WO2012099283A1 - 하수 처리 장치 - Google Patents

하수 처리 장치 Download PDF

Info

Publication number
WO2012099283A1
WO2012099283A1 PCT/KR2011/000390 KR2011000390W WO2012099283A1 WO 2012099283 A1 WO2012099283 A1 WO 2012099283A1 KR 2011000390 W KR2011000390 W KR 2011000390W WO 2012099283 A1 WO2012099283 A1 WO 2012099283A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
anaerobic
sewage
treated water
anaerobic tank
Prior art date
Application number
PCT/KR2011/000390
Other languages
English (en)
French (fr)
Inventor
조정연
정경인
Original Assignee
주식회사 드림이엔지
동림이엔지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 드림이엔지, 동림이엔지(주) filed Critical 주식회사 드림이엔지
Priority to PCT/KR2011/000390 priority Critical patent/WO2012099283A1/ko
Priority to US13/806,675 priority patent/US20130098815A1/en
Priority to JP2013516489A priority patent/JP5612765B2/ja
Priority to SG2012095121A priority patent/SG186810A1/en
Publication of WO2012099283A1 publication Critical patent/WO2012099283A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal

Definitions

  • the present invention relates to a sewage treatment apparatus, and more particularly, the inflow of the microorganism mixed solution (MLSS) and organic matters during the hydraulic retention time (HRT) and the uniform water diffusion not only excellent in water quality but also without the need for internal conveyance.
  • the present invention relates to a sewage treatment apparatus capable of appropriately removing nitrogen and phosphorus while coping adaptively with changes in water quality to provide a target treated water quality.
  • a general facility for biologically treating nitrogen and phosphorus in sewage is composed of a bioreactor and a precipitation tank, and the bioreactor consists of various combinations such as anaerobic zone, anoxic zone and aerobic zone.
  • aerobic and anoxic regions are basically required, and when ammonia nitrogen is oxidized in the aerobic region, the oxidized resultant nitrate is produced by heterotrophic microorganisms using nitrate as an electron acceptor in the anoxic region. Denitrified by nitrogen gas and removed.
  • anaerobic and aerobic regions are basically required, and a phosphate accumulating organism (PAO), a microorganism that excessively consumes phosphorus in the anaerobic region, releases phosphorus and absorbs volatile organic acids, thereby causing PHA (
  • PAO phosphate accumulating organism
  • the PAO grows in the aerobic region using PHA, and the phosphorus is excessively ingested, and thus, the phosphorus is removed by discharging the over-ingested PAO through the sludge.
  • FIGS. 1 and 2 Using this principle, facilities have been developed to treat nitrogen and phosphorus simultaneously biologically, embodiments of this structure are shown in FIGS. 1 and 2.
  • FIG. 1 is a schematic diagram of a sewage treatment apparatus for a conventional A 2 O method
  • Figure 2 is a schematic diagram of a sewage treatment apparatus for a conventional DNR method.
  • a conventional sewage treatment apparatus called an A 2 O method is a general method of treating nitrogen and phosphorus in sewage using a simple structured apparatus consisting of a sequential arrangement of an anaerobic tank, an anaerobic tank, an aerobic tank, and a sedimentation tank.
  • organic acids and biological dichotomous CODs contained in the incoming sewage are first consumed by denitrifying microorganisms before being used by PAOs in anaerobic tanks, so that PAOs do not sufficiently synthesize PHAs in the body. Does not absorb phosphorus, and phosphorus is discharged with the treated water as it is.
  • TKN total kjeldahl nitrogen
  • COD total phosphorus
  • TP total phosphorus
  • a 2 O method which changes the arrangement of biological reactors such as anaerobic tank, anoxic tank, aerobic tank, or adds some biological reactors is continuously developed, and also anaerobic tank.
  • a method of removing nitrogen and phosphorus by additionally supplying an external carbon source to increase the content of RBCOD in the interior is also being developed.
  • the arrangement of the anaerobic tank and the anoxic tank in the A 2 O method is changed so that the sludge of the sedimentation tank is anoxic tank 1
  • An oxygen free tank 2 is further disposed, and an anaerobic tank 1, an anaerobic tank, an anaerobic tank 2, an aerobic tank, and a sedimentation tank are arranged to treat sewage, as illustrated in FIG. 2.
  • the PAO is not impeded without affecting the absorption of PAO in the anaerobic tank. Since it can grow in an aerobic tank to absorb excessive phosphorus can increase the removal efficiency of phosphorus.
  • the object of the present invention is not only excellent treatment water quality by uniform diffusion of microorganism mixture (MLSS) and organic matter during hydraulic retention time (HRT), but also adaptively coping with the change of influent water quality without the need for internal return. It is to provide a sewage treatment apparatus that can properly remove the wine to provide the target treated water quality.
  • MMS microorganism mixture
  • HRT hydraulic retention time
  • the object of the present invention is to settle and remove the solid material in the sewage and sediment with a high specific gravity, the primary sedimentation basin for sedimentation and removal of a small specific gravity of the sewage through the sediment, and the primary Sewage including a bioreactor for biologically treating sewage through the sedimentation basin, and a secondary sedimentation basin that filters the activated sludge from the sewage through the bioreactor and feeds back to the bioreactor and filters sludge that is not decomposed.
  • a treatment apparatus wherein the bioreactor includes a first aerobic tank for treating sewage through the primary sedimentation basin, an anaerobic tank for treating sewage through the first aerobic tank, an anaerobic tank for treating sewage through the anoxic tank, and the anaerobic tank. It includes a second breath tank for treating coarse sewage, the first breath tank is connected to the first breath tank Inflow water from the primary sedimentation basin and return water from the secondary sedimentation basin disposed on the other side of the first sedimentation basin in order to maintain the microbial population in the first basin are introduced. It is achieved by the sewage treatment apparatus, characterized in that a rapid mixer for rapid mixing of the conveyed water is provided.
  • the organic source required for denitrification may be supplied into the anoxic tank, and may include an anoxic tank inflow water supply pipe having a plurality of first nozzles that are regularly and evenly arranged along the circumference of the anoxic tank.
  • An anoxic tank slow mixing apparatus may be provided in the anoxic tank so as to mix the treated water in the anoxic tank slowly so that the denitrification microbial concentration may be maintained substantially uniformly throughout the treated water in the anoxic tank.
  • Phosphorus-removing microorganisms may supply a carbon source necessary for the mechanism into the anaerobic tank, but may include an anaerobic tank inflow water supply pipe having a plurality of second nozzles arranged regularly and evenly along the circumference of the anaerobic tank.
  • the anaerobic tank may include a slow mixer for anaerobic tank provided in the anaerobic tank so as to maintain a substantially uniform phosphorus removal microorganism concentration throughout the treated water in the anaerobic tank.
  • a stable paper in the second air tank may include at least one barrier wall to prevent excess overflow and maintain the outflow flow rate for the treated water in the second air tank in a predetermined range to double the nitrification rate.
  • the first and second acid tanks may be provided with first and second acid substrates each having a plurality of air holes in which air from the blower is suspended.
