WO2020140325A1 - 一种水溶性蓝色荧光硅量子点的制备方法及其应用 - Google Patents

一种水溶性蓝色荧光硅量子点的制备方法及其应用 Download PDF

Info

Publication number
WO2020140325A1
WO2020140325A1 PCT/CN2019/077553 CN2019077553W WO2020140325A1 WO 2020140325 A1 WO2020140325 A1 WO 2020140325A1 CN 2019077553 W CN2019077553 W CN 2019077553W WO 2020140325 A1 WO2020140325 A1 WO 2020140325A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon quantum
quantum dots
solution
preparation
quantum dot
Prior art date
Application number
PCT/CN2019/077553
Other languages
English (en)
French (fr)
Inventor
雷炳富
李艳娟
张浩然
刘应亮
李唯
董日月
Original Assignee
华南农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南农业大学 filed Critical 华南农业大学
Publication of WO2020140325A1 publication Critical patent/WO2020140325A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon

Definitions

  • the invention relates to a preparation method of water-soluble blue fluorescent silicon quantum dots and its application in plant photosynthesis, belonging to the field of nano-luminescent materials and plant applications.
  • silicon quantum dots have good biocompatibility, low toxicity, bleach resistance and other properties, which can solve this problem well. Therefore, silicon quantum dots are used in biosensing , Bioimaging and biomedicine have a wide range of applications. However, it has not been reported how to improve the photosynthesis of plant chloroplasts.
  • the present invention provides a method for preparing a water-soluble blue fluorescent silicon quantum dot and its application.
  • the method of the present invention is easy to operate under conditions and low in cost.
  • the main technical solutions adopted by the present invention include:
  • a preparation method of water-soluble blue fluorescent silicon quantum dots includes the following steps:
  • step S2 Add silane to the sodium citrate solution described in step S1, and continue to stir for 30 to 50 minutes, uniformly stir at room temperature to form a silicon quantum dot precursor solution;
  • the silicon quantum dot precursor solution is placed at 160-200°C to react to form a silicon quantum dot solution
  • step S1 the mass ratio of the sodium citrate to ultrapure water is 1:15-35, most preferably 1:22.
  • the silane is 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane and [3-(diethyl At least one of amino)propyl]trimethoxysilane.
  • the silane may be 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane or [3-(diethylamino)propyl]trimethoxysilane alone Perform the reaction, or use 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane and [3-(diethylamino)propyl]trimethoxysilane mixed in any ratio React.
  • the mass ratio of the silane to sodium citrate is 5:0.1 to 5, most preferably 5:0.93 to 1.
  • step S3 the silicon quantum dot precursor solution is placed in a polytetrafluoroethylene reactor or reacted in a pressure-resistant tube.
  • the polytetrafluoroethylene reaction kettle is heated by an oven, and the pressure-resistant tube is heated by an oil bath or an electric heating jacket.
  • the reaction time is 4h to 24h, and most preferably 12h.
  • step S4 the molecular weight of the dialysis dialysis bag is 1 kda, and dialysis is performed with water.
  • the dialysis time is 12-24 hours, and the number of water changes is 3-5 times.
  • the dialysis time is 20h and the number of water changes is 4 times.
  • the water-soluble silicon quantum dots obtained have a particle size of 1.00 to 3.40 nm, have strong ultraviolet absorption, and emit strong blue fluorescence, and their emission spectrum covers the absorption of the blue region of the chloroplast blue. Spectrum, which provides the possibility for silicon quantum dots to promote the application of plant photosynthesis.
  • the water-soluble blue fluorescent silicon quantum dot has strong ultraviolet absorption and emits strong blue fluorescence, and its emission spectrum just covers the absorption spectrum of the blue region of the chloroplast.
  • a water-soluble blue fluorescent silicon quantum dot, or the water-soluble silicon quantum dot obtained by the preparation method as described above, is used for promoting plant photosynthesis.
  • the application as described above is preferably the application of the water-soluble blue fluorescent silicon quantum dots in the preparation of plant nutrient solution.
  • the concentration of the water-soluble blue fluorescent silicon quantum dots in the plant nutrient solution is 0.03-500 mg/L.
  • the concentration of the water-soluble blue fluorescent silicon quantum dots is 0.3-30 mg/L.
  • the plant nutrient solution can be used for hydroponics, soil culture and foliar spraying.
  • the plants suitable for the plant nutrient solution are all green plants in nature.
  • the preparation method of the water-soluble blue fluorescent silicon quantum dot provided by the invention has simple operation and can be obtained in one step.
  • the water-soluble blue fluorescent silicon quantum dots prepared by the preparation method of the present invention have the following advantages: the silicon quantum dots have a uniform size, stable optical properties, good water solubility, and can exist stably in ultrapure water; and have good pH stability. Stable in different pH environments; has strong UV absorption; can promote plant growth, promote plant chlorophyll synthesis and photosynthesis; can accelerate the light capture and electron transfer efficiency of chloroplast photosynthesis system II.
  • Fig. 1 is the fluorescence spectrum of silicon quantum dots prepared under different reaction time under the excitation of 364nm wavelength when the reaction temperature of the silicon quantum dot precursor solution is 200°C;
  • Example 2 is a transmission electron micrograph of silicon quantum dots prepared in Example 14;
  • Example 3 is a high-resolution transmission electron microscope image of silicon quantum dots prepared in Example 14;
  • Example 4 is a particle size distribution diagram of silicon quantum dots prepared in Example 14.
  • Example 6 is an excitation spectrum of a silicon quantum dot prepared under Example 14 under a wavelength monitoring of 445 nm and a fluorescence emission spectrum under excitation of 364 nm;
  • Example 7 is an emission spectrum diagram of silicon quantum dots prepared in Example 14 at different excitation wavelengths
  • Example 8 is a normalized spectrum diagram of the excitation spectrum, emission spectrum and chloroplast ultraviolet-visible absorption spectrum of the silicon quantum dot prepared in Example 14;
  • Fig. 10 is the ultraviolet absorption spectrum of chloroplast and chloroplast/silicon quantum dot complex
  • Fig. 11 is a fluorescence spectrum diagram of a silicon quantum dot solution excited by a wavelength of 364 nm at different pH values;
  • Figure 12 shows the change in the absorbance of 2,6-dichloroindophenol solution at 600nm after the xenon lamp was irradiated with xenon lamp for 0min, 1min, 2min, 3min, 4min and 5min after compounding silicon quantum dot solutions with different concentrations and chloroplasts;
