WO2024123009A1 - Photocurable 3d printing composition for manufacturing stretchable product with lattice structure - Google Patents

Photocurable 3d printing composition for manufacturing stretchable product with lattice structure Download PDF

Info

Publication number
WO2024123009A1
WO2024123009A1 PCT/KR2023/019795 KR2023019795W WO2024123009A1 WO 2024123009 A1 WO2024123009 A1 WO 2024123009A1 KR 2023019795 W KR2023019795 W KR 2023019795W WO 2024123009 A1 WO2024123009 A1 WO 2024123009A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable
printing
composition
acrylate
molded product
Prior art date
Application number
PCT/KR2023/019795
Other languages
French (fr)
Korean (ko)
Inventor
성유철
유응태
심서현
Original Assignee
주식회사 한국디아이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국디아이씨 filed Critical 주식회사 한국디아이씨
Publication of WO2024123009A1 publication Critical patent/WO2024123009A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to a photocurable 3D printer composition capable of printing a structure formed of a lattice structure that is stretchable and has excellent resilience.
  • 3D printing can quickly create three-dimensional structures and produce various structures with high precision, so its application in various fields has been widely attempted in recent years.
  • 3D printing technology includes Fused Deposition Modeling (FDM), Stereo Lithography Apparatus (SLA), Digital Light Processing (DLP), and selective laser sintering. It can be divided into Selective Laser Sintering (SLS) methods.
  • FDM Fused Deposition Modeling
  • SLA Stereo Lithography Apparatus
  • DLP Digital Light Processing
  • SLS Selective Laser Sintering
  • the SLA method and the DLP method which use liquid materials, are a method of solidifying only the necessary parts by injecting a laser beam into a water tank containing photocurable materials, and have the advantage of being able to produce prints with precision and fast printing speed. .
  • the photocurable printing composition in order to enable 3D printing by the SLA method and DLP method, the photocurable printing composition must be a liquid material with low viscosity and must be able to cure quickly.
  • the printing composition in order to implement a 3D printed sculpture with rubber-like properties, it is advantageous for the printing composition to have a very large molecular weight. However, because most substances with high molecular weight have high viscosity, it was very difficult to select a composition.
  • 3D printing material As a photocurable 3D printing material, it satisfies special characteristics such as low viscosity and fast curing speed, and at the same time, 3D printing can produce sculptures with high tensile elongation and rubber-like, that is, stretchable properties.
  • a composition for this purpose is required.
  • One embodiment of the present invention aims to provide a 3D printing material capable of producing a 3D sculpture with enhanced mechanical properties, stretchable like rubber, and excellent resilience, especially a lattice-structured 3D molding.
  • the purpose is to provide a composition for 3D printing of light fossils capable of producing.
  • a photocurable 3D printing composition for printing an extensible article having a lattice structure comprising a base resin that is an acrylate oligomer, at least one radically curable acrylate monomer, and a photoinitiator.
  • a base resin that is an acrylate oligomer, at least one radically curable acrylate monomer, and a photoinitiator Provides a composition for Mars 3D printing.
  • the at least one type of acrylate monomer is a monofunctional acrylate monomer.
  • At least one type of monofunctional acrylate monomer is contained in an amount of 60 to 70 parts by weight based on 30 to 40 parts by weight of acrylate oligomer.
  • the at least one type of monofunctional acrylate monomer includes an acrylate monomer with a glass transition temperature (T g ) of less than 0°C and an acrylate monomer with a glass transition temperature (T g ) of 50°C or more. It is characterized by:
  • the acrylate oligomer is characterized as a urethane acrylate oligomer.
  • the photocurable 3D printing composition is characterized in that the viscosity before curing is 1,000 cps or less at room temperature.
  • the at least one type of monofunctional acrylate monomer includes 4-acryloylmorpholine and ethoxy ethoxy ethyl acrylate.
  • the steps of manufacturing the above-described photocurable 3D printing composition curing the photocurable 3D printing composition layer by layer with an ultraviolet laser, and outputting a molded product in the form of stacking the cured layers.
  • a method for manufacturing a three-dimensional molded product is provided, including the step of post-processing the printed three-dimensional molded product.
  • the three-dimensional molded product is characterized as a three-dimensional molded product printed in a lattice structure.
  • a 3D laminate manufactured with a lattice structure is provided by 3D printing using the photocurable composition described above.
  • a photocurable 3D printing composition having a low viscosity at room temperature can be formed including an acrylate oligomer, at least one acrylate monomer, and a photocuring agent, such as The composition has the advantage of improving the workability of 3D printing.
  • the material printed by the photocurable 3D printing composition can secure elongation and tear strength above a certain level, like rubber.
  • the three-dimensional lattice-structured molded product produced using this composition has the advantage of shock absorption and excellent compressive strength in addition to elastic recovery performance.
  • Figure 1 is a flowchart showing a method of manufacturing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the lattice structure of a molded body manufactured using a photocurable 3D printing composition according to an embodiment of the present invention.
  • Figure 3 is a photograph showing the process of printing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
  • the term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • each configuration, process, process, or method included in each embodiment of the present invention may be shared within the scope of not being technically contradictory to each other.
  • Figure 1 is a flowchart showing a method of manufacturing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
  • the stretchable molded product with a lattice structure is manufactured by 3D printing a photocurable 3D printing composition, which will be described later.
  • the photocurable 3D printing composition can be applied to either SLA or DLP 3D printing, and the final printed product has a preset level of elongation and tear strength like rubber.
  • Photocurable compositions for 3D printing using Stereo Lithography Apparatus (SLA) or Digital Light Processing (DLP) methods must be prepared in a homogeneous liquid form at ambient temperature before curing, and the viscosity must be It is desirable to have a low and fast curing speed.
  • SLA Stereo Lithography Apparatus
  • DLP Digital Light Processing
  • the photocurable 3D printing composition includes an acrylate oligomer, which is a photocurable reactive oligomer, a monomer, which is a reactive diluent, and a photoinitiator.
  • the acrylate oligomer according to the present invention is a base resin of a photocurable composition, and when irradiated with light, it undergoes a photocuring reaction, such as a crosslinking reaction, with a reactive diluent and a photoinitiator to form a polymer bond.
  • a photocuring reaction such as a crosslinking reaction
  • the acrylate oligomer is not particularly limited as long as it is used in the industry, but may be any one selected from urethane acrylate oligomer, polyester acrylate oligomer, and epoxy acrylate oligomer, and preferably urethane acrylate oligomer may be used. .
  • the urethane acrylate oligomer when urethane acrylate oligomer is used, the urethane acrylate oligomer may be a bifunctional or higher acrylate oligomer. Additionally, the urethane acrylate oligomer according to one embodiment may be contained in an amount of 30 to 40 parts by weight based on 60 to 70 parts by weight of the monomer, which is a reactive diluent.
  • the content of the urethane acrylate oligomer exceeds 40 parts by weight, the elastic modulus decreases significantly and the viscosity of the composition becomes very high, making it difficult to apply it to SLA or DLP 3D printing. Additionally, cracks may occur during the photocuring process.
  • the content of the urethane acrylate oligomer is less than 30 parts by weight, the curing shrinkage rate of the photocurable composition increases, and the mechanical properties of the final manufactured molding deteriorate, which may easily cause breakage or fracture.
  • the reactive diluent according to the present invention is a radically curable acrylate monomer that can be copolymerized with a reactive oligomer, and the acrylate monomer may include a monofunctional or multifunctional acrylate monomer.
  • o-phenylphenol (EO) acrylate OPEA
  • 2-phenylthio ethyl acrylate benzyl acrylate
  • lauryl acrylate isodecyl acrylate
  • phenol (EO) acrylate Acrylate (PHEA), Phenol (EO) 2 Acrylate, Phenol (EO) 4 Acrylate, Phenol (EO) 6 Acrylate, Ethoxy Ethoxy Ethyl Acrylate (EOEOEA), Stearyl Acrylate, Acryloyl Morpholine
  • At least one type of monofunctional acrylate selected from (ACMO) may be included.
  • multifunctional acrylate monomers include tripropylene glycol diacrylate, dipropylene glycol diacrylate, bisphenol A (EO) 4 diacrylate, bisphenol A (EO) 3 diacrylate, and bisphenol A (EO) 10 diacrylate.
  • trifunctional acrylate monomer selected from trimethylolpropane triacrylate, trimethylolpropane (EO)3 triacrylate, trimethylolpropane (EO) 6 triacrylate, and trimethylolpropane (EO) 9 triacrylate.
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • EO trimethylolpropane
  • the acrylate monomer according to an embodiment of the present invention may include at least one type of monofunctional acrylate monomer and polyfunctional acrylate monomer, and may include one or more types of monofunctional acrylate monomer. desirable.
  • the viscosity of the photocurable 3D printing composition at room temperature can be adjusted low to improve 3D printing workability, and the composition Cure shrinkage may also be reduced.
  • the one or more monofunctional acrylate monomers may be acrylate monomers with a molecular weight of 100 to 500 or less.
  • o-phenylphenol (EO) acrylate (OPPEA), phenol (EO) acrylate (PHEA), phenol (EO) ) 2 acrylate (PHEA-2), phenol (EO) 4 acrylate (PHEA-4) may be included.
  • the one or more types of monofunctional acrylate monomers may further include at least one type of monofunctional acrylate monomer having a glass transition temperature (T g ) of less than 0°C.
  • Monofunctional acrylate monomers with a glass transition temperature (T g ) of less than 0°C can improve the elongation rate by increasing the flexibility of the molded product, and have excellent adhesion, contributing to the curing speed.
  • Monofunctional acrylate monomers with a glass transition temperature (T g ) of less than 0°C may include lauryl acrylate (LA), isodecyl acrylate (IDA), and ethoxy ethoxy ethyl acrylate (EOEOEA).
  • LA lauryl acrylate
  • IDA isodecyl acrylate
  • EEOEA ethoxy ethoxy ethyl acrylate
  • EEOEA ethoxy ethoxy ethyl acrylate
  • EEOEA ethoxy ethoxy ethyl acrylate
  • the one or more monofunctional acrylate monomers may include at least one monofunctional acrylate monomer having a glass transition temperature (T g ) of 50°C or higher.
  • the glass transition temperature (T g ) of the monofunctional acrylate monomer is lower than 50°C, the strength of the molded product may decrease.
  • 4-acryloylmorpholine (ACMO) can be used as a monofunctional acrylate monomer with a glass transition temperature (T g ) of 50°C or higher.
  • the acrylate monomer which is a reactive diluent, may be contained in an amount of 60 to 70 parts by weight based on 30 to 40 parts by weight of the urethane acrylate oligomer.
  • the reactive diluent of the present invention consists of one or more monofunctional acrylate monomers
  • 60 to 70 parts by weight of the one or more monofunctional acrylate monomers include a monofunctional acrylate having a glass transition temperature (T g ) of less than 0°C.
