WO2020138621A1 - Three-dimensional printing composition - Google Patents

Three-dimensional printing composition Download PDF

Info

Publication number
WO2020138621A1
WO2020138621A1 PCT/KR2019/009447 KR2019009447W WO2020138621A1 WO 2020138621 A1 WO2020138621 A1 WO 2020138621A1 KR 2019009447 W KR2019009447 W KR 2019009447W WO 2020138621 A1 WO2020138621 A1 WO 2020138621A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
composition
monomer
printing
control unit
Prior art date
Application number
PCT/KR2019/009447
Other languages
French (fr)
Korean (ko)
Inventor
김명재
성유철
유응태
심서현
Original Assignee
주식회사 한국디아이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국디아이씨 filed Critical 주식회사 한국디아이씨
Priority to JP2021534320A priority Critical patent/JP7249694B2/en
Priority to CN201980077790.4A priority patent/CN113166291B/en
Publication of WO2020138621A1 publication Critical patent/WO2020138621A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a photocurable composition used in three-dimensional printing.
  • 3D printer is indispensable.
  • 3D printing technology is expected to develop into a high value-added industry in the future, many companies in each country are making continuous efforts to develop their own hardware (H/W) and software (S/W).
  • FDM Fused Deposition Modeling
  • the FDM method is a method in which a 3D printer melts and extrudes a filament of a plastic material by heat, and then solidifies at room temperature to stack objects.
  • this FDM method has a high mechanical failure rate, and thus has a high failure rate in the actual shape production process.
  • a recently emerged 3D printing technology is a technology that uses light curing to print.
  • Typical examples of the photocurable 3D printing technology include a stereolithography apparatus (SLA) method or a digital light processing (DLP) method.
  • SLA method is a method in which a 3D printer irradiates a high-density laser to cure a resin to a desired shape
  • DLP is a method in which a 3D printer uses a light projector instead of a high-density laser to cure the resin.
  • DLP 3D printers cure the resin by irradiating light with an area other than a specific focus like the SLA method.
  • the 3D printer of the SLA method has the advantage of high precision of the final shape produced by irradiating a high-density laser with a specific focus, and has a disadvantage that a long time elapses until the final shape is manufactured.
  • the DLP type 3D printer has the advantage of significantly shortening the manufacturing time of the shape because the resin is cured by irradiating light with an area, while the precision of the final shape, in particular, the precision of implementation on the surface of the shape is poor.
  • the conventional 3D printing method using photocuring has a problem that each has disadvantages, and there is a demand for a new 3D printing method that minimizes the disadvantages.
  • resins conventionally used for 3D printing are opaque plastic materials, for example, ABS resin or urethane, etc., and thus have opaque characteristics. Accordingly, conventional resins have a problem of deteriorating aesthetics and optical properties such as transmission and diffusion. Therefore, there is a need for a transparent material that has excellent aesthetics and optical properties, and has improved durability, even for resins used for 3D printing.
  • One embodiment of the present invention is transparent, and has an object to provide a composition for three-dimensional printing that can be cured in response to both the SLA 3D printing method and the DLP 3D printing method.
  • an embodiment of the present invention has an object to provide a 3D printing apparatus for separating and curing the core and shell of the final shape to be manufactured.
  • composition used as a raw material for a 3D printer comprising a monofunctional monomer, a bifunctional monomer, an oligomer, an initiator, and a photosensitizer.
  • the composition for a three-dimensional printer is 10 to 30 parts by weight as a monofunctional monomer, 20 to 50 parts by weight as a bifunctional monomer, 30 to 40 parts by weight as an oligomer, an initiator within 5 parts by weight, and Characterized in that it comprises a photosensitizer within 1 part by weight.
  • the composition for a three-dimensional printer is characterized in that it further comprises a pigment.
  • the composition for a three-dimensional printer is characterized in that it contains a pigment within 1 part by weight.
  • the monofunctional monomer is characterized in that the epoxy-based monomer or ether-based monomer.
  • the bifunctional monomer is characterized in that the acrylic monomer.
  • the bifunctional monomer is characterized in that it is a bisphenol-based (BPZ)-based monomer.
  • composition for 3D printing is transparent, there is an advantage that can be cured in response to both the SLA 3D printing method and DLP 3D printing method.
  • the 3D printing apparatus has an advantage of ensuring both a rapid manufacturing time and excellent precision of the final shape produced by separating and curing the core and shell of the final shape to be manufactured.
  • FIG. 1 is a view showing the configuration of a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing an embodiment of a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to another embodiment of the present invention.
  • first, second, A, B, etc. can be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • the term and/or includes a combination of a plurality of related described items or any one of a plurality of related described items.
  • each configuration, process, process or method included in each embodiment of the present invention may be shared within a technically inconsistent range.
  • FIG. 1 is a view showing the configuration of a 3D printing apparatus according to an embodiment of the present invention.
  • the 3D printing apparatus 100 includes a first light source 110, a second light source 115, a control unit 120, and a motor 130.
  • the first light source 110 irradiates light of a certain area with a 3D printing composition (hereinafter abbreviated as'composition').
  • the first light source 110 emits light having an area corresponding to a shape of a core portion of a shape finally produced by a 3D printing device (hereinafter abbreviated as'final shape'), rather than light focused at one point.
  • the first light source 110 irradiates light of a certain area with the composition, and cures the composition by a certain area at once.
  • the area of the light to be irradiated by the first light source 110 varies depending on the area of the core portion in each layer of the final shape.
  • the first light source 110 irradiates the composition with light corresponding to the area of the core portion in each layer of the final shape so that the composition can be cured like the core portion of the final shape.
  • the first light source 110 allows the 3D printing apparatus 100 to operate in a DLP 3D printing method.
  • the second light source 115 irradiates a laser of one focus to a container containing the composition.
  • the second light source 115 irradiates a focused laser with one focus, and moves the focus to cure the composition to become a shell portion of the final shape.
  • the second light source 115 further cures the shell portion of the final shape after the first light source 110 cures the composition or simultaneously with the first light source 110. Since the SLA 3D printing device cures the composition by irradiating a laser focused at one focus, such as a second light source, it takes a considerable amount of time to cure the composition to a final shape.
  • the 3D printing apparatus 100 since the second light source 115 only needs to cure the shell portion of the composition in which the core portion is already cured with the first light source, the 3D printing apparatus 100 has a long curing time as in the conventional SLA 3D printing apparatus. High precision can be achieved on the surface of the final shape without having it.
  • the second light source 115 allows the 3D printing device 100 to operate in the SLA 3D printing method.
  • the core portion of the final shape that is cured by the first light source 110 and the shell portion of the final shape that is cured by the second light source 115 may have different areas or volumes according to the setting of the controller 120.
  • the shell portion may mean a point from the outermost surface to a point that becomes 10% of the total volume of the final shape according to the setting of the control unit 120.
  • the first light source 110 and the second light source 115 may be irradiated with light or laser in the 405 nm band as an example of a wavelength band for curing the composition, but are not limited thereto.
  • the control unit 120 operates the first light source 110 and the second light source 115 alternately or simultaneously, thereby curing the composition to a final shape.
  • the controller 120 may set the area or volume of the core portion of the final shape that the first light source 110 cures and the area or volume of the shell portion of the final shape that the second light source 115 cures.
  • the control unit 120 alternately operates the first light source 110 and the second light source 115.
  • the first light source 110 first cures the core portions of the final shape in each layer, and then, the second light source 115 hardens the shell portions of the final shape in each layer.
  • the controller 120 controls the motor 130 to control the first light source 110, the second light source 115, or The container containing the composition is moved.
  • the control unit 120 controls the motor 130 so that the first light source 110 or the second light source 115 moves, so that when a light source irradiates light, another light source located on the optical axis Move it.
  • the control unit 120 controls the motor 130 to move the container containing the composition, and moves the container containing the composition onto the optical axis of each light source arranged to have different optical axes. Accordingly, the first light source 110 and the second light source 115 are irrespective of each other, and each light can be irradiated entirely with the composition.
  • the control unit 120 operates the first light source 110 and the second light source 115 simultaneously. Unlike the above-described case, the first light source 110 and the second light source 115 may be disposed or moved within a range that does not affect each other's optical axis. In this case, in order to improve the curing speed of the composition, the control unit 120 simultaneously operates the first light source 110 and the second light source 115 to simultaneously cure the composition corresponding to the shape of the core and shell of the final shape. To lose.
  • the control unit 120 may control the motor 130 such that each light source 110 or 115 is close to the container containing the composition, or the container containing the composition is close to each light source 110 and 115.
  • each light source (110, 115) and the container containing the composition should be close to or away from each other.
  • the control unit 120 may control the motor 130 so that each light source 110 or 115 approaches or moves away from the container. Conversely, the control unit 120 may control the motor 130 so that the container approaches or moves away from each light source 110 or 115.
  • the control unit 120 controls the first light source 110 and the second light source 115 to separate the composition for each layer to cure the composition.
  • the control unit 120 divides the final shape into layers of a level capable of curing each light source in one operation. Thereafter, the control unit 120 controls each light source 110 and 115 so that the composition can be cured in the same way as each layer in the final shape.
  • the control unit 120 controls the first light source 110 so that the composition is cured like the shape of the core in a specific layer in the final shape.
  • the control unit 120 controls the second light source 115 so that the composition is cured like the shape of the shell in a specific layer of the final shape.
  • the controller 120 determines whether the layer having completed curing is the final layer. If the cured layer is the final layer, since the curing is completed by each of the light sources 110 and 115, the control unit 120 ends the curing. Conversely, when the cured layer is not the final layer, the controller 120 controls each light source 110 or 115 so that each light source 110 or 115 cures the composition according to the next layer.
  • the motor 130 moves each light source 110 or 115 or a container containing the composition under the control of the control unit 120.
  • the motor 130 moves each light source 110 or 115 or a container containing the composition so that each light source 110 or 115 can alternately cure the composition, and each light source 110 or 115 is in close proximity to the composition.
  • Each light source (110, 115) or the container containing the composition is moved to cure.
  • FIG. 2 is a view showing an embodiment of a 3D printing apparatus according to an embodiment of the present invention.
  • the first light source 110 irradiates light with the composition 220 in the container 210 to cure the composition as much as the area 230 of the core in a specific layer of the final shape at once.
  • the control unit may control the second light source 115 to be away from the optical axis of the first light source 110, and the light irradiated from the first light source 110 interferes with the second light source 115 It can be completely irradiated with the composition 220 without.
  • the control unit may control the motor (not shown) to move the container 210 such that the first light source 110 and the container 210 are close together.
  • the second light source 120 irradiates light with the composition 220 to cure the composition of the shell 240 in a specific layer having a final shape.
  • the control unit controls the motor (not shown) so that the second light source 120 can cure the composition, so that the laser irradiated by the second light source 120 can enter the composition to the second position.
  • the light source 120 is moved again.
  • the control unit may control the motor (not shown) to move the container 210 such that the second light source 115 and the container 210 are close together.
  • the 3D printing apparatus 100 can secure an excellent level in both curing speed and quality by curing the composition alternately between the first light source 110 and the second light source 115.
  • first light source 110 and the second light source 115 are alternately operated is illustrated in FIG. 2, the present invention is not limited thereto, and the optical axis irradiated by the first light source 110 by the second light source 115 is not limited thereto.
  • the first light source 110 and the second light source 115 may be operated at the same time by being disposed or moved within a range not affecting.
  • the second light source 115 and the container 210 are illustrated as being moved, the present invention is not limited thereto.
  • FIG. 3 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to an embodiment of the present invention.
  • the control unit 120 controls the first light source 110 to irradiate light to cure the core portion (S310).
  • the control unit 120 controls the first light source 110 to irradiate light of a predetermined area with the composition.
  • the first light source 110 irradiates light of a certain area with the composition, thereby curing the composition at once as much as the area of the core in a specific layer of the final shape.
  • the control unit 120 controls the motor 130 so that the second light source 115 enters on the optical axis of the first light source 110 (S320).
  • the control unit 120 controls the second light source 115 to irradiate light to cure the shell portion (330).
  • the control unit 120 controls the second light source 115 so that the second light source 115 irradiates the laser with one focus to the composition.
  • the second light source 115 irradiates the focused laser with one focus, and moves the focus under the control of the controller 120 to cure the composition into the shape of the shell portion of the final shape.
  • the control unit 120 determines whether the cured layer is the final layer (S340). The control unit 120 determines whether the layer cured by the first light source 110 and the second light source 115 is the final layer of the final shape. If the cured layer is the final layer, since the curing is completed by each of the light sources 110 and 115, the control unit 120 ends the curing.
  • the controller 120 controls the motor so that the light source or container moves so that the next layer of the cured layer can be cured (S350). If the cured layer is not the final layer, curing should proceed to the next layer. Accordingly, the controller 1200 controls the motor so that the light source or container moves, so that curing processes of S310 to S330 can be performed on the next layer.
  • FIG. 4 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to another embodiment of the present invention.
  • the control unit 120 controls the first light source 110 and the second light source 115 to irradiate light to cure the core portion and the shell portion (S410).
  • the control unit 120 controls the first light source 110 and the second light source 115 to operate at the same time, thereby curing the composition corresponding to the core portion and the shell portion at a time.
  • the control unit 120 determines whether the cured layer is the final layer (S420).
  • the controller 120 controls the motor so that the light source or container moves so that the next layer of the cured layer can be cured (S430). If the cured layer is not the final layer, curing should proceed to the next layer. Therefore, the control unit 1200 controls the motor so that the light source or container moves so that the curing process of S410 can be performed on the next layer.
  • composition 220 according to an embodiment of the present invention which is cured by the 3D printing apparatus 100 and manufactured to a final shape, has transparent properties, and is cured to both the light source of the DLP 3D printing method and the light source of the SLA 3D printing method. It has a characteristic.
  • the composition 220 includes monofunctional monomers, bifunctional monomers, oligomers, initiators, photosensitizers, and other additives.
  • the monofunctional monomer an epoxy-based or ether-based monomer is used, and is contained in an amount of 10 to 20 parts by weight.
  • Monofunctional monomers are blended into composition 220 to adjust the viscosity of the composition.
  • a monofunctional monomer is additionally included separately from the bifunctional monomer, so that the viscosity of the composition is not too high.
  • the monofunctional monomer contains only 10 to 20 parts by weight.
  • an acrylic monomer is used, and contains 20 to 50 parts by weight.
  • the bifunctional monomer is the most contained in the composition to form a main chain, and corresponds to a main component that affects the overall reactivity and transparency of the composition.
  • the composition 220 includes each of the monofunctional monomer and the bifunctional monomer by a predetermined amount. As each monomer is included in the composition 220, the composition can be controlled by separating both viscosity and reactivity, respectively.
  • the acrylic monomer used as a bifunctional monomer is composed of a newly synthesized bisphenol paper (BPZ) series rather than a conventional bisphenol A (BPA) series.
  • BPZ bisphenol paper
  • BPA bisphenol A
  • the bisphenol paper-based monomer to be used as a bifunctional monomer is prepared by the following process.
  • Ethylene oxide (EO: Ethylen Oxide) is added to a conventional bisphenol paper (material before reaction) to synthesize a second bisphenol paper (BPZ(EO), material after reaction).
  • EO Ethylene oxide
  • BPZ(EO) second bisphenol paper
  • a third bisphenol paper (BPZ(EO) Ac) is synthesized by adding an acrylate functional group capable of polymerization to both terminal groups (-OH) of the synthesized second bisphenol paper.
  • the composition 220 has an advantage of high transparency, strength, and wear resistance.
  • epoxy acrylate and urethane-based acrylate are used, and contain 30 to 50 parts by weight.
  • Oligomers are components that affect the mechanical properties of the composition, such as strength. However, if too large an oligomer is included, yellowing may occur, and thus 30 to 50 parts by weight is included.
  • the oligomer epoxy acrylate and urethane acrylate are used. Since the urethane-based acrylate is mainly affected by the light source of the DLP 3D printing method, only the urethane-based acrylate cannot be used as an oligomer in order to cure the composition even in the light source of the SLA 3D printing method. Therefore, the oligomer includes not only a urethane-based acrylate, but also an epoxy acrylate that reacts to both a DLP 3D printing light source and a SLA 3D printing light source.
  • Initiator is used an initiator containing both a radical-based initiator component and a cationic initiator component, and is contained within 5 parts by weight.
  • An initiator is a substance that initiates a reaction in a specific wavelength band.
  • the polymerization reaction is a chain reaction, and the initiator reacts to light in a specific wavelength band to initiate the reaction.
  • an initiator containing both a radical-based initiator component and a cation-based initiator component is used as the initiator. By including both components, the initiator can initiate a reaction to both the light source of the DLP 3D printing method and the light source of the SLA 3D printing method.
  • the pigment is contained within 1 part by weight.
  • the pigment has a possibility of reducing the light transmittance and the reaction speed to a certain level in the visible region, but has the effect of improving color. Accordingly, the pigment may be included in a small amount in the composition.
  • the photosensitizer may be used as a silane coupling agent, and is contained within 1 part by weight.
  • the light sensitizer absorbs light of a specific wavelength, thereby minimizing the phenomenon of light spreading during 3D printing output. Accordingly, the photosensitizer allows the precision of the final shape to increase. Further, by suppressing the reaction rate, the photosensitizer can prevent the reaction from proceeding excessively. Since the photosensitizer suppresses the reaction rate, it is preferable that it is contained only within 1 part by weight, as described above.
  • additives may be additionally included according to required performance.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • the mixing ratio of the comparative examples are as follows.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions were prepared according to the blending ratios of the tables disclosed below.
  • compositions cured by being blended in the blending ratios of Examples 1 to 6 had a tensile strength of 46 to 53 MPa, while the compositions blended and cured by the blending ratios of Comparative Examples had a significantly low strength from 7 to 41 MPa. It is understood that the reason why the composition cured by being blended in the blending ratio of Examples 1 to 6 has excellent tensile strength is that the oligomer is included as an appropriate middle portion and the bifunctional monomer is also included in an appropriate weight part.
  • compositions cured by being blended in the blending ratios of Examples 1 to 6 have excellent elongation at a level of 3 to 8, whereas the compositions cured by being blended at a blending ratio in Comparative Examples generally have a low elongation at 1 to 2 level.
  • the composition cured by being blended in the blending ratio of Comparative Example 5 was confirmed to have a high elongation of 34.65, but this is a result of a remarkably low tensile strength and is therefore excluded from the determination of elongation.
  • compositions cured by being blended in the blending ratios of Examples 1 to 5 had a flexural strength of 117 to 134 MPa, while those blended and cured by the blending ratios of Comparative Examples did not have flexural strength.
  • the composition according to the present embodiment has transparent properties, and at the same time, has excellent properties even without a separate post-treatment process.
  • FIG. 3 describes that each process is executed sequentially, this is merely illustrative of the technical idea of an embodiment of the present invention.
  • a person having ordinary knowledge in the technical field to which one embodiment of the present invention belongs may execute or change one or more of each process by changing the order described in FIG. 3 without departing from the essential characteristics of one embodiment of the present invention. Since it will be applicable to various modifications and variations by executing in parallel, FIG. 3 is not limited to a time series sequence.
  • the processes illustrated in FIG. 3 may be implemented as computer-readable codes on a computer-readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. That is, the computer-readable recording medium includes a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.) and an optical read medium (eg, CD-ROM, DVD, etc.).
  • the computer-readable recording medium can be distributed over network coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

A three-dimensional printing composition is disclosed. According to one aspect of the present invention, provided is a three-dimensional printing composition, which is to be used as a raw material for three-dimensional printing and comprises a monofunctional monomer, a bifunctional monomer, an oligomer, an initiator and a photosensitizer.