  • Fig. 13 shows the changes in the absorbance of 2,6-dichloroindophenol solution at 600 nm after the xenon lamp is irradiated with xenon lamp for 0 min, 1 min, 2 min, 3 min, 4 min and 5 min. ;
  • Figure 14 shows the root length of lettuce seedlings under different concentrations of silicon quantum dot solution
  • Figure 15 shows the seedling height of lettuce seedlings under different concentrations of silicon quantum dot solutions
  • Figure 16 shows the biomass content of lettuce seedlings under different concentrations of silicon quantum dot solution
  • Fig. 17 shows the content of chlorophyll a in lettuce seedlings under different concentrations of silicon quantum dot solutions
  • Figure 18 is the chlorophyll b content of lettuce seedlings under different concentrations of silicon quantum dot solutions
  • Figure 19 shows the soluble sugar content of lettuce seedlings under different concentrations of silicon quantum dot solution.
  • Chloroplasts can only absorb visible light in sunlight during photosynthesis. Therefore, building an artificial chloroplast biosynthesis system to convert solar ultraviolet light into visible light that can be absorbed by chloroplasts has become an effective way to improve the utilization of solar energy by chloroplasts.
  • the water-soluble blue fluorescent silicon quantum dots prepared by the present invention have strong ultraviolet absorption and strong blue emission fluorescence, and this characteristic completely meets the requirements for improving photosynthesis of chloroplasts. Therefore, the silicon quantum dots prepared by the present invention are combined with chloroplasts to increase the photosynthesis activity by improving the light capture and electron transfer efficiency in the plant photosynthesis photosynthesis system II. At the same time, through the Hill reaction, the photosynthetic activity of the chloroplast was detected.
  • the isolated chloroplasts of green plants perform photosynthesis under light, decompose water, release oxygen, and release electrons at the same time.
  • the oxidant 2,6-dichlorophenol indophenol (DCPIP) is a blue dye. After accepting electrons and H + , the color is reduced from blue to colorless. Therefore, the chloroplast can be determined according to the change in the absorbance of the solution. The amount of electrons transferred in photosynthesis.
  • chloroplasts of the isolated plant used are extracted as follows:
  • the sucrose buffer is a solution containing 0.4mol/L sucrose, 0.01mol/L KCl, 0.03mol/L Na 2 HPO 4 and 0.02mol/L KH 2 PO 4 ;
  • 80% acetone refers to a mixed solution of acetone and water with a volume ratio of 80:20.
  • the preparation method of the chloroplast/silicon quantum composite refers to: uniformly mix silicon quantum dot solutions and chloroplast suspensions of different concentrations, and fully shake for 5-15 minutes to form chloroplast/silicon quantum dots Complex solution.
  • the indicated Hill reaction is used to detect the effect of silicon quantum dots on chloroplast photosynthesis.
  • the operation is as follows: add 60 mM/L to the chloroplast, chloroplast/silicon quantum dot complex and silicon quantum dot solution respectively 2,6-Dichloroindophenol solution, mix the suspension evenly. After irradiated with xenon lamps for 0min, 1min, 2min, 3min, 4min and 5min, respectively, the absorbance at 600nm was measured, in which 5 sets of repetitions were set for each treatment.
  • Example 2 to Example 17 can be operated according to the steps in Example 1, the difference is: the amount of sodium citrate added, the first stirring time, the amount and amount of silane added to the sodium citrate solution, after adding silane The second stirring time, the reaction temperature and reaction time of the silicon quantum dot precursor solution, and the dialysis time; see Table 1 for details.
  • the silicon quantum dot precursor solution in Example 2-Example 5 is added to the pressure-resistant tube for reaction
  • Example 6-Example 17 the silicon quantum dot precursor solution is added to the polytetrafluoroethylene reactor In the oven according to the reaction temperature in Table 1.
  • the silane: 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane molecular formula is C 10 H 27 N 3 O 3 Si
  • the molecular formula of propyl]trimethoxysilane is C 10 H 25 NO 3 Si.
  • the silicon quantum dot solution prepared in Examples 12-17 was excited at the optimal excitation wavelength (364nm) to obtain a fluorescence spectrum, as shown in FIG. 1, from the figure, as the reaction time increases, the fluorescence of silicon quantum dots The intensity showed a trend of increasing first and then decreasing. The fluorescence intensity reached the maximum value when the reaction time was 12h. It shows that the optimal time for the silicon quantum dot precursor solution reaction is 12h.
  • the silicon quantum dots prepared in Examples 1-17 were tested by transmission electron microscopy.
  • the silicon quantum dots were spherical particles with uniform distribution and had good monodispersity.
  • the silicon quantum dots prepared in Example 14 were used as examples.
  • Figure 2 shows.
  • the silicon quantum dots prepared in Examples 1-17 were tested by high-resolution transmission electron microscopy. The results showed that the silicon quantum dots prepared in each example had a uniform lattice plane, indicating the ordered arrangement of silicon quantum dots. 14 High-resolution transmission electron microscopy of the prepared silicon quantum dots as an example, as shown in Figure 3, we can see from the figure that the pitch is 0.28nm.
  • the particle diameters of the silicon quantum dots prepared in Examples 1-17 were measured respectively, and the diameters of more than 150 silicon quantum dots were measured from the transmission electron microscope diagram using the particle size distribution calculation software to obtain the particle size distribution diagram.
  • the results illustrate the present invention
  • the diameter distribution of the silicon quantum dots prepared in 1.00 to 3.40 nm, wherein the average diameter is 2.4 nm, the particle size distribution diagram of the silicon quantum dots prepared in Example 14 is shown in FIG. 4.
  • the silicon quantum dots prepared in Examples 1-17 were subjected to ultraviolet-visible absorption spectrum measurement, and the results indicated that the silicon quantum dots had strong absorption in the ultraviolet region (300-400 nm), and the absorption peak was near 364 nm. Taking the ultraviolet-visible absorption spectrum of the silicon quantum dots prepared in Example 14 as an example, as shown in FIG. 5.