  • Monomers and monofunctional acrylate monomers having a glass transition temperature (T g ) of 50°C or higher may be included in the range of 20 to 30 parts by weight.
  • the monofunctional acrylate monomer with a glass transition temperature (T g ) of less than 0°C ranges from 1 to 10 parts by weight
  • the monofunctional acrylate monomer with a glass transition temperature (T g ) of 50°C or higher ranges from 10 to 20 parts by weight. It may be contained as.
  • the photoinitiator absorbs energy from a light source and generates radicals or cations to initiate the photopolymerization reaction of the photocurable composition.
  • the photoinitiator is a photoinitiator that absorbs light in the wavelength range of 350 to 420 nm and is not particularly limited as long as it is used in the art, but a phosphine oxide-based photoinitiator is preferred.
  • Examples include diphenyl-(2,4,6-trimethylbenzoyl)-phosphine oxide, ethyl-(2,4,6-trimethylbenzoyl)phenyl-phosphinate, phenyl-bis-(2,4,6- Trimethylbenzoyl)-phosphine oxide, etc. may be included.
  • the photoinitiator may be included in the total photocurable composition in the range of 0.1% by weight to 5% by weight, and preferably in the range of 0.5% by weight to 2% by weight.
  • the photoinitiator is less than 0.1% by weight, it is difficult to achieve internal curing of the photocurable composition, which causes collapse or non-curing during lamination of the molded product, thereby deteriorating the mechanical properties of the molded product.
  • the photoinitiator exceeds 5% by weight, overcuring may occur, which may cause cracks in the molded product and severe yellowing of the molded product.
  • the photocurable 3D printing composition of the present invention may further include colored pigments, if necessary.
  • Colored pigments may be included in an amount of 0.05% to 2% by weight in the total photocurable composition. If the colored pigment exceeds the above weight ratio, it is not easy to adjust the pigment of the composition.
  • the colored pigment may be selected from the group consisting of carbon black pigment, metal oxide pigment, and graphite pigment. It is more preferable to use carbon black pigment, but is not limited thereto.
  • the raw materials of the prepared photocurable 3D printing composition are mixed at a preset ratio to form a photocurable composition (S120).
  • the preset mixing ratio of the photocurable 3D printing composition of the present invention may be 60 to 70 parts by weight of acrylate monomer based on 30 to 40 parts by weight of urethane acrylate oligomer.
  • the acrylate monomer when the acrylate monomer consists of one or more monofunctional acrylate monomers, the acrylate monomer includes 1 to 10 parts by weight of a monofunctional acrylate monomer having a glass transition temperature (T g ) of less than 0°C and a glass transition temperature (T g ) may include 10 to 20 parts by weight of monofunctional acrylate monomer having a temperature of 50°C or higher.
  • a monofunctional acrylate monomer may be further included to maintain the dispersibility, shrinkage rate, and lower the viscosity of the composition.
  • the photoinitiator may be included in the range of 0.1% by weight to 5% by weight, preferably in the range of 0.5% by weight to 2% by weight, in the entire photocurable composition.
  • the photocurable composition may further contain 0.05% to 2% by weight of colored pigment, if necessary.
  • the 3D printing composition is formed in a liquid state, and each raw material is mixed and then stirred at 50°C or higher for more than 1 hour. At this time, the stirring process is performed until each material is completely dissolved and formed in a uniformly dispersed state.
  • the photocurable 3D printing composition according to the present invention may have a viscosity of 1,000 cps or less at room temperature (25°C), and preferably 500 cps or less. If the viscosity of the composition exceeds 1,000 cps, the workability of 3D printing may decrease.
  • a molded article with a three-dimensional structure is printed using the prepared photocurable 3D printing composition (S130).
  • the output of the 3D printing composition of the present invention can be performed by an SLA or DLP 3D printer.
  • a liquid photocurable composition is put into a water tank and cured with an ultraviolet laser while rising or falling in the vertical direction (Z-axis), and the molded product is output in the form of stacking one layer at a time.
  • 3D printer output using the photocurable 3D printer composition of the present invention can be cured by irradiating ultraviolet rays with a wavelength of 385 nm or 405 nm.
  • design for printing a molded product with a lattice structure is preceded. Afterwards, slicing is performed by inputting the output conditions (printing speed, output layer height, thickness, temperature, and nozzle size, etc.) of the designed molded product into the printer, and 3D printing is performed according to the inputted output conditions.
  • output conditions printing speed, output layer height, thickness, temperature, and nozzle size, etc.
  • Post-processing of the molded product printed from the 3D printer is performed (S140).
  • the printout is separated from the printer, and the supporter is removed from the printout. At this time, since traces of the supporter may remain on the output, the surface of the output can be polished as needed.
  • UV curing is performed a second time, and the final production of the molded product is completed.
  • the output formed by the photocurable 3D printing composition according to the present invention has a tear strength of 8 kN/m or more and a hardness (Shore A) in the range of 55 to 70.
  • the output formed by the photocurable 3D printing composition according to the present invention may have a tensile elongation of 100% or more in order to realize elastic properties like rubber.
  • the output from the photocurable 3D printing composition according to the present invention is a three-dimensional molded product with a lattice structure, and the output molded product exhibits a tensile elongation of 150% or more.
  • Figure 2 is a diagram showing the lattice structure of a molded body printed using a photocurable 3D printing composition according to an embodiment of the present invention.
  • Figure 2(a) is an output of a three-dimensional lattice structure printed with the photocurable composition of an embodiment of the present invention, which is a body-centered cubic lattice (BCC Lattice) structure, and Figure 2(b) is an expandable honeycomb. (Honeycomb Auxetic) structure and Figure 2(c) respectively show the octet truss lattice structure.
  • a lattice structure is a structure that is repeatedly arranged according to the rules of symmetry, and the output of a three-dimensional lattice structure using 3D printing technology can enable various applications for products in various industrial fields.
  • the 3D printed lattice structure is known to have a very high possibility of deformation and at the same time has excellent mechanical properties.
  • the BCC lattice structure in Figure 2(a) combines a body-centered lattice and a simple cubic lattice into a single structure, and is a structure that is advantageous for energy dissipation by combining both elastic response and buckling response.
  • the inflatable honeycomb structure shown in Figure 2(b) has a high energy absorption rate and is therefore advantageous as a shock absorbing member.
  • the octet truss lattice structure has a high strength-to-density ratio and is advantageous for products that require a lightweight structure, and is advantageous for structures with high compressive strength and high elasticity.
  • the 3D output printed using the photocurable composition of the present invention can realize rubber-like properties with an elongation at break of 100% or more. As shown in Figure 2, it is advantageous to improve the elongation at break of the final molded product if the three-dimensional structure of the output is implemented as a lattice structure.
  • the lattice-structured molded product printed using the photocurable composition of the present invention can secure shock absorption and excellent compressive strength in addition to elastic recovery performance.
  • Figure 3 is a photograph showing the process of printing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
  • urethane acrylate oligomer 10 parts by weight of 4-acryloylmorpholine (ACMO) as a monofunctional acrylate monomer
  • phenol (EO) acrylate (PHEA) 40 parts by weight
  • ethoxy ethoxy ethyl acrylate (EOEOEA) 10 parts by weight and phenyl-bis-(2,4,6-trimethylbenzoyl)-phosphine oxide as a photoinitiator at 1.2% by weight based on the total composition. It was mixed to contain the mixture and stirred for more than 1 hour at 50°C or higher to prepare a photocurable 3D printing composition.
  • a photocurable 3D printing composition was prepared using the same method as Example 1 with the composition shown in Table 2 below.
  • a photocurable 3D printing composition was prepared using the same method as Example 1 with the composition shown in Table 2 below.
  • Test specimens were printed through 3D printing for the photocurable compositions prepared in the above examples and comparative examples to evaluate the physical properties.
  • the viscosity of the photocurable composition before curing was measured at room temperature (25°C). Additionally, the cured test specimens were evaluated for hardness (Shore A), tear strength, elongation at break, and rebound elasticity.
  • the hardness of the test specimen printed by the photocurable composition according to the present invention was measured by Shore hardness A-Type, which is applied to general rubber, soft rubber, elastomer, etc.
  • Table 3 shows the physical property evaluation results of test specimens prepared by the compositions of Examples and Comparative Examples.
  • Example 2 is a case in which carbon black was further included as a pigment compared to Example 1, and as the pigment was added, the elongation at break and rebound elasticity values were somewhat lower than before the pigment was used.
  • both Examples 1 and 2 meet the standards of more than 100% elongation and more than 8 kN/m of tear strength, so the amount of pigment added at the level of 0.1% by weight of the total composition significantly changes the physical properties of the material. You can confirm that there is no .
  • Examples 1 to 4 contain only one or more monofunctional acrylate monomers, but include ethoxy ethoxy ethyl acrylate (EOEOEA) with a glass transition temperature lower than 0°C and 4-acryloyl with a glass transition temperature higher than 50°C. It simultaneously contains morpholine (ACMO) and acrylate monomers of o-phenylphenol (EO) acrylate (OPPEA) or phenol (EO) acrylate (PHEA).
  • EEOEA ethoxy ethoxy ethyl acrylate
  • ACMO morpholine
  • EO o-phenylphenol
  • EO o-phenylphenol
  • PHEA phenol
  • the viscosity of the composition before curing at room temperature is also lower than 1,000 cps, which has the advantage of making 3D printing very easy.
  • the hardness of the cured material itself can be realized at the level of general rubber (e.g., pencil eraser to car tire level, Shore A hardness 55 to 65). You can check it.
  • level of general rubber e.g., pencil eraser to car tire level, Shore A hardness 55 to 65. You can check it.
  • compositions of Examples 1 to 4 can produce materials with an elongation at break of 100% or more, so these compositions can be used to print three-dimensional lattice structure moldings to manufacture moldings with even improved elongation. .
  • Computer-readable recording media include all types of recording devices that store data that can be read by a computer system.
  • computer-readable recording media include magnetic storage media (e.g., ROM, floppy disk, hard disk, etc.), optical read media (e.g., CD-ROM, DVD, etc.), and carrier wave (e.g., Internet It includes storage media such as transmission through .
  • computer-readable recording media can be distributed across networked computer systems so that computer-readable code can be stored and executed in a distributed manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

Disclosed are: a photocurable 3D printing composition applied to a 3D printer so that a three-dimensional molded product is printed; and a method for forming a stretchable product with a lattice structure by using same. According to one aspect of the present invention, the provided photocurable 3D printing composition for printing a stretchable product with a lattice structure comprises a base resin, which is an acrylate oligomer, at least one type of radical-curable acrylate monomer and a photoinitiator.