  • a plurality of partition walls are formed between the first and second anaerobic tanks, the anaerobic tank, and the second aerobic tank, and the plurality of partition walls are formed with a plurality of treated water flow holes through which treated water flows.
  • the hole may have a vertical and vertical arrangement structure where the upper and lower positions are repeated.
  • the treated water quality excellent due to the uniform diffusion of the microorganism mixed solution (MLSS) and the organic matter during the hydraulic retention time (HRT), but also the nitrogen and Phosphorus can be removed appropriately to provide the target treated water quality.
  • FIG. 1 is a schematic diagram of a sewage treatment apparatus for a conventional A 2 O method
  • FIG. 2 is a schematic diagram of a sewage treatment apparatus for a conventional DNR method
  • FIG. 3 is a sewage treatment system diagram having a sewage treatment apparatus according to an embodiment of the present invention.
  • FIG. 4 is a plan view of the sewage treatment apparatus according to an embodiment of the present invention.
  • FIG. 5 is a longitudinal cross-sectional view of FIG. 4.
  • FIG. 3 is a sewage treatment system diagram having a sewage treatment apparatus according to an embodiment of the present invention.
  • a general sewage treatment system generally includes a sedimentation basin, a primary sedimentation basin, a bioreactor, and a secondary sedimentation basin, and is discharged after passing through them.
  • FIG. 3 shows an extremely general sewage treatment system, and a pair of other functions may be further added according to a situation such as a region and water quality.
  • a structure may be added such that a separate bath for removing chlorine after secondary precipitation is added. Let's look briefly at each structure.
  • Settlements are places where large amounts of solids, such as vinyl, paper, and wood chips, are removed from the sewage through the net and sedimented with heavy pollutants, such as sand or gravel.
  • the primary sedimentation basin is also called physical treatment, which precipitates and removes suspended solids with a small specific gravity and removes oil or debris from the water.
  • Bioreactors are also called aeration tanks or biological treatment tanks. 1 and 2 described in the above-described prior art both correspond to a bioreactor, and the sewage treatment apparatus of the present invention to be described in detail below also mainly refers to the bioreactor.
  • the sewage treatment apparatus of the present invention as such a bioreactor will be described later with reference to FIGS. 4 and 5.
  • the secondary settler is the place to filter the activated sludge and feed back the aerobic microorganisms to the bioreactor and to filter sludge, which is undecomposed waste.
  • Active sludge refers to a mixture of sediments and microorganisms generated during decomposition
  • aerobic microorganisms refer to microorganisms that consume oxygen to decompose organic materials and obtain energy.
  • FIG. 4 is a plan view of the sewage treatment apparatus according to an embodiment of the present invention
  • Figure 5 is a longitudinal cross-sectional view of FIG.
  • the sewage treatment apparatus of the present embodiment the sedimentation basin to remove the solid matter in the sewage flow into the sewage, precipitates and removes the pollutant with a high specific gravity, and the suspended solids with a small specific gravity in the sewage through the sedimentation paper
  • the first settling basin to be removed by sedimentation, the bioreactor to biologically treat the sewage through the primary sedimentation basin, and the active sludge from the sewage through the bioreactor are fed back to the bioreactor and the decomposed waste
  • a sewage treatment apparatus including a secondary settling basin for filtering sludge, wherein the bioreactor is an anaerobic tank for treating sewage through the first sedimentation basin, an anaerobic tank for treating sewage through the first sedimentation basin, and an anaerobic sewage tank.
  • the anaerobic tank for treating sewage and the second unit for treating sewage through the anaerobic tank are treated for sewage treatment.
  • a direction has a structure that is arranged adjacent to each other.
  • the bioreactor is composed of four stages in which the first aerobic tank, the anaerobic tank, the anaerobic tank, and the second aerobic tank are arranged adjacent to each other.
  • the 1st tank, anaerobic tank, anaerobic tank, and 2nd tank are not given separate reference numerals.
  • the role and structure of each group is as follows.
  • the first aerobic tank is a reaction tank in which microorganisms create an environment for decomposing contaminants (organic substances, etc.) in aerobic (in the presence of oxygen).
  • a reaction tank in which microorganisms create an environment for decomposing contaminants (organic substances, etc.) in aerobic (in the presence of oxygen).
  • an aquarium can be considered, and this first aerobic tank is continuously supplied with oxygen, and contaminants can be decomposed.
  • a first acid substrate 10 having a plurality of air holes 11 through which air from a blower (not shown) is floated is provided in the first unit.
  • a blower not shown
  • the scope of the present invention does not need to be limited thereto, and an air blower may be installed instead of the first acid substrate 10.
  • the inflow from the primary sedimentation basin connected to the first aerobic basin, and the return water from the secondary sedimentation basin disposed on the other side of the first sedimentation basin to maintain the microbial population in the first aerobic basin In the first aeration tank, a rapid mixer for rapid mixing of the inflow water and the return water is provided.
  • the reason for conveying the return water in the secondary sedimentation basin is a means for maintaining the population of microorganisms in the first aeration tank.
  • the rapid admixture 12 is provided as a means for rapid mixing of the inflow and return water so as to quickly create an optimal environment in which microorganisms ingest and decompose organic matters. Rapid mixer 12 can be seen as a stirrer to increase the speed of the motor.
  • the rapid mixer 12 may be disposed in the compartment space 13 in which the opening 14 is formed in the first exhalation tank, but it is not necessary to do so.
  • the opening 14 may be preferably provided in the lower region of the first exhalation tank of the partition wall 15.
  • a first partition 51 is formed between the first aerobic tank and the anaerobic tank, and the first treated water flow hole 51a formed in the first partition 51 is provided at an upper position. Therefore, the treated water in the first aerobic tank flows into the anoxic tank through the first treated water flow hole 51a in the upper position. By inducing the flow of treated water upward in this way, the residence time in the first aerobic tank can be maximized. Accordingly, the mechanism of denitrification microorganism in the anoxic tank can be expected by the removal of BOD of the influent, and the miscibility with oxygen can also be maximized. have.
  • the oxygen-free tank is a place to implement the denitrification by returning the nitrified microbial mixed solution (MLSS).
  • An anoxic tank inflow water supply pipe 21 having a plurality of first nozzles 22 is connected to the anoxic tank.
  • the anoxic tank inflow water supply pipe 21 serves to supply an organic source necessary for denitrification into the anoxic tank through the plurality of first nozzles 22.
  • the anoxic tank inflow water supply pipe 21 is arranged along the circumference of the anoxic tank so that the organic source can be supplied evenly to the anoxic tank, and the plurality of first nozzles 22 are along the circumference of the anoxic tank inflow water supply pipe 21. They are arranged regularly evenly with each other.