  • the silicon quantum dots prepared in Examples 1-17 were respectively monitored by a fluorescence spectrometer at a wavelength of 445 nm, and the excitation spectrum of the silicon quantum dots was measured. The results showed that the excitation peak of the silicon quantum dots was located at 364 nm, indicating the optimal excitation of the silicon quantum dots. The wavelength is 364 nm. Under the optimal excitation wavelength of 364nm, the fluorescence emission spectrum of silicon quantum dots is obtained, indicating that the emission spectrum of silicon quantum dots is located in the blue region, and the optimal emission peak is located at 445nm, taking the silicon quantum dots prepared in Example 14 as an example, Its fluorescence emission spectrum is shown in Figure 6.
  • the fluorescence intensities measured at different excitation wavelengths were prepared by the silicon quantum dots prepared in Examples 1-17, respectively, and the fluorescence emission spectrum was plotted. As the wavelength increases, the emission peak of the silicon quantum dots rises first and then decreases. The fluorescence intensity reaches the maximum value when the excitation wavelength is 360 nm, and the emission peak is always located near 445 nm.
  • the fluorescence emission spectrum of the silicon quantum dots prepared in Example 14 Take the picture as an example, as shown in Figure 7. This result shows that silicon quantum dots have no excitation dependence, and it can be used as a fluorescent probe to monitor the transportation process and distribution in plant tissues by selecting an appropriate excitation wavelength to avoid the autofluorescence of the plant itself.
  • the silicon quantum dots prepared in Examples 1-17 were respectively tested under 200 mg/L silicon quantum dot solution, 5 mg/L chloroplast solution and chloroplast/silicon quantum dot composite under the excitation wavelength of the silicon quantum dot (364 nm).
  • the fluorescence spectrum of the bulk solution (the concentration of silicon quantum dots and chloroplast solution in the complex solution are 200mg/L and 5mg/L respectively).
  • the results show that after the silicon quantum dots are combined with the chloroplast, the fluorescence intensity of the silicon quantum dots is significantly reduced, however At the same time, the fluorescence spectrum of chlorophyll appeared in the red light region. This result indicates that perhaps the chloroplast can absorb the blue fluorescence emitted by the silicon quantum dots to carry out the photosynthetic light reaction. This hypothesis was verified by the Hill reaction.
  • For the fluorescence spectrum take the fluorescence spectrum of the silicon quantum dot prepared in Example 14 as an example, as shown in FIG. 9.
  • the silicon quantum dots prepared in Examples 1-17 were combined with chloroplasts to form a chloroplast/silicon quantum dot composite solution (the concentration of silicon quantum dots and chloroplast solutions were 200 mg/L and 5 mg/L, respectively), and the chloroplasts (5 mg/L) were measured respectively.
  • the silicon quantum prepared in Example 13 is combined with the isolated Italian lettuce chloroplast to form a chloroplast/silicon quantum complex, so that the concentration of silicon quantum dots in the finally obtained 6 sets of chloroplast/silicon quantum complex solution is 0, 10, 50, 100, 500 and 1000mg/L, the concentration of chloroplast is 10mg/L. Then, the effect of compounding different concentrations of silicon quantum dot solutions on the photosynthetic activity of chlorophyll in vitro was determined by Hill reaction.
  • the prepared silicon quantum dot solution is mixed with the nutrient solution to configure silicon quantum dot solutions with concentrations of 10, 50, 100, 500, and 1000 mg/L to cultivate Italian lettuce seedlings.
  • the pH of the silicon quantum dot solution is 6.5-7.0
  • the conductivity is 1.5 ⁇ 1.6ms/cm
  • the nutrient solution without silicon quantum dots is used as the control group (CK)
  • each treatment is set to repeat 4 groups, each group is repeated Plant 6 seedlings. After 15 days of cultivation, the growth index and photosynthesis index of Italian lettuce were measured.
  • the nutrient solution is composed of nutrient solution A and nutrient solution B with a volume ratio of 1:1; nutrient solution A is composed of 472mg/L Ca(NO 3 ) 2 ⁇ 4H 2 O, 101mg/L KNO 3 , and nutrient solution B is composed of It consists of 101 mg/L KNO 3 , 80 mg/L (NH 4 ) NO 3 , 100 mg/L KH 2 PO 4 , 174 mg/L K 2 SO 4 and 246 mg/L MgSO 4 .
  • the prepared silicon quantum dot solution is combined with 10 mg/L of isolated Italian lettuce chloroplast to form a chloroplast/silicon quantum complex, so that the concentration of silicon quantum dots in the 6 sets of chloroplast/silicon quantum complex solution is respectively: 0, 0.3, 3, 30, 100 and 200 mg/L, the concentration of chloroplast is 5 mg/L.
  • the effects of the prepared silicon quantum dot solution on the photosynthetic activity of chlorophyll in vitro were measured by Hill reaction. The results show that, as shown in Fig. 12, as the concentration of silicon quantum dots increases, the amount of change in absorbance of DCPIP gradually increases. When the concentration of silicon quantum dots reaches 200mg/L, the amount of change in absorbance of DCPIP reaches the maximum, indicating that silicon When the concentration of quantum dots is 200mg/L, the photosynthesis promoting effect of chloroplast reaches its maximum.
  • the photosynthesis indicators include chlorophyll a, chlorophyll b, and soluble sugar content.
  • the test methods are all carried out by conventional methods. The results are shown in Figures 17-19.
  • the contents of chlorophyll a and chlorophyll b both increase with the concentration of the silicon quantum dot solution. High showed a gradual upward trend, reaching a maximum value when the concentration of silicon quantum dots was 200 mg/L, which increased by 19.4% and 43.9% compared with the control, respectively.
  • the concentration of silicon quantum dot solution the content of soluble sugar, the main product of photosynthesis, showed a trend of increasing first and then decreasing. It reached the maximum value when the concentration was 3 mg/L, which was a significant increase of 40.5% compared with the control.
  • the data analysis used single-factor analysis of variance and the least significant difference method to carry out the difference significance test (P ⁇ 0.05). Different letters in the figure indicate significant differences between different concentrations of silicon quantum dot solution treatment. This result indicates that silicon quantum dots can significantly promote the growth and photosynthetic activity of living plants.
  • the water-soluble blue fluorescent silicon quantum dots prepared in this example using quinine sulfate (quantum efficiency of 54%) as a reference, measured the relative quantum efficiency of the prepared silicon quantum dots as high as 84%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Materials Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种水溶性蓝色荧光硅量子点的制备方法及其应用。制备方法为以硅烷为硅源,由硅烷与柠檬酸钠通过水热反应制备水溶性蓝色荧光硅量子点;制备方法易操作,成本低。制备得到的硅量子点具有较高的量子效率、强的紫外吸收、较好的单分散性、良好的水溶性和pH稳定性,其与叶绿体复合后显著提高叶绿体的光合作用,促进植物生长及光合作用。该水溶性蓝色荧光硅量子点,具有增强植物光合作用的特点,可用于在植物光合作用中的应用,主要可用于制备植物营养液中的应用。

