WO2020140574A1 - Mems 麦克风制造方法 - Google Patents

Mems 麦克风制造方法 Download PDF

Info

Publication number
WO2020140574A1
WO2020140574A1 PCT/CN2019/113335 CN2019113335W WO2020140574A1 WO 2020140574 A1 WO2020140574 A1 WO 2020140574A1 CN 2019113335 W CN2019113335 W CN 2019113335W WO 2020140574 A1 WO2020140574 A1 WO 2020140574A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
layer
oxide layer
diaphragm structure
back plate
Prior art date
Application number
PCT/CN2019/113335
Other languages
English (en)
French (fr)
Inventor
孟珍奎
刘政谚
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020140574A1 publication Critical patent/WO2020140574A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/001Structures having a reduced contact area, e.g. with bumps or with a textured surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00912Treatments or methods for avoiding stiction of flexible or moving parts of MEMS
    • B81C1/0096For avoiding stiction when the device is in use, i.e. after manufacture has been completed
    • B81C1/00968Methods for breaking the stiction bond
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/016Passivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0176Chemical vapour Deposition
    • B81C2201/0178Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/05Temporary protection of devices or parts of the devices during manufacturing
    • B81C2201/053Depositing a protective layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present invention relates to microphone technology, and in particular, to a method for manufacturing a Micro-Electro-Mechanic (MEMS) microphone.
  • MEMS Micro-Electro-Mechanic
  • MEMS microphones are widely used in current mobile phones; common MEMS microphones are capacitive, which includes a diaphragm and a back
  • the board and the two constitute a MEMS acoustic sensing capacitor, and the MEMS acoustic sensing capacitor is further connected to the processing chip through a connecting plate to output the acoustic sensing signal to the processing chip for signal processing.
  • the prior art proposes a dual-diaphragm MEMS microphone structure, that is, a two-layer diaphragm is used to form a capacitive structure with a backplane.
  • the diaphragm and back plate of the above MEMS microphone are made on the same silicon base and using a semiconductor manufacturing process, and the manufacturing process also includes forming an acoustic cavity, a back cavity, an acoustic hole, and ventilation Process steps such as holes and connecting plates.
  • each manufacturing process step of the MEMS microphone is formed on the same silicon base, the next process step must be performed after the previous process step is completed, which will result in a lower overall manufacturing efficiency of the MEMS microphone.
  • the present invention provides a method for manufacturing a MEMS microphone that can improve the overall manufacturing efficiency of the MEMS microphone.
  • a preparation method of MEMS microphone includes the following steps:
  • the backplane material layer Graphically forming the backplane material layer to form a backplane structure, the backplane structure including a number of acoustic through holes;
  • the depositing the backplane material layer includes sequentially depositing a first silicon nitride layer, a second polysilicon layer, and a second silicon nitride layer.
  • the extraction electrode for preparing the first diaphragm structure, the second diaphragm structure, and the back plate structure includes:
  • the electrode layer is deposited and patterned to form a first extraction electrode of the first diaphragm structure, a second extraction electrode of the second diaphragm structure, and a third extraction electrode of the backplate structure.
  • the deposition support material layer is a third silicon nitride layer deposited on the patterned third oxide layer.
  • the formation of the back cavity structure includes:
  • a step of depositing a passivation protective layer after forming the electrode extraction hole is further included.
  • the electrode layer includes a Cr/Au layer.
  • it further includes forming at least one through hole penetrating the support, the first diaphragm structure, and the second diaphragm structure.
  • a step of forming protrusions on the upper and lower surfaces of the middle body region of the backplane structure is further included.
  • the invention provides a method for preparing a MEMS microphone with a double diaphragm structure, which is prepared by a standard semiconductor process and is easy to integrate with other semiconductor devices.
  • FIG. 1 is a schematic structural view of a MEMS microphone according to an embodiment of the invention.
  • FIG. 2 is a schematic structural diagram of a MEMS microphone according to another embodiment of the invention.
  • FIG. 3 is a preparation flow chart of a MEMS microphone according to an embodiment of the invention.
  • 4a-4s are schematic diagrams of the preparation process of the MEMS microphone involved in one embodiment of the present invention.
  • the MEMS microphone structure 100 prepared by the manufacturing method proposed by the present invention includes a substrate 101 and a capacitor system 103 disposed on the substrate 101 and insulated from the substrate 101.
  • the material of the substrate 101 is preferably a semiconductor material, such as silicon, which has a back cavity 102, a first surface 101A, and a second surface 101B opposite to the first surface. Accordingly, in the following description of embodiments of the present invention, the One surface 101A represents the upper surface direction, and the second surface 101B represents the lower surface direction.
  • An insulating layer 107 is provided on the first surface 101A of the substrate 101, and the back cavity 102 penetrates through the insulating layer 107 and the first and second surfaces of the substrate 101.
