WO2020140466A1 - 触控基板及其制作方法、显示装置 - Google Patents

触控基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020140466A1
WO2020140466A1 PCT/CN2019/104337 CN2019104337W WO2020140466A1 WO 2020140466 A1 WO2020140466 A1 WO 2020140466A1 CN 2019104337 W CN2019104337 W CN 2019104337W WO 2020140466 A1 WO2020140466 A1 WO 2020140466A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
parasitic capacitance
trace
traces
Prior art date
Application number
PCT/CN2019/104337
Other languages
English (en)
French (fr)
Inventor
钟腾飞
田�健
谢晓冬
庞斌
张天宇
张新秀
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/646,918 priority Critical patent/US11221717B2/en
Publication of WO2020140466A1 publication Critical patent/WO2020140466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the technical field of touch control, in particular to a touch control substrate, a manufacturing method thereof, and a display device.
  • the touch substrate in the related art includes a touch area and a peripheral area located around the touch area.
  • the touch area has touch electrodes
  • the peripheral area has signal traces.
  • Parasitic capacitance will be generated, and the linearity of the touch electrodes at the edge of the touch area will be reduced due to the influence of the parasitic capacitance, so that the touch effect of the touch substrate is not satisfactory.
  • an embodiment of the present disclosure provides a touch substrate including a touch area having touch electrodes and a peripheral area located around the touch area, the peripheral area having At least one trace on the same layer of the control electrode, the touch electrode includes a first touch electrode and a second touch electrode located on the same side edge of the touch area, and the first touch electrode and at least the adjacent peripheral area are at least The sum of the parasitic capacitance between one of the traces is the first total parasitic capacitance, and the sum of the parasitic capacitance between the second touch electrode and at least one of the traces in the adjacent peripheral area is the second total parasitic Capacitance, the absolute value of the difference between the first total parasitic capacitance and the second total parasitic capacitance is less than or equal to a threshold.
  • the touch electrode includes a driving electrode and a sensing electrode provided in different layers, the trace includes a first trace and a second trace; the peripheral area has At least one first trace on the same layer of the electrode, the drive electrode includes a first drive electrode and a second drive electrode located on the same side edge of the touch area, the first total parasitic capacitance of the first drive electrode and the first The absolute value of the difference in the second total parasitic capacitance of the two driving electrodes is less than or equal to the threshold; and/or the peripheral area has at least one second trace on the same layer as the sensing electrode, and the sensing electrode includes The first sensing electrode and the second sensing electrode on the same side edge of the control area, the absolute value of the difference between the first total parasitic capacitance of the first sensing electrode and the second total parasitic capacitance of the second sensing electrode is less than or equal to the Threshold.
  • the threshold is 0.01F.
  • the total parasitic capacitance between all the touch electrodes located on the same side edge of the touch area and at least one of the traces in the adjacent peripheral area are substantially equal.
  • all traces located in the peripheral area are evenly distributed, and the spacing between adjacent traces is substantially uniform.
  • the number of traces crossing the extension line of the first touch electrode and the trace is The extension lines of the two touch electrodes are the same as the number of the lines crossing the traces.
  • the trace includes a touch signal line connected to the touch electrode and at least one ground trace, the touch signal line and the touch circuit located in the peripheral area Connected, the touch electrodes are arranged in rows and n rows of touch electrodes are arranged in a direction away from the touch circuit to close to the touch circuit, intersecting the extension line of the k-th row of touch electrodes
  • the traces include n+1-k ground traces and k touch signal lines, n is an integer greater than 1, k is an integer greater than 0 and less than or equal to n; and/or, the touch electrodes are Columns are arranged and m columns of touch electrodes are arranged in a direction away from the touch circuit to close to the touch circuit, and the trace intersecting the extension line of the k-th column of touch electrodes includes m +1-k ground traces and k touch signal lines, m is an integer greater than 1, and k is an integer greater than 0 and less than or equal to m.
  • the direction from the center of the touch area to the distance from the center of the touch area is the first Line, the second trace, ..., the n+1th trace, the distance between each touch electrode and the corresponding first trace is d 1 , and the distance between each touch electrode and the corresponding second trace The distances are all d 2 ,... The distance between each touch electrode and the corresponding n+1th trace is d n+1 , where the trace corresponding to each touch electrode intersects its extension.
  • the total parasitic capacitance generated between the driving electrode at the edge and the trace on the right peripheral area is substantially the same.
  • the total parasitic capacitance generated between the driving electrode at the edge and the traces on the left peripheral area is substantially the same.
  • the total parasitic capacitance generated between the driving electrode at the edge and the traces in the lower peripheral area is substantially the same.
  • the touch electrode is a metal grid (OGM) touch electrode.
  • OGM metal grid
  • the touch electrode is a block electrode made of a transparent conductive material.
  • the touch electrode is an ITO bulk electrode.
  • an embodiment of the present disclosure also provides a display device, including: the touch substrate as described in the first aspect; a flexible circuit board; a printed circuit board; and a backplane.
  • an embodiment of the present disclosure also provides a method for manufacturing a touch substrate, the touch substrate includes a touch area having touch electrodes and a peripheral area located around the touch area, The touch electrode includes a first touch electrode and a second touch electrode located on the same side edge of the touch area.
  • the manufacturing method includes: forming at least one walk on the same layer as the touch electrode in the peripheral area Line, so that the absolute value of the difference between the first total parasitic capacitance and the second total parasitic capacitance is less than or equal to a threshold, wherein the parasitic capacitance between the first touch electrode and at least one of the traces in the adjacent peripheral area The sum is the first total parasitic capacitance, and the sum of the parasitic capacitance between the second touch electrode and at least one of the traces in the adjacent peripheral area is the second total parasitic capacitance.
  • 1 to 5 are schematic structural diagrams of a touch substrate in the related art.
  • 6 to 10 are schematic structural diagrams of a touch substrate provided by embodiments of the present disclosure.
  • the touch substrate in the related art includes a touch area and a peripheral area.
  • the touch area is located at the center of the touch substrate, and the peripheral area surrounds the touch area.
  • the touch area has cross-arranged driving electrodes 1 and
  • the sensing electrodes 2 and the driving electrodes 1 are arranged in rows, and the sensing electrodes 2 are arranged in rows.
  • the signal traces include a touch signal line 5 and a ground trace 4 electrically connected to the touch electrode.
  • the touch signal line 5 is connected to the touch electrode through a connection block 3. Parasitic capacitance is generated between the touch electrodes and signal traces at the edge of the touch area, as shown in FIG. 2.
  • FIG. 2 is an enlarged schematic view of the portion within the dotted frame in the left half of FIG. 2.
  • the total parasitic capacitance Ca Ca1+Ca2 generated between the drive electrode 1 on the edge of the first row and the signal trace, where Ca1 is the first
  • Ca2 is the parasitic capacitance generated between the drive electrode 1 at the edge of the first row and the ground trace 4.
  • the right half of FIG. 3 is an enlarged schematic view of the portion within the dotted frame on the left half of FIG.
  • Cb3 where Cb1 is the parasitic capacitance generated between the driving electrode 1 at the edge of the second row and the nearest touch signal line 5, and Cb2 is the driving electrode 1 at the edge of the second row and another touch signal line 5
  • the generated parasitic capacitance, Cb3, is the parasitic capacitance generated between the drive electrode 1 at the edge of the second row and the ground trace 4.
