WO2020140476A1 - 一种基于交变电场的平面二维时栅位移传感器 - Google Patents

一种基于交变电场的平面二维时栅位移传感器 Download PDF

Info

Publication number
WO2020140476A1
WO2020140476A1 PCT/CN2019/105618 CN2019105618W WO2020140476A1 WO 2020140476 A1 WO2020140476 A1 WO 2020140476A1 CN 2019105618 W CN2019105618 W CN 2019105618W WO 2020140476 A1 WO2020140476 A1 WO 2020140476A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
group
sensing
units
pole pieces
Prior art date
Application number
PCT/CN2019/105618
Other languages
English (en)
French (fr)
Inventor
彭凯
刘小康
蒲红吉
于治成
王合文
Original Assignee
重庆理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆理工大学 filed Critical 重庆理工大学
Priority to US17/289,748 priority Critical patent/US11371822B2/en
Priority to EP19907265.3A priority patent/EP3907464B1/en
Priority to JP2020557327A priority patent/JP7093845B2/ja
Publication of WO2020140476A1 publication Critical patent/WO2020140476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions

Definitions

  • the invention belongs to the field of precision linear displacement sensors, and in particular relates to a planar two-dimensional time grid displacement sensor based on an alternating electric field.
  • the existing two-dimensional planar displacement sensors mainly include two-dimensional gratings, two-dimensional magnetic grids and two-dimensional capacitive grids.
  • the manufacturing process and optical path structure of the two-dimensional gratings are complicated, the cost is too high, and they are easily affected by environmental interference; Since the grid and the two-dimensional capacitive grid use field coupling to acquire signals, the measurement signals in the two directions interfere with each other, resulting in low measurement accuracy.
  • the object of the present invention is to provide a planar two-dimensional time-grid displacement sensor based on an alternating electric field, to realize a large-scale high-precision planar two-dimensional linear displacement measurement, and has a simple structure, complete decoupling, and strong anti-interference ability.
  • the planar two-dimensional time-grid displacement sensor based on the alternating electric field of the present invention includes a fixed-size base body and a moving-scale base body.
  • the lower surface of the moving-scale base body and the upper surface of the fixed-size base body are installed parallel to each other with a gap.
  • XA, XB, XC, XD excitation groups are formed in the X-axis direction
  • YA, YB, YC, and YD excitation groups are formed in the Y-axis direction.
  • the XA excitation group is connected to the YA excitation group to form A excitation phase
  • XB excitation group and YB excitation group are connected to form B excitation phase
  • XC excitation group and YC excitation group are connected to form C excitation phase
  • XD excitation group and YD excitation group are connected to form D excitation phase.
  • the lower surface of the moving ruler base is provided with the same r sensing units, the distance between two adjacent sensing units is I i , and each sensing unit is composed of four independent and identical sensing pole pieces a, b, c, d is arranged in a 2 ⁇ 2 manner.
  • the sensing pole pieces a and c are located in the same row, and the sensing pole pieces a and b are located in the same column.
  • the length and width of each sensing pole piece are L i .
  • any two adjacent induction pole pieces along the X axis or Y axis in each sensing unit are spaced in this direction
  • the phase difference is 180°, forming a differential structure.
  • the shape of the sensing pole pieces is a center symmetrical figure; the sensing pole pieces a in r sensing units are connected to form a sensing group, and the sensing pole pieces b in r sensing units are connected to form b
  • the induction pole pieces c in the r induction units are connected to form the c induction group, and the induction pole pieces d in the r induction units are connected to form the d induction group.
  • a coupling capacitor is formed between the sensing unit and the square square excitation pole piece.
  • four channels of equal-frequency equal-amplitude sinusoidal excitation signals whose phases are sequentially different by 90° are applied to the excitation phases of A, B, C, and D.
  • a, b, and c And d induction groups respectively generate four electrical signals U a , U b , U c and U d through electric field coupling.
  • Each electrical signal is composed of two traveling wave signals containing only X-axis and Y-axis displacements.
  • any two adjacent sensing pole pieces in the X-axis and Y-axis directions of the two sensing units have a spatial difference of 180° in this direction, so the magnitude and frequency of the two traveling wave signals are equal, and the phases are opposite;
  • U a and U b , U c and U d are summed by adders, respectively, to obtain two traveling wave signals U X+ and U X- with opposite phases and only containing X-axis displacement;
  • U a and U c , U b and U d are respectively obtained by adders And to obtain two traveling wave signals U Y+ and U Y- of opposite phases and containing only the Y-axis displacement;
  • U X+ and U X- are subtracted by the subtractor to obtain the X-axis sinusoidal traveling wave signals U X , U Y+ and U Y-The difference is obtained by the subtractor to obtain the Y-axis sinusoidal traveling wave signal U Y ; the X-axis sinusoidal traveling wave signal U
  • the linear displacement of the moving scale base relative to the fixed scale base in the X-axis direction is obtained)
  • the Y-axis sine traveling wave signal U Y is processed to obtain the linear displacement of the moving ruler base relative to the fixed-length base in the Y-axis direction (that is, the Y-axis sinusoidal traveling wave signal U Y and the same frequency reference signal are phase-detected, and the phase difference It is represented by the number of interpolated high-frequency clock pulses, and the linear displacement of the moving ruler base relative to the fixed scale base in the Y-axis direction is obtained after conversion).
  • the XA, XB, XC, XD excitation groups are formed as follows: m square excitation pole pieces on the even-numbered columns in the X-axis direction are connected to form n X excitation units, and the 4j 1 +1 X excitation units are connected into a group , Forming the XA excitation group, the 4j 1 +2 X excitation units are connected into a group, forming the XB excitation group, the 4j 1 +3 X excitation units are connected into a group, forming the XC excitation group, the 4j 1 +4 X excitation Units are connected into a group to form an XD excitation group, and j 1 takes all integers from 0 to k 1 -1 in sequence.
  • the YA, YB, YC, and YD excitation groups are formed as follows: n square excitation pole pieces on even rows in the Y-axis direction are connected to form m Y excitation units, and the 4j 2 +1 Y excitation units are connected into a group , Forming the YA incentive group, the 4j 2 +2 Y excitation units are connected into a group, forming the YB incentive group, the 4j 2 +3 Y excitation units are connected into a group, forming the YC incentive group, the 4j 2 +4 Y incentives Units are connected into a group to form a YD excitation group, and j 2 takes all integers from 0 to k 2 -1 in sequence.
