WO2020138778A1 - 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법 - Google Patents

다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법 Download PDF

Info

Publication number
WO2020138778A1
WO2020138778A1 PCT/KR2019/017551 KR2019017551W WO2020138778A1 WO 2020138778 A1 WO2020138778 A1 WO 2020138778A1 KR 2019017551 W KR2019017551 W KR 2019017551W WO 2020138778 A1 WO2020138778 A1 WO 2020138778A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
sewage sludge
water
concentration
alkane
Prior art date
Application number
PCT/KR2019/017551
Other languages
English (en)
French (fr)
Inventor
지재규
신동철
Original Assignee
(주)화이브앤식스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)화이브앤식스 filed Critical (주)화이브앤식스
Priority to US17/417,978 priority Critical patent/US20220064042A1/en
Priority to CN201980092625.6A priority patent/CN113784929A/zh
Publication of WO2020138778A1 publication Critical patent/WO2020138778A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/002Sludge treatment using liquids immiscible with water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1284Mixing devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention relates to a multi-stage separation reaction tank for treating sewage sludge by forming a collection layer, a diffusion layer, a primary buffer layer, a secondary buffer layer, and an inorganic precipitate layer when treating an organic material by adding a liquid solvent having a specific gravity less than water to the sewage sludge. .
  • the present invention relates to a method for treating sewage sludge using an alkane-based solvent that significantly lowers the water content of the sewage sludge using a non-polar alkane-based solvent that is in a liquid state at atmospheric pressure and room temperature.
  • the wastewater sludge mass separated by agglomeration of the organic matter including microorganisms as described above is still not sufficiently reduced because it still contains 80% or more of moisture even through a mechanical dehydration process with a centrifuge.
  • the first reason why the weight was not reduced is that the outermost water outside the microorganism cannot be easily dehydrated as the microfloc is bound to each other by capillarity between the particle groups of organic sludge having a size less than 150um. .
  • the second reason why the weight is not reduced is because the microorganisms present in the sewage are not destroyed, and the crystalline water (internal water) existing inside the microorganisms accounts for about 40% of the total water remaining in the sewage sludge after coagulation treatment. do.
  • Korean Patent Publication No. 2015-0056429, Korean Patent Publication No. 2015-0056472, and Korean Patent Publication No. 2015-0056473 use hydrocarbon-based organic solvents to extract and separate organic substances from sewage sludge to further lower the water content. .
  • the hydrocarbon-based organic solvent used in the related art has a limitation in lowering the total water content because it is not evenly diffused into the entire organic sludge upon input because it is in a solid state at atmospheric pressure and normal temperature.
  • the hydrocarbon-based organic solvent used in the related art has a relatively long carbon chain, which is disadvantageous in terms of rheology, and has a low selective adsorption rate of organic substances present in sewage sludge.
  • a hydrocarbon-based organic solvent is mixed and introduced into a separation reaction tank 50 for the treatment of sewage sludge, whereby a mixture layer 56 composed of an organic solvent and sewage sludge is 56 To form.
  • the upper portion of the mixture layer 56 is a hydrocarbon-based organic solvent having a smaller specific gravity than water and the organic material to which the organic solvent is attached is floating to form a collection layer 57, and the lower layer of the mixture has a heavy specific gravity of water and inorganic substances.
  • the sedimentation layer 55 is formed by sinking.
  • the ideal (ideal) is the separation layer 50 in the separation layer (50), based on the mixture layer 56, respectively, the collection layer (57) containing an organic material and the precipitation layer (55) containing an inorganic material is clearly bounded And must be separated.
  • the collection layer 57 and the precipitation layer 55 are not clearly distinguished above and below the mixture layer 56 due to various reasons including interlayer diffusion, convection, and mixing, and thus the efficiency of organic matter treatment (separation) is low. .
  • the present invention is to solve the above-mentioned problems, and when the organic material is treated by adding a liquid solvent having a specific gravity less than water to the sewage sludge, a sewage sludge is formed by forming a collection layer, a diffusion layer, a primary buffer layer, a secondary buffer layer, and an inorganic precipitation layer. It is intended to provide a multi-stage separation reactor to treat the.
  • the present invention is to provide a method for treating sewage sludge using an alkane-based solvent that significantly lowers the water content of sewage sludge by using a non-polar alkane-based solvent in a liquid state at atmospheric pressure and room temperature.
  • the multi-stage separation reaction tank in which a liquid solvent having a specific gravity smaller than water is introduced into a sewage sludge containing water, organic substances and inorganic substances, and a treatment tank body having a receiving space therein;
  • a first connection pipe connected to an upper portion of the reactor body;
  • a second connection pipe connected to the reaction vessel body and disposed below the first connection pipe;
  • a third connection tube connected to the reaction vessel body and disposed below the second connection;
  • a mixing device for supplying a mixture of the liquid solvent and sewage sludge into the reaction vessel body through the first connection pipe;
  • a solvent spraying device for spraying liquid solvent droplets into the reaction vessel body through the second connection pipe;
  • an aeration device for spraying air bubbles into the reaction vessel body through the third connection tube, including a diffusion layer through which the liquid solvent and sewage sludge are diffused by the mixture supplied through the first connection tube,
  • the liquid solvent and the organic material are suspended from the diffusion layer to form a collection layer on the upper portion of
  • the method of treating a sewage sludge using an alkane-based solvent according to the present invention is to extract and process organic substances from the sewage sludge using the multi-stage separation reaction tank as described above, wherein the alkane-based solvent is added to the sewage sludge.
  • the solvent introduced in the organic matter separation step is a solvent that exists in a liquid state at atmospheric pressure and room temperature among the alkane-based solvents, and microorganisms and organic sludge attached to the solvent are suspended above the water by a solvent having a specific gravity of less than 1. It is characterized by being separated from water.
  • the pre-treatment step is a concentration detection step of detecting the mixed liquor suspended solid (MLSS) concentration, the average suspended solids concentration for the sewage sludge; And an input amount detection step of determining an input amount of the injected solvent according to the detected MLSS concentration.
  • MLSS mixed liquor suspended solid
  • the pre-treatment step further includes a concentration control step of diluting the MLSS concentration of the sewage sludge to less than 5,000 [ppm], either the outermost water separated in the organic matter separation step or the crystalline water separated in the organic matter concentration step
  • concentration control step of diluting the MLSS concentration of the sewage sludge to less than 5,000 [ppm], either the outermost water separated in the organic matter separation step or the crystalline water separated in the organic matter concentration step.
  • the sewage sludge introduced in the organic material separation step is preferably a sewage sludge that has been treated in the aerobic tank, sedimentation tank or concentration tank among chemical treatment tanks, aerobic tanks, sedimentation tanks, concentration tanks and dehydration devices sequentially installed in a sewage treatment plant. .
  • the present invention forms a collection layer, a diffusion layer, a primary buffer layer, a secondary buffer layer, and an inorganic precipitation layer when treating an organic material by adding a liquid solvent having a specific gravity less than water to the sewage sludge. Therefore, it is possible to separate the layers by the primary buffer layer and the secondary buffer layer, respectively.
  • the present invention significantly lowers the water content of sewage sludge by using a non-alkaline solvent that is liquid and non-polar under atmospheric pressure and room temperature. Therefore, despite the capillary phenomenon between the small-sized organic matter, the organic matter is adsorbed to the solvent and separated from the water, and an extraction reaction occurs between the sewage sludges by the liquid solvent.
  • the non-polar solvent penetrates the phospholipid bilayer constituting the cell membrane of the microorganism through simple diffusion, and the cell membrane of the microorganism is destroyed by the pressure of the solvent diffused into the microorganism, the water inside the microorganism is separated and removed.
  • FIG. 1 is a view showing the layer structure of a separation reactor according to the prior art.
  • Figure 2 is a flow chart showing a sewage sludge treatment method using an alkane-based solvent according to the present invention.
  • FIG. 3 is a view showing a sewage sludge treatment system to which the present invention is applicable.
  • FIG. 4 is a view showing a state in which an organic material is selectively adsorbed to the solvent of the present invention.
  • FIG. 5 is a view showing a multi-stage separation reaction tank according to the present invention.
  • the separation reaction tank according to the present invention is only optimized for the sewage sludge treatment method using the alkane-based solvent according to the present invention, and can be applied to other liquid solvents.
  • the method for treating sewage sludge using an alkane-based solvent includes an organic material separation step (S110) and an organic material concentration step (S120).
  • the preferred embodiment may further include a solvent recovery step (S130) after the organic substance concentration step (S120), and a pretreatment step (S110-P) before the organic substance separation step (S110).
  • the present invention extracts and treats organic substances such as microorganisms and organic sludge by adding an alkane-based solvent to sewage sludge (or slurry) containing water, microorganisms, and organic sludge as well as some other inorganic and heavy metals. .
  • the organic material separation step (S110) the organic material is separated from the outermost water contained in the sewage sludge as the organic material is adsorbed and suspended in the alkane-based solvent.
  • the outermost water refers to the water remaining between organic substances in the sewage sludge.
  • the cell membrane of the microorganism is destroyed by the pressure and the crystal water (body water) remaining inside the microorganism is leaked to the outside, so that the crystal water and the organic material It is separated.
  • the solvent adsorbed on the organic matter separated from the water is recovered and reused.
  • the recovered solvent has a liquid phase and a gas phase vaporized therefrom, as described later.
  • an alkane-based solvent hereinafter, referred to as'solvent'
  • sewage sludge is maintained at an optimal system value for the treatment.
  • it includes a concentration detection step, an input amount detection step, a concentration control step and a stirring step.
  • the mixed liquor suspended solid (MLSS) concentration which is the average suspended solids concentration for the sewage sludge, is detected, and in the input detection step, the input amount of the solvent to be input is determined according to the detected MLSS concentration as above.
  • the MLSS concentration of the sewage sludge is less than 5,000 [ppm]. If the MLSS concentration of the sewage sludge exceeds 5,000 [ppm], it is difficult to selectively adsorb the organic material of the input raw material sewage sludge and the alkane-based solvent.
  • the concentration control step if the MLSS concentration of the sewage sludge does not satisfy the system appropriate value, the ratio of water to organic matter is adjusted to maintain the MLSS concentration of the sewage sludge again at the system appropriate value.
  • the water input to maintain the system proper value preferably recycles the outermost water separated in the organic material separation step (S110) and/or the crystalline water separated in the organic material concentration step (S120).
  • the contaminant means a solid material or the like that is not extracted by a solvent.
  • the sewage sludge input to the pretreatment step (S110-P) is supplied from an existing sewage treatment plant.
  • the system to which the present invention is applicable can be linked (or connected in parallel) to existing sewage treatment plant facilities.
  • the chemical treatment tank 10, the exhalation tank 20, the sedimentation tank 30, the concentration tank 40, and the dewatering device 50 are generally constructed as basic facilities in the sewage treatment plant.
  • the present invention can be introduced into the organic matter separation step (S110) described below after pre-treatment of the sewage sludge after treatment in the aeration tank 20 or sedimentation tank 30 of these facilities.
  • the sewage sludge after treatment in the concentration tank 40 may be introduced.
  • the aerobic tank 20 biologically treats the sewage sludge after the chemical treatment in the chemical treatment tank 10.
  • the aerobic tank 20 is also called an aeration tank, and air (aeration) is supplied to treat organic materials using microorganisms when treating sewage by an activated sludge method.
  • the exhalation tank 20 receives the return sludge from the subsequent precipitation tank 30 and supplies the remaining excess sludge to the concentration tank 40.
  • Surplus sludge is sewage sludge excluding return sludge used as nutrient (carbon component) necessary for maintaining the microbial ecosystem in the aerobic tank 20.
  • the sewage sludge of the exhalation tank 20 is usually input only after removing and stirring the debris immediately without adjusting the concentration of the sewage sludge, because the MLSS concentration is less than 5,000 [ppm]. Of course, if the MLSS concentration exceeds 5,000 [ppm], the number of processes can be added to lower the MLSS concentration.
  • the MLSS concentration in the aerobic tank 20 can be monitored using an MLSS concentration meter installed in the sewage treatment plant.
  • the MLSS densitometer may use an energy attenuation method using an ultrasonic attenuation method and an envelope signal, which monitors each facility of a sewage treatment plant.
  • Sewage sludge in the sedimentation tank 30 is usually MLSS concentration of 20,000 [ppm] or more, so, as described above, the process water (ie, the outermost water and/or crystal water) is diluted with it, and the MLSS concentration is 5,000 [ ppm] before use.