  • the back cavity 102 can be formed by bulk silicon process or dry etching.
  • the capacitance system 103 includes a back plate 105 and a first diaphragm 104 and a second diaphragm 106 that are opposite to the back plate 105 and respectively disposed on the upper and lower sides of the back plate 105. Between the first diaphragm 104 and the back plate 105, An insulating layer 107 is provided between the second diaphragm 106 and the back plate 105, and between the first diaphragm 104 and the substrate 101. Thus, a first insulating gap 110 is formed between the first diaphragm 104 and the back plate 105, and a second insulating gap 111 is formed between the second diaphragm 106 and the back plate 105.
  • the back plate 105 includes spaced-apart acoustic through holes 108 through which the supporting member 109 fixes the first diaphragm 104 and the second diaphragm 106. Specifically, the support 109 abuts the upper surface of the first diaphragm 104 and the lower surface of the second diaphragm 106, respectively.
  • the acoustic through hole 108 communicates the first insulating gap 110 and the second insulating gap 111 to form an inner cavity 112.
  • the first diaphragm 104 and the back plate 105, the second diaphragm 106 and the back plate 105 will be charged with opposite polarities, thereby forming a capacitance
  • the first diaphragm 104 and the second diaphragm 106 vibrates under the action of sound waves, and the distance between the back plate 105 and the first diaphragm 104 and the second diaphragm 106 will change, resulting in a change in the capacitance of the capacitive system, which in turn converts the sound wave signal into an electrical signal, Realize the corresponding function of the microphone.
  • the first diaphragm 104 and the second diaphragm 106 are square, round, or oval, and at least one support 109 is provided on the upper surface of the first diaphragm 104 and the second diaphragm 106 Between the lower surface.
  • the supporting member 109 is provided to pass through the acoustic through-hole 108 of the back plate 105 to connect the first diaphragm 104 and the second diaphragm 106 fixedly; that is, the supporting member 109 does not contact the back plate 105 and is not affected by the back plate 105.
  • the support 109 may be formed on the top surface of the first diaphragm 104 by various preparation techniques, such as physical vapor deposition, electrochemical deposition, chemical vapor deposition, and molecular beam epitaxy.
  • the support 109 may be composed of a semiconductor material such as silicon or may include a semiconductor material such as silicon.
  • a semiconductor material such as silicon or may include a semiconductor material such as silicon.
  • It may also be composed of at least one of the following or may include at least one of the following: metal, dielectric material, piezoelectric material, piezoresistive material, and ferroelectric material. It can also be made of a dielectric material such as silicon nitride.
  • the support 109 may be integrally formed with the first diaphragm 104 and the second diaphragm 106, respectively.
  • the second diaphragm 106 of the present invention includes a first release hole 113 and a second release hole 114.
  • the first release hole 113 and the second release hole 114 are respectively provided in the edge area of the second diaphragm, and the back The acoustic holes 108 on the outermost side of the plate 105 are in communication.
  • the release hole 113/114 communicates with the inner cavity 112, so the sacrificial oxide layer in the inner cavity 112 can be removed by a release liquid, such as BOE solution or HF vapor phase etching technique.
  • the first electrode 104, the second electrode 106, and the lead-out electrodes of the back plate 105 are also included, respectively, the first electrode 115, the second electrode 116, and the third electrode 117, respectively.
  • a surface passivation protective layer 118 is also included, and the surface passivation layer simultaneously serves to insulate the first electrode 115, the second electrode 116, and the third electrode 117 from each other.
  • the surface passivation protection layer 118 is made of silicon nitride, for example.
  • the second diaphragm 106 also includes a through hole 119 penetrating the first diaphragm 104, the support member 109, and the second diaphragm 106.
  • the through hole 119 is provided at the center of the first diaphragm 104 and the second diaphragm 106, for example.
  • the back cavity 102 and the external environment make the external pressure of the first diaphragm 104 and the second diaphragm 106 consistent.
  • protrusions 120 provided on the upper and lower surfaces of the back plate 105 are also included.
  • the protrusions 120 are used to prevent the back plate 105 from adhering to the first diaphragm 104 and the second diaphragm 106.
  • FIGS. 3-4 it is a flowchart of an embodiment of a method for manufacturing a MEMS microphone provided by the present invention.
  • the manufacturing method is used to manufacture the microphone 100 shown in FIG. 1 or FIG. 2, and specifically includes the following steps.
  • Step S1 selecting a substrate, and preparing a first diaphragm structure on the first surface of the substrate:
  • the substrate 101 is selected, and a first oxide layer 107A is deposited on the first surface 101A of the substrate 101, as shown in FIG. 4a.
  • the base 101 is, for example, a semiconductor silicon substrate or other semiconductor material substrates, such as germanium, silicon germanium, silicon carbide, gallium nitride, indium, indium gallium nitride, indium gallium arsenide, indium gallium zinc oxide, Or other element and/or compound semiconductors (for example, III-V compound conductors such as gallium arsenide or indium phosphide) germanium or gallium nitride.