Description

一种水溶性蓝色荧光硅量子点的制备方法及其应用 技术领域
本发明涉及一种水溶性蓝色荧光硅量子点的制备方法及其在植物光合作用中的应用,属于纳米发光材料及植物应用领域。
背景技术
与其它新能源相比,太阳能是地球上最丰富、环保、用之不竭的可再生的能源。因此,开发提高太阳能转化为人类所需要的可再生资源的技术具有广阔的前景。植物可以通过光合作用,将太阳能转化为化学能,进而固定CO 2、合成碳水化合物促进植物生长。叶绿体含有光反应中心,是植物光合作用系统中的一个重要的细胞器。然而,叶绿体在光合作用中吸收的光源仅限于可见光。一般,只有不到10%的太阳光能够满足植物光合作用中对光的需求。如何能有效提高植物对太阳能利用率是亟需解决的技术问题。
传统的有机染料,由于其抗漂白性差且具有毒性,因此不适宜在植物生理学及生物医学中应用。然而,硅量子点作为一种典型的零维纳米材料,具有良好的生物相容性、低毒性、抗漂白性等属性,能够很好的解决这一问题,因此,硅量子点在生物传感、生物成像和生物医学方向有广泛的应用。但是如何能用于提高植物叶绿体光合作用还未见有报道。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种水溶性蓝色荧光硅量子点的制备方法及其应用,本发明制备方法条件容易操作,成本低。研究发现水溶性蓝色荧光硅量子点,可用于增强植物光合作用。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种水溶性蓝色荧光硅量子点的制备方法,包括如下步骤:
S1、将柠檬酸钠溶解在超纯水中,形成柠檬酸钠溶液,在室温下搅拌柠檬酸钠溶液,同时通入氮气除去溶液中的氧气;
S2、将硅烷加入步骤S1中所述的柠檬酸钠溶液中,并持续搅拌30~50min,在室温下均匀搅拌形成硅量子点前驱体溶液;
S3、将所述硅量子点前驱体溶液置于160~200℃反应,形成硅量子点溶液;
S4、将所述硅量子点溶液进行透析,除去杂质获得纯净的水溶性蓝色荧光硅量子点。
如上所述的制备方法,优选地,在步骤S1中,所述柠檬酸钠与超纯水的质量比为1:15~35,最优选为1:22。
如上所述的制备方法,优选地,在步骤S2中,所述硅烷为3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷和[3-(二乙氨基)丙基]三甲氧基硅烷中的至少一种。
也就是说,所述硅烷可单独采用3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷或[3-(二乙氨基)丙基]三甲氧基硅烷进行反应,或采用以任意比例混合的3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷和[3-(二乙氨基)丙基]三甲氧基硅烷进行反应。
如上所述的制备方法,优选地,在步骤S2中,所述硅烷与柠檬酸钠的质量比为5:0.1~5,最优选为5:0.93~1。
如上所述的制备方法,优选地,在步骤S3中,所述硅量子点前驱体溶液置于聚四氟乙烯反应釜中或耐压管中反应。
其中,所述聚四氟乙烯反应釜采用烘箱加热,耐压管采用油浴或者电热套加热。
如上所述的制备方法,优选地,在步骤S3中,所述反应的时间为4h~24h,最优选为12h。
如上所述的制备方法,优选地,在步骤S4中,所述透析的透析袋分子量为1kda,用水进行透析,所述透析的时间为12~24h,换水次数为3~5次。
最优选地,所述透析的时间为20h,换水次数为4次。
根据上述的制备方法,其获得的水溶性硅量子点,其粒径为1.00~3.40nm,具有较强的紫外吸收,并发射出较强的蓝色荧光,其发射光谱恰好覆盖叶绿体蓝光区域的吸收光谱,这为硅量子点为促进植物光合作用的应用提供了可能性。
水溶性蓝色荧光硅量子点,其具有较强的紫外吸收,并发射出较强的蓝色荧光,其发射光谱恰好覆盖叶绿体蓝光区域的吸收光谱。
一种水溶性蓝色荧光硅量子点,或采用如上所述的制备方法获得的水溶性硅量子点,在促进植物光合作用中的应用。
如上所述的应用,优选为所述水溶性蓝色荧光硅量子点在制备植物营养液中的应用。
优选地,所述植物营养液中,所述水溶性蓝色荧光硅量子点的浓度为0.03~500mg/L。
最优选地,所述水溶性蓝色荧光硅量子点的浓度为0.3~30mg/L。
优选地,所述植物营养液可以用于采用水培、土培和叶面喷施的方式进行。
优选地,所述植物营养液适用的植物为自然界中所有的绿色植物。
(三)有益效果
本发明的有益效果是:
本发明提供的水溶性蓝色荧光硅量子点的制备方法,其制备方法操作简单,一步法即可获得。
本发明的制备方法制备的水溶性蓝色荧光硅量子点,具有如下优点:硅量子点尺寸均匀,光学属性稳定,其水溶性好,在超纯水中能稳定存在;pH稳定性好,在不同pH环境中稳定存在;具有较强的紫外吸 收;能够促进植物生长、促进植物叶绿素合成和光合作用;能够加速叶绿体光合作用中光系统II的光捕获和电子转移效率。
附图说明
图1为硅量子点前驱体溶液反应温度为200℃时,不同反应时间下制备的硅量子点在364nm波长激发下的荧光光谱图;
图2为实施例14制备得到硅量子点的透射电镜图;
图3为实施例14制备得到硅量子点的高分辨透射电镜图;
图4为实施例14制备得到硅量子点的粒径分布图;
图5为实施例14制备得到硅量子点的紫外-可见吸收光谱图;
图6为实施例14制备得到硅量子点在445nm波长监测下的激发光谱及364nm激发下的荧光发射光谱图;
图7为实施例14制备得到硅量子点在不同激发波长下的发射光谱图;
图8为实施例14制备得到硅量子点的激发光谱、发射光谱和叶绿体紫外-可见吸收光谱的归一化光谱图;
图9为实施例14制备得到硅量子点、叶绿体及叶绿体/硅量子点复合体在364nm波长激发下的荧光光谱图;
图10为叶绿体和叶绿体/硅量子点复合体的紫外吸收光谱图;
图11为在不同pH值下,硅量子点溶液在364nm波长激发下的荧光光谱图;
图12为不同浓度的硅量子点溶液与叶绿体复合后,氙灯照射0min、1min、2min、3min、4min和5min后,2,6-二氯靛酚溶液在600nm处吸光值的变化量;
