WO2020138782A1 - 울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법 - Google Patents

울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법 Download PDF

Info

Publication number
WO2020138782A1
WO2020138782A1 PCT/KR2019/017637 KR2019017637W WO2020138782A1 WO 2020138782 A1 WO2020138782 A1 WO 2020138782A1 KR 2019017637 W KR2019017637 W KR 2019017637W WO 2020138782 A1 WO2020138782 A1 WO 2020138782A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
data
frame data
motion
vehicle
Prior art date
Application number
PCT/KR2019/017637
Other languages
English (en)
French (fr)
Inventor
우성철
임종석
Original Assignee
주식회사 유라코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유라코퍼레이션 filed Critical 주식회사 유라코퍼레이션
Priority to JP2021534815A priority Critical patent/JP7279165B2/ja
Priority to US17/418,547 priority patent/US20220075051A1/en
Priority to CN201980086592.4A priority patent/CN113226861B/zh
Priority to EP19905512.0A priority patent/EP3878701A4/en
Publication of WO2020138782A1 publication Critical patent/WO2020138782A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01542Passenger detection systems detecting passenger motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to an in-vehicle passenger detection system and method, and more particularly, to an in-vehicle passenger detection system and method using an Ultra-Wide Band radar.
  • FIG. 1 is a view for explaining a typical method for detecting a passenger in a vehicle using an Ultra-Wide Band radar according to the prior art.
  • the received data is collected for a long time in order to minimize errors caused by vibrations inside the vehicle and errors due to multiple reflections. Thereafter, a frequency signal corresponding to breathing or heart rate is detected in the frequency domain using a Fourier transform to recognize whether the passenger is in the vehicle.
  • the problem to be solved by the present invention is to provide an in-vehicle passenger detection system and method capable of quickly detecting an in-vehicle passenger using an Ultra-Wide Band radar.
  • the in-vehicle passenger detection system for solving the above-described problems transmits and receives an ultra-wide band radar pulse signal at a constant time period, and receives and receives reflected signals reflected by objects in the vehicle. part; A behavior detection module that detects the behavior of a passenger in the vehicle using the reflected signal; And a fine motion detection module that detects the respiration or heartbeat of the passenger in the vehicle using the reflected signal.
  • the in-vehicle passenger detection system when the in-vehicle passenger is detected by the behavior detection module and the fine motion detection module, a communication unit for transmitting the passenger detection facts to the driver terminal or the administrator terminal through a wired or wireless communication network; can do.
  • the behavior detection module generates frame data including a plurality of frame values indicating the magnitude of the reflected signal, which samples the reflected signal at regular time periods, and calculates a difference value between frame values of frame data adjacent to each other in time.
  • Motion data is generated and stored. Accumulated frame-by-frame values of the stored motion data are generated, and motion accumulated data is generated and compared with a threshold value to check whether a passenger in the vehicle exists.
  • the behavior detection module receives the reflected signal inputted from the transceiver, and generates and outputs frame data including a plurality of frame values indicating the magnitude of the reflected signal sampled at a constant time period.
  • 1 signal size calculator for generating motion data by calculating a difference value between frame values of frame data adjacent to each other among a plurality of frame data output from the first signal size calculator;
  • a cumulative operation unit that accumulates frame-specific values of motion data sequentially output from the first motion data generation unit to generate motion accumulation data;
  • a first motion determination unit that checks whether there is a passenger in the vehicle by comparing each frame value of the motion accumulation data with a threshold value.
  • the in-vehicle passenger detection system includes: a first frame data storage unit that stores the frame data output from the first signal size calculation unit and outputs the stored frame data to the first motion data generation unit; And a motion data storage unit sequentially storing motion data sequentially output from the first motion data generation unit, and outputting the stored motion data to the cumulative calculation unit.
  • the fine motion detection module generates frame data including a plurality of frame values indicating the size of the reflected signal, which samples the reflected signal at regular time periods, and among the frame data, frame data for a predetermined time
  • the motion data is generated by accumulating values for each frame, and by comparing the motion data with a threshold value, the presence or absence of a passenger's breathing or heartbeat is checked and counted, and the counted value reaches a predefined number of times. If it does, it can be determined that the passengers in the vehicle exist.
  • the fine motion detection module removes and stores the background and noise with little motion appearing in the frame data from the frame data, and removes the noise and removes the frame data for a predetermined time from among the stored frame data in each frame.
  • Motion data can be generated by accumulating values for each.
  • the fine motion detection module receives the reflected signal input from the transceiver, calculates the absolute magnitude of the reflected signal, and generates frame data including a plurality of frame values representing the magnitude of the reflected signal over time.
  • a noise removing unit that removes background and noise with little motion appearing on the frame data from the frame data using a feedback loop;
  • a second frame data storage unit sequentially storing frame data output from the noise removal unit;
  • a second motion data generator configured to accumulate values for each frame of frame data for a predefined time among frame data stored in the second frame data storage;
  • a second motion determination unit that compares values of each frame of the motion data with a predefined threshold, and determines that there is motion when a frame exceeding the threshold exists;
  • a counter that counts the number of times it is determined that there is movement, and notifies the control unit of the presence of a passenger in the vehicle when the count number reaches a previously stored number of times.
  • the noise removing unit in the frame data (A(k)) input from the second signal size calculating unit, the noise correction value calculated in the previous calculation cycle ( A subtracter subtracting) and outputting the result (X(k)); And the frame data (X(k-1)) from which the noise output from the subtractor is removed in the previous operation cycle and the frame data (A(k-1)) input to the subtracter in the previous operation cycle are used to reduce the noise. And a noise correction value generator that generates a correction value B(k-1) and outputs it to the subtractor.
  • the in-vehicle passenger detection system removes frame values outside the predefined time limit from the frame data input from the noise removing unit, thereby removing frame data including only frame values within the time limit from the second frame.
  • a time limit unit for outputting to the data storage unit may be further included.
  • the vehicle passenger detection method for solving the above problems, (a) transmits an Ultra-Wide Band radar pulse signal at a constant time period, reflection reflected by objects in the vehicle Receiving a signal; (b) detecting the behavior of the passenger in the vehicle using the reflected signal; And (c) simultaneously with the step (b), detecting the respiration or heartbeat of a passenger in the vehicle using the reflected signal.
  • the in-vehicle passenger detection method may further include; (d) when the in-vehicle passenger is detected, transmitting the passenger detection fact to the driver terminal or the administrator terminal through a wired or wireless communication network.
  • step (b) frame data including a plurality of frame values indicating the magnitude of the reflected signals sampled from the reflected signals at regular time periods is generated, and difference values between frame values of frame data adjacent to each other in time are determined. It calculates and generates and stores motion data, accumulates frame-by-frame values of the stored motion data, generates motion accumulation data, and compares it with a threshold to check whether a passenger in the vehicle exists.
  • the in-vehicle passenger detection method between the step (b1) and the step (b3), (b2) storing the frame data generated in the step (b1); further comprising, and, ( Between step b3) and step (b5), (b4) sequentially storing the motion data generated in step (b3); and step (b3) is stored in step (b2).
  • Motion data is generated by calculating a difference value of frame-specific values of frame data adjacent to each other among a plurality of frame data, and step (b5) generates frame-specific values of motion data sequentially stored in step (b4). Cumulative motion data can be generated.
  • step (c) frame data including a plurality of frame values indicating the size of the reflected signal sampled from the reflected signal at regular time periods is generated, and among the frame data, frame data for a predetermined time period
  • the motion data is generated by accumulating values for each frame, and by comparing the motion data with a threshold value, the presence or absence of a passenger's breathing or heartbeat is checked and counted, and the counted value reaches a predefined number of times. If it does, it can be determined that the passengers in the vehicle exist.
  • step (c) the background and noise with little motion appearing in the frame data are removed from the frame data and stored, and the frame data having a predetermined time among the stored frame data from which the noise has been removed is stored in each frame.
  • Motion data can be generated by accumulating values for each.
  • step (c), (c1) receives the reflected signal input in the step (a), calculates the absolute size of the reflected signal, and includes a plurality of frame values indicating the magnitude of the reflected signal over time Generating and outputting frame data; (c2) removing background and noise with little motion appearing on the frame data from the frame data; (c4) sequentially storing the frame data from which the noise has been removed; (c5) generating motion data by accumulating values for each frame of frame data for a predefined time among frame data stored in the step (c4); (c6) comparing the values of each frame of the motion data with a predefined threshold, and determining that there is motion if there is a frame exceeding the threshold; And (c7) counting the number of times it is determined that there is movement, and determining that a passenger in the vehicle has been detected when the count number of times reaches a previously stored number of times.
  • step (c2) the noise correction value is calculated using the frame data (X(k-1)) from which noise was removed in the previous operation cycle and the frame data (A(k-1)) input in the previous operation cycle ( ); And subtracting the noise correction value (B(k)) calculated in the previous calculation cycle from the frame data (A(k)) input in the step (c1) and outputting the result (X(k)). It can contain.
  • step (c3) removing frame values outside the predefined time limit from the frame data output in step (c2), including only the frame values within the time limit.
  • the method further includes generating frame data, and in step (c4), the frame data generated in step (c3) may be sequentially stored.