  • a semiconductor silicon substrate or other semiconductor material substrates such as germanium, silicon germanium, silicon carbide, gallium nitride, indium, indium gallium nitride, indium gallium arsenide, indium gallium zinc oxide, Or other element and/or compound semiconductors (for example, III-V compound conductors such as gallium arsenide or indium phosphide) germanium or gallium nitride.
  • the first oxide layer 107A is, for example, silicon dioxide, and has a thickness of about 1 ⁇ m, and is formed by conventional processes such as thermal oxidation and vapor deposition.
  • a first polysilicon layer 104A is deposited on the first oxide layer 107A, for example, the first polysilicon layer 104A has a thickness of about 1 ⁇ m, as shown in FIG. 4b;
  • the first polysilicon 104A is etched, and according to the structural requirements of the first diaphragm 104, the first polysilicon film 104A is etched to form the basic structure of the first diaphragm 104, as shown in FIG. 4c.
  • Step S2 preparing a backplane structure on the side of the first diaphragm structure opposite to the first surface of the substrate:
  • the second oxide layer 107B is, for example, 0.5 ⁇ m thick, as shown in FIG. 4d; preferably, in order to prevent the backplate 105 and the first diaphragm
  • the second oxide layer 107B can also be etched to form a groove structure prepared by protrusions.
  • the backplane structure includes a first silicon nitride layer 105D, a second polysilicon layer 105E, and a second silicon nitride layer 105F stacked from bottom to top, wherein the first The silicon nitride layer 105D covers the second oxide layer 107A; the first silicon nitride layer 105D and the second silicon nitride layer 105F have a thickness of about 0.25 ⁇ m, for example, and the middle second polysilicon layer 105E has a thickness of about 0.5 ⁇ m, for example. thickness;
  • a step of preparing protrusions on the surface of the second silicon nitride layer 105F of the back plate 105 is also included.
  • Step S3 a second diaphragm structure is prepared on the side of the back plate structure opposite to the first diaphragm structure;
  • a third oxide layer 107C is deposited on the upper surface of the backplane and planarized, as shown in FIG. 4g; the planarization referred to in this embodiment is, for example, a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • the third oxide layer 107C is etched to form a support member 109 support member deposition hole 109A, the deposition hole 109A is interposed in the acoustic through hole 108 of the backplane, exposing the upper surface of the first diaphragm structure 104, as shown in FIG. 4h Shown
  • a third silicon nitride layer 109B is deposited to fill the deposition hole 109A; the thickness of the third silicon nitride layer 109B is, for example, to completely fill the deposition hole 109A, about 4 microns, as shown in FIG. 4i;
  • a third polysilicon film 106A is deposited.
  • the thickness of the third polysilicon film 106A is, for example, 1 ⁇ m, as shown in FIG. 4k;
  • the third polysilicon film 106A layer is etched to form a first release hole window 113A, a second release hole window 114A, a first electrode window 115A, a third electrode window 117A, and a device edge region window 121A.
  • the release hole 111 obviously, the release hole window 113A/114A is located above the acoustic hole 108 in the upper edge region of the back plate 105; the first electrode window 115A and the third electrode window 117A are used to form the first diaphragm 104 and the back plate 105.
  • the electrode extraction hole and the device edge area window 121A are used to remove the oxide layer 107 in the edge area of the MEMS microphone to form a device isolation area and a scribe area, as shown in FIG. 41.
  • the oxide layer in the area of the third electrode window 117A is etched to expose the back plate 105, and the edge area 121A is also etched to the same depth; as shown in FIG. 4m.
  • Step S4 preparing contact electrodes
  • a passivation protection layer 118A is deposited on the entire device surface, and the passivation layer is, for example, silicon nitride; as shown in FIG. 4o;
  • the passivation layer 118A is etched to expose the contact areas of the first diaphragm 104, the second diaphragm 106, and the back plate 105; as shown in FIG. 4p;
  • a metal layer is deposited and the metal layer is patterned.
  • the metal layer is, for example, Cr or Cu alloy.
  • the patterned metal layer forms the upper surface of the first polysilicon, the second polysilicon, and the third polysilicon.
  • Step 5 forming the back cavity
  • the back surface of the substrate is thinned, for example, the back surface of the substrate 101 is thinned by a grinding process
  • the oxide layer between the first diaphragm 104 and the second diaphragm 106 is removed to remove the back cavity
  • the oxide layer above 102 forming a first isolation gap 110 between the first polysilicon layer and the backplane and a second isolation gap 111 between the third polysilicon and the backplane, due to the acoustic
  • the size of the hole 108 is larger than the size of the support 109, so a communicating cavity 112 is formed between the first polysilicon layer 104A and the third polysilicon layer 106A, as shown in FIG. 4s.
  • the method further includes the step of forming a through hole 119 penetrating the support in the central area of the device to form the MEMS microphone shown in FIG. 2.
  • the method further includes the step of forming anti-adhesion protrusions 120 on the upper and lower surfaces of the back plate.
  • the invention provides a method for manufacturing a MEMS microphone, which is prepared by a standard semiconductor process and is easy to integrate with other semiconductor devices. ⁇ ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明提出一种MEMS麦克风的制备方法,包括如下步骤:选择基底,在所述基底的第一表面上制备第一振膜结构;在所述第一振膜结构的与所述基底的第一表面相对的侧面间隔制备背板结构,所述第一振膜结构与所述背板结构之间具有第一间隙;在所述背板结构的与所述第一振膜结构相对的侧面间隔制备第二振膜结构,所述第二振膜结构与所述背板结构之间具有第二间隙;在所述第二振膜结构的与所述背板结构相对的侧面制备电极;刻蚀所述基底的与所述第一表面相对的第二表面,形成背腔。