图13为硅量子点、叶绿体和叶绿体/硅量子点复合体,在氙灯照射0min、1min、2min、3min、4min和5min后,2,6-二氯靛酚溶液在600nm处吸光值的变化量;
图14为不同浓度硅量子点溶液处理下,生菜幼苗的根长;
图15为不同浓度硅量子点溶液处理下,生菜幼苗的苗高;
图16为不同浓度硅量子点溶液处理下,生菜幼苗的生物量含量;
图17为不同浓度硅量子点溶液处理下,生菜幼苗的叶绿素a的含量;
图18为不同浓度硅量子点溶液处理下,生菜幼苗的叶绿素b的含量;
图19为不同浓度硅量子点溶液处理下,生菜幼苗的可溶性糖的含量。
具体实施方式
叶绿体在光合作用中仅能吸收太阳光中的可见光,因此,构建人工叶绿体生物光合系统,将太阳能的紫外光转化为可被叶绿体吸收的可见光,成为提高叶绿体对太阳能利用率的有效途径。显著地,本发明制备的水溶性蓝色荧光硅量子点,具有较强的紫外吸收和强的蓝色发射荧光,这个特性完全满足提高叶绿体光合作用的要求。因此,将本发明制备的硅量子点与叶绿体复合,通过提高植物光合作用光系统II中的光捕获和电子转移效率,来增加光合作用活性。同时通过希尔反应,检测叶绿体的光合作用活性。
希尔反应原理:
绿色植物的离体叶绿体在光照下进行光合作用,分解水,放出氧气,同时释放电子。氧化剂2,6-二氯酚靛酚(DCPIP)是一种蓝色染料,接受电子和H +后,颜色从蓝色被还原成无色,因此,可以根据溶液吸光值的变化量,测定叶绿体在光合作用中电子转移量。为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
在本发明的下述实施例中,所用的离体植物中的叶绿体采用如下方法进行提取:
称量10~20g去柄、去叶脉的植物叶片置于研钵中,加入20~30mL蔗糖缓冲液(pH=7.3)研磨1min,然后用4层纱布过滤,收集滤液。将滤液以1000r/min离心3~5min,除去叶片碎片。取上清液再以3000~5000r/min离心3min,将沉淀溶入蔗糖缓冲液中,获得的悬浮液即为离体的叶绿体。取0.1mL叶绿体加入4.9mL 80%丙酮中,摇匀并用5000r/min离心5min,取上清液并测定其在652nm出的吸光值,用公式(OD 652×5)/(34.5×0.1)=1.449×OD 652mg/mL计算叶绿体浓度。用蔗糖缓冲液将叶绿体悬浮液浓度稀释为20mg/L,存储到4℃冰箱中备用。
其中,蔗糖缓冲液为含有浓度为:0.4mol/L蔗糖、0.01mol/L KCl、0.03mol/L Na 2HPO 4和0.02mol/L KH 2PO 4的溶液;
80%丙酮是指体积比为80:20的丙酮和水的混合溶液。
本发明的下述实施例中,所指的叶绿体/硅量子复合体的制备方法为:将不同浓度的硅量子点溶液与叶绿体悬浮液均匀混合,充分振荡5~15min后形成叶绿体/硅量子点复合体溶液。
本发明的下述实施例中,所指用希尔反应检测硅量子点对叶绿体光合作用的影响,操作如下:分别向叶绿体、叶绿体/硅量子点复合体及硅量子点溶液中加入60mM/L 2,6-二氯靛酚溶液,将悬浮液混合均匀后。分别用氙灯照射0min、1min、2min、3min、4min和5min后,测定其在600nm处的吸光值,其中,每个处理设置5组重复。实施例1
(1)称量3.5g柠檬酸钠溶于120mL的超纯水中,形成柠檬酸钠溶液,搅拌10min,同时通入氮气,用于除去柠檬酸钠溶液中的氧气。
(2)向上述柠檬酸钠溶液中加入30mL 3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷溶液,继续搅拌30min并持续通入氮气,形成硅量子点前驱体溶液。
(3)将硅量子点前驱体溶液加入耐压管中,在160℃油浴中反应3h形成硅量子点溶液。
(4)用1kda透析袋在去离子水中透析硅量子点溶液,透析时间为 12h,其间换4次水,除去溶液中杂质,获得纯净的硅量子点溶液。
实施例2-实施例17
实施例2至实施例17,可按实施例1中的步骤操作,不同之处在于:柠檬酸钠的加入量、第一搅拌时间、向柠檬酸钠溶液中加入的硅烷及用量、加入硅烷后的第二搅拌时间、硅量子点前驱体溶液的反应温度及反应时间、透析时间;具体可见表1所示。其中,实施例2-实施例5中的硅量子点前驱体溶液是加入耐压管中进行反应,实施例6-实施例17中是将硅量子点前驱体溶液加入聚四氟乙烯反应釜中,在烘箱中按表1中反应温度进行反应。其中,硅烷:3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷的分子式为C 10H 27N 3O 3Si、和[3-(二乙氨基)丙基]三甲氧基硅烷的分子式为C 10H 25NO 3Si。
表1 各实施例的反应条件
Figure PCTCN2019077553-appb-000001
将实施例12-17中制备的硅量子点溶液在最佳激发波长(364nm)激 发下得到荧光光谱图,如图1所示,由图可知,随着反应时间的增长,硅量子点的荧光强度呈现先上升后下降的趋势,在反应时间为12h时荧光强度达到最大值。说明硅量子点前驱体溶液反应的最佳时间为12h。
将实施例1-17制备的硅量子点进行透射电镜测试,硅量子点为分布均匀的球形颗粒,具有良好的单分散性,具体以实施例14制备的硅量子点为例,透射电镜图如图2所示。
将实施例1-17分别制备的硅量子点进行高分辨透射电镜测试,结果表明各实施例制备的硅量子点均具有均匀的晶格平面,说明了硅量子点有序排列,其以实施例14制备的硅量子点的高分辨透射电镜图为例,如图3所示,由图可知,其间距为0.28nm。
将实施例1-17制备的硅量子点分别进行粒子直径的测定,利用粒径分布计算软件从透射电镜图中测量超过150个硅量子点的直径,获得其粒径分布图,结果说明本发明中制备的硅量子点的直径分布在1.00~3.40nm之间,其中平均直径为2.4nm,以实施例14制备的硅量子点的粒径分布图如图4所示。
将实施例1-17制备的硅量子点分别进行紫外-可见吸收光图谱的测定,结果说明硅量子点在紫外区(300~400nm)具有较强的吸收,其吸收峰位于364nm附近。以实施例14制备的硅量子点的硅量子点的紫外-可见吸收光谱图为例,如图5所示。
