WO2020140323A1 - 一种具有流体散热结构的磁力泵 - Google Patents

一种具有流体散热结构的磁力泵 Download PDF

Info

Publication number
WO2020140323A1
WO2020140323A1 PCT/CN2019/077431 CN2019077431W WO2020140323A1 WO 2020140323 A1 WO2020140323 A1 WO 2020140323A1 CN 2019077431 W CN2019077431 W CN 2019077431W WO 2020140323 A1 WO2020140323 A1 WO 2020140323A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat dissipation
bearing
channel
inner magnetic
Prior art date
Application number
PCT/CN2019/077431
Other languages
English (en)
French (fr)
Inventor
吴斌
Original Assignee
东莞市创升机械设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市创升机械设备有限公司 filed Critical 东莞市创升机械设备有限公司
Publication of WO2020140323A1 publication Critical patent/WO2020140323A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer

Definitions

  • the utility model relates to the technical field of magnetic force pumps, in particular to a magnetic force pump with a fluid heat dissipation structure.
  • the magnetic pump is mainly composed of several parts such as the base, the upper shell, the motor, the magnetic actuator and the impeller.
  • the magnetic actuator is composed of a rotating shaft, an inner magnetic component and a coupling.
  • the motor drives the rotating shaft to rotate, the magnetic field can penetrate the air gap and non-magnetic substances, driving the inner magnetic component connected to the impeller to rotate synchronously to achieve non-contact of power Simultaneous transmission will transform the dynamic sealing structure that is easy to leak into a static sealing structure with zero leakage.
  • the internal magnetic components of the magnetic pump will generate heat during operation, and the accumulation of heat will increase the temperature of the internal magnetic components. Excessive temperature will damage the internal magnetic components and seriously affect the life of the internal magnetic components; on the other hand, the bearings High-speed concentric rotation around the rotating shaft, the relatively high-speed rotating motion of the bearing and the rotating shaft will generate a large amount of thermal energy due to friction and vibration of the surface of the object. When this thermal energy cannot be dissipated and continues to accumulate, the structure and performance of the magnetic pump will be Destructive damage occurs.
  • the magnetic pump needs to cool the internal magnetic components and bearings in real time during the work process. Because the internal magnetic components and bearings are placed inside the magnetic pump, there is a certain technology for cooling the internal magnetic components and bearings. Difficulty.
  • the utility model provides a magnetic pump with a fluid heat dissipation structure, which takes away more heat through multi-channel heat dissipation, and relies on the liquid circulation in the pump to bring the heat out of the pump body, and the heat dissipation effect is good .
  • a magnetic pump with a fluid heat dissipation structure includes a base, an upper shell, a motor, a magnetic actuator, and an impeller.
  • the two ends of the base are fixedly connected to the upper shell and the motor, respectively.
  • Two sides of the upper shell are respectively provided with a liquid inlet channel and a liquid outlet channel, and an inner cavity containing the impeller is formed between the upper shell and the base;
  • the magnetic actuator includes a coupling, an inner magnetic component, a bearing, and a rotating shaft, the coupling is accommodated in the base; the inner magnetic component is disposed in the coupling, and between the two A liquid flow path is formed, and the lower end of the inner magnetic component is provided with a liquid discharge hole; the bearing is placed in the inner magnetic component, and a first heat dissipation flow path is formed between the two; the rotating shaft and the The output shaft of the motor is fixedly connected, the rotating shaft is inserted into the bearing, and a second heat dissipation flow channel is formed between the two;
  • the liquid inlet channel, the liquid flow channel, the first heat dissipation flow channel, the second heat dissipation flow channel, the liquid outlet hole and the liquid outlet channel are in communication, and the impeller is connected in the On the magnetic component and with the rotation of the inner magnetic component, the liquid is brought into the liquid flow path from the liquid inlet channel, and flows through the first heat dissipation flow path and the second heat dissipation flow path respectively The inner magnetic component and the bearing dissipate heat, and are finally discharged from the liquid discharge hole and the liquid discharge channel.
  • the outer circumferential surface of the bearing is provided with a plurality of cutting planes at intervals, the cutting plane extending from the upper end of the outer surface of the bearing to the lower end of the outer surface of the bearing, the lower end of the outer surface of the bearing corresponding to the cutting plane
  • a liquid-conducting protrusion is provided at the end, and the cut surface, the inner wall of the inner magnetic component and the liquid-conducting protrusion are enclosed to form the first heat dissipation flow channel.
  • the inner wall of the bearing is provided with two spiral grooves.
  • the two spiral grooves extend from one end of the inner wall of the bearing to the other end of the inner wall of the bearing.
  • the inner wall of the bearing and the spiral groove The groove and the rotating shaft are enclosed to form the second heat dissipation flow channel.
  • a plurality of mounting grooves are evenly arranged on the inner magnetic component, and an upper end of the bearing is provided with a mounting protrusion for fixing on the mounting groove.
  • the upper end of the impeller is provided with a liquid discharge gap corresponding to the liquid discharge hole, and the upper end of the impeller is located on both sides of the liquid discharge gap and outwardly protruding and provided with anti-water blades.
  • the impeller is provided with a liquid inlet hole
  • the inner magnetic assembly is provided with a liquid inlet channel