  • anoxic tank is provided with an anoxic tank slow mixing apparatus 23 for slowly mixing the treated water in the anoxic tank so that the denitrification microbial concentration can be maintained substantially uniformly throughout the treated water in the anoxic tank.
  • the oxygen-free tank slow mixer 23 means that the rotation speed of the motor is lower than that of the rapid mixer 12 described above.
  • Operating the slow anoxic tank slow mixing apparatus 23 has the advantage of maintaining a state of uniform microbial concentration in the entire anoxic tank. As shown schematically, the anoxic tank slow mixing apparatus 23 is provided with a plurality of stirring blades 23a for each height.
  • a second partition 52 is formed between the anaerobic tank and the anaerobic tank, and the second treated water flow hole 52a formed in the second partition 52 is provided at a lower position. Therefore, the treated water in the anaerobic tank flows to the anaerobic tank through the second treated water flow hole 52a in the lower position.
  • an anaerobic tank is a reactor in which an environment for decomposing contaminants (organic substances, etc.) in an anaerobic (in the absence of oxygen) is created.
  • a septic tank of a bathroom can be considered.
  • it is a device that processes organic matter by using microorganisms inhabiting anaerobic conditions. If it is different from an aerobic tank, there is no aeration device because oxygen supply must be cut off.
  • the DO concentration is kept anaerobic to allow the phosphorus-removing microorganism to release the phosphorus in the body as much as possible so that the phosphorus-removing microorganism releases phosphorus from the anaerobic tank and the phosphorus is excessively ingested in the next stage 2 tank. .
  • the anaerobic tank inlet water supply pipe 31 having a plurality of second nozzles 32 is connected to the anaerobic tank.
  • the anaerobic inflow water supply pipe 31 serves to supply a carbon source necessary for the operation of the phosphorus removing microorganism into the anaerobic tank through the plurality of second nozzles 32.
  • the anaerobic influent feed pipe 31 is arranged along the circumference of the anaerobic tank so that the carbon source can be supplied evenly to the anaerobic tank, and the plurality of second nozzles 32 are mutually along the circumference of the anaerobic tank influent feed pipe 31. It is arranged regularly and evenly.
  • the anaerobic inflow water supply pipe 31 may be the same line as the above-described anaerobic inflow water supply pipe 21 or may be a separate line.
  • the anaerobic tank is equipped with a slow anatomizer 33 for anaerobic tank to slowly mix the treated water in the anaerobic tank so that the concentration of phosphorus removal microorganisms throughout the treated water in the anaerobic tank can be maintained substantially uniform.
  • Operation of the slow anatomizer 33 for the anaerobic tank has the advantage of maintaining a state of uniform microbial concentration in the entire anaerobic tank.
  • the anaerobic tank slow mixer 33 may be the same as the anaerobic tank slow mixer 23.
  • a third partition 53 is formed between the anaerobic tank and the second arc tank, and the third treated water flow hole 53a formed in the third partition 53 is provided at an upper position. Therefore, the treated water in the anaerobic tank flows to the anaerobic tank through the third treated water flow hole 53a in the upper position.
  • the second aerobic tank is prepared to maximize the nitrification rate.
  • the second aerobic tank is provided to allow the microorganisms that have released phosphorus from the anaerobic tank to consume a large amount of phosphorus again in the second aerobic tank.
  • a second acid substrate 40 having a plurality of air holes 41 in which air from a blower (not shown) is suspended is provided in the second air tank.
  • a blower not shown
  • the scope of the present invention does not need to be limited thereto, and an air blower may be installed instead of the second acid substrate 40.
  • the second wall 60 is provided with a partition wall 60 that prevents excessive overflow and maintains the outflow flow rate for the treated water in the second cycle to double the nitrification rate.
  • Treatment wall flow hole 61 is formed in the lower wall 60.
  • the stabilization zone 65 is formed in the second aerobic tank due to the partition wall 60. The stabilization zone 65 prevents excessive overflow and ensures proper residence time, thereby maximizing nitrification rate. Can be.
  • a seed needle distribution channel and a seed needle are respectively disposed at the rear end of the second tank, and a fourth partition 54 is formed between the second tank and the fourth treated water flow hole 54a formed in the fourth partition 54. ) Is provided at the upper position. Therefore, the treated water in the second steam tank flows into the anaerobic tank through the fourth treated water flow hole 54a in the upper position.
  • the treated water flowing along the first aerobic tank, anaerobic tank, anaerobic tank, the second aerobic tank, and the seed needle distribution channel flows through the flow holes 51a to 54a and 61 in the vertical and vertical flow arrangements.
  • Up-and-down arrangement means that the water flows while the water is repeated to the top and bottom.
  • Influent water flowing through the settling basin and primary sedimentation basin and return water returned from the secondary sedimentation basin are introduced into the first aeration tank and then rapidly mixed and then flowed into the anaerobic tank at the upper position.
  • the denitrification of nitrogen release is then carried out in an anaerobic bath.
  • an organic source necessary for denitrification is supplied through the inflow water supply pipe 21 for anoxic tank, and denitrification proceeds while maintaining a state of uniform microbial concentration in the entire anoxic tank by the slow annealing tank 23 for anoxic tank.
  • the treated water in the anaerobic tank flows into the anaerobic tank at the lower position, and the phosphorus release action proceeds in the anaerobic tank.
  • Phosphorus-removing microorganisms are supplied with a carbon source necessary for the mechanism by which the phosphorus-removing microorganism is supplied through the intake water supply pipe 31 for anaerobic tank during phosphorus release, and the phosphorus emission is maintained while the state of uniform microorganism concentration in the entire anaerobic tank is maintained by the anaerobic tank slow-mixing machine 33. The action proceeds.
  • the treated water in the anaerobic tank flows from the upper position into the second tank, and a proper residence time is secured through the stable place 65 of the second tank, that is, the flow rate for the treated water is maintained in a predetermined range.
  • the flow rate for the treated water is maintained in a predetermined range.
  • the treated water after the chemical treatment is passed through the secondary sedimentation basin, the active sludge is filtered from the secondary sedimentation basin, the aerobic microorganism is fed back to the bioreactor, and the sludge, which is not decomposed, is discharged.
  • the treatment water quality is excellent due to the uniform diffusion of the microorganism mixed solution (MLSS) and the organic matter during the hydraulic retention time (HRT), and adaptively changes in the inflow water quality without the need for internal conveyance.
  • MMS microorganism mixed solution
  • HRT hydraulic retention time
  • nitrogen and phosphorus can be properly removed to provide the target treated water quality.
  • the hydraulic retention time (HRT) is 6-8 hours
  • the solids retention time (SRT) is 10-15 days
  • the microbial mixed liquor (MLSS) is 2500-3500 mg / l
  • the sludge return rate is 50-100%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은, 하수 처리 장치에 관한 것으로서, 보다 상세하게는, 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수할 뿐만 아니라 내부 반송이 필요 없으면서도 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있어 목표 처리수질을 제공할 수 있는 하수 처리 장치에 관한 것이다.