将实施例1-17制备的硅量子点分别利用荧光光谱仪在445nm波长监测下,测得硅量子点的激发光谱,结果说明硅量子点的激发峰位于364nm处,说明硅量子点的最佳激发波长为364nm。在最佳激发波长364nm激发下,获得硅量子点的荧光发射光谱,说明硅量子点的发射光谱位于蓝光区域,且最佳发射峰位于445nm处,以实施例14制备的硅量子点为例,其荧光发射光谱如图6所示。
将实施例1-17制备的硅量子点分别在不同激发波长下,具体在300nm、320nm、340nm、360nm、380nm、400nm下测定的荧光强度, 绘制成荧光发射光谱图,其结果说明随着激发波长增加,硅量子点的发射峰呈现先上升后下降的趋势,在激发波长为360nm时荧光强度达到最大值,且发射峰始终位于445nm附近,以实施例14制备的硅量子点的荧光发射光谱图为例,如图7所示。这一结果说明硅量子点不具有激发依赖性,并且其可以作为荧光探针,通过选择适当的激发波长监测植物组织内运输过程和分布,避免植物自身的自发荧光。
将实施例1-17制备的硅量子点的激发光谱图和发射光谱图与叶绿体的吸收光谱图归一化,绘制成光谱图,从图中,可以看出硅量子点在紫外光区域具有强烈的紫外吸收(300nm~400nm),然而叶绿体却没有;同时硅量子点的发射光谱恰好覆盖叶绿体在蓝光部分的吸收光谱,因此,推测该硅量子点在促进植物光合作用中的应用具有广阔的前景。以实施例14制备的硅量子点的光谱图为例,如图8所示。
将实施例1-17制备的硅量子点,分别在硅量子点的最佳激发波长(364nm)激发下,分别测试200mg/L硅量子点溶液、5mg/L叶绿体溶液和叶绿体/硅量子点复合体溶液(复合体溶液中硅量子点和叶绿体溶液的浓度分别为200mg/L和5mg/L)的荧光光谱图,结果说明硅量子点与叶绿体复合后,硅量子点的荧光强度显著降低,然而同时在红光区域出现了叶绿素的荧光光谱,这一结果表明,也许叶绿体能够吸收硅量子点发射的蓝色荧光进行光合作用的光反应,这一假设通过希尔反应验证。其荧光光谱图,以实施例14制备的硅量子点的荧光光谱图为例,如图9所示。
将实施例1-17制备的硅量子点分别与叶绿体复合形成叶绿体/硅量子点复合体溶液(硅量子点和叶绿体溶液的浓度分别为200mg/L和5mg/L),分别测定叶绿体(5mg/L)与叶绿体/硅量子点复合体溶液的可见-紫外吸收光谱,并绘制可见-紫外吸收光谱图,结果表明,与单独叶绿素相比,硅量子点/叶绿体复合体的紫外吸收光谱图,在紫外光谱区(300~400nm)具有显著的吸收峰,这一结果说明,硅量子点与叶绿体 复合体后能够扩大叶绿体对太阳光光谱的吸收范围,其中,以实施例14制备的硅量子点的可见-紫外吸收光谱图为例,如图10所示。
实施例13
(1)将按表1中实施例13中制备的硅量子点应用于离体叶绿体,测定其对叶绿体光合作用的影响,具体步骤如下:
实施例13中制备的硅量子与离体意大利生菜叶绿体复合形成叶绿体/硅量子复合体,使得最终获得的6组叶绿体/硅量子复合体溶液中硅量子点的浓度分别为0、10、50、100、500和1000mg/L,叶绿体的浓度均为10mg/L。然后,通过希尔反应分别测定复合不同浓度的硅量子点溶液,对离体叶绿素光合作用活性的影响。
本实验结果表明,随着硅量子点浓度的增加,DCPIP的吸光值变化量呈现先增加后降低的趋势,在硅量子点的浓度达到100mg/L时,DCPIP的吸光值变化量达到最大,这一结果说明,当硅量子点的浓度为100mg/L时,其对叶绿素的光合作用活性的促进作用达到最大。这一结果表明在适宜浓度下,硅量子点能够促进叶绿体的光合作用活性。
(2)将按表1中实施例13中制备的硅量子点应用在活体植物中,测定其对植物生长的影响,具体步骤如下:
挑选生长2周、大小一致的意大利生菜幼苗,将制备得到的硅量子点溶液,与营养液混合配置成浓度分别为10、50、100、500和1000mg/L的硅量子点溶液培养意大利生菜幼苗,其中硅量子点溶液的pH为6.5-7.0,电导率为1.5~1.6ms/cm,以不加硅量子点的营养液为对照组(CK),每个处理设置4组重复,每组重复种植6株幼苗。培养15天后,测定意大利生菜的生长指标和光合作用指标。其中,营养液由营养液A和营养液B组成,体积比为1:1;营养液A由472mg/L Ca(NO 3) 2·4H 2O,101mg/L KNO 3组成,营养液B由101mg/L KNO 3,80mg/L(NH 4)NO 3,100mg/L KH 2PO 4,174mg/L K 2SO 4和246mg/L MgSO 4组成。
其结果表明,随着硅量子点浓度的增加意大利生菜的根长、苗高和 生物量均呈现先上升后下降的趋势,在浓度为10mg/L达到最大值,其中硅量子点浓度大于500mg/L时,对意大利生菜幼苗的生长具有显著抑制作用。这一结果表明:低浓度的硅量子点溶液对植物生长具有促进作用;高浓度硅量子点对植物生长具有抑制作用。
实施例14
(1)称量5.5g柠檬酸钠溶于120mL的超纯水中,搅拌20min,同时通入氮气除去溶液中的氧气。
(2)向上述柠檬酸钠溶液中加入30mL 3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷溶液,继续搅拌40min并持续通入氮气,形成硅量子点前驱体溶液。
(3)将硅量子点前驱体溶液加入聚四氟乙烯反应釜中,在烘箱中200℃反应12h形成硅量子点。
(4)用HCl和NaOH将硅量子点的pH值调至6-14,测试不同pH下,硅量子点的荧光强度,结果如图11所示,在不同pH下,硅量子点的荧光强度没有明显变化,这一结果说明硅量子点具有pH稳定性。
(5)用1kda透析袋在去离子水中透析硅量子点溶液,透析时间20h,其间换水4次,除去溶液中杂质,获得纯净的硅量子点溶液。