  • the shape of the induction pole pieces a, b, c, and d is preferably a square, a circle, or a diamond.
  • the invention adopts the way that the square excitation pole pieces are arranged in a misaligned manner to realize the simultaneous encoding in the X-axis direction and the Y-axis direction on the same plane, and two adjacent induction pole pieces are arranged in a differential structure in the same induction unit to pick up Signal, the output signal of two adjacent sensing groups is summed by the adder to filter out the coupling signal in the non-measurement direction, and the differential signal is subtracted by the subtractor to eliminate the common mode interference, thereby further improving the signal solution Coupling ability, complete decoupling, and strong anti-interference ability, thus achieving a large number of high-precision planar two-dimensional displacement measurement, and simple structure.
  • FIG. 1 is a schematic diagram of the correspondence relationship between a fixed-size base body and a moving-scale base body in Example 1.
  • FIG. 2 is a schematic structural diagram of a fixed-length base body in Example 1.
  • FIG. 3 is a schematic structural view of the base of the moving ruler in Example 1.
  • FIG. 3 is a schematic structural view of the base of the moving ruler in Example 1.
  • FIG. 4 is a schematic diagram of signal processing in Embodiment 1.
  • FIG. 4 is a schematic diagram of signal processing in Embodiment 1.
  • FIG. 5 is a schematic structural view of the base of the moving ruler in Example 2.
  • FIG. 6 is a schematic structural diagram of a movable ruler base body in Example 3.
  • FIG. 6 is a schematic structural diagram of a movable ruler base body in Example 3.
  • FIG. 7 is a schematic structural diagram of a movable ruler base in Example 4.
  • FIG. 8 is a schematic structural diagram of a movable ruler base in Example 5.
  • FIG. 9 is a schematic structural diagram of a fixed-length base body in Example 6.
  • FIG. 9 is a schematic structural diagram of a fixed-length base body in Example 6.
  • FIG. 10 is a schematic structural view of the base of the moving ruler in Example 7.
  • FIG. 10 is a schematic structural view of the base of the moving ruler in Example 7.
  • FIG. 11 is a schematic structural view of the base of the moving ruler in Example 8.
  • FIG. 11 is a schematic structural view of the base of the moving ruler in Example 8.
  • the starting position along the X axis direction is the same, the starting position of the odd row excitation electrode along the X axis direction is offset from the starting position of the even row excitation electrode along the X axis direction by 5mm .
  • the 12 square excitation pole pieces 11 on each even-numbered column in the X-axis direction are connected through the excitation signal leads, forming a total of 12 X-excitation units, which are sequentially numbered 1, 2, 3, ..., 12, along the positive direction of the X-axis, the first ,
  • the 5th and 9th X excitation units are connected into a group by excitation signal leads to form an XA excitation group, and the 2nd, 6th and 10th X excitation units are connected into a group through excitation signal leads to form an XB excitation group ,
  • the 3rd, 7th, and 11th X excitation units are connected into a group through the excitation signal leads to form an XC excitation group, and the 4th, 8th, and 12th X excitation units are connected into a group through the excitation signal leads,
  • the XD excitation group is formed; the 12 square excitation pole pieces 11 on each even-numbered row in the Y-axis direction are connected through the excitation
  • the 1st, 5th and 9th Y excitation units are connected into a group through the excitation signal leads to form a YA excitation group, and the 2nd, 6th and 10th Y excitation units are connected into a group through the excitation signal leads ,
  • the 3rd, 7th, and 11th Y excitation units are connected into a group through the excitation signal leads to form a YC excitation group, and the 4th, 8th, and 12th Y excitation units pass the excitation signal
  • the leads are connected into a group to form a YD excitation group.
  • the XA excitation group and the YA excitation group are connected through the excitation signal lead to form the A excitation phase
  • the XB excitation group and the YB excitation group are connected through the excitation signal lead to form the B excitation phase
  • the XC excitation group and the YC excitation group are connected through the excitation signal lead to form
  • the C excitation phase, the XD excitation group and the YD excitation group are connected through the excitation signal leads to form the D excitation phase.
  • the lower surface of the moving ruler base 2 is provided with a sensing unit.
  • the sensing unit is composed of four independent and identical sensing pole pieces a, b, c, and d arranged in a 2 ⁇ 2 manner.
  • the pole pieces a and c are located in the same row, and the induction pole pieces a and b are located in the same column.
  • a coupling capacitor is formed between the sensing unit on the lower surface of the movable scale base 2 and the square excitation pole piece 11 on the upper surface of the fixed scale base 1 directly opposite.
  • sinusoidal excitation signals U A U m sin ⁇ t
  • U B U m cos ⁇ t
  • U C -U m sin ⁇ t
  • U D -U m cos ⁇ t
  • the induction groups a, b, c, and d respectively generate four electrical signals U a , U b , U c , and U d through electric field coupling.
  • the expression is:
  • Ke is the electric field coupling coefficient
  • x and y are the linear displacements of the moving scale base 2 relative to the fixed scale base 1 in the X-axis direction and the Y-axis direction, respectively.
  • the X-axis sinusoidal traveling wave signal U X and the Y-axis sinusoidal traveling wave signal U Y are shaped into a square wave by a shaping circuit, they are simultaneously sent to the FPGA for phase discrimination processing, and compared with the same-frequency reference square wave.
  • the phase difference is The number of interpolated high-frequency clock pulses indicates that the linear displacement x in the X axis direction and the linear displacement y in the Y axis direction of the moving scale base 2 relative to the fixed scale base 1 are obtained after conversion.
  • Embodiment 2 The planar two-dimensional time-grid displacement sensor based on an alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that, as shown in FIG. 5, the moving ruler base 2
  • the surface is provided with the same 4 sensing units, the signal strength is better, the 4 sensing units are arranged in a 2 ⁇ 2 manner, the distance between two adjacent sensing units in the X axis direction is 1mm, and the phase is in the Y axis direction.
  • the distance between two adjacent sensing units is 1mm, and the sensing pole pieces a in the four sensing units are connected through the sensing signal leads (that is, the four sensing pole pieces a are connected through the sensing signal leads) to form a sensing group, 4 sensing
  • the sensing pole piece b in the unit is connected through the sensing signal lead (that is, the 4 sensing pole pieces b are connected through the sensing signal lead) to form the b sensing group