Description

하수 처리 장치
본 발명은, 하수 처리 장치에 관한 것으로서, 보다 상세하게는, 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수할 뿐만 아니라 내부 반송이 필요 없으면서도 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있어 목표 처리수질을 제공할 수 있는 하수 처리 장치에 관한 것이다.
하수(폐수를 포함함) 처리에 있어 종전에는 주로 COD 및 BOD의 적정수치에 적합하도록 하수를 처리하여 왔으나 최근 하수 중의 질소 및 인에 의한 물의 부영양화가 문제됨에 따라, 하수 처리 장치에서 방출되는 처리수 중의 질소 및 인의 양을 규제하기에 이르렀다. 현재 이러한 규제 수준은 보다 엄격해지고 있는 추세이다.
하수 중의 질소 및 인을 생물학적으로 처리하고자 하는 일반적인 시설은 생물 반응조와 침전조로 구성되며, 상기 생물 반응조는 혐기 영역, 무산소 영역, 호기 영역 등 다양한 조합으로 이루어진다.
생물학적으로 질소를 처리하기 위해서는, 기본적으로 호기 영역과 무산소 영역이 요구되며, 호기 영역에서 암모니아성 질소가 산화되면, 산화된 결과물인 질산염이 무산소 영역에서 질산염을 전자 수용체로 사용하는 종속 영양 미생물에 의해 질소가스로 탈질산화되어 제거된다.
또한 생물학적으로 인을 처리하기 위해서는, 기본적으로 혐기 영역과 호기 영역이 요구되며, 혐기 영역에서 인을 과잉 섭취하는 미생물인 PAO(phosphate accumulating organism)가 인을 방출하면서 휘발성 유기산을 흡수하여 체내에서 PHA(polyhydroxy alkanoate)를 합성하면, 호기영역에서 상기 PAO가 PHA를 이용하여 성장하면서 인을 과잉 섭취하고, 이와 같이 인을 과잉 섭취한 PAO를 슬러지를 통해 배출함으로써 인을 제거한다.
이러한 원리를 이용하여, 생물학적으로 질소 및 인을 동시에 처리하고자 하는 시설이 개발되어 왔는데, 이러한 구조의 실시예가 도 1 및 도 2에 도시되어 있다.
도 1은 종래의 A2O 공법을 위한 하수 처리 장치의 개략도이고, 도 2는 종래의 DNR 공법을 위한 하수 처리 장치의 개략도이다.
도 1을 참조하면, A2O 공법이라 불리는 종래의 하수 처리 장치는 혐기조, 무산소조, 호기조 및 침전조의 순차적인 배열로 이루어진 간단한 구조의 장치를 사용하여 하수 중의 질소 및 인을 처리하는 일반적인 공법이다.
그런데, 이러한 시스템에 의하면, 하수가 유입되는 혐기조에 침전조로부터의 슬러지도 반송 슬러지 배관을 통해 유입되기 때문에, 상기 슬러지에 포함되어 있는 상당량의 질산염에 의해 인의 처리가 저해되는 문제가 발생된다.
즉, 유입되는 하수에 포함된 유기산 및 생물학적 이분성 COD(RBCOD, readily biodegradable COD)가 혐기조에서 PAO에 의해 이용되기 전에 탈질 미생물에 의해 먼저 소모되므로, PAO는 체내에 PHA를 충분히 합성하지 못하여 이후 호기조에서 인을 흡수하지 못하고, 인은 그대로 처리수와 함께 방류된다.
특히 일반적인 국내 하수와 같이 TKN(total kjeldahl nitrogen)/COD 및 TP(total phosphorus)/COD 비율은 높고 COD 중에서 RBCOD의 함량은 낮은 조건에서는 A2O 공법에 의한 인처리 효율의 저하를 피할 수 없다.
이와 같은 A2O 공법의 문제점을 해결하기 위하여, 혐기조, 무산소조, 호기조 등의 생물 반응조의 배열을 변경하거나, 일부의 생물 반응조를 더 첨가한 유사 A2O 공법이 계속해서 개발되고 있으며, 또한 혐기조 내의 RBCOD의 함량을 높이기 위해 외부 탄소원을 부가적으로 공급함으로써 질소 및 인을 제거하는 방법(대한민국 특허등록 제375413호)도 개발되고 있다.
하지만 이들 방법에 의하면, 여전히 침전조의 질산염 함유 슬러지를 혐기조 내로 반송시키는 근본적인 문제점을 내포하고 있기 때문에, 효율적인 인의 제거에 있어서는 한계가 있다.
한편, 전술한 A2O 공법 및 그와 유사한 공법들의 근본적인 문제점으로 지적된, 침전조의 슬러지를 혐기조로 반송하는 것 대신, A2O 공법에서의 혐기조와 무산소조의 배치를 바꾸어 침전조의 슬러지가 무산소조 1로 반송되게 하고, 무산소조 2를 더 배치하여 도 2와 같이, 무산소조 1, 혐기조, 무산소조 2, 호기조 및 침전조의 배열을 이루어 하수를 처리하는 DNR 공법이 개발된 바 있다.
도 2의 DNR 공법에 의한 하수 처리 장치에 의하면, 침전조의 슬러지에 포함된 질산염이 무산소조 1에서 탈질화 된 다음에 혐기조로 이송되기 때문에, 혐기조에서의 PAO의 유기물 흡수에 지장을 주지 않고, PAO가 이후 호기조에서 성장하여 인을 과잉으로 흡수할 수 있으므로 인의 제거 효율을 높일 수 있다.
그런데, 이러한 DNR 공법은 무산소조 1에서 미생물 자신의 유기물을 이용한 내생호흡에 의해 탈질산화가 이루어지기 때문에, 그 속도가 현저히 낮다는 단점이 지적된다. 일반적인 하수의 경우 유입수의 유기물을 이용한 탈질 속도는 0.04~0.15g NO3--N/gVSS(volatile suspended solid)/일 인 반면, 내생호흡에 의한 탈질산화는 유입수의 유기물을 이용한 탈질속도의 20~50% 정도로 매우 낮은 것으로 알려지고 있다.
따라서 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수하면서 내부 반송을 없앨 수 있고, 또한 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있도록 하는 새로운 방안의 하수 처리 장치가 요구된다.
본 발명의 목적은, 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수할 뿐만 아니라 내부 반송이 필요 없으면서도 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있어 목표 처리수질을 제공할 수 있는 하수 처리 장치를 제공하는 것이다.
상기 목적은, 유입된 하수 중 고체물질을 제거하고 비중이 큰 오염물질을 침전시켜 제거하는 침사지와, 상기 침사지를 거친 하수 중 비중이 작은 부유물질을 침전시켜 제거하는 1차 침전지와, 상기 1차 침전지를 거친 하수를 생물학적으로 처리하는 생물반응조와, 상기 생물반응조를 거친 하수에서 활성 오니를 걸러 호기성 미생물은 다시 상기 생물반응조로 피드백시키고 분해되지 않은 찌꺼기인 슬러지를 걸러내는 2차 침전지를 포함하는 하수 처리 장치로서, 상기 생물반응조는 상기 1차 침전지를 거친 하수를 처리하는 제1 호기조와, 상기 제1 호기조를 거친 하수를 처리하는 무산소조와, 상기 무산소조를 거친 하수를 처리하는 혐기조와, 상기 혐기조를 거친 하수를 처리하는 제2 호기조를 포함하되, 상기 제1 호기조에는 상기 제1 호기조와 연결되는 상기 1차 침전지로부터의 유입수와, 상기 제1 호기조 내의 미생물 개체수를 유지시키기 위하여 상기 제1 침전지와는 다른 쪽에 배치되는 상기 2차 침전지로부터의 반송수가 유입되고, 상기 제1 호기조 내에는 상기 유입수와 상기 반송수의 급속혼화를 위한 급속혼화기가 마련되는 것을 특징으로 하는 하수 처리 장치에 의해 달성된다.
여기서, 탈질에 필요한 유기원을 상기 무산소조 내로 공급하되, 상기 무산소조의 둘레를 따라 상호간 규칙적으로 균등하게 배열되는 다수의 제1 노즐을 구비한 무산소조용 유입수 공급관을 포함할 수 있다.
상기 무산소조 내의 처리수 전역으로 탈질 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 상기 무산소조 내에 마련되어 상기 무산소조 내의 처리수를 완속으로 혼화시키는 무산소조용 완속혼화기를 포함할 수 있다.