Description

3차원 프린팅용 조성물Composition for 3D printing
본 발명은 3차원 프린팅에 사용되는 광경화 조성물에 관한 것이다.The present invention relates to a photocurable composition used in three-dimensional printing.
이 부분에 기술된 내용은 단순히 본 발명의 일 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information for an embodiment of the present invention and does not constitute a prior art.
현재 세계 산업기술의 핵심 트렌드라고 꼽는다면 3D 프린터를 빼놓을 수 없다. 3D 프린팅 기술은 향후 부가가치가 높은 산업으로의 발전이 예상됨에 따라, 각 국의 많은 업체들이 하드웨어(H/W)와 소프트웨어(S/W)를 자체개발하고자 부단한 노력을 하고 있다. 이러한 3D 프린팅 방식 중 하나로서, 현재 널리 보급된 유형의 3D 프린팅 방식으로 FDM(Fused Deposition Modeling) 방식이 있다. FDM 방식은 3D 프린터가 플라스틱 소재의 필라멘트를 열로 녹여 압출한 후 상온에서 굳혀 물체를 쌓아올리는 방식이다. 그러나 이러한 FDM 방식은 기계적인 움직임이 많기 때문에, 실제 형상 제작 과정에서 실패율이 높은 단점을 갖는다.If you consider it as a key trend in the current world's industrial technology, 3D printer is indispensable. As 3D printing technology is expected to develop into a high value-added industry in the future, many companies in each country are making continuous efforts to develop their own hardware (H/W) and software (S/W). As one of these 3D printing methods, there is a FDM (Fused Deposition Modeling) method as a widely popular 3D printing method. The FDM method is a method in which a 3D printer melts and extrudes a filament of a plastic material by heat, and then solidifies at room temperature to stack objects. However, this FDM method has a high mechanical failure rate, and thus has a high failure rate in the actual shape production process.
이러한 문제를 해소하고자 최근 등장한 3D 프린팅 기술이 광경화를 이용하여 프린팅하는 기술이다. 광경화 3D 프린팅 기술의 대표적인 예로 SLA(Stereo Lithography Apparatus) 방식 또는 DLP(Digital Light Processing) 방식이 존재한다. SLA 방식은 3D 프린터가 고밀도의 레이저를 조사하여 레진을 원하는 모양으로 경화시키는 방식이며, DLP는 3D 프린터가 고밀도의 레이저 대신, 광 프로젝터를 이용하여 레진을 경화시키는 방식이다. DLP 방식의 3D 프린터는 SLA 방식과 같이 특정 초점이 아닌 면적으로 광을 조사하여 레진을 경화시킨다.In order to solve this problem, a recently emerged 3D printing technology is a technology that uses light curing to print. Typical examples of the photocurable 3D printing technology include a stereolithography apparatus (SLA) method or a digital light processing (DLP) method. The SLA method is a method in which a 3D printer irradiates a high-density laser to cure a resin to a desired shape, and the DLP is a method in which a 3D printer uses a light projector instead of a high-density laser to cure the resin. DLP 3D printers cure the resin by irradiating light with an area other than a specific focus like the SLA method.
SLA 방식의 3D 프린터는 고밀도의 레이저를 특정 초점으로 조사하여 레진을 경화시키기 때문에, 최종적으로 제조되는 형상의 정밀도가 높은 장점을 갖는 반면, 최종 형상의 제조까지 오랜 시간이 경과되는 단점을 갖는다. 반대로, DLP 방식의 3D 프린터는 면적으로 광을 조사하여 레진을 경화시키기 때문에, 형상의 제조시간이 상당히 단축되는 장점을 갖는 반면, 최종 형상의 정밀도, 특히, 형상의 표면에서 구현의 정밀도가 떨어지는 단점을 갖는다.The 3D printer of the SLA method has the advantage of high precision of the final shape produced by irradiating a high-density laser with a specific focus, and has a disadvantage that a long time elapses until the final shape is manufactured. On the contrary, the DLP type 3D printer has the advantage of significantly shortening the manufacturing time of the shape because the resin is cured by irradiating light with an area, while the precision of the final shape, in particular, the precision of implementation on the surface of the shape is poor. Have
전술한 대로, 종래의 광경화를 이용한 3D 프린팅 방식은 각각 단점을 갖는 문제가 있어, 단점을 최소화한 새로운 3D 프린팅 방식에 대한 수요가 존재한다.As described above, the conventional 3D printing method using photocuring has a problem that each has disadvantages, and there is a demand for a new 3D printing method that minimizes the disadvantages.
또한, 종래에 3D 프린팅에 이용되는 레진은 불투명한 플라스틱 소재, 예를 들어, ABS 수지 또는 우레탄 등이 사용되어 불투명한 특징을 갖는다. 이에 따라, 종래의 레진은 심미성 및 투과나 확산 등의 광학적 특성이 떨어지는 문제가 있다. 따라서 3D 프린팅에 이용되는 레진에 대해서도 심미성과 광학적 특성이 우수하며 내구성이 향상된 투명한 재질의 소재에 대해서도 수요가 존재한다.In addition, resins conventionally used for 3D printing are opaque plastic materials, for example, ABS resin or urethane, etc., and thus have opaque characteristics. Accordingly, conventional resins have a problem of deteriorating aesthetics and optical properties such as transmission and diffusion. Therefore, there is a need for a transparent material that has excellent aesthetics and optical properties, and has improved durability, even for resins used for 3D printing.
본 발명의 일 실시예는, 투명하며, SLA 3D 프린팅 방식과 DLP 3D 프린팅 방식 모두에 반응하여 경화될 수 있는 3차원 프린팅용 조성물을 제공하는 데 일 목적이 있다.One embodiment of the present invention is transparent, and has an object to provide a composition for three-dimensional printing that can be cured in response to both the SLA 3D printing method and the DLP 3D printing method.
또한, 본 발명의 일 실시예는, 제조할 최종 형상의 코어와 쉘을 분리하여 경화시키는 3D 프린팅 장치를 제공하는 데 일 목적이 있다.In addition, an embodiment of the present invention has an object to provide a 3D printing apparatus for separating and curing the core and shell of the final shape to be manufactured.
본 발명의 일 측면에 의하면, 3차원 프린터의 원료로 사용되는 조성물로서, 단관능 모노머, 이관능 모노머, 올리고머, 개시제 및 광증감제를 포함하는 것을 특징으로 하는 3차원 프린터용 조성물을 제공한다.According to an aspect of the present invention, as a composition used as a raw material for a 3D printer, there is provided a composition for a 3D printer, comprising a monofunctional monomer, a bifunctional monomer, an oligomer, an initiator, and a photosensitizer.
본 발명의 일 측면에 의하면, 상기 3차원 프린터용 조성물은 단관능 모노머로 10 내지 30 중량부, 이관능 모노머로 20 내지 50 중량부, 올리고머로 30 내지 40 중량부, 5 중량부 이내의 개시제 및 1 중량부 이내의 광증감제를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, the composition for a three-dimensional printer is 10 to 30 parts by weight as a monofunctional monomer, 20 to 50 parts by weight as a bifunctional monomer, 30 to 40 parts by weight as an oligomer, an initiator within 5 parts by weight, and Characterized in that it comprises a photosensitizer within 1 part by weight.
본 발명의 일 측면에 의하면, 상기 3차원 프린터용 조성물은 안료를 더 포함하는 것을 특징으로 한다.According to one aspect of the invention, the composition for a three-dimensional printer is characterized in that it further comprises a pigment.
본 발명의 일 측면에 의하면, 상기 3차원 프린터용 조성물은 1 중량부 이내의 안료를 포함하는 것을 특징으로 한다.According to one aspect of the invention, the composition for a three-dimensional printer is characterized in that it contains a pigment within 1 part by weight.
본 발명의 일 측면에 의하면, 상기 단관능 모노머는 에폭시계 모노머 또는 에테르계 모노머인 것을 특징으로 한다.According to one aspect of the invention, the monofunctional monomer is characterized in that the epoxy-based monomer or ether-based monomer.
본 발명의 일 측면에 의하면, 상기 이관능 모노머는 아크릴계 모노머인 것을 특징으로 한다.According to one aspect of the invention, the bifunctional monomer is characterized in that the acrylic monomer.
본 발명의 일 측면에 의하면, 상기 이관능 모노머는 비스페놀 지(BPZ) 계열의 모노머인 것을 특징으로 한다.According to an aspect of the present invention, the bifunctional monomer is characterized in that it is a bisphenol-based (BPZ)-based monomer.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 3차원 프린팅용 조성물이 투명하면서도, SLA 3D 프린팅 방식과 DLP 3D 프린팅 방식 모두에 반응하여 경화될 수 있는 장점이 있다.As described above, according to an aspect of the present invention, while the composition for 3D printing is transparent, there is an advantage that can be cured in response to both the SLA 3D printing method and DLP 3D printing method.
또한, 본 발명의 일 측면에 따르면, 3D 프린팅 장치가 제조할 최종 형상의 코어와 쉘을 분리하여 경화시킴으로써, 빠른 제조시간과 제조된 최종 형상의 우수한 정밀도를 모두 보장할 수 있는 장점이 있다.In addition, according to an aspect of the present invention, the 3D printing apparatus has an advantage of ensuring both a rapid manufacturing time and excellent precision of the final shape produced by separating and curing the core and shell of the final shape to be manufactured.
도 1은 본 발명의 일 실시예에 따른 3D 프린팅 장치의 구성을 도시한 도면이다.1 is a view showing the configuration of a 3D printing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 3D 프린팅 장치의 일 구현예를 도시한 도면이다.2 is a view showing an embodiment of a 3D printing apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 3D 프린팅 장치가 3D 프린팅 조성물을 경화시키는 방법을 도시한 순서도이다.3 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to an embodiment of the present invention.
도 4는 본 발명의 다른 일 실시예에 따른 3D 프린팅 장치가 3D 프린팅 조성물을 경화시키는 방법을 도시한 순서도이다.4 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.The present invention can be applied to various changes and can have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing each drawing, similar reference numerals are used for similar components.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, B, etc. can be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component. The term and/or includes a combination of a plurality of related described items or any one of a plurality of related described items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected or connected to the other component, but other components may exist in the middle. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. It should be understood that terms such as “include” or “have” in the present application do not preclude the existence or addition possibility of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application. Does not.