  • the sensing pole piece c in the 4 sensing units is connected through the sensing signal lead (ie 4
  • the sensing pole pieces c are connected through the sensing signal leads) to form the c sensing group
  • the sensing pole pieces d in the four sensing units are connected through the sensing signal leads (that is, the four sensing pole pieces d are connected through the sensing signal leads) to form the d induction group.
  • Embodiment 3 The planar two-dimensional time-grid displacement sensor based on the alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that: as shown in FIG. 6, the moving ruler base 2 The same two sensing units are provided on the surface, and the signal strength is better. The two sensing units are arranged along the X-axis direction and are separated by a distance of 1mm.
  • the sensing pole pieces a in the two sensing units are connected through the sensing signal leads (that is, two The induction pole piece a is connected through the induction signal lead) to form a induction group
  • the induction pole piece b in the two induction units is connected through the induction signal lead (that is, the two induction pole pieces b are connected through the induction signal lead) to form the b induction group
  • the sensing pole piece c in the two sensing units is connected through the sensing signal lead (that is, the two sensing pole pieces c are connected through the sensing signal lead) to form the c sensing group
  • the sensing pole piece d in the two sensing units is through the sensing signal lead Connected (that is, the two sensing pole pieces d are connected through the sensing signal leads) to form the d sensing group.
  • Embodiment 4 The planar two-dimensional time-grid displacement sensor based on an alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that, as shown in FIG. 7, the sensing pole piece a, The shapes of b, c, and d are circular.
  • Embodiment 5 The planar two-dimensional time-grid displacement sensor based on the alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that, as shown in FIG. 8, the sensing pole piece a, The shapes of b, c, and d are rhombuses.
  • Embodiment 6 The planar two-dimensional time-grid displacement sensor based on the alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that: as shown in FIG.
  • the 16 square excitation pole pieces 11 on each even-numbered column in the X-axis direction are connected through the excitation signal leads to form a total of 12 X-excitation units, which are sequentially numbered 1, 2, 3, ..., 12, along the positive direction of the X-axis, the first ,
  • the 5th and 9th X excitation units are connected into a group by excitation signal leads to form an XA excitation group, and the 2nd, 6th and 10th X excitation units are connected into a group through excitation signal leads to form an XB excitation group ,
  • the 3rd, 7th, and 11th X excitation units are connected into a group through the excitation signal leads to form an XC excitation group, and the 4th, 8th, and 12th X excitation units are connected into a group through the excitation signal leads,
  • the XD excitation group is formed; the 12 square excitation pole pieces 11 on each even-numbered row in the Y-axis direction are connected by an excitation signal
  • the 1st, 5th, 9th and 13th Y excitation units are connected into a group through the excitation signal leads to form a YA excitation group.
  • the 2nd, 6th, 10th and 14th Y excitation The units are connected into a group through the excitation signal leads to form a YB excitation group.
  • the 3rd, 7th, 11th, and 15th Y excitation units are connected into a group through the excitation signal leads to form a YC excitation group.
  • the eighth, twelfth, and sixteenth Y excitation units are connected into a group through excitation signal leads to form a YD excitation group.
  • Embodiment 7 The planar two-dimensional time-grid displacement sensor based on an alternating electric field of this embodiment has the same measuring principle and most of the structures as in Embodiment 1, except that: as shown in FIG. 10, the moving ruler base 2 The surface is provided with the same 4 sensing units, the signal strength is better, the 4 sensing units are arranged in a 2 ⁇ 2 manner, the distance between two adjacent sensing units in the X axis direction is 1mm, and the phase is in the Y axis direction. The distance between two adjacent sensing units is 1mm.
  • the shape of the sensing pole pieces a, b, c, and d in each sensing unit is rhombus, and the sensing pole piece a in 4 sensing units is connected through the sensing signal lead (ie 4 induction pole pieces a are connected through the induction signal lead) to form a induction group, and the induction pole pieces b in the 4 induction units are connected through the induction signal lead (ie 4 induction pole pieces b are connected through the induction signal lead) to form b Induction group, the induction pole pieces c in the four induction units are connected through the induction signal leads (that is, the four induction pole pieces c are connected through the induction signal leads) to form the c induction group, and the induction pole pieces d in the four induction units are induced through induction The signal leads are connected (that is, the four sensing pole pieces d are connected through the sensing signal leads) to form a d-sensing group.
  • Embodiment 8 The planar two-dimensional time-grid displacement sensor based on an alternating electric field of this embodiment has the same measuring principle and most of the structure as that of Embodiment 1, except that, as shown in FIG. 11, the moving ruler base 2
  • the surface is provided with the same two sensing units, and the signal strength is better.
  • the two sensing units are arranged along the X-axis direction and are separated by a distance of 1mm.
  • the shape of the sensing pole pieces a, b, c, and d in each sensing unit is Round, the sensing pole pieces a in the two sensing units are connected through the sensing signal leads (that is, the two sensing pole pieces a are connected through the sensing signal leads) to form a sensing group, and the sensing pole pieces b in the two sensing units are sensed
  • the signal leads are connected (that is, the two sensing pole pieces b are connected through the sensing signal leads) to form the b sensing group
  • the sensing pole pieces c in the two sensing units are connected through the sensing signal leads (that is, the two sensing pole pieces c are connected through the sensing signal leads Connected) to form the c-sensing group
  • the sensing pole pieces d in the two sensing units are connected through the sensing signal leads (that is, the two sensing pole pieces d are connected through the sensing signal leads) to form the d sensing group.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种基于交变电场的平面二维时栅位移传感器,包括定尺基体(1)和动尺基体两部分,两者正对平行安装,并留有一定间隙。定尺基体(1)上布置有分别沿X轴和Y轴进行错位编码的正方形激励极片(11),动尺基体(2)上布置有沿X轴和Y轴相邻排布的感应极片(a, b, c, d),四个激励相分别施加相位相差90 0的同频等幅正弦激励信号,四个感应组通过电场耦合分别输出四路行波信号,采用加法器对相邻输出信号进行求和可同时解耦出两路相位相反、只包含X轴位移量的行波信号和两路相位相反、只包含Y轴位移量的行波信号;对任一方向上两路行波信号通过减法器进行作差可消除共模干扰。传感器结构简单,解耦彻底,可实现大量程高精度的平面二维位移测量。