  • the liquid inlet hole and the liquid inlet channel are connected to form a liquid inlet channel.
  • the liquid inlet flow channel is in communication with the liquid inlet channel, the liquid flow channel, the first heat radiation flow channel, the second heat radiation flow channel, the liquid outlet hole and the liquid outlet channel.
  • liquid inlet flow channel there are a plurality of the liquid inlet flow channel, the liquid flow channel, the first heat radiation flow channel, the second heat radiation flow channel and the liquid outlet hole.
  • the lower end of the inner magnetic component is further provided with a fixed clamping groove
  • the upper end of the impeller is circumferentially provided with a plurality of resisting posts and fixed retaining posts, the resisting posts resisting the lower end of the inner magnetic component,
  • the fixed card post is engaged in the fixed card slot.
  • the axes of the coupling, the inner magnetic assembly, the bearing, and the rotating shaft are on the same straight line.
  • the utility model achieves the effect of self-heat dissipation through the ingenious design of the liquid flow direction and the liquid flow channel in the pump.
  • the gap between the inner magnetic component and the coupling serves as a liquid flow channel, making the There is sufficient and continuous liquid and fast liquid flow speed in the liquid flow path.
  • the first heat dissipation flow path and the second heat dissipation flow path that is, increasing the liquid circulation channel in the pump to increase the cooling of the inner magnetic component and the bearing surface
  • the liquid flow rate and flow rate ensure that the internal magnetic components and bearing heating area have sufficient cooling liquid flow, effectively dissipate the heat generated during the operation of the internal magnetic components and bearings to the outside environment, and achieve better self-cooling and heat dissipation effects. , While reducing the loss of spare parts.
  • FIG. 1 is a perspective view of the magnetic pump with a fluid heat dissipation structure according to the present invention
  • FIG. 2 is an exploded schematic view of the magnetic pump with a fluid heat dissipation structure according to the present invention
  • FIG. 3 is a partial cross-sectional view of the magnetic pump with a fluid heat dissipation structure according to the present invention
  • FIG. 6 is a top view of the inner magnetic component of the utility model
  • FIG. 8 is a schematic diagram of the combination of the inner magnetic component and the impeller of the present invention.
  • FIG. 9 is a perspective view of the inner magnetic component of the present invention.
  • Magnetic actuator 4 coupling 41, inner magnetic assembly 42, liquid outlet hole 421, mounting groove 422, liquid inlet groove 423, fixed clamping groove 424, bearing 43, cut surface 431, liquid guide projection 432, spiral concave Groove 433, mounting projection 434, rotating shaft 44, liquid flow channel 45, first heat radiation flow channel 46, second heat radiation flow channel 47, liquid inlet flow channel 48;
  • the impeller 5 the liquid discharge gap 51, the reverse water blade 52, the liquid inlet hole 53, the holding column 54, and the fixing column 55.
  • a magnetic pump with a fluid heat dissipation structure includes a base 1, an upper casing 2, a motor 3, a magnetic actuator 4, and an impeller 5, two ends of the base 1 are fixedly connected to the upper casing, respectively 2 and the motor 3, a liquid inlet channel 21 and a liquid outlet channel 22 are provided on both sides of the upper shell 2 respectively, and an inner cavity for accommodating the impeller 5 is formed between the upper shell 2 and the base 1 ;
  • the magnetic actuator 4 includes a coupling 41, an inner magnetic assembly 42, a bearing 43 and a rotating shaft 44, and the coupling 41, the inner magnetic assembly 42, the bearing 43 and The axis of the rotating shaft 44 is on the same straight line;
  • the coupling 41 is accommodated in the base 1;
  • the inner magnetic assembly 42 is placed in the coupling 41, and a liquid is formed between the two
  • a flow channel 45, a liquid outlet hole 421 is provided at the lower end of the inner magnetic component 42;
  • the bearing 43 is placed in the inner magnetic component 42, and a first heat dissipating flow channel 46 is formed between the two;
  • the rotating shaft 44 is fixedly connected to the output shaft of the motor 3, the rotating shaft 44 is inserted into the bearing 43, and a second heat dissipation flow path 47 is formed between the two;
  • the liquid inlet channel 21, the liquid flow channel 45, the first heat radiation flow channel 46, the second heat radiation flow channel 47, the liquid outlet hole 421 and the liquid outlet channel 22 are connected, the The impeller 5 is connected to the inner magnetic component 42 and carries the liquid from the liquid inlet channel 21 into the liquid flow channel 45 as the inner magnetic component 42 rotates, and flows through the first heat dissipation flow respectively
  • the channel 46 and the second heat dissipation flow channel 47 thus dissipate heat to the inner magnetic assembly 42 and the bearing 43, and are finally discharged from the liquid discharge hole 421 and the liquid discharge channel 22.
  • the liquid flow direction in the pump and the ingenious design of the liquid flow channel are used to achieve the effect of self-heat dissipation.
  • the gap between the inner magnetic component 42 and the coupling 41 serves as the liquid flow channel 45 , So that the liquid flow channel 45 has sufficient and continuous liquid and fast liquid flow speed, at the same time, by adding the first heat dissipation flow channel 46 and the second heat dissipation flow channel 47, effectively
  • the heat generated by the magnetic assembly 42 and the bearing 43 during operation is dissipated to the outside environment, achieving better self-cooling and heat dissipation effects, and at the same time reducing the loss of spare parts.
  • the outer circumferential surface of the bearing 43 is provided with four cut surfaces 431 at intervals, the cut surface 431 extends from the upper end of the outer surface of the bearing 43 to the lower end of the outer surface of the bearing 43, the outer surface of the bearing 43