Description

MEMS麦克风制造方法 技术领域
本发明涉及麦克风技术,特别地,涉及一种微机电系统(Micro-Electro-Mechanic System,MEMS)麦克风的制造方法。
背景技术
随着无线通讯的发展,用户对移动电话的通话质量要求越来越高,麦克风作为移动电话的语音拾取装置,其设计的好坏直接影响移动电话的通话质量。
由于MEMS技术具有小型化、易集成、高性能、低成本等特点,使其获得业界青睐,MEMS麦克风在当前的移动电话中应用较为广泛;常见的MEMS麦克风为电容式,即包括振膜和背板,二者构成MEMS声传感电容,且MEMS声传感电容进一步通过连接盘连接到处理芯片以将声传感信号输出给处理芯片进行信号处理。为了进一步提高MEMS麦克风的性能,现有技术提出了双振膜MEMS麦克风结构,即利用两层振膜分别与背板构成电容结构。基于硅技术的MEMS麦克风中,上述MEMS麦克风的振膜和背板是在同一个硅基座并利用半导体制作工艺制作而成,且在制作过程中还包括形成声腔、背腔、声学孔、透气孔和连接盘等工艺步骤。
由于MEMS麦克风的每一个制作工艺步骤是在同一个硅基座制作形成,因此必须在前一个工艺步骤完成之后方可进行下一个工艺步骤,此将导致MEMS麦克风的整体制造效率较低。
基于这些问题,有必要提供一种新的MEMS麦克风双振膜结构的制造方法,以提高制造效率。
技术问题
为解决上述技术问题,本发明提供一种可以提高MEMS麦克风整体制造效率的MEMS麦克风的制造方法。
技术解决方案
具体地,本发明提出的方案如下:
一种MEMS麦克风的制备方法,包括如下步骤:
选择基底,在所述基底的第一表面上沉积第一氧化层;
在所述第一氧化层的表面沉积第一多晶硅层并图形化该第一多晶硅层以形成第一振膜结构;
在所述第一振膜结构的表面沉积第二氧化层,
在所述第二氧化层的表面沉积背板材质层,
图形化所述背板材质层形成背板结构,所述背板结构包括若干声学通孔;
在所述背板结构上沉积第三氧化层,并平坦化所述第三氧化层;
图形化所述第三氧化层、第二氧化层,形成介于所述声学通孔之间的支撑件沉积孔,所述支撑件沉积孔露出所述第一振膜结构;
沉积支撑件材质层,直至填满所述支撑件沉积孔;
平坦化所述支撑件材质层,直至露出所述第三氧化层表面;
沉积第二振膜材质层,并图形化所述第二振膜材质层形成第二振膜结构,其中包括形成在第二振膜结构对应于所述背板结构边缘区域的释放孔;
制备所述第一振膜结构、第二振膜结构、背板结构的引出电极;
背面刻蚀所述基底,形成对应于所述背板结构中间主体区域的背腔结构;
经所述释放孔去除所述第一振膜结构、第二振膜结构之间对应于所述背板结构中间主体区域的第二氧化层、第三氧化层,经背腔结构去除背腔结构上方的第一氧化层。
进一步地,所述沉积背板材质层包括依次沉积第一氮化硅层、第二多晶硅层、第二氮化硅层。
进一步地,所述制备所述第一振膜结构、第二振膜结构、背板结构的引出电极包括:
刻蚀形成第一振膜结构、背板结构、第二振膜结构的电极引出孔;
沉积并图形化电极层,形成第一振膜结构的第一引出电极、第二振膜结构的第二引出电极、背板结构的第三引出电极。
进一步地,所述沉积支撑件材质层为在图形化的第三氧化层上沉积第三氮化硅层。
进一步地,所述形成背腔结构,包括:
从所述基底的第二表面减薄并刻蚀所述基底。
进一步地,还包括在形成电极引出孔之后沉积钝化保护层的步骤。
进一步地,所述电极层包括Cr/Au层。
进一步地,还包括形成至少一个贯通所述支撑件、所述第一振膜结构、第二振膜结构的通孔。
进一步地,还包括在所述背板结构的中间主体区域上下表面形成凸起的步骤。
有益效果
本发明提出了一种具有双振膜结构的MEMS麦克风的制备方法,通过标准的半导体工艺制备,易于与其它半导体器件集成。
附图说明
图1为本发明其中一实施例的MEMS麦克风结构示意图;
图2为本发明另一实施例的MEMS麦克风结构示意图;
图3为本发明其中一实施例涉及的MEMS麦克风的制备流程图;
图4a-图4s为本发明其中一实施例涉及的MEMS麦克风制备工艺示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1-2,利用本发明所提出的制造方法所制备的MEMS麦克风结构100包括基底101以及设置在基底101上并与基底101绝缘相连的电容系统103。