Description

격자구조의 신장가능한 물품 제조용의 광경화성 3D 프린팅용 조성물Photocurable 3D printing composition for manufacturing stretchable lattice-structured articles
본 발명은 신장가능하고 복원력이 우수한, 격자구조로 형성되는 구조물을 출력할 수 있는 광경화성 3D 프린터 조성물에 관한 것이다.The present invention relates to a photocurable 3D printer composition capable of printing a structure formed of a lattice structure that is stretchable and has excellent resilience.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section simply provides background information for this embodiment and does not constitute prior art.
3D 프린팅은 3차원 구조물을 신속하게 만들 수 있고 높은 정밀도로 다양한 구조의 제작이 가능하여, 최근 들어 여러 분야에서의 적용이 널리 시도되고 있다.3D printing can quickly create three-dimensional structures and produce various structures with high precision, so its application in various fields has been widely attempted in recent years.
3D 프린팅 기술은 재료에 따라 용융 적층 모델링 방식(Fused Deposition Modeling, FDM), 광경화성 수지 적층 조형 방식(Stereo Lithography Apparatus, SLA) 방식, 디지털 광학 처리 방식(Digital Light Processing, DLP) 방식 및 선택적 레이저 소결 방식(Selective Laser Sintering, SLS) 방식으로 나눌 수 있다.Depending on the material, 3D printing technology includes Fused Deposition Modeling (FDM), Stereo Lithography Apparatus (SLA), Digital Light Processing (DLP), and selective laser sintering. It can be divided into Selective Laser Sintering (SLS) methods.
이 중, 액체형 재료를 사용하는 SLA 방식과 DLP 방식은 광경화성 소재가 들어있는 수조에 레이저 광선을 주사하여 필요한 부분만 고체화하는 방식으로, 정교하면서도 빠른 출력 속도로 출력물을 제조할 수 있다는 장점이 있다.Among these, the SLA method and the DLP method, which use liquid materials, are a method of solidifying only the necessary parts by injecting a laser beam into a water tank containing photocurable materials, and have the advantage of being able to produce prints with precision and fast printing speed. .
그러나 SLA 방식 및 DLP 방식에 의해 3D 프린팅이 가능하기 위해서는, 광경화성 프린팅 조성물은 점도가 낮은 액상 소재여야 하며, 경화도 빠르게 진행될 수 있어야 한다.However, in order to enable 3D printing by the SLA method and DLP method, the photocurable printing composition must be a liquid material with low viscosity and must be able to cure quickly.
한편, 고무와 같은 성질을 갖는 3D 프린팅 조형물을 구현하기 위해서는 프린팅 조성물의 분자량이 매우 큰 것이 유리하다. 그러나 분자량이 큰 물질들은 대부분 고점도의 성질을 갖기 때문에 조성물의 선정이 매우 어려웠다.Meanwhile, in order to implement a 3D printed sculpture with rubber-like properties, it is advantageous for the printing composition to have a very large molecular weight. However, because most substances with high molecular weight have high viscosity, it was very difficult to select a composition.
따라서, 광경화성 3D 프린팅용 소재로서, 점도가 낮고 빠른 경화 속도 등과 같은 특수성을 만족함과 동시에, 인장 신율이 높으며 고무와 같은, 즉 스트레쳐블(Stretchable)한 성질을 갖는 조형물을 제작할 수 있는 3D 프린팅용 조성물이 요구되고 있다.Therefore, as a photocurable 3D printing material, it satisfies special characteristics such as low viscosity and fast curing speed, and at the same time, 3D printing can produce sculptures with high tensile elongation and rubber-like, that is, stretchable properties. A composition for this purpose is required.
본 발명의 일 실시예는, 기계적 물성이 강화되고, 고무와 같이 신장가능하고 복원력이 우수한 3차원 조형물을 제조할 수 있는 3D 프린팅용 소재를 제공하는 것을 목적으로 하며, 특히 격자구조의 3차원 성형물을 제조할 수 있는 광경화석 3D 프린팅용 조성물을 제공하는데 일 목적이 있다.One embodiment of the present invention aims to provide a 3D printing material capable of producing a 3D sculpture with enhanced mechanical properties, stretchable like rubber, and excellent resilience, especially a lattice-structured 3D molding. The purpose is to provide a composition for 3D printing of light fossils capable of producing.
본 발명의 일 측면에 의하면, 격자구조의 신장가능한 물품을 출력하기 위한 광경화성 3D 프린팅용 조성물로서, 아크릴레이트 올리고머인 베이스 수지와 적어도 1종 이상의 라디칼 경화 가능 아크릴레이트 모노머 및 광 개시제를 포함하는 광경화성 3D 프린팅용 조성물을 제공한다.According to one aspect of the present invention, a photocurable 3D printing composition for printing an extensible article having a lattice structure, comprising a base resin that is an acrylate oligomer, at least one radically curable acrylate monomer, and a photoinitiator. Provides a composition for Mars 3D printing.
본 발명의 일 측면에 의하면, 적어도 1종 이상의 아크릴레이트 모노머는 단관능성 아크릴레이트 모노머인 것을 특징으로 한다.According to one aspect of the present invention, the at least one type of acrylate monomer is a monofunctional acrylate monomer.
본 발명의 일 측면에 의하면, 아크릴레이트 올리고머 30 내지 40 중량부에 대하여 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 60 내지 70 중량부의 양으로 함유되는 것을 특징으로 한다.According to one aspect of the present invention, at least one type of monofunctional acrylate monomer is contained in an amount of 60 to 70 parts by weight based on 30 to 40 parts by weight of acrylate oligomer.
본 발명의 일 측면에 의하면, 상기 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 유리전이온도(Tg)가 0℃ 미만인 아크릴레이트 모노머와 유리전이온도(Tg)가 50℃ 이상인 아크릴레이트 모노머를 포함하는 것을 특징으로 한다.According to one aspect of the present invention, the at least one type of monofunctional acrylate monomer includes an acrylate monomer with a glass transition temperature (T g ) of less than 0°C and an acrylate monomer with a glass transition temperature (T g ) of 50°C or more. It is characterized by:
본 발명의 일 측면에 의하면, 상기 아크릴레이트 올리고머는 우레탄 아크릴레이트 올리고머인 것을 특징으로 한다.According to one aspect of the present invention, the acrylate oligomer is characterized as a urethane acrylate oligomer.
본 발명의 일 측면에 의하면, 상기 광경화성 3D 프린팅용 조성물은 경화 전의 점도가 상온에서 1,000cps 이하인 것을 특징으로 한다.According to one aspect of the present invention, the photocurable 3D printing composition is characterized in that the viscosity before curing is 1,000 cps or less at room temperature.
본 발명의 일 측면에 의하면, 상기 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 4-아크릴로일모르폴린과 에톡시 에톡시 에틸 아크릴레이트를 포함하는 것을 특징으로 한다.According to one aspect of the present invention, the at least one type of monofunctional acrylate monomer includes 4-acryloylmorpholine and ethoxy ethoxy ethyl acrylate.
본 발명의 일 측면에 의하면, 전술된 광경화성 3D 프린팅용 조성물을 제조하는 단계와, 상기 광경화성 3D 프린팅용 조성물을 자외선 레이저에 의해 한층씩 경화시켜 경화된 층들이 적층하는 형태로 성형물을 출력하는 단계 및 출력된 3차원 성형물을 후처리하는 단계를 포함하는 3차원 성형물의 제조방법을 제공한다.According to one aspect of the present invention, the steps of manufacturing the above-described photocurable 3D printing composition, curing the photocurable 3D printing composition layer by layer with an ultraviolet laser, and outputting a molded product in the form of stacking the cured layers. A method for manufacturing a three-dimensional molded product is provided, including the step of post-processing the printed three-dimensional molded product.
본 발명의 일 측면에 의하면, 상기 3차원 성형물은 격자구조로 출력된 3차원 성형물인 것을 특징으로 한다.According to one aspect of the present invention, the three-dimensional molded product is characterized as a three-dimensional molded product printed in a lattice structure.
본 발명의 일 측면에 의하면, 전술된 광경화성 조성물을 이용하여 3D 프린팅하여 격자구조로 제조된 3D 적층체를 제공한다.According to one aspect of the present invention, a 3D laminate manufactured with a lattice structure is provided by 3D printing using the photocurable composition described above.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 아크릴레이트 올리고머와 적어도 1종 이상의 아크릴레이트 모노머 및 광경화제를 포함하여 상온에서 낮은 점도를 갖는 광경화성 3D 프린팅용 조성물이 형성될 수 있으며, 이러한 조성물은 3D 프린팅의 작업성을 향상시킬 수 있다는 장점이 있다.As described above, according to one aspect of the present invention, a photocurable 3D printing composition having a low viscosity at room temperature can be formed including an acrylate oligomer, at least one acrylate monomer, and a photocuring agent, such as The composition has the advantage of improving the workability of 3D printing.
또한, 본 발명의 일 측면에 따르면, 광경화성 3D 프린팅 조성물에 의해 출력되는 소재는 고무와 같이 일정 수준 이상의 신율과 인열강도를 확보할 수 있다. 이러한 조성물에 의해 출력된 3차원 격자구조의 성형물은 탄성에 의한 회복성능 외에 충격 흡수 및 우수한 압축강도를 갖는다는 장점이 있다.In addition, according to one aspect of the present invention, the material printed by the photocurable 3D printing composition can secure elongation and tear strength above a certain level, like rubber. The three-dimensional lattice-structured molded product produced using this composition has the advantage of shock absorption and excellent compressive strength in addition to elastic recovery performance.
도 1은 본 발명의 일 실시예에 따른 광경화성 3D 프린팅 조성물을 이용한 성형물의 제조방법을 도시한 순서도이다.Figure 1 is a flowchart showing a method of manufacturing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광경화성 3D 프린팅 조성물을 이용하여 제조된 성형체의 격자구조를 나타낸 도면이다.Figure 2 is a diagram showing the lattice structure of a molded body manufactured using a photocurable 3D printing composition according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 광경화성 3D 프린팅 조성물을 이용한 성형물의 출력 과정을 보여주는 사진이다.Figure 3 is a photograph showing the process of printing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component. The term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be "connected" or "connected" to another component, it is understood that it may be directly connected to or connected to the other component, but that other components may exist in between. It should be. On the other hand, when a component is referred to as being “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "include" or "have" should be understood as not precluding the existence or addition possibility of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.Additionally, each configuration, process, process, or method included in each embodiment of the present invention may be shared within the scope of not being technically contradictory to each other.
