WO2020139104A1 - Procédé de production de l'isotope radioactif molybdène-99 - Google Patents

Procédé de production de l'isotope radioactif molybdène-99 Download PDF

Info

Publication number
WO2020139104A1
WO2020139104A1 PCT/RU2018/000873 RU2018000873W WO2020139104A1 WO 2020139104 A1 WO2020139104 A1 WO 2020139104A1 RU 2018000873 W RU2018000873 W RU 2018000873W WO 2020139104 A1 WO2020139104 A1 WO 2020139104A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
target
radioisotope
producing
liquid
Prior art date
Application number
PCT/RU2018/000873
Other languages
English (en)
Russian (ru)
Inventor
Александр Иванович КОСТЫЛЕВ
Владимир Дмитриевич РИСОВАНЫЙ
Александр Олегович АНДРОНОВ
Виктор Николаевич ДУШИН
Юрий Иванович ТРИФОНОВ
Владимир Анатольевич ЯКОВЛЕВ
Александр Евгеньевич МИРОСЛАВОВ
Original Assignee
Акционерное общество "Радиевый институт имени В.Г. Хлопина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Радиевый институт имени В.Г. Хлопина" filed Critical Акционерное общество "Радиевый институт имени В.Г. Хлопина"
Priority to EA201992785A priority Critical patent/EA201992785A1/ru
Publication of WO2020139104A1 publication Critical patent/WO2020139104A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/02Separation by phase transition
    • B01D59/04Separation by phase transition by distillation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes

Definitions

  • the invention relates to a technology for producing radioisotopes and can be used to produce a molybdenum-99 radioisotope, which is the basis for the creation of Mo-99 / Tc-99t radioisotope generators, which have been widely used in nuclear medicine for diagnostic purposes.
  • the main method for producing Mo-99 radioisotopes is irradiation of uranium-235 nuclei in nuclear reactors - a reactor fission method.
  • This reactor method allows to obtain Mo-99 with virtually no carriers (other molybdenum isotopes) with the highest specific activity - more than 5,000 Ci / g.
  • An alternative method is the activation method, when Mo-98 isotopes are irradiated in a nuclear reactor with neutrons or targets from Mo-98 and Mo-100 in an accelerator. To date, this method has not received wide distribution due to the low specific activity of Mo-99 (usually less than 1 Ci / g).
  • the Tc-99m generators used in clinical practice are designed to use high specific activity, not less than 1000-5000 Ci / g, as the maternal isotope of Mo-99 [Baranov V.Yu. (ed.). Isotopes: properties, production, application. Volume 2, Moscow: Fizmatlit, 2005. - 728 p.]. Therefore, the task is to implement an effective method for producing Mo-99 of high specific activity.
  • the 99 Mo radioisotope isolated from fission products has a specific activity of the order of 10 5 Ci / g.
  • the main disadvantage of this method is that, in addition to 99 Mo, fission of uranium nucleus leads to the formation of accompanying fragments, the total activity of which significantly exceeds the activity of the target radioisotope [Markina MA, Starizny V. S., Breger A.Kh. "The energy distribution of gamma radiation of fission products U at a short exposure time.” Atomic Energy, 1979, Volume 46, Issue 6, p.411].
  • the target is irradiated from the molybdenum oxide M0O3 in a nuclear reactor, after the target is removed from the reactor, it is dissolved to obtain a solution of sodium molybdate Na2MoC> 4, which is used to fill the technetium-99t chromatographic (non-extraction) generators (Mo -99 / Tc-99t).
  • Adsorbing columns in the composition of the Tc-99m generators are “clogged” with carrier isotopes and do not allow efficient extraction of technetium-99t when pumping the columns with medical saline. This limits and in most cases prevents the use of molybdenum-99 activation in traditional Mo-99 / Tc-99t generators.
  • This method of producing a 99 Mo radionuclide involves irradiating the starting material with neutrons and the subsequent release of activation isotopes.
  • refractory radiation and thermally stable molybdenum compounds with a particle size of (5-H00) x 10 9 m are used as starting material.
  • the starting material is irradiated with neutrons, and activation isotopes are extracted from the surface layer of the starting material by dissolving this layer in acid or alkali, or mixtures of acids, or mixtures of alkalis.
  • the starting material used is preferably molybdenum carbide (M02C) with a natural content in
  • molybdenum of the Mo isotope or with enriched molybdenum by the Mo isotope isotope.
  • Neutron irradiation of the starting material is carried out to a specific accumulation of 99 Mo radionuclide of more than 1 Ci / g.
  • Activation isotopes are isolated from the surface layer of the starting material by dissolving this layer in acids or alkalis, or a mixture of acids, or a mixture of alkalis within 30 to 30 minutes. After isolation of activation isotopes, irradiation of the starting material is repeated many times.
  • molybdenum isotope Mo molybdenum isotope Mo.
  • the indicated possibility of repeated exposure is the advantage of this method.
  • the main disadvantage of the method chosen by us as a prototype is associated with the insignificant activity of the obtained Mo-99 — about 1 Ci / g, which does not allow using it in standard commercial Tc-99 generators.
  • the technical problem to which the invention is directed is to eliminate this drawback, namely: increasing the specific activity of radioactive molybdenum-99 to values of more than 1000 Ci / g, with the possibility of multiple use of the molybdenum compound for the manufacture of the target and simplifying the process.
  • the method of obtaining the radioisotope molybdenum-99 which includes the manufacture of the target from molybdenum-98; irradiation of the target with neutrons with activation of molybdenum-98 to molybdenum-99; separation after irradiation from the target of non-activated molybdenum-98 from the activated part of the target of molybdenum-99; dissolving the activated part of the molybdenum-99 target in solutions of acids or alkalis to obtain a molybdenum-99 radioisotope; however, for the manufacture of the target using a liquid compound of molybdenum, placed in an airtight capsule; separation from the target after irradiation of the inactive part of molybdenum-98 is carried out in the form of a gas by evaporation of the liquid when heated above the temperature of the phase transition from liquid to gas; the removed gaseous fraction of unactivated molybdenum-98
  • a sealed ampoule is used in the form of a collapsible device with two compartments connected by cranes, in the first of which the chemical compound is irradiated in a liquid state, and in the second after heating it is collected in a gaseous state.
  • a sealed ampoule is used in the form of a loop device that allows to periodically transfer a chemical compound from a liquid to a gaseous state with dissolving the activated part of the molybdenum-99 target in acid or alkali solutions and producing a molybdenum-99 radioisotope.
  • molybdenum-98 hexafluoride with an isotopic content of molybdenum-98 is used from a natural level of 23.75% to an enrichment level of 99.95%.
  • the sealed ampoule contains materials on the surface of which the activated part of the target molybdenum-99 is deposited
  • irradiation of the target is carried out at a temperature of from 20 ° C to
  • the method is as follows:
  • Molybdenum hexafluoride of a natural isotopic composition or enriched in the Mo-98 isotope is placed in a metal ampoule by condensation, the ampoule is welded, placed in a protective metal container and irradiated in a neutron flux 10 - n / (cm2 s) for 1 to 15 days.
  • the irradiated target is transferred to a hot chamber for 1 day, opened, connected to a vacuum system, and gaseous molybdenum hexafluoride is condensed.
  • the target is disconnected from the vacuum system and filled with a calculated amount of an alkali solution of NaOH with a concentration of 0.2 - 0.3 M.
  • the 99 Mo nuclei formed When irradiated as a result of neutron capture by 98 MOF 6 nuclei, the 99 Mo nuclei formed are initially in an excited state. When the excitation is removed by emitting instant gamma rays, some of the recoil atoms (99Mo) receive an impulse sufficient to break chemical bonds with the removal of the fluorine atom and the formation of lower molybdenum fluoride, which is deposited on the walls of the target. After completion of irradiation and removal of the bulk of molybdenum hexafluoride, non-volatile components formed as a result of activation of 98 MoF 6 dissolve in alkali to form sodium molybdate Na2 98 MoC> 4. The resulting solution is used to charge generators. The specific activity of Mo-99 in the resulting solution at the time of manufacture is from 10 to 5000 Ci / g, depending on the magnitude of the neutron flux and the exposure time.
  • Table 1 The isotopic composition of molybdenum hexafluoride.
  • the target was placed in a 0.5 L titanium ampoule by recondensation in vacuo.
  • the ampoule was made in the form of a collapsible device with two compartments connected by cranes, in the first of which the chemical compound was irradiated in a liquid state, and in the second after heating it was collected in a gaseous state.
  • An ampoule with molybdenum-98 hexafluoride was installed in an irradiator containing 4 neutron sources for California-252 with a neutron flux from each 2 ⁇ 10 7 n / s. To correct the neutron spectrum, the ampoule is surrounded by polyethylene with a thickness of
  • the target was placed in a 0.5 L titanium ampoule by recondensation in vacuo.
  • the ampoule was made in the form of a loop device, with a filter for molybdenum - 99.
  • the ampoule with molybdenum-98 hexafluoride was installed in an irradiation device containing 4 plutonium-beryllium neutron sources, with a neutron flux of 2-10 n / s from each. Irradiation was carried out for 4 days at room temperature.
  • the activity of the activated part of molybdenum-99 is 1700 Ci / g, mass 0.1 g.
  • the activated portion was transferred to the solution by treating the inner surface of the ampoule with 0.5 n NaOH.
  • the inactive portion of the target was condensed and used to re-manufacture the target.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