基底101的材质优选为半导体材料,例如硅,其具有背腔102、第一表面101A以及与第一表面相对的第二表面101B,相应地,在本发明实施例的下述描述中,以第一表面101A代表上表面方向,以第二表面101B代表下表面方向。基底101的第一表面101A上设有绝缘层107,背腔102贯通绝缘层107、及基底101的第一、第二表面。其中背腔102可以通过体硅工艺或干法腐蚀形成。
电容系统103包括背板105以及与背板105相对且分别设置在背板105上、下两侧的第一振膜104和第二振膜106,第一振膜104和背板105之间、第二振膜106和背板105之间、第一振膜104和基底101之间均设有绝缘层107。由此,第一振膜104和背板105之间形成第一绝缘间隙110、第二振膜106和背板105之间形成第二绝缘间隙111。背板105包括间隔设置的声学通孔108,支撑件109穿过该声学通孔108将第一振膜104和第二振膜106固定连接。具体地,支撑件109分别抵接第一振膜104的上表面和第二振膜106的下表面。声学通孔108将第一绝缘间隙110和第二绝缘间隙111连通,形成内腔112。
在MEMS麦克风通电工作时,第一振膜104与背板105、第二振膜106与背板105会带上极性相反的电荷,从而形成电容,当第一振膜104和第二振膜106在声波的作用下产生振动,背板105与第一振膜104和第二振膜106之间的距离会发生变化,从而导致电容系统的电容发生改变,进而将声波信号转化为了电信号,实现麦克风的相应功能。
在本实施例中,第一振膜104和第二振膜 106是方形的、圆形的或者椭圆形,至少一个支撑件109被设置在第一振膜104的上表面与第二振膜106的下表面之间。
该支撑件109设置为穿过背板105的声学通孔108将第一振膜104和第二振膜106固定连接;即支撑件109不与背板105接触,不受背板105的影响。
该支撑件109可以通过各种制备技术被形成在第一振膜104的顶表面之上,例如物理蒸汽沉积、电化学沉积、化学蒸汽沉积和分子束外延。 
该支撑件109可以由诸如硅之类的半导体材料组成或者可以包括例如硅之类的半导体材料。比如锗、硅锗、碳化硅、氮化镓、铟、氮化铟镓、砷化铟镓、氧化铟镓锌、或其他元素和/或化合物半导体(例如,例如砷化镓或磷化铟之类的III-V化合物半导体、或II-VI化合物半导体、或三元化合物半导体、或四元化合物半导体)。也可以由如下各项中的至少一种组成或者可以包括如下各项中的至少一种:金属、电介质材料、压电材料、压阻材料和铁电材料。也可以是由介质材料如氮化硅制成。
根据各个实施例,该支撑件109可以分别与第一振膜104和第二振膜106一体成型。 
根据各个实施例,本发明的第二振膜106包括第一释放孔113、第二释放孔114,第一释放孔113和第二释放孔114分别设置在第二振膜的边缘区域,与背板105最外侧的声学孔108连通。
释放孔113/114与内腔112连通,因此可以通过释放液,比如BOE溶液或者HF气相刻蚀技术,去除内腔112内的牺牲氧化层。
根据各个实施例,还包括第一振膜104、第二振膜106、背板105的引出电极,相应地,分别为第一电极115、第二电极116、第三电极117。
根据各个实施例,还包括表面钝化保护层118,该表面钝化层同时具有使第一电极115、第二电极116、第三电极117相互绝缘的作用。表面钝化保护层118例如为氮化硅材质。
参见图2,还包括贯通第一振膜104、支撑件109、第二振膜106的通孔119,该通孔119例如设置在第一振膜104、第二振膜106的中心位置,连通背腔102与外界环境,使得第一振膜104、第二振膜106的外表压力一致。
根据各个实施例,还包括设置在背板105上、下表面的凸起120,凸起120用于防止背板105和第一振膜104、第二振膜106发生粘附。
参阅图3-4,其为本发明提供的MEMS麦克风的制造方法的一种实施例的流程图,该制造方法用来制造如图1或者图2所示的麦克风100,具体包括如下步骤。
步骤S1,选择基底,在基底的第一表面上制备第一振膜结构:
具体地,包括如下子步骤:
S11,选择基底101,并在该基底101的第一表面101A上沉积第一氧化层107A,如图4a所示。