도 1은 본 발명의 일 실시예에 따른 광경화성 3D 프린팅 조성물을 이용한 성형물의 제조방법을 도시한 순서도이다.Figure 1 is a flowchart showing a method of manufacturing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
격자구조의 신장가능한 성형물은 후술할 광경화성 3D 프린팅 조성물을 3D 프린팅하여 제조된다. 광경화성 3D 프린팅 조성물은 SLA 방식 또는 DLP 방식의 3D 프린팅에 모두 적용될 수 있으며, 최종적으로 출력되는 성형물은 고무와 같이 기 설정된 수준의 신율 및 인열강도를 갖는다. The stretchable molded product with a lattice structure is manufactured by 3D printing a photocurable 3D printing composition, which will be described later. The photocurable 3D printing composition can be applied to either SLA or DLP 3D printing, and the final printed product has a preset level of elongation and tear strength like rubber.
광경화성 3D 프린팅 조성물의 원료를 준비한다(S110).Prepare raw materials for the photocurable 3D printing composition (S110).
광경화성 수지 적층 조형(Stereo Lithography Apparatus, SLA) 방식 또는 디지털 광학 처리(Digital Light Processing, DLP) 방식의 3D 프린팅을 위한 광경화성 조성물은 경화 이전에 주변 온도에서 균질한 액체 형태로 마련되어야 하며, 점도가 낮고, 빠른 경화속도를 갖는 것이 바람직하다. Photocurable compositions for 3D printing using Stereo Lithography Apparatus (SLA) or Digital Light Processing (DLP) methods must be prepared in a homogeneous liquid form at ambient temperature before curing, and the viscosity must be It is desirable to have a low and fast curing speed.
본 발명에서 광경화성 3D 프린팅용 조성물은 광경화형 반응성 올리고머인 아크릴레이트 올리고머와 반응성 희석제인 모노머 및 광개시제를 포함한다.In the present invention, the photocurable 3D printing composition includes an acrylate oligomer, which is a photocurable reactive oligomer, a monomer, which is a reactive diluent, and a photoinitiator.
본 발명에 따른 아크릴레이트 올리고머는 광경화성 조성물의 베이스 수지이며, 광 조사시에 반응성 희석제 및 광개시제와 함께 광경화 반응, 예컨대 가교 반응을 일으켜 고분자 결합을 형성한다. The acrylate oligomer according to the present invention is a base resin of a photocurable composition, and when irradiated with light, it undergoes a photocuring reaction, such as a crosslinking reaction, with a reactive diluent and a photoinitiator to form a polymer bond.
아크릴레이트 올리고머는 당업계에서 사용하는 것이면 특별한 제한이 없으나, 우레탄 아크릴레이트 올리고머, 폴리에스테르 아크릴레이트 올리고머, 에폭시 아크릴레이트 올리고머로부터 선택되는 어느 하나일 수 있으며, 바람직하게는 우레탄 아크릴레이트 올리고머가 사용될 수 있다.The acrylate oligomer is not particularly limited as long as it is used in the industry, but may be any one selected from urethane acrylate oligomer, polyester acrylate oligomer, and epoxy acrylate oligomer, and preferably urethane acrylate oligomer may be used. .
일 예로 우레탄 아크릴레이트 올리고머가 사용될 경우, 우레탄 아크릴레이트 올리고머는 2 관능 이상의 아크릴레이트 올리고머일 수 있다. 또한, 일 실시예에 따른 우레탄 아크릴레이트 올리고머는 반응성 희석제인 모노머 60 내지 70 중량부에 대하여 30 내지 40 중량부의 양으로 함유될 수 있다. As an example, when urethane acrylate oligomer is used, the urethane acrylate oligomer may be a bifunctional or higher acrylate oligomer. Additionally, the urethane acrylate oligomer according to one embodiment may be contained in an amount of 30 to 40 parts by weight based on 60 to 70 parts by weight of the monomer, which is a reactive diluent.
우레탄 아크릴레이트 올리고머의 함량이 40 중량부를 초과할 경우에는, 탄성율이 크게 감소하고 조성물의 점도가 매우 높아져 SLA 또는 DLP 방식의 3D 프린팅에 적용하기 어려워질 수 있다. 또한, 광경화 과정에서 크랙이 발생할 수 있다.If the content of the urethane acrylate oligomer exceeds 40 parts by weight, the elastic modulus decreases significantly and the viscosity of the composition becomes very high, making it difficult to apply it to SLA or DLP 3D printing. Additionally, cracks may occur during the photocuring process.
반면 우레탄 아크릴레이트 올리고머의 함량이 30 중량부 미만일 경우에는 광경화 조성물의 경화 수축률이 증가하여 최종 제조된 성형물의 기계적 물성이 저하되어, 쉽게 깨지거나 파단이 발생할 수 있다.On the other hand, if the content of the urethane acrylate oligomer is less than 30 parts by weight, the curing shrinkage rate of the photocurable composition increases, and the mechanical properties of the final manufactured molding deteriorate, which may easily cause breakage or fracture.
본 발명에 따른 반응성 희석제는 반응성 올리고머와 공중합 가능한 라디칼 경화 가능 아크릴레이트 모노머이며, 아크릴레이트 모노머로는 단관능성 또는 다관능성 아크릴레이트 모노머가 포함될 수 있다.The reactive diluent according to the present invention is a radically curable acrylate monomer that can be copolymerized with a reactive oligomer, and the acrylate monomer may include a monofunctional or multifunctional acrylate monomer.
단관능성 아크릴레이트 모노머가 사용되는 경우, o-페닐페놀(EO) 아크릴레이트(OPPEA), 2-페닐티오 에틸 아크릴레이트, 벤질 아크릴레이트, 라우릴 아크릴레이트, 이소데실 아크릴레이트, 페놀(EO) 아크릴레이트(PHEA), 페놀(EO)2 아크릴레이트, 페놀(EO)4 아크릴레이트, 페놀(EO)6 아크릴레이트, 에톡시 에톡시 에틸 아크릴레이트(EOEOEA), 스테아릴 아크릴레이트, 아크릴로일 모르폴린(ACMO)로부터 선택되는 적어도 1종 이상의 단관능성 아크릴레이트가 포함될 수 있다.When monofunctional acrylate monomers are used, o-phenylphenol (EO) acrylate (OPPEA), 2-phenylthio ethyl acrylate, benzyl acrylate, lauryl acrylate, isodecyl acrylate, phenol (EO) acrylate. Acrylate (PHEA), Phenol (EO) 2 Acrylate, Phenol (EO) 4 Acrylate, Phenol (EO) 6 Acrylate, Ethoxy Ethoxy Ethyl Acrylate (EOEOEA), Stearyl Acrylate, Acryloyl Morpholine At least one type of monofunctional acrylate selected from (ACMO) may be included.
또한, 다관능성 아크릴레이트 모노머로는 트리프로필렌 글리콜 디아크릴레이트, 디프로필렌 글리콜 디아크릴레이트, 비스페놀A (EO)4 디아크릴레이트, 비스페놀A (EO)3 디아크릴레이트, 비스페놀A (EO)10 디아크릴레이트, 비스페놀A (EO)20 디아크릴레이트, 폴리에틸렌글리콜300 디아크릴레이트, 폴리에틸렌글리콜600 디아크릴레이트, 폴리프로필렌글리콜400 디아크릴레이트, 폴리프로필렌글리콜750 디아크릴레이트로부터 선택되는 이관능성 아크릴레이트 모노머와, 트리메틸올프로판 트리아크릴레이트, 트리메틸올프로판 (EO)3 트리아크릴레이트, 트리메틸올프로판 (EO)6 트리아크릴레이트 트리메틸올프로판 (EO)9 트리아크릴레이트로부터 선택되는 삼관능성 아크릴레이트 모노머 중 적어도 1종 이상의 다관능성 아크릴레이트 모노머가 포함될 수 있다.In addition, multifunctional acrylate monomers include tripropylene glycol diacrylate, dipropylene glycol diacrylate, bisphenol A (EO) 4 diacrylate, bisphenol A (EO) 3 diacrylate, and bisphenol A (EO) 10 diacrylate. Bifunctional acrylate monomer selected from acrylate, bisphenol A (EO) 20 diacrylate, polyethylene glycol 300 diacrylate, polyethylene glycol 600 diacrylate, polypropylene glycol 400 diacrylate, and polypropylene glycol 750 diacrylate. and at least a trifunctional acrylate monomer selected from trimethylolpropane triacrylate, trimethylolpropane (EO)3 triacrylate, trimethylolpropane (EO) 6 triacrylate, and trimethylolpropane (EO) 9 triacrylate. One or more multifunctional acrylate monomers may be included.
본 발명의 일 실시예에 따른 아크릴레이트 모노머로는 단관능성 아크릴레이트 모노머 및 다관능성 아크릴레이트 모노머 중 적어도 1종 이상을 포함하여 구성될 수 있으며, 단관능성 아크릴레이트 모노머가 1종 이상으로 포함되는 것이 바람직하다.The acrylate monomer according to an embodiment of the present invention may include at least one type of monofunctional acrylate monomer and polyfunctional acrylate monomer, and may include one or more types of monofunctional acrylate monomer. desirable.
일 예로, 1종 이상의 단관능성 아크릴레이트 모노머가 반응성 희석제로 적용되는 경우, 광경화성 3D 프린팅용 조성물의 상온(25℃)에서의 점도를 낮게 조절하여 3D 프린팅의 작업성을 향상시킬 수 있으며, 조성물의 경화 수축성도 감소될 수 있다.As an example, when one or more types of monofunctional acrylate monomers are applied as a reactive diluent, the viscosity of the photocurable 3D printing composition at room temperature (25°C) can be adjusted low to improve 3D printing workability, and the composition Cure shrinkage may also be reduced.
1종 이상의 단관능성 아크릴레이트 모노머는 분자량 100 내지 500 이하의 아크릴레이트 모노머일 수 있다.The one or more monofunctional acrylate monomers may be acrylate monomers with a molecular weight of 100 to 500 or less.
특히, 광경화 조성물의 점도를 조절함과 동시에, 조성물의 분산성 및 결합력을 향상시키기 위하여, o-페닐페놀(EO)아크릴레이트(OPPEA), 페놀(EO)아크릴레이트(PHEA), 페놀(EO)2 아크릴레이트(PHEA-2), 페놀(EO)4 아크릴레이트(PHEA-4) 중 2종 이상이 포함될 수 있다. 그 결과, 성형물의 기계적 강도 및 유연성이 일정 수준 이상으로 확보될 수 있다.In particular, in order to control the viscosity of the photocurable composition and improve the dispersibility and bonding power of the composition, o-phenylphenol (EO) acrylate (OPPEA), phenol (EO) acrylate (PHEA), phenol (EO) ) 2 acrylate (PHEA-2), phenol (EO) 4 acrylate (PHEA-4) may be included. As a result, the mechanical strength and flexibility of the molded product can be secured above a certain level.
또한, 1종 이상의 단관능 아크릴레이트 모노머는 적어도 1종은 0℃ 미만의 유리전이온도(Tg)를 갖는 단관능 아크릴레이트 모노머를 더 포함할 수 있다.In addition, the one or more types of monofunctional acrylate monomers may further include at least one type of monofunctional acrylate monomer having a glass transition temperature (T g ) of less than 0°C.