  • the lower end of the corresponding to the end of the cutting surface 431 is provided with a liquid-conducting projection 432, the cutting surface 431, the inner wall of the inner magnetic assembly 42 and the liquid-conducting projection 432 are enclosed to form the first heat dissipation flow channel 46 ;
  • two spiral grooves 433 are provided on the inner wall of the bearing 43, and the two spiral grooves 4433 extend from one end of the inner wall of the bearing 43 to the other end of the inner wall of the bearing 43.
  • the inner wall, the spiral groove 433 and the rotating shaft 44 are enclosed to form the second heat dissipating flow channel 47; by adding two second heat dissipating flow channels 47 between the rotating shaft 44 and the bearing 43 And, the flow directions of the two second heat dissipation flow channels 47 are the same, which is beneficial to increase the internal circulation flow rate between the rotating shaft 44 and the bearing 43, and enhance the heat dissipation efficiency.
  • the inner magnetic assembly 42 is evenly provided with a plurality of mounting grooves 422, and the upper end of the bearing 43 is provided with mounting protrusions 434 for fixing on the mounting grooves 422;
  • the block 434 and the mounting groove 422 facilitate the fixing of the bearing 43 on the inner magnetic component 42, prevent relative movement of the bearing 43 and the inner magnetic component 42, and reduce the loss of spare parts.
  • the number of the mounting grooves 422 is eight, the number of the mounting protrusions 434 is four, and after the bearing 43 is fixed to the inner magnetic assembly 42, there are four mounting grooves distributed at intervals 422, and the remaining four installation grooves 422 correspond to and communicate with the four first heat dissipation flow channels 46 one by one, the installation groove 422 can gather more liquid, so that more liquid enters the In the first heat dissipation flow channel 46, the flow rate of the liquid is further increased to enhance the heat dissipation effect.
  • the upper end of the impeller 5 is provided with a liquid discharge notch 51 corresponding to the liquid discharge hole 421, and the liquid discharge hole 421 and the liquid discharge notch 51 are provided corresponding to the first heat dissipation flow channel 46
  • the liquid outlet hole 421 is located at the end of the first heat dissipation flow channel 46
  • the upper end of the impeller 5 is located on both sides of the liquid outlet notch 51, and a reverse water blade 52 is protruded outward.
  • the impeller 5 drives the counter-water blade 52 to rotate, generating centrifugal force to drive air or liquid to circulate quickly to enhance the cooling effect of the inner magnetic assembly 42 and the bearing 43, and improve the idling function of the present invention without rapid wear .
  • the impeller 5 is provided with a liquid inlet hole 53
  • the inner magnetic assembly 42 is provided with a liquid inlet groove 423
  • the liquid inlet hole 53 and the liquid inlet groove 423 communicate with each other to form a liquid inlet flow channel 48
  • the liquid inlet flow channel 48 is provided with four corresponding to the first heat dissipation flow channel 46
  • the liquid outlet hole 421 is in communication with the liquid outlet channel 22; when the liquid inlet channel 21 enters the liquid, the liquid can be quickly led to the liquid flow channel 45 through the liquid inlet channel 48,
  • the first heat dissipation flow path 46, the second heat dissipation flow path 47 and the liquid outlet hole 421 are filled and filled, that is, the moment the
  • liquid inlet flow channel 48 a plurality of the liquid inlet flow channel 48, the liquid flow channel 45, the first heat radiation flow channel 46, the second heat radiation flow channel 47, and the liquid outlet hole 421 are provided.
  • the lower end of the inner magnetic assembly 42 is further provided with a fixing groove 424, and the upper end of the impeller 5 is circumferentially provided with a plurality of retaining posts 54 and fixed retaining posts 55, the retaining posts 54 resist Held at the lower end of the inner magnetic assembly 42, the fixed clamping post 55 is engaged in the fixed clamping groove 424; the inner magnetic assembly 42 and the impeller 5 are connected in a snap-type connection, the connection between the two is more Convenient, fast installation, and stable.
  • the working principle of the present invention is: when the motor 3 drives the rotating shaft 44 to rotate through the coupling 41, the magnetic field penetrates the air gap and the non-magnetic substance, driving the inner magnetic assembly 42 and fixedly connected in the The impeller 5 on the magnetic assembly 42 rotates synchronously, and the liquid enters the pump from the liquid inlet channel 21 and flows to the position where the impeller 5 rotates;
  • the impeller 5 brings liquid from the liquid inlet channel 21 into the liquid flow path 45.
  • the liquid flows from the liquid flow path 45 through the first heat dissipation flow path 46, the liquid The liquid outlet hole 421 and the liquid outlet gap 51 flow out, and the centrifugal force generated by the reverse water blade 52 causes a part of the liquid to continue to flow back into the liquid flow channel 45 to form a circulation, and the other part of the liquid is thrown from the liquid outlet channel 22
  • the liquid flows from the liquid flow path 45 through the second heat dissipation flow path 47 it flows back to the position where the impeller 5 rotates, and a part of the liquid flows back to the liquid under the impeller 5 A circulation is formed in the flow channel 45, and another part of the liquid is thrown out of the liquid outlet channel 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种具有流体散热结构的磁力泵,磁力传动器(4)包括联轴器(41)、内磁组件(42)、轴承(43)和转轴(44),联轴器(41)容置在底座(1)中,内磁组件(42)置于联轴器(41)内,且二者之间形成有液体流道(45),内磁组件(42)的下端设有出液孔(421),轴承(43)置于内磁组件(42)内,且二者之间形成有第一散热流道(46);转轴(44)与电机(3)的输出轴固定连接,转轴(44)插入轴承(43)内,且二者之间形成有第二散热流道(47)。该磁力泵通过多流道散热带走更多的热量,依靠泵内液体循环,将热量带出泵体外,散热效果好。