(6)将制备得到的硅量子点溶液与10mg/L的离体意大利生菜叶绿体复合形成叶绿体/硅量子复合体,使得最终获得6组叶绿体/硅量子复合体溶液中硅量子点的浓度分别为0、0.3、3、30、100和200mg/L,叶绿体的浓度为5mg/L。通过希尔反应分别测定制备得到的硅量子点溶液,对离体叶绿素光合作用活性影响。结果表明,如图12所示,随着硅量子点浓度的增加,DCPIP的吸光值变化量逐渐增加,在硅量子点的浓度达到200mg/L时,DCPIP的吸光值变化量达到最大,说明硅量子点的浓度为200mg/L时,对叶绿体的光合作用促进作用达到最大。
为对比单独硅量子、叶绿体和叶绿体/硅量子复合体的光合作用活性,用希尔反应分别测定200mg/L硅量子、5mg/L叶绿体和叶绿体/硅量子点 复合体(复合体溶液中硅量子点和叶绿体溶液的浓度分别为200mg/L和5mg/L)溶液中在光照下DCPIP的吸光值的变化量,结果如图13所示,单独的硅量子点,在光照后,DCPIP的吸光值没有发生变化,说明单独的硅量子点不参与光合作用的光反应。而叶绿体和叶绿体/硅量子复合体溶液中DCPIP的吸光值明显发生降低,说明叶绿体和叶绿体/硅量子复合体在光照下可以进行光合作用。然而叶绿体/硅量子复合体对DCPIP的还原速率显著高于单独的叶绿体,这一结果说明,叶绿体/硅量子复合体能够提高意大利生菜光合作用光系统II中的光捕获和电子转移效率,进而促进意大利生菜的光合作用。
(7)挑选生长2周、大小一致的意大利生菜幼苗,将制备得到的硅量子点溶液与营养液混合配置成浓度分别为0.3、3、30、100和200mg/L的硅量子溶液培养意大利生菜幼苗,其中硅量子点溶液的pH为6.5-7.0,电导率为1.5~1.6ms/cm,25天后,测定其对意大利生菜生长和光合作用的影响,其中采用硅量子点溶液含量为0的营养液作为对照,记为CK。对意大利生菜的根长的测定结果如图14所示,对意大利生菜的苗高的测定结果如图15所示,对意大利生菜的生物量的测定结果如图16所示,实验结果表明,随着硅量子点溶液浓度的升高,意大利生菜幼苗的根长、苗高和生物量均呈现先上升后下降的趋势,在浓度为3mg/L的时候达到最大值,与对照相比,分别显著增加13.44%、9.55%和16.26%。
其中,光合作用指标包括叶绿素a、叶绿素b、可溶性糖含量,测试方法均采用常规方法进行,结果如图17~19所示,叶绿素a、叶绿素b的含量均随着硅量子点溶液浓度的升高呈现逐渐上升的趋势,在硅量子点的浓度为200mg/L时达到最大值,与对照相比分别增加19.4%和43.9%。光合作用主要产物可溶性糖的含量随着硅量子点溶液浓度的升高,呈现先上升后下降的趋势,在浓度为3mg/L的时候达到最大值,与对照相比显著增加40.5%。其中数据分析采用单因素方差分析和最小显 著差法进行差异显著性检验(P<0.05),图中不同字母表示不同浓度硅量子点溶液处理间差异显。这一结果表明,硅量子点能够显著促进活体植物生长和光合作用活性。
本实施例制备的水溶性蓝色荧光硅量子点,以硫酸奎宁(量子效率为54%)为参比,测得所制备得到的硅量子点的相对量子效率高达84%。
对比例1
用500mL氨丙基三甲氧基硅烷-柠檬酸钠体系制备硅量子点,按3-氨丙基三甲氧基硅烷与柠檬酸钠的质量比为5.3:1进行,在烘箱中以160℃反应15-120min(具体采用反应时间为15min,30min,45min,60min和120min),反应结束后获得的溶液,并不具有荧光,说明没有生成硅量子点。将3-氨丙基三甲氧基硅烷替换为3-(2-氨基乙基氨基)丙基三甲氧基硅烷时,在上述条件下也未获得硅量子点。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种水溶性蓝色荧光硅量子点的制备方法,其特征在于,其包括如下步骤:
    S1、将柠檬酸钠溶解在超纯水中,形成柠檬酸钠溶液,在室温下搅拌柠檬酸钠溶液,同时通入氮气除去溶液中的氧气;
    S2、将硅烷加入步骤S1中所述的柠檬酸钠溶液中,并持续搅拌30~50min,在室温下均匀搅拌,形成硅量子点前驱体溶液;
    S3、将所述硅量子点前驱体溶液置于160~200℃反应,形成硅量子点溶液;
    S4、将所述硅量子点溶液进行透析,除去杂质获得纯净的水溶性蓝色荧光硅量子点。
  2. 如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述柠檬酸钠与超纯水的质量比为1:15~35。
  3. 如权利要求1所述的制备方法,其特征在于,在步骤S2中,所述硅烷为3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷和[3-(二乙氨基)丙基]三甲氧基硅烷中的至少一种。
  4. 如权利要求1所述的制备方法,其特征在于,在步骤S2中,所述硅烷与柠檬酸钠的质量比为5:0.1~5。
  5. 如权利要求1所述的制备方法,其特征在于,在步骤S3中,所述硅量子点前驱体溶液置于聚四氟乙烯反应釜中或耐压管中反应;所述反应的时间为4~24h。
  6. 如权利要求1所述的制备方法,其特征在于,在步骤S4中,所述透析的透析袋分子量为1kda,用水进行透析,所述透析的时间为12~24h,换水次数为3~5次。
  7. 一种水溶性蓝色荧光硅量子点,或根据权利要求1-6中任一项所述的制备方法获得的水溶性硅量子点,在促进植物光合作用中的应用。
  8. 如权利要求7所述的应用,其特征在于,所述应用为水溶性蓝色荧光硅量子点在制备植物营养液中的应用。
  9. 如权利要求8所述的应用,其特征在于,所述植物营养液中,所述水溶性蓝色荧光硅量子点的浓度为0.03~500mg/L。
  10. 如权利要求8所述的应用,其特征在于,所述植物营养液用于采用水培、土培和叶面喷施的方式进行。
PCT/CN2019/077553 2018-12-31 2019-03-08 一种水溶性蓝色荧光硅量子点的制备方法及其应用 WO2020140325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650922.1 2018-12-31
CN201811650922.1A CN109777401B (zh) 2018-12-31 2018-12-31 一种水溶性蓝色荧光硅量子点的制备方法、其应用