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process or method included in each embodiment of the present invention may be shared within a technically inconsistent range.
도 1은 본 발명의 일 실시예에 따른 3D 프린팅 장치의 구성을 도시한 도면이다.1 is a view showing the configuration of a 3D printing apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 3D 프린팅 장치(100)는 제1 광원(110), 제2 광원(115), 제어부(120) 및 모터(130)를 포함한다.Referring to FIG. 1, the 3D printing apparatus 100 according to an embodiment of the present invention includes a first light source 110, a second light source 115, a control unit 120, and a motor 130.
제1 광원(110)은 3D 프린팅 조성물(이하에서, '조성물'이라 약칭함)로 일정한 면적의 광을 조사한다. 제1 광원(110)은 한 점으로 포커싱된 광이 아닌, 3D 프린팅 장치에 의해 최종적으로 제조되는 형상(이하에서, '최종 형상'으로 약칭함)의 코어 부분의 형상에 대응되는 면적의 광을 조사한다. 제1 광원(110)은 일정한 면적의 광을 조성물로 조사하여, 일정한 면적만큼의 조성물을 일시에 경화시킨다. 제1 광원(110)이 조사할 광의 면적은 최종 형상의 각 레이어 내 코어부분의 면적에 따라 달라진다. 제1 광원(110)은 조성물이 최종 형상의 코어 부분과 같이 경화될 수 있도록, 최종 형상의 각 레이어 내 코어부분의 면적만큼의 광을 조성물로 조사한다. 제1 광원(110)은 3D 프린팅 장치(100)가 DLP 3D 프린팅 방식으로 동작할 수 있도록 한다.The first light source 110 irradiates light of a certain area with a 3D printing composition (hereinafter abbreviated as'composition'). The first light source 110 emits light having an area corresponding to a shape of a core portion of a shape finally produced by a 3D printing device (hereinafter abbreviated as'final shape'), rather than light focused at one point. Investigate. The first light source 110 irradiates light of a certain area with the composition, and cures the composition by a certain area at once. The area of the light to be irradiated by the first light source 110 varies depending on the area of the core portion in each layer of the final shape. The first light source 110 irradiates the composition with light corresponding to the area of the core portion in each layer of the final shape so that the composition can be cured like the core portion of the final shape. The first light source 110 allows the 3D printing apparatus 100 to operate in a DLP 3D printing method.
제2 광원(115)는 조성물이 담긴 용기로 일 초점의 레이저를 조사한다. 제2 광원(115)은 일 초점으로 포커싱된 레이저를 조사하며, 초점을 이동시켜 최종 형상의 쉘(Shell) 부분이 되도록 조성물을 경화시킨다. 제2 광원(115)은 제1 광원(110)이 조성물을 경화시킨 후 또는 제1 광원(110)과 동시에, 최종형상의 쉘 부분을 추가적으로 경화시킨다. SLA 3D 프린팅 장치는 제2 광원과 같이 일 초점으로 포커싱되는 레이저를 조사하여 조성물을 경화시키기 때문에, 조성물을 최종 형상으로 경화시키기 위해서는 상당히 오랜 시간을 소모한다. 그러나 제2 광원(115)은 이미 제1 광원으로 코어부분의 경화가 완료된 조성물의 쉘 부분만을 경화시키면 되기에, 3D 프린팅 장치(100)는 종래의 SLA 3D 프린팅 장치와 같이 긴 시간의 경화시간을 갖지도 않으면서 최종 형상의 표면에서 높은 정밀도를 나타낼 수 있다. 제2 광원(115)은 3D 프린팅 장치(100)가 SLA 3D 프린팅 방식으로 동작할 수 있도록 한다. The second light source 115 irradiates a laser of one focus to a container containing the composition. The second light source 115 irradiates a focused laser with one focus, and moves the focus to cure the composition to become a shell portion of the final shape. The second light source 115 further cures the shell portion of the final shape after the first light source 110 cures the composition or simultaneously with the first light source 110. Since the SLA 3D printing device cures the composition by irradiating a laser focused at one focus, such as a second light source, it takes a considerable amount of time to cure the composition to a final shape. However, since the second light source 115 only needs to cure the shell portion of the composition in which the core portion is already cured with the first light source, the 3D printing apparatus 100 has a long curing time as in the conventional SLA 3D printing apparatus. High precision can be achieved on the surface of the final shape without having it. The second light source 115 allows the 3D printing device 100 to operate in the SLA 3D printing method.
제1 광원(110)이 경화하는 최종 형상의 코어 부분과 제2 광원(115)이 경화하는 최종 형상의 쉘 부분은 제어부(120)의 설정에 따라 그 면적 또는 부피가 달라질 수 있다. 예를 들어, 쉘 부분은 제어부(120)의 설정에 따라 최외곽 표면으로부터 최종 형상 전체 부피의 10% 되는 지점까지를 의미할 수 있다.The core portion of the final shape that is cured by the first light source 110 and the shell portion of the final shape that is cured by the second light source 115 may have different areas or volumes according to the setting of the controller 120. For example, the shell portion may mean a point from the outermost surface to a point that becomes 10% of the total volume of the final shape according to the setting of the control unit 120.
제1 광원(110) 및 제2 광원(115)은 조성물을 경화시키기 위한 파장 대역의 일예로 405nm 대역의 광 또는 레이저를 조사할 수 있으나, 반드시 이에 한정되는 것은 아니다.The first light source 110 and the second light source 115 may be irradiated with light or laser in the 405 nm band as an example of a wavelength band for curing the composition, but are not limited thereto.
제어부(120)는 제1 광원(110)과 제2 광원(115)을 번갈아 작동시키거나 동시에 작동시켜, 조성물을 최종 형상으로 경화시킨다.The control unit 120 operates the first light source 110 and the second light source 115 alternately or simultaneously, thereby curing the composition to a final shape.
제어부(120)는 제1 광원(110)이 경화시키는 최종 형상의 코어 부분의 면적 또는 부피와 제2 광원(115)이 경화시키는 최종 형상의 쉘 부분의 면적 또는 부피를 설정할 수 있다. The controller 120 may set the area or volume of the core portion of the final shape that the first light source 110 cures and the area or volume of the shell portion of the final shape that the second light source 115 cures.
제어부(120)는 제1 광원(110)과 제2 광원(115)을 번갈아 작동시킨다. 전술한 대로, 제1 광원(110)이 먼저 각 레이어 내 최종형상의 코어부분을 경화시키고, 이후, 제2 광원(115)이 각 레이어 내 최종형상의 쉘부분을 경화한다. 제1 광원(110)과 제2 광원(115)이 번갈아 작동하며 조성물을 경화할 수 있도록, 제어부(120)는 모터(130)를 제어하여 제1 광원(110), 제2 광원(115) 또는 조성물이 담긴 용기를 이동시킨다. 제1 광원(110)과 제2 광원(115)이 각각 조성물을 경화시키기 위해, 제1 광원(110)과 제2 광원(115) 모두가 동일한 광축이나 광축의 일정 영역 내에 위치하고 있을 경우, 어느 하나의 광원에 의해 다른 광원이 조사하는 광이나 레이저에 간섭이 발생할 수 있다. 이러한 문제를 방지하고자, 제어부(120)는 제1 광원(110)이나 제2 광원(115)이 이동하도록 모터(130)를 제어하여, 어느 광원이 광을 조사할 때 광축 상에 위치하는 다른 광원을 이동시킨다. 또는, 제어부(120)는 조성물이 담긴 용기가 이동하도록 모터(130)를 제어하여, 서로 다른 광축을 갖도록 배치된 각 광원의 광축 상으로 조성물이 담긴 용기를 이동시킨다. 이에 따라, 제1 광원(110)과 제2 광원(115)은 서로에 영향을 받지않고, 온전히 조성물로 각각 광을 조사할 수 있다.The control unit 120 alternately operates the first light source 110 and the second light source 115. As described above, the first light source 110 first cures the core portions of the final shape in each layer, and then, the second light source 115 hardens the shell portions of the final shape in each layer. In order for the first light source 110 and the second light source 115 to work alternately and to cure the composition, the controller 120 controls the motor 130 to control the first light source 110, the second light source 115, or The container containing the composition is moved. In order for the first light source 110 and the second light source 115 to cure the composition, respectively, when both the first light source 110 and the second light source 115 are located within the same optical axis or a certain region of the optical axis, either Interference may occur in light or laser irradiated by other light sources by the light source of. In order to prevent such a problem, the control unit 120 controls the motor 130 so that the first light source 110 or the second light source 115 moves, so that when a light source irradiates light, another light source located on the optical axis Move it. Alternatively, the control unit 120 controls the motor 130 to move the container containing the composition, and moves the container containing the composition onto the optical axis of each light source arranged to have different optical axes. Accordingly, the first light source 110 and the second light source 115 are irrespective of each other, and each light can be irradiated entirely with the composition.
제어부(120)는 제1 광원(110)과 제2 광원(115)을 동시에 작동시킨다. 전술한 경우와 달리, 제1 광원(110)과 제2 광원(115)이 각각 서로의 광축에 영향을 미치지 않는 범위 내에서 배치되어 있거나 이동할 수 있다. 이러한 경우, 조성물의 경화 속도를 향상시키기 위해 제어부(120)는 제1 광원(110)과 제2 광원(115)을 동시에 작동시켜 최종형상의 코어와 쉘의 형상에 대응되는 조성물의 경화가 동시에 이루어지도록 한다.The control unit 120 operates the first light source 110 and the second light source 115 simultaneously. Unlike the above-described case, the first light source 110 and the second light source 115 may be disposed or moved within a range that does not affect each other's optical axis. In this case, in order to improve the curing speed of the composition, the control unit 120 simultaneously operates the first light source 110 and the second light source 115 to simultaneously cure the composition corresponding to the shape of the core and shell of the final shape. To lose.