Description

一种具有流体散热结构的磁力泵 技术领域
本实用新型涉及磁力泵技术领域,尤其涉及一种具有流体散热结构的磁力泵。
背景技术
磁力泵主要由底座、上壳、电机、磁力传动器以及叶轮等几部分零件组成。磁力传动器由转轴、内磁组件和联轴器组成,当电机带动转轴旋转时,磁场能穿透空气间隙和非磁性物质,带动与叶轮相连的内磁组件作同步旋转,实现动力的无接触同步传递,将容易泄露的动密封结构转化为零泄漏的静密封结构。
一方面,磁力泵的内磁组件在工作过程中会产生热量,热量的堆积会升高内磁组件的温度,温度过高会损坏内磁组件,严重影响内磁组件寿命;另一方面,轴承围绕转轴作高速同心旋转,作相对高速旋转运动的轴承与转轴接触处会因物体表面摩擦及震动产生大量的热能量,当此热能量无法消散并且不断积累后,对磁力泵的结构及性能会产生毁灭性的损坏。
因此,所以磁力泵在工作过程中需要实时的对内磁组件和轴承进行冷却降温,因为内磁组件和轴承是放置在磁力泵的内部,所以对内磁组件和轴承的降温是存在一定的技术难度。
实用新型内容
为了解决上述技术问题,本实用新型提供了一种具有流体散热结构的磁力泵,通过多流道散热带走更多的热量,并且依靠泵内液体循环,将热量带出泵体外,散热效果好。
该实用新型提供以下技术方案,一种具有流体散热结构的磁力泵,包括底座、上壳、电机、磁力传动器以及叶轮,所述底座的两端分别固定连接所述上壳和所述电机,所述上壳的两侧分别设置有进液通道与出液通道,所述上壳与所述底座之间构成容置所述叶轮的内腔;
所述磁力传动器包括联轴器、内磁组件、轴承和转轴,所述联轴器容置在所述底座中;所述内磁组件置于所述联轴器内,且二者之间形成有液体流道,所述内磁组件的下端设有出液孔;所述轴承置于所述内磁组件内,且二者之间形成有第一散热流道;所述转轴与所述电机的输出轴固定连接,所述转轴插入所述轴承内,且二者之间形成有第二散热流道;
所述进液通道、所述液体流道、所述第一散热流道、所述第二散热流道、所述出液孔和所述出液通道相连通,所述叶轮连接在所述内磁组件上并随所述内磁组件转动而将液体从所述进液通道带入所述液体流道中,并分别流经所述 第一散热流道和所述第二散热流道从而对所述内磁组件和所述轴承进行散热,最后从所述出液孔和所述出液通道排出。
进一步地,所述轴承的圆周外表面间隔设有多个切面,所述切面由所述轴承外表面的上端延伸至所述轴承外表面的下端,所述轴承外表面的下端对应所述切面的末端设有导液凸块,所述切面、所述内磁组件的内壁和所述导液凸块相围合形成所述第一散热流道。
进一步地,所述轴承的内壁设有两条螺旋凹槽,两条所述螺旋凹槽由所述轴承内壁的一端延伸至所述轴承内壁的另一端,所述轴承的内壁、所述螺旋凹槽和所述转轴相围合形成所述第二散热流道。
进一步地,所述内磁组件上均匀设有多个安装凹槽,所述轴承的上端设有用于固定在所述安装凹槽上的安装凸块。
较佳地,所述叶轮的上端对应所述出液孔开设有出液缺口,所述叶轮的上端位于所述出液缺口的两侧向外凸出设有反水叶片。
较佳地,所述叶轮上开设有进液孔,所述内磁组件上设有进液通槽,所述进液孔和所述进液通槽相连通形成有进液流道,所述进液流道与所述进液通道、所述液体流道、所述第一散热流道、所述第二散热流道、所述出液孔和所述出液通道相连通。
进一步地,所述进液流道、所述液体流道、所述第一散热流道、所述第二散热流道和所述出液孔设置有多个。
进一步地,所述内磁组件的下端还设有固定卡槽,所述叶轮的上端周向设有多个抵持柱和固定卡柱,所述抵持柱抵持在所述内磁组件的下端,所述固定卡柱卡合在所述固定卡槽中。
进一步地,所述联轴器、所述内磁组件、所述轴承和所述转轴的轴线处于同一直线上。
本实用新型的有益效果为:本实用新型通过泵内的液体流向及液流通道的巧妙设计以达到自散热的效果,该内磁组件与联轴器之间的空隙作为液体流道,使得该液体流道中有充分并连续的液体和快速的液流速度,同时,通过增设第一散热流道和第二散热流道,即增加泵内的液体循环通道,以增加内磁组件和轴承表面冷却液体流量及流速,保证了内磁组件和轴承升温区有足够的冷却液体流动,有效地将内磁组件和轴承在运转过程中产生的热量散发至外界环境,达到更好的自冷却、散热效果,同时减少了零配件的损耗。