  • the right half of FIG. 4 is an enlarged schematic view of the portion within the dotted frame on the left half of FIG.
  • Cd5 is an enlarged schematic view of the portion within the dotted frame on the left half of FIG. 5.
  • the parasitic capacitance generated between the lines 5, Cd3 is the parasitic capacitance generated between the drive electrode 1 at the edge of the fourth row and another touch signal line 5, Cd4 is the drive electrode 1 at the edge of the fourth row and another touch
  • Cd5 is the parasitic capacitance generated between the drive electrode 1 at the edge of the fourth row and the ground trace 4.
  • embodiments of the present disclosure provide a touch substrate, a manufacturing method thereof, and a display device, which can effectively improve the linearity of touch electrodes at the edge of the touch substrate and improve the touch effect of the touch substrate.
  • An embodiment of the present disclosure provides a touch substrate including a touch area having touch electrodes and a peripheral area located around the touch area, the peripheral area having at least one walk on the same layer as the touch electrode Line, the touch electrode includes a first touch electrode and a second touch electrode located on the same side edge of the touch area, between the first touch electrode and at least one of the traces in the adjacent peripheral area
  • the sum of the parasitic capacitance is the first total parasitic capacitance
  • the sum of the parasitic capacitance between the second touch electrode and at least one of the traces in the adjacent peripheral area is the second total parasitic capacitance
  • the first total parasitic capacitance The absolute value of the difference between the capacitance and the second total parasitic capacitance is less than or equal to the threshold.
  • the absolute value of the difference in the total parasitic capacitance between different touch electrodes and at least one trace in the adjacent peripheral area is less than or equal to the threshold, which can reduce the occurrence of traces between the traces in the peripheral area and the edge touch electrodes
  • the difference in the parasitic capacitance makes the parasitic capacitance generated between the traces in the peripheral area and the edge touch electrodes basically the same, effectively improving the linearity of the edge touch electrodes on the touch substrate and improving the touch effect of the touch substrate.
  • the touch substrate in this embodiment may be a mutual-capacity touch substrate or a self-capacitive touch substrate.
  • the touch electrode includes a driving electrode and a sensing electrode provided in different layers, and the trace includes a first trace and a second trace;
  • the peripheral area has at least one first trace on the same layer as the drive electrode.
  • the drive electrode includes a first drive electrode and a second drive electrode located on the same side edge of the touch area.
  • the absolute value of the difference between the first total parasitic capacitance and the second total parasitic capacitance of the second driving electrode is less than or equal to the threshold; and/or
  • the peripheral area has at least one second trace on the same layer as the sensing electrode.
  • the sensing electrode includes a first sensing electrode and a second sensing electrode located on the same side edge of the touch area. The absolute value of the difference between the first total parasitic capacitance and the second total parasitic capacitance of the second sensing electrode is less than or equal to the threshold.
  • the difference between the total parasitic capacitance between the first drive electrode and at least one first trace in the adjacent peripheral area and the total parasitic capacitance between the second drive electrode and at least one first trace in the adjacent peripheral area is absolute
  • the difference in parasitic capacitance between the traces in the peripheral area and the edge drive electrodes can be effectively reduced, and the linearity of the edge drive electrodes of the touch substrate can be improved.
  • the difference between the total parasitic capacitance between the first sensing electrode and at least one second trace in the adjacent peripheral area and the total parasitic capacitance between the second sensing electrode and at least one second trace in the adjacent peripheral area is absolute
  • the value is less than or equal to the threshold, which can effectively reduce the difference in parasitic capacitance between the traces in the peripheral area and the edge sensing electrodes, and improve the linearity of the edge sensing electrodes on the touch substrate.
  • the threshold may be 0.01F, which can make the parasitic capacitance generated between the traces of the peripheral area and the edge touch electrodes substantially the same, greatly improving the linearity of the edge touch electrodes of the touch substrate and improving the touch substrate Touch effect.
  • the total parasitic capacitance between all the touch electrodes located on the same side edge of the touch area and at least one of the traces in the adjacent peripheral area are substantially equal.
  • substantially equal includes both the two are completely equal, and the difference between the two is within 5%, or even the difference between the two is within 2%.
  • the traces in the peripheral area can be evenly distributed. From the direction near the center of the touch area to the direction away from the center of the touch area, the extension lines of each touch electrode intersect with the same number of traces.
  • the size of the designed traces and the spacing between the traces can make the total parasitic capacitance between all the touch electrodes on the same side edge of the touch area and the traces in the adjacent peripheral area substantially the same or even equal.
  • the trace includes a touch signal line connected to the touch electrode and at least one ground trace, and the touch signal line is connected to a touch circuit located in the peripheral area,
  • the walk intersecting the extension line of the k-th row of touch electrodes
  • the line includes n+1-k ground traces and k touch signal lines, n is an integer greater than 1 and k is an integer greater than 0 and less than or equal to n; and/or
  • the intersecting lines of the extension lines of the k-th row of touch electrodes The traces include m+1-k ground traces and k touch signal lines, m is an integer greater than 1, and k is an integer greater than 0 and less than or equal to n.
  • the touch electrodes are arranged in a row, since the distance between the touch electrodes and the touch circuit is different, the wiring density of the touch signal lines gradually increases from the direction away from the touch circuit to the direction close to the touch circuit.
  • the distance to the touch circuit sorts the touch electrodes.
  • the touch electrode furthest from the touch circuit is the first row of touch electrodes, and the touch electrode closest to the touch circuit is the nth row of touch electrodes.
  • the peripheral area adjacent to the first row of touch electrodes is provided with one touch signal line
  • the peripheral area adjacent to the kth row of touch electrodes is provided with k touch signal lines
  • the nth touch electrode is adjacent to There are n touch signal lines in the peripheral area, and the distribution of the touch signal lines is not uniform, resulting in different total parasitic capacitances between each touch electrode and the signal trace at the edge of the touch area.
  • adding a ground trace to the area where the wiring density of the touch signal line is small can improve the uniformity of the wiring in the peripheral area.
  • the touch electrodes are arranged in a row, since the distance between the touch electrodes and the touch circuit is different, the wiring density of the touch signal lines gradually increases from the direction away from the touch circuit to the direction close to the touch circuit, such as
  • the touch electrodes are sorted according to the distance from the touch circuit.
  • the touch electrode furthest from the touch circuit is the first row of touch electrodes, and the touch electrode closest to the touch circuit is the nth column of touch.
  • Electrodes the peripheral area adjacent to the first row of touch electrodes is provided with one touch signal line, the peripheral area adjacent to the kth row of touch electrodes is provided with k touch signal lines, and the nth touch electrode is phased N adjacent touch areas are provided with n touch signal lines, and the distribution of the touch signal lines is not uniform, resulting in a different total parasitic capacitance between each touch electrode and signal trace at the edge of the touch area.
  • adding a ground trace to the area where the wiring density of the touch signal line is small can improve the uniformity of the wiring in the peripheral area.
  • this embodiment Compared with the related art where only one ground trace is provided in the peripheral area, this embodiment increases the number of ground traces, which can increase the electrostatic discharge capability of the touch substrate and effectively improve the anti-ESD capability of the touch substrate.
  • the distance between each touch electrode and the corresponding first trace is d 1
  • the distance between each touch electrode and the corresponding second trace is d 2 ,... 3.
