the number of sub-pixels in the first tile is two, and the sub-pixels in the first tile and the second tile are arranged along the extending direction of the data line.
  • a row of sub-pixels of the touch display panel corresponds to two gate lines adjacent to the row of sub-pixels;
  • the first tile includes: 2y columns of sub-arrays arranged in the row direction Pixels,
  • the second tile includes: 2y columns of sub-pixels arranged in the row direction;
  • y is a positive integer;
  • each of the data line groups includes b data lines, and b is a multiple of 2;
  • the polarity adjustment of the image data includes:
  • the number of sub-pixels in the first tile is two, and the sub-pixels in the first tile and the second tile are along the gate line Arranged in the direction of extension.
  • the touch display panel includes a first sub-pixel column to a Q-th sub-pixel column arranged along the extending direction of the gate line; Q is a positive even number;
  • each of the second sub-pixel column groups is composed of the first tile and the The second block is alternately arranged along the column direction; or,
  • the two adjacent columns from the second sub-pixel column to the Q-1 sub-pixel column are divided into a first sub-pixel column group, each of the first sub-pixel column group is composed of the first tile and the first
  • the two tiles are alternately arranged along the column direction; and, the first sub-pixel column and the Q-th sub-pixel column are respectively composed of alternately arranging the first sub-pixel and the second sub-pixel; wherein, the first sub-pixel
  • the corresponding gray scale is approximately the same as the gray scale corresponding to the first tile
  • the gray scale corresponding to the second sub-pixel is approximately the same as the gray scale corresponding to the second tile
  • the first sub-pixel is The second tile is adjacent in the row direction
  • the second sub-pixel is adjacent to the first tile in the row direction.
  • the overloaded picture includes: a striped picture; and the judging whether the acquired image data is the striped picture with a default polarity mode includes:
  • the third tile is arranged in multiple columns along the row direction
  • the fourth tile is arranged in multiple columns along the row direction
  • the third tile column and the fourth tile column are alternately arranged in the row direction
  • the polarity of the image data corresponding to two adjacent data lines is opposite, it is determined that the image data is the stripe picture with the default polarity mode, otherwise it is determined that the image data is not the one with the default polarity mode Striped picture.
  • a row of sub-pixels of the touch display panel corresponds to two gate lines adjacent to the row of sub-pixels;
  • the third tile includes 2m columns of sub-pixels arranged in a row direction ,
  • the fourth tile includes 2m columns of sub-pixels arranged in the row direction, and m is an odd number;
  • each of the data line groups includes c data lines, and c is a multiple of 2;
  • the polarity adjustment of the image data includes:
  • the touch display panel includes a first subpixel column to a Pth subpixel column arranged along the extending direction of the gate line; P is a positive even number;
  • the second sub-pixel column to the P-1 sub-pixel column are composed of the arrangement of the third tile and the fourth tile, and the gray levels corresponding to the sub-pixels in the first sub-pixel column are the same, and the The gray levels corresponding to the sub-pixels in the Pth sub-pixel column are the same; wherein, the third tile includes adjacent 2 columns of sub-pixels arranged in the row direction, and the fourth tile includes adjacent rows in the row direction For two columns of sub-pixels, the first sub-pixel column and the second sub-pixel column have different gray levels, and the P-th sub-pixel column and the P-1 sub-pixel column have different gray levels.
  • the gray levels corresponding to the first sub-pixel column, the P-th sub-pixel column, and the sub-pixels in the third tile are substantially the same.
  • the overloaded picture includes: a mixed picture composed of a checkerboard picture and a striped picture; and performing polarity adjustment on the image data includes:
  • the number of the first data line and the second data line is adjusted to be approximately equal.
  • An embodiment of the present disclosure also provides a driving device for a touch display panel, including:
  • An acquisition circuit configured to acquire image data of an image to be displayed
  • a judging circuit configured to judge whether the acquired image data is a reloaded screen with a default polarity mode; wherein the default polarity mode includes: the polarity of the image data corresponding to each adjacent two data lines is opposite , And the polarities of the image data corresponding to the same data line are the same;
  • An adjustment circuit configured to adjust the polarity of the image data when determining that the image data is a reloaded screen with the default polarity mode
  • the display driving circuit is configured to drive the touch display panel to perform image display according to the polarity-adjusted image data.
  • An embodiment of the present disclosure also provides a display device, including: a touch display panel and the above driving device.
  • An embodiment of the present disclosure also provides a readable non-transitory storage medium that stores executable instructions of a touch display panel, where the executable instructions of the touch display panel are used to enable touch
  • the display panel executes the steps of the above-mentioned driving method of the touch display panel.
  • An embodiment of the present disclosure also provides a computer device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein, when the processor executes the computer program, the above touch display panel is implemented The steps of the driving method.
  • FIG. 1 is a top schematic structural diagram of a touch display panel provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a coupling principle provided by an embodiment of the present disclosure
  • FIG. 3 is a second schematic diagram of a coupling principle provided by an embodiment of the present disclosure.
  • FIG. 5 is a second flowchart of a driving method of a touch display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a single-grid touch display panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a double-gate line touch display panel provided by an embodiment of the present disclosure.
  • FIG. 8a is one of the schematic diagrams of the reloading screens satisfying the first rule provided by an embodiment of the present disclosure
  • FIG. 8b is a schematic diagram of the overloaded screen after the polarity adjustment of FIG. 8a;
  • 9a is a second schematic diagram of a reloading screen satisfying the first rule provided by an embodiment of the present disclosure.
  • 9b is a schematic diagram of the overloaded screen of FIG. 9a after the polarity adjustment
  • 10a is a third schematic diagram of a reloading screen satisfying the first rule provided by an embodiment of the present disclosure
  • FIG. 10b is a schematic diagram of the overloaded screen after the polarity adjustment of FIG. 10a;
  • 11a is a fourth schematic diagram of a reloading screen satisfying the first rule provided by an embodiment of the present disclosure
  • FIG. 11b is a schematic diagram of the reload screen of FIG. 11a after the polarity adjustment
  • 12a is a schematic diagram of a reloading screen satisfying the second rule provided by an embodiment of the present disclosure
  • FIG. 12b is a schematic diagram of the overloaded screen after the polarity adjustment of FIG. 12a;
  • 13a is one of the schematic diagrams of the reloading screens satisfying the third rule provided by an embodiment of the present disclosure
  • FIG. 13b is a schematic diagram of the overloaded screen after the polarity adjustment of FIG. 13a;
  • 14a is a second schematic diagram of a reloading screen satisfying the third rule provided by an embodiment of the present disclosure
  • FIG. 14b is a schematic diagram of the overloaded screen after the polarity adjustment of FIG. 14a;
  • 15 is a schematic structural diagram of a driving device provided by an embodiment of the present disclosure.
  • a liquid crystal display panel generally includes a sub-pixel electrode for controlling liquid crystal inversion and a common electrode CE, where the common electrode CE is divided into a plurality of electrode blocks, and these electrode blocks can be multiplexed as touch electrodes TE.
  • the grid line G is used to scan line by line
  • the data line S is used to drive the sub-pixel unit to load data signals to perform image display.
  • the data line and the touch electrode are usually located in different layers, and there is an insulating film layer between the two layers to separate the two layers, which makes the data line (S 1 -S n ) and touch Parasitic capacitance is formed between the electrodes (electrode Vcom of the common electrode), as shown in FIG. 2.
  • a liquid crystal display panel can use a column inversion driving method for image display, that is, the polarities of data signals loaded on two adjacent data lines are opposite.
  • a column inversion driving method for image display that is, the polarities of data signals loaded on two adjacent data lines are opposite.
  • each time the gate line (G 1 -G 4 ) is loaded with a gate-on signal and the data line is loaded with a data signal.
  • the touch electrode is loaded with a data signal
  • the data line is coupled to the direction deviating from the reference potential (upward or downward arrow in FIG. 3) by the data line, and the touch Different regions of the control electrode have different degrees of coupling by data lines.
  • the driving method of the touch display panel provided by the embodiment of the present disclosure, as shown in FIG. 4, the method includes:
  • step S20 Determine whether the acquired image data is an overloaded screen with a default polarity mode; where the default polarity mode includes: the polarity of the image data corresponding to each adjacent two data lines is opposite, and the same data line corresponds to The polarities of the image data are the same.
  • steps S30-S40 are performed, and when it is determined that the image data is not a reload screen with a default polarity mode, step S50 is performed;
  • the default polarity mode includes: the polarity of the image data corresponding to each adjacent two data lines is opposite, and the polarity of the image data corresponding to the same data line is the same, which may refer to:
  • the reloading mode displays the reload screen. After loading the image data, it often produces horizontal stripes in the displayed image screen, which seriously affects the display effect.
  • the image data of the display image is first obtained before the image display.
  • the reload screen When the image data is the image data of the reload screen with the default polarity mode, the reload screen
  • the polarity of the image data is adjusted so that the image displayed by the adjusted image data does not change, and at the same time, it can overcome the potential of the touch electrode to be pulled in the same direction and deviate from its reference potential. In this way, when loading the polarity-adjusted image data, horizontal stripes can be avoided in the displayed image, thereby optimizing the display effect.
  • the driving method provided by the embodiment of the present disclosure only adjusts the polarity of the image data, and does not affect the image display of the liquid crystal display panel. The displayed image can be the same as before the adjustment, but the adjusted image data does not It will no longer cause the display of horizontal stripes, thereby optimizing the display effect.
  • step S20 it is determined whether the acquired image data is a reload screen with the default polarity mode, Can include:
  • S201 Determine the number of the first data line and the second data line to load the image data according to the acquired image data; wherein, the first data line is the voltage from the image data loaded at the first moment to the image data loaded at the second moment A data line with an increase greater than or equal to the threshold; a second data line is a data line with a voltage decrease greater than or equal to the threshold from the image data loaded at the first moment to the image data loaded at the second moment; the first moment is the nth The moment when the gate-on signal is applied to the gate lines, the second moment is the moment when the gate-on signal is applied to the n+1th gate line, n is an integer greater than or equal to 1; the threshold is the first image data with the same polarity The voltage difference between the second image data and the gray level corresponding to the first image data differs from the gray level corresponding to the second image data by at least 2 gray levels;
  • the ratio of the number of the first data line to the second data line may be less than or equal to 1/2 to determine that the image data is overloaded with a default polarity mode Screen, you can adjust the polarity of the image data.
  • the ratio of the number of the first data lines to the second data lines the more serious the technical problem, so that the bright lines run through the entire screen of the touch display panel. If the ratio of the number of first data lines to the number of second data lines is small and it is relatively concentrated to pull up or down, it will also cause shorter bright lines.
  • the ratio of the number of the first data line to the second data line is greater than 2, it may be determined that the image data is a reloaded screen with a default polarity mode, then You can adjust the polarity of the image data.
  • the first data line and the second data line in the entire image can be determined, and then the number of the first data line and the second data line can be counted.
  • the number of the first data line is greater than the second data line
  • the number of the second data lines is more than twice the number of the first data lines, and it is determined that the image data is a reloaded screen with the default polarity mode, the horizontal stripes phenomenon is likely to occur.
  • Polarity adjustment is required for such image data, so that the number of adjusted first data lines is equal to the number of second data lines, so that the coupling direction of each data line to the touch electrode when loading image data Offset to keep the potential of the touch electrode at the reference potential to avoid the occurrence of horizontal stripes.
  • a checkerboard screen or a striped screen can be displayed using a column inversion driving method as a prior determination criterion to detect the acquired image data.
  • a column inversion driving method as a prior determination criterion to detect the acquired image data.
  • the overloaded picture may include one or a combination of a checkerboard picture and a striped picture.
  • the touch display panel may include: multiple gate lines, multiple data lines, and multiple sub-pixels p.
  • Each sub-pixel p may include: a thin film transistor and a sub-pixel electrode; the gate of the thin film transistor is electrically connected to the gate line, the source of the thin film transistor is electrically connected to the data line, and the drain of the thin film transistor is electrically connected to the sub-pixel electrode.
  • the thin film transistor is turned on, so that the data signal of the data line can be transmitted to the sub-pixel electrode to charge the sub-pixel p, thereby driving the sub-pixels to perform different brightness display.
  • the number of gate lines is equal to the number of sub-pixel rows
  • the number of data lines is equal to the number of sub-pixel columns.
  • a row of sub-pixels p corresponds to a gate line
  • a data line electrically connected to the thin-film transistor in each sub-pixel p in the sub-pixel row
  • the data signals transmitted above can be transmitted to the corresponding sub-pixel p.
  • the gates of the thin film transistors in the first row of subpixels p are all electrically connected to the gate line G1
  • the gates of the thin film transistors in the second row of subpixels p are electrically connected to the gate line G2
  • the nth row of subpixels p the gate of the thin film transistor are connected electrically with the gate line G n, remaining the same token, this will not be repeated herein.
  • the number of gate lines is twice the number of sub-pixel rows, and the number of data lines is 1 of the number of sub-pixel columns /2.
  • a row of sub-pixels p may also correspond to electrically connect two adjacent gate lines, and when one gate line is loaded with a gate-on signal, it is located in an odd position in the corresponding sub-pixel row The data line connected to each sub-pixel p can load the data signal to the corresponding odd-numbered sub-pixel p.