该基底101例如是半导体硅衬底,也可以是其它半导体材质衬底,比如:锗、硅锗、碳化硅、氮化镓、铟、氮化铟镓、砷化铟镓、氧化铟镓锌、或其他元素和/或化合物半导体(例如,例如砷化镓或磷化铟之类的III-V化合导体)锗或者氮化镓之类。
该第一氧化层107A例如为二氧化硅,厚度约为1µm,采用热氧化、气相沉积等常规工艺形成。
S12,在该第一氧化层107A上沉积第一多晶硅层104A,该第一多晶硅层104A例如厚度约为1µm,如图4b所示;
S13,刻蚀第一多晶硅104A,根据第一振膜104的结构要求,刻蚀第一多晶硅膜104A,形成第一振膜104的基本结构,如图4c所示。
步骤S2,在所述第一振膜结构的与所述基底的第一表面相对的侧面间隔制备背板结构:
具体地,包括如下子步骤:
S21,在所述第一振膜结构104上沉积第二氧化层107B,该第二氧化层107B例如为0.5µm厚,如图4d所示;优选地,为了防止背板105与第一振膜104的粘附,还可以刻蚀该第二氧化层107B形成凸起制备的凹槽结构。
S22,沉积背板材质层,在本实施例中背板结构包括从下向上叠置的第一氮化硅层105D、第二多晶硅层105E、第二氮化硅层105F,其中第一氮化硅层105D覆盖第二氧化层107A;第一氮化硅层105D、第二氮化硅层105F例如具有约0.25µm的厚度,中间的第二多晶硅层105E例如具有约0.5µm的厚度;
S23,刻蚀背板材质层,形成间隔设置的声学通孔108;如图4f所示;
优选地,还包括在背板105的第二氮化硅层105F表面制备凸起的步骤。
步骤S3,在所述背板结构的与所述第一振膜结构相对的侧面间隔制备第二振膜结构;
具体地,包括如下子步骤:
S31,在背板的上表面沉积第三氧化层107C,并平坦化,如图4g所示;本实施例中所指的平坦化例如采用化学机械抛光(CMP)工艺。
S32,刻蚀第三氧化层107C,形成支撑件109支撑件沉积孔109A,该沉积孔109A介于背板的声学通孔108之中,露出第一振膜结构104的上表面,如图4h所示;
S33,沉积第三氮化硅层109B,以填满所述沉积孔109A;所述第三氮化硅层109B的厚度例如满足完全填满沉积孔109A,约4微米,如图4i所示;
S34,去除支撑件沉积孔109A的之外的第三氮化硅层109B,形成支撑件109,比如采用CMP工艺,如图4j所示;
S35,沉积第三多晶硅薄膜106A,第三多晶硅薄膜106A的厚度例如为1µm,如图4k所示;
S37,刻蚀所述第三多晶硅薄膜106A层,形成第一释放孔窗口113A、第二释放孔窗口114A,第一电极窗口115A,第三电极窗口117A,器件边缘区域窗口121A。释放孔111;显然,释放孔窗口113A/114A位于背板105上边缘区域的声学孔108之上;第一电极窗口115A、第三电极窗口117A用于形成第一振膜104、背板105的电极引出孔,器件边缘区域窗口121A用于去除MEMS麦克风边缘区域的氧化层107,形成器件隔离区域与划片区域,如图4l所示。
S38,刻蚀第三电极窗口117A区域的氧化层,露出背板105,同时将边缘区域121A刻蚀到同样的深度;如图4m所示。
S38,沿第一电极窗口115A刻蚀,形成露出第一振膜104的引出孔115B;同时,将121A窗口下的氧化层继续刻蚀,露出基底的第一表面101A,如图4n所示。
步骤S4,制备接触电极
具体地,包括如下子步骤:
S41,在整个器件表面沉积钝化保护层118A,该钝化层例如为氮化硅;如图4o所示;
S42,刻蚀钝化层118A,露出第一振膜104、第二振膜106、背板105的接触区域;如图4p所示;
S43,沉积金属层并图形化该金属层,该金属层例如为Cr、Cu合金,图形化的金属层形成第一多晶硅、第二多晶硅、第三多晶硅的上表面的导电接触点,即对应于第一振膜104的引出电极115、第二振膜结构106的引出电极116、背板结构105的引出电极117,如图4q所示;
步骤5,形成背腔
具体地,包括如下步骤:
S51,基底背面减薄,例如采用研磨工艺将基底101的背面进行减薄;
S52,图形化基底第二表面101B并进行刻蚀,形成背腔区域102,刻蚀停止于第一氧化层107A,如图4r所示;