  • the MLSS concentration of the sewage sludge after treatment in the concentration tank 40 may be adjusted to less than 5,000 [ppm] and used.
  • the concentration tank 40 or the dehydration device 50 subsequently installed in the exhalation tank 20 and the precipitation tank 30 is operated. It can be interrupted or made unnecessary.
  • the MLSS concentration is relatively high, the efficiency may be somewhat lower, but in the case of treating the sewage sludge that has passed through the concentration tank 40, it is possible to stop or unnecessary the operation of only the dewatering device 50, which is a subsequent process.
  • an alkane-based solvent is added to the sewage sludge to separate microorganisms and organic sludge attached to the solvent from the outermost water existing outside the microorganism. .
  • the separation tank ( In 100), as shown in Figure 4, the organic material is selectively adsorbed to the solvent.
  • Organic matter includes organic sludge and microorganisms.
  • a solvent having a specific gravity of less than 1 is separated from water as it rises as an upper layer of water together with organic substances in the separation tank 100. That is, the solvent in which the organic sludge and microorganisms are adsorbed in the separation tank 100 is floating on the upper side and water is separated on the lower side.
  • the water separated in the lower layer in the separation tank 100 refers to the outermost water as described above, and is separated from the crystalline water (internal water) inside the microorganism, and the present invention provides an organic sludge having a particle group (microfloc) size less than 150um. The remaining water is separated between the particle groups.
  • the outermost water is a polar substance having an acid-base interaction force, it is possible to separate the outermost water, which was difficult to separate in the conventional mechanical dehydration method even when water particles exert strong attraction. To do.
  • the outermost water separated in the organic material separation step (S110) is stored in a water storage tank (S111), for example, and then supplied as process water to the pretreatment step (S110-P) or sewage as treated water from which the organic material is separated. It is discharged to the treatment plant.
  • the outermost water does not change the water balance in the sewage treatment plant because there is no change in pH or properties compared to the state contained in the first sewage sludge, and it can be used as process water to recycle in the pretreatment step (S110-P). .
  • the alkane-based solvent introduced together with the sewage sludge in the organic material separation step (S110) is preferably an alkane-based solvent present in a liquid state at atmospheric pressure and room temperature among the alkane-based.
  • the liquid solvent When the solvent is a liquid at atmospheric pressure and normal temperature, the liquid solvent has excellent rheological properties that are diffused and uniformly dispersed between the sewage sludges as a medium, and thus has a very excellent solvent extraction effect compared to when the solvent is a solid.
  • N-PENTANE has a specific gravity of 0.6 to 0.7.
  • the present invention selects N-PENTANE or its isomer having the best selective adsorption properties with organic substances in sewage sludge due to the shortest and simplest carbon ring among the alkane-based solvents present in a liquid state at atmospheric pressure and room temperature. .
  • N-PENTANE and isomers have the smallest molecular weight among liquid alkanes and have a specific gravity of 0.6 to 0.7, so they have the best floating ability after selective adsorption with organic substances, resulting in floating organic substances within a short residence period (R/T). And separation.
  • FIG. 5 shows a multi-stage separation reaction tank according to the present invention.
  • a liquid solvent is used to facilitate diffusion and acceleration in sewage sludge mixed with water, and there is no particular limitation on the applicable solvent if it can be attached to the organic material and float upward.
  • the solvent applied to the multi-stage separation reaction tank 100 of the present invention is a non-polar alkane-based solvent, and the smaller the specific gravity is, the more preferable.
  • the present invention is to treat the organic material by injecting a liquid solvent having a specific gravity less than water to the sewage sludge containing water, organic and inorganic materials, the reaction tank body 110, the first connector 120, the 2 includes a connecting pipe 130, a third connecting pipe 140, a mixing device 150, a solvent injection device 160 and an aeration device 170.
  • the reaction tank body 110 is a single reaction tank having a receiving space therein, and as described later, five layers 111 to 115 are stacked from the bottom to the top. The five layers are divided into Layer 1 to Layer 5 and separated according to specific gravity.
  • the first connection pipe 120 to the third connection pipe 140 connected to one side of the reaction vessel body 110 form water in order to divide the inorganic material of the lowest layer and the organic material of the uppermost layer by forming the multi-level separated layers 111 to 115 as above. , Sewage sludge, solvent and air are injected.
  • the mixing device 150, the solvent injection device 160, and the aeration device 170 are for treating the injected water, sewage sludge, solvent and air, as described above, and a solvent (for example, alkane solvent) and sewage sludge. And the solvent or air to form bubbles.
  • a solvent for example, alkane solvent
  • the first connector 120 is connected to the upper portion of the reaction tank body 110 having an accommodation space therein, and the second connector 130 is disposed below the first connector 120.
  • the third connector 140 is disposed below the second connector.
  • the first connector 120 is a layer 4 diffusion layer ( 114).
  • the second connector 130 is located on the primary buffer layer 113, which is Layer 3
  • the third connector 140 is located on the secondary buffer layer 112, which is Layer 2.
  • the mixing device 150 supplies a mixture of liquid solvent and sewage sludge into the reaction vessel body 110 through the first connection pipe 120.
  • the mixing device 150 may be an inline mixer.
  • the line mixer includes a circulation mixing device and a solvent input mixing device.
  • the circulating mixing device facilitates uniform dispersion and simple separation of organic substances in sewage sludge.
  • the solvent input mixing device is used for solvent adsorption and uniform dispersion of organic matter.
  • the solvent injection device 160 injects a liquid solvent droplet into the reaction vessel body 110 through the second connection pipe 130. To this end, the solvent injection device 160 receives and sprays a solvent from a storage tank that supplies, for example, an alkane-based solvent.
  • the injected solvent forms a submicron or nano-sized chemical droplet.
  • it is sprayed evenly over the entire primary buffer layer 113, but is stably sprayed to minimize sloshing.
  • the aeration device 170 injects air bubbles into the reaction vessel body 110 through the third connector 140.
  • the aeration device 170 includes an external air intake fan, an air bubble generator, and the like, and generates sub-micron or nano-sized air bubbles.
  • the diffusion layer 114 in which the liquid solvent and the sewage sludge are diffused is formed by the mixture supplied through the first connection pipe 120, and the liquid solvent and the organic material are suspended from the diffusion layer 114 to diffuse the diffusion layer 114. ), the collecting layer 115 is formed on the top.
  • the primary buffer layer 113 is formed under the diffusion layer 114 by the liquid solvent droplets injected through the second connection pipe 130, and the air bubbles injected through the third connection pipe 140 are primary.
  • the second buffer layer 112 is formed by being supplied to water and inorganic substances sinking to the lower portion of the buffer layer 113.
  • An inorganic precipitation layer 111 is formed below the secondary buffer layer 112 as described above.
  • the inorganic sedimentation layer 111 is stacked and separated from the secondary buffer layer 112 with air bubbles sprayed through the aeration device 170, and water and inorganic substances are settled.
  • water and inorganic substances having a high specific gravity are precipitated in the inorganic precipitate layer 111 of the lowermost layer, and organic substances are attached to a solvent having a small specific gravity to the collecting layer 115 of the uppermost layer to float together, and by multiple layers therebetween. They are clearly separated from each other.
  • the primary buffer layer 113 is formed on the lower portion based on the diffusion layer 114 in which the solvent and sewage sludge are mixed, organic substances and solvents are attached by solvent droplets evenly distributed in the primary buffer layer 113. And/or are invaded and no longer go downstairs and ascend upward.
  • the secondary buffer layer 112 there is a secondary buffer layer 112 at the top and an inorganic precipitation layer 111 at the bottom, some organic substances and solvents diffused from the primary buffer layer 113 and descended to the lower layer. Is attached and/or entrapped and can no longer go downstairs and rises upward.
  • the present invention can prevent the interlayer diffusion, convection, and miscibility, so that the collection layer 115 and the inorganic precipitation layer 111 can be clearly distinguished, and thus the efficiency of organic matter treatment (separation) is greatly improved.
  • the entrainment bypass in the collection layer 115 and the inorganic sedimentation layer 111 is set to be less than 5%, respectively, so that the separation efficiency curve in the multi-stage separation reaction tank 100 is ideal compared to an error. (misplacement) should be less than 10%.
  • the first discharge pipe 116 and the second discharge pipe 117 which are not described above, are connected to the uppermost collecting layer 115 and the lowermost inorganic precipitation layer 111, respectively. Therefore, the solvent and organic substances are separated and discharged through the first discharge pipe 116, and water and inorganic substances are separately discharged through the second discharge pipe 117.
  • the organic material concentration step (S120) diffuses a non-polar solvent into the interior of the microorganism to induce destruction of the cell membrane of the microorganism by expansion and remains inside the microorganism by destruction of the cell membrane.
  • the used crystal water is discharged to the outside to separate.
  • the organic material separation step (S110) is performed in the separation tank 100, the sludge composed of the microorganisms, the organic sludge, and the solvent in which the outermost water is separated is sent to the concentration tank 4, and the crystallized water in the concentration tank 4 is sent.
  • a step for separation proceeds.
  • the water content of the sewage sludge exceeds 80%, and among them, the crystal water inside the microorganism occupies 40%.
  • the present invention uses a non-polar alkane-based solvent that is easily diffused into the cell membrane.
  • n-PENTANE and isomers of n 5, which is liquid at room temperature and has the shortest carbon ring, are used.
  • the present invention is a non-polar, liquid at room temperature, and a simple diffusion is carried out through the cell membrane of a microorganism composed of a phospholipid bilayer using a solvent having a short carbon ring, thereby destroying the cell membrane of the microorganism by the resulting pressure.
  • the crystalline water (body water) existing therein is separated from the solvent, and the crystalline water having a higher specific gravity than the solvent sinks to the bottom, and the organic matter adsorbed on the remaining solvent floats on the upper side and becomes crystalline water. Is separated.
  • Crystal water separated in the organic material concentration step (S120) is stored in a water storage tank (S121), for example, and then supplied as process water to the pre-treatment step (S110-P), or as a treated water from which the organic material is separated. Is discharged. The sludge from which the crystal water has escaped becomes concentrated.
  • the crystalline water also does not change the water balance in the sewage treatment plant because there is no change in pH or properties compared to the state contained in the first sewage sludge, and can be used as process water to recycle in the pretreatment step (S110-P). Do.
  • the solvent that has been subjected to the organic material separation step (S110) and the organic material concentration step (S120) is collected by being input together with the sewage sludge in the above-described pretreatment step (S110-P).
  • the solvent recovery step (S130) includes a liquid solvent recovery step (S131) for recovering the liquid solvent. Furthermore, as a preferred embodiment, in addition to the recovery of the liquid solvent, a gas solvent recovery step (S132) of recovering the gas solvent is included.
  • the liquid solvent attached to the microorganisms and organic sludge is separated and recovered using a degasser.
  • a degasser such as vacuum degassers, pressure degassers and centrifugal degassers, can be used.
  • the liquid solvent recovered in the liquid solvent recovery step (S131) is stored in a solvent storage tank (S131a), and the stored solvent is supplied to the pretreatment step (S110-P) described above. Of course, in some cases, it may be directly supplied to the organic material separation step (S110).
  • the gas solvent recovery step (S132) while treating the sewage sludge with a solvent extraction method using a liquid solvent, the gas solvent vaporized on the surface of the liquid solvent or in the air is recovered.
  • the entropy of the gaseous solvent is increased by utilizing compressed air in the vaporization active tank, and the collected gaseous solvent is sent to a condenser to be liquefied (condensed) (S132a). Compressed air is supplied to an air cyclone device or the like installed in the vaporization active tank.
  • the liquid solvent recovered and condensed in the gas solvent recovery step (S132) is also stored in the solvent storage tank, and the stored solvent is supplied to the pretreatment step (S110-P) described above. Of course, in some cases, it may be directly supplied to the organic material separation step (S110).
  • the vaporization active tank and the peripheral device may constitute a closed circuit that is isolated from the external environment, and preferably, all previous processes are configured as a closed circuit.
  • the sewage sludge discharged through a mechanical dehydration process in a conventional sewage treatment plant contains about 80% of moisture, and the present invention can further reduce 78%, so that it can be used as an alternative energy having high heat. .
  • BOD, COD, SS, TOC and treated water with improved electrical conductivity are discharged.
  • the outermost water and crystalline water are removed to produce sludge powder having a moisture content of less than 10%.
  • Sludge powder containing only less than 10% moisture provides a calorific value of about 3,876 [Kcal/Kg], thus eliminating the need to landfill the sewage sludge-treated sludge powder and using it as renewable energy.