  • the data at the even-numbered position in the corresponding sub-pixel row The data line connected to the sub-pixel p can load a signal to the corresponding sub-pixel p at an even position.
  • the first row of sub-pixels p corresponds to the gate lines G1 and G2
  • the gates of the thin-film transistors in the odd-numbered rows of sub-pixels p are electrically connected to the gate line G1
  • the gates of the thin-film transistors in the even-numbered columns of sub-pixels p are electrically connected to the gates Line G2.
  • the sub-pixels p in the second row correspond to the gate lines G3 and G4.
  • the gates of the thin film transistors in the odd-numbered sub-pixels p in the second row are electrically connected to the gate line G3, and the gates of the thin film transistors in the even-numbered sub-pixels p are electrically connected to the gate line G4.
  • the gates of the thin film transistors in the odd-numbered sub-pixels p in the 1/nth row are electrically connected to the gate line G n-1 , and the gates of the thin film transistors in the even-numbered sub-pixels p are electrically connected to the gate line G n .
  • the rest is the same, so I won't repeat them here.
  • Gray scale generally divides the brightness change between the darkest and brightest into several parts to facilitate the control of screen brightness.
  • the displayed image is generally composed of many pixels.
  • each pixel is composed of three sub-pixels of red, green and blue, which can show many different colors, and the light source of each sub-pixel can show different Brightness level.
  • the gray scale represents the level of different brightness from the darkest to the brightest. The more intermediate levels, the finer the picture effect that can be presented.
  • the general touch display panel uses a 6bit panel or an 8bit panel to realize image display.
  • the 8bit touch display panel can express 256 gray levels, that is, 0 to 255 gray levels; the 6bit touch display panel can express 64 gray levels, that is 0 to 63 gray levels.
  • the following uses 8bit touch display panel as an example for description.
  • the overloaded picture may be a checkerboard picture.
  • the judging whether the acquired image data is the checkerboard screen with a default polarity mode may include:
  • some acquired image data provided by the embodiments of the present disclosure satisfy the overloaded screen that forms a checkerboard screen in a default polarity manner.
  • the first tile Q1 includes at least one subpixel p; the second tile Q2 includes at least one subpixel p; and the number of subpixels included in the first tile Q1 and the second tile Q2 equal.
  • the grayscale difference required by the average human eye for the brightness difference needs to be greater than or equal to the difference of 2 grayscales.
  • the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 may differ by at least 2 gray scales. In this way, the difference between the brightness displayed by the first tile Q1 and the second tile Q2 can be recognized by the human eye.
  • the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 can be selected from 0 to 255 gray scales through the above rules.
  • the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 can be designed and determined according to the actual application environment, and are not limited herein.
  • the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 may be different by 2 gray scales.
  • the gray scale corresponding to the first tile Q1 may be different from the gray scale corresponding to the second tile Q2 by 20 gray scales. It is also possible to make the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 differ by 48 gray scales.
  • the gray scale corresponding to the first tile Q1 may be different from the gray scale corresponding to the second tile Q2 by 50 gray scales.
  • the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 may be different by 60 gray scales.
  • the difference between the gray scale corresponding to the first tile Q1 and the gray scale corresponding to the second tile Q2 can be designed and determined according to the actual application environment, and is not limited herein.
  • the following uses an example in which the gray levels of the first tile Q1 and the second tile Q2 differ by at least 48 gray scales.
  • the first to the Qth sub-pixel columns arranged along the extending direction of the gate line; Q is a positive even number.
  • the number of sub-pixel rows required in touch display panels of different sizes is different. Therefore, the number of sub-pixel rows can be designed and determined according to the actual application environment, which is not limited herein.
  • the gray levels of the first tile Q1 and the second tile Q2 differ by at least When there are 48 gray levels, and the polarity of the image data loaded by two adjacent data lines is opposite, when the gate on signal is sequentially applied to each gate line, each data line is loaded with the gate on signal on the nth gate line
  • the voltage of the image data loaded when the gate-on signal is applied to the n+1th gate line increases at the same time, that is, each data line reaches the n+1th when the gate-on signal is applied to the nth gate line
  • all the data lines may be the first data lines, and the second data lines are zero at this time.
  • the voltage of each data line from the time when the n-th gate line is loaded with the gate-on signal to the n+1-th gate line when the gate-on signal is loaded Both increase at the same time, that is, the voltage of each data line from the nth gate line loading the gate-on signal to the n+1th gate line loading the gate-on signal decreases by more than or equal to the voltage Threshold, then all data lines at this time may be second data lines, and at this time the first data line is 0.
  • the ratio of the number of the first data lines to the second data lines is less than 1/2, or the ratio of the number of the first data lines to the second data lines is greater than 2, then it is determined that the The image data is the reload screen with the default polarity method. That is to say, when the data signal is loaded with the data signal, the potential coupling of the touch electrodes is either positively coupled or negatively coupled, which may cause undesired horizontal stripes in the displayed image, which will affect the display effect.
  • the overloaded screen is a checkerboard screen
  • the image data is the checkerboard screen with a default polarity mode
  • the data lines in the touch display panel are divided into multiple data line groups, each of which includes a Data line, a is a multiple of 2.
  • the polarity of the image data can be adjusted in the following ways: the polarity of the image data loaded in the same data line group is adjusted to be the same, and the polarity of the image data loaded in two adjacent data line groups is opposite; One tile includes: 2k+1 columns of sub-pixels arranged in the row direction; the second tile includes: 2k+1 columns of sub-pixels arranged in the row direction; k is a positive integer.
  • the grid lines G 1 -G 6 are sequentially loaded with the gate-on signal, and when the gate line G 1 is loaded with the gate-on signal, the data lines S 1 -S 6 Load the image data forming the first row of pictures; when the gate line G 2 is loaded with the gate-on signal, the data lines S 1 -S 6 load the image data forming the second row of pictures; at this time, the data lines S 1 -S 6 The loaded image data jumps from the image data when G 1 is turned on to the image data when G 2 is turned on.
  • the gray scale of the first tile is 127 gray scales (the corresponding image data may be ⁇ V127), and the second tile
  • the gray scale of is 0 gray scale, then according to the polarity of the image data shown in Figure 8a, when G 1 is turned off and G 2 is turned on, the image data loaded by the data lines S 1 , S 3 , and S 5 changes from +V127 to 0 , the data line S 2, S 4, S 6 loaded image data from 0 to -V127, voltage of data line S 1 -S 6 loaded image data showed a significant decrease trend, the data lines S 1 -S 6 It can be used as the second data line.
  • the embodiment of the present disclosure can adjust the polarity of the image data loaded on the data line for the checkerboard screen shown in FIG. 8a, so that the polarity of the image data loaded on the same data line group is the same, and two adjacent The polarity of the image data loaded by each data line group is opposite, wherein each data line group may include an even number of data lines. As shown in FIG. 8a, the polarity of the image data loaded on the data line for the checkerboard screen shown in FIG. 8a, so that the polarity of the image data loaded on the same data line group is the same, and two adjacent The polarity of the image data loaded by each data line group is opposite, wherein each data line group may include an even number of data lines. As shown in FIG.
  • a data line group may include 2 data lines, namely, data lines S 1 and S 2 as a data line group, and the polarity of the loaded image data is positive; data lines S 3 and S 4 serve as a In the data line group, the polarity of the loaded image data is negative; the data lines S 5 and S 6 as a data line group, the polarity of the loaded image data is positive.
  • G 1 is turned off
  • G 2 is turned on
  • G 3 is turned off
  • G 4 is turned on
  • G 5 is turned off
  • G 6 is turned on
  • the voltage of the image data loaded by the data lines S 1 , S 4 , and S 5 is decreasing, and the data line S 2.
  • the voltage of the image data loaded by S 3 and S 6 is increasing; when G 2 is turned off, G 3 is turned on, and G 4 is turned off, and G 5 is turned on, the voltage of the image data loaded on the data lines S 1 , S 4 , and S 5 There is an increasing trend, and the voltage of the image data loaded by the data lines S 2 , S 3 , and S 6 is decreasing. This can make the voltage of the image data loaded each time show a decreasing trend and an increasing trend.
  • the number of lines remains the same, so that the coupling effect of these data lines to the touch electrodes above them are coupled in the direction of the increase and decrease of the reference potential, and the overall coupling degree is balanced, thereby avoiding the occurrence of horizontal stripes .
  • the number of sub-pixels in the first tile and the second tile may also be 3, and the sub-pixels in the first tile The row direction is adjacent, and the sub-pixels in the second tile are adjacent in the row direction.
  • the number of sub-pixels in the first tile and the second tile may also be more, which is not limited herein.
  • both the first tile Q1 and the second tile Q2 include two sub-pixels, that is, the sub-pixels in the first tile Q1 and the second tile Q2
  • the number is two, and the sub-pixels in the first tile and the second tile are arranged along the extending direction of the data line.
  • the gray scale of the first tile is 127 gray (the corresponding image data can be ⁇ V127), and the gray scale of the second tile is 0 gray.
  • the embodiment of the present disclosure can adjust the polarity of the image data loaded on the data line for the checkerboard screen shown in FIG. 9a, so that the polarity of the image data loaded on the same data line group is the same, and two adjacent The polarity of the image data loaded by each data line group is opposite, wherein each data line group may include an even number of data lines. As shown in FIG. 9a
  • a data line group can include 2 data lines, data lines S 1 and S 2 as a data line group, and the loaded image data polarity is positive; data lines S 3 and S 4 as a data In the line group, the polarity of the loaded image data is negative; the data lines S 5 and S 6 serve as a data line group, and the polarity of the loaded image data is positive.
  • the data lines in the touch display panel are divided into a plurality of data line groups, each of the data line groups includes b data lines, and b is a multiple of 2.
  • the polarity of the image data can be adjusted in the following manner: the polarity of the image data loaded in the same data line group is adjusted to be the same, and the polarity of the image data loaded in the adjacent two data line groups is opposite.
  • One tile includes: 2y columns of sub-pixels arranged in the row direction
  • the second tile includes: 2y columns of sub-pixels arranged in the row direction; y is a positive integer.
  • both the first tile Q1 and the second tile Q2 include two sub-pixels in a row, that is, the first tile Q1 and the second tile Both Q2 have 2 columns of sub-pixels, and the number of sub-pixels in the first tile Q1 and the second tile Q2 are two, and the sub-pixels in the first tile and the second tile are along
  • the extending direction of the gate lines is arranged.
  • the gray scale of the first tile Q1 is 127 gray scales (corresponding image data can be ⁇ V127)
  • the gray scale of the second tile Q2 is 0 gray scales
  • the arrow direction shown in FIG. 10a is the loading order of the image data, According to the loading sequence of FIG.
  • the embodiment of the present disclosure can adjust the polarity of the image data loaded on the data line for the checkerboard screen shown in FIG. 10a, so that the polarity of the image data loaded on the same data line group is the same, and the two adjacent The polarity of the image data loaded in each data line group is reversed, wherein the number of data lines included in each data line group is a multiple of 2.
  • a data line group may include 2 data lines, data lines S 2 and S 3 as a data line group, and the polarity of the loaded image data is negative; data lines S 4 and S 5 as a data Line group, the polarity of the loaded image data is positive.
  • two adjacent columns from the second sub-pixel column to the Q-1 sub-pixel column are divided into a first sub-pixel column group, and each of the first sub-pixel column groups is composed of The first tile and the second tile are alternately arranged along the column direction; and, the first sub-pixel column and the Q-th sub-pixel column are composed of alternate arrangement of the first sub-pixel and the second sub-pixel, respectively;
  • the gray scale corresponding to the first sub-pixel is approximately the same as the gray scale corresponding to the first tile
  • the gray scale corresponding to the second sub-pixel is approximately the same as the gray scale corresponding to the second tile
  • the first sub-pixel is adjacent to the second tile in the row direction
  • the second sub-pixel is adjacent to the first tile in the row direction.
  • the grayscale corresponding to the first subpixel p1 is 127 grayscale
  • the grayscale corresponding to the second subpixel p2 is 0 grayscale
  • the first subpixel column and the twelfth subpixel The columns are composed of alternately arranged first subpixels p1 and second subpixels p2.
  • the two adjacent columns from the second subpixel column to the eleventh subpixel column are divided into a first subpixel column group, each of the first subpixel column group is composed of the first tile and the second The tiles are arranged alternately along the column direction.
  • the second subpixel column and the third subpixel column are a first subpixel column group
  • the fourth subpixel column and the fifth subpixel column are a first subpixel column group
  • the sub-pixel column is a first sub-pixel column group, the rest is the same, and these first sub-pixel column groups are composed of the first tile Q1 and the second tile Q2 arranged alternately along the column direction.
  • the first subpixel p1 and the second tile Q2 are adjacent in the row direction
  • the second subpixel p2 and the first tile Q1 are adjacent in the row direction.
  • both the first tile Q1 and the second tile Q2 include two sub-pixels in a row, namely the first tile Q1 and the second tile Both Q2 have 2 columns of sub-pixels, and the number of sub-pixels in the first tile Q1 and the second tile Q2 are two, and the sub-pixels in the first tile and the second tile are along
  • the extending direction of the gate lines is arranged.
