WO2020140500A1 - 一种模拟看门狗装置及其控制方法 - Google Patents

一种模拟看门狗装置及其控制方法 Download PDF

Info

Publication number
WO2020140500A1
WO2020140500A1 PCT/CN2019/108713 CN2019108713W WO2020140500A1 WO 2020140500 A1 WO2020140500 A1 WO 2020140500A1 CN 2019108713 W CN2019108713 W CN 2019108713W WO 2020140500 A1 WO2020140500 A1 WO 2020140500A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
processing
voltage
post
Prior art date
Application number
PCT/CN2019/108713
Other languages
English (en)
French (fr)
Inventor
温浪明
陈恒
谭鑫
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020140500A1 publication Critical patent/WO2020140500A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/0757Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance

Definitions

  • the present application belongs to the technical field of electronic circuits, and in particular relates to an analog watchdog device and its control method, in particular to a low-power analog watchdog solution implementation device and its control method.
  • the analog watchdog has been widely used in MCU applications, the mechanism of which is to realize the interval detection of voltage, and the specific wake-up conditions are different for different applications. For example: for the exception handling mechanism, the system always detects whether the input voltage is in a reasonable interval. If the upper limit of the interval is exceeded or below the lower limit of the interval, the system triggers the corresponding protection measures; for low-power applications, the system always detects whether the input voltage is in the range Exceeding the set interval, if it falls within the interval, the system enters the corresponding sleep mode, otherwise it wakes up the system.
  • the purpose of the present application is to provide a simulated watchdog device and its control method in response to the above-mentioned defects, to solve the problem that the analog watchdog is implemented based on two ACMP window modes in the prior art, and then the setting of the interval is not so It is flexible and has the problem of occupying more resources to achieve the effect of reducing occupied resources.
  • This application provides an analog watchdog device, including: a DAC module, an AC module, and a control logic module; wherein, the control logic module is configured to send an input signal to the DAC module according to a set trigger signal;
  • the DAC module is configured to perform digital-to-analog conversion processing according to the input signal and the set reference signal to obtain a required interval threshold voltage and output it to the AC module;
  • the AC module is configured to input externally
  • the analog voltage is compared with the threshold voltage of the interval to obtain a comparison result; and a result signal is output according to the comparison result.
  • outputting a result signal according to the comparison result includes: outputting an abnormal signal if the external input analog voltage is greater than the upper limit of the interval threshold voltage or less than the lower limit of the interval threshold voltage, if the The external input analog voltage is less than or equal to the upper limit of the interval threshold voltage and greater than or equal to the lower limit of the interval threshold voltage to output a normal signal.
  • a recording and post-processing module also includes: a recording and post-processing module; the control logic module is further configured to generate a sampling enable signal and output to the recording and post-processing module; the recording and post-processing module is set to The sampling enable signal records the output result of the AC module, and performs post-processing on the recorded output result.
  • the post-processing includes at least one of denoising processing and voltage value change warning processing.
  • the method further includes: a CPU; the CPU is configured to perform setting after receiving the voltage value change warning process and being woken up when the post-processing of the recording and post-processing module includes the voltage value change warning process Operation.
  • it also includes: a timing module
  • the timing module is configured to generate a trigger signal to the control logic module at a set timing time.
  • a control method of the analog watchdog device which includes: sending an input signal to the DAC module according to a set trigger signal through a control logic module; Through the DAC module, perform digital-to-analog conversion processing according to the input signal and the set reference signal to obtain the required interval threshold voltage; through the AC module, compare the external input analog voltage with the interval threshold voltage to obtain A comparison result; and output a result signal according to the comparison result.
  • outputting a result signal according to the comparison result includes: outputting an abnormal signal if the external input analog voltage is greater than the upper limit of the interval threshold voltage or less than the lower limit of the interval threshold voltage, if the The external input analog voltage is less than or equal to the upper limit of the interval threshold voltage and greater than or equal to the lower limit of the interval threshold voltage to output a normal signal.
  • the method further includes: through a control logic module, further generating a sampling enable signal; through a recording and post-processing module, according to the sampling enable signal, recording the output result, and recording the output result Perform post-processing.
  • the post-processing includes at least one of denoising processing and voltage value change warning processing.
  • the method further includes: performing, by the CPU, the wake-up after receiving the voltage value change warning process when the post-processing includes the voltage value change warning process, and executing a set operation.
  • the method further includes: generating a trigger signal according to the set timing time through the timing module.
  • Another aspect of the present application provides a processor configured to run a program, wherein when the program is executed, any one of the control methods of the analog watchdog device described above is executed.
  • the solution of the present application implements an analog watchdog solution in a low-power SOC solution through on-chip resource integration, which reduces additional circuit area requirements and saves resources.
  • the on-chip resources are fully utilized, the existing functions are reused, and more flexible functions are realized.
  • the watchdog is implemented based on the two ACMP window modes, and then it is not so flexible in setting the interval, which has the problem of occupying more resources, thereby overcoming the defects of the existing technology that occupy more resources, high power consumption and low reliability, and realize the occupation The beneficial effects of less resources, low power consumption and high reliability.
  • FIG. 1 is a schematic structural diagram of an embodiment of an analog watchdog device of the present application, specifically a logic circuit diagram;
  • FIG. 2 is a schematic flowchart of an embodiment of a control method of an analog watchdog device of the present application
  • FIG. 3 is a schematic flowchart of an embodiment of post-processing the output result of the AC module in the method of the present application
  • FIG. 4 is a schematic flowchart of a specific embodiment of the control method of the present application, specifically, a schematic diagram of a workflow of the entire analog electronic dog.
  • 10-DAC module 20-AC module; 30-recording and post-processing module; 40-CPU; 50-control logic module; 60-timing module (such as low-power Timer).