  • the present invention detects a large movement, such as the movement of a hand or foot by a passenger in a vehicle, and a small movement, such as that the passenger is still breathing, by using a separate data processing procedure, thereby more quickly and accurately detecting a passenger. Is possible.
  • FIG. 1 is a view for explaining a typical method for detecting a passenger in a vehicle using an Ultra-Wide Band radar according to the prior art.
  • FIG. 2 is a view showing the overall configuration of an in-vehicle passenger detection system using an Ultra-Wide Band radar according to a preferred embodiment of the present invention.
  • FIG. 3 is a block diagram showing a detailed configuration of a behavior detection module according to a preferred embodiment of the present invention.
  • 4A and 4B are diagrams illustrating a data processing flow performed in the behavior detection module of FIG. 3.
  • 5A and 5B are block diagrams showing detailed configurations of a fine motion detection module according to a preferred embodiment of the present invention.
  • 6A and 6B are diagrams illustrating a data processing flow performed in the fine motion detection module of FIG. 5A.
  • FIG. 2 is a view showing the overall configuration of an in-vehicle passenger detection system using an Ultra-Wide Band radar according to a preferred embodiment of the present invention.
  • an in-vehicle passenger detection system using an ultra-wide band radar transmits an ultra-wide band radar pulse signal and an object in the vehicle.
  • Transceiver 100 that receives the signal reflected by the field, using the reflected signal received through the transceiver 100, the behavior of the passengers in the vehicle (such as shaking hands or moving seats) Defined), the motion detection module 200, the micro-motion detection module 300 for detecting the breathing or heartbeat of the passenger in the vehicle by using the reflected signal received through the transceiver 100, the passenger in the vehicle
  • the communication unit 500 transmits the passenger detection fact to the driver terminal 600 or the manager terminal 600 through a wired or wireless communication network, and a control unit 400 for controlling the above-described components.
  • the transmitting and receiving unit 100 is a predefined position in the vehicle (eg, front or rear of the vehicle) ), and transmits Ultra-Wide Band radar signal pulses at regular time intervals under the control of the control unit 400, and when the signal pulses receive reflected signals reflected on various objects in the vehicle, act on the received reflected signals. It outputs to the detection module 200 and the fine motion detection module 300, respectively.
  • Each of the behavior detection module 200 and the fine motion module receiving the reflected signal detects the behavior or fine motion of a passenger in a vehicle and outputs it to the control unit 400, as described later with reference to FIGS. 3 to 6.
  • control unit 400 transmits to the driver terminal 600 or the manager terminal 600 that the passenger in the vehicle is detected through the communication unit 500.
  • FIG. 3 is a block diagram showing a detailed configuration of the behavior detection module 200 according to a preferred embodiment of the present invention
  • FIGS. 4A and 4B illustrate a data processing flow performed in the behavior detection module 200 of FIG. 3 It is a drawing.
  • the behavior detection module 200 includes a first signal size calculation unit 210 and a first frame data storage unit ( 220), a first motion data generation unit 230, a motion data storage unit 240, a cumulative operation unit 250, and a first motion determination unit 260.
  • the first signal size calculator 210 receives the reflected signal from the transceiver 100, calculates the absolute size of the reflected signal, generates frame data including a plurality of frame values representing the magnitude of the reflected signal over time, and , The generated frame data is output to the first frame data storage 220.
  • the transmitting and receiving unit 100 transmits a pulse signal, and then samples and outputs the received signal at regular time periods, defining each sampling time as a frame, and the frame data It includes a plurality of these frame values.
  • the signal of FIG. 4A (a) shows only 27 frames of the entire frame of the received reflected signal. At this time, as the number of frames is smaller, the signal pulse is transmitted from the transceiver and the size of the reflected signal received in a short period of time. Therefore, the signal reflected from the transceiver is reflected at a short distance. And indicates the received signal.
  • the first signal size calculating unit 210 calculates the signal size by calculating the size of the complex number, and as shown in FIG. 4A (b), a frame mapping the signal size for each frame The data is output to the first frame data storage 220.
  • the first frame data storage unit 220 accumulates the frame data input from the first signal size calculation unit 210 for a predetermined time, as shown in FIG. 4A(c), and the first motion data
  • the generation unit 230 allows the stored frame data to be sequentially used in a time sequence.
  • the first motion data generation unit 230 generates motion data by obtaining a difference between the same frames of two temporally adjacent frame data among frame data of a plurality of times stored in the first frame data storage unit 220.
  • the frame data received and stored from the transceiver 100 has a large peak value in 2 frames. This means that an object exists at a very close distance from the transceiver 100. However, if such an object does not move at all, it is likely that this is not a passenger, but a backrest of a chair closest to the transceiver 100.
  • a preferred embodiment of the present invention accumulates differences between the same frame values in the frame data of the time adjacent to each other, and checks whether motion is detected at a distance corresponding to each frame.
  • the first motion data generation unit 230 generates motion data by obtaining a difference between the same frame of two temporally adjacent frame data among frame data of a plurality of times stored in the first frame data storage unit 220 do.
  • the motion data storage unit 240 is included in the frame data
  • motion data is generated in the manners of AB, BC, CD, DE,,, and the motion data has the same number of frames as the frame data.
  • 4A(d) shows an example of motion data.
  • the motion data storage unit 240 stores motion data received from the first motion data generation unit 230, in chronological order, as shown in FIG. 4B(e).
  • the cumulative calculation unit 250 accumulates the motion data stored in the motion data storage unit 240 for a predetermined time period for each frame to generate motion accumulation data.
  • 4B (f) is a diagram illustrating an example of motion accumulation data. By accumulating motion data in this way, it is possible to minimize the influence of noise. In addition, the motion can be tracked by comparing the motion accumulated data generated in a certain time unit in chronological order.
  • the first motion determination unit 260 determines whether there is a passenger in the vehicle by comparing the motion accumulation data with a preset threshold, as shown in FIG. 4B(g).
  • a preset threshold As shown in FIG. 4B(g), since the frames exceeding the threshold are 1 and 5 frames, it can be seen that there is an object moving very close to the transceiver.
  • FIGS. 6A and 6B are block diagrams showing detailed configurations of the fine motion detection module 300 according to the preferred embodiment of the present invention, and FIGS. 6A and 6B are performed in the fine motion detection module 300 of FIG. 5A It is a diagram for explaining the data processing flow.
  • the fine motion detection module 300 includes a second signal size calculator 310, a noise controller 400, and a time limiter ( 315), a second frame data storage unit 320, a second motion data generation unit 330, a second motion determination unit 360, a counter 370.
  • the noise removing unit 313 includes a subtractor 313a and a noise correction value generator 313b.
  • the reflected signal received from the transceiver 100 is output to the second signal magnitude calculator 310 (see FIG. 6A (a)), and the second signal magnitude calculator 310 is reflected from the transceiver 100 Upon receiving the signal, the absolute size of the reflected signal is calculated and the frame data A(k) is output to the noise removal unit 313 (see FIG. 6A (b)).
  • the function of the second signal magnitude calculating unit 310 is the same as that of the first signal magnitude calculating unit 210, so a detailed description thereof will be omitted.
  • the noise removal unit 313 removes the background and noise with little motion appearing on the frame data from the frame data using a feedback loop.
  • the frame data A(k) input from the second signal size calculator 310 includes a noise correction value B(k) output from the noise correction value generator 313b and the following Equation 1 Subtraction operation according to is performed and the result (X(k)) is output to the time limiting unit 315.
  • the noise correction value generator 313b uses the calculation result (X(k)) of Equation 1 output to the time limiter 315 and the frame data A(k) input to the subtractor 313a. By performing the operation according to Equation 2, a noise correction value B(k) is generated and output to the subtractor 313a.
  • Equation 2 ⁇ is a weighting coefficient of 0 ⁇ 1.
  • the subtractor 313a receives new frame data A(k) from the second signal size calculator 310 and, from the newly input frame data A(k), the noise correction value calculated in the previous calculation cycle ( ) Is subtracted, and the result (X(k)) is output to the time limiting unit 315 (see FIG. 6A (c)).
  • the time limiting unit 315 limits the time until the transmitting and receiving unit 100 transmits a pulse signal and receives a reflected signal from the frame data to a predefined time, and removes frame values outside the limited time, thereby limiting the time.
  • the frame data including only the frame values in time is output to the second frame data storage unit 320.
  • the second frame data storage unit 320 stores frame data input from the time limit unit 315 (see FIG. 6A (d)), and the second motion data generation unit 330 is a second frame data storage unit.
  • frame data for a predetermined time is accumulated for each frame to generate motion data and output to the second motion determination unit 360 ((e) of FIG. 6B) Reference).
  • each frame value of frame data for 5 seconds is accumulated, but the accumulated time can be set according to the environment.
  • the second motion determination unit 360 compares the values of each frame of the motion data input from the second motion data generation unit 330 with a predefined threshold, and if there is a frame exceeding the threshold, motion It is determined that this is present and the counter 370 is informed that the motion has been detected (see FIG. 6B (f)).
  • the counter 370 increments the internal counter 370 by 1 when the motion detection result is notified from the second motion determination unit 360, and when the counter value reaches a predefined value, finely moves the control unit 400 It outputs that it has been detected.
  • the micro-motion detection module of the present invention is configured to detect micro-motions such as heartbeat or breathing, and these micro-motions may also be caused by the influence of the surrounding environment or noise. Therefore, in a preferred embodiment of the present invention, it is possible to determine that such a fine movement is detected in a predetermined number of times for a predetermined time, so that a passenger having periodic breathing or periodic heartbeat is present in the vehicle.
  • the present invention can also be embodied as computer readable codes on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, and optical data storage devices.
  • the computer-readable recording medium can be distributed over network coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Abstract