  • the gray scale of the first tile Q1 is 127 gray scales (corresponding image data can be ⁇ V127)
  • the gray scale of the second tile Q2 is 0 gray scales
  • the arrow direction shown in FIG. 11a is the loading order of the image data, According to the loading sequence of FIG.
  • the embodiment of the present disclosure may adjust the polarity of the image data loaded on the data line for the checkerboard screen shown in FIG. 11a, so that the polarity of the image data loaded on the same data line group is the same, and two adjacent The polarity of the image data loaded in each data line group is reversed, wherein the number of data lines included in each data line group is a multiple of 2.
  • a data line group can include 2 data lines, data lines S 2 and S 3 as a data line group, and the polarity of the loaded image data is negative; data lines S 4 and S 5 as a data Line group, the polarity of the loaded image data is positive.
  • two adjacent columns from the first sub-pixel column to the Q-th sub-pixel column may be divided into a second sub-pixel column group, and each of the second sub-pixel column groups
  • the first tile and the second tile are alternately arranged along the column direction.
  • the first subpixel column and the second subpixel column may be divided into a second subpixel column group, and the third subpixel column and the fourth subpixel column may be divided into one
  • the second subpixel column group divides the fifth subpixel column and the sixth subpixel column into a second subpixel column group, and divides the seventh subpixel column and the eighth subpixel column
  • For a second subpixel column group divide the ninth subpixel column and the tenth subpixel column into a second subpixel column group, and divide the eleventh subpixel column and the twelfth subpixel
  • the columns are divided into a second sub-pixel column group.
  • each of the second subpixel column groups is composed of the first tile Q1 and the second tile Q2 arranged alternately along the column direction.
  • the first tile Q1 and the second tile Q2 may also have 4 columns of sub-pixels, and the number of sub-pixels in each column is 1 or more Pcs.
  • the number of sub-pixels in the first tile and the second tile may also be more, which is not limited herein.
  • the overloaded picture may include a striped picture.
  • the judging whether the acquired image data is the stripe picture with a default polarity mode may include:
  • the third tile is arranged in multiple columns along the row direction
  • the fourth tile is arranged in multiple columns along the row direction
  • the third tile column and the fourth tile column are alternately arranged in the row direction
  • the polarity of the image data corresponding to two adjacent data lines is opposite, it is determined that the image data is the stripe picture with the default polarity mode, otherwise it is determined that the image data is not the one with the default polarity mode Striped picture.
  • some of the acquired image data provided by the embodiments of the present disclosure satisfy the overloaded screen that forms the striped screen in the default polarity manner.
  • the third tile Q3 and the fourth tile Q4 each include at least two sub-pixels, and the gray scale corresponding to the third tile Q3 differs from the gray scale corresponding to the fourth tile Q4 by at least 2 gray scales .
  • the grayscale difference required by the average human eye for the brightness difference needs to be greater than or equal to the difference of 2 grayscales.
  • the gray scale corresponding to the third tile Q3 and the gray scale corresponding to the fourth tile Q4 may differ by at least 2 gray scales. In this way, the difference between the brightness displayed by the third tile Q3 and the fourth tile Q4 can be recognized by the human eye.
  • the gray scale corresponding to the third tile Q3 and the gray scale corresponding to the fourth tile Q4 can be selected from 0 to 255 gray scales through the above rules.
  • the gray scale corresponding to the third tile Q3 and the gray scale corresponding to the fourth tile Q4 can be designed and determined according to the actual application environment, and are not limited herein.
  • the gray scale corresponding to the third tile Q3 and the gray scale corresponding to the fourth tile Q4 may be different by 2 gray scales. It is also possible to make the gray scale corresponding to the third tile Q3 different from the gray scale corresponding to the fourth tile Q4 by 20 gray scales. The gray scale corresponding to the third tile Q3 may also be different from the gray scale corresponding to the fourth tile Q4 by 48 gray scales. The gray scale corresponding to the third tile Q3 may be different from the gray scale corresponding to the fourth tile Q4 by 50 gray scales. The gray scale corresponding to the third tile Q3 may be different from the gray scale corresponding to the fourth tile Q4 by 60 gray scales.
  • the difference between the gray scale corresponding to the third tile Q3 and the gray scale corresponding to the fourth tile Q4 can be designed and determined according to the actual application environment, and is not limited herein.
  • the following uses an example in which the gray levels of the third block Q3 and the fourth block Q4 differ by at least 48 gray levels.
  • the grey scales of the third tile Q3 and the fourth tile Q4 differ by at least 48 grey scales, and
  • each data line reaches the n+1th when the gate-on signal is applied to the nth gate line
  • the voltages of the image data loaded when the gate-on signal is loaded on the gate lines all increase or decrease at the same time, then at this time, all the data lines act as the first data line and the second data line is 0, or, All data lines are used as the second data line and the first data line is 0, then the data line is positively coupled or negatively coupled to the potential coupling of the touch electrode when the data signal is loaded, according to the reason for the horizontal stripes
  • the loaded image data satisfies this first rule, it will cause undesired horizontal stripes in the displayed image, which will affect the display effect.
  • the overloaded picture is a striped picture
  • the data lines in the touch display panel are divided into multiple data line groups, and each of the data line groups includes c data lines, c is a multiple of 2.
  • the polarity of the image data can be adjusted in the following ways: the polarity of the image data loaded in the same data line group is adjusted to be the same, and the polarity of the image data loaded in the adjacent two data line groups is opposite;
  • the third tile includes 2m columns of sub-pixels arranged in a row direction, and the fourth tile includes 2m columns of sub-pixels arranged in a row direction, and m is an odd number.
  • the third tile Q3 and the fourth tile Q4 each include two columns of sub-pixels, and the third tile Q3 and the fourth picture
  • the two columns of sub-pixels in block Q4 are arranged and adjacent in the row direction.
  • the gray level of the third block Q3 is 127 gray levels (corresponding image data can be ⁇ V127)
  • the gray level of the fourth block Q4 is 0 gray levels
  • the arrow direction shown in FIG. 12a is the loading of the image data
  • the embodiment of the present disclosure can adjust the polarity of the image data loaded on the data line for the striped screen shown in FIG. 12a, so that the polarity of the image data loaded on the same data line group is the same, two adjacent The polarity of the image data loaded in the data line group is reversed, wherein the number of data lines included in each data line group is a multiple of 2.
  • a data line group can include 2 data lines, data lines S 2 and S 3 as a data line group, and the polarity of the loaded image data is negative; data lines S 4 and S 5 as a data Line group, the polarity of the loaded image data is positive.
  • the first subpixel row to the Pth subpixel row arranged along the extending direction of the gate line; P is a positive even number.
  • the number of sub-pixel columns required in touch display panels of different sizes is different. Therefore, the number of sub-pixel columns can be designed and determined according to the actual application environment, and is not limited herein.
  • the second sub-pixel column to the P-1 sub-pixel column may be composed of the third tile and the fourth tile arrangement, and the gray corresponding to the sub-pixels in the first sub-pixel column The same order and the same gray level corresponding to the sub-pixels in the Pth sub-pixel column; wherein, the third tile includes adjacent 2 columns of sub-pixels arranged in the row direction, and the fourth tile includes the Adjacent two columns of sub-pixels arranged in a row direction, the first sub-pixel column and the second sub-pixel column have different gray levels, and the P-th sub-pixel column corresponds to the P-1 sub-pixel column Gray scale is different.
  • the gray levels corresponding to the sub-pixels in the first sub-pixel column are the same, and the gray levels corresponding to the sub-pixels in the twelfth sub-pixel column are the same.
  • the third tile Q3 includes adjacent two columns of subpixels arranged in the row direction
  • the fourth tile Q4 includes adjacent two columns of subpixels arranged in the row direction
  • the third tile Q3 and the fourth tile Q4 alternately arranged along the row direction to form the second sub-pixel column to the P-1 sub-pixel column.
  • the first sub-pixel row and the second sub-pixel row have different gray levels
  • the twelfth sub-pixel row and the eleventh sub-pixel row have different gray levels.
  • the gray levels corresponding to the sub-pixels in the first sub-pixel column, the twelfth sub-pixel column, and the third tile Q3 may be substantially the same.
  • the requirements for the third tile Q3 and the fourth tile Q4 in the touch display panels of different application environments are different, so the number of sub-pixel columns included in the third tile Q3 and the fourth tile Q4 can be based on the actual The application environment is designed and determined, and is not limited here.
  • the situation shown in FIG. 13a and FIG. 14a may occur. Only part of the sub-pixels are used to display the checkerboard screen, and part of the screen is loaded with a striped screen, or the loaded image data does not change , But will still cause the occurrence of horizontal stripes.
  • the polarity adjustment of the image data may include: after determining that the image data has the default polarity mode When mixing images, adjust the number of the first data line and the second data line to be approximately equal.
  • the number of the first data line and the second data line may be adjusted to be equal, that is, the first data line and the The ratio of the number of second data lines is equal to 1.
  • the number of the first data line and the second data line after adjustment may be such that the ratio of the number of the first data line and the second data line is in the range of 1/2-2.
  • the number of the first data line and the second data line after adjustment may satisfy the ratio of the number of the first data line and the second data line to be 2/3 or 3/4 or 3/2 or 4/3, etc., so that the first data line and the second data line are close to the same, so that it is difficult for the human eye to perceive the existence of the above horizontal stripes.
  • the number of adjusted first data lines and second data lines can be designed and determined according to the actual application environment, and is not limited herein.
  • the data lines S 1 , S 3 , S 4 , and S 6 load changing image data for image display, while the data lines S 2 and S 5 do not Load image data.
  • the gray level of the fifth block Q5 formed by the image data is 127 gray levels (the corresponding image data may be ⁇ V127)
  • the gray level of the sixth block Q6 is 0 gray levels
  • the coupling effects of the upper touch electrodes are all coupled in the direction of decreasing potential.
  • G 2 is turned off, G 3 is turned on, and G 4 is turned off, and G 5 is turned on
  • the voltages of the image data loaded on the data lines S 1 , S 3 , S 4 , and S 6 all show a large increase trend.
  • the coupling effects of the touch electrodes above them are coupled in the direction of decreasing potential. At this time, no matter when the image data loaded on the data line jumps, the above horizontal stripes phenomenon will occur, which seriously affects the display effect.
  • the embodiments of the present disclosure may adjust the polarity of the image data loaded on the data line for the reload screen shown in FIG. 13a.
  • the data line polarity can adjust the image data corresponding to S 3 is negative, the polarity of the adjustment data line S 6 corresponding to the image data is positive.
  • G 1 is turned off
  • G 2 is turned on
  • G 3 is turned off
  • G 4 is turned on
  • G 5 is turned off
  • G 6 is turned on
  • the image data loaded by the data lines S 3 and S 6 both increase significantly, and belong to the two first data.
  • the image data loaded by the data lines S 1 and S 4 all show a greatly decreasing trend, and belong to two second data lines.
  • the data lines S 1 and S 4 are loaded with constantly changing image data for image display, while the data lines S 2 , S 3 , S 5 and S 6 are not loaded with image data.
  • the gray level of the fifth block Q5 formed by the image data is 127 gray levels (the corresponding image data may be ⁇ V127)
  • the gray level of the sixth block Q6 is 0 gray levels
  • the embodiments of the present disclosure may adjust the polarity of the image data loaded on the data line for the reload screen shown in FIG. 14a.
  • Shown in Figure 14b can adjust the polarity of the data line S 4 corresponding to the image data is positive.
  • G 1 is turned off
  • G 2 is turned on
  • G 3 is turned off
  • G 4 is turned on
  • G 5 is turned off
  • G 6 is turned on
  • the image data loaded by the data line S 4 is greatly increased, and belongs to the first data line
  • the data line S 1 The loaded image data shows a large reduction trend and belongs to the second data line.
  • an embodiment of the present disclosure also provides a driving device for a touch display panel, as shown in FIG. 15, may include:
  • the obtaining circuit 1510 is configured to obtain image data of the image to be displayed
  • the judging circuit 1520 is configured to judge whether the acquired image data is a reloaded screen with a default polarity mode; wherein the default polarity mode includes: the polarity of the image data corresponding to each adjacent two data lines On the contrary, and the polarities of the image data corresponding to the same data line are the same;
  • the adjustment circuit 1530 is configured to adjust the polarity of the image data when determining that the image data is a reloaded screen with the default polarity mode;
  • the display driving circuit 1540 is configured to drive the touch display panel 1550 to perform image display according to the polarity-adjusted image data.
  • At least one of the above acquisition circuit, judgment circuit, adjustment circuit, and display drive circuit may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Not limited.
  • an embodiment of the present disclosure also provides a display device, including a touch display panel and the above-mentioned driving device provided by the embodiment of the present disclosure.
  • the principle of the display device to solve the problem is similar to that of the aforementioned driving device. Therefore, the implementation of the display device can refer to the implementation of the aforementioned driving device, and the repetition is not repeated here.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • the other indispensable components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be used as a limitation to the present disclosure.