인 제거 미생물이 기작에 필요한 탄소원을 상기 혐기조 내로 공급하되, 상기 혐기조의 둘레를 따라 상호간 규칙적으로 균등하게 배열되는 다수의 제2 노즐을 구비한 혐기조용 유입수 공급관을 포함할 수 있다.
상기 혐기조 내의 처리수 전역으로 인 제거 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 상기 혐기조 내에 마련되어 상기 혐기조 내의 처리수를 완속으로 혼화시키는 혐기조용 완속혼화기를 포함할 수 있다.
상기 제2 호기조 내에 안정지의 형성을 위해 마련되며, 과다 월류를 방지하고 상기 제2 호기조 내의 처리수에 대한 유출 유속을 소정의 범위로 유지시켜 질산화율을 배가시키는 적어도 하나의 간벽을 포함할 수 있다.
상기 제1 호기조와 상기 제2 호기조에는 각각 송풍기로부터의 공기가 부유되는 다수의 공기홀을 구비한 제1 및 제2 산기판이 마련될 수 있다.
상기 제1 호기조, 상기 무산소조, 상기 혐기조 및 상기 제2 호기조들 사이사이에는 다수의 격벽이 형성되며, 상기 다수의 격벽에는 처리수가 유동되는 다수의 처리수 유동홀이 형성되되 상기 다수의 처리수 유동홀은 상부 및 하부 위치가 반복되는 상하우류식 배치구조를 가질 수 있다.
본 발명에 따르면, 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수할 뿐만 아니라 내부 반송이 필요 없으면서도 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있어 목표 처리수질을 제공할 수 있는 효과가 있다.
도 1은 종래의 A2O 공법을 위한 하수 처리 장치의 개략도,
도 2는 종래의 DNR 공법을 위한 하수 처리 장치의 개략도,
도 3은 본 발명의 일 실시예에 따른 하수 처리 장치를 구비하는 하수 처리 계통도,
도 4는 본 발명의 일 실시예에 따른 하수 처리 장치의 평면 구조도,
도 5는 도 4의 종단면 구조도이다.
* 도면의 주요 부분에 대한 부호의 설명
10 : 제1 산기판 12 : 급속혼화기
21 : 무산소조용 유입수 공급관 22 : 제1 노즐
23 : 무산소조용 완속혼화기 31 : 혐기조용 유입수 공급관
32 : 제2 노즐 33 : 혐기조용 완속혼화기
40 : 제2 산기판 11,41 : 공기홀
51~54 : 격벽 60 : 간벽
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
도 3은 본 발명의 일 실시예에 따른 하수 처리 장치를 구비하는 하수 처리 계통도이다.
이 도면을 참조하면, 일반적인 하수 처리 계통은, 크게 침사지, 1차 침전지, 생물반응조 및 2차 침전지를 구비하며, 이들을 지난 후에 방류된다.
물론, 도 3은 극히 일반적인 하수 처리 계통을 나타낸 것으로서, 지역과 수질 등의 상황에 따라 다른 기능의 조가 더 추가될 수도 있다. 예컨대 2차 침전 후에 염소를 제거하는 별도의 조가 추가되는 등의 구조가 그 예일 수 있다. 각 구조에 대해 간략하게 살펴본다.
침사지는 유입된 하수를 그물망을 통과시키면서 비닐, 종이, 나무 조각 같이 큰 고체 물질을 제거하고 모래나 자갈과 같이 비중이 큰 오염물질을 침전시켜 제거하는 곳이다.
1차 침전지는 물리적 처리라고도 하는데, 비중이 작은 부유성 물질을 침전시켜 제거하며 물에 뜨는 기름이나 찌꺼기 등을 걷어내는 역할을 한다.
생물반응조는 다른 말로 포기조 또는 생물학적 처리조라 불리기도 한다. 전술한 종래기술에서 설명된 도 1 및 도 2의 구조는 모두 생물반응조에 해당되며, 이하에서 자세히 설명될 본 발명의 하수 처리 장치 역시 주로 이 생물반응조를 가리킨다. 이러한 생물반응조로서의 본 발명의 하수 처리 장치에 대해서는 도 4 및 도 5를 참조하여 후술한다.
2차 침전지는 활성 오니를 걸러 호기성 미생물은 다시 생물반응조로 피드백시키고, 분해되지 않은 찌꺼기인 슬러지를 걸러내는 장소이다. 활성 오니란 분해 과정에서 생긴 침전물과 미생물이 섞여 있는 것을 말하며, 호기성 미생물이란 유기물을 분해하여 에너지를 얻는데 산소를 소비하는 미생물을 가리킨다.
도 4는 본 발명의 일 실시예에 따른 하수 처리 장치의 평면 구조도이고, 도 5는 도 4의 종단면 구조도이다.
이들 도면에 도시된 바와 같이, 본 실시예의 하수 처리 장치는, 유입된 하수 중 고체물질을 제거하고 비중이 큰 오염물질을 침전시켜 제거하는 침사지와, 상기 침사지를 거친 하수 중 비중이 작은 부유물질을 침전시켜 제거하는 1차 침전지와, 상기 1차 침전지를 거친 하수를 생물학적으로 처리하는 생물반응조와, 상기 생물반응조를 거친 하수에서 활성 오니를 걸러 호기성 미생물은 다시 생물반응조로 피드백시키고 분해되지 않은 찌꺼기인 슬러지를 걸러내는 2차 침전지를 포함하는 하수 처리 장치로서, 이때의 생물반응조는 1차 침전지를 거친 하수를 처리하는 제1 호기조와, 제1 호기조를 거친 하수를 처리하는 무산소조와, 무산소조를 거친 하수를 처리하는 혐기조와, 혐기조를 거친 하수를 처리하는 제2 호기조가 하수의 처리를 위해 하수가 처리되는 방향을 따라 상호 인접하게 배열되는 구조를 갖는다. 즉 본 실시예의 하수 처리 장치에서 생물반응조는 제1 호기조, 무산소조, 혐기조, 제2 호기조가 상호 인접하게 배열되는 4단으로 구성된다.
편의를 위해 제1 호기조, 무산소조, 혐기조, 제2 호기조에는 별도의 도면 참조부호를 부여하지 않았다. 각 조의 역할 및 구조에 대해 살펴보면 다음과 같다.
우선, 제1 호기조는 미생물이 호기성(산소가 존재하는 상태)에서 오염물(유기물 등)을 분해하기 위한 환경을 조성해 놓은 반응조이다. 예컨대 수족관을 생각할 수 있는데, 이러한 제1 호기조에는 계속적으로 산소가 공급되며, 그로 인해 오염물이 분해될 수 있다.
이를 위해 제1 호기조에는 도시 않은 송풍기로부터의 공기가 부유되는 다수의 공기홀(11)을 구비한 제1 산기판(10)이 마련된다. 물론, 본 발명의 권리범위가 이에 제한될 필요는 없으며, 제1 산기판(10) 대신에 에어블러워를 설치해도 무방하다.
이러한 제1 호기조에는 제1 호기조와 연결되는 1차 침전지로부터의 유입수와, 제1 호기조 내의 미생물 개체수를 유지시키기 위하여 제1 침전지와는 다른 쪽에 배치되는 2차 침전지로부터의 반송수가 유입되는데, 이때, 제1 호기조 내에는 유입수와 반송수의 급속혼화를 위한 급속혼화기가 마련된다. 참고로 도 3을 참조할 때, 2차 침전지에서 반송수를 반송시키는 까닭은 제1 호기조 내에 미생물의 개체수를 유지시키기 위한 수단이다.
이처럼 1차 침전지에서 유입되는 유입수와 2차 침전지에서 반송되는 반송수의 용해성 성분 및 콜로이드성 유기물을 제1 호기조에 부유 성장하고 있는 미생물 플럭에 균등한 확산을 통한 유기물 농도를 제1 호기조 내에 균등하게 분산하여 미생물이 유기물을 섭취, 분해할 수 있는 최적의 환경을 신속하게 조성할 수 있도록 유입수와 반송수의 급속혼화를 위한 수단으로서 급속혼화기(12)가 마련되는 것이다. 급속혼화기(12)란 모터의 속도를 증가시킨 교반기로 볼 수 있다.
이때, 급속혼화기(12)는 제1 호기조 내에서 개방부(14)가 형성된 구획공간부(13) 내에 배치될 수 있는데, 반드시 그러할 필요는 없다. 개방부(14)는 격벽(15)의 제1 호기조 내의 하부 영역에 마련되는 것이 바람직할 수 있다.
제1 호기조와 무산소조 사이에는 제1 격벽(51)이 형성되는데, 제1 격벽(51)에 형성되는 제1 처리수 유동홀(51a)은 상부 위치에 마련된다. 따라서 제1 호기조 내의 처리수는 상부 위치의 제1 처리수 유동홀(51a)을 통해 무산소조로 유동된다. 이처럼 처리수를 흐름을 상향으로 유도함으로써 제1 호기조 내 체류 시간을 최대화시킬 수 있고, 이에 따라 유입수의 BOD 제거로 무산소조에서의 탈질 미생물의 기작을 기대할 수 있고, 산소와의 혼화 기능 또한 극대화할 수 있다.