  • the distance between each touch electrode and the corresponding n+1th trace is d n+1 .
  • the value of the parasitic capacitance between the edge touch electrodes and the traces in the surrounding area is mainly determined by the distance between the touch electrodes and the traces.
  • the layout design of the traces makes each touch electrode correspond to the first trace.
  • the distances between the wires, the corresponding second traces, ..., the corresponding n+1th traces are substantially equal, so that each touch electrode can correspond to the corresponding first trace, the corresponding second trace, ...,
  • the parasitic capacitances generated between the n+1th traces are substantially equal, so that the total parasitic capacitances generated by each touch electrode and the traces in the peripheral area are substantially equal.
  • FIG. 6 is a schematic structural diagram of a touch substrate according to a specific embodiment of the present disclosure.
  • the touch area has driving electrodes 1 and sensing electrodes 2 arranged in a row, the driving electrodes 1 are arranged in rows, and the sensing electrodes 2 are arranged in columns Arrange.
  • the signal traces include touch signal lines 5 and ground traces 4 electrically connected to the touch electrodes.
  • the touch signal lines 5 are connected to the touch electrodes (driving electrode 1 and sensing electrode) through the connection block 3 2) Connect.
  • the first touch signal line 5 corresponding to the driving electrode 1 at the edge of the first row and the first line corresponding to the driving electrode 1 at the edge of the second row are substantially on the same straight line .
  • the first ground trace 4 corresponding to the driving electrode 1 at the edge of the first row, the second touch signal line 5 corresponding to the driving electrode 1 at the edge of the second row, and the third corresponding to the driving electrode 1 at the edge of the third row are substantially on the same straight line.
  • the control signal lines 5 and the third touch signal lines 5 corresponding to the driving electrodes 1 on the edge of the fourth row are substantially on the same straight line.
  • the third ground trace 4 corresponding to the drive electrode 1 on the edge of the first row, the second ground trace 4 corresponding to the drive electrode 1 on the edge of the second row, and the first ground corresponding to the drive electrode 1 on the edge of the third row The fourth touch signal line 5 corresponding to the trace 4 and the drive electrode 1 at the edge of the fourth row is substantially on the same straight line.
  • the fourth ground trace 4 corresponding to the drive electrode 1 on the edge of the first row, the third ground trace 4 corresponding to the drive electrode 1 on the edge of the second row, and the second ground corresponding to the drive electrode 1 on the edge of the third row The first ground trace 4 corresponding to the trace 4 and the drive electrode 1 at the edge of the fourth row is substantially on the same straight line.
  • FIG. 9 the right half of FIG. 9 is an enlarged schematic view of the portion within the dotted frame on the left half of FIG.
  • FIG. 10 the right half of FIG. 10 is an enlarged schematic view of the portion within the dotted frame in the left half of FIG. 10.
  • the value of the parasitic capacitance between the edge touch electrodes and the traces in the surrounding area is mainly determined by the distance between the touch electrodes and the traces, when the line widths of the traces are basically the same, Ca1 ⁇ Cb1 ⁇ Cc1 ⁇ Cd1, Ca2 ⁇ Cb2 ⁇ Cc2 ⁇ Cd2, Ca3 ⁇ Cb3 ⁇ Cc3 ⁇ Cd3, Ca4 ⁇ Cb4 ⁇ Cc4 ⁇ Cd4, and then Ca ⁇ Cb ⁇ Cc ⁇ Cd, that is, the edge of the driving electrode 1 and the right peripheral area
  • the total parasitic capacitance generated between the lines is basically the same.
  • the total parasitic capacitance generated between the driving electrode 1 at the edge and the traces in the left peripheral area is basically the same, and the total parasitic capacitance generated between the sensing electrode 2 at the edge and the traces in the lower peripheral area is also substantially the same .
  • the layout of the peripheral area is evenly arranged, which can effectively adjust the parasitic capacitance difference of the peripheral area trace to the edge touch electrode, so that the edge touch electrode and the peripheral area can be routed.
  • the total parasitic capacitance generated between the lines is basically the same, which can effectively improve the linearity of the edge touch electrodes.
  • only one ground trace is provided in the peripheral area. In this embodiment, the number of ground traces is increased, which can effectively increase the electrostatic discharge capability of the touch substrate and effectively improve the anti-ESD capability of the touch substrate.
  • the touch electrodes using a metal grid can improve the touch pen's sensitivity, linearity and other touch performance. Therefore, the touch electrodes in this embodiment can use a metal grid, but the The touch electrodes are not limited to the use of metal grids, but also block electrodes made of transparent conductive materials such as ITO.
  • an embodiment of the present disclosure also provides a display device including the touch substrate as described above.
  • the display device may be any product or component with a display function such as a TV, a display, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board, and a backplane.
  • Embodiments of the present disclosure also provide a method for manufacturing a touch substrate.
  • the touch substrate includes a touch area having a touch electrode and a peripheral area located around the touch area.
  • the touch electrode includes a touch area.
  • the first touch electrode and the second touch electrode on the same side edge of the touch area, the manufacturing method includes:
  • the absolute value of the difference in the total parasitic capacitance between different touch electrodes and at least one trace in the adjacent peripheral area is less than or equal to the threshold, which can reduce the occurrence of traces between the traces in the peripheral area and the edge touch electrodes
  • the difference in the parasitic capacitance makes the parasitic capacitance generated between the traces in the peripheral area and the edge touch electrodes basically the same, effectively improving the linearity of the edge touch electrodes on the touch substrate and improving the touch effect of the touch substrate.
  • the touch substrate in this embodiment may be a mutual-capacity touch substrate or a self-capacitive touch substrate.
  • the touch electrode includes a driving electrode and a sensing electrode provided in different layers.
  • the manufacturing method specifically includes:
  • At least one first trace on the same layer as the drive electrode is formed in the peripheral area, so that the first total parasitic capacitance of the first drive electrode located on the edge of the touch area and the second drive located on the same side edge of the touch area
  • the absolute value of the difference in the second total parasitic capacitance of the electrode is less than or equal to the threshold
  • the absolute value of the difference in the second total parasitic capacitance of the electrode is less than or equal to the threshold.
  • the threshold can be 0.01F, which can make the parasitic capacitance generated between the traces in the peripheral area and the edge touch electrodes substantially the same, greatly improving the linearity of the edge touch electrodes of the touch substrate and improving the touch substrate Touch effect.
  • the total parasitic capacitance between all the touch electrodes located on the same side edge of the touch area and at least one of the traces in the adjacent peripheral area are substantially equal.
  • all traces in the peripheral area may be evenly distributed, that is, the spacing between adjacent traces in the peripheral area is substantially uniform.
  • the substantial agreement includes both the complete agreement and the difference between the two within 5%, or even the difference between the two within 2%.
  • the extension lines of each touch electrode intersect with the same number of traces, so that by designing the size of the traces and the spacing between the traces, it can be made
  • the total parasitic capacitance between all the touch electrodes on the same side edge of the touch area and the traces in the adjacent peripheral area is basically the same, or even equal.
  • the forming at least one trace in the same layer as the touch electrode in the peripheral area includes:
  • the touch electrode using a metal grid can improve the sensitivity and linearity of the active pen. Therefore, the touch electrode in this embodiment may use a metal grid, but the touch electrode in this embodiment is not Restricted to the use of metal grids, block electrodes made of transparent conductive materials such as ITO can also be used.