  • an embodiment of the present disclosure also provides a readable non-transitory storage medium on which executable instructions of the touch display panel are stored, and the executable instructions of the touch display panel are executed by the processor to implement the present disclosure
  • the steps of the above-mentioned driving method of the touch display panel provided by way of example.
  • the present disclosure may take the form of a computer program product implemented on one or more available storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • embodiments of the present disclosure also provide a computer device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the above-described touch provided by the embodiments of the present disclosure is implemented Steps for controlling the driving method of the display panel.
  • the method and device for driving the touch display panel provided by the embodiments of the present disclosure, by first acquiring the image data of the display image before performing the image display, when the image data is the image data of the overloaded screen with the default polarity mode, then Polarity adjustment is performed on the image data of the overloaded screen, so that the image displayed by the adjusted image data does not change, and at the same time, the potential of the touch electrode can be overcome in the same direction and deviate from its reference potential. In this way, when loading the polarity-adjusted image data, horizontal stripes can be avoided in the displayed image, thereby optimizing the display effect.
  • the driving method provided by the embodiment of the present disclosure only adjusts the polarity of the image data, and does not affect the image display of the liquid crystal display panel.
  • the displayed image can be the same as before the adjustment, but the adjusted image data does not It will no longer cause the display of horizontal stripes, thereby optimizing the display effect.

Abstract

本公开公开了触控显示面板的驱动方法及装置,该驱动方法包括:获取待显示图像的图像数据;判断获取的图像数据是否为具有默认极性方式的重载画面;在判断图像数据是具有默认极性方式的重载画面时,对图像数据进行极性调整;根据极性调整后的图像数据,驱动触控显示面板进行图像显示;其中,默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条数据线对应的图像数据的极性相同。

Description

触控显示面板的驱动方法及装置
相关申请的交叉引用
本申请要求在2019年01月02日提交中国专利局、申请号为201910002911.0、申请名称为“触控显示面板的驱动方法及可读性存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及触控显示面板的驱动方法及装置。
背景技术
触控与显示驱动器集成(Touch and Display Driver Integration,简称TDDI)技术是将触控芯片与显示芯片整合进单一芯片中,由此可以使显示屏具有更薄的外型和更低的成本。一般,TDDI显示屏通常具有多个触控电极,触控电极与数据线一般设置在不同膜层。TDDI显示屏可以采用列反转的驱动方式,相邻两条数据线施加的数据信号的极性相反,由此来驱动液晶翻转实现图像显示。但是在显示重载画面时,由于重载画面中相邻的色块的灰阶跨度较大,这样会导致触控电极在不同区域受数据线的耦合程度不同,部分区域可以迅速恢复,而部分区域则恢复较慢,这样就造成在显示重载画面时由于耦合恢复不均产生横纹,影响显示效果。
发明内容
本公开实施例提供的触控显示面板的驱动方法,包括:
获取待显示图像的图像数据;
判断获取的所述图像数据是否为具有默认极性方式的重载画面;其中,所述默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同;
在判断所述图像数据是具有所述默认极性方式的重载画面时,对所述图像数据进行极性调整;
根据极性调整后的图像数据,驱动所述触控显示面板进行图像显示。
可选地,在本公开实施例中,所述判断获取的所述图像数据是否为具有所述默认极性方式的重载画面,包括:
根据获取的所述图像数据,确定加载所述图像数据的第一数据线和第二数据线的数量;其中,所述第一数据线为在第一时刻加载的图像数据至第二时刻加载的图像数据的电压增加幅度大于或等于阈值的数据线;所述第二数据线为在所述第一时刻加载的图像数据至所述第二时刻加载的图像数据的电压减小幅度大于或等于所述阈值的数据线;所述第一时刻为第n条栅线加载栅极开启信号的时刻,所述第二时刻为第n+1条栅线加载栅极开启信号的时刻,n为大于或等于1的整数;所述阈值为具有相同极性的第一图像数据与第二图像数据的电压差值,所述第一图像数据对应的灰阶与所述第二图像数据对应的灰阶相差至少2个灰阶;
在所述第一数据线与所述第二数据线的数量之比小于或等于1/2,或所述第一数据线与所述第二数据线的数量之比大于2时,确定所述图像数据是具有所述默认极性方式的所述重载画面,否则确定所述图像数据不是具有所述默认极性方式的所述重载画面。
可选地,在本公开实施例中,所述重载画面包括:棋盘格画面与条纹画面中的之一或组合。
可选地,在本公开实施例中,所述重载画面包括:棋盘格画面;所述判断获取的所述图像数据是否为具有默认极性方式的所述棋盘格画面,包括:
根据获取的所述图像数据,确定加载所述图像数据形成的第一图块和第二图块的排列方式;其中,所述第一图块包括至少一个子像素;所述第二图块包括至少一个子像素;所述第一图块和所述第二图块包括的子像素的数量相等;所述第一图块对应的灰阶与所述第二图块对应的灰阶至少相差2个灰阶;
在所述第一图块和所述第二图块沿行和列的方向均交替排布,且每相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述棋盘格画面,否则确定所述图像数据不是具有默认极性方式的所述棋盘格画面。
可选地,在本公开实施例中,所述触控显示面板的一行子像素对应电连接同一条栅线;所述第一图块包括:行方向上排列的2k+1列子像素;所述第二图块包括:所述行方向上排列的2k+1列子像素;k为正整数;
将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括a条数据线,a为2的倍数;
所述对所述图像数据进行极性调整,包括:
在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
可选地,在本公开实施例中,所述第一图块中的子像素的数量为一个;或者,
所述第一图块中的子像素的数量为两个,且所述第一图块和所述第二图块中的子像素沿所述数据线的延伸方向排列。
可选地,在本公开实施例中,所述触控显示面板的一行子像素对应连接与该行子像素相邻的两条栅线;所述第一图块包括:行方向上排列的2y列子像素,所述第二图块包括:所述行方向上排列的2y列子像素;y为正整数;
将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括b条数据线,b为2的倍数;
所述对所述图像数据进行极性调整,包括:
在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
可选地,在本公开实施例中,所述第一图块中的子像素的数量为两个, 且所述第一图块和所述第二图块中的子像素沿所述栅线的延伸方向排列。
可选地,在本公开实施例中,所述触控显示面板包括沿所述栅线的延伸方向排列的第1子像素列至第Q子像素列;Q为正偶数;
将所述第1子像素列至所述第Q子像素列中相邻的两列分为一个第二子像素列组,各所述第二子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成;或者,
将第2子像素列至第Q-1子像素列中相邻的两列分为一个第一子像素列组,各所述第一子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成;以及,所述第1子像素列和所述第Q子像素列分别由第一子像素和第二子像素交替排列组成;其中,所述第一子像素对应的灰阶与所述第一图块对应的灰阶大致相同,所述第二子像素对应的灰阶与所述第二图块对应的灰阶大致相同,以及所述第一子像素与所述第二图块在所述行方向上相邻,所述第二子像素与所述第一图块在所述行方向上相邻。
可选地,在本公开实施例中,所述重载画面包括:条纹画面;所述判断获取的所述图像数据是否为具有默认极性方式的所述条纹画面,包括:
根据获取的所述图像数据,确定加载所述图像数据形成的第三图块和第四图块的排列方式;其中,所述第三图块与所述第四图块均至少包括至少两个子像素,所述第三图块对应的灰阶与所述第四图块对应的灰阶至少相差2个灰阶;
在所述第三图块沿行方向排列成多列,所述第四图块沿行方向排列成多列,所述第三图块列与所述第四图块列沿行方向交替排布,且相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述条纹画面,否则确定所述图像数据不是具有默认极性方式的所述条纹画面。
可选地,在本公开实施例中,所述触控显示面板的一行子像素对应连接与该行子像素相邻的两条栅线;所述第三图块包括行方向上排列的2m列子像素,所述第四图块包括行方向上排列的2m列子像素,且m为奇数;
将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括c条数据线,c为2的倍数;
所述对所述图像数据进行极性调整,包括:
当确定所述图像数据是具有默认极性方式的所述条纹画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
可选地,在本公开实施例中,所述触控显示面板包括沿所述栅线的延伸方向排列的第1子像素列至第P子像素列;P为正偶数;
第2子像素列至第P-1子像素列由所述第三图块和所述第四图块排列组成,以及所述第1子像素列中子像素对应的灰阶相同,且所述第P子像素列中子像素对应的灰阶相同;其中,所述第三图块包括所述行方向上排列的相邻2列子像素,所述第四图块包括所述行方向上排列的相邻2列子像素,所述第1子像素列与所述第2子像素列对应的灰阶不同,所述第P子像素列与所述第P-1子像素列对应的灰阶不同。
可选地,在本公开实施例中,所述第1子像素列、所述第P子像素列以及所述第三图块中的子像素对应的灰阶大致相同。
可选地,在本公开实施例中,所述重载画面包括:由棋盘格画面与条纹画面组成的混合画面;所述对所述图像数据进行极性调整,包括:
在确定所述图像数据是具有默认极性方式的所述混合画面时,调整所述第一数据线和所述第二数据线的数量为大致相等。
本公开实施例还提供了触控显示面板的驱动装置,包括:
获取电路,被配置为获取待显示图像的图像数据;
判断电路,被配置为判断获取的所述图像数据是否为具有默认极性方式的重载画面;其中,所述默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同;
调整电路,被配置为在判断所述图像数据是具有所述默认极性方式的重载画面时,对所述图像数据进行极性调整;
显示驱动电路,被配置为根据极性调整后的图像数据,驱动所述触控显示面板进行图像显示。
本公开实施例还提供了显示装置,包括:触控显示面板以及上述驱动装置。
本公开实施例还提供了可读非临时性存储介质,所述可读非临时性存储介质存储有触控显示面板可执行指令,其中,所述触控显示面板可执行指令用于使触控显示面板执行上述触控显示面板的驱动方法的步骤。
本公开实施例还提供了计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现上述触控显示面板的驱动方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的触控显示面板的俯视结构示意图;
图2为本公开实施例提供的耦合原理示意图之一;
图3为本公开实施例提供的耦合原理示意图之二;
图4为本公开实施例提供的触控显示面板的驱动方法的流程图之一;
图5为本公开实施例提供的触控显示面板的驱动方法的流程图之二;
图6为本公开实施例提供的单栅线的触控显示面板的结构示意图;
图7为本公开实施例提供的双栅线的触控显示面板的结构示意图;
图8a为本公开实施例提供的满足第一规则的重载画面示意图之一;
图8b为图8a经过极性调整后的重载画面示意图;
图9a为本公开实施例提供的满足第一规则的重载画面示意图之二;
图9b为图9a经过极性调整后的重载画面示意图;
图10a为本公开实施例提供的满足第一规则的重载画面示意图之三;
图10b为图10a经过极性调整后的重载画面示意图;
图11a为本公开实施例提供的满足第一规则的重载画面示意图之四;
图11b为图11a经过极性调整后的重载画面示意图;
图12a为本公开实施例提供的满足第二规则的重载画面示意图;