  • an analog watchdog device which can be applied to the implementation of analog watchdog in any IC design.
  • the analog watchdog device may include: a DAC module 10, an AC module 20, and a control logic module 50.
  • control logic module 50 may be configured to send an input signal (DAC_VAL) to the DAC module 10 according to a set trigger signal to control the turning on or off of the DAC module 10 and the AC module 20 .
  • control logic module with the ability to turn on or off the DAC module and the AC module in response to the trigger signal, update the digital value DAC_VAL of the DAC module, and generate the sampling signal of the AC module.
  • DAC_VAL is a parameter value that is preset according to the planned threshold value of the voltage interval to be measured, which affects the k value in the DAC module. For the specific operation relationship, see the operating principle.
  • the DAC module 10 may be configured to perform digital-to-analog conversion processing according to the input signal and the set reference signal (such as the reference voltage is Vref) to obtain the required threshold voltage of the interval and output it to the AC module 20.
  • DAC module digital-to-analog converter
  • Vref digital-to-analog converter
  • the AC module 20 may be configured to compare the external input analog voltage with the interval threshold voltage to obtain a comparison result; and output a result signal according to the comparison result.
  • the DAC module outputs the threshold voltage of the interval according to the input signal and the reference signal, and the AC module compares the threshold voltage of the interval and the external input analog voltage to obtain The output result realizes the flexible configuration of the interval threshold voltage and reduces the occupied resources.
  • Outputting a result signal according to the comparison result may include: outputting an abnormal signal if the external input analog voltage is greater than the upper limit of the interval threshold voltage or less than the lower limit of the interval threshold voltage, if the external input analog When the voltage is less than or equal to the upper limit of the interval threshold voltage and greater than or equal to the lower limit of the interval threshold voltage, a normal signal is output.
  • AC module is a common low-power analog comparator.
  • One input terminal is the DAC output, and the other input terminal is the external input analog voltage.
  • the output result is the comparison value of Vref*k and VIN. As shown in Figure 1, if Vref*k is greater than VIN, it outputs 1, otherwise it outputs 0.
  • the on-chip resource integration is realized, and the additional circuit area requirement is reduced.
  • the on-chip resources are fully utilized, the existing functions are reused, and more flexible functions are realized, which can effectively avoid extra circuit consumption. It can be seen that the scheme of this application has a simple logic structure and occupies few resources; the circuit reliability is very high; and the application range is wide.
  • integrated MCU chip-level chip
  • SOC System on Chip, system-on-chip, system-level chip
  • AC module analog comparator
  • it may further include: a recording and post-processing module 30 to implement a process of post-processing the output result of the AC module 20.
  • control logic module 50 may also be configured to generate a sampling enable signal and output it to the recording and post-processing module 30.
  • the recording and post-processing module 30 may be configured to record the output result of the AC module according to the sampling enable signal, and perform post-processing on the recorded output result.
  • recording and post-processing module record the output result of the AC module according to the sampling enable signal generated from the control logic module; and post-process the recorded result.
  • the execution control of the set operation can be achieved, with high reliability and good safety.
  • the post-processing may include at least one of denoising processing and voltage value change warning processing.
  • post-processing the recorded results including voltage value denoising and voltage value change warning.
  • it may further include: a CPU 40.
  • the CPU 40 may be configured to perform a set operation after being woken up by receiving the voltage value change warning process when the post-processing of the recording and post-processing module 30 may include the voltage value change warning process .
  • CPU central processing module, wake up after receiving the change warning signal, and perform the next operation.
  • it may further include: a timing module 60.
  • the timing module 60 may be configured to generate a trigger signal to the control logic module 50 at a set timing time to wake up the DAC module 10 and the AC module 20 to output when the timing time arrives The required threshold voltage of the interval.
  • Low-power Timer Low-power timer, set to generate a trigger signal to the control logic module regularly, wake up the DAC module and AC module in time to detect the output voltage interval.
  • the timer is used to generate a trigger signal by timing, which realizes automatic control, and is safe and reliable.
  • the working principle of this application may be as follows:
  • the detection module will judge the relationship between VIN and the values of 2V and 4V in turn, so as to determine the specific range of VIN in Table 2.
  • Figure 4 The working process of the whole analog electronic dog is shown in Figure 4, which can specifically include:
  • Step 1 In the low power consumption mode, the CPU is in a low power consumption mode such as sleep, the DAC module and the AC module are turned off, the low power consumption timer is turned on, and other unrelated modules are in the sleep or other low power consumption mode.
  • a low power consumption mode such as sleep
  • the DAC module and the AC module are turned off
  • the low power consumption timer is turned on
  • other unrelated modules are in the sleep or other low power consumption mode.
  • Step 2 The digital logic part of the automatic detection module waits for the detection trigger signal. Once the trigger signal is valid, the automatic detection module digital starts battery power detection.
  • Step 3 The post-processing module in this application performs post-processing based on the aggregated AC results.
  • Step 4 After the CPU is woken up, it will automatically detect the module to obtain the latest voltage value and do the next exception handling.
  • this exception handling is related to a specific application scheme, which may be to turn off the related voltage module to protect the normal operation of the chip.
  • this exception handling is related to a specific application scheme, which may be to turn off the related voltage module to protect the normal operation of the chip.
  • the scheme of the present application as long as the voltage abnormality can be detected clearly.
  • the extended analysis of the analog watchdog design may include:
  • the DAC accuracy is not limited to 64, and may be other configurations.
  • the operation sequence for the voltage of the critical node is not limited to low to high in the example, but may be high to low.
  • the example is for the alarm detection that VIN exceeds the preset interval, but it can also be the alarm detection that falls within the preset interval.
  • the technical solution of the present application is adopted to realize the analog watchdog solution in the low-power SOC solution through on-chip resource integration, which reduces the additional circuit area requirements and saves resources.
  • FIG. 2 is a schematic flowchart of an embodiment of the method of the present application.