본 발명은 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템 및 방법을 제공한다. 본 발명은 Ultra-Wide Band 레이더를 이용하여 수집된 값들을 시간 영역에서 처리함으로써, 종래의 Ultra-Wide Band 레이더를 이용하여 수집된 값을 주파수 영역에서 처리하기 위해서 소요되는 시간보다 신속하게 차량내 승객을 감지할 수 있다. 또한, 본 발명은 차량내 승객이 손 또는 발을 움직이는 것과 같은 큰 움직임과, 승객이 가만히 숨을 쉬고 있는 것 같은 작은 움직임을 각각 별도의 데이터 처리 절차를 이용하여 감지함으로써, 보다 신속하면서도 정확한 승객 감지가 가능하다.

Description

울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법
본 발명은 차량내 승객 감지 시스템 및 방법에 관한 것으로서, 보다 구체적으로는 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템 및 방법에 관한 것이다.
최근 무더운 여름에 학원 통학 차량에 어린이가 방치되어 사고를 당하는 사건들이 빈번히 발생하고 있다. 이러한 사고를 방지하기 위해서, 최근에는 차량내에 승객을 감지하여 운전자나 관리자에게 알려주는 기술이 개발되고 있다.
차량내 승객을 감지하는 기술로는 초음파 센서를 이용하는 기술, 적외선 센서를 이용하는 기술, 기울기 센서를 이용하는 기술, 상기한 기술들을 결합한 기술들이 다양하게 소개되고 있다. 하지만, 이러한 종래의 기술들은 분해능, 반응속도, 측정거리의 한계, 주변 환경에 영향을 많이 받는 등 단점이 존재한다.
이러한 센서의 한계점을 보안하기 위하여, 최근에는 저전력에서 동작하며, 반응속도가 빠르고, 분해능이 높은 Ultra-Wide Band 레이더를 이용하여, 승객을 감지하는 기술이 활발히 연구 중에 있다.
도 1은 종래 기술에 따라서, Ultra-Wide Band 레이더를 이용하여 차량내 승객을 감지하는 전형적인 방법을 설명하는 도면이다.
도 1에 도시된 바와 같이, Ultra-Wide Band 레이더를 이용하여 차량내 승객을 감지하는 방법으로는, 차량 내부 진동에 의해 생기는 노이즈와 다중 반사에 의한 오류를 최소화하기 위해, 수신 데이터를 오랜 시간 수집 후, 푸리에 변환을 이용하여 주파수 도메인에서 호흡 또는 심박수에 대응되는 주파수 신호를 감지하여 승객이 차량내에 있는지 여부를 인식하는 방식이다.
심박수나 호흡수를 이용하여 승객을 감지하는 종래 기술의 경우, 환경에 영향을 적게 받아, 판단 정확도가 높은 장점이 있는 반면, 하지만 수신 데이터를 수집하는 시간이 최소 30~40초 이상 걸리고, 처리된 데이터를 이용하여 주파수 도메인에서 호흡수, 심박수의 데이터 유/무를 확인하기까지 보통 1분 이상이 걸리는 단점이 있다.
본 발명이 해결하고자 하는 과제는 Ultra-Wide Band 레이더를 이용하여 신속하게 차량내 승객을 감지할 수 있는 차량내 승객 감지 시스템 및 방법을 제공하는 것이다.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 차량내 승객 감지 시스템은, 일정한 시간 주기로 Ultra-Wide Band 레이더 펄스 신호를 송신하고, 차량내의 물체들에 의해서 반사된 반사 신호를 수신하는 송수신부; 상기 반사 신호를 이용하여 차량내 승객의 행동을 검출하는 행동 검출 모듈; 및 상기 반사 신호를 이용하여 차량내 승객의 호흡 또는 심장 박동을 검출하는 미세 움직임 검출 모듈;을 포함한다.
또한, 상기 차량내 승객 감지 시스템은, 상기 행동 검출 모듈 및 상기 미세 움직임 검출 모듈에 의해서 차량내 승객이 감지되면, 승객 감지 사실을 유무선 통신망을 통해서 운전자 단말 또는 관리자 단말로 전송하는 통신부;를 더 포함할 수 있다.
또한, 상기 행동 검출 모듈은 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 서로 시간상 인접하는 프레임 데이터들의 프레임별값들의 차이값을 계산하여 움직임 데이터를 생성하여 저장하며, 저장된 움직임 데이터의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하여 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인할 수 있다.
또한, 상기 행동 검출 모듈은, 상기 송수신부로부터 입력되는 반사 신호를 수신하고, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 제 1 신호 크기 연산부; 상기 제 1 신호 크기 연산부에서 출력되는 복수의 프레임 데이터들 중에서, 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하는 제 1 움직임 데이터 생성부; 상기 제 1 움직임 데이터 생성부에서 순차적으로 출력되는 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하는 누적 연산부; 및 상기 움직임 누적 데이터의 각 프레임 값들을 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 제 1 움직임 판정부를 포함할 수 있다.
또한, 상기 차량내 승객 감지 시스템은, 상기 제 1 신호 크기 연산부에서 출력되는 상기 프레임 데이터들을 저장하고, 저장된 상기 프레임 데이터들을 상기 제 1 움직임 데이터 생성부로 출력하는 제 1 프레임 데이터 저장부; 및 상기 제 1 움직임 데이터 생성부에서 순차적으로 출력되는 움직임 데이터들을 순차적으로 저장하고, 저장된 움직임 데이터들을 상기 누적 연산부로 출력하는 움직임 데이터 저장부;를 더 포함할 수 있다.
또한, 상기 미세 움직임 검출 모듈은, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하며, 움직임 데이터를 임계값과 비교함으로써 차량내 승객의 호흡 또는 심장 박동을 존재 여부를 확인하여 카운트하며, 카운트된 값이 사전에 정의된 횟수에 도달하면 차량내 승객의 존재하는 것으로 판단할 수 있다.
또한, 상기 미세 움직임 검출 모듈은, 상기 프레임 데이터에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하여 저장하고, 노이즈가 제거되어 저장된 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성할 수 있다.
또한, 상기 미세 움직임 검출 모듈은, 상기 송수신부로부터 입력되는 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여, 반사 신호의 시간에 따른 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 제 2 신호 크기 연산부; 피드백 루프를 이용하여 프레임 데이터 상에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하는 노이즈 제거부; 상기 노이즈 제거부에서 출력된 프레임 데이터를 순차적으로 저장하는 제 2 프레임 데이터 저장부; 상기 제 2 프레임 데이터 저장부에 저장된 프레임 데이터들 중에서, 사전에 정의된 시간 만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 제 2 움직임 데이터 생성부; 움직임 데이터의 각 프레임의 값들을 사전에 정의된 임계치와 비교하여 임계치를 초과하는 프레임이 존재하면, 움직임이 있는 것으로 판정하는 제 2 움직임 판정부; 및 움직임이 있는 것으로 판정된 회수를 카운트하여, 카운트 회수가 사전에 저장된 회수에 도달하면 상기 제어부로 차량내 승객의 존재함을 통지하는 카운터를 포함할 수 있다.
또한, 상기 노이즈 제거부는, 상기 제 2 신호 크기 연산부로부터 입력된 프레임 데이터(A(k))에서, 이전 연산 사이클에서 연산된 노이즈 보정치(
Figure PCTKR2019017637-appb-I000001
)를 감산하여 그 결과(X(k))를 출력하는 감산기; 및 상기 이전 연산 사이클에서 상기 감산기로부터 출력되는 노이즈가 제거된 프레임 데이터(X(k-1))와 이전 연산 사이클에서 상기 감산기로 입력된 프레임 데이터(A(k-1))를 이용하여 상기 노이즈 보정치(B(k-1))를 생성하여 상기 감산기로 출력하는 노이즈 보정치 생성부를 포함할 수 있다.
또한, 상기 차량내 승객 감지 시스템은, 상기 노이즈 제거부로부터 입력된 프레임 데이터에서 사전에 정의된 제한 시간을 벗어나는 프레임 값들을 제거하여, 제한 시간 내의 프레임 값들만을 포함하는 프레임 데이터를 상기 제 2 프레임 데이터 저장부로 출력하는 시간 제한부를 더 포함할 수 있다.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 차량내 승객 감지 방법은, (a) 일정한 시간 주기로 Ultra-Wide Band 레이더 펄스 신호를 송신하고, 차량내의 물체들에 의해서 반사된 반사 신호를 수신하는 단계; (b) 상기 반사 신호를 이용하여 차량내 승객의 행동을 검출하는 단계; 및 (c) 상기 (b) 단계와 동시에, 상기 반사 신호를 이용하여 차량내 승객의 호흡 또는 심장 박동을 검출하는 단계;를 포함한다.
또한, 상기 차량내 승객 감지 방법은, (d) 차량내 승객이 감지되면, 승객 감지 사실을 유무선 통신망을 통해서 운전자 단말 또는 관리자 단말로 전송하는 단계;를 더 포함할 수 있다.