  • the method for manufacturing the touch substrate of this embodiment specifically includes the following steps:
  • Step 1 Provide a base substrate, and make a black matrix (BM) on the base substrate;
  • BM black matrix
  • the base substrate may be a glass substrate, a polymer substrate or a quartz substrate, and the black matrix covers the peripheral area of the base substrate.
  • Step 2 Form a first insulating layer
  • the first insulating layer covers the entire area of the base substrate.
  • the first insulating layer can be selected from oxides, nitrides, or oxygen-nitrogen compounds.
  • the corresponding reaction gases are SiH 4 , NH 3 , N 2 , SiH 2 Cl 2 , NH 3 , Or N 2 .
  • the first insulating layer may provide a flat surface for subsequent processes.
  • Step 3 Form an induction electrode
  • a metal layer is formed on the first insulating layer, and the metal layer is patterned to form an induction electrode composed of a metal grid. While the metal layer is used to form the sensing electrode in the touch area, the metal layer is also used to form the signal trace in the peripheral area.
  • the signal trace includes a ground trace and a touch signal line connected to the sensing electrode. The signal trace is in the peripheral area Arranged evenly.
  • Step 4 Form a second insulating layer
  • the second insulating layer covers the entire area of the base substrate.
  • the second insulating layer can be selected from oxides, nitrides, or oxygen-nitrogen compounds.
  • the corresponding reaction gases are SiH 4 , NH 3 , N 2 , SiH 2 Cl 2 , NH 3 , Or N 2 .
  • the second insulating layer can serve as an insulating layer between the driving electrode and the sensing electrode, and on the other hand, it can provide a flat surface for subsequent processes.
  • Step 5 Form drive electrodes
  • a metal layer is formed on the second insulating layer, and the metal layer is patterned to form a driving electrode composed of a metal grid. While the metal layer is used to form the driving electrodes in the touch area, the metal layer is also used to form signal traces in the peripheral area.
  • the signal traces include ground traces and touch signal lines connected to the drive electrodes. The signal traces are in the peripheral area Arranged evenly.
  • Step 6 Form a third insulating layer.
  • the third insulating layer covers the entire area of the base substrate.
  • the third insulating layer can be selected from oxides, nitrides, or oxygen-nitrogen compounds.
  • the corresponding reaction gases are SiH 4 , NH 3 , N 2 , SiH 2 Cl 2 , NH 3 , Or N 2 .
  • the third insulating layer can protect the driving electrode on the one hand, and can provide a flat surface for subsequent processes on the other hand.
  • sequence numbers of the steps cannot be used to define the sequence of the steps.
  • sequence of the steps Changes are also within the scope of this disclosure.

Abstract

本公开文本实施例所提供的触控基板,包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述周边区域具有与所述触控电极同层的至少一条走线,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容,所述第一总寄生电容与所述第二总寄生电容的差值绝对值小于等于阈值。

Description

触控基板及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2019年1月4日在中国提交的中国专利申请号No.201910006797.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及触控技术领域,特别是指一种触控基板及其制作方法、显示装置。
背景技术
相关技术中的触控基板包括触控区域和位于触控区域周边的周边区域,触控区域具有触控电极,周边区域具有信号走线,触控区域边缘的触控电极与信号走线之间会产生寄生电容,受寄生电容的影响,会降低触控区域边缘的触控电极的线性度,使得触控基板的触控效果不尽如人意。
发明内容
在第一个方面中,本公开文本实施例提供了一种触控基板,包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述周边区域具有与所述触控电极同层的至少一条走线,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容,所述第一总寄生电容与所述第二总寄生电容的差值绝对值小于等于阈值。
根据本公开文本的一些可行实施例,所述触控电极包括异层设置的驱动电极和感应电极,所述走线包括第一走线和第二走线;所述周边区域具有与所述驱动电极同层的至少一条第一走线,所述驱动电极包括位于触控区域同侧边缘的第一驱动电极和第二驱动电极,所述第一驱动电极的第一总寄生电容与所述第二驱动电极的第二总寄生电容的差值绝对值小于等于所述阈值; 和/或所述周边区域具有与所述感应电极同层的至少一条第二走线,所述感应电极包括位于触控区域同侧边缘的第一感应电极和第二感应电极,所述第一感应电极的第一总寄生电容与所述第二感应电极的第二总寄生电容的差值绝对值小于等于所述阈值。