  • the control method of the analog watchdog device may include: steps S110 to S130.
  • control logic module 50 sends an input signal (DAC_VAL) to the DAC module 10 according to the set trigger signal to control the DAC module 10 and the AC module 20 to be turned on or off.
  • control logic module with the ability to turn on or off the DAC module and the AC module in response to the trigger signal, update the digital value DAC_VAL of the DAC module, and generate the sampling signal of the AC module.
  • DAC_VAL is a parameter value preset according to the planned threshold of the voltage interval to be measured, which affects the k value in the DAC module.
  • the specific operation relationship please refer to the operating principle.
  • step S120 through the DAC module 10, according to the input signal and the set reference signal (for example, the reference voltage is Vref), digital-to-analog conversion processing is performed to obtain a required interval threshold voltage.
  • DAC module digital-to-analog converter
  • Vref DAC_VAL/64
  • 64 is the resolution
  • the external input analog voltage is compared with the interval threshold voltage to obtain a comparison result; and a result signal is output according to the comparison result.
  • the external input analog voltage is determined based on the threshold voltage of the interval.
  • the DAC module outputs the interval threshold voltage according to the input signal and the reference signal
  • the AC module compares the interval threshold voltage and the external input analog voltage to obtain The output result realizes the flexible configuration of the interval threshold voltage and reduces the occupied resources.
  • Outputting the result signal according to the comparison result may include: outputting an abnormal signal if the external input analog voltage is greater than the upper limit of the interval threshold voltage or less than the lower limit of the interval threshold voltage, if the external input analog When the voltage is less than or equal to the upper limit of the interval threshold voltage and greater than or equal to the lower limit of the interval threshold voltage, a normal signal is output.
  • AC module analog comparator
  • One input terminal is the DAC output, and the other input terminal is the external input analog voltage.
  • the output result is the comparison value of Vref*k and VIN. As shown in Figure 1, if Vref*k is greater than VIN, 1 is output, otherwise 0.
  • the on-chip resource integration is realized, and the additional circuit area requirement is reduced.
  • the on-chip resources are fully utilized, the existing functions are reused, and more flexible functions are realized, which can effectively avoid extra circuit consumption. It can be seen that the scheme of this application has a simple logic structure and occupies few resources; the circuit reliability is very high; and the application range is wide.
  • integrated MCU chip-level chip
  • SOC System on Chip, system-on-chip, system-level chip
  • AC module analog comparator
  • it may further include: a process of post-processing the output result of the AC module 20.
  • step S210 through the control logic module 50, a sampling enable signal is also generated.
  • the recording and post-processing module 30 records the output result according to the sampling enable signal, and performs post-processing on the recorded output result.
  • recording and post-processing module recording the output result of the AC module according to the sampling enable signal generated from the control logic module; and post-processing the recorded result.
  • the execution control of the set operation can be achieved, with high reliability and good safety.
  • the post-processing may include at least one of denoising processing and voltage value change warning processing.
  • post-processing the recorded results, including voltage value denoising and voltage value change warning may include at least one of denoising processing and voltage value change warning processing.
  • it may further include: through the CPU 40, when the post-processing may include a voltage value change warning process, after receiving the voltage value change warning process and being woken up, perform a set operation.
  • the post-processing may include a voltage value change warning process, after receiving the voltage value change warning process and being woken up, perform a set operation.
  • CPU central processing module, wake up after receiving the change warning signal, and perform the next operation.
  • it may further include: generating a trigger signal at a set timing time through the timing module 60 to wake up the DAC module 10 and the AC module 20 to output when the timing time arrives Interval threshold voltage.
  • a trigger signal For example: Low-power Timer: Low-power timer, set to generate a trigger signal to the control logic module regularly, wake up the DAC module and AC module in time to detect the output voltage interval.
  • the timer is used to generate a trigger signal by timing, which realizes automatic control, and is safe and reliable.
  • the working principle of this application may be as follows:
  • the detection module will judge the relationship between VIN and the values of 2V and 4V in turn, so as to determine the specific range of VIN in Table 2.
  • Figure 4 The working process of the whole analog electronic dog is shown in Figure 4, which can specifically include:
  • Step 1 In the low power consumption mode, the CPU is in a low power consumption mode such as sleep, the DAC module and the AC module are turned off, the low power consumption timer is turned on, and other unrelated modules are in the sleep or other low power consumption mode.
  • a low power consumption mode such as sleep
  • the DAC module and the AC module are turned off
  • the low power consumption timer is turned on
  • other unrelated modules are in the sleep or other low power consumption mode.
  • Step 2 The digital logic part of the automatic detection module waits for the detection trigger signal. Once the trigger signal is valid, the automatic detection module digital starts battery power detection.
  • Step 3 The post-processing module in this application performs post-processing based on the aggregated AC results.
  • Step 4 After the CPU is woken up, it will automatically detect the module to obtain the latest voltage value and do the next exception handling.
  • the extended analysis of the analog watchdog design may include:
  • the DAC accuracy is not limited to 64, and may be other configurations.
  • the operation sequence for the voltage of the critical node is not limited to low to high in the example, but may be high to low.
  • the example is for the alarm detection that VIN exceeds the preset interval, but it can also be the alarm detection that falls within the preset interval.
  • the solution provided by the embodiment of the present application can integrate the DAC module and the AC module common in the MCU and SOC implementation solutions to make full use of on-chip resources, reuse existing functions, and reduce resource consumption.
  • the DAC module under the control of the input signal sent by the control logic module based on the trigger signal, the DAC module outputs the interval threshold voltage according to the input signal and the reference signal, and the AC module then simulates according to the interval threshold voltage and the external input The voltage is compared to obtain the output result, which realizes the flexible configuration of the interval threshold voltage and reduces the occupied resources, thereby overcoming the defects of the existing technology that occupy more resources, high power consumption and low reliability, and realize less occupied resources and power consumption The beneficial effects of low and high reliability.