Description

一种基于交变电场的平面二维时栅位移传感器 技术领域
本发明属于精密直线位移传感器领域,具体涉及一种基于交变电场的平面二维时栅位移传感器。
背景技术
具有多维度运动的精密测量仪器和加工设备往往要求位移传感器在各个维度上都能保证高精度和大量程的位移测量。传统的二维位移测量是通过组合两个单自由度的位移传感器来实现,测量系统和机械结构复杂,容易引入阿贝误差和多轴累积误差,难以满足精密位移测量的需求。现有的二维平面位移传感器主要包括二维光栅、二维磁栅和二维容栅,其中二维光栅制造工艺和光路结构复杂,成本过高,而且容易受到环境干扰的影响;二维磁栅和二维容栅由于采用场的耦合方式获取信号,因此两个方向的测量信号互相干扰,导致测量精度不高。
近年来国内研制出一种以时钟脉冲作为位移测量基准的时栅传感器,并在此基础上研制了一种基于单排多层结构的电场式时栅直线位移传感器(公开号为CN103822571A),这种传感器以高频时钟脉冲作为测量基准,采用平板电容构建的交变电场来直接耦合出测量所需的电行波信号,因此能实现大量程范围内的高精度位移测量。但是,目前的电场式时栅位移传感器只能进行一维直线位移的测量,无法实现平面二维直线位移测量。
发明内容
本发明的目的是提供一种基于交变电场的平面二维时栅位移传感器,以实现大量程高精度的平面二维直线位移测量,并且结构简单、解耦彻底、抗干扰能力强。
本发明所述的基于交变电场的平面二维时栅位移传感器,包括定尺基体和动尺基体,动尺基体下表面与定尺基体上表面正对平行安装,并留有间隙。
所述定尺基体上表面并排设置有2m行激励电极,每行激励电极都由相同的n个正方形激励极片沿X轴方向均匀排布组成,相邻两个正方形激励极片间隔的距离I e大于一个正方形激励极片的宽度L e,相邻两行激励电极沿Y轴方向间隔的距离等于
Figure PCTCN2019105618-appb-000001
沿X轴方向的起始位置错开
Figure PCTCN2019105618-appb-000002
(即奇数行激励电极沿X轴方向的起始位置与偶数行激励电极沿X轴方向的起始位置错开
Figure PCTCN2019105618-appb-000003
),奇数行激励电极沿X轴方向的起始位置相同,偶数行激励电极沿X轴方向的起始位置相同;其中,n=4k 1、m=4k 2,k 1、k 2都为正整数。
多个正方形激励极片相连,在X轴方向形成有XA、XB、XC、XD激励组,在Y轴方向形成有YA、YB、YC、YD激励组,XA激励组与YA激励组相连,形成A激励相,XB激励组与YB激励组相连,形成B激励相,XC激励组与YC激励组相连,形成C激励相,XD激励组与YD激励组相连,形成D激励相。
所述动尺基体下表面设置有相同的r个感应单元,相邻两个感应单元间隔的距离为I i,每个感应单元都由独立且相同的4个感应极片a、b、c、d按照2×2的方式排布组成,感应极片a、c位于同一行,感应极片a、b位于同一列,每个感应极片的长度、宽度都为L i,相邻两个感应极片间隔的距离为I i,L i+I i=2(L e+I e),则每个感应单元中沿X轴或Y轴任意相邻的两个感应极片在该方向上空间相差180°,构成差动结构,感应极片的形状为中心对称图形;r个感应单元中的感应极片a相连,形成a感应组,r个感应单元中的感应极片b相连,形成b感应组,r个感应单元中的感应极片c相连,形成c感应组,r个感应单元中的感应极片d相连,形成d感应组。
感应单元与正对的正方形激励极片之间形成耦合电容。测量时,在A、B、C、D激励相上分别施加四路相位依次相差90°的同频等幅正弦激励信号,当动尺基体相对定尺基体产生平面移动时,a、b、c、d感应组通过电场耦合分别产生U a、U b、U c、U d四路电信号,每路电信号均由只包含X轴和Y轴位移量的两个行波信号组成,由于每个感应单元中X轴和Y轴方向上任意两相邻感应极片在该方向上空间相差180°,因此这两个行波信号的大小和频率相等、相位相反;U a和U b,U c和U d分别通过加法器求和,得到两路相位相反、只包含X轴位移量的行波信号U X+和U X-;U a和U c,U b和U d分别通过加法器求和,得到两路相位相反、只包含Y轴位移量的行波信号U Y+和U Y-;U X+和U X-通过减法器作差,得到X轴正弦行波信号U X,U Y+和U Y-通过减法器作差,得到Y轴正弦行波信号U Y;X轴正弦行波信号U X经处理后得到动尺基体相对于定尺基体在X轴方向的直线位移(即将X轴正弦行波信号U X与同频基准信号进行鉴相处理,相位差由插补的高频时钟脉冲个数表示,经换算后得到动尺基体相对于定尺基体在X轴方向的直线位移),Y轴正弦行波信号U Y经处理后得到动尺基体相对于定尺基体在Y轴方向的直线位移(即将Y轴正弦行波信号U Y与同频基准信号进行鉴相处理,相位差由插补的高频时钟脉冲个数表示,经换算后得到动尺基体相对于定尺基体在Y轴方向的直线位移)。
所述XA、XB、XC、XD激励组的形成方式为:X轴方向偶数列上的m个正方形激励极片相连,形成n个X激励单元,第4j 1+1个X激励单元连成一组,组成XA激励组,第4j 1+2个X激励单元连成一组,组成XB激励组,第4j 1+3个X激励单元连成一组,组成XC激励组, 第4j 1+4个X激励单元连成一组,组成XD激励组,j 1依次取0至k 1-1的所有整数。
所述YA、YB、YC、YD激励组的形成方式为:Y轴方向偶数行上的n个正方形激励极片相连,形成m个Y激励单元,第4j 2+1个Y激励单元连成一组,组成YA激励组,第4j 2+2个Y激励单元连成一组,组成YB激励组,第4j 2+3个Y激励单元连成一组,组成YC激励组,第4j 2+4个Y激励单元连成一组,组成YD激励组,j 2依次取0至k 2-1的所有整数。