附图说明
图1为本实用新型所述具有流体散热结构的磁力泵的立体图;
图2为本实用新型所述具有流体散热结构的磁力泵的分解示意图;
图3为本实用新型所述具有流体散热结构的磁力泵的部分剖视图;
图4为本实用新型所述磁力传动器的分解示意图;
图5为本实用新型所述轴承的立体图;
图6为本实用新型所述内磁组件的俯视图;
图7为本实用新型所述叶轮的俯视图;
图8为本实用新型所述内磁组件和所述叶轮的组合示意图;
图9为本实用新型所述内磁组件的立体图。
附图标记说明:
底座1;
上壳2,进液通道21,出液通道22;
电机3;
磁力传动器4,联轴器41,内磁组件42,出液孔421,安装凹槽422,进液通槽423,固定卡槽424,轴承43,切面431,导液凸块432,螺旋凹槽433,安装凸块434,转轴44,液体流道45,第一散热流道46,第二散热流道47,进液流道48;
叶轮5,出液缺口51,反水叶片52,进液孔53,抵持柱54,固定卡柱55。
具体实施方式
为了使本实用新型的实用新型目的,技术方案及技术效果更加清楚明白,下面结合具体实施方式对本实用新型做进一步的说明。应理解,此处所描述的具体实施例,仅用于解释本实用新型,并不用于限定本实用新型。
参照图1和图2,一种具有流体散热结构的磁力泵,包括底座1、上壳2、电机3、磁力传动器4以及叶轮5,所述底座1的两端分别固定连接所述上壳2 和所述电机3,所述上壳2的两侧分别设置有进液通道21与出液通道22,所述上壳2与所述底座1之间构成容置所述叶轮5的内腔;
参照图3和图4,所述磁力传动器4包括联轴器41、内磁组件42、轴承43和转轴44,并且所述联轴器41、所述内磁组件42、所述轴承43和所述转轴44的轴线处于同一直线上;所述联轴器41容置在所述底座1中;所述内磁组件42置于所述联轴器41内,且二者之间形成有液体流道45,所述内磁组件42的下端设有出液孔421;所述轴承43置于所述内磁组件42内,且二者之间形成有第一散热流道46;所述转轴44与所述电机3的输出轴固定连接,所述转轴44插入所述轴承43内,且二者之间形成有第二散热流道47;
所述进液通道21、所述液体流道45、所述第一散热流道46、所述第二散热流道47、所述出液孔421和所述出液通道22相连通,所述叶轮5连接在所述内磁组件42上并随所述内磁组件42转动而将液体从所述进液通道21带入所述液体流道45中,并分别流经所述第一散热流道46和所述第二散热流道47从而对所述内磁组件42和所述轴承43进行散热,最后从所述出液孔421和所述出液通道22排出。
在本实用新型中,通过泵内的液体流向及液流通道的巧妙设计以达到自散热的效果,所述内磁组件42与所述联轴器41之间的空隙作为所述液体流道45,使得所述液体流道45中有充分并连续的液体和快速的液流速度,同时,通过增设所述第一散热流道46和所述第二散热流道47,有效地将所述内磁组件42和 所述轴承43在运转过程中产生的热量散发至外界环境,达到更好的自冷却、散热效果,同时减少了零配件的损耗。
参照图5,所述轴承43的圆周外表面间隔设有四个切面431,所述切面431由所述轴承43外表面的上端延伸至所述轴承43外表面的下端,所述轴承43外表面的下端对应所述切面431的末端设有导液凸块432,所述切面431、所述内磁组件42的内壁和所述导液凸块432相围合形成所述第一散热流道46;通过在所述轴承43与所述内磁组件42之间增加四条所述第一散热流道46,增加泵内液体循环通道,即增加泵内的液体循环通道,以增加所述内磁组件42和所述轴承43表面冷却液体流量及流速,保证了所述内磁组件42和所述轴承43升温区有足够的冷却液体流动,达到有效散热的目的。