또한, 상기 (b) 단계는, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 서로 시간상 인접하는 프레임 데이터들의 프레임별값들의 차이값을 계산하여 움직임 데이터를 생성하여 저장하며, 저장된 움직임 데이터의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하여 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인할 수 있다.
또한, 상기 (b) 단계는, (b1) 상기 (a) 단계에서 입력되는 반사 신호를 수신하고, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하는 단계; (b3) 상기 (b1) 단계에서 생성되는 복수의 프레임 데이터들 중에서, 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하는 단계; (b5) 상기 (b3) 단계에서 순차적으로 생성되는 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하는 단계; 및 (b6) 상기 움직임 누적 데이터의 각 프레임 값들을 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 단계를 포함할 수 있다.
또한, 상기 차량내 승객 감지 방법은, 상기 (b1) 단계 및 상기 (b3) 단계 사이에, (b2) 상기 (b1) 단계에서 생성된 상기 프레임 데이터들을 저장하는 단계;를 더 포함하고, 상기 (b3) 단계 및 상기 (b5) 단계 사이에, (b4) 상기 (b3) 단계에서 생성된 움직임 데이터를 순차적으로 저장하는 단계;를 더 포함하며, 상기 (b3) 단계는 상기 (b2) 단계에서 저장된 복수의 프레임 데이터들 중에서 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하고, 상기 (b5) 단계는 상기 (b4) 단계에서 순차적으로 저장된 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성할 수 있다.
또한, 상기 (c) 단계는, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하며, 움직임 데이터를 임계값과 비교함으로써 차량내 승객의 호흡 또는 심장 박동을 존재 여부를 확인하여 카운트하며, 카운트된 값이 사전에 정의된 횟수에 도달하면 차량내 승객의 존재하는 것으로 판단할 수 있다.
또한, 상기 (c) 단계는, 상기 프레임 데이터에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하여 저장하고, 노이즈가 제거되어 저장된 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성할 수 있다.
또한, 상기 (c) 단계는, (c1) 상기 (a) 단계에서 입력되는 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여, 반사 신호의 시간에 따른 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 단계; (c2) 프레임 데이터 상에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하는 단계; (c4) 상기 노이즈가 제거된 프레임 데이터를 순차적으로 저장하는 단계; (c5) 상기 (c4) 단계에서 저장된 프레임 데이터들 중에서, 사전에 정의된 시간 만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 단계; (c6) 움직임 데이터의 각 프레임의 값들을 사전에 정의된 임계치와 비교하여 임계치를 초과하는 프레임이 존재하면, 움직임이 있는 것으로 판정하는 단계; 및 (c7) 움직임이 있는 것으로 판정된 회수를 카운트하여, 카운트 회수가 사전에 저장된 회수에 도달하면 차량내 승객이 감지되었음을 결정할 수 있다.
또한, 상기 (c2) 단계는, 이전 연산 사이클에서 노이즈가 제거된 프레임 데이터(X(k-1))와 이전 연산 사이클에서 입력된 프레임 데이터(A(k-1))를 이용하여 노이즈 보정치(
Figure PCTKR2019017637-appb-I000002
)를 생성하는 단계; 및 상기 (c1) 단계에서 입력된 프레임 데이터(A(k))에서, 이전 연산 사이클에서 연산된 상기 노이즈 보정치(B(k))를 감산하여 그 결과(X(k))를 출력하는 단계를 포함할 수 있다.
또한, 상기 (c2)와 (c4) 단계 사이에, (c3) 상기 (c2) 단계에서 출력된 프레임 데이터에서 사전에 정의된 제한 시간을 벗어나는 프레임 값들을 제거하여, 제한 시간 내의 프레임 값들만을 포함하는 프레임 데이터를 생성하는 단계를 더 포함하고, 상기 (c4) 단계는, 상기 (c3) 단계에서 생성된 프레임 데이터를 순차적으로 저장할 수 있다.
본 발명은 Ultra-Wide Band 레이더를 이용하여 수집된 값들을 시간 영역에서 처리함으로써, 종래의 Ultra-Wide Band 레이더를 이용하여 수집된 값을 주파수 영역에서 처리하기 위해서 소요되는 시간보다 신속하게 차량내 승객을 감지할 수 있다.
또한, 본 발명은 차량내 승객이 손 또는 발을 움직이는 것과 같은 큰 움직임과, 승객이 가만히 숨을 쉬고 있는 것 같은 작은 움직임을 각각 별도의 데이터 처리 절차를 이용하여 감지함으로써, 보다 신속하면서도 정확한 승객 감지가 가능하다.
도 1은 종래 기술에 따라서, Ultra-Wide Band 레이더를 이용하여 차량내 승객을 감지하는 전형적인 방법을 설명하는 도면이다.
도 2는 본 발명의 바람직한 실시예에 따른 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템의 전체 구성을 도시하는 도면이다.
도 3은 본 발명의 바람직한 실시예에 따른 행동 검출 모듈의 세부 구성을 도시하는 블록도이다.
도 4a 및 도 4b는 도 3의 행동 검출 모듈에서 수행되는 데이터 처리 흐름을 설명하는 도면이다.
도 5a 및 도 5b는 본 발명의 바람직한 실시예에 따른 미세 움직임 검출 모듈의 세부 구성을 도시하는 블록도이다.
도 6a 및 도 6b는 도 5a의 미세 움직임 검출 모듈에서 수행되는 데이터 처리 흐름을 설명하는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.
도 2는 본 발명의 바람직한 실시예에 따른 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템의 전체 구성을 도시하는 도면이다.
도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템(이하,"승객 감지 시스템")은 Ultra-Wide Band 레이더 펄스 신호를 송신하고, 차량내의 물체들에 의해서 반사된 신호를 수신하는 송수신부(100), 송수신부(100)를 통해서 수신된 반사 신호를 이용하여 차량내 승객의 행동(손을 흔들거나 자리를 이동하는 등의 큰 움직임을 행동으로 정의함)을 검출하는 행동 검출 모듈(200), 송수신부(100)를 통해서 수신된 반사 신호를 이용하여 차량내 승객의 호흡 또는 심장 박동을 검출하는 미세 움직임 검출 모듈(300), 차량내 승객이 감지되면 승객 감지 사실을 유무선 통신망을 통해서 운전자 단말(600) 또는 관리자 단말(600)로 전송하는 통신부(500) 및 상기한 구성요소들을 제어하는 제어부(400)를 포함한다.
도 2를 참조하여 본 발명의 바람직한 실시예에 따른 차량내 승객 감지 시스템 및 방법의 전체적인 동작을 설명하면, 먼저, 송수신부(100)는 차량내 사전에 정의된 위치(예컨대, 차량의 전방 또는 후방)에 설치되어, 제어부(400)의 제어에 따라서 일정한 시간 주기로 Ultra-Wide Band 레이더 신호 펄스를 전송하고, 신호 펄스가 차량내의 각종 물체들에 반사된 반사 신호를 수신하면, 수신된 반사 신호를 행동 검출 모듈(200) 및 미세 움직임 검출 모듈(300)로 각각 출력한다.
반사 신호를 수신한 행동 검출 모듈(200) 및 미세 움직임 모듈 각각은, 도 3 내지 도 6을 참조하여 후술하는 바와 같이, 차량내 승객의 행동 또는 미세 움직임을 검출하여 제어부(400)로 출력한다.
제어부(400)는 차량내 승객이 감지되면, 통신부(500)를 통해서 차량내 승객이 감지되었다는 사실을 운전자 단말(600) 또는 관리자 단말(600)로 전송한다.
도 3은 본 발명의 바람직한 실시예에 따른 행동 검출 모듈(200)의 세부 구성을 도시하는 블록도이고, 도 4a 및 도 4b는 도 3의 행동 검출 모듈(200)에서 수행되는 데이터 처리 흐름을 설명하는 도면이다.
도 3, 도 4a 및 도 4b를 참조하면, 행동 검출 모듈(200)의 세부 구성 및 기능을 설명하면, 행동 검출 모듈(200)은 제 1 신호 크기 연산부(210), 제 1 프레임 데이터 저장부(220), 제 1 움직임 데이터 생성부(230), 움직임 데이터 저장부(240), 누적 연산부(250), 및 제 1 움직임 판정부(260)를 포함한다.
제 1 신호 크기 연산부(210)는 송수신부(100)로부터 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여, 반사 신호의 시간에 따른 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 생성된 프레임 데이터를 제 1 프레임 데이터 저장부(220)로 출력한다.