所述感应极片a、b、c、d的形状优选为正方形或者圆形或者菱形。
本发明采用正方形激励极片错位排布的方式实现了在同一平面上X轴方向和Y轴方向同时进行编码,同一感应单元中采用两相邻感应极片按差动结构排布的方式来拾取信号,通过加法器对两相邻感应组输出信号求和的方式滤除了非测量方向上的耦合信号,通过减法器对差动信号作差的方式消除了共模干扰,从而进一步提高了信号解耦能力,解耦彻底、抗干扰能力强,从而实现了大量程高精度的平面二维位移测量,并且结构简单。
附图说明
图1为实施例1中定尺基体与动尺基体的对应关系示意图。
图2为实施例1中定尺基体的结构示意图。
图3为实施例1中动尺基体的结构示意图。
图4为实施例1的信号处理示意图。
图5为实施例2中动尺基体的结构示意图。
图6为实施例3中动尺基体的结构示意图。
图7为实施例4中动尺基体的结构示意图。
图8为实施例5中动尺基体的结构示意图。
图9为实施例6中定尺基体的结构示意图。
图10为实施例7中动尺基体的结构示意图。
图11为实施例8中动尺基体的结构示意图。
具体实施方式
下面结合附图对本发明作详细说明。
实施例1:如图1至图4所示的基于交变电场的平面二维时栅位移传感器,包括定尺基体1和动尺基体2,动尺基体2下表面与定尺基体1上表面正对平行安装,并留有d=1mm间隙。
如图2所示,定尺基体1上表面并排设置有24行(即m=12)激励电极,每行激励电极都由相同的12个(即n=12)正方形激励极片11沿X轴方向均匀排布组成,相邻两个 正方形激励极片11间隔的距离I e=6mm,一个正方形激励极片11的宽度L e=4mm,相邻两行激励电极沿Y轴方向间隔的距离等于1mm,奇数行激励电极(即第1行、第3行、…、第21行、第23行激励电极)沿X轴方向的起始位置相同,偶数行激励电极(即第2行、第4行、…第22行、第24行激励电极)沿X轴方向的起始位置相同,奇数行激励电极沿X轴方向的起始位置与偶数行激励电极沿X轴方向的起始位置错开5mm。X轴方向每偶数列上的12个正方形激励极片11通过激励信号引线相连,一共形成12个X激励单元,沿X轴正方向依次编号为1、2、3、…、12,第1个、第5个、第9个X激励单元通过激励信号引线连成一组,组成XA激励组,第2个、第6个、第10个X激励单元通过激励信号引线连成一组,组成XB激励组,第3个、第7个、第11个X激励单元通过激励信号引线连成一组,组成XC激励组,第4个、第8个、第12个X激励单元通过激励信号引线连成一组,组成XD激励组;Y轴方向每偶数行上的12个正方形激励极片11通过激励信号引线相连,一共形成12个Y激励单元,沿Y轴正方向依次编号为1、2、3、…、12,第1个、第5个、第9个Y激励单元通过激励信号引线连成一组,组成YA激励组,第2个、第6个、第10个Y激励单元通过激励信号引线连成一组,组成YB激励组,第3个、第7个、第11个Y激励单元通过激励信号引线连成一组,组成YC激励组,第4个、第8个、第12个Y激励单元通过激励信号引线连成一组,组成YD激励组。XA激励组与YA激励组通过激励信号引线相连,形成A激励相,XB激励组与YB激励组通过激励信号引线相连,形成B激励相,XC激励组与YC激励组通过激励信号引线相连,形成C激励相,XD激励组与YD激励组通过激励信号引线相连,形成D激励相。X轴方向或者Y轴方向每经过四个正方形激励极片11为一个对极,对极宽度W=4(L e+I e)=40mm,因此,X轴方向有3个对极,Y轴方向也有3个对极。
如图3所示,动尺基体2下表面设置有1个感应单元,该感应单元由独立且相同的4个感应极片a、b、c、d按照2×2的方式排布组成,感应极片a、c位于同一行,感应极片a、b位于同一列,感应极片a、b、c、d的形状为正方形,感应极片a、b、c、d的长度、宽度都为L i=19mm,相邻两个感应极片在X轴方向间隔的距离为I i=1mm,在Y轴方向间隔的距离为I i=1mm,一个感应极片a构成a感应组,一个感应极片b构成b感应组,一个感应极片c构成c感应组,一个感应极片d构成d感应组。
动尺基体2下表面的感应单元与正对的定尺基体1上表面的正方形激励极片11之间形成耦合电容。测量时,在A、B、C、D激励相上分别施加正弦激励信号U A=U msinωt、U B=U mcosωt、U C=-U msinωt、U D=-U mcosωt,其中激励信号的幅值U m=5V,频率 f=40KHz,角频率ω=2πf=8×10 4π。当动尺基体2相对定尺基体1产生平面移动时,a、b、c、d感应组通过电场耦合分别产生U a、U b、U c、U d四路电信号,表达式为:
Figure PCTCN2019105618-appb-000004
式中,Ke为电场耦合系数,x和y分别为动尺基体2相对于定尺基体1在X轴方向和在Y轴方向上的直线位移。
信号处理方式如图4所示,将U a和U b,U c和U d分别通过加法器求和,得两路相位相反、只包含X轴位移量的行波信号U X+和U X-,将U a和U c,U b和U d分别通过加法器求和,得两路相位相反、只包含Y轴位移量的行波信号U Y+和U Y-,表达式为:
Figure PCTCN2019105618-appb-000005
将U X+和U X-,U Y+和U Y-分别通过减法器作差,最终得到X轴正弦行波信号U X和Y轴正弦行波信号U Y,表达式为:
Figure PCTCN2019105618-appb-000006
将X轴正弦行波信号U X和Y轴正弦行波信号U Y经整形电路整形成方波后,同时送入FPGA中进行鉴相处理,与一同频基准方波进行比相,相位差由插补的高频时钟脉冲个数表示,经换算后得到动尺基体2相对于定尺基体1在X轴方向的直线位移x和在Y轴方向的直线位移y。