Abstract

一种模拟看门狗装置及其控制方法,该装置包括:控制逻辑模块(50),设置为按设定的触发信号,向DAC模块(10)发送输入信号;DAC模块(10),设置为根据所述输入信号和设定的参考信号,进行数模转换处理,得到区间阈值电压,并输出至AC模块(20);AC模块(20),设置为将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果。

Description

一种模拟看门狗装置及其控制方法
本申请要求于2019年01月02日提交中国专利局、申请号为201910002605.7、申请名称“一种模拟看门狗装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子电路技术领域,具体涉及一种模拟看门狗装置及其控制方法,尤其涉及一种低功耗模拟看门狗方案的实现装置及其控制方法。
背景技术
模拟看门狗(Anglog watchdog)在MCU应用中得到广泛的应用,其中的机理是实现电压的区间检测,具体的唤醒条件因不同的应用而有所差异。例如:对于异常处理机制,系统时刻检测输入电压是否处于合理的区间,如果超出区间上限或者低于区间下限,系统则触发相应的保护措施;而对于低功耗应用,系统时刻检测输入电压是否处于超出设定的区间,如果落在区间,系统则进入相应的休眠模式,否则唤醒系统。
常见的模拟看门狗基于两个快速型比较器(ACMP)的窗口模式实现,然后对于区间的设定没有那么灵活,通常都是内部参考电压的1/n,n=1~4。然而在实际应用中,并不能充分满足灵活设定区间的阈值的需求。
发明内容
本申请的目的在于,针对上述缺陷,提供一种模拟看门狗装置及其控制方法,以解决现有技术中模拟看门狗基于两个ACMP的窗口模式实现,然后对于区间的设定没有那么灵活,存在占用资源多的问题,达到减少占用资源的效果。
本申请提供一种模拟看门狗装置,包括:DAC模块、AC模块和控制逻辑模块;其中,所述控制逻辑模块,设置为按设定的触发信号,向所述DAC模块发送输入信号;所述DAC模块,设置为根据所述输入信号和设定的参考信号,进行数模转换处理,得到所需的区间阈值电压,并输出至所述AC模块;所述AC模块,设置为将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。
可选地,其中,根据所述比较结果输出结果信号,包括:若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。
可选地,还包括:记录及后处理模块;所述控制逻辑模块,还设置为产生采样使能信号,并输出至所述记录及后处理模块;所述记录及后处理模块,设置为根据所述采样使能信号,对所述AC模块的输出结果进行记录,并对记录的所述输出结果进行后处理。
可选地,所述后处理,包括:去噪处理、电压值变动警示处理中的至少之一。
可选地,还包括:CPU;所述CPU,设置为在所述记录及后处理模块的后处理包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。
可选地,还包括:定时模块;
所述定时模块,设置为按设定的定时时间产生触发信号至所述控制逻辑模块。
与上述模拟看门狗装置相匹配,本申请再一方面提供一种模拟看门狗装置的控制方法,包括:通过控制逻辑模块,按设定的触发信号,向所述DAC模块发送输入信号;通过DAC模块,根据所述输入信号和设定的参考信号,进行数模转换处理,得到所需的区间阈值电压;通过AC模块,将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。
可选地,其中,根据所述比较结果输出结果信号,包括:若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。
可选地,还包括:通过控制逻辑模块,还产生采样使能信号;通过记录及后处理模块,根据所述采样使能信号,对所述输出结果进行记录,并对记录的所述输出结果进行后处理。
可选地,所述后处理,包括:去噪处理、电压值变动警示处理中的至少之一。
可选地,还包括:通过CPU,在所述后处理包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。
可选地,还包括:通过定时模块,按设定的定时时间产生触发信号。
本申请另一方面提供了处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述任意一项所述的模拟看门狗装置的控制方法。
本申请的方案,通过片上资源整合,在低功耗SOC方案中实现模拟看门狗方案,减少额外的电路面积需求,节省资源。
进一步,本申请的方案,通过在主控芯片设计中,充分利用片上资源,复用已有的功能,实现更多灵活的功能,可以有效地避免额外的电路耗费,节省成本。
由此,本申请的方案,通过整合MCU、SOC实现方案中通用的DAC模块和AC模块,充分利用片上资源,复用已有的功能,实现更多灵活的功能,解决现有技术中模拟看门狗基于两个ACMP的窗口模式实现,然后对于区间的设定没有那么灵活,存在占用资源多的问题,从而克服现有技术中占用资源多、功耗高和可靠性低的缺陷,实现占用资源少、功耗低和可靠性高的有益效果。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。
下面通过附图和实施例,对本申请的技术方案做进一步的详细描述。
附图说明
图1为本申请的模拟看门狗装置的一实施例的结构示意图,具体为逻辑电路图;
图2为本申请的模拟看门狗装置的控制方法的一实施例的流程示意图;
图3为本申请的方法中对AC模块的输出结果进行后处理的一实施例的流程示意图;
图4为本申请的控制方法的一具体实施例的流程示意图,具体为整个模拟 电子狗的工作流程示意图。
结合附图,本申请实施例中附图标记如下:
10-DAC模块;20-AC模块;30-记录及后处理模块;40-CPU;50-控制逻辑模块;60-定时模块(如低功耗Timer)。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
根据本申请的实施例,提供了一种模拟看门狗装置,可以应用于任何IC设计中模拟看门狗的实现。参见图1所示本申请的装置的一实施例的结构示意图。该模拟看门狗装置可以包括:DAC模块10、AC模块20和控制逻辑模块50。
具体地,所述控制逻辑模块50,可以设置为按设定的触发信号,向所述DAC模块10发送输入信号(DAC_VAL),以控制所述DAC模块10和所述AC模块20的开启或关闭。例如:控制逻辑模块:具备响应触发信号,开启或关闭DAC模块和AC模块,更新DAC模块的数字值DAC_VAL和产生使能采样AC模块输出信号等能力。其中DAC_VAL是依据规划好待测电压区间阈值而预先设定的参数值,从而影响DAC模块中k值,具体的运算关系详见运行原理。
具体地,所述DAC模块10,可以设置为根据所述输入信号和设定的参考信号(如基准电压为Vref),进行数模转换处理,得到所需的区间阈值电压,并输出至所述AC模块20。例如:DAC模块(数模转换器):是一个普通的低功耗数字转换器,其基准电压为Vref,依据DAC_VAL输入,实现区间阈值电压输出,其值为Vref*k(k=DAC_VAL/64,64是分辨率)。对于看门狗中所需要设定的区间值的上限阈值和下限阈值可以通过设置DAC_VAL实现。
具体地,所述AC模块20,可以设置为将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。
由此,通过在控制逻辑模块基于触发信号发送的输入信号的控制下,DAC 模块根据该输入信号和参考信号输出区间阈值电压,AC模块再根据该区间阈值电压和外部输入模拟电压进行比较而得到输出结果,实现了对区间阈值电压的灵活配置,减少了占用资源。