유리전이온도(Tg)가 0℃ 미만인 단관능 아크릴레이트 모노머는 성형물의 유연성을 높여 신장율을 향상시킬 수 있으며, 접착력이 우수하여 경화 속도에 기여한다.Monofunctional acrylate monomers with a glass transition temperature (T g ) of less than 0°C can improve the elongation rate by increasing the flexibility of the molded product, and have excellent adhesion, contributing to the curing speed.
유리전이온도(Tg)가 0℃ 미만의 단관능 아크릴레이트 모노머로는 라우릴 아크릴레이트(LA), 이소데실 아크릴레이트(IDA) 및 에톡시 에톡시 에틸 아크릴레이트(EOEOEA)가 포함될 수 있으며, 바람직하게는 에톡시 에톡시 에틸 아크릴레이트(EOEOEA)가 포함될 수 있다.Monofunctional acrylate monomers with a glass transition temperature (T g ) of less than 0°C may include lauryl acrylate (LA), isodecyl acrylate (IDA), and ethoxy ethoxy ethyl acrylate (EOEOEA). Preferably, ethoxy ethoxy ethyl acrylate (EOEOEA) may be included.
또한, 1종 이상의 단관능성 아크릴레이트 모노머는 유리전이온도(Tg)가 50℃ 이상인 단관능 아크릴레이트 모노머를 적어도 하나 이상 포함할 수 있다.Additionally, the one or more monofunctional acrylate monomers may include at least one monofunctional acrylate monomer having a glass transition temperature (T g ) of 50°C or higher.
단관능 아크릴레이트 모노머의 유리전이온도(Tg)가 50℃보다 낮으면, 성형물의 강도가 저하될 수 있다. 유리전이온도(Tg)가 50℃ 이상인 단관능 아크릴레이트 모노머로는 4-아크릴로일모르폴린(ACMO)이 사용될 수 있다.If the glass transition temperature (T g ) of the monofunctional acrylate monomer is lower than 50°C, the strength of the molded product may decrease. 4-acryloylmorpholine (ACMO) can be used as a monofunctional acrylate monomer with a glass transition temperature (T g ) of 50°C or higher.
전술한 바와 같이, 반응성 희석제인 아크릴레이트 모노머는 우레탄 아크릴레이트 올리고머 30 내지 40 중량부에 대하여 60 내지 70 중량부로 함유될 수 있다.As described above, the acrylate monomer, which is a reactive diluent, may be contained in an amount of 60 to 70 parts by weight based on 30 to 40 parts by weight of the urethane acrylate oligomer.
일 예로, 본 발명의 반응성 희석제가 1종 이상의 단관능성 아크릴레이트 모노머로 이루어지는 경우, 1종 이상의 단관능성 아크릴레이트 모노머 60 내지 70 중량부에는 유리전이온도(Tg)가 0℃ 미만인 단관능 아크릴레이트 모노머와 유리전이온도(Tg)가 50℃ 이상인 단관능 아크릴레이트 모노머가 20 내지 30 중량부의 범위로 포함될 수 있다. 이 때, 유리전이온도(Tg)가 0℃ 미만인 단관능 아크릴레이트 모노머는 1 내지 10 중량부이며, 유리전이온도(Tg)가 50℃ 이상인 단관능 아크릴레이트 모노머는 10 내지 20 중량부의 범위로 함유될 수 있다.As an example, when the reactive diluent of the present invention consists of one or more monofunctional acrylate monomers, 60 to 70 parts by weight of the one or more monofunctional acrylate monomers include a monofunctional acrylate having a glass transition temperature (T g ) of less than 0°C. Monomers and monofunctional acrylate monomers having a glass transition temperature (T g ) of 50°C or higher may be included in the range of 20 to 30 parts by weight. At this time, the monofunctional acrylate monomer with a glass transition temperature (T g ) of less than 0°C ranges from 1 to 10 parts by weight, and the monofunctional acrylate monomer with a glass transition temperature (T g ) of 50°C or higher ranges from 10 to 20 parts by weight. It may be contained as.
광개시제는 광원으로부터 에너지를 흡수하여 라디칼 혹은 양이온을 생성시킴으로써 광경화 조성물의 광중합 반응을 개시시킨다.The photoinitiator absorbs energy from a light source and generates radicals or cations to initiate the photopolymerization reaction of the photocurable composition.
광개시제는 350 내지 420nm의 파장 범위의 광을 흡수하는 광개시제로 당업계에서 사용하는 것이라면 특별히 제한이 없으나, 포스핀 옥사이드계 광개시제가 바람직하다.The photoinitiator is a photoinitiator that absorbs light in the wavelength range of 350 to 420 nm and is not particularly limited as long as it is used in the art, but a phosphine oxide-based photoinitiator is preferred.
그 예로는 디페닐-(2,4,6-트리메틸벤조일)-포스핀 옥사이드, 에틸-(2,4,6-트리메틸벤조일)페닐-포스피네이트, 페닐-비스-(2,4,6-트리메틸벤조일)-포스핀 옥사이드 등이 포함될 수 있다.Examples include diphenyl-(2,4,6-trimethylbenzoyl)-phosphine oxide, ethyl-(2,4,6-trimethylbenzoyl)phenyl-phosphinate, phenyl-bis-(2,4,6- Trimethylbenzoyl)-phosphine oxide, etc. may be included.
본 발명에 있어서 광개시제는 전체 광경화 조성물 내에서 0.1 중량% 내지 5 중량%의 범위로 포함될 수 있으며, 바람직하게는 0.5 중량% 내지 2 중량%의 범위로 포함될 수 있다.In the present invention, the photoinitiator may be included in the total photocurable composition in the range of 0.1% by weight to 5% by weight, and preferably in the range of 0.5% by weight to 2% by weight.
광개시제가 0.1 중량% 미만일 경우에는 광경화 조성물의 내부 경화가 이루어지기 어려워 성형물의 적층 형성 시 무너짐이 발생하거나 미경화가 발생되므로, 성형물의 기계적 물성이 저하된다. 반면, 광개시제가 5 중량%를 초과하면 과경화가 발생되어 성형물에 크랙을 유발할 수 있고, 성형물에 황변이 심하게 나타날 수 있다.If the photoinitiator is less than 0.1% by weight, it is difficult to achieve internal curing of the photocurable composition, which causes collapse or non-curing during lamination of the molded product, thereby deteriorating the mechanical properties of the molded product. On the other hand, if the photoinitiator exceeds 5% by weight, overcuring may occur, which may cause cracks in the molded product and severe yellowing of the molded product.
한편, 본 발명의 광경화성 3D 프린팅용 조성물은 필요에 따라 유색 안료가 더 포함할 수 있다.Meanwhile, the photocurable 3D printing composition of the present invention may further include colored pigments, if necessary.
유색 안료는 전체 광경화성 조성물 내에서 0.05 중량% 내지 2 중량%로 포함될 수 있다. 유색 안료가 위의 중량 비율을 벗어날 경우에는 조성물의 색소 조정이 용이하지 않다.Colored pigments may be included in an amount of 0.05% to 2% by weight in the total photocurable composition. If the colored pigment exceeds the above weight ratio, it is not easy to adjust the pigment of the composition.
일 예로, 유색 안료로 카본 블랙 안료, 금속산화물 안료 및 흑연 안료로 이루어진 군 중에서 어느 하나를 선택하여 사용할 수 있으며, 카본 블랙 안료를 사용하는 것이 보다 바람직하나, 이에 제한되는 것은 아니다.For example, the colored pigment may be selected from the group consisting of carbon black pigment, metal oxide pigment, and graphite pigment. It is more preferable to use carbon black pigment, but is not limited thereto.
준비된 광경화성 3D 프린팅용 조성물의 원료들을 기 설정된 비율로 혼합하여 광경화성 조성물을 형성한다(S120).The raw materials of the prepared photocurable 3D printing composition are mixed at a preset ratio to form a photocurable composition (S120).
전술한 바와 같이, 본 발명의 광경화성 3D 프린팅용 조성물이 혼합되는 기 설정된 비율은 우레탄 아크릴레이트 올리고머 30 내지 40 중량부에 대하여 아크릴레이트 모노머 60 내지 70 중량부일 수 있다.As described above, the preset mixing ratio of the photocurable 3D printing composition of the present invention may be 60 to 70 parts by weight of acrylate monomer based on 30 to 40 parts by weight of urethane acrylate oligomer.
또한, 아크릴레이트 모노머가 1종 이상의 단관능 아크릴레이트 모노머로 이루어지는 경우, 아크릴레이트 모노머에는 유리전이온도(Tg)가 0℃ 미만인 단관능 아크릴레이트 모노머 1 내지 10 중량부와 유리전이온도(Tg)가 50℃ 이상인 단관능 아크릴레이트 모노머 10 내지 20 중량부가 포함될 수 있다. 또한, 조성물의 분산성, 수축률 유지 및 점도를 낮추기 위한 단관능성 아크릴레이트 모노머가 더 포함될 수 있다.In addition, when the acrylate monomer consists of one or more monofunctional acrylate monomers, the acrylate monomer includes 1 to 10 parts by weight of a monofunctional acrylate monomer having a glass transition temperature (T g ) of less than 0°C and a glass transition temperature (T g ) may include 10 to 20 parts by weight of monofunctional acrylate monomer having a temperature of 50°C or higher. In addition, a monofunctional acrylate monomer may be further included to maintain the dispersibility, shrinkage rate, and lower the viscosity of the composition.
광개시제는 전체 광경화 조성물 내에서 0.1 중량% 내지 5 중량%의 범위로 포함될 수 있으며, 바람직하게는 0.5 중량% 내지 2 중량%의 범위로 포함될 수 있다.The photoinitiator may be included in the range of 0.1% by weight to 5% by weight, preferably in the range of 0.5% by weight to 2% by weight, in the entire photocurable composition.
광경화성 조성물에는 필요에 따라 유색 안료가 내에서 0.05 중량% 내지 2 중량% 더 포함될 수 있다.The photocurable composition may further contain 0.05% to 2% by weight of colored pigment, if necessary.
3D 프린팅용 조성물은 액체 상태로 형성되며, 각 원료들은 혼합 후 50℃ 이상에서 1시간 이상 교반하여 혼합된다. 이 때, 각각의 재료들이 완전히 용해되고 균일하게 분산된 상태로 형성될 때까지 교반 과정이 수행된다.The 3D printing composition is formed in a liquid state, and each raw material is mixed and then stirred at 50°C or higher for more than 1 hour. At this time, the stirring process is performed until each material is completely dissolved and formed in a uniformly dispersed state.