图12b为图12a经过极性调整后的重载画面的示意图;
图13a为本公开实施例提供的满足第三规则的重载画面示意图之一;
图13b为图13a经过极性调整后的重载画面的示意图;
图14a为本公开实施例提供的满足第三规则的重载画面示意图之二;
图14b为图14a经过极性调整后的重载画面的示意图;
图15为本公开实施例提供的驱动装置的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
下面结合附图详细介绍本公开具体实施例提供的触控显示面板的驱动方法及可读非临时性存储介质。
如图1所示,一般,液晶显示面板通常包括用于控制液晶翻转的子像素电极和公共电极CE,其中公共电极CE分割为多个电极块,这些电极块可以复用为触控电极TE。在液晶显示面板进行图像显示时,一般是采用栅线G逐行扫描,数据线S向子像素单元加载数据信号的驱动方式进行图像显示。一般数据线和触控电极通常位于不同的膜层,这两个膜层之间存在绝缘膜层以将这两个膜层隔开,这样会使数据线(S 1-S n)与触控电极(公共电极的电极Vcom)之间形成寄生电容,如图2所示。
一般液晶显示面板可以采用列反转的驱动方式进行图像显示,即相邻两条数据线所加载的数据信号的极性相反。在实际应用中,每次栅线(G 1-G 4)加载栅极开启信号,数据线加载数据信号。如图3所示,触控电极会在数据线每次加载数据信号时,向偏离基准电位的一个方向(图3中向上箭头或向下箭头)的方向受到数据线的耦合作用,且在触控电极的不同区域,其受数据线的耦合程度不相同。那么在反复向数据线加载变动较大的数据信号以形成重载画面时,如果触控电极由于数据线的耦合作用,导致其电位总是被向同一方向拉动,而不能有效回复到其基准电位时,就会产生横纹,影响显示效果。
有鉴于此,本公开实施例提供的触控显示面板的驱动方法,如图4所示,该方法包括:
S10、获取待显示图像的图像数据;
S20、判断获取的图像数据是否为具有默认极性方式的重载画面;其中,默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条数据线对应的图像数据的极性相同。在判断图像数据是具有默认极性方式的重载画面时,执行步骤S30-S40,在判断图像数据不是具有默认极性方式的重载画面时,执行步骤S50;
S30、对图像数据进行极性调整;
S40、根据极性调整后的图像数据,驱动触控显示面板进行图像显示;
S50、直接根据图像数据,驱动触控显示面板进行图像显示。
通常情况下,默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同,指的可以是:采用列反转驱动方式显示重载画面,在加载图像数据之后,往往会在显示的图像画面中产生横纹,严重影响显示效果。而在本公开实施例提供的上述驱动方法中,在进行图像显示之前首先获取显示图像的图像数据,当该图像数据为具有默认极性方式的重载画面的图像数据时,则对重载画面的图像数据进行极性调整,使调整后的图像数据所显示的图像不变,同时又可以克服触 控电极的电位向同一方向拉动而偏离其基准电位。这样在载入极性调整后的图像数据时,则可以避免显示图像产生横纹,从而优化显示效果。并且,本公开实施例提供的驱动方法,仅对图像数据的极性进行调整,并不会影响液晶显示面板的图像显示,可以做到显示的图像与调整之前相同,但调整后的图像数据并不会再造成显示横纹的产生,进而优化显示效果。
可选地,在具体实施时,在本公开实施例中,如图5所示,在上述的步骤S20中,判断获取的所述图像数据是否为具有所述默认极性方式的重载画面,可以包括:
S201、根据获取的图像数据,确定加载图像数据的第一数据线和第二数据线的数量;其中,第一数据线为在第一时刻加载的图像数据至第二时刻加载的图像数据的电压增加幅度大于或等于阈值的数据线;第二数据线为在第一时刻加载的图像数据至第二时刻加载的图像数据的电压减小幅度大于或等于阈值的数据线;第一时刻为第n条栅线加载栅极开启信号的时刻,第二时刻为第n+1条栅线加载栅极开启信号的时刻,n为大于或等于1的整数;阈值为具有相同极性的第一图像数据与第二图像数据的电压差值,第一图像数据对应的灰阶与第二图像数据对应的灰阶相差至少2个灰阶;
S202、在第一数据线与第二数据线的数量之比小于或等于1/2,或第一数据线与第二数据线的数量之比大于2时,确定图像数据是具有默认极性方式的重载画面,否则确定图像数据不是具有默认极性方式的重载画面。
即S203、在第一数据线与第二数据线的数量之比大于1/2,且第一数据线与第二数据线的数量之比不大于2时,确定图像数据不是具有默认极性方式的重载画面。
可选地,在具体实施时,在本公开实施例中,可以在第一数据线与第二数据线的数量之比小于或等于1/2,确定图像数据是具有默认极性方式的重载画面,则可以对图像数据进行极性调整。
需要说明的是,第一数据线与第二数据线的数量之比的比值越大技术问题越严重,这样会使得亮线贯穿触控显示面板的整个屏幕。若第一数据线与 第二数据线的数量之比的比值较小且拉升或者拉低比较集中的话,也会造成较短的亮线。可选地,在具体实施时,在本公开实施例中,可以在第一数据线与第二数据线的数量之比大于2时,确定图像数据是具有默认极性方式的重载画面,则可以对图像数据进行极性调整。
在实际应用中,可将整幅图像中的第一数据线和第二数据线确定出来,再统计第一数据线与第二数据线的数量,当第一数据线的数量大于第二数据线的数量的2倍,或者当第二数据线的数量大于第一数据线的数量的2倍时,确定图像数据是具有默认极性方式的重载画面,则容易产生横纹现象。针对这样的图像数据需要进行极性调整,使调整后的第一数据线的数量与第二数据线的数量相等,由此可以使各数据线在加载图像数据时对触控电极的耦合方向相互抵消,使触控电极的电位保持在基准电位,避免横纹的产生。
在实际应用中,在显示棋盘格画面或条纹画面等重载画面时,很容易产生上述横纹,因此在触控显示面板出厂之前也常用这样的重载画面进行显示面板的检测。在本公开实施例中,可以将采用列反转驱动方式显示棋盘格画面、或显示条纹画面作为在先判定准则,以对获取的图像数据进行检测。当满足上述准则时,则说明获取的图像数据在加载以显示图像画面时将容易产生横纹,影响显示效果。此时则需要对图像数据的极性进行调整,以避免显示时产生的横纹现象。然而除上述的棋盘格画面和条纹画面之外,还存在着多种其它重载画面也会造成显示横纹,例如由棋盘格画面与条纹画面组成的混合画面,因此当获取的图像数据为由棋盘格画面与条纹画面组成的混合画面的图像数据时,也需要对图像数据的极性进行调整,以避免显示横纹的现象。在具体实施时,所述重载画面可以包括:棋盘格画面与条纹画面中的之一或组合。并且,本公开实施例中,仅对图像数据的极性进行调整,并不会影响液晶显示面板的图像显示,可以做到显示的图像与调整之前相同,但调整后的图像数据并不会再造成显示横纹的产生,由此优化显示效果。
在具体实施时,如图6和图7所示,触控显示面板可以包括:多条栅线,多条数据线以及多个子像素p。其中,每个子像素p可以包括:薄膜晶体管和 子像素电极;薄膜晶体管的栅极与栅线电连接,薄膜晶体管的源极与数据线电连接,薄膜晶体管的漏极与子像素电极电连接。在实际应用中,当栅线加载栅极开启信号时,薄膜晶体管导通,从而可以将数据线的数据信号传输到子像素电极上,以对子像素p充电,从而驱动子像素进行不同亮度的显示。
在具体实施时,在采用单栅线结构的触控显示面板中,如图6所示,栅线的数量与子像素行的数量相等,数据线的数量与子像素列的数量相等。示例性地,如图6所示,一行子像素p对应电连接一条栅线,当一条栅线上加载栅极开启信号时,对应子像素行中各子像素p中薄膜晶体管电连接的数据线上传输的数据信号,均可以传输至对应的子像素p中。例如,第一行子像素p中的薄膜晶体管的栅极均与栅线G1电连接,第二行子像素p中的薄膜晶体管的栅极均与栅线G2电连接,第n行子像素p中的薄膜晶体管的栅极均与栅线G n电连接,其余同理,在此不作赘述。
在具体实施时,在采用双栅线结构的触控显示面板中,如图7所示,栅线的数量为子像素行的数量的2倍,数据线的数量为子像素列的数量的1/2。示例性地,如图7所示,一行子像素p还可以对应电连接相邻的两条栅线,当其中一条栅线上加载栅极开启信号时,在对应的子像素行中位于奇数位置的各子像素p连接的数据线,可以将数据信号加载至对应的奇数位置的子像素p,当另一条栅线上加载栅极开启信号时,在对应的子像素行中位于偶数位置的各子像素p连接的数据线,可以将信号加载至对应的偶数位置的子像素p。例如,第一行子像素p对应栅线G1、G2,且第一行奇数列子像素p中的薄膜晶体管的栅极电连接栅线G1,偶数列子像素p中的薄膜晶体管的栅极电连接栅线G2。第二行子像素p对应栅线G3、G4。且第二行奇数列子像素p中的薄膜晶体管的栅极电连接栅线G3,偶数列子像素p中的薄膜晶体管的栅极电连接栅线G4。第1/n行奇数列子像素p中的薄膜晶体管的栅极电连接栅线G n-1,偶数列子像素p中的薄膜晶体管的栅极电连接栅线G n。其余同理,在此不作赘述。
灰阶,一般是将最暗与最亮之间的亮度变化区分为若干份,以便于进行 屏幕亮度管控。显示的图像一般都是由许多像素组合而成的,通常每一个像素由红、绿、蓝三个子像素组成,可以呈现出许多不同的颜色,并且每一个子像素的光源都可以显现出不同的亮度级别。灰阶即代表了由最暗到最亮之间不同亮度的层次级别。这中间层级越多,所能够呈现的画面效果也就越细腻。目前,一般触控显示面板中采用6bit面板或8bit面板来实现图像显示,其中,8bit触控显示面板,其能表现256灰阶,即0~255灰阶;6bit触控显示面板,其能表现64灰阶,即0~63灰阶。下面以8bit触控显示面板为例进行说明。
具体地,可以使重载画面为棋盘格画面。在具体实施时,所述判断获取的所述图像数据是否为具有默认极性方式的所述棋盘格画面,可以包括:
根据获取的所述图像数据,确定加载所述图像数据形成的第一图块和第二图块的排列方式;其中,所述第一图块包括至少一个子像素;所述第二图块包括至少一个子像素;所述第一图块和所述第二图块包括的子像素的数量相等;所述第一图块对应的灰阶与所述第二图块对应的灰阶至少相差2个灰阶;
在所述第一图块和所述第二图块沿行和列的方向均交替排布,且每相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述棋盘格画面,否则确定所述图像数据不是具有默认极性方式的所述棋盘格画面。
如图8a、图9a、图10a和图11a所示,为本公开实施例提供的一些获取的图像数据满足形成默认极性方式的棋盘格画面的重载画面。在这些重载棋盘格画面中,第一图块Q1包括至少一个子像素p;第二图块Q2包括至少一个子像素p;第一图块Q1和第二图块Q2包括的子像素的数量相等。
一般人眼能看到的亮度差异所需的灰阶差需要大于等于2个灰阶的差异。在具体实施时,可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶至少相差2个灰阶。这样可以使第一图块Q1与第二图块Q2显示的亮度之间的差异能够被人眼识别出来。示例性地,在实际应用中,第一图块Q1对应的灰 阶与第二图块Q2对应的灰阶可以通过上述规则,从0~255灰阶中进行选取。当然,第一图块Q1对应的灰阶与第二图块Q2对应的灰阶可以根据实际应用环境来设计确定,在此不作限定。
进一步地,在具体实施时,可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶相差2个灰阶。也可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶相差20个灰阶。也可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶相差48个灰阶。也可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶相差50个灰阶。也可以使第一图块Q1对应的灰阶与第二图块Q2对应的灰阶相差60个灰阶。当然,第一图块Q1对应的灰阶与第二图块Q2对应的灰阶之间的差值可以根据实际应用环境来设计确定,在此不作限定。下面以第一图块Q1和第二图块Q2的灰阶相差至少48个灰阶为例进行说明。
在具体实施时,触控显示面板中,如图8a至图11b所示,沿所述栅线的延伸方向排列的第1子像素列至第Q子像素列;Q为正偶数。如图8a至图9b所示,可以使Q=6,则触控显示面板中,可以有沿所述栅线的延伸方向排列的第1子像素列至第6子像素列。如图10a至图11b所示,可以使Q=12,则触控显示面板中,可以有沿所述栅线的延伸方向排列的第1子像素列至第12子像素列。当然,在实际应用中,不同尺寸的触控显示面板中需求的子像素列的数量不同,因此,子像素列的数量可以根据实际应用环境来设计确定,在此不作限定。
如图8a、图9a、图10a和图11a所示,当第一图块Q1和第二图块Q2构成的棋盘格画面中,第一图块Q1和第二图块Q2的灰阶相差至少48个灰阶,且相邻两条数据线所加载的图像数据的极性相反时,在依次向各栅线加载栅极开启信号时,各数据线在第n条栅线加载栅极开启信号时至第n+1条栅线加载栅极开启信号时加载的图像数据的电压均呈同时增大的情况,即各数据线在第n条栅线加载栅极开启信号时至第n+1条栅线加载栅极开启信号时加载的图像数据的电压增加幅度大于或等于阈值,则此时所有的数据线可以均为第一数据线,而此时第二数据线为0。或者,在依次向各栅线加载栅极开启 信号时,各数据线在第n条栅线加载栅极开启信号时至第n+1条栅线加载栅极开启信号时加载的图像数据的电压均呈同时增大的情况,即各数据线在第n条栅线加载栅极开启信号时至第n+1条栅线加载栅极开启信号时加载的图像数据的电压减小幅度大于或等于阈值,则此时所有的数据线可以均为第二数据线,而此时第一数据线为0。这样说明,所述第一数据线与所述第二数据线的数量之比小于1/2,或所述第一数据线与所述第二数据线的数量之比大于2,则确定所述图像数据是具有所述默认极性方式的所述重载画面。也就是说,数据线在加载数据信号时对于触控电极的电位耦合均呈正向耦合或均呈负向耦合,会使显示的图像中产生不想要呈现的横纹,将会影响显示效果。
针对上述情况,即当重载画面为棋盘格画面时,在一些可实施的方式中,在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,当触控显示面板的一行子像素对应电连接一条栅线,即触控显示面板采用单栅线结构时,将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括a条数据线,a为2的倍数。并可采用以下方式对图像数据的极性进行调整:调整同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反;其中,所述第一图块包括:行方向上排列的2k+1列子像素;所述第二图块包括:所述行方向上排列的2k+1列子像素;k为正整数。