제어부(120)는 모터(130)를 제어하여, 각 광원(110, 115)이 조성물이 담긴 용기로 근접하거나, 조성물이 담긴 용기가 각 광원(110, 115)으로 근접하도록 제어할 수 있다. 사용되는 광원의 종류나 특성에 따라, 광원과 조성물이 상당히 근접해야만 경화가 진행되거나 심지어 광원이 조성물 내로 잠긴 상태에서 경화가 진행되는 경우가 존재한다. 이러한 경우, 각 광원(110, 115)과 조성물이 담긴 용기는 상호간에 근접하거나 멀어져야 한다. 제어부(120)는 모터(130)를 제어하여, 각 광원(110, 115)이 용기로 근접하거나 멀어지도록 제어할 수 있다. 반대로, 제어부(120)는 모터(130)를 제어하여, 용기가 각 광원(110, 115)으로 근접하거나 멀어지도록 제어할 수 있다. The control unit 120 may control the motor 130 such that each light source 110 or 115 is close to the container containing the composition, or the container containing the composition is close to each light source 110 and 115. Depending on the type or properties of the light source used, there are cases where curing proceeds only when the light source and the composition are in close proximity, or even when the light source is submerged into the composition. In this case, each light source (110, 115) and the container containing the composition should be close to or away from each other. The control unit 120 may control the motor 130 so that each light source 110 or 115 approaches or moves away from the container. Conversely, the control unit 120 may control the motor 130 so that the container approaches or moves away from each light source 110 or 115.
제어부(120)는 레이어 별로 구분하여 조성물을 경화하도록 제1 광원(110)과 제2 광원(115)을 제어한다. 제어부(120)는 최종 형상을 각 광원이 1회의 동작에 경화시킬 수 있는 수준의 레이어 별로 구분한다. 이후, 제어부(120)는 조성물이 최종형상의 각 레이어와 동일하게 경화될 수 있도록 각 광원(110, 115)을 제어한다. 먼저, 제어부(120)는 제1 광원(110)을 제어하여, 최종형상의 특정 레이어 내 코어의 형상과 같이 조성물이 경화되도록 한다. 이와 동시에 또는 그 이후, 제어부(120)는 제2 광원(115)을 제어하여, 최종형상의 특정 레이어 내 쉘의 형상과 같이 조성물이 경화되도록 한다. 특정 레이어에 대해 경화를 완료한 후, 제어부(120)는 경화를 완료한 레이어가 최종 레이어인지를 판단한다. 경화된 레이어가 최종 레이어인 경우라면, 각 광원(110, 115)에 의해 경화가 모두 완료된 상황이므로 제어부(120)는 경화를 종료한다. 반대로, 경화된 레이어가 최종 레이어가 아닌 경우, 제어부(120)는 각 광원(110, 115)이 다음 레이어대로 조성물을 경화하도록 각 광원(110, 115)을 제어한다.The control unit 120 controls the first light source 110 and the second light source 115 to separate the composition for each layer to cure the composition. The control unit 120 divides the final shape into layers of a level capable of curing each light source in one operation. Thereafter, the control unit 120 controls each light source 110 and 115 so that the composition can be cured in the same way as each layer in the final shape. First, the control unit 120 controls the first light source 110 so that the composition is cured like the shape of the core in a specific layer in the final shape. At the same time or thereafter, the control unit 120 controls the second light source 115 so that the composition is cured like the shape of the shell in a specific layer of the final shape. After curing for a specific layer is completed, the controller 120 determines whether the layer having completed curing is the final layer. If the cured layer is the final layer, since the curing is completed by each of the light sources 110 and 115, the control unit 120 ends the curing. Conversely, when the cured layer is not the final layer, the controller 120 controls each light source 110 or 115 so that each light source 110 or 115 cures the composition according to the next layer.
모터(130)는 제어부(120)의 제어에 따라, 각 광원(110, 115) 또는 조성물이 담긴 용기를 이동시킨다. 모터(130)는 각 광원(110, 115)이 조성물을 번갈아가며 경화할 수 있도록 각 광원(110, 115) 또는 조성물이 담긴 용기를 이동시키며, 각 광원(110, 115)이 조성물에 근접하여 조성물을 경화시킬 수 있도록 각 광원(110, 115) 또는 조성물이 담긴 용기를 이동시킨다.The motor 130 moves each light source 110 or 115 or a container containing the composition under the control of the control unit 120. The motor 130 moves each light source 110 or 115 or a container containing the composition so that each light source 110 or 115 can alternately cure the composition, and each light source 110 or 115 is in close proximity to the composition. Each light source (110, 115) or the container containing the composition is moved to cure.
도 2는 본 발명의 일 실시예에 따른 3D 프린팅 장치의 일 구현예를 도시한 도면이다.2 is a view showing an embodiment of a 3D printing apparatus according to an embodiment of the present invention.
먼저, 제1 광원(110)은 용기(210) 내 조성물(220)로 광을 조사하여, 최종 형상의 특정 레이어 내 코어의 면적(230)만큼의 조성물을 일시에 경화시킨다. 이때, 제어부(미도시)는 제2 광원(115)을 제1 광원(110)의 광축으로부터 멀어지도록 제어할 수 있으며, 제1 광원(110)에서 조사된 광이 제2 광원(115)으로부터 간섭없이 조성물(220)로 온전히 조사될 수 있다. 이때, 제어부(미도시)는 모터(미도시)를 제어하여 제1 광원(110)과 용기(210)가 근접하도록 용기(210)의 이동시킬 수 있다. First, the first light source 110 irradiates light with the composition 220 in the container 210 to cure the composition as much as the area 230 of the core in a specific layer of the final shape at once. At this time, the control unit (not shown) may control the second light source 115 to be away from the optical axis of the first light source 110, and the light irradiated from the first light source 110 interferes with the second light source 115 It can be completely irradiated with the composition 220 without. At this time, the control unit (not shown) may control the motor (not shown) to move the container 210 such that the first light source 110 and the container 210 are close together.
이후, 제2 광원(120)은 조성물(220)로 광을 조사하여, 최종 형상의 특정 레이어 내 쉘(240) 만큼의 조성물을 경화시킨다. 제2 광원(120)이 조성물을 경화시킬 수 있도록, 제어부(미도시)는 모터(미도시)를 제어하여, 제2 광원(120)이 조사하는 레이저가 조성물로 입사될 수 있는 위치까지 제2 광원(120)을 재이동시킨다. 또한, 제어부(미도시)는 모터(미도시)를 제어하여, 제2 광원(115)과 용기(210)가 근접하도록 용기(210)의 이동시킬 수 있다.Thereafter, the second light source 120 irradiates light with the composition 220 to cure the composition of the shell 240 in a specific layer having a final shape. The control unit (not shown) controls the motor (not shown) so that the second light source 120 can cure the composition, so that the laser irradiated by the second light source 120 can enter the composition to the second position. The light source 120 is moved again. In addition, the control unit (not shown) may control the motor (not shown) to move the container 210 such that the second light source 115 and the container 210 are close together.
이처럼, 3D 프린팅 장치(100)는 제1 광원(110)과 제2 광원(115)을 번갈아가며 조성물을 경화함으로서, 경화 속도와 품질 모두 뛰어난 수준을 확보할 수 있다.As such, the 3D printing apparatus 100 can secure an excellent level in both curing speed and quality by curing the composition alternately between the first light source 110 and the second light source 115.
도 2에는 제1 광원(110)과 제2 광원(115)이 번갈아 작동하는 예만이 도시되어 있으나, 반드시 이에 한정되는 것은 아니고, 제2 광원(115)이 제1 광원(110)이 조사하는 광축에 영향을 미치지 않는 범위 내에서 배치되어 있거나 이동함으로써, 제1 광원(110)과 제2 광원(115)이 동시에 작동할 수 있다. 또한, 제2 광원(115)과 용기(210)가 이동하는 것으로 도시되어 있으나, 반드시 이에 한정되는 것은 아니다.Although only an example in which the first light source 110 and the second light source 115 are alternately operated is illustrated in FIG. 2, the present invention is not limited thereto, and the optical axis irradiated by the first light source 110 by the second light source 115 is not limited thereto. The first light source 110 and the second light source 115 may be operated at the same time by being disposed or moved within a range not affecting. In addition, although the second light source 115 and the container 210 are illustrated as being moved, the present invention is not limited thereto.
도 3은 본 발명의 일 실시예에 따른 3D 프린팅 장치가 3D 프린팅 조성물을 경화시키는 방법을 도시한 순서도이다.3 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to an embodiment of the present invention.
제어부(120)는 광을 조사하도록 제1 광원(110)을 제어하여, 코어부분을 경화시킨다(S310). 제어부(120)는 제1 광원(110)을 제어하여, 일정한 면적의 광을 조성물로 조사하도록 한다. 제1 광원(110)은 일정한 면적의 광을 조성물로 조사함으로서, 최종 형상의 특정 레이어 내 코어의 면적 만큼 조성물을 일시에 경화시킨다.The control unit 120 controls the first light source 110 to irradiate light to cure the core portion (S310). The control unit 120 controls the first light source 110 to irradiate light of a predetermined area with the composition. The first light source 110 irradiates light of a certain area with the composition, thereby curing the composition at once as much as the area of the core in a specific layer of the final shape.
제어부(120)는 제1 광원(110)의 광축 상으로 제2 광원(115)이 진입하도록 모터(130)를 제어한다(S320).The control unit 120 controls the motor 130 so that the second light source 115 enters on the optical axis of the first light source 110 (S320).
제어부(120)는 광을 조사하도록 제2 광원(115)을 제어하여, 쉘 부분을 경화시킨다(330). 제어부(120)는 제2 광원(115)을 제어하여, 제2 광원(115)이 일 초점의 레이저를 조성물로 조사하도록 한다. 제2 광원(115)은 일 초점으로 포커싱된 레이저를 조사하며, 제어부(120)의 제어에 따라 초점을 이동시켜 최종 형상의 쉘 부분의 형상으로 조성물을 경화시킨다. The control unit 120 controls the second light source 115 to irradiate light to cure the shell portion (330). The control unit 120 controls the second light source 115 so that the second light source 115 irradiates the laser with one focus to the composition. The second light source 115 irradiates the focused laser with one focus, and moves the focus under the control of the controller 120 to cure the composition into the shape of the shell portion of the final shape.