다음으로, 무산소조는 질산화 된 미생물 혼합액(MLSS)을 반송시켜 탈질을 구현시키는 장소이다. 이러한 무산소조에는 다수의 제1 노즐(22)을 구비한 무산소조용 유입수 공급관(21)이 연결된다. 무산소조용 유입수 공급관(21)은 다수의 제1 노즐(22)을 통해서 탈질에 필요한 유기원을 무산소조 내로 공급하는 역할을 한다.
이 경우, 유기원이 무산소조에 균등하게 공급될 수 있도록 무산소조용 유입수 공급관(21)은 무산소조의 둘레를 따라 배열되며, 다수의 제1 노즐(22)은 무산소조용 유입수 공급관(21)의 둘레를 따라 상호간 규칙적으로 균등하게 배열된다.
그리고 무산소조에는 무산소조 내의 처리수 전역으로 탈질 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 무산소조 내의 처리수를 완속으로 혼화시키는 무산소조용 완속혼화기(23)가 구비된다.
무산소조용 완속혼화기(23)는 전술한 급속혼화기(12)보다 모터의 회전 속도가 낮은 것을 의미한다. 이러한 무산소조용 완속혼화기(23)를 동작시키면 무산소조 내의 전면적에서 균등한 미생물 농도의 상태를 유지할 수 있는 이점이 있다. 개략적으로 도시된 바와 같이, 무산소조용 완속혼화기(23)는 높이별로 다수의 교반날개(23a)를 구비하고 있다.
무산소조와 혐기조 사이에는 제2 격벽(52)이 형성되는데, 제2 격벽(52)에 형성되는 제2 처리수 유동홀(52a)은 하부 위치에 마련된다. 따라서 무산소조 내의 처리수는 하부 위치의 제2 처리수 유동홀(52a)을 통해 혐기조로 유동된다.
다음으로, 혐기조는 미생물이 혐기성(산소가 존재하지 않는 상태)에서 오염물(유기물 등)을 분해하기 위한 환경을 조성해 놓은 반응조이다. 예컨대 화장실의 정화조를 생각할 수 있다. 즉 혐기성 상태에서 서식하는 미생물을 이용해서 유기물을 처리하는 장치인데, 호기조와 다른 점이라면 산소 공급을 차단해야 하니까 에어레이션 장치가 없다는 것이다.
부연하면, 인 제거 미생물이 혐기조에서 인을 방출하고 다음 단의 제2 호기조에서 인 과다 섭취를 할 수 있도록 인 제거 미생물이 체내에 있는 인을 최대한 방출할 수 있도록 DO 농도를 혐기 상태로 유지토록 한다.
이러한 혐기조에는 다수의 제2 노즐(32)을 구비한 혐기조용 유입수 공급관(31)이 연결된다. 혐기조용 유입수 공급관(31)은 다수의 제2 노즐(32)을 통해서 인 제거 미생물이 기작에 필요한 탄소원을 혐기조 내로 공급하는 역할을 한다.
이 경우, 탄소원이 혐기조에 균등하게 공급될 수 있도록 혐기조용 유입수 공급관(31)은 혐기조의 둘레를 따라 배열되며, 다수의 제2 노즐(32)은 혐기조용 유입수 공급관(31)의 둘레를 따라 상호간 규칙적으로 균등하게 배열된다. 여기서, 혐기조용 유입수 공급관(31)은 전술한 무산소조용 유입수 공급관(21)과 동일한 라인일 수도 있고 혹은 별개의 라인일 수도 있다.
그리고 혐기조에는 혐기조 내의 처리수 전역으로 인 제거 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 혐기조 내의 처리수를 완속으로 혼화시키는 혐기조용 완속혼화기(33)가 구비된다. 이러한 혐기조용 완속혼화기(33)를 동작시키면 혐기조 내의 전면적에서 균등한 미생물 농도의 상태를 유지할 수 있는 이점이 있다. 혐기조용 완속혼화기(33)는 무산소조용 완속혼화기(23)와 동일한 것일 수 있다.
혐기조와 제2 호기조 사이에는 제3 격벽(53)이 형성되는데, 제3 격벽(53)에 형성되는 제3 처리수 유동홀(53a)은 상부 위치에 마련된다. 따라서 혐기조 내의 처리수는 상부 위치의 제3 처리수 유동홀(53a)을 통해 혐기조로 유동된다.
마지막으로, 제2 호기조는 질산화율을 극대화시키기 위해 마련된 부분이다. 즉 제2 호기조는 혐기조에서 인을 방출한 미생물이 제2 호기조에서 다시 인 과다 섭취를 할 수 있도록 하기 위해 마련된다.
제2 호기조에는 도시 않은 송풍기로부터의 공기가 부유되는 다수의 공기홀(41)을 구비한 제2 산기판(40)이 마련된다. 물론, 본 발명의 권리범위가 이에 제한될 필요는 없으며, 제2 산기판(40) 대신에 에어블러워를 설치해도 무방하다.
이러한 제2 호기조 내에는 과다 월류를 방지하고 제2 호기조 내의 처리수에 대한 유출 유속을 소정의 범위로 유지시켜 질산화율을 배가시키는 간벽(60)이 마련된다. 간벽(60)에는 그 하부 영역에 처리수 유동홀(61)이 형성된다. 간벽(60)으로 인해 제2 호기조 내에는 안정지(65)가 형성되는데, 이러한 안정지(65)로 인해 과다 월류가 방지됨은 물론 적정 지내 체류 시간을 확보할 수 있고, 이를 통해 질산화율을 극대화시킬 수 있다.
제2 호기조의 후단에는 종침분배수로와 종침이 각각 배치되는데, 제2 호기조와의 사이에는 제4 격벽(54)이 형성되며, 제4 격벽(54)에 형성되는 제4 처리수 유동홀(54a)은 상부 위치에 마련된다. 따라서 제2 호기조 내의 처리수는 상부 위치의 제4 처리수 유동홀(54a)을 통해 혐기조로 유동된다.
결과적으로 제1 호기조, 무산소조, 혐기조, 제2 호기조, 종침분배수로를 따라 흐르는 처리수는 상하우류식 배열의 유동홀(51a~54a,61)을 통해 흐르게 되는 것이다. 상하우류식 배열이란, 물이 상부와 하부로 반복되면서 물이 흐르는 것을 의미한다.
이러한 구성을 갖는 하수 처리 장치의 동작에 대해 살펴보면 다음과 같다.
침사지와 1차 침전지를 거쳐 유입되는 유입수와 2차 침전지에서 반송되는 반송수는 제1 호기조 내로 유입된 후 급속혼화 된 다음 상부 위치에서 무산소조로 유동된다.
그리고는 무산소조 내에서 질소 방출의 탈질 작용이 수행된다. 탈질 작용 시 무산소조용 유입수 공급관(21)을 통해 탈질에 필요한 유기원이 공급되며, 무산소조용 완속혼화기(23)에 의해 무산소조 내의 전면적에서 균등한 미생물 농도의 상태가 유지되면서 탈질 작용이 진행된다.
다음, 무산소조 내의 처리수는 하부 위치에서 혐기조 내로 유동되며, 혐기조 내에서 인 방출 작용이 진행된다. 인 방출 작용시 혐기조용 유입수 공급관(31)을 통해 인 제거 미생물이 기작에 필요한 탄소원이 공급되며, 혐기조용 완속혼화기(33)에 의해 혐기조 내의 전면적에서 균등한 미생물 농도의 상태가 유지되면서 인 방출 작용이 진행된다.
그런 다음에 혐기조 내의 처리수는 상부 위치에서 제2 호기조 내로 유동되며, 제2 호기조의 안정지(65)를 통해서 적정 지내 체류 시간이 확보되어, 즉 처리수에 대한 유출 유속을 소정의 범위로 유지시킴으로써 질산화율을 극대화시키게 된다. 질산화율이 극대화되고 난 처리수는 종침분배수로와 종침으로 향한다.
이처럼 화학 처리 작용이 완료된 처리수는 2차 침전지를 거치게 되고, 2차 침전지에서 활성 오니를 걸러 호기성 미생물은 다시 생물반응조로 피드백시키고, 분해되지 않은 찌꺼기인 슬러지를 걸러내고 방류하게 된다.
이와 같이, 본 실시예에 따르면, 수리학적 체류시간(HRT) 동안 미생물 혼합액(MLSS)과 유기물의 균등한 확산으로 처리 수질이 우수할 뿐만 아니라 내부 반송이 필요 없으면서도 유입수질의 변화에 적응적으로 대처하면서 질소와 인을 적정하게 제거할 수 있어 목표 처리수질을 제공할 수 있게 된다.
실제로, 수리학적 체류시간(HRT)을 6-8 시간, 고형물 체류시간(SRT)을 10-15 일, 미생물 혼합액(MLSS)을 2500-3500 mg/l, 그리고 슬러지 반송비를 50-100%로 설계하고 시뮬레이션을 실시하면, BOD 98% 이상, 챙 95% 이상, SS 98% 이상, T-N 및 T-P 85% 의 처리 효율을 기대할 수 있었다.
이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.