示例性地,如图8a所示的单栅线棋盘格画面,栅线G 1-G 6依次加载栅极开启信号,当栅线G 1加载栅极开启信号时,数据线S 1-S 6加载形成第一行画面的图像数据;当栅线G 2加载栅极开启信号时,数据线S 1-S 6加载形成第二行画面的图像数据;此时,数据线S 1-S 6所加载的图像数据由G 1开启时的图像数据向G 2开启时的图像数据跳变。若本公开实施例中,第一图块Q1和第二图块Q2均包括一个子像素,第一图块的灰阶为127灰阶(对应的图像数据可为±V127),第二图块的灰阶为0灰阶,则根据图8a所示的图像数据的极性,当G 1关闭G 2开启时,数据线S 1、S 3、S 5加载的图像数据由+V127变为0,数据线S 2、S 4、S 6加载的图像数据由0变为-V127,数据线S 1-S 6加载的图像数据的电压均呈大幅减小趋势,则数据线S 1-S 6可以作为第二数据线,此时第 一数据线为0条。那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合,造成触控电极不能及时回复到基准电位而显示横纹的现象。以此类推。当G 2关闭G 3开启时,数据线S 1-S 6加载的图像数据的电压均呈大幅增大趋势,则数据线S 1-S 6可以作为第一数据线,此时第二数据线为0条。当G 3关闭G 4开启时,数据线S 1-S 6加载的图像数据的电压均呈大幅减小趋势,则数据线S 1-S 6可以作为第二数据线,此时第一数据线为0条。当G 4关闭G 5开启时,数据线S 1-S 6加载的图像数据的电压均呈大幅增大趋势,则数据线S 1-S 6可以作为第一数据线,此时第二数据线为0条。当G 5关闭G 6开启时,数据线S 1-S 6加载的图像数据的电压均呈大幅减小趋势,则数据线S 1-S 6可以作为第二数据线,此时第一数据线为0条。因此,此时无论数据线加载的图像数据在哪一次跳变时均会产生上述横纹现象,严重影响显示效果。
有鉴于此,本公开实施例可以针对图8a所示的棋盘格画面,对数据线加载的图像数据的极性进行调整,使得同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,每个数据线组可以包括偶数条数据线。如图8b所示,可使一个数据线组包括2条数据线,即数据线S 1和S 2作为一个数据线组,加载的图像数据极性为正;数据线S 3和S 4作为一个数据线组,加载的图像数据极性为负;数据线S 5和S 6作为一个数据线组,加载的图像数据极性为正。此时在G 1关闭G 2开启,G 3关闭G 4开启,G 5关闭G 6开启时,数据线S 1、S 4、S 5加载的图像数据的电压呈减小趋势,而数据线S 2、S 3、S 6加载的图像数据的电压呈增大趋势;在G 2关闭G 3开启,G 4关闭G 5开启时,数据线S 1、S 4、S 5加载的图像数据的电压呈增大趋势,而数据线S 2、S 3、S 6加载的图像数据的电压呈减小趋势,由此可以使每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
当然,在具体实施时,触控显示面板采用单栅线结构时,也可以使第一图块和第二图块中的子像素的数量为3个,并且第一图块中的子像素沿行方 向上相邻,以及第二图块中的子像素沿行方向上相邻。当然,第一图块和第二图块中的子像素的数量也可以为更多个,在此不作限定。
示例性地,如图9a所示的单栅线棋盘格画面,第一图块Q1和第二图块Q2均包括两个子像素,即第一图块Q1和第二图块Q2中的子像素的数量均为两个,且所述第一图块和所述第二图块中的子像素沿所述数据线的延伸方向排列。第一图块的灰阶为127灰阶(对应的图像数据可为±V127),第二图块的灰阶为0灰阶,则根据图9a所示的图像数据的极性,当G 2关闭G 3开启时,数据线S 1、S 3、S 5加载的图像数据由+V127变为0,数据线S 2、S 4、S 6加载的图像数据由0变为-V127,数据线S 1-S 6加载的图像数据的电压均呈大幅减小趋势,则数据线S 1-S 6可以作为第二数据线,此时第一数据线为0条。当G 4关闭G 5开启时,数据线S 1、S 3、S 5加载的图像数据由0变为+V127,数据线S 2、S 4、S 6加载的图像数据由-V127变为0,数据线S 1-S 6加载的图像数据的电压均呈大幅增大趋势,则数据线S 1-S 6可以作为第一数据线,此时第二数据线为0条。因此,各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小或增大的方向耦合,造成触控电极不能及时回复到基准电位而显示横纹的现象。
有鉴于此,本公开实施例可以针对图9a所示的棋盘格画面,对数据线加载的图像数据的极性进行调整,使得同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,每个数据线组可以包括偶数条数据线。如图9b所示,可使一个数据线组包括2条数据线,数据线S 1和S 2作为一个数据线组,加载的图像数据极性为正;数据线S 3和S 4作为一个数据线组,加载的图像数据极性为负;数据线S 5和S 6作为一个数据线组,加载的图像数据极性为正。此时在G 2关闭G 3开启时,数据线S 1、S 4、S 5加载的图像数据的电压呈减小趋势,而数据线S 2、S 3、S 6加载的图像数据的电压呈增大趋势;在G 4关闭G 5开启时,数据线S 1、S 4、S 5加载的图像数据的电压呈增大趋势,而数据线S 2、S 3、S 6加载的图像数据的电压呈减小趋势,由此可以使每次加载的图像数据的电压呈减小趋势与呈增大趋势的 数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
在另一些可实施的方式中,在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,当触控显示面板的一行子像素对应电连接相邻的两条栅线,即触控显示面板采用双栅线结构时,将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括b条数据线,b为2的倍数。并可采用以下方式对图像数据的极性进行调整:调整同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,所述第一图块包括:行方向上排列的2y列子像素,所述第二图块包括:所述行方向上排列的2y列子像素;y为正整数。
示例性地,如图10a所示的双栅线棋盘格画面,第一图块Q1和第二图块Q2均包括一行中的两个子像素,即所述第一图块Q1和第二图块Q2均具有2列子像素,且第一图块Q1和第二图块Q2中的子像素的数量均为两个,且所述第一图块和所述第二图块中的子像素沿所述栅线的延伸方向排列。第一图块Q1的灰阶为127灰阶(对应的图像数据可为±V127),第二图块Q2的灰阶为0灰阶,图10a所示的箭头方向为图像数据的加载顺序,根据图10a的加载顺序,以G 1关闭G 2开启时图像数据的变化规则举例,其它时刻的数据变化规则与之类似,不再赘述。当G 1关闭G 2开启时,数据线S 1-S 6加载的图像数据均呈大幅增大趋势,则数据线S 1-S 6可以作为第一数据线,此时第二数据线为0条。那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位增大的方向耦合,造成触控电极不能及时回复到基准电位而显示横纹的现象。
有鉴于此,本公开实施例可以针对图10a所示的棋盘格画面,对数据线加载的图像数据的极性进行调整,使得同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,每个数据线组包括的数据线的数量为2的倍数。如图10b所示,可使一个数据线组包括2 条数据线,数据线S 2和S 3作为一个数据线组,加载的图像数据极性为负;数据线S 4和S 5作为一个数据线组,加载的图像数据极性为正。此时在G 1关闭G 2开启时,数据线S 2、S 5加载的图像数据的电压呈增大趋势,而数据线S 3、S 4加载的图像数据的电压呈减小趋势,由此可以使每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
并且,如图10b所示,将第2子像素列至第Q-1子像素列中相邻的两列分为一个第一子像素列组,各所述第一子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成;以及,所述第1子像素列和所述第Q子像素列分别由第一子像素和第二子像素交替排列组成;其中,所述第一子像素对应的灰阶与所述第一图块对应的灰阶大致相同,所述第二子像素对应的灰阶与所述第二图块对应的灰阶大致相同,以及所述第一子像素与所述第二图块在所述行方向上相邻,所述第二子像素与所述第一图块在所述行方向上相邻。例如,如图10b所示,第一子像素p1对应的灰阶为127灰阶,第二子像素p2对应的灰阶为0灰阶,所述第1子像素列和所述第12子像素列分别由第一子像素p1和第二子像素p2交替排列组成。并且将第2子像素列至第11子像素列中相邻的两列分为一个第一子像素列组,各所述第一子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成。例如,第2子像素列与第3子像素列为一个第一子像素列组,第4子像素列与第5子像素列为一个第一子像素列组,第6子像素列与第7子像素列为一个第一子像素列组,其余同理,并且这些第一子像素列组由第一图块Q1与所述第二图块Q2沿列方向交替排列组成。以及,所述第一子像素p1与所述第二图块Q2在所述行方向上相邻,所述第二子像素p2与所述第一图块Q1在所述行方向上相邻。
示例性地,如图11a所示的双栅线棋盘格画面,第一图块Q1和第二图块Q2均包括一行中的两个子像素,即所述第一图块Q1和第二图块Q2均具有2列子像素,且第一图块Q1和第二图块Q2中的子像素的数量均为两个,且所 述第一图块和所述第二图块中的子像素沿所述栅线的延伸方向排列。第一图块Q1的灰阶为127灰阶(对应的图像数据可为±V127),第二图块Q2的灰阶为0灰阶,图11a所示的箭头方向为图像数据的加载顺序,根据图11a的加载顺序,以G 2关闭G 3开启时图像数据的变化规则举例,其它时刻的数据变化规则与之类似,不再赘述。当G 2关闭G 3开启时,数据线S 1-S 6加载的图像数据均呈大幅增大趋势,则数据线S 1-S 6可以作为第一数据线,此时第二数据线为0条。那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位增大的方向耦合,造成触控电极不能及时回复到基准电位而显示横纹的现象。
有鉴于此,本公开实施例可以针对图11a所示的棋盘格画面,对数据线加载的图像数据的极性进行调整,使得同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,每个数据线组包括的数据线的数量为2的倍数。如图11b所示,可使一个数据线组包括2条数据线,数据线S 2和S 3作为一个数据线组,加载的图像数据极性为负;数据线S 4和S 5作为一个数据线组,加载的图像数据极性为正。此时在G 2关闭G 3开启时,数据线S 2、S 5加载的图像数据的电压呈增大趋势,而数据线S 3、S 4加载的图像数据的电压呈减小趋势,由此可以使每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
并且,如图11b所示,可以将所述第1子像素列至所述第Q子像素列中相邻的两列分为一个第二子像素列组,各所述第二子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成。示例性地,可以将所述第1子像素列和所述第2子像素列分为一个第二子像素列组,将所述第3子像素列和所述第4子像素列分为一个第二子像素列组,将所述第5子像素列和所述第6子像素列分为一个第二子像素列组,将所述第7子像素列和所述第8子像素列分为一个第二子像素列组,将所述第9子像素列和所述第10子像素列分为 一个第二子像素列组,将所述第11子像素列和所述第12子像素列分为一个第二子像素列组。且,各所述第二子像素列组由所述第一图块Q1与所述第二图块Q2沿列方向交替排列组成。
当然,在具体实施时,触控显示面板采用双栅线结构时,也可以使第一图块Q1和第二图块Q2具有4列子像素,每列中的子像素的数量为1或更多个。当然,第一图块和第二图块中的子像素的数量也可以为更多个,在此不作限定。
进一步地,可以使所述重载画面包括:条纹画面。在具体实施时,所述判断获取的所述图像数据是否为具有默认极性方式的所述条纹画面,可以包括:
根据获取的图像数据,确定加载图像数据形成的第三图块和第四图块的排列方式;其中,所述第三图块与所述第四图块均至少包括至少两个子像素,所述第三图块对应的灰阶与所述第四图块对应的灰阶至少相差2个灰阶;
在所述第三图块沿行方向排列成多列,所述第四图块沿行方向排列成多列,所述第三图块列与所述第四图块列沿行方向交替排布,且相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述条纹画面,否则确定所述图像数据不是具有默认极性方式的所述条纹画面。
示例性地,如图12a所示,为本公开实施例提供的一些获取的图像数据满足形成默认极性方式的条纹画面的重载画面。该重载条纹画面中,第三图块Q3与第四图块Q4均包括至少两个子像素,第三图块Q3对应的灰阶与第四图块Q4对应的灰阶至少相差2个灰阶。
一般人眼能看到的亮度差异所需的灰阶差需要大于等于2个灰阶的差异。在具体实施时,可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶至少相差2个灰阶。这样可以使第三图块Q3与第四图块Q4显示的亮度之间的差异能够被人眼识别出来。示例性地,在实际应用中,第三图块Q3对应的灰阶与第四图块Q4对应的灰阶可以通过上述规则,从0~255灰阶中进行选取。 当然,第三图块Q3对应的灰阶与第四图块Q4对应的灰阶可以根据实际应用环境来设计确定,在此不作限定。
进一步地,在具体实施时,可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶相差2个灰阶。也可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶相差20个灰阶。也可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶相差48个灰阶。也可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶相差50个灰阶。也可以使第三图块Q3对应的灰阶与第四图块Q4对应的灰阶相差60个灰阶。当然,第三图块Q3对应的灰阶与第四图块Q4对应的灰阶之间的差值可以根据实际应用环境来设计确定,在此不作限定。下面以第三图块Q3和第四图块Q4的灰阶相差至少48个灰阶为例进行说明。
示例性地,如图12a所示,当第三图块Q3和第四图块Q4构成的条纹画面中,第三图块Q3和第四图块Q4的灰阶相差至少48个灰阶,且相邻两条数据线所加载的图像数据的极性相反时,在依次向各栅线加载栅极开启信号时,各数据线在第n条栅线加载栅极开启信号时至第n+1条栅线加载栅极开启信号时加载的图像数据的电压均呈同时增大或同时减小的情况,那么此时,所有的数据线作为第一数据线且第二数据线为0,或者,所有的数据线作为第二数据线且第一数据线为0,则数据线在加载数据信号时对于触控电极的电位耦合均呈正向耦合或均呈负向耦合,根据上述产生横纹的原因,当加载的图像数据满足这样的第一规则时,会使显示的图像中产生不想要呈现的横纹,将会影响显示效果。
针对上述情况,即当重载画面为条纹画面时,在一些可实施的方式中,当确定所述图像数据是具有默认极性方式的所述条纹画面时,当触控显示面板的一行子像素对应电连接相邻的两条栅线,即触控显示面板采用双栅线结构时,将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括c条数据线,c为2的倍数。并可采用以下方式对图像数据的极性进行调整:调整同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反;其中,可以使所述第三图块包括行方向上排列 的2m列子像素,所述第四图块包括行方向上排列的2m列子像素,且m为奇数。