实施例2:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图5所示,动尺基体2下表面设置有相同的4个感应单元,信号强度更好,4个感应单元按照2×2的方式排布,在X轴方向相邻的两个感应单元间隔的距离为1mm,在Y轴方向相邻的两个感应单元间隔的距离为1mm,4个感应单元中的感应极片a通过感应信号引线相连(即4个感应极片a通过感应信号引线相连),形成a感应组,4个感应单元中的感应极片b通过感应信号引线相连(即4个感应极片b通 过感应信号引线相连),形成b感应组,4个感应单元中的感应极片c通过感应信号引线相连(即4个感应极片c通过感应信号引线相连),形成c感应组,4个感应单元中的感应极片d通过感应信号引线相连(即4个感应极片d通过感应信号引线相连),形成d感应组。
实施例3:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图6所示,动尺基体2下表面设置有相同的2个感应单元,信号强度更好,2个感应单元沿X轴方向布置且间隔的距离为1mm,2个感应单元中的感应极片a通过感应信号引线相连(即2个感应极片a通过感应信号引线相连),形成a感应组,2个感应单元中的感应极片b通过感应信号引线相连(即2个感应极片b通过感应信号引线相连),形成b感应组,2个感应单元中的感应极片c通过感应信号引线相连(即2个感应极片c通过感应信号引线相连),形成c感应组,2个感应单元中的感应极片d通过感应信号引线相连(即2个感应极片d通过感应信号引线相连),形成d感应组。
实施例4:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图7所示,感应极片a、b、c、d的形状为圆形。
实施例5:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图8所示,感应极片a、b、c、d的形状为菱形。
实施例6:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图9所示,定尺基体1上表面并排设置有32行(即m=16)激励电极,每行激励电极都由相同的12个(即n=12)正方形激励极片11沿X轴方向均匀排布组成,相邻两个正方形激励极片11间隔的距离I e=6mm,一个正方形激励极片11的宽度L e=4mm,相邻两行激励电极沿Y轴方向间隔的距离等于1mm,奇数行激励电极(即第1行、第3行、…、第29行、第31行激励电极)沿X轴方向的起始位置相同,偶数行激励电极(即第2行、第4行、…第30行、第32行激励电极)沿X轴方向的起始位置相同,奇数行激励电极沿X轴方向的起始位置与偶数行激励电极沿X轴方向的起始位置错开5mm。X轴方向每偶数列上的16个正方形激励极片11通过激励信号引线相连,一共形成12个X激励单元,沿X轴正方向依次编号为1、2、3、…、12,第1个、第5个、第9个X激励单元通过激励信号引线连成一组,组成XA激励组,第2个、第6个、第10个X激励单元通过激励信号引线连成一组,组成XB激励组,第3个、第7个、第11个X激励单元通过激励信号引线连成一组,组成XC激励组,第4个、第8个、第12个X激励单元通过激励信号引线连成一组,组成XD激励组;Y轴方向每偶数行上的12个正方形激励极片11通过激励信号引线相连,一共形成16个Y激励单元,沿Y轴正方向依次编号为 1、2、3、…、16,第1个、第5个、第9个、第13个Y激励单元通过激励信号引线连成一组,组成YA激励组,第2个、第6个、第10个、第14个Y激励单元通过激励信号引线连成一组,组成YB激励组,第3个、第7个、第11个、第15个Y激励单元通过激励信号引线连成一组,组成YC激励组,第4个、第8个、第12个、第16个Y激励单元通过激励信号引线连成一组,组成YD激励组。X轴方向或者Y轴方向每经过四个正方形激励极片11为一个对极,对极宽度W=4(L e+I e)=40mm,因此,X轴方向有3个对极,Y轴方向有4个对极。
实施例7:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图10所示,动尺基体2下表面设置有相同的4个感应单元,信号强度更好,4个感应单元按照2×2的方式排布,在X轴方向相邻的两个感应单元间隔的距离为1mm,在Y轴方向相邻的两个感应单元间隔的距离为1mm,每个感应单元中的感应极片a、b、c、d的形状为菱形,4个感应单元中的感应极片a通过感应信号引线相连(即4个感应极片a通过感应信号引线相连),形成a感应组,4个感应单元中的感应极片b通过感应信号引线相连(即4个感应极片b通过感应信号引线相连),形成b感应组,4个感应单元中的感应极片c通过感应信号引线相连(即4个感应极片c通过感应信号引线相连),形成c感应组,4个感应单元中的感应极片d通过感应信号引线相连(即4个感应极片d通过感应信号引线相连),形成d感应组。
实施例8:本实施例的基于交变电场的平面二维时栅位移传感器,其测量原理以及大部分结构与实施例1相同,不同之处在于:如图11所示,动尺基体2下表面设置有相同的2个感应单元,信号强度更好,2个感应单元沿X轴方向布置且间隔的距离为1mm,每个感应单元中的感应极片a、b、c、d的形状为圆形,2个感应单元中的感应极片a通过感应信号引线相连(即2个感应极片a通过感应信号引线相连),形成a感应组,2个感应单元中的感应极片b通过感应信号引线相连(即2个感应极片b通过感应信号引线相连),形成b感应组,2个感应单元中的感应极片c通过感应信号引线相连(即2个感应极片c通过感应信号引线相连),形成c感应组,2个感应单元中的感应极片d通过感应信号引线相连(即2个感应极片d通过感应信号引线相连),形成d感应组。