Claims (8)

  1. 유입된 하수 중 고체물질을 제거하고 비중이 큰 오염물질을 침전시켜 제거하는 침사지와, 상기 침사지를 거친 하수 중 비중이 작은 부유물질을 침전시켜 제거하는 1차 침전지와, 상기 1차 침전지를 거친 하수를 생물학적으로 처리하는 생물반응조와, 상기 생물반응조를 거친 하수에서 활성 오니를 걸러 호기성 미생물은 다시 상기 생물반응조로 피드백시키고 분해되지 않은 찌꺼기인 슬러지를 걸러내는 2차 침전지를 포함하는 하수 처리 장치로서,
    상기 생물반응조는 상기 1차 침전지를 거친 하수를 처리하는 제1 호기조와, 상기 제1 호기조를 거친 하수를 처리하는 무산소조와, 상기 무산소조를 거친 하수를 처리하는 혐기조와, 상기 혐기조를 거친 하수를 처리하는 제2 호기조를 포함하되,
    상기 제1 호기조에는 상기 제1 호기조와 연결되는 상기 1차 침전지로부터의 유입수와, 상기 제1 호기조 내의 미생물 개체수를 유지시키기 위하여 상기 제1 침전지와는 다른 쪽에 배치되는 상기 2차 침전지로부터의 반송수가 유입되고, 상기 제1 호기조 내에는 상기 유입수와 상기 반송수의 급속혼화를 위한 급속혼화기가 마련되는 것을 특징으로 하는 하수 처리 장치.
  2. 제1항에 있어서,
    탈질에 필요한 유기원을 상기 무산소조 내로 공급하되, 상기 무산소조의 둘레를 따라 상호간 규칙적으로 균등하게 배열되는 다수의 제1 노즐을 구비한 무산소조용 유입수 공급관을 포함하는 것을 특징으로 하는 하수 처리 장치.
  3. 제2항에 있어서,
    상기 무산소조 내의 처리수 전역으로 탈질 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 상기 무산소조 내에 마련되어 상기 무산소조 내의 처리수를 완속으로 혼화시키는 무산소조용 완속혼화기를 포함하는 것을 특징으로 하는 하수 처리 장치.
  4. 제1항에 있어서,
    인 제거 미생물이 기작에 필요한 탄소원을 상기 혐기조 내로 공급하되, 상기 혐기조의 둘레를 따라 상호간 규칙적으로 균등하게 배열되는 다수의 제2 노즐을 구비한 혐기조용 유입수 공급관을 포함하는 것을 특징으로 하는 하수 처리 장치.
  5. 제4항에 있어서,
    상기 혐기조 내의 처리수 전역으로 인 제거 미생물 농도가 실질적으로 균일하게 유지될 수 있도록 상기 혐기조 내에 마련되어 상기 혐기조 내의 처리수를 완속으로 혼화시키는 혐기조용 완속혼화기를 포함하는 것을 특징으로 하는 하수 처리 장치.
  6. 제1항에 있어서,
    상기 제2 호기조 내에 안정지의 형성을 위해 마련되며, 과다 월류를 방지하고 상기 제2 호기조 내의 처리수에 대한 유출 유속을 소정의 범위로 유지시켜 질산화율을 배가시키는 적어도 하나의 간벽을 포함하는 것을 특징으로 하는 하수 처리 장치.
  7. 제1항에 있어서,
    상기 제1 호기조와 상기 제2 호기조에는 각각 송풍기로부터의 공기가 부유되는 다수의 공기홀을 구비한 제1 및 제2 산기판이 마련되는 것을 특징으로 하는 하수 처리 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 제1 호기조, 상기 무산소조, 상기 혐기조 및 상기 제2 호기조들 사이사이에는 다수의 격벽이 형성되며,
    상기 다수의 격벽에는 처리수가 유동되는 다수의 처리수 유동홀이 형성되되 상기 다수의 처리수 유동홀은 상부 및 하부 위치가 반복되는 상하우류식 배치구조를 갖는 것을 특징으로 하는 하수 처리 장치.
PCT/KR2011/000390 2011-01-19 2011-01-19 하수 처리 장치 WO2012099283A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2011/000390 WO2012099283A1 (ko) 2011-01-19 2011-01-19 하수 처리 장치
US13/806,675 US20130098815A1 (en) 2011-01-19 2011-01-19 Sewage treatment apparatus
JP2013516489A JP5612765B2 (ja) 2011-01-19 2011-01-19 下水処理装置
SG2012095121A SG186810A1 (en) 2011-01-19 2011-01-19 Sewage treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000390 WO2012099283A1 (ko) 2011-01-19 2011-01-19 하수 처리 장치