其中,根据所述比较结果输出结果信号,可以包括:若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。
例如:AC模块(模拟比较器):是一个普通的低功耗模拟比较器。一个输入端为DAC输出,另外一个输入端为外部输入模拟电压,输出结果为Vref*k与VIN的比较值,如图1所示,如果Vref*k大于VIN,则输出1,否则输出0。
例如:在一个可选实施方式中,为了低功耗SOC方案中模拟看门狗方案实现,实现片上资源整合,减少额外的电路面积需求。本申请的方案,在主控芯片设计中,充分利用片上资源,复用已有的功能,实现更多灵活的功能,可以有效地避免额外的电路耗费。可见,本申请的方案,逻辑结构简单占用资源少;电路可靠性非常高;适用范围广。
例如:整合MCU(芯片级的芯片)、SOC(System on Chip,片上系统,系统级的芯片)实现方案中通用的DAC模块和AC模块,有效地减少电路面积开销,实现在低功耗模式下模拟看门狗功能,可对输入电压的区间检测,区间阈值可灵活配置,降低整机待机功耗。如图1中,利用已有的DAC模块(数模转换器),实现参考电压自由设置,并节省了一个AC模块(模拟比较器),有效地提高了模拟狗的灵活度并节省了电路资源。
由此,通过根据不同的比较结果输出对应的结果信号,可以针对不同的比较结果进行处理,灵活性好、可靠性高。
在一个可选实施方式中,还可以包括:记录及后处理模块30,以实现对AC模块20的输出结果进行后处理的过程。
具体地,所述控制逻辑模块50,还可以设置为产生采样使能信号,并输出至所述记录及后处理模块30。
具体地,所述记录及后处理模块30,可以设置为根据所述采样使能信号,对所述AC模块的输出结果进行记录,并对记录的所述输出结果进行后处理。例如:记录及后处理模块:根据来自于控制逻辑模块产生的采样使能信号对 AC模块的输出结果进行记录;并且对记录的结果进行后处理。
由此,通过基于采样使能信号对AC模块的输出结果进行记录和后处理,可以实现对设定的操作的执行控制,可靠性高、安全性好。
可选地,所述后处理,可以包括:去噪处理、电压值变动警示处理中的至少之一。
例如:对记录的结果进行后处理,具体包括电压值去噪处理、电压值变动警示。
由此,通过多种形式的后处理,有利于提升后处理的灵活性和便捷性。
在一个可选实施方式中,还可以包括:CPU 40。
具体地,所述CPU 40,可以设置为在所述记录及后处理模块30的后处理可以包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。例如:CPU:中央处理模块,接受变动警示信号被唤醒,进行下一步的操作。
由此,通过在后处理包括电压值变动警示处理时唤醒CPU执行设定的操作,提升了警示处理的及时性和可靠性。
在一个可选实施方式中,还可以包括:定时模块60。
具体地,所述定时模块60,可以设置为按设定的定时时间产生触发信号至所述控制逻辑模块50,以在所述定时时间到达时唤醒所述DAC模块10和所述AC模块20输出所需的区间阈值电压。例如:低功耗Timer:低功耗计时器,设置为定时产生触发信号至控制逻辑模块,及时唤醒DAC模块和AC模块进行输出电压的区间检测。
由此,通过定时器进行定时而产生触发信号,实现了自动控制,且安全、可靠。
在一个可选具体例子中,本申请的工作原理可以如下:
假设芯片内部参考电压为5V,并且DAC模块的精度为64,而输入电压VIN有效值落在0~5V,而模拟看门狗欲实现VIN 2V~4V的区间监控,如果2V≤VIN≤4V,看门狗视VIN输入正常,如果VIN>4V或者VIN<2V,看门狗是VIN输入电压异常,具体对于关系如表1所示:
表1
VIN(V) 状态
>4 VIN报警
2~4 VIN正常
<2 VIN报警
根据表1,其中的两个关键节点的电压值(2V,4V)与VIN的关系需要明确,具体实现如下
(1)操作方式一(2V判断):控制逻辑模块设置DAC_VAL为(2*64)/Vref,等待AC输出稳定,如果AC输出为1,那么VIN>2V.否则,VCC<或=2V。
(2)操作方式二(4V判断):控制逻辑模块设置DAC_VAL为(4*64)/Vref,等待AC输出稳定,如果AC输出为1,那么VIN>4V;否则,VCC<或=4V。
检测模块会依次判断VIN与2V、4V值的大小关系,从而确定VIN具体是落在何等区间如表2:
表2
VIN(V) 操作1结果 操作2结果 AC输出汇总
>4 1 1 2’b11
2~4 1 0 2’b10
<2 0 0 2’b00
整个模拟电子狗的工作流程如图4所示,具体可以包括:
步骤1、在低功耗模式下,CPU处于睡眠等低功耗模式,DAC模块和AC模块被关闭,低功耗计时器开启,其他不相关模块都处于睡眠或其他低功耗模式。
步骤2、自动检测模块数字逻辑部分等待检测触发信号,一旦触发信号有效,自动检测模块数字便开启电池电量检测。
1)打开DAC模块和AC模块。
2)进行操作方式一以设置DAC_VAL为(2*64)/Vref,等待AC输出稳定并记录结果。
3)进行操作方式以设置DAC_VAL为(4*64)/Vref,等待AC输出稳定并记录结果。
4)汇总操作方式一和操作方式二中AC的输出结果。
5)关闭DAC模块和AC模块。
步骤3、本申请中的后处理模块根据汇总的AC结果进行后处理。
1)去噪滤波,保证检测结果是稳定的,剔除异常结果
2)判断输出结果汇总是否为2’b10,如果不是,则产生中断唤醒CPU。
步骤4、CPU被唤醒之后,去自动检测模块获取最新的电压值,并做下一步的异常处理。
其中,这个异常处理跟具体的应用方案有关,可以是关闭相关电压模块保护芯片正常运行,然而在本申请的方案中只要明确能够检测到这个电压异常就行了。
在一个可选具体例子中,本申请的方案中,模拟看门狗设计的扩展分析,可以包括:
(1)DAC精度不限于64,可以是其他配置。
(2)对于关键节点电压的操作顺序不局限于示例中的从低到高,也可以是从高到低。
(3)对于AC输出结果汇总的处理,不局限于示例中的逻辑实现,只要可以判断出VIN与预设区间的关系即可。
(4)示例中的是对于VIN超出预设区间的报警检测,但也可以是落在预设区间的报警检测。
经大量的试验验证,采用本申请的技术方案,通过片上资源整合,在低功耗SOC方案中实现模拟看门狗方案,减少额外的电路面积需求,节省资源。
根据本申请的实施例,还提供了对应于模拟看门狗装置的一种模拟看门狗装置的控制方法,可以应设置为任何IC设计中模拟看门狗的实现。如图2所示本申请的方法的一实施例的流程示意图。该模拟看门狗装置的控制方法可以包括:步骤S110至步骤S130。
在步骤S110处,通过控制逻辑模块50,按设定的触发信号,向所述DAC模块10发送输入信号(DAC_VAL),以控制所述DAC模块10和所述AC模块20的开启或关闭。例如:控制逻辑模块:具备响应触发信号,开启或关闭DAC模块和AC模块,更新DAC模块的数字值DAC_VAL和产生使能采样AC模块输出信号等能力。其中DAC_VAL是依据规划好待测电压区间阈值而预先设定的参数值,从而影响DAC模块中k值,具体的运算关系详见运行原 理。
在步骤S120处,通过DAC模块10,根据所述输入信号和设定的参考信号(如基准电压为Vref),进行数模转换处理,得到所需的区间阈值电压。例如:DAC模块(数模转换器):是一个普通的低功耗数字转换器,其基准电压为Vref,依据DAC_VAL输入,实现区间阈值电压输出,其值为Vref*k(k=DAC_VAL/64,64是分辨率)。对于看门狗中所需要设定的区间值的上限阈值和下限阈值可以通过设置DAC_VAL实现。