도 4a의 (a)에 도시된 바와 같이, 송수신부(100)는 펄스 신호를 전송한 후, 일정한 시간 주기마다 수신되는 신호를 샘플링하여 출력하는데, 각 샘플링 시간을 프레임이라고 정의하고, 프레임 데이터는 이러한 프레임 값들을 복수개 포함한다. 도 4a의 (a)의 신호는 수신된 반사 신호의 전체 프레임 중 27개의 프레임만을 도시하였다. 이 때, 프레임 숫자가 작을수록 송수신기에서 신호 펄스가 전송되고 짧은 시간에 수신된 반사 신호의 크기를 의미하므로, 송수신기로부터 근거리에서 반사되어 수신된 신호를 나타내고, 프레임 숫자가 클수록 송수신기로부터 먼 거리에서 반사되어 수신된 신호를 나타낸다.
반사 신호는 복소수로 표현되므로, 제 1 신호 크기 연산부(210)는 복소수의 크기를 계산하여 신호 크기를 계산하고, 도 4a의 (b)에 도시된 바와 같이, 각 프레임마다 신호 크기를 맵핑한 프레임 데이터를 제 1 프레임 데이터 저장부(220)로 출력한다.
제 1 프레임 데이터 저장부(220)는, 도 4a의 (c)에 도시된 바와 같이, 제 1 신호 크기 연산부(210)로부터 입력된 프레임 데이터들을 일정 시간동안 누적적으로 저장하고, 제 1 움직임 데이터 생성부(230)가 저장된 프레임 데이터를 시간 순서에 따라서 순차적으로 이용할 수 있도록 한다.
제 1 움직임 데이터 생성부(230)는 제 1 프레임 데이터 저장부(220)에 저장된 복수 시간의 프레임 데이터들 중 시간적으로 인접한 2개의 프레임 데이터의 동일 프레임간의 차를 구함으로써 움직임 데이터를 생성한다.
예컨대, 도 4a의 (b) 및 (c) 에 도시된 예에서, 송수신부(100)로부터 수신되고 저장된 프레임 데이터들은 2프레임에서 큰 피크값을 갖는 것을 알 수 있다. 이는 송수신부(100)로부터 매우 가까운 거리에 물체가 존재한다는 의미이다. 그러나, 이러한 물체가 전혀 움직임이 없다면 이는 승객이 아니라, 송수신부(100)에 가장 근접한 의자의 등받이일 가능성이 높다.
반면, 프레임 데이터가 0.2초마다 생성된다고 가정할 때, 0.2초에는 5프레임에서 큰 값이 검출되고, 0.4초에는 7 프레임에서 큰 값이 검출되며, 0.6초에는 10프레임에서 큰 값이 검출되며, 그 이후로도 5~10 프레임 사이에서 프레임이 변화하면서 큰 값이 검출된다면, 이는 승객이 5~10 프레임 사이의 거리에 위치하여 움직이고 있다는 것을 의미한다.
따라서, 본 발명의 바람직한 실시예는 이러한 서로 인접한 시간의 프레임 데이터에서 동일한 프레임 값들간의 차를 누적하여, 각 프레임에 대응되는 거리에서 움직임이 검출되는지 여부를 확인한다.
이를 위해서, 제 1 움직임 데이터 생성부(230)는 제 1 프레임 데이터 저장부(220)에 저장된 복수 시간의 프레임 데이터들 중 시간적으로 인접한 2개의 프레임 데이터의 동일 프레임간의 차를 구함으로써 움직임 데이터를 생성한다.
예컨대, 제 1 프레임 데이터 저장부(220)에, 시간 순서대로 프레임 데이터 A, B, C, D, E,,,,가 저장되어 있다고 가정하면, 움직임 데이터 저장부(240)는 프레임 데이터에 포함된 각 프레임 별로, A-B, B-C, C-D, D-E,,,, 방식으로 움직임 데이터를 생성하고, 움직임 데이터는 프레임 데이터와 동일한 프레임 수를 갖게 된다. 도 4a의 (d)는 움직임 데이터의 일 예를 도시한다.
움직임 데이터 저장부(240)는 제 1 움직임 데이터 생성부(230)로부터 수신되는 움직임 데이터를, 도 4b의 (e) 에 도시된 바와 같이, 시간 순서대로 저장한다.
그 후, 누적 연산부(250)는 움직임 데이터 저장부(240)에 저장된 움직임 데이터들을, 프레임별로 사전에 정의된 시간 동안 누적하여 움직임 누적 데이터를 생성한다. 도 4b의 (f)는 움직임 누적 데이터의 일 예를 도시하는 도면이다. 이렇게 움직임 데이터를 누적함으로써 노이즈로 인한 영향을 최소화할 수 있다. 아울러, 일정한 시간 단위로 생성된 움직임 누적 데이터를 시간 순서대로 비교하면 움직임을 추적할 수 있다.
그 후, 제 1 움직임 판정부(260)는, 도 4b의 (g)에 도시된 바와 같이, 움직임 누적 데이터를 사전에 설정된 임계치와 비교하여 차량내에 승객이 존재하는 여부를 판정한다. 도 4b의 (g)에 도시된 예에서, 임계치를 넘는 프레임이 1프레임과 5프레임이므로, 송수신기로부터 매우 가까운 위치에 움직이는 물체가 있음을 알 수 있다.
도 5a 및 도 5b 는 본 발명의 바람직한 실시예에 따른 미세 움직임 검출 모듈(300)의 세부 구성을 도시하는 블록도이고, 도 6a 및 도 6b는 도 5a의 미세 움직임 검출 모듈(300)에서 수행되는 데이터 처리 흐름을 설명하는 도면이다.
도 5a 및 도 5b와 도 6a 및 도 6b를 참조하면, 본 발명의 바람직한 실시예에 따른 미세 움직임 검출 모듈(300)은 제 2 신호 크기 연산부(310), 노이즈 제어부(400), 시간 제한부(315), 제 2 프레임 데이터 저장부(320), 제 2 움직임 데이터 생성부(330), 제 2 움직임 판정부(360), 카운터(370)를 포함한다. 또한, 노이즈 제거부(313)는 감산기(313a) 및 노이즈 보정치 생성부(313b)를 포함한다.
먼저, 송수신부(100)에서 수신된 반사 신호는 제 2 신호 크기 연산부(310)로 출력되고(도 6a의 (a) 참조), 제 2 신호 크기 연산부(310)는 송수신부(100)로부터 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여 프레임 데이터(A(k))를 노이즈 제거부(313)로 출력한다(도 6a의 (b) 참조). 제 2 신호 크기 연산부(310)의 기능은 제 1 신호 크기 연산부(210)의 기능과 동일하므로 구체적인 설명은 생략한다.
노이즈 제거부(313)는 피드백 루프를 이용하여 프레임 데이터 상에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거한다.
도 5b를 참조하면, 제 2 신호 크기 연산부(310)로부터 입력된 프레임 데이터(A(k))는 노이즈 보정치 생성부(313b)에서 출력되는 노이즈 보정치(B(k))와 아래의 수학식 1에 따른 감산 연산이 수행되어 그 결과(X(k))가 시간 제한부(315)로 출력된다.
Figure PCTKR2019017637-appb-M000001
노이즈 보정치 생성부(313b)는 시간 제한부(315)로 출력되는 수학식 1의 연산 결과(X(k))와, 감산기(313a)로 입력된 프레임 데이터(A(k))를 이용하여 아래의 수학식 2에 따른 연산을 수행하여 노이즈 보정치(B(k))를 생성하여 감산기(313a)로 출력한다.
Figure PCTKR2019017637-appb-M000002
상기 수학식 2에서 α는 0<α<1 인 가중치 계수이다.
감산기(313a)는 제 2 신호 크기 연산부(310)로부터 프레임 데이터(A(k))를 새로 입력받고, 새로 입력된 프레임 데이터(A(k))에서, 이전 연산 사이클에서 연산된 노이즈 보정치(
Figure PCTKR2019017637-appb-I000003
)를 감산하여 그 결과(X(k))가 시간 제한부(315)로 출력한다(도 6a의 (c) 참조).
상기와 같은 피드백 연산을 통해서, 프레임 데이터 상에서 움직임이 없는 물체를 나타내는 프레임 값들과, 예상치 못하게 입력된 노이즈들은 제거된다.
시간 제한부(315)는 프레임 데이터에서 송수신부(100)가 펄스 신호를 송신하고 반사 신호를 수신하기 까지의 시간을 사전에 정의된 시간으로 제한하여, 제한된 시간을 벗어나는 프레임 값들을 제거하여, 제한 시간내의 프레임 값들만을 포함하는 프레임 데이터를 제 2 프레임 데이터 저장부(320)로 출력한다.
제 2 프레임 데이터 저장부(320)는 시간 제한부(315)로부터 입력되는 프레임 데이터들을 저장하고(도 6a의 (d) 참조), 제 2 움직임 데이터 생성부(330)는 제 2 프레임 데이터 저장부(320)에 저장된 프레임 데이터들 중에서, 사전에 정의된 시간 만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하여 제 2 움직임 판정부(360)로 출력한다(도 6b의 (e) 참조). 본 발명의 바람직한 실시예에서는, 5초 동안의 프레임 데이터들의 각 프레임 값들을 누적하였으나, 누적 시간은 환경에 따라서 설정될 수 있다.
그 후, 제 2 움직임 판정부(360)는 제 2 움직임 데이터 생성부(330)로부터 입력된 움직임 데이터의 각 프레임의 값들을 사전에 정의된 임계치와 비교하여 임계치를 초과하는 프레임이 존재하면, 움직임이 있는 것으로 판정하여 카운터(370)로 움직임이 감지되었음을 알린다(도 6b의 (f) 참조).
카운터(370)는 제 2 움직임 판정부(360)로부터 움직임 감지 결과를 통지 받으면, 내부 카운터(370)를 1 증가시키고, 카운터 값이 사전에 정의된 값이 도달하면, 제어부(400)로 미세 움직임이 감지되었음을 출력한다. 본 발명의 미세 움직임 감지 모듈은 심장 박동이나 호흡과 같은 미세 움직임을 감지하는 구성으로서, 이러한 미세한 움직임은 주변 환경이나 노이즈의 영향에 의해서도 발생할 수 있다. 따라서, 본 발명의 바람직한 실시예는 이러한 미세 움직임이 일정 시간동안 사전에 정의된 회수만큼 감지되어야, 주기적인 호흡이나 주기적인 심장 박동을 갖는 승객이 차량에 존재하는 것으로 판단할 수 있다.
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (20)