进一步地,所述轴承43的内壁设有两条螺旋凹槽433,两条所述螺旋凹槽4433由所述轴承43内壁的一端延伸至所述轴承43内壁的另一端,所述轴承43的内壁、所述螺旋凹槽433和所述转轴44相围合形成所述第二散热流道47;通过在所述转轴44与所述轴承43之间增加两条所述第二散热流道47,且两条所述第二散热流道47的流向相同,有利于增加所述转轴44与所述轴承43之间的内循环流量,增强散热效率。
参照图6,所述内磁组件42上均匀设有多个安装凹槽422,所述轴承43的上端设有用于固定在所述安装凹槽422上的安装凸块434;通过所述安装凸块 434和所述安装凹槽422,以便于所述轴承43固定于所述内磁组件42上,防止所述轴承43与所述内磁组件42作相对运动,减少零配件的损耗。
优选地,所述安装凹槽422设置为八个,所述安装凸块434设置为四个,所述轴承43固定于所述内磁组件42后,余下间隔分布的四个所述安装凹槽422,并且余下的四个所述安装凹槽422与四条所述第一散热流道46一一对应并连通,所述安装凹槽422能够聚拢更多的液体,使更多的液体进入到所述第一散热流道46中,进一步增加了液体的流量,强化散热效果。
参照图7和图8,所述叶轮5的上端对应所述出液孔421开设有出液缺口51,所述出液孔421和所述出液缺口51对应所述第一散热流道46设置为四个,并且所述出液孔421位于所述第一散热流道46的末端,所述叶轮5的上端位于所述出液缺口51的两侧向外凸出设有反水叶片52,所述叶轮5带动所述反水叶片52转动,产生离心力带动空气或液体快速流通从而增强冷却所述内磁组件42和所述轴承43的效果,提升本实用新型的空转功能而不至于快速磨损。
参照图3、图7和图9,所述叶轮5上开设有进液孔53,所述内磁组件42上设有进液通槽423,所述进液孔53和所述进液通槽423相连通形成有进液流道48,所述进液流道48对应所述第一散热流道46设置为四条,并且液体从所述进液流道48流入后直接到达所述第一散热流道46和所述出液孔421,所述进液流道48与所述进液通道21、所述液体流道45、所述第一散热流道46、所述第二散热流道47、所述出液孔421和所述出液通道22相连通;当所述进液通道 21进入液体时,通过所述进液流道48能够快速将液体导流至所述液体流道45、所述第一散热流道46、所述第二散热流道47和所述出液孔421中并填满,即磁力泵启动的一刻,液体就在各液流通道中流动,实现对所述内磁组件42和所述轴承43进行实时地冷却降温。
进一步地,所述进液流道48、所述液体流道45、所述第一散热流道46、所述第二散热流道47和所述出液孔421设置有多个。
参照图7和图9,所述内磁组件42的下端还设有固定卡槽424,所述叶轮5的上端周向设有多个抵持柱54和固定卡柱55,所述抵持柱54抵持在所述内磁组件42的下端,所述固定卡柱55卡合在所述固定卡槽424中;所述内磁组件42与所述叶轮5采用卡扣式连接,二者连接更为方便,实现快速安装,并且稳固。
本实用新型的工作原理为:所述电机3通过所述联轴器41驱动所述转轴44旋转时,磁场穿透空气间隙和非磁性物质,带动所述内磁组件42和固定连接在该内磁组件42上的所述叶轮5作同步旋转,液体从所述进液通道21进入到泵内,并流到所述叶轮5转动的位置;
液体在所述叶轮5转动时会出现两种情况:
1、利用所述叶轮5的离心力,液体直接从所述出液通道22甩出;
2、所述叶轮5将液体从所述进液通道21带入所述液体流道45中,一方面,液体从所述液体流道45流经所述第一散热流道46后,从所述出液孔421和所 述出液缺口51流出,所述反水叶片52产生的离心力令一部分液体继续流回所述液体流道45中形成循环,另一部分液体从所述出液通道22甩出;另一方面,液体从所述液体流道45流经所述第二散热流道47后,流回所述叶轮5转动的位置,一部分液体在所述叶轮5的带动下流回所述液体流道45中形成循环,另一部分液体从所述出液通道22甩出。
以上内容是结合具体的优选实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,其架构形式能够灵活多变,可以派生系列产品。只是做出若干简单推演或替换,都应当视为属于本实用新型由所提交的权利要求书确定的专利保护范围。