示例性地,如图12a所示的双栅线触控显示面板显示的条纹画面,第三图块Q3和第四图块Q4均包括两列子像素,并且,第三图块Q3和第四图块Q4中的两列子像素在行方向上排列且相邻。其中,第三图块Q3的灰阶为127灰阶(对应的图像数据可为±V127),第四图块Q4的灰阶为0灰阶,图12a所示的箭头方向为图像数据的加载顺序,根据图12a的加载顺序,以G 1关闭G 2开启时图像数据的变化规则举例,其它时刻的数据变化规则与之类似,不再赘述。当G 1关闭G 2开启时,数据线S 1-S 6加载的图像数据的电压均呈大幅减小趋势,则数据线S 1-S 6作为第二数据线,且第一数据线为0,那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合,造成触控电极不能及时回复到基准电位而显示横纹的现象。
有鉴于此,本公开实施例可以针对图12a所示的条纹画面,对数据线加载的图像数据的极性进行调整,使得同一个数据线组加载的图像数据的极性相同,相邻两个数据线组加载的图像数据的极性相反,其中,每个数据线组包括的数据线的数量为2的倍数。如图12b所示,可使一个数据线组包括2条数据线,数据线S 2和S 3作为一个数据线组,加载的图像数据极性为负;数据线S 4和S 5作为一个数据线组,加载的图像数据极性为正。此时在G 1关闭G 2开启时,数据线S 2、S 5加载的图像数据的电压呈减小趋势,而数据线S 3、S 4加载的图像数据的电压呈增大趋势,由此可以使每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
在具体实施时,触控显示面板中,如图12a与图12b所示,沿所述栅线的延伸方向排列的第1子像素列至第P子像素列;P为正偶数。如图12a与图12b所示,可以使P=12,则触控显示面板中,可以有沿所述栅线的延伸方向排列的第1子像素列至第12子像素列。当然,在实际应用中,不同尺寸的触 控显示面板中需求的子像素列的数量不同,因此,子像素列的数量可以根据实际应用环境来设计确定,在此不作限定。
示例性地,可以使第2子像素列至第P-1子像素列由所述第三图块和所述第四图块排列组成,以及所述第1子像素列中子像素对应的灰阶相同,且所述第P子像素列中子像素对应的灰阶相同;其中,所述第三图块包括所述行方向上排列的相邻2列子像素,所述第四图块包括所述行方向上排列的相邻2列子像素,所述第1子像素列与所述第2子像素列对应的灰阶不同,所述第P子像素列与所述第P-1子像素列对应的灰阶不同。示例性地,如图12b所示,第1子像素列中子像素对应的灰阶相同,且所述第12子像素列中子像素对应的灰阶相同。所述第三图块Q3包括所述行方向上排列的相邻2列子像素,所述第四图块Q4包括所述行方向上排列的相邻2列子像素,第三图块Q3和第四图块Q4沿行方向交替排列形成了第2子像素列至第P-1子像素列。并且,第1子像素列与所述第2子像素列对应的灰阶不同,所述第12子像素列与所述第11子像素列对应的灰阶不同。进一步地,可以使所述第1子像素列、所述第12子像素列以及所述第三图块Q3中的子像素对应的灰阶大致相同。
当然,不同应用环境的触控显示面板中对第三图块Q3和第四图块Q4的需求不同,因此第三图块Q3和第四图块Q4中包括的子像素列的数量可以根据实际应用环境来设计确定,在此不作限定。
除上述实施方式外,在实际应用中,还可能出现如图13a和图14a所示的情况,仅部分子像素用于显示棋盘格画面,而部分画面加载条纹画面,或者加载的图像数据不变化,但仍然会引起横纹现象的产生。对于这样的重载画面,例如由棋盘格画面与条纹画面组成的混合画面;所述对所述图像数据进行极性调整,可以包括:在确定所述图像数据是具有默认极性方式的所述混合画面时,调整所述第一数据线和所述第二数据线的数量为大致相等。
示例性地,在确定所述图像数据是具有默认极性方式的所述混合画面时,可以调整所述第一数据线和所述第二数据线的数量相等,即第一数据线和所述第二数据线的数量之比等于1。或者,也可以使调整后所述第一数据线和所 述第二数据线的数量满足第一数据线和所述第二数据线的数量之比位于1/2-2范围内。例如,可以使调整后所述第一数据线和所述第二数据线的数量满足第一数据线和所述第二数据线的数量之比为2/3或3/4或3/2或4/3等,这样可以使第一数据线和所述第二数据线趋近于相同,从而可以使人眼不容易觉察出上述横纹的存在。当然,在实际应用中,调整后的第一数据线和第二数据线的数量可以根据实际应用环境来设计确定,在此不作限定。
举例来说,在图13a所示的单栅线结构中,数据线S 1、S 3、S 4、S 6加载不断变化的图像数据,用于图像显示,而数据线S 2、S 5不加载图像数据。若图像数据形成的第五图块Q5的灰阶为127灰阶(对应的图像数据可为±V127),第六图块Q6的灰阶为0灰阶,则当G 1关闭G 2开启,G 3关闭G 4开启,G 5关闭G 6开启时,数据线S 1、S 3、S 4、S 6加载的图像数据的电压均呈大幅减小趋势,那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合。当G 2关闭G 3开启,G 4关闭G 5开启时,数据线S 1、S 3、S 4、S 6加载的图像数据的电压均呈大幅增大趋势,那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合。此时无论数据线加载的图像数据在哪一次跳变时均会产生上述横纹现象,严重影响显示效果。
有鉴于此,本公开实施例可以针对图13a所示的重载画面,对数据线加载的图像数据的极性进行调整。如图13b所示,可使数据线S 3对应的图像数据的极性调整为负,将数据线S 6对应的图像数据的极性调整为正。此时,当G 1关闭G 2开启,G 3关闭G 4开启,G 5关闭G 6开启时,数据线S 3、S 6加载的图像数据均呈大幅增大趋势,属于两条第一数据线;数据线S 1、S 4加载的图像数据均呈大幅减小趋势,属于两条第二数据线。当G 2关闭G 3开启,G 4关闭G 5开启时,数据线S 1、S 4加载的图像数据的电压均呈大幅增大趋势,属于两条第一数据线;数据线S 3、S 6加载的图像数据的电压均呈大幅减小趋势,属于两条第二数据线。由此使得每次加载图像数据时的第一数据线与第二数据线的数量相等,每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用 分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
在图14a所示的单栅线结构中,数据线S 1、S 4加载不断变化的图像数据,用于图像显示,而数据线S 2、S 3、S 5、S 6不加载图像数据。若图像数据形成的第五图块Q5的灰阶为127灰阶(对应的图像数据可为±V127),第六图块Q6的灰阶为0灰阶,则当G 1关闭G 2开启,G 3关闭G 4开启,G 5关闭G 6开启时,数据线S 1、S 4加载的图像数据均呈大幅减小趋势,那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合。当G 2关闭G 3开启,G 4关闭G 5开启时,数据线S 1、S 4加载的图像数据的电压均呈大幅增大趋势,那么此时各数据线对于位于其上方的触控电极的耦合作用均呈向电位减小的方向耦合。此时无论数据线加载的图像数据在哪一次跳变时均会产生上述横纹现象,严重影响显示效果。
有鉴于此,本公开实施例可以针对图14a所示的重载画面,对数据线加载的图像数据的极性进行调整。如图14b所示,可使数据线S 4对应的图像数据的极性调整为正。此时,当G 1关闭G 2开启,G 3关闭G 4开启,G 5关闭G 6开启时,数据线S 4加载的图像数据呈大幅增大趋势,属于第一数据线;数据线S 1加载的图像数据呈大幅减小趋势,属于第二数据线。当G 2关闭G 3开启,G 4关闭G 5开启时,数据线S 1加载的图像数据的电压呈大幅增大趋势,属于第一数据线;数据线S 4加载的图像数据的电压呈大幅减小趋势,属于第二数据线。由此使得每次加载图像数据时的第一数据线与第二数据线的数量相等,每次加载的图像数据的电压呈减小趋势与呈增大趋势的数据线的数量保持一致,从而使得这些数据线对其上方的触控电极的耦合作用分别向基准电位增大和减小的方向均有耦合,且整体的耦合程度均衡,由此避免了横纹的产生。
基于同一发明构思,本公开实施例还提供了触控显示面板的驱动装置,如图15所示,可以包括:
获取电路1510,被配置为获取待显示图像的图像数据;
判断电路1520,被配置为判断获取的所述图像数据是否为具有默认极性 方式的重载画面;其中,所述默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同;
调整电路1530,被配置为在判断所述图像数据是具有所述默认极性方式的重载画面时,对所述图像数据进行极性调整;
显示驱动电路1540,被配置为根据极性调整后的图像数据,驱动所述触控显示面板1550进行图像显示。
在具体实施时,上述获取电路、判断电路、调整电路以及显示驱动电路中的至少一个电路,可以采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,在此不作限定。
基于同一发明构思,本公开实施例还提供了显示装置,包括触控显示面板以及本公开实施例提供的上述驱动装置。该显示装置解决问题的原理与前述驱动装置相似,因此该显示装置的实施可以参见前述驱动装置的实施,重复之处在此不再赘述。
在具体实施时,本公开实施例提供的显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例还提供了可读非临时性存储介质,其上存储有触控显示面板可执行指令,并且该触控显示面板可执行指令被处理器执行时实现本公开实施例提供的上述触控显示面板的驱动方法的步骤。具体地,本公开可采用在一个或多个其中包含有计算机可用程序代码的可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
基于同一发明构思,本公开实施例还提供了计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现本公开实施例提供的上述触控显示面板的驱动方法的步骤。
本公开实施例提供的触控显示面板的驱动方法及装置,通过在进行图像 显示之前首先获取显示图像的图像数据,当该图像数据为具有默认极性方式的重载画面的图像数据时,则对重载画面的图像数据进行极性调整,使调整后的图像数据所显示的图像不变,同时又可以克服触控电极的电位向同一方向拉动而偏离其基准电位。这样在载入极性调整后的图像数据时,则可以避免显示图像产生横纹,从而优化显示效果。并且,本公开实施例提供的驱动方法,仅对图像数据的极性进行调整,并不会影响液晶显示面板的图像显示,可以做到显示的图像与调整之前相同,但调整后的图像数据并不会再造成显示横纹的产生,进而优化显示效果。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种触控显示面板的驱动方法,其中,包括:
    获取待显示图像的图像数据;
    判断获取的所述图像数据是否为具有默认极性方式的重载画面;其中,所述默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同;
    在判断所述图像数据是具有所述默认极性方式的重载画面时,对所述图像数据进行极性调整;
    根据极性调整后的图像数据,驱动所述触控显示面板进行图像显示。
  2. 如权利要求1所述的驱动方法,其中,所述判断获取的所述图像数据是否为具有所述默认极性方式的重载画面,包括:
    根据获取的所述图像数据,确定加载所述图像数据的第一数据线和第二数据线的数量;其中,所述第一数据线为在第一时刻加载的图像数据至第二时刻加载的图像数据的电压增加幅度大于或等于阈值的数据线;所述第二数据线为在所述第一时刻加载的图像数据至所述第二时刻加载的图像数据的电压减小幅度大于或等于所述阈值的数据线;所述第一时刻为第n条栅线加载栅极开启信号的时刻,所述第二时刻为第n+1条栅线加载栅极开启信号的时刻,n为大于或等于1的整数;所述阈值为具有相同极性的第一图像数据与第二图像数据的电压差值,所述第一图像数据对应的灰阶与所述第二图像数据对应的灰阶相差至少2个灰阶;
    在所述第一数据线与所述第二数据线的数量之比小于或等于1/2,或所述第一数据线与所述第二数据线的数量之比大于2时,确定所述图像数据是具有所述默认极性方式的所述重载画面,否则确定所述图像数据不是具有所述默认极性方式的所述重载画面。
  3. 如权利要求2所述的驱动方法,其中,所述重载画面包括:棋盘格画面与条纹画面中的之一或组合。
  4. 如权利要求3所述的驱动方法,其中,所述重载画面包括:棋盘格画面;所述判断获取的所述图像数据是否为具有默认极性方式的所述棋盘格画面,包括:
    根据获取的所述图像数据,确定加载所述图像数据形成的第一图块和第二图块的排列方式;其中,所述第一图块包括至少一个子像素;所述第二图块包括至少一个子像素;所述第一图块和所述第二图块包括的子像素的数量相等;所述第一图块对应的灰阶与所述第二图块对应的灰阶至少相差2个灰阶;
    在所述第一图块和所述第二图块沿行和列的方向均交替排布,且每相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述棋盘格画面,否则确定所述图像数据不是具有默认极性方式的所述棋盘格画面。
  5. 如权利要求4所述的驱动方法,其中,所述触控显示面板的一行子像素对应电连接同一条栅线;所述第一图块包括:行方向上排列的2k+1列子像素;所述第二图块包括:所述行方向上排列的2k+1列子像素;k为正整数;
    将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括a条数据线,a为2的倍数;
    所述对所述图像数据进行极性调整,包括:
    在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
  6. 如权利要求5所述的驱动方法,其中,所述第一图块中的子像素的数量为一个;或者,
    所述第一图块中的子像素的数量为两个,且所述第一图块和所述第二图块中的子像素沿所述数据线的延伸方向排列。
  7. 如权利要求4所述的驱动方法,其中,所述触控显示面板的一行子像素对应连接与该行子像素相邻的两条栅线;所述第一图块包括:行方向上排 列的2y列子像素,所述第二图块包括:所述行方向上排列的2y列子像素;y为正整数;
    将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括b条数据线,b为2的倍数;
    所述对所述图像数据进行极性调整,包括:
    在确定所述图像数据是具有默认极性方式的所述棋盘格画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
  8. 如权利要求7所述的驱动方法,其中,所述第一图块中的子像素的数量为两个,且所述第一图块和所述第二图块中的子像素沿所述栅线的延伸方向排列。
  9. 如权利要求8所述的驱动方法,其中,所述触控显示面板包括沿所述栅线的延伸方向排列的第1子像素列至第Q子像素列;Q为正偶数;
    将所述第1子像素列至所述第Q子像素列中相邻的两列分为一个第二子像素列组,各所述第二子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成;或者,