Abstract

본 발명은 하수 슬러지에 물보다 비중이 작은 액상 용매를 투입하여 유기물을 처리시 포집층, 확산층, 1차 완충층, 2차 완충층 및 무기물 침전층을 형성하여 하수 슬러지를 처리하는 다단 분리 반응조에 관한 것이다. 또한, 본 발명은 대기압, 상온 하에서 액체 상태이고 비극성인 알케인 계열 용매를 이용하여 하수 슬러지의 함수율을 월등히 낮추는 알케인 계열 용매를 이용한 하수 슬러지 처리 방법에 관한 것이다.

Description

다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법
본 발명은 하수 슬러지에 물보다 비중이 작은 액상 용매를 투입하여 유기물을 처리시 포집층, 확산층, 1차 완충층, 2차 완충층 및 무기물 침전층을 형성하여 하수 슬러지를 처리하는 다단 분리 반응조에 관한 것이다.
또한, 본 발명은 대기압, 상온 하에서 액체 상태이고 비극성인 알케인 계열 용매를 이용하여 하수 슬러지의 함수율을 월등히 낮추는 알케인 계열 용매를 이용한 하수 슬러지 처리 방법에 관한 것이다.
최근 하수 슬러지의 해양투기가 전면 금지 등 환경오염을 일으키는 하수 슬러지의 무단 방류나 투기가 금지됨에 따라 하수 슬러지를 효율적으로 처리할 수 있는 기술 개발되고 있다.
기존에는 고분자 응집제를 이용하여 하수에 포함된 유기성 슬러지나 미생물과 같은 유기물을 물과 함께 덩어리로 응집 및 침전시킨다. 이러한 처리방법에 따르면 비중이 12 정도의 슬러지 덩어리로 분리 및 회수된다.
그러나 위와 같이 미생물을 포함한 유기물을 응집시켜 분리한 하수 슬러지 덩어리는 원심분리기로 기계적 탈수 공정을 거쳐도 여전히 80% 이상의 수분을 포함하고 있어서 감량화가 충분하지 않다.
감량화가 되지 않은 첫 번째 이유는 입자군(microfloc)이 크기가 150um 미만인 유기성 슬러지의 입자군들 사이에서의 모세관 현상에 의해 서로 결착이 이루어짐에 따라 미생물 외부의 최외각수가 쉽게 탈수되지 못하기 때문이다.
나아가 감량화가 되지 않는 두 번째 이유는 하수에 존재하고 있는 미생물이 파괴되지 않기 때문인데, 미생물 내부에 존재하고 있는 결정수(체내수)는 응집 처리 후의 하수 슬러지에 잔존하는 전체 물의 약 40%를 차지한다.
따라서, 기존에는 이상과 같이 응집 및 분리된 하수 슬러지를 기계적 공법으로 탈수한 이후에도 재활용 또는 매립처리에 적합한 함수율 기준을 맞추기 위해 열처리 및 건조 소각 등의 2차 처리가 필요한 문제가 있다.
이에 한국공개특허 제2015-0056429호, 한국공개특허 제2015-0056472호 및 한국공개특허 제2015-0056473호 등에서는 탄화수소계 유기용매를 이용하여 하수 슬러지의 유기물을 추출 및 분리하여 함수율을 더욱 낮추고 있다.
탄화수소계 유기용매를 하수 슬러지에 투입하면 유기 슬러지와 미생물이 유기용매로 이동하여 부착 및 추출된다. 따라서, 유기 슬러지 사이의 최외각수 및 미생물 파괴로 인한 미생물 내부의 결정수 추출 효과가 있다.
그러나, 이상과 같이 종래에 이용되던 탄화수소계 유기용매는 대기압 상온에서 고체 상태이기 때문에 투입시 유기 슬러지 전체로 고르게 확산되지 않기 때문에 전체 함수율을 낮추는데 한계가 있다.
또한, 종래 이용되던 탄화수소계 유기용매는 비교적 탄소고리(carbon chain)의 길이가 길어서 유동학적으로 불리함은 물론, 하수 슬러지내 존재하는 유기물의 선택적 흡착율이 낮다.
또한, 종래 이용되던 탄화수소계 유기용매가 물보다는 비중이 작기는 하지만 충분하지 않기 때문에 유기물들이 흡착된 후 물 위로 부유하여 분리되는 부상능력이 떨어지고, 체류시간(R/T) 시간이 길어지는 문제가 있다.
특히, 도 1과 같이, 한국등록특허 제10-1827305호에서는 하수 슬러지의 처리를 위해 탄화수소계 유기용매를 혼합하여 분리 반응조(50)에 투입함으로써, 유기용매와 하수 슬러지로 이루어진 혼합물층(56)을 형성시킨다.
이때, 혼합물층(56)의 상부에는 물보다 비중이 작은 탄화수소계 유기용매 및 상기 유기 용매가 부착된 유기물질이 부유하여 포집층(57)이 형성되고, 혼합물의 하층에는 비중이 무거운 물과 무기물이 가라 앉아 침전층(55)이 형성된다.
위와 같은 경우, 이상적(ideal)으로는 분리 반응조(50) 내에서 혼합물층(56)을 기준으로 상하에 각각 유기물을 포함하는 포집층(57) 및 무기물을 포함하는 침전층(55)이 명확히 경계를 이루어 분리되어야 한다.
그러나, 종래에는 층간 확산, 대류 및 혼화를 비롯한 각종 이유로 인해 혼합물층(56)을 기준으로 그 상하에 포집층(57) 및 침전층(55)이 명확히 구분되지 않아서 유기물 처리(분리) 효율이 낮다.
따라서, 포집층(57)과 침전층(55)에서 각각 20% 이상의 엔트레인먼트 바이패스(entraintment bypass)가 발생하여, 분리 반응조(50)에서의 분리 효율 곡선이 이상적인 경우에 비해 40% 이상 오차(misplacement)가 발생한다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 하수 슬러지에 물 보다 비중이 작은 액상 용매를 투입하여 유기물을 처리시 포집층, 확산층, 1차 완충층, 2차 완충층 및 무기물 침전층을 형성하여 하수 슬러지를 처리하는 다단 분리 반응조를 제공하고자 한다.
또한, 본 발명은 대기압, 상온 하에서 액체 상태이고 비극성인 알케인 계열 용매를 이용하여 하수 슬러지의 함수율을 월등히 낮추는 알케인 계열 용매를 이용한 하수 슬러지 처리 방법을 제공하고자 한다.
이를 위해, 다단 분리 반응조는 물, 유기물 및 무기물을 포함하는 하수 슬러지에 물보다 비중이 작은 액상 용매를 투입하여 유기물을 처리함에 있어서, 내부에 수용 공간을 갖는 반응조 몸체와; 상기 반응조 몸체의 상부에 연결되는 제1 연결관과; 상기 반응조 몸체에 연결되되, 상기 제1 연결관보다 하측에 배치되는 제2 연결관과; 상기 반응조 몸체에 연결되되, 상기 제2 연결과보다 하측에 배치되는 제3 연결관과; 상기 제1 연결관을 통해 상기 반응조 몸체 내부로 상기 액상 용매와 하수 슬러지가 혼합된 혼합물을 공급하는 혼합장치와; 상기 제2 연결관을 통해 상기 반응조 몸체 내부로 액상 용매 방울(droplet)을 분사하는 용매 분사장치; 및 상기 제3 연결관을 통해 상기 반응조 몸체 내부로 공기 방울을 분사하는 폭기 장치;를 포함하여, 상기 제1 연결관을 통해 공급된 혼합물에 의해 액상 용매와 하수 슬러지가 확산되는 확산층이 형성되고, 상기 확산층으로부터 액상 용매와 유기물이 부유되어 상기 확산층의 상부에 포집층이 형성되고, 상기 제2 연결관을 통해 분사되는 액상 용매 방울에 의해 상기 확산층의 하부에 1차 완충층이 형성되고, 상기 제3 연결관을 통해 분사되는 공기 방울이 상기 1차 완충층의 하부로 가라 앉은 물과 무기물에 공급되어 2차 완충층을 형성하며, 상기 2차 완충층의 하부에는 상기 공기 방울이 있는 2차 완충층과 적층 분리되며 물과 무기물이 가라 앉아 있는 무기물 침전층이 형성되는 것을 특징으로 한다.
한편, 본 발명에 따른 알케인 계열 용매를 이용한 하수 슬러지 처리 방법은 위와 같은 다단 분리 반응조를 이용하여 하수 슬러지에서 유기물을 추출 및 처리하는 것으로, 상기 하수 슬러지에 알케인(Alkane) 계열의 용매를 상기 다단 분리 반응조에 투입하여 상기 용매에 부착된 미생물 및 유기 슬러지를 상기 미생물의 외부에 존재하는 최외각수와 분리하는 유기물 분리단계; 및 비극성의 상기 용매를 상기 미생물의 내부로 확산시켜 팽압에 의한 미생물의 세포막 파괴를 유도하고, 세포막 파괴에 의해 미생물 내부에 잔존하던 결정수를 외부로 유출시켜 분리하는 유기물 농축단계;를 포함하되, 상기 유기물 분리단계에서 투입되는 용매는 상기 알케인 계열 용매 중 대기압 및 상온에서 액체 상태로 존재하는 용매이고, 상기 용매에 부착된 미생물 및 유기 슬러지는 비중이 1보다 작은 용매에 의해 물의 상측으로 부유하여 물과 분리되는 것을 특징으로 한다.
이때, 상기 용매 투입을 위한 전처리 단계를 더 포함하되, 상기 전처리 단계는 상기 하수 슬러지에 대한 혼합액 평균 부유물 농도인 MLSS(mixed liquor suspended solid) 농도를 검출하는 농도 검출단계; 및 상기 검출된 MLSS 농도에 따라 상기 투입되는 용매의 투입량을 결정하는 투입량 검출단계;를 포함하는 것이 바람직하다.