제어부(120)는 경화된 레이어가 최종 레이어인지를 판단한다(S340). 제어부(120)는 제1 광원(110)과 제2 광원(115)에 의해 경화된 레이어가 최종 형상의 최종 레이어인지를 판단한다. 경화된 레이어가 최종 레이어인 경우라면, 각 광원(110, 115)에 의해 경화가 모두 완료된 상황이므로 제어부(120)는 경화를 종료한다. The control unit 120 determines whether the cured layer is the final layer (S340). The control unit 120 determines whether the layer cured by the first light source 110 and the second light source 115 is the final layer of the final shape. If the cured layer is the final layer, since the curing is completed by each of the light sources 110 and 115, the control unit 120 ends the curing.
경화된 레이어가 최종 레이어가 아닌 경우, 제어부(120)는 경화된 레이어의 다음 레이어를 경화할 수 있도록, 광원 또는 용기가 이동하도록 모터를 제어한다(S350). 경화된 레이어가 최종 레이어가 아닌 경우, 다음 레이어에 대해 경화가 진행되어야 한다. 따라서, 제어부(1200는 광원 또는 용기가 이동하도록 모터를 제어하여, 다음 레이어에 대해 S310 내지 S330의 경화과정이 이루어질 수 있도록 한다.If the cured layer is not the final layer, the controller 120 controls the motor so that the light source or container moves so that the next layer of the cured layer can be cured (S350). If the cured layer is not the final layer, curing should proceed to the next layer. Accordingly, the controller 1200 controls the motor so that the light source or container moves, so that curing processes of S310 to S330 can be performed on the next layer.
도 4는 본 발명의 다른 일 실시예에 따른 3D 프린팅 장치가 3D 프린팅 조성물을 경화시키는 방법을 도시한 순서도이다.4 is a flowchart illustrating a method of curing a 3D printing composition by a 3D printing apparatus according to another embodiment of the present invention.
제어부(120)는 광을 조사하도록 제1 광원(110) 및 제2 광원(115)을 제어하여, 코어 부분 및 쉘 부분을 경화시킨다(S410). 제어부(120)는 제1 광원(110) 및 제2 광원(115)이 동시에 동작하도록 제어하여, 일시에 코어 부분과 쉘 부분에 대응되는 조성물을 경화시킨다.The control unit 120 controls the first light source 110 and the second light source 115 to irradiate light to cure the core portion and the shell portion (S410). The control unit 120 controls the first light source 110 and the second light source 115 to operate at the same time, thereby curing the composition corresponding to the core portion and the shell portion at a time.
제어부(120)는 경화된 레이어가 최종 레이어인지를 판단한다(S420). The control unit 120 determines whether the cured layer is the final layer (S420).
경화된 레이어가 최종 레이어가 아닌 경우, 제어부(120)는 경화된 레이어의 다음 레이어를 경화할 수 있도록, 광원 또는 용기가 이동하도록 모터를 제어한다(S430). 경화된 레이어가 최종 레이어가 아닌 경우, 다음 레이어에 대해 경화가 진행되어야 한다. 따라서, 제어부(1200는 광원 또는 용기가 이동하도록 모터를 제어하여 다음 레이어에 대해 S410의 경화과정이 이루어질 수 있도록 한다.If the cured layer is not the final layer, the controller 120 controls the motor so that the light source or container moves so that the next layer of the cured layer can be cured (S430). If the cured layer is not the final layer, curing should proceed to the next layer. Therefore, the control unit 1200 controls the motor so that the light source or container moves so that the curing process of S410 can be performed on the next layer.
3D 프린팅 장치(100)에 의해 경화되어 최종 형상으로 제조되는, 본 발명의 일 실시예에 따른 조성물(220)은 투명한 특성을 가지며, DLP 3D 프린팅 방식의 광원과 SLA 3D 프린팅 방식의 광원 모두에 경화되는 특징을 갖는다. The composition 220 according to an embodiment of the present invention, which is cured by the 3D printing apparatus 100 and manufactured to a final shape, has transparent properties, and is cured to both the light source of the DLP 3D printing method and the light source of the SLA 3D printing method. It has a characteristic.
조성물(220)은 단관능 모노머(Monomer), 이관능 모노머, 올리고머(Oligomer), 개시제, 광증감제 및 기타 첨가제를 포함한다. The composition 220 includes monofunctional monomers, bifunctional monomers, oligomers, initiators, photosensitizers, and other additives.
단관능 모노머는 에폭시계 또는 에테르계 모노머가 사용되며, 10 내지 20 중량부만큼 포함된다. 단관능 모노머는 조성물의 점도를 조정하기 위해 조성물(220)에 배합된다. 조성물의 점도가 너무 높을 경우, 3D 프린팅 장치가 조성물을 이용하여 3D 프린팅을 수행함에 있어 조성물을 핸들링하는데 어려움이 존재한다. 이러한 문제를 방지하고자, 단관능 모노머가 이관능 모노머와 별도로 추가적으로 포함되어, 조성물의 점도가 너무 높아지지 않도록 한다. 다만, 조성물의 강도 저하와 황변이 나타나지 않도록, 단관능 모노머는 10 내지 20 중량부만큼만이 포함된다.As the monofunctional monomer, an epoxy-based or ether-based monomer is used, and is contained in an amount of 10 to 20 parts by weight. Monofunctional monomers are blended into composition 220 to adjust the viscosity of the composition. When the viscosity of the composition is too high, there is a difficulty in handling the composition in the 3D printing apparatus performing 3D printing using the composition. To prevent this problem, a monofunctional monomer is additionally included separately from the bifunctional monomer, so that the viscosity of the composition is not too high. However, in order not to lower the strength and yellowing of the composition, the monofunctional monomer contains only 10 to 20 parts by weight.
이관능 모노머는 아크릴계 모노머가 사용되며, 20 내지 50 중량부만큼 포함된다. As the bifunctional monomer, an acrylic monomer is used, and contains 20 to 50 parts by weight.
이관능 모노머는 조성물 내에 가장 많이 포함되어 메인 체인(Main Chain)을 형성하는 성분으로서, 조성물의 전체적인 반응성과 투명도에 영향을 미치는 메인 성분에 해당한다. 종래의 조성물은 단관능 모노머와 이관능 모노머의 구분없이 특정 성분만이 포함되었다면, 조성물(220)은 단관능 모노머와 이관능 모노머 각각을 일정 중랑부만큼 포함한다. 각각의 모노머가 조성물(220)에 포함됨에 따라, 조성물이 점도와 반응성 모두를 각각 분리하여 제어할 수 있다.The bifunctional monomer is the most contained in the composition to form a main chain, and corresponds to a main component that affects the overall reactivity and transparency of the composition. In the conventional composition, if only a specific component was included without distinction between a monofunctional monomer and a bifunctional monomer, the composition 220 includes each of the monofunctional monomer and the bifunctional monomer by a predetermined amount. As each monomer is included in the composition 220, the composition can be controlled by separating both viscosity and reactivity, respectively.
이관능 모노머로 사용되는 아크릴계 모노머는 종래의 비스페놀 에이(BPA) 계열이 아닌 새로이 합성된 비스페놀 지(BPZ) 계열로 구성된다. 이관능 모노머로 사용될 비스페놀 지 계열의 모노머는 다음과 같은 공정으로 제조된다.The acrylic monomer used as a bifunctional monomer is composed of a newly synthesized bisphenol paper (BPZ) series rather than a conventional bisphenol A (BPA) series. The bisphenol paper-based monomer to be used as a bifunctional monomer is prepared by the following process.
종래의 비스페놀 지(반응 전 물질)에 에틸렌 옥사이드(EO: Ethylen Oxide)를 부가하여 제2 비스페놀 지(BPZ(EO), 반응 후 물질)를 합성한다.Ethylene oxide (EO: Ethylen Oxide) is added to a conventional bisphenol paper (material before reaction) to synthesize a second bisphenol paper (BPZ(EO), material after reaction).
Figure PCTKR2019009447-appb-I000001
Figure PCTKR2019009447-appb-I000001
합성된 제2 비스페놀 지의 양 말단기(-OH)그룹에 중합반응(Polymerization)이 가능한 아크릴레이트(Acrylate) 관능기를 부가하여 제3 비스페놀 지(BPZ(EO) Ac)를 합성한다.A third bisphenol paper (BPZ(EO) Ac) is synthesized by adding an acrylate functional group capable of polymerization to both terminal groups (-OH) of the synthesized second bisphenol paper.
Figure PCTKR2019009447-appb-I000002
Figure PCTKR2019009447-appb-I000002
이와 같이 새로이 합성된 아크릴계 모노머(제3 비스페놀 지)가 이관능 모노머로 사용됨에 따라, 조성물(220)은 투명성, 강도 및 내마모성이 높은 장점을 갖는다. As the newly synthesized acrylic monomer (third bisphenol paper) is used as a bifunctional monomer, the composition 220 has an advantage of high transparency, strength, and wear resistance.
올리고머는 에폭시아크릴레이트 및 우레탄계아크릴레이트가 사용되며, 30 내지 50 중량부만큼 포함된다.As the oligomer, epoxy acrylate and urethane-based acrylate are used, and contain 30 to 50 parts by weight.
올리고머는 강도와 같은 조성물의 기계적 물성에 영향을 미치는 성분이다. 다만, 너무 많은 양의 올리고머가 포함될 경우, 황변이 발생할 수 있어 30 내지 50 중량부만큼 포함된다.Oligomers are components that affect the mechanical properties of the composition, such as strength. However, if too large an oligomer is included, yellowing may occur, and thus 30 to 50 parts by weight is included.
올리고머는 에폭시아크릴레이트 및 우레탄계아크릴레이트가 사용된다. 우레탄계아크릴레이트는 DLP 3D 프린팅 방식의 광원에 주로 영향을 받기 때문에, SLA 3D 프린팅 방식의 광원에도 조성물이 경화되기 위해서는 우레탄계아크릴레이트만이 올리고머로 사용될 수는 없다. 따라서 올리고머에는 우레탄계아크릴레이트 뿐만 아니라, DLP 3D 프린팅 방식의 광원과 SLA 3D 프린팅 방식의 광원 모두에 반응하는 에폭시아크릴레이트도 포함된다. As the oligomer, epoxy acrylate and urethane acrylate are used. Since the urethane-based acrylate is mainly affected by the light source of the DLP 3D printing method, only the urethane-based acrylate cannot be used as an oligomer in order to cure the composition even in the light source of the SLA 3D printing method. Therefore, the oligomer includes not only a urethane-based acrylate, but also an epoxy acrylate that reacts to both a DLP 3D printing light source and a SLA 3D printing light source.
개시제는 라디칼계 개시제 성분과 카티온계 개시제 성분이 모두 포함된 개시제가 사용되며, 5 중량부 이내만큼 포함된다.Initiator is used an initiator containing both a radical-based initiator component and a cationic initiator component, and is contained within 5 parts by weight.
개시제는 특정 파장대역에서 반응을 개시하는 물질이다. 중합반응은 연쇄적으로 일어나는 반응인데, 개시제가 특정 파장대역의 광에 반응하여 반응을 개시한다.An initiator is a substance that initiates a reaction in a specific wavelength band. The polymerization reaction is a chain reaction, and the initiator reacts to light in a specific wavelength band to initiate the reaction.