根据本公开文本的一些可行实施例,所述阈值为0.01F。
根据本公开文本的一些可行实施例,位于触控区域同侧边缘的所有触控电极与相邻周边区域的至少一条所述走线之间的总寄生电容均实质上相等。
根据本公开文本的一些可行实施例,位于所述周边区域内的所有走线均匀分布,相邻走线之间的间距实质上一致。
根据本公开文本的一些可行实施例,从靠近触控区域中心到远离触控区域中心的方向上,所述第一触控电极的延伸线与所述走线相交的走线数量与所述第二触控电极的延伸线与所述走线相交的走线数量相同。
根据本公开文本的一些可行实施例,所述走线包括与所述触控电极连接的触控信号线和至少一个接地走线,所述触控信号线与位于所述周边区域的触控电路连接,所述触控电极成行排布且从远离所述触控电路到靠近所述触控电路的方向上排布有n行触控电极,与第k行触控电极的所述延伸线相交的所述走线包括n+1-k个接地走线和k个触控信号线,n为大于1的整数,k为大于0小于等于n的整数;和/或,所述触控电极成列排布且从远离所述触控电路到靠近所述触控电路的方向上排布有m列触控电极,与第k列触控电极的所述延伸线相交的所述走线包括m+1-k个接地走线和k个触控信号线,m为大于1的整数,k为大于0小于等于m的整数。
根据本公开文本的一些可行实施例,所述n+1-k个接地走线和k个触控信号线中,从靠近触控区域中心到远离触控区域中心的方向上依次为第1走线、第2走线、…、第n+1走线,每一触控电极与对应第1走线之间的距离均为d 1,每一触控电极与对应第2走线之间的距离均为d 2、…、每一触控电极与对应第n+1走线之间的距离均为d n+1,其中,每一触控电极对应的走线与其延长线相交。
根据本公开文本的一些可行实施例,边缘的驱动电极与右侧周边区域的走线之间产生的总寄生电容基本一致。
根据本公开文本的一些可行实施例,边缘的驱动电极与左侧周边区域的走线之间产生的总寄生电容基本一致。
根据本公开文本的一些可行实施例,边缘的驱动电极与下侧周边区域的走线之间产生的总寄生电容基本一致。
根据本公开文本的一些可行实施例,所述触控电极为金属网格(OGM)的触控电极。
根据本公开文本的一些可行实施例,所述触控电极为透明导电材料制成的块状电极。
根据本公开文本的一些可行实施例,所述触控电极为ITO块状电极。
在第二个方面中,本公开文本实施例还提供了一种显示装置,包括:如第一个方面中所述的触控基板;一柔性电路板;一印刷电路板;以及一背板。
在第三个方面中,本公开文本实施例还提供了一种触控基板的制作方法,所述触控基板包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述制作方法包括:在所述周边区域形成与所述触控电极同层的至少一条走线,使得第一总寄生电容与第二总寄生电容的差值绝对值小于等于阈值,其中,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1至图5为相关技术中触控基板的结构示意图;以及
图6至图10为本公开文本实施例所提供的触控基板的结构示意图。
具体实施方式
为使本公开文本的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
相关技术中的触控基板包括触控区域和周边区域,触控区域位于触控基板的中心,周边区域包围触控区域,如图1所示,触控区域具有交叉排布的驱动电极1和感应电极2,驱动电极1成行排布,感应电极2成列排布。在周边区域具有信号走线,信号走线包括与触控电极电连接的触控信号线5和接地走线4,触控信号线5通过连接块3与触控电极连接。触控区域边缘的触控电极与信号走线之间会产生寄生电容,如图2所示。图2右半部分为图2左半部分虚线框内部分的放大示意图,第一行边缘的驱动电极1与信号走线之间产生的总寄生电容Ca=Ca1+Ca2,其中,Ca1为第一行边缘的驱动电极1与触控信号线5之间产生的寄生电容,Ca2为第一行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图3所示,图3右半部分为图3左半部分虚线框内部分的放大示意图,第二行边缘的驱动电极1与信号走线之间产生的总寄生电容Cb=Cb1+Cb2+Cb3,其中,Cb1为第二行边缘的驱动电极1与最近的触控信号线5之间产生的寄生电容,Cb2为第二行边缘的驱动电极1与另一根触控信号线5之间产生的寄生电容,Cb3为第二行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图4所示,图4右半部分为图4左半部分虚线框内部分的放大示意图,第三行边缘的驱动电极1与信号走线之间产生的总寄生电容Cc=Cc1+Cc2+Cc3+Cc4,其中,Cc1为第三行边缘的驱动电极1与最近的触控信号线5之间产生的寄生电容,Cc2为第三行边缘的驱动电极1与另一根触控信号线5之间产生的寄生电容,Cc3为第三行边缘的驱动电极1与又一根触控信号线5之间产生的寄生电容,Cc4为第三行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图5所示,图5右半部分为图5左半部分虚线框内部分的放大示意图,第四行边缘的驱动电极1与信号走线之间产生的总寄生电容Cd=Cd1+Cd2+Cd3+Cd4+Cd5,其中,Cd1为第四行边缘的驱动电极1与最近的触控信号线5之间产生的寄生电容,Cd2为第四行边缘的驱动电极1与另一根触控信号线5之间产生的寄生电容,Cd3为第四行边缘的驱动电极1与又一根触控信号线5之间产生的寄生电容,Cd4 为第四行边缘的驱动电极1与再一根触控信号线5之间产生的寄生电容,Cd5为第四行边缘的驱动电极1与接地走线4之间产生的寄生电容。其中,Ca<Cb<Cc<Cd,可以看出,由于周边区域的信号走线分布不均匀,导致触控区域边缘每个触控电极与信号走线之间产生的总寄生电容都不相同,导致了触控区域边缘触控电极的线性度较差,使得触控基板的触控效果不尽如人意。
为了解决上述问题,本公开文本实施例提供一种触控基板及其制作方法、显示装置,能够有效的提升触控基板边缘触控电极的线性度,改善触控基板的触控效果。
本公开文本实施例提供一种触控基板,包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述周边区域具有与所述触控电极同层的至少一条走线,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容,所述第一总寄生电容与所述第二总寄生电容的差值绝对值小于等于阈值。
本实施例中,不同触控电极和相邻周边区域的至少一条走线之间的总寄生电容的差值绝对值小于等于阈值,这样能够降低周边区域的走线与边缘触控电极之间产生的寄生电容的差异性,使得周边区域的走线与边缘触控电极之间产生的寄生电容基本一致,有效的提升触控基板边缘触控电极的线性度,改善触控基板的触控效果。
本实施例的触控基板可以为互容式触控基板,也可以为自容式触控基板。在触控基板为互容式触控基板时,所述触控电极包括异层设置的驱动电极和感应电极,所述走线包括第一走线和第二走线;
所述周边区域具有与所述驱动电极同层的至少一条第一走线,所述驱动电极包括位于触控区域同侧边缘的第一驱动电极和第二驱动电极,所述第一驱动电极的第一总寄生电容与所述第二驱动电极的第二总寄生电容的差值绝对值小于等于所述阈值;和/或
所述周边区域具有与所述感应电极同层的至少一条第二走线,所述感应电极包括位于触控区域同侧边缘的第一感应电极和第二感应电极,所述第一 感应电极的第一总寄生电容与所述第二感应电极的第二总寄生电容的差值绝对值小于等于所述阈值。
在第一驱动电极和相邻周边区域的至少一条第一走线之间的总寄生电容与第二驱动电极和相邻周边区域的至少一条第一走线之间的总寄生电容的差值绝对值小于等于阈值时,可以有效的降低周边区域的走线与边缘驱动电极之间产生的寄生电容的差异性,提升触控基板边缘驱动电极的线性度。
在第一感应电极和相邻周边区域的至少一条第二走线之间的总寄生电容与第二感应电极和相邻周边区域的至少一条第二走线之间的总寄生电容的差值绝对值小于等于所述阈值,可以有效的降低周边区域的走线与边缘感应电极之间产生的寄生电容的差异性,提升触控基板边缘感应电极的线性度。
具体地,所述阈值可以为0.01F,这样可以使得周边区域的走线与边缘触控电极之间产生的寄生电容基本一致,大大提升触控基板边缘触控电极的线性度,改善触控基板的触控效果。
在一些实施例中,位于触控区域同侧边缘的所有触控电极与相邻周边区域的至少一条所述走线之间的总寄生电容均实质上相等。这里,本领域技术人员能够理解的是,实质上相等既包括两者完全相等,又包括两者之间相差5%以内,甚至是两者之间相差2%以内。
具体实施例中,可以使得周边区域的走线均匀分布,从靠近触控区域中心到远离触控区域中心的方向上,每一触控电极的延伸线均与相同数量的走线相交,这样通过设计走线的尺寸和走线之间的间距,可以使得触控区域同侧边缘的所有触控电极与相邻周边区域的走线之间的总寄生电容基本一致,甚至相等。