상기 전처리 단계는 상기 하수 슬러지의 MLSS 농도를 5,000[ppm] 미만으로 희석하는 농도 조절단계를 더 포함하되, 상기 유기물 분리단계에서 분리된 최외각수 또는 상기 유기물 농축단계에서 분리된 결정수 중 어느 하나 이상은 상기 하수 슬러지의 MLSS 농도를 시스템 적정값으로 유지시키도록 상기 하수 슬러지로 재투입되는 것이 바람직하다.
또한, 상기 유기물 분리단계에서 투입되는 상기 하수 슬러지는 하수 처리장에 순차로 설치되어 있는 화학적 처리조, 호기조, 침전조, 농축조 및 탈수장치 중 상기 호기조, 침전조 또는 농축조에서 처리를 마친 하수 슬러지인 것이 바람직하다.
이상과 같은 본 발명은 하수 슬러지에 물 보다 비중이 작은 액상 용매를 투입하여 유기물을 처리시 포집층, 확산층, 1차 완충층, 2차 완충층 및 무기물 침전층을 형성한다. 따라서, 1차 완충층 및 2차 완충층에 의해 각각 층간 분리를 가능하게 한다.
또한, 본 발명은 대기압, 상온 하에서 액체 상태이고 비극성인 알케인 계열 용매를 이용하여 하수 슬러지의 함수율을 월등히 낮춘다. 따라서, 사이즈가 작은 유기물 사이의 모세관 현상에도 불구하고 용매에 유기물이 흡착되어 물과 분리되고, 액체 상태의 용매에 의해 하수 슬러지 사이에서 추출 반응이 일어난다.
또한, 비극성 용매가 미생물의 세포막을 구성하는 인지질 이중층을 단순확산을 통해 투과되고, 미생물 내부로 확산된 용매의 팽압에 의해 미생물의 세포막이 파괴되면서 미생물 내부의 물까지 분리 및 제거하게 된다.
도 1은 종래 기술에 따른 분리 반응조의 층 구조를 나타낸 도이다.
도 2는 본 발명에 따른 알케인 계열 용매를 이용한 하수 슬러지 처리 방법을 나타낸 흐름도이다.
도 3은 본 발명이 적용 가능한 하수 슬러지 처리 시스템을 나타낸 도이다.
도 4는 본 발명의 용매에 유기물이 선택적으로 흡착된 상태를 나타낸 도이다.
도 5는 본 발명에 따른 다단 분리 반응조를 나타낸 도이다.
도 6은 본 발명에 따라 처리된 처리수 및 슬러지 분체의 특성표이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법에 대해 상세히 설명한다.
다만, 이하에서는 본 발명에 따른 알케인 계열 용매를 이용한 하수 슬러지 처리 방법을 먼저 설명하고, 그 과정에서 적용 가능한 구체적인 예로 본 발명에 따른 다단 분리 반응조에 대해 설명한다.
따라서, 본 발명에 따른 분리 반응조는 본 발명에 따른 알케인 계열 용매를 이용한 하수 슬러지 처리 방법에 최적화된 것일 뿐, 그 외 다른 액상 용매에도 적용 가능한 것으로 이해될 것이다.
먼저, 도 2와 같이, 본 발명의 바람직한 실시예에 따른 알케인 계열 용매를 이용한 하수 슬러지 처리 방법은 유기물 분리단계(S110) 및 유기물 농축단계(S120)를 포함한다.
또한, 바람직한 실시예로서 유기물 농축단계(S120) 이후에 용매 회수단계(S130)를 더 포함하고, 유기물 분리단계(S110) 이전에 전처리 단계(S110-P)를 더 포함할 수 있다.
위와 같은 본 발명은 물, 미생물 및 유기 슬러지는 물론 그 외 일부의 무기물 및 중금속 등을 포함하는 하수 슬러지(혹은 슬러리)에 알케인 계열 용매를 투입하여 미생물 및 유기 슬러지와 같은 유기물을 추출 및 처리한다.
이때, 유기물 분리단계(S110)에서는 알케인 계열 용매에 유기물이 흡착 후 부유됨에 따라 하수 슬러지에 포함된 최외각수와 유기물이 분리된다. 최외각수는 하수 슬러지 중 유기물 사이에 잔존하는 물을 의미한다.
유기물 농축단계(S120)에서는 비극성인 알케인 계열 용매가 미생물 내부로 단순확산 됨에 따라 팽압에 의해 미생물의 세포막이 파괴되면서 미생물 내부에 잔존하던 결정수(체내수)가 외부로 유출되면서 결정수와 유기물이 분리된다.
용매 회수단계(S130)에서는 물(최외각수 및 결정수)로부터 분리된 유기물에 흡착되어 있는 용매를 회수하여 이를 재사용할 수 있도록 한다. 회수된 용매는 후술하는 바와 같이 액체상 및 그로부터 기화된 기체상의 것이 있다.
이하, 위와 같은 본 발명에 대해 전처리 단계부터 좀더 상세히 설명한다.
먼저, 전처리 단계(S110-P)에서는 알케인 계열 용매(이하, '용매'라 함) 및 하수 슬러지를 그 처리에 최적화된 시스템 적정값으로 유지시킨다. 이를 위해 농도 검출단계, 투입량 검출단계, 농도 조절단계 및 교반단계를 포함한다.
농도 검출단계에서는 하수 슬러지에 대한 혼합액 평균 부유물 농도인 MLSS(mixed liquor suspended solid) 농도를 검출하고, 투입량 검출단계에서는 위와 같이 검출된 MLSS 농도에 따라 투입되는 용매의 투입량을 결정한다.
처리 대상인 하수 슬러지의 MLSS 농도를 시스템 적정값으로 유지시키는 것은 매우 중요한데 마치 소각로에서 고체 연료를 태울 때 겉만 완전 연소가 되고 내부는 불완전 연소가 이루어지는 것과 같이 MLSS 농도를 최적화시킬 필요가 있다.
예컨대 하수 슬러지의 MLSS 농도는 5,000[ppm] 미만인 것이 바람직한데, 만약 하수 슬러지의 MLSS 농도가 5,000[ppm]을 초과하는 경우 투입 원료인 하수 슬러지의 유기물과 알케인 계열 용매의 선택적 흡착이 어렵다.
다음, 농도 조절단계에서는 하수 슬러지의 MLSS 농도가 시스템 적정값을 만족하지 못하는 경우 유기물 대비 물의 비율을 조절하여 다시 하수 슬러지의 MLSS 농도가 시스템 적정값으로 유지되게 한다.
즉, 하수 슬러지의 MLSS 농도가 5,000[ppm]를 초과하는 경우 5,000[ppm] 미만이 되도록 물을 추가하여 희석시킨다. 시스템 적정값 유지를 위해 투입되는 물은 바람직하게는 유기물 분리단계(S110)에서 분리된 최외각수 및/또는 유기물 농축단계(S120)에서 분리된 결정수를 재활용한다.
다음, 교반단계에는 하수 슬러지에 포함된 협잡물을 제거하고 아울러 각종 센서가 부착된 교반기 내에서 하수 슬러지를 균일하게 교반한다. 여기서 협잡물은 용매에 의해 추출되지 않는 고형 물질 등을 의미한다.
이상과 같이 전처리 단계(S110-P)에 투입되는 하수 슬러지는 기존의 하수 처리장으로부터 공급되는 것이 바람직하다. 이를 위해 본 발명이 적용 가능한 시스템은 기존의 하수 처리장 설비와 연동(혹은 병렬 연결)될 수 있다.
도 3과 같이, 하수 처리장에는 통상적으로 화학적 처리조(10), 호기조(20), 침전조(30), 농축조(40) 및 탈수장치(50)를 기본 설비로 구축하고 있다.
본 발명은 이들 설비 중 호기조(20) 또는 침전조(30)에서 처리를 마친 하수 슬러지를 전처리하고 후술하는 유기물 분리단계(S110)로 투입할 수 있다. 물론 필요에 따라서는 농축조(40)에서 처리를 마친 하수 슬러지를 투입할 수도 있다.
호기조(20)는 화학적 처리조(10)에서 화학 처리를 마친 하수 슬러지를 생물학적으로 처리한다. 이러한 호기조(20)는 포기조라고도 하는데 활성 슬러지법으로 하수를 처리할 때 미생물을 이용하여 유기물을 처리하도록 공기(폭기)가 공급된다.
또한, 호기조(20)는 후속의 침전조(30)로부터 반송 슬러지를 제공받고 나머지 잉여 슬러지는 농축조(40)로 공급한다. 잉여 슬러지는 호기조(20)에서 미생물 생태계 유지를 위해 필요한 영양분(탄소성분)으로 사용되는 반송 슬러지를 제외한 하수 슬러지이다.
호기조(20)로부터 하수 슬러지를 공급받는 경우 통상 호기조(20)의 하수 슬러지는 MLSS 농도가 5,000[ppm] 미만이므로 하수 슬러지의 농도 조절없이 바로 협잡물 제거 및 교반 작업만을 한 후 투입된다. 물론 MLSS 농도가 5,000[ppm] 초과된 것이면 공정수를 추가하여 MLSS 농도를 낮출 수도 있다.
호기조(20)의 MLSS 농도는 하수 처리장에 설치된 MLSS 농도계를 이용하여 감시할 수 있다. MLSS 농도계는 일 예로 초음파 감쇠법과 포락선 신호를 이용한 에너지 평균값을 이용할 수 있으며, 이는 하수 처리장의 각 설비를 감시하기도 한다.
침전조(30)에서의 하수 슬러지는 통상 MLSS 농도가 20,000[ppm] 이상이므로 상술한 바와 같이 공정수(즉, 최외각수 및/또는 결정수)를 투입하여 희석하고, 이를 통해 MLSS 농도를 5,000[ppm] 미만으로 조절 후 사용한다.
같은 방식으로 농축조(40)에서 처리를 마친 하수 슬러지의 MLSS 농도를 5,000[ppm] 미만으로 조절 후 사용할 수도 있다.