在步骤S130处,通过AC模块20,将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。例如:以所述区间阈值电压为基准对外部输入模拟电压进行判断。
由此,通过在控制逻辑模块基于触发信号发送的输入信号的控制下,DAC模块根据该输入信号和参考信号输出区间阈值电压,AC模块再根据该区间阈值电压和外部输入模拟电压进行比较而得到输出结果,实现了对区间阈值电压的灵活配置,减少了占用资源。
其中,根据所述比较结果输出结果信号,可以包括:若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。例如:AC模块(模拟比较器):是一个普通的低功耗模拟比较器。一个输入端为DAC输出,另外一个输入端为外部输入模拟电压,输出结果为Vref*k与VIN的比较值,如图1所示,如果Vref*k大于VIN,则输出1,否则输出0。
例如:在一个可选实施方式中,为了低功耗SOC方案中模拟看门狗方案实现,实现片上资源整合,减少额外的电路面积需求。本申请的方案,在主控芯片设计中,充分利用片上资源,复用已有的功能,实现更多灵活的功能,可以有效地避免额外的电路耗费。可见,本申请的方案,逻辑结构简单占用资源少;电路可靠性非常高;适用范围广。
例如:整合MCU(芯片级的芯片)、SOC(System on Chip,片上系统,系统级的芯片)实现方案中通用的DAC模块和AC模块,有效地减少电路面积开销,实现在低功耗模式下模拟看门狗功能,可对输入电压的区间检测,区间阈值可灵活配置,降低整机待机功耗。如图1中,利用已有的DAC模块(数 模转换器),实现参考电压自由设置,并节省了一个AC模块(模拟比较器),有效地提高了模拟狗的灵活度并节省了电路资源。
由此,通过根据不同的比较结果输出对应的结果信号,可以针对不同的比较结果进行处理,灵活性好、可靠性高。
在一个可选实施方式中,还可以包括:对AC模块20的输出结果进行后处理的过程。
下面结合图3所示本申请的方法中对AC模块20的输出结果进行后处理的一实施例流程示意图,进一步说明对AC模块20的输出结果进行后处理的具体过程,可以包括:步骤S210和步骤S220。
步骤S210,通过控制逻辑模块50,还产生采样使能信号。
步骤S220,通过记录及后处理模块30,根据所述采样使能信号,对所述输出结果进行记录,并对记录的所述输出结果进行后处理。例如:记录及后处理模块:根据来自于控制逻辑模块产生的采样使能信号对AC模块的输出结果进行记录;并且对记录的结果进行后处理。
由此,通过基于采样使能信号对AC模块的输出结果进行记录和后处理,可以实现对设定的操作的执行控制,可靠性高、安全性好。
可选地,所述后处理,可以包括:去噪处理、电压值变动警示处理中的至少之一。例如:对记录的结果进行后处理,具体包括电压值去噪处理、电压值变动警示。
由此,通过多种形式的后处理,有利于提升后处理的灵活性和便捷性。
在一个可选实施方式中,还可以包括:通过CPU 40,在所述后处理可以包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。例如:CPU:中央处理模块,接受变动警示信号被唤醒,进行下一步的操作。
由此,通过在后处理包括电压值变动警示处理时唤醒CPU执行设定的操作,提升了警示处理的及时性和可靠性。
在一个可选实施方式中,还可以包括:通过定时模块60,按设定的定时时间产生触发信号,以在所述定时时间到达时唤醒所述DAC模块10和所述AC模块20输出所需的区间阈值电压。例如:低功耗Timer:低功耗计时器,设置为定时产生触发信号至控制逻辑模块,及时唤醒DAC模块和AC模块进行输 出电压的区间检测。
由此,通过定时器进行定时而产生触发信号,实现了自动控制,且安全、可靠。
在一个可选具体例子中,本申请的工作原理可以如下:
假设芯片内部参考电压为5V,并且DAC模块的精度为64,而输入电压VIN有效值落在0~5V,而模拟看门狗欲实现VIN 2V~4V的区间监控,如果2V≤VIN≤4V,看门狗视VIN输入正常,如果VIN>4V或者VIN<2V,看门狗是VIN输入电压异常,具体对于关系如表1所示:
表1
VIN(V) 状态
>4 VIN报警
2~4 VIN正常
<2 VIN报警
根据表1,其中的两个关键节点的电压值(2V,4V)与VIN的关系需要明确,具体实现如下
(1)操作方式一(2V判断):控制逻辑模块设置DAC_VAL为(2*64)/Vref,等待AC输出稳定,如果AC输出为1,那么VIN>2V.否则,VCC<或=2V。
(2)操作方式二(4V判断):控制逻辑模块设置DAC_VAL为(4*64)/Vref,等待AC输出稳定,如果AC输出为1,那么VIN>4V;否则,VCC<或=4V。
检测模块会依次判断VIN与2V、4V值的大小关系,从而确定VIN具体是落在何等区间如表2:
表2
VIN(V) 操作1结果 操作2结果 AC输出汇总
>4 1 1 2’b11
2~4 1 0 2’b10
<2 0 0 2’b00
整个模拟电子狗的工作流程如图4所示,具体可以包括:
步骤1、在低功耗模式下,CPU处于睡眠等低功耗模式,DAC模块和AC模块被关闭,低功耗计时器开启,其他不相关模块都处于睡眠或其他低功耗模式。
步骤2、自动检测模块数字逻辑部分等待检测触发信号,一旦触发信号有效,自动检测模块数字便开启电池电量检测。
1)打开DAC模块和AC模块。
2)进行操作方式一以设置DAC_VAL为(2*64)/Vref,等待AC输出稳定并记录结果。
3)进行操作方式以设置DAC_VAL为(4*64)/Vref,等待AC输出稳定并记录结果。
4)汇总操作方式一和操作方式二中AC的输出结果。
5)关闭DAC模块和AC模块。
步骤3、本申请中的后处理模块根据汇总的AC结果进行后处理。
1)去噪滤波,保证检测结果是稳定的,剔除异常结果
2)判断输出结果汇总是否为2’b10,如果不是,则产生中断唤醒CPU。
步骤4、CPU被唤醒之后,去自动检测模块获取最新的电压值,并做下一步的异常处理。
在一个可选具体例子中,本申请的方案中,模拟看门狗设计的扩展分析,可以包括:
(1)DAC精度不限于64,可以是其他配置。
(2)对于关键节点电压的操作顺序不局限于示例中的从低到高,也可以是从高到低。
(3)对于AC输出结果汇总的处理,不局限于示例中的逻辑实现,只要可以判断出VIN与预设区间的关系即可。
(4)示例中的是对于VIN超出预设区间的报警检测,但也可以是落在预设区间的报警检测。
由于本实施例的方法所实现的处理及功能基本相应于前述图1所示的模拟看门狗装置的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本实施例的技术方案,通过在主控芯片设计中,充分利用片上资源,复用已有的功能,实现更多灵活的功能,可以有效地避免额外的电路耗费,节省成本。
综上,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方 式可以自由地组合、叠加。
以上所述仅为本申请的实施例而已,并不设置为限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
工业实用性
本申请实施例提供的方案可以通过整合MCU、SOC实现方案中通用的DAC模块和AC模块,充分利用片上资源,复用已有的功能,减少资源占用。在本申请实施例中,可以通过在控制逻辑模块基于触发信号发送的输入信号的控制下,DAC模块根据该输入信号和参考信号输出区间阈值电压,AC模块再根据该区间阈值电压和外部输入模拟电压进行比较而得到输出结果,实现了对区间阈值电压的灵活配置,减少了占用资源,从而克服现有技术中占用资源多、功耗高和可靠性低的缺陷,实现占用资源少、功耗低和可靠性高的有益效果。