  1. 일정한 시간 주기로 Ultra-Wide Band 레이더 펄스 신호를 송신하고, 차량내의 물체들에 의해서 반사된 반사 신호를 수신하는 송수신부;
    상기 반사 신호를 이용하여 차량내 승객의 행동을 검출하는 행동 검출 모듈; 및
    상기 반사 신호를 이용하여 차량내 승객의 호흡 또는 심장 박동을 검출하는 미세 움직임 검출 모듈;을 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  2. 제 1 항에 있어서,
    상기 행동 검출 모듈 및 상기 미세 움직임 검출 모듈에 의해서 차량내 승객이 감지되면, 승객 감지 사실을 유무선 통신망을 통해서 운전자 단말 또는 관리자 단말로 전송하는 통신부;를 더 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  3. 제 1 항에 있어서, 상기 행동 검출 모듈은
    상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 서로 시간상 인접하는 프레임 데이터들의 프레임별값들의 차이값을 계산하여 움직임 데이터를 생성하여 저장하며, 저장된 움직임 데이터의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하여 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  4. 제 3 항에 있어서, 상기 행동 검출 모듈은
    상기 송수신부로부터 입력되는 반사 신호를 수신하고, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 제 1 신호 크기 연산부;
    상기 제 1 신호 크기 연산부에서 출력되는 복수의 프레임 데이터들 중에서, 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하는 제 1 움직임 데이터 생성부;
    상기 제 1 움직임 데이터 생성부에서 순차적으로 출력되는 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하는 누적 연산부; 및
    상기 움직임 누적 데이터의 각 프레임 값들을 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 제 1 움직임 판정부를 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  5. 제 4 항에 있어서,
    상기 제 1 신호 크기 연산부에서 출력되는 상기 프레임 데이터들을 저장하고, 저장된 상기 프레임 데이터들을 상기 제 1 움직임 데이터 생성부로 출력하는 제 1 프레임 데이터 저장부; 및
    상기 제 1 움직임 데이터 생성부에서 순차적으로 출력되는 움직임 데이터들을 순차적으로 저장하고, 저장된 움직임 데이터들을 상기 누적 연산부로 출력하는 움직임 데이터 저장부;를 더 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  6. 제 1 항에 있어서, 상기 미세 움직임 검출 모듈은
    상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하며, 움직임 데이터를 임계값과 비교함으로써 차량내 승객의 호흡 또는 심장 박동을 존재 여부를 확인하여 카운트하며, 카운트된 값이 사전에 정의된 횟수에 도달하면 차량내 승객의 존재하는 것으로 판단하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  7. 제 6 항에 있어서, 상기 미세 움직임 검출 모듈은
    상기 프레임 데이터에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하여 저장하고, 노이즈가 제거되어 저장된 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  8. 제 7 항에 있어서, 상기 미세 움직임 검출 모듈은
    상기 송수신부로부터 입력되는 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여, 반사 신호의 시간에 따른 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 제 2 신호 크기 연산부;
    피드백 루프를 이용하여 프레임 데이터 상에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하는 노이즈 제거부;
    상기 노이즈 제거부에서 출력된 프레임 데이터를 순차적으로 저장하는 제 2 프레임 데이터 저장부;
    상기 제 2 프레임 데이터 저장부에 저장된 프레임 데이터들 중에서, 사전에 정의된 시간 만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 제 2 움직임 데이터 생성부;
    움직임 데이터의 각 프레임의 값들을 사전에 정의된 임계치와 비교하여 임계치를 초과하는 프레임이 존재하면, 움직임이 있는 것으로 판정하는 제 2 움직임 판정부; 및
    움직임이 있는 것으로 판정된 회수를 카운트하여, 카운트 회수가 사전에 저장된 회수에 도달하면 상기 제어부로 차량내 승객의 존재함을 통지하는 카운터를 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  9. 제 8 항에 있어서, 상기 노이즈 제거부는
    상기 제 2 신호 크기 연산부로부터 입력된 프레임 데이터(A(k))에서, 이전 연산 사이클에서 연산된 노이즈 보정치(
    Figure PCTKR2019017637-appb-I000004
    )를 감산하여 그 결과(X(k))를 출력하는 감산기; 및
    상기 이전 연산 사이클에서 상기 감산기로부터 출력되는 노이즈가 제거된 프레임 데이터(X(k-1))와 이전 연산 사이클에서 상기 감산기로 입력된 프레임 데이터(A(k-1))를 이용하여 상기 노이즈 보정치(B(k-1))를 생성하여 상기 감산기로 출력하는 노이즈 보정치 생성부를 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  10. 제 8 항에 있어서,
    상기 노이즈 제거부로부터 입력된 프레임 데이터에서 사전에 정의된 제한 시간을 벗어나는 프레임 값들을 제거하여, 제한 시간 내의 프레임 값들만을 포함하는 프레임 데이터를 상기 제 2 프레임 데이터 저장부로 출력하는 시간 제한부를 더 포함하는 것을 특징으로 하는 차량내 승객 감지 시스템.
  11. 차량내 승객 감지 시스템에서 수행되는 차량내 승객 감지 방법으로서,
    (a) 일정한 시간 주기로 Ultra-Wide Band 레이더 펄스 신호를 송신하고, 차량내의 물체들에 의해서 반사된 반사 신호를 수신하는 단계;
    (b) 상기 반사 신호를 이용하여 차량내 승객의 행동을 검출하는 단계; 및
    (c) 상기 (b) 단계와 동시에, 상기 반사 신호를 이용하여 차량내 승객의 호흡 또는 심장 박동을 검출하는 단계;를 포함하는 것을 특징으로 하는 차량내 승객 감지 방법.
  12. 제 11 항에 있어서,
    (d) 차량내 승객이 감지되면, 승객 감지 사실을 유무선 통신망을 통해서 운전자 단말 또는 관리자 단말로 전송하는 단계;를 더 포함하는 것을 특징으로 하는 차량내 승객 감지 방법.
  13. 제 11 항에 있어서, 상기 (b) 단계는