개시제로는 라디칼계 개시제 성분과 카티온계 개시제 성분이 모두 포함된 개시제가 사용된다. 양 성분을 모두 포함함으로써, 개시제는 DLP 3D 프린팅 방식의 광원과 SLA 3D 프린팅 방식의 광원 모두에 반응을 개시할 수 있다.As the initiator, an initiator containing both a radical-based initiator component and a cation-based initiator component is used. By including both components, the initiator can initiate a reaction to both the light source of the DLP 3D printing method and the light source of the SLA 3D printing method.
안료는 1 중량부 이내만큼 포함된다. 안료는 가시광선 영역 대의 빛의 투과도와 반응속도를 일정 수준 저하시킬 가능성은 존재하나, 색상 개선의 효과를 갖는다. 이에 따라, 안료는 조성물 내 소량 포함될 수 있다.The pigment is contained within 1 part by weight. The pigment has a possibility of reducing the light transmittance and the reaction speed to a certain level in the visible region, but has the effect of improving color. Accordingly, the pigment may be included in a small amount in the composition.
광 증감제는 실란 커플링제가 사용될 수 있으며, 1 중량부 이내만큼 포함된다. 광 증감제는 특정 파장의 광을 흡수하여, 3D 프린팅 출력시 광이 번지는 현상을 최소화할 수 있다. 이에 따라, 광 증감제는 최종 형상의 정밀도가 증가하도록 한다. 또한, 광 증감제는 반응 속도를 억제함으로써, 과도하게 반응이 진행되는 것을 방지할 수 있다. 광 증감제는 반응 속도를 억제하기 때문에, 전술한 대로, 1 중량부 이내만큼만 포함되는 것이 바람직하다.The photosensitizer may be used as a silane coupling agent, and is contained within 1 part by weight. The light sensitizer absorbs light of a specific wavelength, thereby minimizing the phenomenon of light spreading during 3D printing output. Accordingly, the photosensitizer allows the precision of the final shape to increase. Further, by suppressing the reaction rate, the photosensitizer can prevent the reaction from proceeding excessively. Since the photosensitizer suppresses the reaction rate, it is preferable that it is contained only within 1 part by weight, as described above.
이에 추가적으로, 필요한 성능에 따라 기타 첨가제가 추가적으로 포함될 수 있다.In addition, other additives may be additionally included according to required performance.
이하에서는 각 성분의 배합을 각각 달리한 본 발명의 일 실시예들과 비교예를 비교하여 설명한다.Hereinafter, a description will be given by comparing one embodiment of the present invention with a different formulation of each component and a comparative example.
[실시예 1][Example 1]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000003
Figure PCTKR2019009447-appb-I000003
[실시예 2][Example 2]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000004
Figure PCTKR2019009447-appb-I000004
[실시예 3][Example 3]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000005
Figure PCTKR2019009447-appb-I000005
[실시예 4][Example 4]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000006
Figure PCTKR2019009447-appb-I000006
[실시예 5][Example 5]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000007
Figure PCTKR2019009447-appb-I000007
[실시예 6][Example 6]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000008
Figure PCTKR2019009447-appb-I000008
[실시예 7][Example 7]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000009
Figure PCTKR2019009447-appb-I000009
반면, 비교예들의 배합비는 다음과 같다.On the other hand, the mixing ratio of the comparative examples are as follows.
[비교예 1][Comparative Example 1]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000010
Figure PCTKR2019009447-appb-I000010
[비교예 2][Comparative Example 2]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000011
Figure PCTKR2019009447-appb-I000011
[비교예 3][Comparative Example 3]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000012
Figure PCTKR2019009447-appb-I000012
[비교예 4][Comparative Example 4]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000013
Figure PCTKR2019009447-appb-I000013
[비교예 5][Comparative Example 5]
아래에 개시된 표의 배합비에 따라 조성물을 제조하였다.The compositions were prepared according to the blending ratios of the tables disclosed below.
Figure PCTKR2019009447-appb-I000014
Figure PCTKR2019009447-appb-I000014
실시예 1 내지 7의 배합비로 제조된 조성물과 비교예 1 내지 5의 배합비로 제조된 조성물의 물성에 관한 실험을 시행하였다. 실험 결과를 아래에 개시된 표에 나타내었다. 비고에 별도의 기재가 존재하지 않는 경우는, 후경화를 30분 수행한 경우에 해당한다.Experiments were conducted on the properties of the compositions prepared at the mixing ratios of Examples 1 to 7 and the compositions prepared at the mixing ratios of Comparative Examples 1 to 5. The experimental results are shown in the table disclosed below. If there is no other description in the remarks, it corresponds to the case where the post-curing is performed for 30 minutes.
Figure PCTKR2019009447-appb-I000015
Figure PCTKR2019009447-appb-I000015
실시예 1 내지 6의 배합비로 배합되어 경화된 조성물 모두는 인장강도가 46 내지 53 MPa인 반면, 비교예의 배합비로 배합되어 경화된 조성물들은 7 내지 41 MPa로 상당히 저조한 강도를 갖는 것을 확인할 수 있었다. 실시예 1 내지 6의 배합비로 배합되어 경화된 조성물이 우수한 인장강도를 갖는 이유로는 올리고머가 적절한 중랑부로 포함됨과 동시에, 이관능 모노머도 적절한 중량부로 함께 포함되어 있기 때문인 것으로 파악된다.It was confirmed that all of the compositions cured by being blended in the blending ratios of Examples 1 to 6 had a tensile strength of 46 to 53 MPa, while the compositions blended and cured by the blending ratios of Comparative Examples had a significantly low strength from 7 to 41 MPa. It is understood that the reason why the composition cured by being blended in the blending ratio of Examples 1 to 6 has excellent tensile strength is that the oligomer is included as an appropriate middle portion and the bifunctional monomer is also included in an appropriate weight part.
실시예 1 내지 6의 배합비로 배합되어 경화된 조성물 모두는 신장율이 3 내지 8 수준의 우수한 신장율을 갖는 반면, 비교예의 배합비로 배합되어 경화된 조성물은 대체로 1 내지 2 수준의 낮은 신장율을 갖는 것을 확인할 수 있었다. 비교예 5의 배합비로 배합되어 경화된 조성물은 34.65의 높은 신장율을 갖는 것으로 확인되었으나, 이는 현저히 낮은 인장강도에 기인한 결과이므로 신장율 판단에서 제외한다.It is confirmed that all of the compositions cured by being blended in the blending ratios of Examples 1 to 6 have excellent elongation at a level of 3 to 8, whereas the compositions cured by being blended at a blending ratio in Comparative Examples generally have a low elongation at 1 to 2 level. Could. The composition cured by being blended in the blending ratio of Comparative Example 5 was confirmed to have a high elongation of 34.65, but this is a result of a remarkably low tensile strength and is therefore excluded from the determination of elongation.
또한, 실시예 1 내지 5의 배합비로 배합되어 경화된 조성물들은 117 내지 134 MPa의 굴곡강도를 갖는 반면, 비교예의 배합비로 배합되어 경화된 조성물들은 굴곡강도를 갖지 못하는 것으로 확인되었다.In addition, it was confirmed that the compositions cured by being blended in the blending ratios of Examples 1 to 5 had a flexural strength of 117 to 134 MPa, while those blended and cured by the blending ratios of Comparative Examples did not have flexural strength.
이러한 실험 결과를 참조할 때, 본 실시예에 따른 조성물은 투명한 특성을 가짐과 동시에, 별도의 후처리 공정없이도 상당히 우수한 물성을 갖는다.When referring to the results of these experiments, the composition according to the present embodiment has transparent properties, and at the same time, has excellent properties even without a separate post-treatment process.
도 3에서는 각 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 3에 기재된 순서를 변경하여 실행하거나 각 과정 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.Although FIG. 3 describes that each process is executed sequentially, this is merely illustrative of the technical idea of an embodiment of the present invention. In other words, a person having ordinary knowledge in the technical field to which one embodiment of the present invention belongs may execute or change one or more of each process by changing the order described in FIG. 3 without departing from the essential characteristics of one embodiment of the present invention. Since it will be applicable to various modifications and variations by executing in parallel, FIG. 3 is not limited to a time series sequence.
한편, 도 3에 도시된 과정들은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등) 및 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Meanwhile, the processes illustrated in FIG. 3 may be implemented as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. That is, the computer-readable recording medium includes a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.) and an optical read medium (eg, CD-ROM, DVD, etc.). In addition, the computer-readable recording medium can be distributed over network coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which this embodiment belongs may be capable of various modifications and variations without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical spirit of the present embodiment, but to explain, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of the present embodiment should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2018년 12월 28일 한국에 출원한 특허출원번호 제 10-2018-0172241호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.*This patent application claims priority in accordance with U.S. Patent Act 119(a) (35 USC § 119(a)) to Patent Application No. 10-2018-0172241 filed in Korea on December 28, 2018. All of the contents are incorporated into this patent application as a reference. In addition, if this patent application claims priority for the same reasons as above for countries other than the United States, all of the contents are incorporated into this patent application as a reference.