위와 같이 본 발명이 적용 가능한 시스템을 종전의 하수 처리장 설비에 연동하도록 설치하거나 병렬로 설치하면, 호기조(20) 및 침전조(30)에 후속으로 설치된 농축조(40)나 탈수장치(50)는 가동을 중단하거나 불필요하게 할 수 있다.
다만, MLSS 농도가 상대적으로 높아 효율은 다소 떨어질 수 있지만 농축조(40)를 거친 하수 슬러지를 처리하는 경우에는 그 후속 공정인 탈수장치(50)만의 가동을 중단하거나 불필요하게 할 수 있다.
한편, 도 2로 다시 돌아가, 유기물 분리단계(S110)에서는 하수 슬러지에 알케인(Alkane) 계열의 용매를 투입하여 용매에 부착된 미생물 및 유기 슬러지를 미생물의 외부에 존재하는 최외각수와 분리한다.
예컨대, 전처리 단계(S110-P)를 통해 시스템 적정값이 유지된 하수 슬러지와 용매를 인라인 믹서와 같은 각종 혼합장치로 혼합 후 분리조(도 5 의 '100' 참조)로 투입하면, 분리조(100)에서는 도 4와 같이 유기물이 용매에 선택적으로 흡착된다. 유기물은 유기 슬러지 및 미생물을 포함한다.
후술하겠지만 비중이 1보다 작은 용매는 분리조(100) 내에서 유기물과 함께 물의 상층으로 부상함에 따라 물과 분리된다. 즉, 분리조(100) 내에서 유기 슬러지와 미생물이 흡착된 용매는 상측에 부유하고 물은 하측에 분리된다.
분리조(100)에서 하층에 분리된 물은 상기한 최외각수를 의미하는 것으로 미생물 내부의 결정수(체내수)와 구분되며, 본 발명은 입자군(microfloc)이 크기가 150um 미만인 유기성 슬러지의 입자군들 사이에 잔존하던 물을 분리한다.
또한, 최외각수는 산-염기 상호작용력(acid-base interaction force)를 가지는 극성 물질이기 때문에 물 입자들이 강한 인력을 작용하는 경우에도 종래의 기계적 탈수공법에서는 분리가 어렵던 최외각수의 분리를 가능하게 한다.
이와 같이 유기물 분리단계(S110)에서 분리된 최외각수는 일 예로 물 저장탱크에 저장(S111)되었다가 전처리 단계(S110-P)에 공정수로서 공급되거나, 혹은 유기물이 분리된 처리수로서 하수 처리장으로 배출된다.
이때, 최외각수는 최초 하수 슬러지에 포함된 상태와 비교하여 pH나 성상 변화가 없기 때문에 하수 처리장 내 물 밸런스를 변화시키지 않으며, 전처리 단계(S110-P) 등에 재활용하는 공정수로서 사용이 가능하다.
이상과 같이 유기물 분리단계(S110)에서 하수 슬러지와 함께 투입되는 알케인 계열 용매는 알케인 계열 중 대기압 및 상온에서 액체 상태로 존재하는 알케인계 용매인 것이 바람직하다.
용매가 대기압 상온에서 액체인 경우 액체 상태의 용매가 매질인 하수 슬러지 사이에서 확산 및 균일하게 분산되는 유동학적 특성이 뛰어나서 용매가 고체인 경우에 비해 매우 뛰어난 용매 추출 효과가 있다.
특히, 용매는 알케인(CnH2n +2) 중 n=5이며 비중이 1보다 작은 N-PENTANE 이거나 상기 N-PENTANE의 이성질체인 ISO-PENTANE 또는 NEO-PENTANE인 것이 바람직하다. 구체적으로 N-PENTANE은 비중이 0.6~0.7이다.
본 발명은 모든 알케인 계열 용매 및 그 이성질체를 이용할 수 있다. 하지만 n=16을 초과한 것은 공정 효율이 급격히 떨어지는 것으로 나타난다. 이는 탄소길이가 너무 길어 발생하는 것으로 파악된다.
또한, 알케인 계열 용매 중 n=1 ~ n=4인 것은 대기압 및 상온에서 기체 상태로 존재하기 때문에 하수 슬러지에 주입하기 어려운 문제가 발생하거나 용매 추출이 이루어지지 않고 대기 중으로 확산되는 등 공정이 복잡해진다.
이러한 점들을 고려하면 본 발명은 대기압 및 상온에서 액체 상태로 존재하는 알케인 계열 용매 중 탄소고리가 가장 짧고 단순하여 하수 슬러지내 유기물과의 선택적 흡착 특성이 가장 뛰어난 N-PENTANE이나 그 이성질체를 선택한다.
나아가, N-PENTANE 및 이성질체는 액체 상태의 알케인 중 가장 적은 분자량을 가지고 비중이 0.6 ~ 0.7로 작아서 유기물과의 선택적 흡착 후 부상 능력이 가장 우수하여 짧은 체류기간(R/T) 내에 유기물을 부상 및 분리할 수 있게 한다.
한편, 도 5에는 본 발명에 따른 다단 분리 반응조가 도시되어 있다. 다단 분리 반응조(100)는 물이 섞인 하수 슬러지에서 확산 및 촉진이 용이하도록 액체 상태의 용매가 사용되며, 유기물과 함께 부착되어 상측으로 부유될 수 있으면 적용 가능한 용매에 특별한 제한은 없다.
다만, 본 발명의 다단 분리 반응조(100)에 적용되는 용매는 비극성의 알케인 계열 용매이고 비중이 1보다 작을 수록 바람직하다. 이러한 용매로는 상술한 바와 같이 n=5이며 비중이 1보다 작은 N-PENTANE 이거나 상기 N-PENTANE의 이성질체인 ISO-PENTANE 또는 NEO-PENTANE가 있다.
도시된 바와 같이, 본 발명은 물, 유기물 및 무기물을 포함하는 하수 슬러지에 물 보다 비중이 작은 액상 용매를 투입하여 유기물을 처리하는 것으로, 반응조 몸체(110), 제1 연결관(120), 제2 연결관(130), 제3 연결관(140), 혼합장치(150), 용매 분사장치(160) 및 폭기 장치(170)를 포함한다.
여기서, 상기 반응조 몸체(110)는 그 내부에 수용 공간을 구비한 단일의 반응조로, 후술하는 바와 같이 그 하부부터 상부까지 5개의 층(111 내지 115)이 적층 형성된다. 5개의 층은 Layer 1 내지 Layer 5로 구분되며 비중에 따라 분리된다.
반응조 몸체(110)의 일측에 연결된 제1 연결관(120) 내지 제3 연결관(140)은 위와 같은 다단 분리된 층(111 내지 115)을 형성함으로써 최하층의 무기물과 최상층의 유기물을 구획하도록 물, 하수 슬러지, 용매 및 공기 등을 주입한다.
혼합장치(150), 용매 분사장치(160) 및 폭기 장치(170)는 이상과 같이 주입된 물, 하수 슬러지, 용매 및 공기 등을 처리하기 위한 것으로, 용매(예: 알케인 용매)와 하수 슬러지를 혼합하고, 용매나 공기는 방울을 형성하도록 한다.
좀더 구체적으로, 제1 연결관(120)은 내부에 수용 공간을 갖는 반응조 몸체(110)의 상부에 연결되고, 제2 연결관(130)은 제1 연결관(120)보다 하측에 배치된다. 제3 연결관(140)은 제2 연결과보다 하측에 배치된다.
위와 같이 반응조 몸체(110)의 상측부터 제1 연결관(120), 제2 연결관(130) 및 제3 연결관(140)이 설치됨에 따라 제1 연결관(120)은 Layer 4인 확산층(114)에 위치한다. 제2 연결관(130)은 Layer 3인 1차 완충층(113)에 위치하고, 제3 연결관(140)은 Layer 2인 2차 완충층(112)에 위치한다.
다음, 혼합장치(150)는 제1 연결관(120)을 통해 반응조 몸체(110) 내부로 액상 용매와 하수 슬러지가 혼합된 혼합물을 공급한다. 혼합장치(150)는 상술한 바와 같이 라인 믹서(Inline Mixer)가 사용될 수 있다.
라인 믹서는 순환 혼합장치 및 용매 투입 혼합장치를 포함한다. 그 중 순환 혼합장치는 하수 슬러지 내 유기물의 균일한 분산 및 단체 분리를 용이하게 한다. 용매 투입 혼합장치는 유기물의 용매 흡착 및 균일한 분산에 사용된다.
용매 분사장치(160)는 제2 연결관(130)을 통해 반응조 몸체(110) 내부로 액상 용매 방울(droplet)을 분사한다. 이를 위해 용매 분사장치(160)는 일 예로 알케인 계열 용매를 공급하는 저장탱크로부터 용매를 제공받아 분사한다.
분사시 용매 방울을 생성하도록 버블 장치를 통해 분사하며 분사된 용매는 서브마이크론 또는 나노 크기의 케미컬 방울을 형성한다. 바람직하게는 1차 완충층(113) 전체에 고르게 분사하되, 출렁거림을 최소화하도록 안정적으로 분사한다.
폭기 장치(170)는 제3 연결관(140)을 통해 반응조 몸체(110) 내부로 공기 방울을 분사한다. 이를 위해 폭기 장치(170)는 외기 흡입 팬 및 공기 방울 생성기 등을 포함하며, 서브마이크론 또는 나노 크기의 공기 방울을 생성한다.
따라서, 본 발명은 제1 연결관(120)을 통해 공급된 혼합물에 의해 액상 용매와 하수 슬러지가 확산되는 확산층(114)이 형성되고, 확산층(114)으로부터 액상 용매와 유기물이 부유되어 확산층(114)의 상부에 포집층(115)이 형성된다.