본 발명에 따른 광경화성 3D 프린팅용 조성물은 상온(25℃)에서의 점도가 1,000cps 이하이며, 바람직하게는 500cps 이하일 수 있다. 조성물의 점도가 1,000cps를 초과할 경우, 3D 프린팅의 작업성이 저하될 수 있다. The photocurable 3D printing composition according to the present invention may have a viscosity of 1,000 cps or less at room temperature (25°C), and preferably 500 cps or less. If the viscosity of the composition exceeds 1,000 cps, the workability of 3D printing may decrease.
준비된 광경화성 3D 프린팅용 조성물을 이용하여 3차원 구조의 성형물을 출력한다(S130).A molded article with a three-dimensional structure is printed using the prepared photocurable 3D printing composition (S130).
전술한 바와 같이 본 발명의 3D 프린팅용 조성물의 출력은 SLA 방식 또는 DLP 방식의 3D 프린터에 의해 수행될 수 있다.As described above, the output of the 3D printing composition of the present invention can be performed by an SLA or DLP 3D printer.
SLA 방식 및 DLP 방식은 수조에 액체 상태의 광경화성 조성물을 투입하고 수직 방향(Z축)으로 상승 또는 하강하면서 자외선 레이저로 경화시켜 성형물을 한층씩 적층하는 형태로 출력한다.In the SLA method and DLP method, a liquid photocurable composition is put into a water tank and cured with an ultraviolet laser while rising or falling in the vertical direction (Z-axis), and the molded product is output in the form of stacking one layer at a time.
본 발명의 광경화성 3D 프린터용 조성물을 이용한 3D 프린터 출력은 385nm 또는 405nm의 파장의 자외선을 조사하여 출력물을 경화시킬 수 있다.3D printer output using the photocurable 3D printer composition of the present invention can be cured by irradiating ultraviolet rays with a wavelength of 385 nm or 405 nm.
한편, 3D 프린터를 이용한 출력을 진행하기 전에, 격자구조의 성형물 출력을 위한 설계가 선행된다. 이후, 설계된 성형물의 출력 조건(출력 속도, 출력 레이어 높이, 두께, 온도 및 노즐 사이즈 등)을 프린터에 입력하는 슬라이싱이 수행되며, 입력된 출력 조건에 따라 3D 프린팅이 수행된다.Meanwhile, before proceeding with printing using a 3D printer, design for printing a molded product with a lattice structure is preceded. Afterwards, slicing is performed by inputting the output conditions (printing speed, output layer height, thickness, temperature, and nozzle size, etc.) of the designed molded product into the printer, and 3D printing is performed according to the inputted output conditions.
3D 프린터에서 출력된 성형물의 후처리가 수행된다(S140).Post-processing of the molded product printed from the 3D printer is performed (S140).
3D 프린팅이 완료되면 출력물을 프린터로부터 분리시키고, 출력물로부터 서포터가 제거된다. 이 때, 서포터의 흔적이 출력물에 남을 수 있기 때문에, 출력물의 표면은 필요에 따라 연마될 수 있다.When 3D printing is completed, the printout is separated from the printer, and the supporter is removed from the printout. At this time, since traces of the supporter may remain on the output, the surface of the output can be polished as needed.
한편, SLA 방식이나 DLP 방식의 3D 프린팅은 성형물의 표면에 광경화성 조성물이 일부 잔존하고 있을 수 있으며, 그로 인해 잔류 조성물을 제거하기 위한 세척 과정이 요구된다. 따라서 서포터가 분리된 출력물에 대하여 잔류 이물질 및 잔류 조성물의 제거를 위한 세척이 수행될 수 있다.On the other hand, in SLA or DLP method 3D printing, some photocurable composition may remain on the surface of the molded product, and as a result, a cleaning process is required to remove the remaining composition. Accordingly, washing to remove residual foreign substances and residual composition may be performed on the output from which the supporter has been separated.
세척이 완료된 출력물은 UV 경화가 2차로 수행되어, 최종적으로 성형물의 제작이 완료된다.After the cleaning has been completed, UV curing is performed a second time, and the final production of the molded product is completed.
본 발명에 따른 광경화성 3D 프린팅용 조성물에 의해 형성되는 출력물은 인열강도가 8kN/m 이상이고, 경도(Shore A)가 55 내지 70의 범위를 나타낸다.The output formed by the photocurable 3D printing composition according to the present invention has a tear strength of 8 kN/m or more and a hardness (Shore A) in the range of 55 to 70.
또한, 본 발명에 따른 광경화성 3D 프린팅용 조성물에 의해 형성되는 출력물은 고무와 같이 신장 가능한 성질을 구현하기 위하여 출력물의 소재가 갖는 인장 신율이 100% 이상으로 구현될 수 있다.In addition, the output formed by the photocurable 3D printing composition according to the present invention may have a tensile elongation of 100% or more in order to realize elastic properties like rubber.
나아가, 본 발명에 따른 광경화성 3D 프린팅용 조성물에 의한 출력물은 격자구조를 갖는 3차원 성형물로서, 출력된 성형물은 150% 이상의 인장 신율을 나타낸다. Furthermore, the output from the photocurable 3D printing composition according to the present invention is a three-dimensional molded product with a lattice structure, and the output molded product exhibits a tensile elongation of 150% or more.
도 2는 본 발명의 일 실시예에 따른 광경화성 3D 프린팅용 조성물을 이용하여 프린팅된 성형체의 격자구조를 나타낸 도면이다.Figure 2 is a diagram showing the lattice structure of a molded body printed using a photocurable 3D printing composition according to an embodiment of the present invention.
도 2(a)는 본 발명의 일 실시예의 광경화성 조성물로 프린팅된 3차원 격자 구조의 출력물로서, 체심입방격자(Body-Centered Cubic Lattice, BCC Lattice)구조이며, 도 2(b)는 팽창성 벌집(Honeycomb Auxetic) 구조 및 도 2(c)는 옥텟 트러스(Octet Truss) 격자구조를 각각 도시한 것이다.Figure 2(a) is an output of a three-dimensional lattice structure printed with the photocurable composition of an embodiment of the present invention, which is a body-centered cubic lattice (BCC Lattice) structure, and Figure 2(b) is an expandable honeycomb. (Honeycomb Auxetic) structure and Figure 2(c) respectively show the octet truss lattice structure.
격자구조는 대칭성의 규칙에 따라 반복적으로 배열된 구조로서, 3D 프린팅 기술을 활용한 3차원의 격자구조 출력은 여러 산업분야의 제품에 대하여 다양한 응용을 가능하게 할 수 있다.A lattice structure is a structure that is repeatedly arranged according to the rules of symmetry, and the output of a three-dimensional lattice structure using 3D printing technology can enable various applications for products in various industrial fields.
특히, 고무와 같은 성질을 갖는 재료를 적용하여 격자구조의 성형물을 출력할 경우, 3D 프린팅된 격자구조는 변형 가능성이 매우 높음과 동시에 기계적인 특성 역시 우수한 것으로 알려져 있다.In particular, when a material with rubber-like properties is applied to print a molded product with a lattice structure, the 3D printed lattice structure is known to have a very high possibility of deformation and at the same time has excellent mechanical properties.
도 2(a)의 BCC 격자구조는 Body-Centered 격자와 단순한 큐빅(Cubic) 격자를 단일 구조로 결합한 것이며, 탄성 응답과 좌굴 응답을 모두 결합하여 에너지 소산에 유리한 구조이다. The BCC lattice structure in Figure 2(a) combines a body-centered lattice and a simple cubic lattice into a single structure, and is a structure that is advantageous for energy dissipation by combining both elastic response and buckling response.
도 2(b)의 팽창성 벌집구조(Honeycomb Auxetic)는 에너지 흡수율이 높아 충격 흡수용의 부재로 유리하다. 또한, 옥텟 트러스(Octet Truss) 격자구조는 강도 대 밀도 비율이 높은 구조로서 경량 구조가 요구되는 제품에 유리하며, 높은 압축강도와 높은 탄성도를 갖는 구조물에 유리하다.The inflatable honeycomb structure (Honeycomb Auxetic) shown in Figure 2(b) has a high energy absorption rate and is therefore advantageous as a shock absorbing member. In addition, the octet truss lattice structure has a high strength-to-density ratio and is advantageous for products that require a lightweight structure, and is advantageous for structures with high compressive strength and high elasticity.
전술한 바와 같이, 본 발명의 광경화성 조성물을 이용해 출력한 3D 출력물은 그 자체로서 파단신율이 100% 이상으로 고무와 같은 성질을 구현할 수 있다. 도 2에 도시된 바와 같이, 출력물의 3차원 구조를 격자구조로 구현하면 최종 성형물의 파단신율을 향상시키기에 유리하다. As described above, the 3D output printed using the photocurable composition of the present invention can realize rubber-like properties with an elongation at break of 100% or more. As shown in Figure 2, it is advantageous to improve the elongation at break of the final molded product if the three-dimensional structure of the output is implemented as a lattice structure.
나아가, 본 발명의 광경화성 조성물을 이용하여 출력된 격자구조의 성형물은 탄성에 의한 회복성능 외에 충격 흡수 및 우수한 압축강도도 확보할 수 있다. Furthermore, the lattice-structured molded product printed using the photocurable composition of the present invention can secure shock absorption and excellent compressive strength in addition to elastic recovery performance.
도 3은 본 발명의 일 실시예에 따른 광경화성 3D 프린팅용 조성물을 이용한 성형물의 출력 과정을 보여주는 사진이다.Figure 3 is a photograph showing the process of printing a molded product using a photocurable 3D printing composition according to an embodiment of the present invention.
이하에서는, 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 살펴보기로 한다. Below, the operation and effects of the invention will be examined in more detail through specific examples of the invention.
실시예Example
하기 실시예 및 비교예에서 사용된 화합물들은 표 1과 같다.Compounds used in the following examples and comparative examples are listed in Table 1.