    상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 서로 시간상 인접하는 프레임 데이터들의 프레임별값들의 차이값을 계산하여 움직임 데이터를 생성하여 저장하며, 저장된 움직임 데이터의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하여 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 것을 특징으로 하는 차량내 승객 감지 방법.
  14. 제 13 항에 있어서, 상기 (b) 단계는
    (b1) 상기 (a) 단계에서 입력되는 반사 신호를 수신하고, 상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하는 단계;
    (b3) 상기 (b1) 단계에서 생성되는 복수의 프레임 데이터들 중에서, 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하는 단계;
    (b5) 상기 (b3) 단계에서 순차적으로 생성되는 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하는 단계; 및
    (b6) 상기 움직임 누적 데이터의 각 프레임 값들을 임계값과 비교함으로써 차량내 승객의 존재 여부를 확인하는 단계를 포함하는 것을 특징으로 하는 차량내 승객 감지 방법.
  15. 제 14 항에 있어서,
    상기 (b1) 단계 및 상기 (b3) 단계 사이에,
    (b2) 상기 (b1) 단계에서 생성된 상기 프레임 데이터들을 저장하는 단계;를 더 포함하고,
    상기 (b3) 단계 및 상기 (b5) 단계 사이에,
    (b4) 상기 (b3) 단계에서 생성된 움직임 데이터를 순차적으로 저장하는 단계;를 더 포함하며,
    상기 (b3) 단계는 상기 (b2) 단계에서 저장된 복수의 프레임 데이터들 중에서 시간상 서로 인접하는 프레임 데이터들의 프레임별 값들의 차이값을 계산하여 움직임 데이터를 생성하고,
    상기 (b5) 단계는 상기 (b4) 단계에서 순차적으로 저장된 움직임 데이터들의 프레임별 값들을 누적하여 움직임 누적 데이터를 생성하는 것을 특징으로 하는 차량내 승객 감지 방법.
  16. 제 11 항에 있어서, 상기 (c) 단계는
    상기 반사 신호를 일정한 시간 주기로 샘플링한 상기 반사 신호의 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하고, 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하며, 움직임 데이터를 임계값과 비교함으로써 차량내 승객의 호흡 또는 심장 박동을 존재 여부를 확인하여 카운트하며, 카운트된 값이 사전에 정의된 횟수에 도달하면 차량내 승객의 존재하는 것으로 판단하는 것을 특징으로 하는 차량내 승객 감지 방법.
  17. 제 16 항에 있어서, 상기 (c) 단계는
    상기 프레임 데이터에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하여 저장하고, 노이즈가 제거되어 저장된 프레임 데이터들 중 사전에 정의된 시간만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 것을 특징으로 하는 차량내 승객 감지 방법.
  18. 제 17 항에 있어서, 상기 (c) 단계는
    (c1) 상기 (a) 단계에서 입력되는 반사 신호를 수신하여, 반사 신호의 절대적 크기를 계산하여, 반사 신호의 시간에 따른 크기를 나타내는 프레임 값을 복수개 포함하는 프레임 데이터를 생성하여 출력하는 단계;
    (c2) 프레임 데이터 상에 나타나는 움직임이 적은 배경과 노이즈를 프레임 데이터로부터 제거하는 단계;
    (c4) 상기 노이즈가 제거된 프레임 데이터를 순차적으로 저장하는 단계;
    (c5) 상기 (c4) 단계에서 저장된 프레임 데이터들 중에서, 사전에 정의된 시간 만큼의 프레임 데이터들을 각 프레임별로 값을 누적하여 움직임 데이터를 생성하는 단계;
    (c6) 움직임 데이터의 각 프레임의 값들을 사전에 정의된 임계치와 비교하여 임계치를 초과하는 프레임이 존재하면, 움직임이 있는 것으로 판정하는 단계; 및
    (c7) 움직임이 있는 것으로 판정된 회수를 카운트하여, 카운트 회수가 사전에 저장된 회수에 도달하면 차량내 승객이 감지되었음을 결정하는 단계를 포함하는 것을 특징으로 하는 차량내 승객 감지 방법.
  19. 제 18 항에 있어서, 상기 (c2) 단계는
    이전 연산 사이클에서 노이즈가 제거된 프레임 데이터(X(k-1))와 이전 연산 사이클에서 입력된 프레임 데이터(A(k-1))를 이용하여 노이즈 보정치(
    Figure PCTKR2019017637-appb-I000005
    )를 생성하는 단계; 및
    상기 (c1) 단계에서 입력된 프레임 데이터(A(k))에서, 이전 연산 사이클에서 연산된 상기 노이즈 보정치(B(k))를 감산하여 그 결과(X(k))를 출력하는 단계를 포함하는 것을 특징으로 하는 차량내 승객 감지 방법.
  20. 제 18 항에 있어서, 상기 (c2)와 (c4) 단계 사이에
    (c3) 상기 (c2) 단계에서 출력된 프레임 데이터에서 사전에 정의된 제한 시간을 벗어나는 프레임 값들을 제거하여, 제한 시간 내의 프레임 값들만을 포함하는 프레임 데이터를 생성하는 단계를 더 포함하고,
    상기 (c4) 단계는, 상기 (c3) 단계에서 생성된 프레임 데이터를 순차적으로저장하는 것을 특징으로 하는 차량내 승객 감지 방법.
PCT/KR2019/017637 2018-12-28 2019-12-12 울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법 WO2020138782A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021534815A JP7279165B2 (ja) 2018-12-28 2019-12-12 Uwbレーダーを利用した車両内乗客感知システム及び方法
US17/418,547 US20220075051A1 (en) 2018-12-28 2019-12-12 In-vehicle passenger detection system and method using ultra-wide band radar
CN201980086592.4A CN113226861B (zh) 2018-12-28 2019-12-12 利用超宽带的雷达的车辆内乘客感知系统及方法
EP19905512.0A EP3878701A4 (en) 2018-12-28 2019-12-12 SYSTEM AND METHOD FOR DETECTING PASSENGERS IN A VEHICLE USING ULTRA WIDE BAND RADAR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180171506A KR102151195B1 (ko) 2018-12-28 2018-12-28 Ultra-Wide Band 레이더를 이용한 차량내 승객 감지 시스템 및 방법
KR10-2018-0171506 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138782A1 true WO2020138782A1 (ko) 2020-07-02