Claims (5)

  1. 一种基于交变电场的平面二维时栅位移传感器,包括定尺基体(1)和动尺基体(2),动尺基体下表面与定尺基体上表面正对平行安装,并留有间隙;其特征是:
    所述定尺基体(1)上表面并排设置有2m行激励电极,每行激励电极都由相同的n个正方形激励极片(11)沿X轴方向均匀排布组成,相邻两个正方形激励极片(11)间隔的距离I e大于一个正方形激励极片(11)的宽度L e,相邻两行激励电极沿Y轴方向间隔的距离等于
    Figure PCTCN2019105618-appb-100001
    沿X轴方向的起始位置错开
    Figure PCTCN2019105618-appb-100002
    奇数行激励电极沿X轴方向的起始位置相同,偶数行激励电极沿X轴方向的起始位置相同;其中,n=4k 1、m=4k 2,k 1、k 2都为正整数;
    多个正方形激励极片(11)相连,在X轴方向形成有XA、XB、XC、XD激励组,在Y轴方向形成有YA、YB、YC、YD激励组,XA激励组与YA激励组相连,形成A激励相,XB激励组与YB激励组相连,形成B激励相,XC激励组与YC激励组相连,形成C激励相,XD激励组与YD激励组相连,形成D激励相;
    所述动尺基体(2)下表面设置有相同的r个感应单元,相邻两个感应单元间隔的距离为I i,每个感应单元都由独立且相同的4个感应极片a、b、c、d按照2×2的方式排布组成,感应极片a、c位于同一行,感应极片a、b位于同一列,每个感应极片的长度、宽度都为L i,相邻两个感应极片间隔的距离为I i,L i+I i=2(L e+I e),感应极片的形状为中心对称图形;r个感应单元中的感应极片a相连,形成a感应组,r个感应单元中的感应极片b相连,形成b感应组,r个感应单元中的感应极片c相连,形成c感应组,r个感应单元中的感应极片d相连,形成d感应组;
    测量时,在A、B、C、D激励相上分别施加四路相位依次相差90°的同频等幅正弦激励信号,当动尺基体相对定尺基体产生平面移动时,a、b、c、d感应组分别产生U a、U b、U c、U d四路电信号;U a和U b,U c和U d分别通过加法器求和,得到两路行波信号U X+和U X-;U a和U c,U b和U d分别通过加法器求和,得到两路行波信号U Y+和U Y-;U X+和U X-,U Y+和U Y-分别通过减法器作差,得到X轴正弦行波信号U X和Y轴正弦行波信号U Y;X轴正弦行波信号U X和Y轴正弦行波信号U Y分别经处理后得到动尺基体相对于定尺基体在X轴方向的直线位移和在Y轴方向的直线位移。
  2. 根据权利要求1所述的基于交变电场的平面二维时栅位移传感器,其特征是:
    所述XA、XB、XC、XD激励组的形成方式为:X轴方向偶数列上的m个正方形激励极片(11)相连,形成n个X激励单元,第4j 1+1个X激励单元连成一组,组成XA激励组,第4j 1+2个X激励单元连成一组,组成XB激励组,第4j 1+3个X激励单元连成一组,组 成XC激励组,第4j 1+4个X激励单元连成一组,组成XD激励组,j 1依次取0至k 1-1的所有整数;
    所述YA、YB、YC、YD激励组的形成方式为:Y轴方向偶数行上的n个正方形激励极片(11)相连,形成m个Y激励单元,第4j 2+1个Y激励单元连成一组,组成YA激励组,第4j 2+2个Y激励单元连成一组,组成YB激励组,第4j 2+3个Y激励单元连成一组,组成YC激励组,第4j 2+4个Y激励单元连成一组,组成YD激励组,j 2依次取0至k 2-1的所有整数。
  3. 根据权利要求1或2所述的基于交变电场的平面二维时栅位移传感器,其特征是:所述感应极片a、b、c、d的形状为正方形。
  4. 根据权利要求1或2所述的基于交变电场的平面二维时栅位移传感器,其特征是:所述感应极片a、b、c、d的形状为圆形。
  5. 根据权利要求1或2所述的基于交变电场的平面二维时栅位移传感器,其特征是:所述感应极片a、b、c、d的形状为菱形。
PCT/CN2019/105618 2019-01-04 2019-09-12 一种基于交变电场的平面二维时栅位移传感器 WO2020140476A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/289,748 US11371822B2 (en) 2019-01-04 2019-09-12 Alternating electric field based plane 2D time-grating displacement sensor
EP19907265.3A EP3907464B1 (en) 2019-01-04 2019-09-12 Alternating electric field-based planar two-dimensional time grating displacement sensor
JP2020557327A JP7093845B2 (ja) 2019-01-04 2019-09-12 交番電界に基づく二次元タイムグレーティング変位センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910008990.6A CN109631735B (zh) 2019-01-04 2019-01-04 一种基于交变电场的平面二维时栅位移传感器
CN201910008990.6 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140476A1 true WO2020140476A1 (zh) 2020-07-09

Family

ID=66057992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105618 WO2020140476A1 (zh) 2019-01-04 2019-09-12 一种基于交变电场的平面二维时栅位移传感器

Country Status (5)