명 칭
Name
분자량Molecular Weight Tg(℃)T g (°C) 점도
cps(℃)
viscosity
cps(℃)
올리고머oligomer Urethane AcrylateUrethane Acrylate -- -- 11,00011,000
모노머monomer 4-Acryloylmorpholine(ACMO)4-Acryloylmorpholine (ACMO) 141.17141.17 145145 1212
o-Phenylphenol EO acrylate
(OPPEA)
o-Phenylphenol EO acrylate
(OPPEA)
268268 3333 110-160110-160
Phenol(EO)Acrylate(PHEA)Phenol(EO)Acrylate(PHEA) 192192 77 8-208-20
Ethoxy ethoxy ethyl acrylate(EOEOEA)Ethoxy ethoxy ethyl acrylate (EOEOEA) 188188 -56-56 3-103-10
Isodecyl Acrylate(IDA)Isodecyl Acrylate(IDA) 212212 -60-60 1-101-10
Trimethylpropanetriacrylate
(TMPTA)
Trimethylpropanetriacrylate
(TMPTA)
296296 6262 8-1208-120
(실시예 1)(Example 1)
우레탄 아크릴레이트 올리고머 30 중량부, 단관능 아크릴레이트 모노머로서 4-아크릴로일모르폴린(ACMO) 10 중량부, o-페닐페놀(EO) 아크릴레이트(OPPEA) 10 중량부, 페놀(EO) 아크릴레이트(PHEA) 40 중량부, 에톡시 에톡시 에틸 아크릴레이트 (EOEOEA) 10 중량부 및 광개시제로서 페닐-비스-(2,4,6-트리메틸벤조일)-포스핀 옥사이드를 전체 조성물에 대하여 1.2 중량%으로 포함하도록 혼합하고, 이를 50℃ 이상에서 1시간 이상 교반하여 광경화성 3D 프린팅용 조성물을 제조하였다.30 parts by weight of urethane acrylate oligomer, 10 parts by weight of 4-acryloylmorpholine (ACMO) as a monofunctional acrylate monomer, 10 parts by weight of o-phenylphenol (EO) acrylate (OPPEA), phenol (EO) acrylate (PHEA) 40 parts by weight, ethoxy ethoxy ethyl acrylate (EOEOEA) 10 parts by weight, and phenyl-bis-(2,4,6-trimethylbenzoyl)-phosphine oxide as a photoinitiator at 1.2% by weight based on the total composition. It was mixed to contain the mixture and stirred for more than 1 hour at 50°C or higher to prepare a photocurable 3D printing composition.
(실시예 2 내지 4)(Examples 2 to 4)
아래 표 2에 기재된 조성으로 실시예 1과 같은 방법에 의해 광경화성 3D 프린팅용 조성물을 제조하였다.A photocurable 3D printing composition was prepared using the same method as Example 1 with the composition shown in Table 2 below.
(비교예 1 내지 6)(Comparative Examples 1 to 6)
아래 표 2에 기재된 조성으로 실시예 1과 같은 방법에 의해 광경화성 3D 프린팅용 조성물을 제조하였다.A photocurable 3D printing composition was prepared using the same method as Example 1 with the composition shown in Table 2 below.
Figure PCTKR2023019795-appb-img-000001
Figure PCTKR2023019795-appb-img-000001
(시편 제작 및 평가 방법)(Specimen production and evaluation method)
위의 실시예 및 비교예에서 제조된 광경화성 조성물에 대하여 3D 프린팅을 통해 시험 시편을 출력하여 물성을 평가하였다. 경화 전의 광경화성 조성물에 대하여 상온(25℃)에서의 점도를 측정하였다. 또한, 경화된 시험 시편들은 경도(Shore A), 인열강도, 파단신율 및 반발탄성에 대한 물성이 평가되었다.Test specimens were printed through 3D printing for the photocurable compositions prepared in the above examples and comparative examples to evaluate the physical properties. The viscosity of the photocurable composition before curing was measured at room temperature (25°C). Additionally, the cured test specimens were evaluated for hardness (Shore A), tear strength, elongation at break, and rebound elasticity.
본 발명에 따른 광경화성 조성물에 의해 출력된 시험 시편의 경도는 일반 고무, 연질 고무, 엘라스토머 등에 대하여 적용되는 쇼어(Shore) 경도 A-Type에 의해 측정되었다.The hardness of the test specimen printed by the photocurable composition according to the present invention was measured by Shore hardness A-Type, which is applied to general rubber, soft rubber, elastomer, etc.
또한, 신율은 UTM(Universal Testing Machine)을 이용하여 ASTM D412 규격에 따라 측정되었으며, 인열강도는 ASTM D624에 의거하여, 반발탄성은 ISO 4662에 의거하여 각각 측정되었다.In addition, elongation was measured according to ASTM D412 standard using UTM (Universal Testing Machine), tear strength was measured according to ASTM D624, and rebound elasticity was measured according to ISO 4662.
Figure PCTKR2023019795-appb-img-000002
Figure PCTKR2023019795-appb-img-000002
표 3은 실시예 및 비교예의 조성물에 의해 제조된 시험 시편의 물성 평가 결과를 나타낸 것이다.Table 3 shows the physical property evaluation results of test specimens prepared by the compositions of Examples and Comparative Examples.
표 3을 참조하여 보면, 우레탄 아크릴레이트 올리고머의 함량이 40 중량부를 초과하여 사용하는 경우(비교예 3 내지 6), 상온에서의 광경화 조성물의 점도가 1,000 cps를 초과하여 SLA 방식 또는 DLP 방식의 3D 프린팅에 적합하지 않음을 확인할 수 있다.Referring to Table 3, when the urethane acrylate oligomer content exceeds 40 parts by weight (Comparative Examples 3 to 6), the viscosity of the photocurable composition at room temperature exceeds 1,000 cps, making it suitable for use in the SLA or DLP method. You can confirm that it is not suitable for 3D printing.
o-페닐페놀(EO)아크릴레이트(OPPEA) 또는 페놀(EO)아크릴레이트(PHEA)와 같은 단관능 아크릴레이트 모노머를 포함하지 않거나 어느 1종만 포함하는 경우(비교예 1, 2, 3 및 6), 경화된 시편은 매우 소프트하고 높은 반발탄성 값을 갖는 것을 확인할 수 있었다. 그러나, 비교예 1 내지 3 및 6의 시편은 파단신율과 인열강도가 낮아 오히려 깨지기 쉬운 문제가 있다.When it does not contain monofunctional acrylate monomers such as o-phenylphenol (EO)acrylate (OPPEA) or phenol (EO)acrylate (PHEA) or contains only one type (Comparative Examples 1, 2, 3 and 6) , it was confirmed that the hardened specimen was very soft and had a high rebound elasticity value. However, the specimens of Comparative Examples 1 to 3 and 6 have a problem of being brittle due to low elongation at break and tear strength.
또한, 실시예 2는 실시예 1에 대하여 안료로서 카본블랙을 더 포함한 경우이며, 안료가 첨가됨에 따라 파단신율 및 반발탄성 값이 안료 사용 전 대비 다소 낮아졌다. 그러나 실시예 1 및 2는 모두 신율 100% 이상 및 인열강도 8 kN/m 이상의 기준을 만족하는 것을 확인할 수 있어, 전체 조성물의 0.1 중량% 수준으로 안료를 첨가하는 정도는 소재의 물성에 큰 변화가 없음을 확인할 수 있다.In addition, Example 2 is a case in which carbon black was further included as a pigment compared to Example 1, and as the pigment was added, the elongation at break and rebound elasticity values were somewhat lower than before the pigment was used. However, it can be confirmed that both Examples 1 and 2 meet the standards of more than 100% elongation and more than 8 kN/m of tear strength, so the amount of pigment added at the level of 0.1% by weight of the total composition significantly changes the physical properties of the material. You can confirm that there is no .
실시예 1 내지 4는 단관능성 아크릴레이트 모노머만을 1종 이상 포함하되, 유리전이온도가 0℃보다 낮은 에톡시 에톡시 에틸 아크릴레이트(EOEOEA)와 유리전이온도가 50℃보다 높은 4-아크릴로일모르폴린(ACMO)을 동시에 포함하며, o-페닐페놀(EO) 아크릴레이트(OPPEA) 또는 페놀(EO) 아크릴레이트(PHEA)의 아크릴레이트 모노머를 포함하고 있다.Examples 1 to 4 contain only one or more monofunctional acrylate monomers, but include ethoxy ethoxy ethyl acrylate (EOEOEA) with a glass transition temperature lower than 0°C and 4-acryloyl with a glass transition temperature higher than 50°C. It simultaneously contains morpholine (ACMO) and acrylate monomers of o-phenylphenol (EO) acrylate (OPPEA) or phenol (EO) acrylate (PHEA).
실시예 1 내지 4의 경우, 경화 전 조성물의 상온에서의 점도도 1,000cps보다 낮아 3D 프린팅의 작업이 매우 용이해지는 장점이 있다.In the case of Examples 1 to 4, the viscosity of the composition before curing at room temperature is also lower than 1,000 cps, which has the advantage of making 3D printing very easy.
또한, 실시예 1 내지 4에 의해 제조된 시험 시편으로부터, 경화된 소재 자체의 경도가 일반 고무 수준(예를 들면, 연필 지우개 내지 자동차 타이어 수준, Shore A 경도 55 내지 65)으로 구현될 수 있음도 확인할 수 있다.In addition, from the test specimens prepared in Examples 1 to 4, the hardness of the cured material itself can be realized at the level of general rubber (e.g., pencil eraser to car tire level, Shore A hardness 55 to 65). You can check it.
게다가, 실시예 1 내지 4의 조성물은 100% 이상의 파단신율을 갖는 소재의 구현이 가능하므로, 이러한 조성물을 이용하여 3차원의 격자구조 성형물을 출력하여 보다 더 향상된 신율을 갖는 성형물을 제조할 수 있다. In addition, the compositions of Examples 1 to 4 can produce materials with an elongation at break of 100% or more, so these compositions can be used to print three-dimensional lattice structure moldings to manufacture moldings with even improved elongation. .
도 1에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 각각의 도면에 기재된 과정의 순서를 변경하여 실행하거나 과정 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 1은 시계열적인 순서로 한정되는 것은 아니다.In Figure 1, each process is described as being sequentially executed, but this is merely an illustrative explanation of the technical idea of an embodiment of the present invention. In other words, a person skilled in the art to which an embodiment of the present invention pertains can change the order of the processes described in each drawing and execute one or more of the processes without departing from the essential characteristics of an embodiment of the present invention. Since various modifications and variations can be applied by executing the process in parallel, Figure 1 is not limited to a time series order.
한편, 도 1에 도시된 과정들은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. Meanwhile, the processes shown in FIG. 1 can be implemented as computer-readable codes on a computer-readable recording medium. Computer-readable recording media include all types of recording devices that store data that can be read by a computer system. In other words, computer-readable recording media include magnetic storage media (e.g., ROM, floppy disk, hard disk, etc.), optical read media (e.g., CD-ROM, DVD, etc.), and carrier wave (e.g., Internet It includes storage media such as transmission through . Additionally, computer-readable recording media can be distributed across networked computer systems so that computer-readable code can be stored and executed in a distributed manner.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present embodiment, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present embodiments are not intended to limit the technical idea of the present embodiment, but rather to explain it, and the scope of the technical idea of the present embodiment is not limited by these examples. The scope of protection of this embodiment should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of this embodiment.