    将第2子像素列至第Q-1子像素列中相邻的两列分为一个第一子像素列组,各所述第一子像素列组由所述第一图块与所述第二图块沿列方向交替排列组成;以及,所述第1子像素列和所述第Q子像素列分别由第一子像素和第二子像素交替排列组成;其中,所述第一子像素对应的灰阶与所述第一图块对应的灰阶大致相同,所述第二子像素对应的灰阶与所述第二图块对应的灰阶大致相同,以及所述第一子像素与所述第二图块在所述行方向上相邻,所述第二子像素与所述第一图块在所述行方向上相邻。
  10. 如权利要求3所述的驱动方法,其中,所述重载画面包括:条纹画面;所述判断获取的所述图像数据是否为具有默认极性方式的所述条纹画面,包括:
    根据获取的所述图像数据,确定加载所述图像数据形成的第三图块和第 四图块的排列方式;其中,所述第三图块与所述第四图块均至少包括至少两个子像素,所述第三图块对应的灰阶与所述第四图块对应的灰阶至少相差2个灰阶;
    在所述第三图块沿行方向排列成多列,所述第四图块沿行方向排列成多列,所述第三图块列与所述第四图块列沿行方向交替排布,且相邻两条数据线对应的图像数据的极性相反时,确定所述图像数据是具有默认极性方式的所述条纹画面,否则确定所述图像数据不是具有默认极性方式的所述条纹画面。
  11. 如权利要求10所述的驱动方法,其中,所述触控显示面板的一行子像素对应连接与该行子像素相邻的两条栅线;所述第三图块包括行方向上排列的2m列子像素,所述第四图块包括行方向上排列的2m列子像素,且m为奇数;
    将所述触控显示面板中的数据线分为多个数据线组,每个所述数据线组包括c条数据线,c为2的倍数;
    所述对所述图像数据进行极性调整,包括:
    当确定所述图像数据是具有默认极性方式的所述条纹画面时,调整同一个所述数据线组加载的图像数据的极性相同,相邻两个所述数据线组加载的图像数据的极性相反。
  12. 如权利要求11所述的驱动方法,其特征在于,所述触控显示面板包括沿所述栅线的延伸方向排列的第1子像素列至第P子像素列;P为正偶数;
    第2子像素列至第P-1子像素列由所述第三图块和所述第四图块排列组成,以及所述第1子像素列中子像素对应的灰阶相同,且所述第P子像素列中子像素对应的灰阶相同;其中,所述第三图块包括所述行方向上排列的相邻2列子像素,所述第四图块包括所述行方向上排列的相邻2列子像素,所述第1子像素列与所述第2子像素列对应的灰阶不同,所述第P子像素列与所述第P-1子像素列对应的灰阶不同。
  13. 如权利要求12所述的驱动方法,其特征在于,所述第1子像素列、 所述第P子像素列以及所述第三图块中的子像素对应的灰阶大致相同。
  14. 如权利要求3所述的驱动方法,其特征在于,所述重载画面包括:由棋盘格画面与条纹画面组成的混合画面;所述对所述图像数据进行极性调整,包括:
    在确定所述图像数据是具有默认极性方式的所述混合画面时,调整所述第一数据线和所述第二数据线的数量为大致相等。
  15. 一种触控显示面板的驱动装置,其中,包括:
    获取电路,被配置为获取待显示图像的图像数据;
    判断电路,被配置为判断获取的所述图像数据是否为具有默认极性方式的重载画面;其中,所述默认极性方式包括:每相邻两条数据线对应的图像数据的极性相反,且同一条所述数据线对应的图像数据的极性相同;
    调整电路,被配置为在判断所述图像数据是具有所述默认极性方式的重载画面时,对所述图像数据进行极性调整;
    显示驱动电路,被配置为根据极性调整后的图像数据,驱动所述触控显示面板进行图像显示。
  16. 一种显示装置,其中,包括:触控显示面板以及如权利要求15所述的驱动装置。
  17. 一种可读非临时性存储介质,所述可读非临时性存储介质存储有触控显示面板可执行指令,其中,所述触控显示面板可执行指令用于使触控显示面板执行权利要求1-14任一项所述的触控显示面板的驱动方法的步骤。
  18. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1-14任一项所述的触控显示面板的驱动方法的步骤。
PCT/CN2019/116650 2019-01-02 2019-11-08 触控显示面板的驱动方法及装置 WO2020140606A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19907200.0A EP3907599A4 (en) 2019-01-02 2019-11-08 METHOD AND CONTROL DEVICE FOR TOUCH SCREEN
US16/766,677 US11237664B2 (en) 2019-01-02 2019-11-08 Method and device for driving touch display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910002911.0 2019-01-02
CN201910002911.0A CN109739461B (zh) 2019-01-02 2019-01-02 触控显示面板的驱动方法及可读性存储介质

Publications (1)

Publication Number Publication Date
WO2020140606A1 true WO2020140606A1 (zh) 2020-07-09

Family

ID=66363094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116650 WO2020140606A1 (zh) 2019-01-02 2019-11-08 触控显示面板的驱动方法及装置

Country Status (4)

Country Link
US (1) US11237664B2 (zh)
EP (1) EP3907599A4 (zh)
CN (1) CN109739461B (zh)
WO (1) WO2020140606A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739461B (zh) 2019-01-02 2020-09-29 合肥京东方光电科技有限公司 触控显示面板的驱动方法及可读性存储介质
CN110060650B (zh) * 2019-05-28 2020-12-04 武汉华星光电技术有限公司 多路复用型液晶显示驱动电路
CN110648639B (zh) * 2019-09-27 2022-07-08 京东方科技集团股份有限公司 一种液晶显示器及其驱动方法、装置
WO2021102900A1 (zh) * 2019-11-29 2021-06-03 京东方科技集团股份有限公司 显示面板的驱动方法和电路、显示装置、电子设备、介质
CN111445825A (zh) * 2020-03-17 2020-07-24 福建华佳彩有限公司 一种改善高低灰阶的方法和装置
CN113763900B (zh) * 2021-09-16 2022-09-09 深圳市华星光电半导体显示技术有限公司 显示装置及其驱动方法
CN114187877A (zh) * 2021-12-17 2022-03-15 深圳创维-Rgb电子有限公司 模拟电源复用电路、装置及显示面板
CN114627837B (zh) 2022-05-13 2022-09-02 惠科股份有限公司 显示装置的驱动方法和显示装置
CN115565503B (zh) 2022-11-09 2023-04-28 惠科股份有限公司 图像处理方法、装置、存储介质及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366707A (zh) * 2013-07-22 2013-10-23 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
US20170213501A1 (en) * 2016-01-25 2017-07-27 Samsung Electronics Co., Ltd. Display apparatus and driving method thereof
CN107665692A (zh) * 2017-11-16 2018-02-06 深圳市华星光电技术有限公司 液晶显示器像素驱动电路及像素驱动方法
CN109739461A (zh) * 2019-01-02 2019-05-10 合肥京东方光电科技有限公司 触控显示面板的驱动方法及可读性存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080036844A (ko) * 2006-10-24 2008-04-29 삼성전자주식회사 타이밍 컨트롤러 및 이를 포함하는 액정 표시 장치
TWI453714B (zh) * 2011-05-27 2014-09-21 Chunghwa Picture Tubes Ltd 顯示面板的驅動系統及其驅動方法
GB2495317A (en) * 2011-10-06 2013-04-10 Sharp Kk Image processing method for reduced colour shift in multi-primary LCDs
TWI451394B (zh) * 2011-12-30 2014-09-01 Orise Technology Co Ltd 應用於顯示面板之控制裝置及其控制方法
CN202837748U (zh) * 2012-06-25 2013-03-27 北京京东方光电科技有限公司 一种阵列基板及显示装置
US9183800B2 (en) * 2013-07-22 2015-11-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal device and the driven method thereof
CN104238220B (zh) * 2014-09-29 2018-03-02 深圳市华星光电技术有限公司 液晶显示面板
KR102461293B1 (ko) * 2015-12-29 2022-11-01 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN105467704A (zh) * 2015-12-29 2016-04-06 昆山龙腾光电有限公司 一种显示面板、显示装置和驱动方法
CN107507600B (zh) * 2017-10-18 2020-03-06 京东方科技集团股份有限公司 显示装置、像素电路及其驱动方法、驱动装置
CN108198539A (zh) * 2018-02-13 2018-06-22 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置
US10802636B2 (en) * 2018-06-15 2020-10-13 Lg Display Co., Ltd. Touch display device, data driver circuit, and method of driving controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366707A (zh) * 2013-07-22 2013-10-23 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
US20170213501A1 (en) * 2016-01-25 2017-07-27 Samsung Electronics Co., Ltd. Display apparatus and driving method thereof
CN107665692A (zh) * 2017-11-16 2018-02-06 深圳市华星光电技术有限公司 液晶显示器像素驱动电路及像素驱动方法
CN109739461A (zh) * 2019-01-02 2019-05-10 合肥京东方光电科技有限公司 触控显示面板的驱动方法及可读性存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907599A4

Also Published As

Publication number Publication date
EP3907599A4 (en) 2022-09-07
US20210216162A1 (en) 2021-07-15
CN109739461A (zh) 2019-05-10
EP3907599A1 (en) 2021-11-10
CN109739461B (zh) 2020-09-29
US11237664B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2020140606A1 (zh) 触控显示面板的驱动方法及装置
US9934736B2 (en) Liquid crystal display and method for driving the same
KR102349500B1 (ko) 액정표시장치
CN109036319B (zh) 显示面板的驱动方法、装置、设备及存储介质
WO2019242118A1 (zh) 显示装置和驱动方法
WO2016188257A1 (zh) 阵列基板、显示面板和显示装置
KR101127593B1 (ko) 액정 표시 장치
US8054267B2 (en) Liquid crystal display with sub-pixel zones and method for driving same
CN210155492U (zh) 阵列基板以及显示装置
TW201807688A (zh) 顯示裝置
KR102194775B1 (ko) 영상 처리부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널 구동 방법
WO2018120324A1 (zh) 像素结构、阵列基板及显示面板
WO2020077898A1 (zh) 显示面板及其驱动方法
TW201312240A (zh) 畫素結構
US10789875B2 (en) Pixel matrix display device
KR101714952B1 (ko) 액정 표시 패널 및 그 구동 방법
JP2013122588A (ja) 液晶駆動装置及びその駆動方法
US10770012B2 (en) Display panel and display device
CN104280960B (zh) 液晶面板及其驱动方法、液晶显示器
CN110879500A (zh) 显示基板及其驱动方法、显示面板、显示装置
KR101926521B1 (ko) 액정 표시 장치
CN113270076A (zh) 显示面板的驱动方法和显示装置
JP2009042404A (ja) カラー画像用の液晶表示装置およびその駆動方法
WO2022213366A1 (zh) 显示驱动方法、显示驱动装置及显示装置
KR102244985B1 (ko) 표시패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019907200

Country of ref document: EP

Effective date: 20210802