Country Link
US (1) US11371822B2 (zh)
EP (1) EP3907464B1 (zh)
JP (1) JP7093845B2 (zh)
CN (1) CN109631735B (zh)
WO (1) WO2020140476A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631735B (zh) 2019-01-04 2020-09-11 重庆理工大学 一种基于交变电场的平面二维时栅位移传感器
CN113008119B (zh) * 2019-12-19 2022-11-25 通用技术集团国测时栅科技有限公司 一种分时复用的绝对式时栅直线位移传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633249A (en) * 1983-05-18 1986-12-30 Mitutoyo Mfg. Co., Ltd. Displacement detector utilizing change of capacitance
CN103822571A (zh) 2014-03-19 2014-05-28 重庆理工大学 基于单排多层结构的电场式时栅直线位移传感器
CN104697424A (zh) * 2015-03-04 2015-06-10 浙江师范大学 一种双频率四象限平面坐标位置检测方法
CN106257231A (zh) * 2016-09-09 2016-12-28 重庆理工大学 一种单列双排式二维时栅直线位移传感器
CN208206026U (zh) * 2018-05-19 2018-12-07 重庆理工大学 一种基于交变电场的差极型绝对式时栅角位移传感器
CN109631735A (zh) * 2019-01-04 2019-04-16 重庆理工大学 一种基于交变电场的平面二维时栅位移传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235504A (ja) * 1986-04-04 1987-10-15 Mitsutoyo Corp 容量型位置測定トランスデユ−サ
JPH085331A (ja) * 1994-06-16 1996-01-12 Canon Inc 光学式変位測定装置
JP2006349377A (ja) * 2005-06-13 2006-12-28 Shinko Electric Co Ltd 2自由度センサ
CN103968750B (zh) * 2014-05-09 2017-01-18 重庆理工大学 一种电场式时栅角位移传感器
CN104019734B (zh) * 2014-06-19 2016-07-06 重庆理工大学 一种平面二维时栅位移传感器
JP6404070B2 (ja) * 2014-10-01 2018-10-10 国立研究開発法人産業技術総合研究所 マルチスケール変形計測用格子パターンとその製作方法
CN106338234B (zh) * 2016-09-09 2018-11-13 重庆理工大学 一种双列式时栅直线位移传感器
CN106441058B (zh) * 2016-09-09 2018-11-13 重庆理工大学 一种单列式二维时栅直线位移传感器
JP2018084453A (ja) 2016-11-22 2018-05-31 キヤノン株式会社 変位検出装置およびこれを備えたレンズ鏡筒、撮像装置
JP2018189827A (ja) * 2017-05-08 2018-11-29 キヤノン株式会社 変位検出装置、レンズ鏡筒、および撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633249A (en) * 1983-05-18 1986-12-30 Mitutoyo Mfg. Co., Ltd. Displacement detector utilizing change of capacitance
CN103822571A (zh) 2014-03-19 2014-05-28 重庆理工大学 基于单排多层结构的电场式时栅直线位移传感器
CN104697424A (zh) * 2015-03-04 2015-06-10 浙江师范大学 一种双频率四象限平面坐标位置检测方法
CN106257231A (zh) * 2016-09-09 2016-12-28 重庆理工大学 一种单列双排式二维时栅直线位移传感器
CN208206026U (zh) * 2018-05-19 2018-12-07 重庆理工大学 一种基于交变电场的差极型绝对式时栅角位移传感器
CN109631735A (zh) * 2019-01-04 2019-04-16 重庆理工大学 一种基于交变电场的平面二维时栅位移传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG, KAI ET AL.: "Sensing Mechanism and Error Analysis of a Capacitive Long-Range Displacement Nanometer Sensor Based on Time Grating", IEEE SENSORS JOURNAL, vol. 17, no. 6, 15 March 2017 (2017-03-15), XP011641593, ISSN: 1530-437X, DOI: 20191112161853A *
See also references of EP3907464A4
WU LIANG; PENG DONGLIN; LU JIN; TANG QIFU; CHEN XIHOU;: "Linear Time Grating Displacement Sensor Based on Linear Array of Planar Coils", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 38, no. 1, 31 January 2017 (2017-01-31), pages 83 - 90, XP009521876, ISSN: 0254-3087 *

Also Published As

Publication number Publication date
JP7093845B2 (ja) 2022-06-30
US20210404788A1 (en) 2021-12-30
US11371822B2 (en) 2022-06-28
CN109631735B (zh) 2020-09-11
EP3907464A1 (en) 2021-11-10
CN109631735A (zh) 2019-04-16
JP2021518915A (ja) 2021-08-05
EP3907464A4 (en) 2022-07-13
EP3907464B1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
US10495488B2 (en) Electric field time-grating linear displacement sensors based on single row multilayer structure
CN102288100B (zh) 一种基于交变电场的时栅直线位移传感器
CN101504293B (zh) 电磁感应式编码器
WO2020140476A1 (zh) 一种基于交变电场的平面二维时栅位移传感器
CN102425987B (zh) 一种基于交变电场的时栅角位移传感器
CN106197240B (zh) 基于交变电场的绝对式直线时栅位移传感器
US20170003146A1 (en) Electric field type time-grating angular displacement sensors
EP3667229B1 (en) Alternating electric field-based absolute time-grating angular displacement sensor
CN104019734B (zh) 一种平面二维时栅位移传感器
CN208140019U (zh) 基于交变电场的差极型绝对式时栅直线位移传感器
CN217585649U (zh) 一种绝对式平面二维时栅位移传感器
CN109631736B (zh) 一种基于交变电场的柱状二维时栅位移传感器
CN108267072B (zh) 一种时栅直线位移传感器
CN113280967A (zh) 一种三维解耦力触觉传感器及mems制备方法
CN113008120A (zh) 一种电容式直线位移传感器及其动尺
CN114577104B (zh) 基于电涡流效应的绝对式直线位移传感器
CN114353659B (zh) 一种基于单交变电场的时栅角位移传感器
CN114739276B (zh) 一种基于电涡流效应的绝对式直线位移传感器
CN114739277B (zh) 一种平面磁阻式二维位移传感器
TWI825300B (zh) 磁氣式線性感測器
CN117146691A (zh) 一种基于组合测量方式的电场式平面二维直线位移传感器
CN107356189B (zh) 一种时栅直线位移传感器
CN106197244A (zh) 一种双列式二维时栅直线位移传感器
SU744218A1 (ru) Преобразователь относительного перемещени узлов станка
CN115655081A (zh) 一种绝缘子爬电距离测量工具及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019907265

Country of ref document: EP

Effective date: 20210804