Family

ID=71127218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017637 WO2020138782A1 (ko) 2018-12-28 2019-12-12 울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법

Country Status (6)

Country Link
US (1) US20220075051A1 (ko)
EP (1) EP3878701A4 (ko)
JP (1) JP7279165B2 (ko)
KR (1) KR102151195B1 (ko)
CN (1) CN113226861B (ko)
WO (1) WO2020138782A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004567B2 (en) 2017-08-15 2021-05-11 Koko Home, Inc. System and method for processing wireless backscattered signal using artificial intelligence processing for activities of daily life
US11997455B2 (en) 2019-02-11 2024-05-28 Koko Home, Inc. System and method for processing multi-directional signals and feedback to a user to improve sleep
US10810850B2 (en) 2019-02-19 2020-10-20 Koko Home, Inc. System and method for state identity of a user and initiating feedback using multiple sources
US11971503B2 (en) 2019-02-19 2024-04-30 Koko Home, Inc. System and method for determining user activities using multiple sources
US11719804B2 (en) * 2019-09-30 2023-08-08 Koko Home, Inc. System and method for determining user activities using artificial intelligence processing
US11184738B1 (en) 2020-04-10 2021-11-23 Koko Home, Inc. System and method for processing using multi core processors, signals, and AI processors from multiple sources to create a spatial heat map of selected region
KR102582729B1 (ko) * 2022-08-09 2023-09-25 주식회사 에너자이 승객 탐지 방법, 승객 탐지 장치, 및 승객 탐지 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055352A (ko) * 2015-11-11 2017-05-19 주식회사 이에스피 임펄스 초광대역 레이더를 이용한 차량 운전자 생체 신호 측정 경보 시스템
KR20180024771A (ko) * 2016-08-31 2018-03-08 엘에스오토모티브 주식회사 차량 탑승자 모니터링 시스템 및 방법
US20180065504A1 (en) * 2016-09-02 2018-03-08 Atieva, Inc. Vehicle Child Detection and Response System
KR20180058915A (ko) * 2016-11-25 2018-06-04 (주)넥스트팩토리 어린이 통학차량 안전장치 및 어린이 통학차량 안전시스템
KR20180136790A (ko) * 2017-06-15 2018-12-26 주식회사 디엠엑스 탑승자 보호 시스템을 이용한 탑승자 보호 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820897B2 (en) * 1992-05-05 2004-11-23 Automotive Technologies International, Inc. Vehicle object detection system and method
US8604932B2 (en) * 1992-05-05 2013-12-10 American Vehicular Sciences, LLC Driver fatigue monitoring system and method
DE102005020847A1 (de) 2005-05-02 2006-11-09 Carsten Dr. Koch Vorrichtung zur berührungslosen Positionsbestimmung von Körperteilen von Lebewesen im Kraftfahrzeug
JP5062510B2 (ja) * 2006-08-16 2012-10-31 日本電気株式会社 乗車料金精算システム、乗車料金精算方法、乗車料金精算プログラム、携帯端末及び管理サーバ
JP5682504B2 (ja) 2010-09-09 2015-03-11 コニカミノルタ株式会社 安否監視装置
ES2402106T3 (es) * 2010-12-07 2013-04-29 Kapsch Trafficcom Ag Aparato de veh�culo y procedimiento para el cobro de peaje a veh�culos en funci�n del n�mero de pasajeros
JP5718139B2 (ja) * 2011-04-21 2015-05-13 日野自動車株式会社 レーダ装置、バス、および乗客移動検出方法、並びにプログラム
CN102423261B (zh) 2011-09-20 2013-10-02 中国人民解放军第四军医大学 超宽谱雷达式非接触生命参数实时监测系统
US10495725B2 (en) * 2012-12-05 2019-12-03 Origin Wireless, Inc. Method, apparatus, server and system for real-time vital sign detection and monitoring
EP3033634B1 (en) * 2013-08-14 2017-05-31 IEE International Electronics & Engineering S.A. Radar sensing of vehicle occupancy
JP6544236B2 (ja) 2013-09-13 2019-07-17 コニカミノルタ株式会社 保管システム、制御装置、保管システムにおける映像情報保管方法、制御装置における制御方法、並びにプログラム
KR101642697B1 (ko) * 2015-12-03 2016-08-10 양선종 차량 운전자 생체정보신호 측정 시스템 및 방법
KR101908314B1 (ko) * 2016-10-17 2018-10-17 서울교통공사 열차 승강장안전문용 인체 및 사물 감시 안전시스템
KR101752858B1 (ko) * 2016-12-09 2017-07-19 메타빌드주식회사 레이더 기반 고 정밀 돌발상황 검지 시스템
KR101903401B1 (ko) * 2017-02-17 2018-10-04 옴니센서(주) Uwb 레이더를 이용한 차량내 생체 정보 측정 장치 및 방법
US11925446B2 (en) * 2018-02-22 2024-03-12 Vayyar Imaging Ltd. Radar-based classification of vehicle occupants
CA3148412A1 (en) * 2019-08-05 2021-02-11 Srivatsan RAMESH Non-contact identification of multi-person presence for elderly care

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055352A (ko) * 2015-11-11 2017-05-19 주식회사 이에스피 임펄스 초광대역 레이더를 이용한 차량 운전자 생체 신호 측정 경보 시스템
KR20180024771A (ko) * 2016-08-31 2018-03-08 엘에스오토모티브 주식회사 차량 탑승자 모니터링 시스템 및 방법
US20180065504A1 (en) * 2016-09-02 2018-03-08 Atieva, Inc. Vehicle Child Detection and Response System
KR20180058915A (ko) * 2016-11-25 2018-06-04 (주)넥스트팩토리 어린이 통학차량 안전장치 및 어린이 통학차량 안전시스템
KR20180136790A (ko) * 2017-06-15 2018-12-26 주식회사 디엠엑스 탑승자 보호 시스템을 이용한 탑승자 보호 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3878701A4 *

Also Published As

Publication number Publication date
KR20200081703A (ko) 2020-07-08
JP7279165B2 (ja) 2023-05-22
EP3878701A4 (en) 2022-08-17
JP2022519983A (ja) 2022-03-28
CN113226861B (zh) 2023-06-06
US20220075051A1 (en) 2022-03-10
EP3878701A1 (en) 2021-09-15
CN113226861A (zh) 2021-08-06
KR102151195B1 (ko) 2020-10-26

Similar Documents

Publication Publication Date Title
WO2020138782A1 (ko) 울트라 와이드 밴드 레이더를 이용한 차량내 승객 감지 시스템 및 방법
US9760784B2 (en) Device, method and program for measuring number of passengers
CA3010922C (en) Passenger counting device, system, method and program
WO2014083465A1 (en) Detecting changes in position of a device in a horizontal or vertical direction
WO2016208914A1 (ko) 차량 사고 감지장치 및 이를 이용한 긴급 콜 시스템
CN111626219B (zh) 轨迹预测模型生成方法、装置、可读存储介质及电子设备
WO2019135580A1 (ko) Uwb 레이더를 이용하는 인원 계수 방법 및 장치
WO2021096162A1 (ko) 심장신호 처리장치 및 방법, 이를 포함하는 모니터링 시스템
WO2015099249A1 (ko) 의료 영상의 병변 유사도 판단 장치 및 방법
KR101860062B1 (ko) 낙상 감지 시스템 및 방법
WO2021167312A1 (ko) 라이다 센서를 구비한 터치 인식 방법 및 장치
Amir et al. Real-time threshold-based fall detection system using wearable IoT
JP5334008B2 (ja) 異常動作検出装置
WO2020242102A1 (ko) Ir-uwb 레이더를 이용한 비접촉식 활동량 측정 장치 및 방법
CN113615166B (zh) 事故检测装置及事故检测方法
WO2023167507A1 (ko) 사람을 감지하기 위한 신호처리 방법 및 레이더 시스템
CN106155645B (zh) 一种实现预警的方法和装置
CN115393956A (zh) 改进注意力机制的CNN-BiLSTM跌倒检测方法
KR100718126B1 (ko) 동작 인식 기반 입력 장치의 사용자 인터페이스 방법 및 그장치
WO2019199035A1 (ko) 시선 추적 시스템 및 방법
WO2022215394A1 (ja) 車両の混雑度判定方法、および車両の混雑度判定システム
CN110806261A (zh) 一种应用于自动化设备的碰撞检测方法
KR101627533B1 (ko) 사용자 상황 예측 시스템 및 방법과, 이를 수행하기 위한 기록매체
WO2019098422A1 (ko) 객체 추적 장치 및 객체 추적 방법
JP7182671B1 (ja) 在室人数推定装置、在室人数推定方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534815

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019905512

Country of ref document: EP

Effective date: 20210611

NENP Non-entry into the national phase

Ref country code: DE