L'invention concerne une technologie de production de radio-isotopes et peut être utilisée pour produire un radio-isotope molybdène 99, qui sert de base pour la création de générateurs de radio-isotopes Mo-99/Tc-99 largement utilisés en médecine nucléaire à des fins de diagnostic. L'invention est fondée sur l'effet Szillard-Chalmers et vise à augmenter l'activité spécifique du molybdène-99 radioactif en réalisant des valeurs supérieures à 1000 Ci/g, avec possibilité de réutiliser plusieurs fois le composé à base de molybdène dans la fabrication de cible.
PCT/RU2018/000873 2018-12-25 2018-12-26 Procédé de production de l'isotope radioactif molybdène-99 WO2020139104A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201992785A EA201992785A1 (ru) 2018-12-25 2018-12-26 Способ получения радиоизотопа молибден-99

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018146703A RU2703994C1 (ru) 2018-12-25 2018-12-25 Способ получения радиоизотопа молибден-99
RU2018146703 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020139104A1 true WO2020139104A1 (fr) 2020-07-02

Family

ID=68318267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000873 WO2020139104A1 (fr) 2018-12-25 2018-12-26 Procédé de production de l'isotope radioactif molybdène-99

Country Status (3)

Country Link
EA (1) EA201992785A1 (fr)
RU (1) RU2703994C1 (fr)
WO (1) WO2020139104A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724108C1 (ru) * 2019-08-20 2020-06-22 Акционерное общество "Государственный научный центр-Научно-исследовательский институт атомных реакторов" Мишень для наработки радиоактивных изотопов и способ ее изготовления

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2426184C1 (ru) * 2010-07-02 2011-08-10 Открытое акционерное общество "Государственный научный центр - Научно-исследовательский институт атомных реакторов" СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА 99Mo
US9576691B2 (en) * 2009-11-12 2017-02-21 Global Medical Isotope Systems Llc Techniques for on-demand production of medical isotopes such as Mo-99/Tc-99m and radioactive iodine isotopes including I-131

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2426113C1 (ru) * 2010-08-18 2011-08-10 Открытое акционерное общество "Научно-производственное объединение "ХИМАВТОМАТИКА" Способ выполнения нанополикапиллярной хроматографической колонки

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9576691B2 (en) * 2009-11-12 2017-02-21 Global Medical Isotope Systems Llc Techniques for on-demand production of medical isotopes such as Mo-99/Tc-99m and radioactive iodine isotopes including I-131
CA2933961C (fr) * 2009-11-12 2017-08-29 Global Medical Isotope Systems Llc Techniques pour la production sur demande d'isotopes medicaux tels que mo 99/tc 99m et d'isotopes radioactifs de l'iode, y compris i-131
RU2426184C1 (ru) * 2010-07-02 2011-08-10 Открытое акционерное общество "Государственный научный центр - Научно-исследовательский институт атомных реакторов" СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА 99Mo

Also Published As

Publication number Publication date
EA201992785A1 (ru) 2020-06-30
RU2703994C1 (ru) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6279656B2 (ja) 放射性同位元素を生成するための方法及び装置
Zhuikov et al. Production of 225 Ac and 223 Ra by irradiation of Th with accelerated protons
JP5145545B2 (ja) 放射線照射226Ra標的から225Acを精製する方法
CA2797901C (fr) Procede de production d'isotope
SG185105A1 (en) Isotope preparation method
CN104488037A (zh) 用于元素蜕变的设备及方法
RU2490737C1 (ru) Способ получения радиоизотопа молибден-99
Herrmann et al. Rapid chemical separations
US10804000B2 (en) High efficiency continuous-flow production of radioisotopes
RU2703994C1 (ru) Способ получения радиоизотопа молибден-99
Shusterman et al. Aqueous harvesting of Zr 88 at a radioactive-ion-beam facility for cross-section measurements
RU2588594C1 (ru) Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99
Rao et al. Studies on separation and purification of fission 99Mo from Neutron Activated Uranium Aluminum Alloy
CA2583568A1 (fr) Generateur et procede de production de technetium-99m
RU2317607C1 (ru) СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДОВ Th-228 И Ra-224 ДЛЯ ПРОИЗВОДСТВА ТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДОВ Bi-212
RU2578039C1 (ru) Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99
RU2666552C1 (ru) Способ изготовления наноструктурированной мишени для производства молибден-99
Van Der Walt et al. The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use
EA040304B1 (ru) Способ получения радиоизотопа молибден-99
RU2554653C1 (ru) Способ получения радиоизотопа молибден-99
RU2498434C1 (ru) Способ получения радионуклида висмут-212
RU2735646C1 (ru) Способ изготовления наноструктурированной мишени для производства радионуклида молибден-99
Boldyrev et al. 212 Pb/212 Bi Generator for nuclear medicine
Mausner et al. Reactor production of radionuclides
RU2688196C9 (ru) Способ получения радиоизотопа молибден-99

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944396

Country of ref document: EP

Kind code of ref document: A1