Claims (13)

  1. 一种模拟看门狗装置,包括:DAC模块(10)、AC模块(20)和控制逻辑模块(50);其中,
    所述控制逻辑模块(50),设置为按设定的触发信号,向所述DAC模块(10)发送输入信号;
    所述DAC模块(10),设置为根据所述输入信号和设定的参考信号,进行数模转换处理,得到所需的区间阈值电压,并输出至所述AC模块(20);
    所述AC模块(20),设置为将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。
  2. 根据权利要求1所述的装置,其中,根据所述比较结果输出结果信号,包括:
    若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。
  3. 根据权利要求1或2所述的装置,其中,还包括:记录及后处理模块(30);
    所述控制逻辑模块(50),还设置为产生采样使能信号,并输出至所述记录及后处理模块(30);
    所述记录及后处理模块(30),设置为根据所述采样使能信号,对所述AC模块的输出结果进行记录,并对记录的所述输出结果进行后处理。
  4. 根据权利要求3所述的装置,其中,所述后处理,包括:去噪处理、电压值变动警示处理中的至少之一。
  5. 根据权利要求3或4所述的装置,其中,还包括:CPU(40);
    所述CPU(40),设置为在所述记录及后处理模块(30)的后处理包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。
  6. 根据权利要求1-5之一所述的装置,其中,还包括:定时模块(60);
    所述定时模块(60),设置为按设定的定时时间产生触发信号至所述控制逻辑模块(50)。
  7. 一种模拟看门狗装置的控制方法,包括:
    通过控制逻辑模块(50),按设定的触发信号,向所述DAC模块(10)发送输入信号;
    通过DAC模块(10),根据所述输入信号和设定的参考信号,进行数模转换处理,得到所需的区间阈值电压;
    通过AC模块(20),将外部输入模拟电压与所述区间阈值电压进行比较处理,得到比较结果;并根据所述比较结果输出结果信号。
  8. 根据权利要求7所述的方法,其中,根据所述比较结果输出结果信号,包括:
    若所述外部输入模拟电压大于所述区间阈值电压的上限、或小于所述区间阈值电压的下限则输出异常信号,若所述外部输入模拟电压小于或等于所述区间阈值电压的上限、且大于或等于所述区间阈值电压的下限则输出正常信号。
  9. 根据权利要求7或8所述的方法,其中,还包括:
    通过控制逻辑模块(50),还产生采样使能信号;
    通过记录及后处理模块(30),根据所述采样使能信号,对所述输出结果进行记录,并对记录的所述输出结果进行后处理。
  10. 根据权利要求9所述的方法,其中,所述后处理,包括:去噪处理、电压值变动警示处理中的至少之一。
  11. 根据权利要求9或10所述的方法,其中,还包括:
    通过CPU(40),在所述后处理包括电压值变动警示处理时,接受所述电压值变动警示处理而被唤醒后,执行设定的操作。
  12. 根据权利要求7-11之一所述的方法,其中,还包括:
    通过定时模块(60),按设定的定时时间产生触发信号。
  13. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求7至12中任意一项所述的模拟看门狗装置的控制方法。
PCT/CN2019/108713 2019-01-02 2019-09-27 一种模拟看门狗装置及其控制方法 WO2020140500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910002605.7 2019-01-02
CN201910002605.7A CN111400074A (zh) 2019-01-02 2019-01-02 一种模拟看门狗装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2020140500A1 true WO2020140500A1 (zh) 2020-07-09