Claims (7)

  1. 3차원 프린터의 원료로 사용되는 조성물로서,A composition used as a raw material for a 3D printer,
    단관능 모노머, 이관능 모노머, 올리고머, 개시제 및 광증감제를 포함하는 것을 특징으로 하는 3차원 프린터용 조성물.A composition for a three-dimensional printer, comprising a monofunctional monomer, a bifunctional monomer, an oligomer, an initiator, and a photosensitizer.
  2. 제1항에 있어서,According to claim 1,
    상기 3차원 프린터용 조성물은,The composition for the three-dimensional printer,
    단관능 모노머로 10 내지 30 중량부, 이관능 모노머로 20 내지 50 중량부, 올리고머로 30 내지 50 중량부, 5 중량부 이내의 개시제 및 1 중량부 이내의 광증감제를 포함하는 것을 특징으로 하는 3차원 프린터용 조성물.Characterized in that it comprises 10 to 30 parts by weight as a monofunctional monomer, 20 to 50 parts by weight as a bifunctional monomer, 30 to 50 parts by weight as an oligomer, an initiator within 5 parts by weight, and a photosensitizer within 1 part by weight. Composition for 3D printers.
  3. 제1항에 있어서,According to claim 1,
    상기 3차원 프린터용 조성물은,The composition for the three-dimensional printer,
    안료를 더 포함하는 것을 특징으로 하는 3차원 프린터용 조성물.A composition for a three-dimensional printer, further comprising a pigment.
  4. 제3항에 있어서,According to claim 3,
    상기 3차원 프린터용 조성물은,The composition for the three-dimensional printer,
    1 중량부 이내의 안료를 포함하는 것을 특징으로 하는 3차원 프린터용 조성물.A composition for a three-dimensional printer, comprising pigment within 1 part by weight.
  5. 제1항에 있어서,According to claim 1,
    상기 단관능 모노머는,The monofunctional monomer,
    에폭시계 모노머 또는 에테르계 모노머인 것을 특징으로 하는 3차원 프린터용 조성물3D printer composition characterized by being an epoxy-based monomer or an ether-based monomer
  6. 제1항에 있어서,According to claim 1,
    상기 이관능 모노머는,The bifunctional monomer,
    아크릴계 모노머인 것을 특징으로 하는 3차원 프린터용 조성물Composition for a three-dimensional printer, characterized in that it is an acrylic monomer
  7. 제6항에 있어서,The method of claim 6,
    상기 이관능 모노머는,The bifunctional monomer,
    비스페놀 지(BPZ) 계열의 모노머인 것을 특징으로 하는 3차원 프린터용 조성물.Bisphenol paper (BPZ)-based three-dimensional composition for a printer, characterized in that the monomer.
PCT/KR2019/009447 2018-12-28 2019-07-29 Three-dimensional printing composition WO2020138621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021534320A JP7249694B2 (en) 2018-12-28 2019-07-29 Composition for three-dimensional printing
CN201980077790.4A CN113166291B (en) 2018-12-28 2019-07-29 Composition for three-dimensional printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180172241A KR102152043B1 (en) 2018-12-28 2018-12-28 Composition for 3D Printer
KR10-2018-0172241 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138621A1 true WO2020138621A1 (en) 2020-07-02