S53,释放第一振膜104、背板105、第二振膜106,比如采用BOE溶液或者HF气相刻蚀技术,第一振膜104和第二振膜106之间的氧化层,去除背腔102上方的氧化层;形成介于第一多晶硅层和背板之间的第一隔离间隙110以及第三多晶硅和背板之间的第二隔离间隙111,由于背板上声学通孔108的尺寸大于支撑件109的尺寸,所以第一多晶硅层104A和第三多晶硅层106A之间形成连通的腔体112,如图4s所示。
优选地,还包括形成贯通器件中央区域的支撑件的通孔119的步骤,以形成如图2所示的MEMS麦克风。
优选地,还包括在所述背板的上下表面形成防粘附凸起120的步骤。
在本发明提供一种MEMS麦克风的制造方法,通过标准的半导体工艺制备,易于与其它半导体器件集成。  
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种MEMS麦克风的制备方法,其特征在于,包括如下步骤:
    选择基底,在所述基底的第一表面上沉积第一氧化层;
    在所述第一氧化层的表面沉积第一多晶硅层并图形化该第一多晶硅层以形成第一振膜结构;
    在所述第一振膜结构的表面沉积第二氧化层,
    在所述第二氧化层的表面沉积背板材质层,
    图形化所述背板材质层形成背板结构,所述背板结构包括若干声学通孔;
    在所述背板结构上沉积第三氧化层,并平坦化所述第三氧化层;
    图形化所述第三氧化层、第二氧化层,形成介于所述声学通孔之间的支撑件沉积孔,所述支撑件沉积孔露出所述第一振膜结构;
    沉积支撑件材质层,直至填满所述支撑件沉积孔;
    平坦化所述支撑件材质层,直至露出所述第三氧化层表面;
    沉积第二振膜材质层,并图形化所述第二振膜材质层形成第二振膜结构,其中包括形成在第二振膜结构对应于所述背板结构边缘区域的释放孔;
    制备所述第一振膜结构、第二振膜结构、背板结构的引出电极;
    背面刻蚀所述基底,形成对应于所述背板结构中间主体区域的背腔结构;
    经所述释放孔去除所述第一振膜结构、第二振膜结构之间对应于所述背板结构中间主体区域的第二氧化层、第三氧化层,经背腔结构去除背腔结构上方的第一氧化层。
  2. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,所述沉积背板材质层包括依次沉积第一氮化硅层、第二多晶硅层、第二氮化硅层。
  3. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,所述制备所述第一振膜结构、第二振膜结构、背板结构的引出电极包括:
    刻蚀形成第一振膜结构、背板结构、第二振膜结构的电极引出孔;
    沉积并图形化电极层,形成第一振膜结构的第一引出电极、第二振膜结构的第二引出电极、背板结构的第三引出电极。
  4. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,所述沉积支撑件材质层为在图形化的第三氧化层上沉积第三氮化硅层。
  5. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,所述形成背腔结构,包括:
    从所述基底的第二表面减薄并刻蚀所述基底。
  6. 根据权利要求3所述的MEMS麦克风的制备方法,其特征在于,还包括在形成电极引出孔之后沉积钝化保护层的步骤。
  7. 根据权利要求6所述的MEMS麦克风的制备方法,其特征在于,所述电极层包括Cr/Au层。
  8. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,还包括形成至少一个贯通所述支撑件、所述第一振膜结构、第二振膜结构的通孔。
  9. 根据权利要求1所述的MEMS麦克风的制备方法,其特征在于,还包括在所述背板结构的中间主体区域上下表面形成凸起的步骤。
PCT/CN2019/113335 2018-12-31 2019-10-25 Mems 麦克风制造方法 WO2020140574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811651276.0 2018-12-31
CN201811651276.0A CN110012410A (zh) 2018-12-31 2018-12-31 Mems麦克风制造方法