Family

ID=71406638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108713 WO2020140500A1 (zh) 2019-01-02 2019-09-27 一种模拟看门狗装置及其控制方法

Country Status (2)

Country Link
CN (1) CN111400074A (zh)
WO (1) WO2020140500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564705A (zh) * 2020-12-02 2021-03-26 湖北方圆环保科技有限公司 一种测氡仪多道数据采集方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793287A (zh) * 2014-01-14 2014-05-14 深圳市文鼎创数据科技有限公司 捕获模拟信号周期的方法及系统
CN104793045A (zh) * 2015-04-23 2015-07-22 中国科学院近代物理研究所 一种宽量程电流频率转换器
CN206962790U (zh) * 2017-05-11 2018-02-02 华南师范大学 智能可调电压比较器
CN108897264A (zh) * 2018-09-27 2018-11-27 浙江大学 用于通用系统芯片的适用范围广的模数转换器控制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563799A (en) * 1994-11-10 1996-10-08 United Technologies Automotive, Inc. Low cost/low current watchdog circuit for microprocessor
US8645729B2 (en) * 2010-01-21 2014-02-04 Microchip Technology Incorporated External device power control during low power sleep mode without central processing unit intervention
CN103208980B (zh) * 2012-01-17 2015-12-09 比亚迪股份有限公司 一种窗口电压比较装置
CN103713960B (zh) * 2012-09-29 2017-11-14 西门子电力自动化有限公司 用于嵌入式系统的看门狗电路
US20160055049A1 (en) * 2014-08-22 2016-02-25 Analog Devices Global Ultra low power programmable supervisory circuit
DE102015117977A1 (de) * 2015-10-22 2017-04-27 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schaltungsanordnung und Verfahren zur Überwachung eines Mikrocontrollers auf der Grundlage einer Wächterspannung
US9697065B1 (en) * 2016-03-09 2017-07-04 Nxp Usa, Inc. Systems and methods for managing reset
US10020676B2 (en) * 2016-03-28 2018-07-10 Nxp B.V. Watchdog circuit
CN107704067B (zh) * 2017-08-30 2020-05-15 全球能源互联网研究院有限公司 一种SoC芯片复位方法和复位系统
CN207833497U (zh) * 2018-02-06 2018-09-07 深圳市西迪特科技有限公司 Olt系统掉电告警装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793287A (zh) * 2014-01-14 2014-05-14 深圳市文鼎创数据科技有限公司 捕获模拟信号周期的方法及系统
CN104793045A (zh) * 2015-04-23 2015-07-22 中国科学院近代物理研究所 一种宽量程电流频率转换器
CN206962790U (zh) * 2017-05-11 2018-02-02 华南师范大学 智能可调电压比较器
CN108897264A (zh) * 2018-09-27 2018-11-27 浙江大学 用于通用系统芯片的适用范围广的模数转换器控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564705A (zh) * 2020-12-02 2021-03-26 湖北方圆环保科技有限公司 一种测氡仪多道数据采集方法

Also Published As

Publication number Publication date
CN111400074A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US7630841B2 (en) Supervising and sequencing commonly driven power supplies with digital information
US6308279B1 (en) Method and apparatus for power mode transition in a multi-thread processor
CN103412634B (zh) 一种soc芯片的mcu唤醒装置和方法
US20100229011A1 (en) Power Reduction in Microcontrollers
CN103631360A (zh) 一种支持睡眠模式的芯片及方法
JPH07302139A (ja) 集積プロセッサ、コンピュータシステムおよびコンピュータシステム内の電力を管理する方法
CN101470689A (zh) 一种基于usb的双向睡眠唤醒方法及装置
US7886177B2 (en) Method and apparatus of collecting timer ticks
US20050114723A1 (en) Interruption control system and method
CN102214846A (zh) 降低电池管理系统功耗的方法与低功耗电池管理系统
US6711692B1 (en) Data processing unit including central unit and peripheral unit driven by separate power supplies
US9377833B2 (en) Electronic device and power management method
CN106681472A (zh) 异构多核处理器功耗控制装置及其功耗控制方法
CN101436095A (zh) 一种用于微控制器中的低压复位方法
WO2020140500A1 (zh) 一种模拟看门狗装置及其控制方法
US9612652B2 (en) Controlling power consumption by power management link
CN112948312B (zh) 芯片控制方法、装置、智能终端及计算机可读存储介质
CN1858676B (zh) 设定设备电源管理状态方法以及设备功耗节省方法
WO2022100374A1 (zh) 一种终端设备分级管理方法及系统
US20050086407A1 (en) Interruption control system and method
CN204906346U (zh) 定时控制芯片和电池充电电路
TWI740764B (zh) 信號產生電路及操作系統
US11847466B2 (en) Controlled thermal shutdown and recovery
US20240118742A1 (en) Processing wakeup requests using in a processing system having power management circuitry and a processing circuitry
CN111722559B (zh) 一种基于dsp和fpga架构的低功耗处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907910

Country of ref document: EP

Kind code of ref document: A1