具体实施例中,所述走线包括与所述触控电极连接的触控信号线和至少一个接地走线,所述触控信号线与位于所述周边区域的触控电路连接,
在所述触控电极成行排布且从远离触控电路到靠近触控电路的方向上排布有n行触控电极时,与第k行触控电极的所述延伸线相交的所述走线包括n+1-k个接地走线和k个触控信号线,n为大于1的整数,k为大于0小于等于n的整数;和/或
在所述触控电极成列排布且从远离触控电路到靠近触控电路的方向上排 布有m列触控电极时,与第k列触控电极的所述延伸线相交的所述走线包括m+1-k个接地走线和k个触控信号线,m为大于1的整数,k为大于0小于等于n的整数。
在触控电极成行排布时,由于触控电极与触控电路的距离不同,因此,从远离触控电路到靠近触控电路的方向上,触控信号线的布线密度逐渐增大,比如按照与触控电路之间的距离对触控电极进行排序,距离触控电路最远的触控电极为第一行触控电极,距离触控电路最近的触控电极为第n行触控电极,则第一行触控电极相邻的周边区域设置有1个触控信号线,第k行触控电极相邻的周边区域设置有k个触控信号线,第n个触控电极相邻的周边区域设置有n个触控信号线,触控信号线的分布不均匀,导致触控区域边缘每个触控电极与信号走线之间产生的总寄生电容都不相同。本实施例中,在触控信号线的布线密度较小的区域增加接地走线,能够提高周边区域的布线均匀性。
在触控电极成列排布时,由于触控电极与触控电路的距离不同,因此,从远离触控电路到靠近触控电路的方向上,触控信号线的布线密度逐渐增大,比如按照与触控电路之间的距离对触控电极进列排序,距离触控电路最远的触控电极为第一列触控电极,距离触控电路最近的触控电极为第n列触控电极,则第一列触控电极相邻的周边区域设置有1个触控信号线,第k列触控电极相邻的周边区域设置有k个触控信号线,第n个触控电极相邻的周边区域设置有n个触控信号线,触控信号线的分布不均匀,导致触控区域边缘每个触控电极与信号走线之间产生的总寄生电容都不相同。本实施例中,在触控信号线的布线密度较小的区域增加接地走线,能够提高周边区域的布线均匀性。
相比相关技术在周边区域仅设置一条接地走线,本实施例增加了接地走线的数量,能够增加触控基板的静电释放能力,有效提高触控基板的抗ESD能力。
具体地,所述n+1-k个接地走线和k个触控信号线中,从靠近触控区域中心到远离触控区域中心的方向上依次为第1走线、第2走线、…、第n+1走线,每一触控电极与对应第1走线之间的距离均为d 1,每一触控电极与对 应第2走线之间的距离均为d 2、…、每一触控电极与对应第n+1走线之间的距离均为d n+1。边缘触控电极与周边区域的走线之间的寄生电容的值主要由触控电极与走线之间的距离决定,通过走线的排布设计,使得每一触控电极与对应第1走线、对应第2走线、…、对应第n+1走线之间的距离均实质上相等,进而可以使得每一触控电极与对应第1走线、对应第2走线、…、对应第n+1走线之间产生的寄生电容均实质上相等,进而使得每一触控电极与周边区域的走线产生的总寄生电容均实质上相等。
图6为本公开文本具体实施例触控基板的结构示意图,如图6所示,触控区域具有交叉排布的驱动电极1和感应电极2,驱动电极1成行排布,感应电极2成列排布。在周边区域具有信号走线,信号走线包括与触控电极电连接的触控信号线5和接地走线4,触控信号线5通过连接块3与触控电极(驱动电极1和感应电极2)连接。
如图6所示,以触控基板包括4行驱动电极1,触控电路6位于最后一行驱动电极1的下方为例,在第一行边缘的驱动电极1右侧的周边区域具有1条触控信号线5和4条接地走线4。在第二行边缘的驱动电极1右侧的周边区域具有2条触控信号线5和3条接地走线4。在第三行边缘的驱动电极1右侧的周边区域具有3条触控信号线5和2条接地走线4。在第四行边缘的驱动电极1右侧的周边区域具有4条触控信号线5和1条接地走线4。并且,从靠近触控区域中心到远离触控区域中心的方向上,第一行边缘的驱动电极1对应的第一条触控信号线5、第二行边缘的驱动电极1对应的第一条触控信号线5、第三行边缘的驱动电极1对应的第一条触控信号线5、第四行边缘的驱动电极1对应的第一条触控信号线5实质上位于同一条直线上。并且,第一行边缘的驱动电极1对应的第一条接地走线4、第二行边缘的驱动电极1对应的第二条触控信号线5、第三行边缘的驱动电极1对应的第二条触控信号线5、第四行边缘的驱动电极1对应的第二条触控信号线5实质上位于同一条直线上。第一行边缘的驱动电极1对应的第二条接地走线4、第二行边缘的驱动电极1对应的第一条接地走线4、第三行边缘的驱动电极1对应的第三条触控信号线5、第四行边缘的驱动电极1对应的第三条触控信号线5实质上位于同一条直线上。第一行边缘的驱动电极1对应的第三条接地走线 4、第二行边缘的驱动电极1对应的第二条接地走线4、第三行边缘的驱动电极1对应的第一条接地走线4、第四行边缘的驱动电极1对应的第四条触控信号线5实质上位于同一条直线上。第一行边缘的驱动电极1对应的第四条接地走线4、第二行边缘的驱动电极1对应的第三条接地走线4、第三行边缘的驱动电极1对应的第二条接地走线4、第四行边缘的驱动电极1对应的第一条接地走线4实质上位于同一条直线上。
如图7所示,图7右半部分为图7左半部分虚线框内部分的放大示意图。具体的,第一行边缘的驱动电极1与信号走线之间产生的总寄生电容Ca=Ca1+Ca2+Ca3+Ca4+Ca5,其中,Ca1为第一行边缘的驱动电极1与触控信号线5之间产生的寄生电容,Ca2、Ca3、Ca4、Ca5为第一行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图8所示,图8右半部分为图8左半部分虚线框内部分的放大示意图,第二行边缘的驱动电极1与信号走线之间产生的总寄生电容Cb=Cb1+Cb2+Cb3+Cb4+Cb5,其中,Cb1、Cb2为第二行边缘的驱动电极1与触控信号线5之间产生的寄生电容,Cb3、Cb4、Cb5为第二行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图9所示,图9右半部分为图9左半部分虚线框内部分的放大示意图,第三行边缘的驱动电极1与信号走线之间产生的总寄生电容Cc=Cc1+Cc2+Cc3+Cc4+Cc5,其中,Cc1、Cc2、Cc3为第三行边缘的驱动电极1与触控信号线5之间产生的寄生电容,Cc4、Cc5为第三行边缘的驱动电极1与接地走线4之间产生的寄生电容。如图10所示,图10右半部分为图10左半部分虚线框内部分的放大示意图,第四行边缘的驱动电极1与信号走线之间产生的总寄生电容Cd=Cd1+Cd2+Cd3+Cd4+Cd5,其中,Cd1、Cd2、Cd3、Cd4为第四行边缘的驱动电极1与触控信号线5之间产生的寄生电容,Cd5为第四行边缘的驱动电极1与接地走线4之间产生的寄生电容。
由于边缘触控电极与周边区域的走线之间的寄生电容的值主要由触控电极与走线之间的距离决定,在走线的线宽基本一致的情况下,Ca1≈Cb1≈Cc1≈Cd1,Ca2≈Cb2≈Cc2≈Cd2,Ca3≈Cb3≈Cc3≈Cd3,Ca4≈Cb4≈Cc4≈Cd4,进而可以得到Ca≈Cb≈Cc≈Cd,即边缘的驱动电极1与右侧周边区域的走线之间产生的总寄生电容基本一致。
同理,边缘的驱动电极1与左侧周边区域的走线之间产生的总寄生电容也基本一致,边缘的感应电极2与下侧周边区域的走线之间产生的总寄生电容也基本一致。
本实施例通过在周边区域增加接地走线,使得周边区域的走线排布均匀,能够有效调节周边区域走线对边缘触控电极的寄生电容差异性,使边缘触控电极与周边区域的走线之间产生的总寄生电容基本一致,可有效提高边缘触控电极的线性度。并且相比相关技术在周边区域仅设置一条接地走线,本实施例增加了接地走线的数量,能够有效的增加触控基板的静电释放能力,有效提高触控基板的抗ESD能力。
采用金属网格(One Glass Metal Mesh,OGM)的触控电极能够提升主动笔的灵敏度、线性度等触控性能,因此,本实施例的触控电极可以采用金属网格,但本实施例的触控电极并不局限于采用金属网格,还可以采用ITO等透明导电材料制成的块状电极。
另外,本公开文本实施例还提供了一种显示装置,包括如上所述的触控基板。显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,显示装置还包括柔性电路板、印刷电路板和背板。
本公开文本实施例还提供了一种触控基板的制作方法,所述触控基板包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述制作方法包括:
在所述周边区域形成与所述触控电极同层的至少一条走线,使得第一总寄生电容与第二总寄生电容的差值绝对值小于等于阈值,其中,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容。