Publications (1)

Publication Number Publication Date
WO2020140574A1 true WO2020140574A1 (zh) 2020-07-09

Family

ID=67165314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113335 WO2020140574A1 (zh) 2018-12-31 2019-10-25 Mems 麦克风制造方法

Country Status (3)

Country Link
US (1) US11405737B2 (zh)
CN (1) CN110012410A (zh)
WO (1) WO2020140574A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012410A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 Mems麦克风制造方法
CN111405444B (zh) * 2020-03-20 2022-01-25 西人马联合测控(泉州)科技有限公司 一种振膜带孔的电容式麦克风及其制造方法
CN114598979B (zh) * 2022-05-10 2022-08-16 迈感微电子(上海)有限公司 一种双振膜mems麦克风及其制造方法
US11974109B2 (en) * 2022-05-27 2024-04-30 Aac Acoustic Technologies (Shenzhen) Co., Ltd. MEMS device
CN115321475B (zh) * 2022-10-13 2023-01-31 苏州敏芯微电子技术股份有限公司 声波感测结构的制作方法
CN117376796B (zh) * 2023-12-08 2024-02-06 瑞声光电科技(常州)有限公司 微机电麦克风的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254046A (zh) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 具有在振膜与对电极之间的低压区的mems麦克风
CN107176584A (zh) * 2016-03-10 2017-09-19 英飞凌科技股份有限公司 Mems器件和mems真空扩音器
US20170311089A1 (en) * 2016-04-26 2017-10-26 Dongbu Hitek Co., Ltd. Mems microphone and method of manufacturing the same
US20180152792A1 (en) * 2016-11-29 2018-05-31 Cirrus Logic International Semiconductor Ltd. Mems device
CN110012410A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 Mems麦克风制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702268B (zh) * 2013-12-31 2016-09-14 瑞声声学科技(深圳)有限公司 Mems麦克风
CN104507014B (zh) * 2014-12-26 2018-08-28 上海集成电路研发中心有限公司 一种具有褶皱型振动膜的mems麦克风及其制造方法
CN204518076U (zh) * 2015-04-28 2015-07-29 歌尔声学股份有限公司 微机电系统麦克风芯片、麦克风和电子设备
CN107835477B (zh) * 2017-11-24 2020-03-17 歌尔股份有限公司 一种mems麦克风
CN109905833B (zh) * 2018-12-31 2021-04-20 瑞声科技(新加坡)有限公司 Mems麦克风制造方法
CN110958548A (zh) * 2019-12-02 2020-04-03 杭州士兰集成电路有限公司 Mems麦克风及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254046A (zh) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 具有在振膜与对电极之间的低压区的mems麦克风
CN107176584A (zh) * 2016-03-10 2017-09-19 英飞凌科技股份有限公司 Mems器件和mems真空扩音器
US20170311089A1 (en) * 2016-04-26 2017-10-26 Dongbu Hitek Co., Ltd. Mems microphone and method of manufacturing the same
US20180152792A1 (en) * 2016-11-29 2018-05-31 Cirrus Logic International Semiconductor Ltd. Mems device
CN110012410A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 Mems麦克风制造方法

Also Published As

Publication number Publication date
US11405737B2 (en) 2022-08-02
CN110012410A (zh) 2019-07-12
US20200213797A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN109905833B (zh) Mems麦克风制造方法
WO2020140574A1 (zh) Mems 麦克风制造方法
WO2020140572A1 (zh) Mems麦克风制造方法
US9676615B2 (en) MEMS silicone microphone and manufacturing method thereof
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
US8693711B2 (en) Capacitive transducer and fabrication method
US9681234B2 (en) MEMS microphone structure and method of manufacturing the same
US8237332B2 (en) Piezoelectric acoustic transducer and method of fabricating the same
TWI664755B (zh) 使用熔合結合工序在cmos基板上整合ain超音波傳感器
CN101346014A (zh) 微机电系统麦克风及其制备方法
CN101854578B (zh) 一种基于硅硅键合工艺的微型麦克风制备方法
US10284986B2 (en) Piezoelectric speaker and method for forming the same
EP2969911A1 (en) Mems acoustic transducer with silicon nitride backplate and silicon sacrificial layer
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
CN111170265A (zh) Mems器件及其制造方法
CN104378724A (zh) 一种无背部大声学腔体的mems硅麦克风
JP2021534613A (ja) Baw共振器のパッケージングモジュールおよびパッケージング方法
CN111225329A (zh) 麦克风及其制备方法和电子设备
JP3829115B2 (ja) コンデンサーマイクロホン及びその製造方法
WO2020140571A1 (zh) 一种mems麦克风
CN109831730B (zh) Mems麦克风制造方法
WO2020191750A1 (zh) 晶体振荡器及其制作方法和设备
CN102611975A (zh) 一种采用共晶键合与soi硅片的mems硅麦克风及其制备方法
CN202488705U (zh) 一种采用共晶键合与soi硅片的mems硅麦克风
CN117376796B (zh) 微机电麦克风的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906927

Country of ref document: EP

Kind code of ref document: A1