Family

ID=71129573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009447 WO2020138621A1 (en) 2018-12-28 2019-07-29 Three-dimensional printing composition

Country Status (4)

Country Link
JP (1) JP7249694B2 (en)
KR (1) KR102152043B1 (en)
CN (1) CN113166291B (en)
WO (1) WO2020138621A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535467A (en) * 2006-05-01 2009-10-01 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable resin composition and rapid three-dimensional image forming method using the same
JP5559033B2 (en) * 2007-04-13 2014-07-23 スリーディー システムズ インコーポレーテッド Binary photoinitiators, photocurable compositions, their use in three-dimensional article manufacture, and manufacturing methods
KR20160058595A (en) * 2014-11-17 2016-05-25 대한잉크 주식회사 The 3D Full Color Ink Composition and 3D soft sculpture formed by using the same
EP3321002A1 (en) * 2016-11-15 2018-05-16 Höganäs AB Feedstock for an additive manufacturing method, additive manufacturing method using the same, and article obtained therefrom
JP2018130883A (en) * 2017-02-15 2018-08-23 セイコーエプソン株式会社 Inkjet method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199611A1 (en) * 2015-06-08 2016-12-15 富士フイルム株式会社 Active light-curable inkjet ink set for three-dimensional printing, three-dimensional printing method and three-dimensional printing system
JP2020075941A (en) 2016-12-05 2020-05-21 Dic株式会社 Photosetting resin composition for optical solid molding used for forming a solid molded article for surgical guide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535467A (en) * 2006-05-01 2009-10-01 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable resin composition and rapid three-dimensional image forming method using the same
JP5559033B2 (en) * 2007-04-13 2014-07-23 スリーディー システムズ インコーポレーテッド Binary photoinitiators, photocurable compositions, their use in three-dimensional article manufacture, and manufacturing methods
KR20160058595A (en) * 2014-11-17 2016-05-25 대한잉크 주식회사 The 3D Full Color Ink Composition and 3D soft sculpture formed by using the same
EP3321002A1 (en) * 2016-11-15 2018-05-16 Höganäs AB Feedstock for an additive manufacturing method, additive manufacturing method using the same, and article obtained therefrom
JP2018130883A (en) * 2017-02-15 2018-08-23 セイコーエプソン株式会社 Inkjet method

Also Published As

Publication number Publication date
JP2022513909A (en) 2022-02-09
CN113166291B (en) 2023-05-09
KR102152043B1 (en) 2020-09-04
JP7249694B2 (en) 2023-03-31
KR20200087314A (en) 2020-07-21
CN113166291A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
US11130874B2 (en) Hybrid photopolymer composition for additive manufacturing
JP5019518B2 (en) Optical three-dimensional modeling resin composition and optical three-dimensional modeling method
KR20150077649A (en) ceramic slurry composition with low viscosity for 3D printing and manufacturing method of ceramic slurry composition
WO2021107366A1 (en) Post-curing process for 3d printed product and device therefor
US8338074B2 (en) Actinic radiation-curable stereolithographic resin composition having improved stability
CN107300828B (en) Photosensitive resin for 3D printing
WO2024123009A1 (en) Photocurable 3d printing composition for manufacturing stretchable product with lattice structure
WO2023055046A1 (en) 3d printing composition for ceramic artificial teeth
CN112029042A (en) Photosensitive material for 3D printing and preparation method thereof
WO2020040414A1 (en) Radiation curable polymer composition for 3d printer
KR101969335B1 (en) Method for manufacturing structure for mobile device by using 3d printing
WO2020138621A1 (en) Three-dimensional printing composition
JP4197361B2 (en) Optical three-dimensional modeling resin composition and optical three-dimensional modeling method
WO2020138622A1 (en) 3d printing apparatus and method
JP4743736B2 (en) Optical three-dimensional modeling resin composition and optical three-dimensional modeling method using the same
JP2002071987A (en) Method for manufacturing optical waveguide
WO2021107365A1 (en) Top-down mode 3d printer and method for producing product using same
WO2011007979A2 (en) Photocurable resin composition containing fluorine and method for producing a resin mold using same
WO2021117919A1 (en) 3d printing composition having high strength and high transparency
JP2018053133A (en) Resin composition for optical solid molding
WO2020235913A1 (en) Curable composition, and optical member including cured product thereof
JP4356909B2 (en) Optical three-dimensional modeling resin composition and optical three-dimensional modeling method
WO2022108238A1 (en) Resin composition
WO2024117367A1 (en) Dual curable ceramic slurry composition for 3d printing and method for manufacturing dual curable ceramic structure using same
WO2021246677A1 (en) Photocurable resin composition for surgical guide, surgical guide manufactured therefrom and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906155

Country of ref document: EP

Kind code of ref document: A1