Claims (9)

  1. 一种具有流体散热结构的磁力泵,包括底座、上壳、电机、磁力传动器以及叶轮,所述底座的两端分别固定连接所述上壳和所述电机,所述上壳的两侧分别设置有进液通道与出液通道,所述上壳与所述底座之间构成容置所述叶轮的内腔;
    所述磁力传动器包括联轴器、内磁组件、轴承和转轴,其特征在于:所述联轴器容置在所述底座中;所述内磁组件置于所述联轴器内,且二者之间形成有液体流道,所述内磁组件的下端设有出液孔;所述轴承置于所述内磁组件内,且二者之间形成有第一散热流道;所述转轴与所述电机的输出轴固定连接,所述转轴插入所述轴承内,且二者之间形成有第二散热流道;
    所述进液通道、所述液体流道、所述第一散热流道、所述第二散热流道、所述出液孔和所述出液通道相连通,所述叶轮连接在所述内磁组件上并随所述内磁组件转动而将液体从所述进液通道带入所述液体流道中,并分别流经所述第一散热流道和所述第二散热流道从而对所述内磁组件和所述轴承进行散热,最后从所述出液孔和所述出液通道排出。
  2. 如权利要求1所述的具有流体散热结构的磁力泵,其特征在于:所述轴承的圆周外表面间隔设有多个切面,所述切面由所述轴承外表面的上端延伸至所述轴承外表面的下端,所述轴承外表面的下端对应所述切面的末端设有导液凸块,所述切面、所述内磁组件的内壁和所述导液凸块相围合形成所述第一散热流道。
  3. 如权利要求2所述的具有流体散热结构的磁力泵,其特征在于:所述轴承的内壁设有两条螺旋凹槽,两条所述螺旋凹槽由所述轴承内壁的一端延伸至所述轴承内壁的另一端,所述轴承的内壁、所述螺旋凹槽和所述转轴相围合形成所述第二散热流道。
  4. 如权利要求3所述的具有流体散热结构的磁力泵,其特征在于:所述内磁组件上均匀设有多个安装凹槽,所述轴承的上端设有用于固定在所述安装凹槽上的安装凸块。
  5. 如权利要求1所述的具有流体散热结构的磁力泵,其特征在于:所述叶轮的上端对应所述出液孔开设有出液缺口,所述叶轮的上端位于所述出液缺口的两侧向外凸出设有反水叶片。
  6. 如权利要求1所述的具有流体散热结构的磁力泵,其特征在于:所述叶轮上开设有进液孔,所述内磁组件上设有进液通槽,所述进液孔和所述进液通槽相连通形成有进液流道,所述进液流道与所述进液通道、所述液体流道、所述第一散热流道、所述第二散热流道、所述出液孔和所述出液通道相连通。
  7. 如权利要求6所述的具有流体散热结构的磁力泵,其特征在于:所述进液流道、所述液体流道、所述第一散热流道、所述第二散热流道和所述出液孔设置有多个。
  8. 如权利要求1所述的具有流体散热结构的磁力泵,其特征在于:所述内磁组件的下端还设有固定卡槽,所述叶轮的上端周向设有多个抵持柱和固定卡 柱,所述抵持柱抵持在所述内磁组件的下端,所述固定卡柱卡合在所述固定卡槽中。
  9. 如权利要求1所述的具有流体散热结构的磁力泵,其特征在于:所述联轴器、所述内磁组件、所述轴承和所述转轴的轴线处于同一直线上。
PCT/CN2019/077431 2019-01-02 2019-03-08 一种具有流体散热结构的磁力泵 WO2020140323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920016753.X 2019-01-02
CN201920016753.XU CN209385361U (zh) 2019-01-02 2019-01-02 一种具有流体散热结构的磁力泵