本实施例中,不同触控电极和相邻周边区域的至少一条走线之间的总寄生电容的差值绝对值小于等于阈值,这样能够降低周边区域的走线与边缘触控电极之间产生的寄生电容的差异性,使得周边区域的走线与边缘触控电极 之间产生的寄生电容基本一致,有效的提升触控基板边缘触控电极的线性度,改善触控基板的触控效果。
本实施例的触控基板可以为互容式触控基板,也可以为自容式触控基板。例如,在触控基板为互容式触控基板时,所述触控电极包括异层设置的驱动电极和感应电极,所述制作方法具体包括:
在所述周边区域形成与所述驱动电极同层的至少一条第一走线,使得位于触控区域边缘的第一驱动电极的第一总寄生电容与位于触控区域同侧边缘的第二驱动电极的第二总寄生电容的差值绝对值小于等于所述阈值;和/或
在所述周边区域形成与所述感应电极同层的至少一条第二走线,使得位于触控区域边缘的第一感应电极的第一总寄生电容与位于触控区域同侧边缘的第二感应电极的第二总寄生电容的差值绝对值小于等于所述阈值。
例如,所述阈值可以为0.01F,这样可以使得周边区域的走线与边缘触控电极之间产生的寄生电容基本一致,大大提升触控基板边缘触控电极的线性度,改善触控基板的触控效果。
在一些实施例中,位于触控区域同侧边缘的所有触控电极与相邻周边区域的至少一条所述走线之间的总寄生电容均实质上相等。
具体实施例中,可以使得周边区域的所有走线均匀分布,即周边区域内的相邻走线之间的间距实质上一致。这里,本领域技术人员能够理解的是,实质上一致既包括两者完全一致,又包括两者之间相差5%以内,甚至是两者之间相差2%以内。从靠近触控区域中心到远离触控区域中心的方向上,每一触控电极的延伸线均与相同数量的走线相交,这样通过设计走线的尺寸和走线之间的间距,可以使得触控区域同侧边缘的所有触控电极与相邻周边区域的走线之间的总寄生电容基本一致,甚至相等。
一具体实施例中,所述在所述周边区域形成与所述触控电极同层的至少一条走线包括:
从靠近触控区域中心到远离触控区域中心的方向上,形成与每一所述触控电极的延伸线相交的相同数量的所述走线。
采用金属网格(OGM)的触控电极能够提升主动笔的灵敏度、线性度等触控性能,因此,本实施例的触控电极可以采用金属网格,但本实施例的触 控电极并不局限于采用金属网格,还可以采用ITO等透明导电材料制成的块状电极。
在本实施例的触控电极采用金属网格时,本实施例的触控基板的制作方法具体包括以下步骤:
步骤1、提供一衬底基板,在衬底基板上制作黑矩阵(BM);
其中,衬底基板可为玻璃基板、聚合物基板或石英基板,黑矩阵覆盖衬底基板的周边区域。
步骤2、形成第一绝缘层;
第一绝缘层覆盖衬底基板的整个区域,第一绝缘层可以选用氧化物、氮化物或者氧氮化合物,对应的反应气体是SiH 4、NH 3、N 2、SiH 2Cl 2、NH 3、或N 2。第一绝缘层可以为后续工艺提供平坦的表面。
步骤3、形成感应电极;
在第一绝缘层上形成一层金属层,对金属层进行构图形成由金属网格组成的感应电极。在利用金属层在触控区域形成感应电极的同时,还利用金属层在周边区域形成信号走线,信号走线包括接地走线和与感应电极连接的触控信号线,信号走线在周边区域均匀排布。
步骤4、形成第二绝缘层;
第二绝缘层覆盖衬底基板的整个区域,第二绝缘层可以选用氧化物、氮化物或者氧氮化合物,对应的反应气体是SiH 4、NH 3、N 2、SiH 2Cl 2、NH 3、或N 2。第二绝缘层一方面可以作为驱动电极与感应电极之间的绝缘层,另一方面可以为后续工艺提供平坦的表面。
步骤5、形成驱动电极;
在第二绝缘层上形成一层金属层,对金属层进行构图形成由金属网格组成的驱动电极。在利用金属层在触控区域形成驱动电极的同时,还利用金属层在周边区域形成信号走线,信号走线包括接地走线和与驱动电极连接的触控信号线,信号走线在周边区域均匀排布。
步骤6、形成第三绝缘层。
第三绝缘层覆盖衬底基板的整个区域,第三绝缘层可以选用氧化物、氮化物或者氧氮化合物,对应的反应气体是SiH 4、NH 3、N 2、SiH 2Cl 2、NH 3、 或N 2。第三绝缘层一方面可以对驱动电极进行保护,另一方面可以为后续工艺提供平坦的表面。
在本公开文本各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开文本的保护范围之内。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述是本公开文本的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (16)

  1. 一种触控基板,包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述周边区域具有与所述触控电极同层的至少一条走线,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容,所述第一总寄生电容与所述第二总寄生电容的差值绝对值小于等于阈值。
  2. 根据权利要求1所述的触控基板,其中,所述触控电极包括异层设置的驱动电极和感应电极,所述走线包括第一走线和第二走线;
    所述周边区域具有与所述驱动电极同层的至少一条第一走线,所述驱动电极包括位于触控区域同侧边缘的第一驱动电极和第二驱动电极,所述第一驱动电极的第一总寄生电容与所述第二驱动电极的第二总寄生电容的差值绝对值小于等于所述阈值;和/或
    所述周边区域具有与所述感应电极同层的至少一条第二走线,所述感应电极包括位于触控区域同侧边缘的第一感应电极和第二感应电极,所述第一感应电极的第一总寄生电容与所述第二感应电极的第二总寄生电容的差值绝对值小于等于所述阈值。
  3. 根据权利要求1或2所述的触控基板,其中,所述阈值为0.01F。
  4. 根据权利要求1至3中任一项所述的触控基板,其中,位于触控区域同侧边缘的所有触控电极与相邻周边区域的至少一条所述走线之间的总寄生电容均实质上相等。
  5. 根据权利要求1至4中任一项所述的触控基板,其中,位于所述周边区域内的所有走线均匀分布,相邻走线之间的间距实质上一致。
  6. 根据权利要求1至5中任一项所述的触控基板,其中,从靠近触控区域中心到远离触控区域中心的方向上,所述第一触控电极的延伸线与所述走线相交的走线数量与所述第二触控电极的延伸线与所述走线相交的走线数量相同。
  7. 根据权利要求6所述的触控基板,其中,所述走线包括与所述触控电极连接的触控信号线和至少一个接地走线,所述触控信号线与位于所述周边区域的触控电路连接,
    所述触控电极成行排布且从远离所述触控电路到靠近所述触控电路的方向上排布有n行触控电极,与第k行触控电极的所述延伸线相交的所述走线包括n+1-k个接地走线和k个触控信号线,n为大于1的整数,k为大于0小于等于n的整数;和/或
    所述触控电极成列排布且从远离所述触控电路到靠近所述触控电路的方向上排布有m列触控电极,与第k列触控电极的所述延伸线相交的所述走线包括m+1-k个接地走线和k个触控信号线,m为大于1的整数,k为大于0小于等于m的整数。
  8. 根据权利要求7所述的触控基板,其中,所述n+1-k个接地走线和k个触控信号线中,从靠近触控区域中心到远离触控区域中心的方向上依次为第1走线、第2走线、…、第n+1走线,每一触控电极与对应第1走线之间的距离均为d 1,每一触控电极与对应第2走线之间的距离均为d 2、…、每一触控电极与对应第n+1走线之间的距离均为d n+1,其中,每一触控电极对应的走线与其延长线相交。
  9. 根据权利要求2所述的触控基板,其中,边缘的驱动电极与右侧周边区域的走线之间产生的总寄生电容基本一致。
  10. 根据权利要求2所述的触控基板,其中,边缘的驱动电极与左侧周边区域的走线之间产生的总寄生电容基本一致。
  11. 根据权利要求2所述的触控基板,其中,边缘的驱动电极与下侧周边区域的走线之间产生的总寄生电容基本一致。
  12. 根据权利要求1至11中任一项所述的触控基板,其中,所述触控电极为金属网格的触控电极。
  13. 根据权利要求1至11中任一项所述的触控基板,其中,所述触控电极为透明导电材料制成的块状电极。
  14. 根据权利要求13所述的触控基板,其中,所述触控电极为ITO块状电极。
  15. 一种显示装置,包括:
    如权利要求1至14中任一项所述的触控基板;
    一柔性电路板;
    一印刷电路板;以及
    一背板。
  16. 一种触控基板的制作方法,所述触控基板包括具有触控电极的触控区域和位于所述触控区域周边的周边区域,所述触控电极包括位于触控区域同侧边缘的第一触控电极和第二触控电极,所述制作方法包括:
    在所述周边区域形成与所述触控电极同层的至少一条走线,使得第一总寄生电容与第二总寄生电容的差值绝对值小于等于阈值,其中,所述第一触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第一总寄生电容,所述第二触控电极和相邻周边区域的至少一条所述走线之间的寄生电容之和为第二总寄生电容。