또한, 제2 연결관(130)을 통해 분사되는 액상 용매 방울에 의해 확산층(114)의 하부에 1차 완충층(113)이 형성되고, 제3 연결관(140)을 통해 분사되는 공기 방울이 1차 완충층(113)의 하부로 가라 앉은 물과 무기물에 공급되어 2차 완충층(112)을 형성한다.
위와 같은 2차 완충층(112)의 하부에는 무기물 침전층(111)이 형성된다. 무기물 침전층(111)은 폭기 장치(170)를 통해 분사된 공기 방울이 있는 2차 완충층(112)과 적층 분리되며 물과 무기물이 가라 앉아 있다.
위와 같이 최하층의 무기물 침전층(111)에는 비중이 큰 물과 무기물이 침전되고, 최상층의 포집층(115)에는 비중이 작은 용매에 유기물이 부착되어 함께 부유되며, 이들 사이의 다수개 층들에 의해 서로 명확히 분리된다.
또한, 용매와 하수 슬러지가 혼합된 확산층(114)을 기준으로 하부에는 1차 완충층(113)이 형성되므로, 1차 완충층(113)에 고르게 분포된 용매 방울(droplet)에 의해 유기물 및 용매가 부착 및/또는 포섭되어 더 이상 하층으로 내려가지 못하고 위로 상승한다.
또한, 2차 완충층(112)을 기준으로 그 상부에는 2차 완충층(112)이 있고 하부에는 무기물 침전층(111)이 있어서, 상기 1차 완충층(113)으로부터 확산하여 하층으로 내려온 일부 유기물 및 용매가 부착 및/또는 포섭되어 더 이상 하층으로 내려가지 못하고 위로 상승한다.
따라서, 본 발명은 층간 확산, 대류 및 혼화를 등을 방지하여 포집층(115)과 무기물 침전층(111)을 명확히 구분할 수 있어서 유기물 처리(분리) 효율이 매우 향상된다.
즉, 포집층(115)과 무기물 침전층(111)에서의 엔트레인먼트 바이패스(entraintment bypass)를 각각 5% 미만이 되도록 하여, 다단 분리 반응조(100)에서의 분리 효율 곡선이 이상적인 경우 대비 오차(misplacement)가 10% 미만이 되도록 한다.
위에서 설명을 생략한 제1 배출관(116) 및 제2 배출관(117)은 각각 최상단의 포집층(115) 및 최하단의 무기물 침전층(111)에 연결된다. 따라서, 제1 배출관(116)을 통해 용매 및 유기물을 분리 배출하고, 제2 배출관(117)을 통해 물 및 무기물을 분리 배출한다.
계속해서, 유기물 농축단계(S120)에 대해 설명하면, 유기물 농축단계(S120)는 비극성의 용매를 미생물의 내부로 확산시켜 팽압에 의한 미생물의 세포막 파괴를 유도하고, 세포막 파괴에 의해 미생물 내부에 잔존하던 결정수를 외부로 유출시켜 분리한다.
예컨대, 분리조(100)에서 유기물 분리단계(S110)를 거침에 따라 최외각수가 분리된 미생물, 유기 슬러지 및 용매로 구성된 슬러지는 농축조(4)로 보내지고, 농축조(4) 내에서 결정수를 분리하기 위한 단계가 진행된다.
종래 개발된 기계적 탈수공법(예: 원심 탈수나 각종 필터공법)에 의하면 하수 슬러지의 수분 함량이 80%를 넘어서고, 그 중에서 미생물 내부의 결정수는 40%를 차지한다.
그런데, 기계적 탈수공법이 가지는 에너지(driving force)만으로는 미생물의 내부에 잔존하는 결정수를 제거하는 것이 어렵고, 결정수가 미생물들에 각각 소량씩 분포하기 때문에 기계적으로 분리하는 것은 현실적으로 불가능하다.
이에 본 발명은 세포막 내로 단순확산이 용이한 비극성의 알케인 계열 용매를 이용한다. 특히 상온에서 액체 상태이며 탄소 고리가 가장 짧은 n=5의 N-PENTANE 및 그 이성질체를 이용한다.
따라서, 본 발명은 비극성이고, 상온에서 액체이며, 탄소고리가 짧은 용매를 이용하여 인지질 이중층으로 구성된 미생물의 세포막을 통과하여 단순확산이 이루어지며 그에 따라 발생한 팽압으로 미생물의 세포막을 파괴한다.
세포막이 파괴된 미생물은 그 내부에 존재하던 결정수(체내수)가 용매와 분리되고, 용매보다 비중이 큰 결정수는 하부로 가라앉고, 나머지 용매에 흡착된 유기물은 상측에 부유하여 결정수와 분리된다.
이와 같이 유기물 농축단계(S120)에서 분리된 결정수는 일 예로 물 저장탱크에 저장(S121)되었다가 전처리 단계(S110-P)에 공정수로서 공급되거나, 혹은 유기물이 분리된 처리수로서 하수 처리장으로 배출된다. 결정수가 빠져나간 슬러지는 농축 상태가 된다.
상술한 바와 같이 결정수 역시 최초 하수 슬러지에 포함된 상태와 비교하여 PH나 성상 변화가 없기 때문에 하수 처리장 내 물 밸런스를 변화시키지 않으며, 전처리 단계(S110-P) 등에 재활용하는 공정수로서 사용이 가능하다.
다음, 용매 회수단계(S130)에서는 이상과 같은 전처리 단계(S110-P)에서 하수 슬러지와 함께 투입된 후 유기물 분리단계(S110) 및 유기물 농축단계(S120)를 거친 용매를 분리하여 회수한다.
이러한 용매 회수단계(S130)는 액체 상태의 용매를 회수하는 액체 용매 회수단계(S131)를 포함한다. 나아가 바람직한 실시예로서 액체 용매의 회수에 더해 기체 용매를 회수하는 기체 용매 회수단계(S132)를 포함한다.
이때, 액체 용매 회수단계(S131)에서는 탈액기를 이용하여 미생물 및 유기 슬러지에 부착되어 있던 액체 상태의 용매를 분리하여 회수한다. 탈액기는 진공 탈액기, 압력 탈액기 및 원심력 탈액기 등 다양한 것이 사용될 수 있다.
액체 용매 회수단계(S131)에서 회수된 액체 상태의 용매는 용매 저장탱크에 저장(S131a)되고, 저장된 용매는 위에서 설명한 전처리 단계(S110-P)로 공급된다. 물론 경우에 따라서는 유기물 분리단계(S110)로 바로 공급될 수도 있다.
다음, 기체 용매 회수단계(S132)에서는 액체 상태의 용매를 이용하여 하수 슬러지를 용매 추출법으로 처리하는 도중 액체 용매의 표면이나 공기중에 기화되어 있는 기체 용매를 회수한다.
기체 용매의 회수를 위해 기화 활성조 내에서 압축 공기를 활용하여 기체 용매의 엔트로피를 증가시키고, 포집된 기체 용매는 응축기로 보내져 액화(응축)(S132a)된다. 압축 공기는 기화 활성조에 설치된 공기 사이클론 장치 등으로 공급한다.
기체 용매 회수단계(S132)에서 회수 및 응축된 액체 용매 역시 용매 저장탱크에 저장되고, 저장된 용매는 위에서 설명한 전처리 단계(S110-P)로 공급된다. 물론 경우에 따라서는 유기물 분리단계(S110)로 바로 공급될 수도 있다.
특히, 기체 용매의 포집 효율을 극대화시키기 위해 기화 활성조 및 주변 장치는 외부 환경과 격리된 폐쇄 회로(closed circuit)를 구성할 수 있으며, 바람직하게는 이전 공정 모두 폐쇄 회로로 구성한다.
이상과 같이 종래 하수 처리장에서 발생되는 하수 슬러지를 본 발명에 적용하면 감량화 기술(기계적 탈수 기술 및 열적 건조 기술 등), 재활용 기술 및 매립 기술 등을 하나로 통합하는 장점이 있다.
또한, 종래 하수 처리장에서 기계적 탈수 공정을 거쳐 배출되는 하수 슬러지에는 약 80%의 수분을 포함하는데, 본 발명은 그에 더해 추가로 78%의 감량화가 가능하여 높은 열량을 갖는 대체 에너지로 사용할 수 있게 한다.
또한, 종래에는 하수 처리장에서 발생하는 하수 슬러지를 기계적 공법으로 감량화하더라도 여전히 많은 수분을 포함하고 있기 때문에 추가로 열처리 및 건조 소각 공정이 필요한데, 본 발명은 이러한 공정을 생략할 수 있게 한다.
나아가, 도 6과 같이 본 발명에 의하면 BOD, COD, SS, TOC 및 전기전도도가 개선된 처리수를 배출하게 된다. 특히 최외각수 및 결정수가 제거되어 10% 미만의 수분 함량을 가지는 슬러지 분체를 생성한다.
10% 미만의 수분만을 함유한 슬러지 분체는 약 3,876[Kcal/Kg]의 열량을 제공하므로, 하수 슬러지 처리를 마친 슬러지 분체를 매립할 필요가 없게 하고, 이를 재생 에너지로 사용할 수 있게 한다.
이상, 본 발명의 특정 실시예에 대하여 상술하였다. 그러나, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것이 아니라, 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형 가능하다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 것이다.
따라서, 이상에서 기술한 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이므로, 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 하며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.