Publications (1)

Publication Number Publication Date
WO2020140323A1 true WO2020140323A1 (zh) 2020-07-09

Family

ID=67863645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077431 WO2020140323A1 (zh) 2019-01-02 2019-03-08 一种具有流体散热结构的磁力泵

Country Status (2)

Country Link
CN (1) CN209385361U (zh)
WO (1) WO2020140323A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216407286U (zh) * 2021-09-30 2022-04-29 东莞市创升机械设备有限公司 一种循环水冷结构及磁力泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247985A (ja) * 1994-03-08 1995-09-26 Ogihara Seisakusho:Kk モータ用冷却機構付ポンプ
CN201152283Y (zh) * 2007-07-18 2008-11-19 吴晃璋 改进的磁力泵的轴承散热结构
CN203962496U (zh) * 2014-07-10 2014-11-26 梁中昌 一种新型磁力泵內磁散热结构
CN205136143U (zh) * 2015-10-22 2016-04-06 嘉善川田环保科技有限公司 一种新型磁力泵内磁散热结构
CN206468571U (zh) * 2016-12-27 2017-09-05 广东麦格流体科技有限公司 一种磁力泵散热轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247985A (ja) * 1994-03-08 1995-09-26 Ogihara Seisakusho:Kk モータ用冷却機構付ポンプ
CN201152283Y (zh) * 2007-07-18 2008-11-19 吴晃璋 改进的磁力泵的轴承散热结构
CN203962496U (zh) * 2014-07-10 2014-11-26 梁中昌 一种新型磁力泵內磁散热结构
CN205136143U (zh) * 2015-10-22 2016-04-06 嘉善川田环保科技有限公司 一种新型磁力泵内磁散热结构
CN206468571U (zh) * 2016-12-27 2017-09-05 广东麦格流体科技有限公司 一种磁力泵散热轴承

Also Published As

Publication number Publication date
CN209385361U (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2016206342A1 (zh) 自循环液冷永磁电机
CN105464996A (zh) 电动液泵
CN214464524U (zh) 柴油机冷却水泵及柴油机冷却水循环系统
WO2020140323A1 (zh) 一种具有流体散热结构的磁力泵
US12107485B2 (en) Permanent magnet motor with air and water mixed cooling system
CN211231468U (zh) 一种多功能高转速的空气压缩机
CN108574375A (zh) 泵用电机和具有其的集成加热泵
CN212959562U (zh) 一种水冷式轴承座
JPH11280917A (ja) シ―ル装置
WO2022089539A1 (zh) 集成化电驱系统冷却结构及集成化电驱系统
US11415129B2 (en) High-pressure pump
CN211288697U (zh) 一种环流冷却减速机
TWI742747B (zh) 渦流水箱
CN212033943U (zh) 一种潜水电泵电机自循环散热装置
CN205503475U (zh) 一种用于发动机冷却循环的无叶片涡轮泵
CN110752729A (zh) 一种复合传动的双转子新能源汽车电机
CN218976510U (zh) 一种水冷电机
CN221896835U (zh) 耐腐蚀泵用机械密封装置
CN117040192B (zh) 一种具有高速转子的高速永磁电机
CN219420503U (zh) 一种水冷电驱一体化水泵电机结构
CN218920181U (zh) 一种散热性强的微型电机
CN219918642U (zh) 一种可高效散热的交流伺服电机
CN213990363U (zh) 一种具有散热功能的三相异步电机
CN216278521U (zh) 一种离心泵的传动部件
CN220234402U (zh) 一种自运转高压喷气式散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907021

Country of ref document: EP

Kind code of ref document: A1