Publications (1)

Publication Number Publication Date
WO2020140325A1 true WO2020140325A1 (zh) 2020-07-09

Family

ID=66499034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077553 WO2020140325A1 (zh) 2018-12-31 2019-03-08 一种水溶性蓝色荧光硅量子点的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN109777401B (zh)
WO (1) WO2020140325A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100631A (zh) * 2019-11-29 2020-05-05 华南农业大学 一种多色发光固态硅点粉末及其制备方法多功能应用
CN112841218B (zh) * 2021-01-21 2021-08-24 江南大学 一种采用纳米硅量子点防治玉米粘虫的方法
JP2023529548A (ja) 2021-01-21 2023-07-11 江南大学 ナノシリコン量子ドットを用いたトウモロコシアワヨトウの防除方法
CN114524428A (zh) * 2022-01-24 2022-05-24 江苏师范大学 一种水溶性生物质衍生碳点及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896271A (zh) * 2014-04-11 2014-07-02 武汉大学 一种水热法制备水溶性荧光硅量子点的方法
CN104181135A (zh) * 2014-08-19 2014-12-03 东南大学 水溶性硅量子点在多巴胺检测中的应用
CN105969344A (zh) * 2016-06-06 2016-09-28 中南民族大学 一种硅量子点的水相制备方法
CN108844937A (zh) * 2018-08-07 2018-11-20 福建中医药大学 一种水溶性荧光硅点及其制备方法以及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016348B (zh) * 2014-05-05 2016-03-16 东南大学 二乙烯三胺基丙基三甲氧基硅烷在制备水溶性硅量子点中的应用
CN104003392B (zh) * 2014-05-05 2016-01-06 东南大学 3-(2-氨基乙基氨基)丙基三甲氧基硅烷在制备超亮荧光硅量子点中的应用
CN104306984A (zh) * 2014-11-07 2015-01-28 东南大学 水溶性硅量子点作为药物载体的应用
CN105039237A (zh) * 2015-08-14 2015-11-11 李凯 一种新型微藻生长促进剂
CN105586035B (zh) * 2016-03-04 2017-11-03 南开大学 一种高亮蓝绿荧光的水溶性硅量子点的制备方法
CN106350061B (zh) * 2016-08-29 2019-03-29 北京化工大学 一种硅量子点及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896271A (zh) * 2014-04-11 2014-07-02 武汉大学 一种水热法制备水溶性荧光硅量子点的方法
CN104181135A (zh) * 2014-08-19 2014-12-03 东南大学 水溶性硅量子点在多巴胺检测中的应用
CN105969344A (zh) * 2016-06-06 2016-09-28 中南民族大学 一种硅量子点的水相制备方法
CN108844937A (zh) * 2018-08-07 2018-11-20 福建中医药大学 一种水溶性荧光硅点及其制备方法以及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU XIAOHUI; ZHANG YAJIE; WANG KE; LIU CHENG; YANG CHUNHONG: "Site-Selective Chelation and Excitation Energy Transfer between the Higher Plant Major Light-Harvesting Complexes and Quantum Dots", ACTA BIOPHYSICA SINICA, vol. 29, no. 7, 31 July 2013 (2013-07-31), pages 496 - 505, XP009521854, DOI: 10.3724/SP.J.1260.2013.30065 *

Also Published As

Publication number Publication date
CN109777401B (zh) 2020-08-28
CN109777401A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020140325A1 (zh) 一种水溶性蓝色荧光硅量子点的制备方法及其应用
Li et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis
Guan et al. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection
Li et al. Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas
Ma et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability
Mao et al. Facile access to white fluorescent carbon dots toward light-emitting devices
Xu et al. Promoting the growth of mung bean plants through uptake and light conversion of NaYF4: Yb, Er@ CDs nanocomposites
Li et al. Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film
Wang et al. Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H 2 production
CN110205121B (zh) 室温磷光碳点材料及其制备方法与应用
CN105586035B (zh) 一种高亮蓝绿荧光的水溶性硅量子点的制备方法
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Guo et al. The role of fluorescent carbon dots in crops: Mechanism and applications
CN104549389A (zh) 一种异质结纳米片光催化剂及其制备方法和应用
CN106044743A (zh) 一种基于蛋壳膜的水溶性碳量子点的制备方法及其应用
CN111303879B (zh) 一种高效单谱带上转换红光纳米晶材料
CN110330973B (zh) 一种促进豆芽生长的碳点纳米复合发光材料及其制备方法和应用
CN107936965A (zh) 一种具有高荧光量子产率碳量子点的制备方法及其在细胞成像中的应用
CN115318291B (zh) 一种铜纳米颗粒-氮化碳光催化灭菌复合材料的制备方法和用途
WO2022095131A1 (zh) 一种碳纳米粒子的制备方法及应用
CN105540663B (zh) CuSbS2纳米晶材料的可控制备方法
Zhang et al. Carbon dots as metal-free photocatalyst for dye degradation with high efficiency within nine minutes in dark
Başak et al. White, blue and cyan luminescence from thermally oxidized porous silicon coated by green synthesized carbon nanostructures
CN109704312B (zh) 一种水溶性蓝绿色荧光石墨烯量子点的制备方法
CN115851271B (zh) 一种氮掺杂荧光碳点的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906930

Country of ref document: EP

Kind code of ref document: A1