Claims (1)

  1. 다단 분리 반응조를 이용하여 하수 슬러지에서 유기물을 추출 및 처리하는 알케인 계열 용매를 이용한 하수 슬러지 처리 방법에 있어서,
    상기 하수 슬러지에 알케인(Alkane) 계열의 용매를 상기 다단 분리 반응조에 투입하여 상기 용매에 부착된 미생물 및 유기 슬러지를 상기 미생물의 외부에 존재하는 최외각수와 분리하는 유기물 분리단계(S110); 및
    비극성의 상기 용매를 상기 미생물의 내부로 확산시켜 팽압에 의한 미생물의 세포막 파괴를 유도하고, 세포막 파괴에 의해 미생물 내부에 잔존하던 결정수를 외부로 유출시켜 분리하는 유기물 농축단계(S120);를 포함하되,
    상기 유기물 분리단계(S110)에서 투입되는 용매는 상기 알케인 계열 용매 중 대기압 및 상온에서 액체 상태로 존재하는 용매이고, 상기 용매에 부착된 미생물 및 유기 슬러지는 비중이 1보다 작은 용매에 의해 물의 상측으로 부유하여 물과 분리되고,
    상기 유기물 분리단계(S110)에서 투입되는 상기 하수 슬러지는 하수 처리장에 순차로 설치되어 있는 화학적 처리조(10), 호기조(20), 침전조(30), 농축조(40) 및 탈수장치(50) 중 상기 호기조(20), 침전조(30) 또는 농축조(40)에서 처리를 마친 하수 슬러지이고,
    상기 용매 투입을 위한 전처리 단계(S110-P)를 더 포함하되,
    상기 전처리 단계(S110-P)는, 상기 하수 슬러지에 대한 혼합액 평균 부유물 농도인 MLSS(mixed liquor suspended solid) 농도를 검출하는 농도 검출단계; 및 상기 검출된 MLSS 농도에 따라 상기 투입되는 용매의 투입량을 결정하는 투입량 검출단계;를 포함하고, 상기 하수 슬러지의 MLSS 농도를 5,000[ppm] 미만으로 희석하는 농도 조절단계를 더 포함하며, 상기 유기물 분리단계(S110)에서 분리된 최외각수 또는 상기 유기물 농축단계(S120)에서 분리된 결정수 중 어느 하나 이상은 상기 하수 슬러지의 MLSS 농도를 시스템 적정값으로 유지시키도록 상기 하수 슬러지로 재투입되는 것을 특징으로 하는 알케인 계열 용매를 이용한 하수 슬러지 처리 방법.
PCT/KR2019/017551 2018-12-24 2019-12-12 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법 WO2020138778A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/417,978 US20220064042A1 (en) 2018-12-24 2019-12-12 Multistage separation reaction tank and method for treating sewage sludge by using alkane-based solvent using same
CN201980092625.6A CN113784929A (zh) 2018-12-24 2019-12-12 多段分离反应槽及利用其的利用烷烃系列溶剂的污水淤泥处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180168159A KR102018905B1 (ko) 2018-12-24 2018-12-24 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법
KR10-2018-0168159 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020138778A1 true WO2020138778A1 (ko) 2020-07-02