본 특허는 2022년도 대한민국 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구 결과입니다(과제고유번호:1415181486, 과제번호: 20021943, 과제명:준양산형 3D프린팅 기술의 자동화설비 구축을 통한 목적기반모빌리티(PBV) 내장 부품의 융합생산기술 개발).This patent is the result of research conducted with the support of the Korea Institute of Industrial Technology Evaluation and Planning with funding from the Korean government (Ministry of Trade, Industry and Energy) in 2022 (Project identification number: 1415181486, Project number: 20021943, Project name: Semi-mass production 3D printing technology Development of convergence production technology for purpose-based mobility (PBV) built-in parts through construction of automated facilities).
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2022년 12월 08일 한국에 출원한 특허출원번호 제10-2022-0170689호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.*This patent application claims priority pursuant to Article 119(a) of the U.S. Patent Act (35 U.S.C § 119(a)) over Patent Application No. 10-2022-0170689 filed in Korea on December 8, 2022. The entire contents of which are hereby incorporated by reference into this patent application. In addition, if this patent application claims priority for a country other than the United States for the same reasons as above, the entire contents thereof will be incorporated into this patent application by reference.

Claims (10)

  1. 격자구조의 신장가능한 물품을 출력하기 위한 광경화성 3D 프린팅용 조성물로서,A photocurable 3D printing composition for printing stretchable articles with a lattice structure,
    아크릴레이트 올리고머인 베이스 수지;Base resin which is an acrylate oligomer;
    적어도 1종 이상의 라디칼 경화 가능 아크릴레이트 모노머; 및At least one type of radically curable acrylate monomer; and
    광 개시제를 포함하는 광경화성 3D 프린팅용 조성물.A photocurable composition for 3D printing containing a photoinitiator.
  2. 제1항에 있어서,According to paragraph 1,
    상기 적어도 1종 이상의 아크릴레이트 모노머는,The at least one acrylate monomer is,
    단관능성 아크릴레이트 모노머인 것을 특징으로 하는 광경화성 3D 프린팅용 조성물.A photocurable composition for 3D printing, characterized in that it is a monofunctional acrylate monomer.
  3. 제2항에 있어서,According to paragraph 2,
    상기 아크릴레이트 올리고머 30 내지 40 중량부에 대하여 상기 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 60 내지 70 중량부의 양으로 함유되는, 광경화성 3D 프린팅용 조성물.A composition for photocurable 3D printing, wherein the at least one type of monofunctional acrylate monomer is contained in an amount of 60 to 70 parts by weight based on 30 to 40 parts by weight of the acrylate oligomer.
  4. 제2항에 있어서,According to paragraph 2,
    상기 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 유리전이온도(Tg)가 0℃ 미만인 아크릴레이트 모노머와 유리전이온도(Tg)가 50℃ 이상인 아크릴레이트 모노머를 포함하는 것을 특징으로 하는, 광경화성 3D 프린팅용 조성물.The at least one monofunctional acrylate monomer is photocurable, characterized in that it includes an acrylate monomer with a glass transition temperature (T g ) of less than 0°C and an acrylate monomer with a glass transition temperature (T g ) of 50°C or more. Composition for 3D printing.
  5. 제1항에 있어서,According to paragraph 1,
    상기 아크릴레이트 올리고머는,The acrylate oligomer is,
    우레탄 아크릴레이트 올리고머인, 광경화성 3D 프린팅용 조성물.A photocurable 3D printing composition that is a urethane acrylate oligomer.
  6. 제1항에 있어서,According to paragraph 1,
    상기 광경화성 3D 프린팅용 조성물은 경화 전의 점도가 상온에서 1,000cps 이하인 것을 특징으로 하는, 광경화성 3D 프린팅용 조성물.The photocurable 3D printing composition is characterized in that the viscosity before curing is 1,000 cps or less at room temperature.
  7. 제2항에 있어서,According to paragraph 2,
    상기 적어도 1종 이상의 단관능성 아크릴레이트 모노머는 4-아크릴로일모르폴린과 에톡시 에톡시 에틸 아크릴레이트를 포함하는 것을 특징으로 하는 광경화성 3D 프린팅용 조성물.A photocurable 3D printing composition, wherein the at least one monofunctional acrylate monomer includes 4-acryloylmorpholine and ethoxy ethoxy ethyl acrylate.
  8. 제1 내지 제7항 중 어느 한 항에 따른 광경화성 3D 프린팅용 조성물을 제조하는 단계;Preparing a photocurable 3D printing composition according to any one of claims 1 to 7;
    상기 광경화성 3D 프린팅용 조성물을 자외선 레이저에 의해 한층씩 경화시켜 경화된 층들이 적층하는 형태로 성형물을 출력하는 단계; 및curing the photocurable 3D printing composition layer by layer with an ultraviolet laser and outputting a molded product in the form of stacking the cured layers; and
    출력된 3차원 성형물을 후처리하는 단계를 포함하는 3차원 성형물의 제조방법.A method of manufacturing a three-dimensional molded product including the step of post-processing the printed three-dimensional molded product.
  9. 제8항에 있어서,According to clause 8,
    상기 3차원 성형물은, The three-dimensional molded product is,
    격자구조로 출력된 3차원 성형물인 것을 특징으로 하는 3차원 성형물의 제조방법.A method of manufacturing a three-dimensional molded product, characterized in that the three-dimensional molded product is printed in a lattice structure.
  10. 제1항 내지 제7항 중 어느 한 항에 따른 광경화성 조성물을 이용하여 3D 프린팅하여 격자구조로 제조된 3D 적층체.A 3D laminate manufactured into a lattice structure by 3D printing using the photocurable composition according to any one of claims 1 to 7.
PCT/KR2023/019795 2022-12-08 2023-12-04 Photocurable 3d printing composition for manufacturing stretchable product with lattice structure WO2024123009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220170689A KR102574925B1 (en) 2022-12-08 2022-12-08 Photocurable 3D Printing Composition for Manufacturing Stretchable Lattice-Structured Object
KR10-2022-0170689 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024123009A1 true WO2024123009A1 (en) 2024-06-13

Family

ID=87973948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019795 WO2024123009A1 (en) 2022-12-08 2023-12-04 Photocurable 3d printing composition for manufacturing stretchable product with lattice structure

Country Status (2)

Country Link
KR (1) KR102574925B1 (en)
WO (1) WO2024123009A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574925B1 (en) * 2022-12-08 2023-09-06 주식회사 한국디아이씨 Photocurable 3D Printing Composition for Manufacturing Stretchable Lattice-Structured Object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089057A (en) * 2016-12-05 2019-07-29 알케마 인코포레이티드 Initiator blends and photocurable compositions useful for three-dimensional printing containing such initiator blends
KR20200034032A (en) * 2018-09-14 2020-03-31 주식회사 엘지화학 Light curable composition for inkjet 3d printing
KR102190637B1 (en) * 2018-11-26 2020-12-15 주식회사 제일화성 Epoxy acrylate oligimer and method for manufacturing the same, and photocurable resin composition for 3d printing using the same
KR102288669B1 (en) * 2020-05-15 2021-08-11 한국신발피혁연구원 A 3d printing filament and a method for manufacturing an insole using the same
KR20220154755A (en) * 2020-03-13 2022-11-22 바스프 에스이 Photocurable composition for 3D-printing, preparation and use thereof, and method of forming 3D-printed object using the same
KR102574925B1 (en) * 2022-12-08 2023-09-06 주식회사 한국디아이씨 Photocurable 3D Printing Composition for Manufacturing Stretchable Lattice-Structured Object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089057A (en) * 2016-12-05 2019-07-29 알케마 인코포레이티드 Initiator blends and photocurable compositions useful for three-dimensional printing containing such initiator blends
KR20200034032A (en) * 2018-09-14 2020-03-31 주식회사 엘지화학 Light curable composition for inkjet 3d printing
KR102190637B1 (en) * 2018-11-26 2020-12-15 주식회사 제일화성 Epoxy acrylate oligimer and method for manufacturing the same, and photocurable resin composition for 3d printing using the same
KR20220154755A (en) * 2020-03-13 2022-11-22 바스프 에스이 Photocurable composition for 3D-printing, preparation and use thereof, and method of forming 3D-printed object using the same
KR102288669B1 (en) * 2020-05-15 2021-08-11 한국신발피혁연구원 A 3d printing filament and a method for manufacturing an insole using the same
KR102574925B1 (en) * 2022-12-08 2023-09-06 주식회사 한국디아이씨 Photocurable 3D Printing Composition for Manufacturing Stretchable Lattice-Structured Object

Also Published As

Publication number Publication date
KR102574925B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2024123009A1 (en) Photocurable 3d printing composition for manufacturing stretchable product with lattice structure
EP3727797B1 (en) A hybrid photopolymer composition for additive manufacturing
US6350792B1 (en) Radiation-curable compositions and cured articles
KR101048603B1 (en) Curable composition and rapid molding method using the same
JP2020523217A (en) Blocking group of photopolymerizable resin useful in addition production
ATE22909T1 (en) MOLDING COMPOUNDS BASED ON POLYMERS REINFORCED BY MINERAL FILLERS, PROCESSES FOR THEIR PRODUCTION, MEANS FOR CARRYING OUT THESE PROCESSES, AND OBJECTS OBTAINED WITH THE MEANS OF THE MOLDING COMPOUNDS.
US11299576B2 (en) Sustainable chemistry systems for recyclable dental models and other additively manufactured products
WO2019045346A1 (en) Low-gloss cured product having excellent stain resistance, and manufacturing method therefor
WO2020040414A1 (en) Radiation curable polymer composition for 3d printer
KR20170084396A (en) Composition for hard coating, film using the same and methods for manufacturing the film
WO2020080670A1 (en) Eco-friendly thermoplastic polyurethane flooring material having excellent dimensional stability and abrasion resistance, and manufacturing method therefor
WO2023055046A1 (en) 3d printing composition for ceramic artificial teeth
WO2010110528A1 (en) Hard coating composition, multi-layered sheet using the same, and preparation method thereof
WO2011007979A2 (en) Photocurable resin composition containing fluorine and method for producing a resin mold using same
WO2021107365A1 (en) Top-down mode 3d printer and method for producing product using same
CN114080375B (en) Paste for ceramic three-dimensional modeling and method for producing three-dimensional modeling object
WO2016093570A1 (en) Thin film polyurethane foam laminate and method for manufacturing same
WO2020138621A1 (en) Three-dimensional printing composition
WO2020138622A1 (en) 3d printing apparatus and method
WO2021117919A1 (en) 3d printing composition having high strength and high transparency
WO2018044008A1 (en) Composition for hard coating, decoration sheet using same, and method for manufacturing decoration sheet
WO2024144263A1 (en) Elastic material composition for photocurable 3d printing, having excellent mechanical properties
KR102497162B1 (en) Livestock storage tank made with fiber reinforced acryl polymer and manufacturing method of thereof
WO2017188550A1 (en) Binder composite and preparation method therefor
WO2021246677A1 (en) Photocurable resin composition for surgical guide, surgical guide manufactured therefrom and method for manufacturing same