Publications (1)

Publication Number Publication Date
WO2012099283A1 true WO2012099283A1 (ko) 2012-07-26

Family

ID=46515889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000390 WO2012099283A1 (ko) 2011-01-19 2011-01-19 하수 처리 장치

Country Status (4)

Country Link
US (1) US20130098815A1 (ko)
JP (1) JP5612765B2 (ko)
SG (1) SG186810A1 (ko)
WO (1) WO2012099283A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607782A (zh) * 2018-12-11 2019-04-12 深圳市瑞清环保科技有限公司 污水处理装置及其处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057374B1 (ko) * 2017-09-26 2020-02-11 한국과학기술연구원 그래뉼을 이용한 하수처리 시스템
PL429686A1 (pl) * 2019-04-18 2020-10-19 Id'eau Spółka Z Ograniczoną Odpowiedzialnością Układ technologiczny do oczyszczania ścieków
CN116986776B (zh) * 2023-09-27 2023-12-08 上海朗蔚环保科技有限公司 一种脱除高浓度硝态氮的高效厌氧脱氮反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090055160A (ko) * 2007-11-28 2009-06-02 재단법인서울대학교산학협력재단 유량 조정조를 생물반응조로 활용하는 하수처리 시스템 및그 방법
KR20100098159A (ko) * 2009-02-27 2010-09-06 주식회사 한길엔지니어링 간헐포기 연속처리식 하폐수 고도처리장치 및 방법
KR20100136989A (ko) * 2008-03-28 2010-12-29 지멘스 워터 테크놀로지스 코포레이션 호기성 및 혐기성 하이브리드 폐수 및 슬러지 처리 시스템 및 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994802A (en) * 1975-04-16 1976-11-30 Air Products And Chemicals, Inc. Removal of BOD and nitrogenous pollutants from wastewaters
US5651891A (en) * 1989-08-02 1997-07-29 Polytechnic University Wastewater treatment process
US20050266548A1 (en) * 1995-03-28 2005-12-01 Kbi Biopharma, Inc. Biocatalyst chamber encapsulation system for bioremediation and fermentation with improved rotor
US5820760A (en) * 1997-06-30 1998-10-13 Competitive Technologies Of Pa, Inc. Process for reducing nitrous oxide emission from waste water treatment
JP3845515B2 (ja) * 1998-06-23 2006-11-15 株式会社タクマ 排水中の窒素及びリンの除去システムならびに除去方法
IL127174A0 (en) * 1998-11-20 1999-09-22 Almog Projects Ltd Sewage treatment facility and method
JP2000296399A (ja) * 1999-04-13 2000-10-24 Maezawa Ind Inc 排水処理装置
JP4320515B2 (ja) * 2001-07-26 2009-08-26 栗田工業株式会社 リンとアンモニア性窒素を含有する原水の処理方法
JP2003053384A (ja) * 2001-08-23 2003-02-25 Nippon Steel Corp 廃水からの窒素・リンの除去方法及びその装置
JP2004305808A (ja) * 2003-04-02 2004-11-04 Japan Institute Of Wastewater Engineering Technology 廃水中の窒素及びリンを除去する方法
WO2007012181A1 (en) * 2005-07-25 2007-02-01 Zenon Technology Partnership Apparatus and method for treating fgd blowdown or similar liquids
FI121470B (fi) * 2009-03-27 2010-11-30 Outotec Oyj Laitteisto ja menetelmä kuparia sisältävän orgaanisen uuttoliuoksen puhdistamiseksi epäpuhtauksista
JP2010253428A (ja) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp 排水処理装置及び排水処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090055160A (ko) * 2007-11-28 2009-06-02 재단법인서울대학교산학협력재단 유량 조정조를 생물반응조로 활용하는 하수처리 시스템 및그 방법
KR20100136989A (ko) * 2008-03-28 2010-12-29 지멘스 워터 테크놀로지스 코포레이션 호기성 및 혐기성 하이브리드 폐수 및 슬러지 처리 시스템 및 방법
KR20100098159A (ko) * 2009-02-27 2010-09-06 주식회사 한길엔지니어링 간헐포기 연속처리식 하폐수 고도처리장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607782A (zh) * 2018-12-11 2019-04-12 深圳市瑞清环保科技有限公司 污水处理装置及其处理方法

Also Published As

Publication number Publication date
SG186810A1 (en) 2013-02-28
JP2013530043A (ja) 2013-07-25
US20130098815A1 (en) 2013-04-25
JP5612765B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
KR100419431B1 (ko) 질소 및 인을 제거하기 위한 폐수처리 장치 및 폐수처리방법
WO2016021766A1 (ko) 오염물질별 최적 미생물을 이용한 하 · 폐수 고도 처리 시스템 및 그 방법
KR100524426B1 (ko) 다단계 이중 사이클 유입 방법
KR101010053B1 (ko) 하수 처리 장치
WO2013005913A1 (ko) 복합 미생물반응조 및 이를 이용하는 수처리 장치 및 방법
KR100273913B1 (ko) 생물학적반응에의한하폐수처리장치및방법
CN103068748A (zh) 接触-稳定/初期-浮选混合
WO2012046972A2 (en) Treatment system for high-concentration wastewater
WO2013183965A1 (ko) 높은 에너지 효율, 높은 유량, 낮은 운전비용, 자동화된 스컴/거품의 제거/파괴 및 일정 수위 연속회분식 반응조 공정으로부터의 공정전환 방법을 갖춘 멤브레인 하폐수 처리 시스템과 방법
KR100231084B1 (ko) 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 장치 및 방법
WO2022108140A1 (ko) 여재가 투입된 회분식 반응조를 이용한 부분 아질산화와 이를 이용한 단축질소제거 오폐수 처리장치 및 시스템
WO2012099283A1 (ko) 하수 처리 장치
KR20020044820A (ko) 침지식 분리막을 이용한 생물학적 질소 인 제거장치 및 방법
KR100527172B1 (ko) 축산폐수 및 분뇨등 고농도의 질소를 함유하는 오폐수처리장치 및 방법
KR100275563B1 (ko) 혐기 및 2단 교호 간헐폭기를 이용한 하폐수 처리방법 및 장치
KR100705541B1 (ko) 하·폐수에서 영양염류를 제거하기 위한 하·폐수처리방법 및장치
KR900011673A (ko) 생물학적 질소와 인의 제거법 및 그 처리장치
KR20010045253A (ko) 하수 고도처리장치와 이 장치를 이용한 하수처리방법
KR100438323B1 (ko) 생물학적 고도처리에 의한 하수, 폐수 처리방법
KR101375339B1 (ko) 기존 산화구 반응조의 설계 수리학적 체류시간을 확보할 수 있는 하수처리장치
KR100465524B1 (ko) 분리막과 바실러스균을 이용한 하,폐수 고도처리장치 및방법
KR101032068B1 (ko) 고효율 회분식 공정을 이용한 하.폐수 처리 장치 및 방법
KR100246815B1 (ko) 하수의 질소,인 제거장치
KR100778296B1 (ko) 축산폐수내 질소를 효율적으로 처리하기 위한 방법
KR960011888B1 (ko) 질소, 인제거 겸용 생물학적 하,폐수처리장치 및 그 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13806675

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013516489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856227

Country of ref document: EP

Kind code of ref document: A1