Family

ID=67949452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017551 WO2020138778A1 (ko) 2018-12-24 2019-12-12 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법

Country Status (4)

Country Link
US (1) US20220064042A1 (ko)
KR (1) KR102018905B1 (ko)
CN (1) CN113784929A (ko)
WO (1) WO2020138778A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018905B1 (ko) * 2018-12-24 2019-09-05 (주)리사이텍 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070956A (ja) * 1999-06-28 2001-03-21 Yatsuka:Kk ミネラルホールド材を用いた水処理方法及び装置
KR101612879B1 (ko) * 2014-04-11 2016-04-26 (주) 지이오플랜트 하수의 질소, 인 및 부유물 제거 장치 및 방법
KR101666685B1 (ko) * 2015-03-16 2016-10-20 서희동 음식물쓰레기를 처리하는 방법
KR101665943B1 (ko) * 2016-05-20 2016-10-24 태영케미컬 주식회사 폴리염화황산철 수용액(PCSFe)을 이용한 고농도 현탁물질과 총인(T-P)의 제거방법
KR101827305B1 (ko) * 2017-05-23 2018-02-09 한국환경시스템 주식회사 유기성 슬러지의 탈수 및 분리를 위한 화학적 처리장치 및 이를 이용한 처리 방법
KR102018905B1 (ko) * 2018-12-24 2019-09-05 (주)리사이텍 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2153976A1 (de) * 1971-10-29 1973-05-03 Texaco Development Corp Verfahren zum entoelen und entwaessern von raffinerie- und oelschlamm
CN101168467A (zh) * 2007-09-28 2008-04-30 天津大学 污泥置换脱水的方法及装置
WO2013140925A1 (ja) * 2012-03-23 2013-09-26 水ing株式会社 油分含有排水の処理方法及び処理装置
KR20150056429A (ko) 2013-11-15 2015-05-26 김용환 용매 추출을 이용한 슬러지와 폐수를 포함하는 하수의 처리방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070956A (ja) * 1999-06-28 2001-03-21 Yatsuka:Kk ミネラルホールド材を用いた水処理方法及び装置
KR101612879B1 (ko) * 2014-04-11 2016-04-26 (주) 지이오플랜트 하수의 질소, 인 및 부유물 제거 장치 및 방법
KR101666685B1 (ko) * 2015-03-16 2016-10-20 서희동 음식물쓰레기를 처리하는 방법
KR101665943B1 (ko) * 2016-05-20 2016-10-24 태영케미컬 주식회사 폴리염화황산철 수용액(PCSFe)을 이용한 고농도 현탁물질과 총인(T-P)의 제거방법
KR101827305B1 (ko) * 2017-05-23 2018-02-09 한국환경시스템 주식회사 유기성 슬러지의 탈수 및 분리를 위한 화학적 처리장치 및 이를 이용한 처리 방법
KR102018905B1 (ko) * 2018-12-24 2019-09-05 (주)리사이텍 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법

Also Published As

Publication number Publication date
CN113784929A (zh) 2021-12-10
KR102018905B1 (ko) 2019-09-05
US20220064042A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101954139B1 (ko) 알케인 계열 용매를 이용한 하수 슬러지 처리 방법
US4857198A (en) Process for treatment of water containing volatile and toxic compounds
WO2010008254A2 (ko) 하수슬러지 전처리 장치 및 이를 이용한 하수슬러지 전처리 방법
WO1993006953A1 (en) Bio-slurry reaction system and process for hazardous waste treatment
ITRM940150A1 (it) Procedimento per il trattamento di acque di scarico fortemente colorate.
WO2016027954A1 (ko) 폐음식물 또는 축산분뇨를 포함하는 폐기물 처리 및 에너지 생산 시스템과 그 방법
WO2016093471A1 (ko) 사이펀을 이용한 무동력 오염지하수 정화처리시스템
WO2022108140A1 (ko) 여재가 투입된 회분식 반응조를 이용한 부분 아질산화와 이를 이용한 단축질소제거 오폐수 처리장치 및 시스템
WO2020138778A1 (ko) 다단 분리 반응조 및 그를 이용한 알케인 계열 용매를 이용한 하수 슬러지 처리 방법
CN1445182A (zh) 使用污泥预处理和膜式生物反应器的污泥处理方法
WO2021125698A1 (ko) 유기성 폐기물 처리를 위한 수직원통형 혐기성 소화장치
KR100291065B1 (ko) 포말분리법에 의한 폐,하수 고도처리방법
WO2012099283A1 (ko) 하수 처리 장치
JPH1157793A (ja) 排水処理方法および装置
US4735729A (en) Ash concentration and disposal method
KR100464872B1 (ko) 가압부상분리시스템과 전기 반응장치를 모듈화한 음식물 쓰레기 탈리액 폐수처리시스템
WO2013073789A1 (ko) 유기성 폐기물 전처리 방법과 그 장치
WO2017200221A1 (ko) 다단의 장섬유 여과기를 이용하는 하수 처리 시스템 및 그의 처리 방법
KR102231778B1 (ko) Smr 공법을 적용한 하수 슬러지의 처리 방법 및 그 시스템
WO2015064933A1 (ko) 정수장 슬러지 폭기를 이용한 배출수 처리 방법
WO2019245209A1 (ko) 젖소분뇨 처리장치 및 방법
JP2004016969A (ja) 汚水処理設備
KR100308531B1 (ko) 고농도 유,무기 폐수의 복합처리장치
WO2023191315A1 (ko) 폐수의 처리 방법 및 시스템
US9598298B2 (en) Method and facility for treating wastewater containing hydrocarbons, in particular aromatic compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/11/2021)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19905369

Country of ref document: EP

Kind code of ref document: A1