PCT/CN2019/104337 2019-01-04 2019-09-04 触控基板及其制作方法、显示装置 WO2020140466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/646,918 US11221717B2 (en) 2019-01-04 2019-09-04 Touch substrate, manufacturing method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910006797.9A CN109683751B (zh) 2019-01-04 2019-01-04 触控基板及其制作方法、显示装置
CN201910006797.9 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140466A1 true WO2020140466A1 (zh) 2020-07-09

Family

ID=66192018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104337 WO2020140466A1 (zh) 2019-01-04 2019-09-04 触控基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11221717B2 (zh)
CN (1) CN109683751B (zh)
WO (1) WO2020140466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102016768B (zh) * 2008-02-28 2014-11-19 3M创新有限公司 具有变化的薄层电阻的触屏传感器
CN109683751B (zh) 2019-01-04 2020-05-26 合肥鑫晟光电科技有限公司 触控基板及其制作方法、显示装置
CN110827673A (zh) * 2019-11-26 2020-02-21 京东方科技集团股份有限公司 显示基板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092296A1 (en) * 2010-10-14 2012-04-19 Nlt Technologies, Ltd. Touch sensor device and electronic apparatus
CN104571768A (zh) * 2015-01-30 2015-04-29 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏和显示装置
CN107885389A (zh) * 2017-11-29 2018-04-06 武汉天马微电子有限公司 一种显示面板和显示装置
CN109683751A (zh) * 2019-01-04 2019-04-26 合肥鑫晟光电科技有限公司 触控基板及其制作方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323092B2 (en) * 2011-12-05 2016-04-26 Htc Corporation Touch panel
US20150212609A1 (en) * 2014-01-28 2015-07-30 Apple Inc. Light block for transparent touch sensors
CN103955320B (zh) * 2014-04-21 2017-02-15 合肥鑫晟光电科技有限公司 触摸基板及触摸屏
JP6456230B2 (ja) * 2015-04-21 2019-01-23 三菱電機株式会社 タッチスクリーン、タッチパネル、表示装置及び電子機器
CN107436696B (zh) * 2016-05-26 2020-05-05 鸿富锦精密工业(深圳)有限公司 触摸面板及具有该触摸面板的显示装置
CN106201144A (zh) * 2016-07-21 2016-12-07 京东方科技集团股份有限公司 触控显示基板及其制作方法、触控显示装置
CN107765914B (zh) * 2017-10-11 2020-10-16 业成科技(成都)有限公司 触控面板结构
KR20200082738A (ko) * 2018-12-31 2020-07-08 엘지디스플레이 주식회사 터치 센서를 포함한 표시 장치 및 이의 불량 검출 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092296A1 (en) * 2010-10-14 2012-04-19 Nlt Technologies, Ltd. Touch sensor device and electronic apparatus
CN104571768A (zh) * 2015-01-30 2015-04-29 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏和显示装置
CN107885389A (zh) * 2017-11-29 2018-04-06 武汉天马微电子有限公司 一种显示面板和显示装置
CN109683751A (zh) * 2019-01-04 2019-04-26 合肥鑫晟光电科技有限公司 触控基板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20210216167A1 (en) 2021-07-15
CN109683751B (zh) 2020-05-26
US11221717B2 (en) 2022-01-11
CN109683751A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN106775066B (zh) 触摸屏及其制作方法、触控显示装置
CN106201145B (zh) 一种触摸屏、其制作方法及显示装置
WO2020140466A1 (zh) 触控基板及其制作方法、显示装置
US11334179B2 (en) Display panel to mitigate short-circuiting between touch electrodes, and display device
US11907456B2 (en) Touch substrate, display panel, and touch display device
WO2019029226A1 (zh) 触控面板及其制作方法、触控显示装置
TW201349049A (zh) 觸控面板及其製作方法
US20230061413A1 (en) Display panel, methods for driving and manufacturing the same, and display apparatus
WO2021109353A1 (zh) 触控基板以及触控屏
TW201312402A (zh) 觸控面板
CN106020562A (zh) 一种触控屏及其制作方法、外挂式触摸屏
WO2022011784A1 (zh) 触控组件及触控显示装置
WO2019072204A1 (zh) 触控基板及其制作方法、显示装置
US11194435B2 (en) Detection substrate and display device
CN112698746A (zh) 一种触控显示面板及其驱动方法、触控显示装置
TW201437877A (zh) 觸控面板及其製作方法
US11086460B2 (en) Touch substrate, method for manufacturing same, and touch device
WO2021254420A1 (zh) Oled显示面板及显示装置
WO2021016762A1 (zh) 触控电极结构、触摸屏和触控显示装置
US11941213B2 (en) Touch structure and display panel
US11561634B2 (en) Display module, fabrication method thereof and display device
WO2020020347A1 (zh) 功能面板及其制造方法、终端
US11868156B2 (en) Touch-control panel and touch-control display apparatus
CN215494957U (zh) 触控面板及显示触控装置
TWI711955B (zh) 觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907336

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19907336

Country of ref document: EP

Kind code of ref document: A1