WO2020138085A1 - 疾患予測システム - Google Patents

疾患予測システム Download PDF

Info

Publication number
WO2020138085A1
WO2020138085A1 PCT/JP2019/050611 JP2019050611W WO2020138085A1 WO 2020138085 A1 WO2020138085 A1 WO 2020138085A1 JP 2019050611 W JP2019050611 W JP 2019050611W WO 2020138085 A1 WO2020138085 A1 WO 2020138085A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
disease
input
prediction
prediction system
Prior art date
Application number
PCT/JP2019/050611
Other languages
English (en)
French (fr)
Inventor
渡辺 健一
京本 政之
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/418,174 priority Critical patent/US20220082574A1/en
Priority to EP19905160.8A priority patent/EP3903666A4/en
Priority to JP2020563306A priority patent/JPWO2020138085A1/ja
Publication of WO2020138085A1 publication Critical patent/WO2020138085A1/ja
Priority to JP2023106415A priority patent/JP2023121815A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H80/00ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/108Osteoporosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine

Definitions

  • the present disclosure relates to a disease prediction system.
  • Patent Document 1 describes a diagnostic support device for osteoporosis, which is one of the diseases.
  • a disease prediction system is an input unit in which input information including first information of a subject used for diagnosis of a disease and second information regarding a hormone-like substance of the subject is input. And a control unit that predicts future onset of the disease of the subject from the input information input to the input unit.
  • the disease prediction system 1 of the present disclosure can predict the onset of disease in middle-aged and elderly people, for example.
  • the diseases of middle-aged and elderly people include, for example, osteoporosis, osteoarthritis, spondylosis, bone fracture, sarcopenia, flail, menopausal disorder, ED (Erectile Dysfunction), and periodontal disease.
  • osteoporosis will be explained as an example of the disease.
  • FIG. 1 shows the concept of the configuration of the disease prediction system 1 of the present disclosure.
  • the disease prediction system 1 of the present disclosure has a terminal device 2 and a prediction device 3.
  • the terminal device 2 acquires data of a subject used for diagnosis of a disease.
  • the prediction device 3 can predict the onset of future diseases based on the data acquired by the terminal device 2.
  • the terminal device 2 can acquire data as described above.
  • the data acquired by the terminal device 2 is input to the prediction device 3 as the input information I.
  • the input information I has information (second information I2) on the hormone-mimetic substance of the subject, in addition to the subject data (first information I1) used for diagnosing the disease.
  • the terminal device 2 includes a first terminal device 21 that acquires the first information I1 and a second terminal device 22 that acquires the second information.
  • the first terminal device 21 may be, for example, a simple X-ray imaging device or a bone mass measuring device when the disease prediction system 1 is used for diagnosing osteoporosis.
  • the first information I1 may have a medical image such as a simple X-ray image.
  • the second terminal device 22 can acquire the second information I2 that affects the disease related to the first information I1 acquired by the first terminal device 21.
  • the second information I2 may be, for example, information on the presence or absence of the hormone-like acting substance or the concentration thereof.
  • the second information I2 may be, for example, a measurement value of a hormone-like substance in blood or urine of the subject.
  • the second information I2 may be data indicating the presence or absence of nonsteroidal estrogen when the first information I1 is associated with osteoporosis.
  • the second terminal device 22 may be, for example, an inspection device using a SAW (Surface Acoustic Wave) sensor.
  • SAW Surface Acoustic Wave
  • the terminal device 2 may transfer the input information I to the prediction device 3 after acquiring the input information I.
  • the terminal device 2 first terminal device 21
  • the terminal device 2 is installed in, for example, an X-ray room, and takes a radiograph of the subject. Then, the image data can be transferred from the terminal device 2 to the prediction device 3, and the future onset of the disease can be predicted via the prediction device 3.
  • the terminal device 2 does not have to directly transfer the input information I to the prediction device 3.
  • the input information I acquired by the terminal device 2 may be stored in a storage medium and the input information I may be input to the prediction device 3 via the storage medium.
  • the second terminal device 22 may transfer the second input information I2 to the prediction device 3 after acquiring the second input information I2.
  • the test device using the SAW sensor transfers the information on the concentration of the hormone-like acting substance in the blood or urine of the subject
  • the information as the numerical value of the concentration may be transferred or converted into the concentration.
  • You may transfer the information of the primary data before performing.
  • the primary data may be, for example, information about a phase change, an amplitude change, a frequency change, etc. of the detection signal from the sensor.
  • FIG. 2 shows the concept of the configuration of the prediction device 3 according to this embodiment.
  • the prediction device 3 can predict the future onset of the disease of the subject from the input information I input to the prediction device 3. For example, when the disease prediction system 1 predicts osteoporosis, the prediction device 3 predicts the future onset of osteoporosis of the subject from the input information I including the medical image acquired by the terminal device 2, The predicted prediction result O can be output.
  • the prediction device 3 has an input unit 31, a control unit 34, an output unit 33, and a storage unit 35.
  • the input unit 31, the output unit 33, the control unit 34, and the storage unit 35 are electrically connected to each other by, for example, a bus 60.
  • the input unit 31 receives the input information I from the terminal device 2.
  • the control unit 34 can predict the onset of the disease based on the input information I based on the prediction unit 32 described below by executing the control program.
  • the output unit 33 can output the prediction result O predicted by the prediction unit 32.
  • the storage unit 35 stores a control program and various data and parameters necessary for control.
  • the prediction device 3 of the present disclosure has a plurality of electronic components and circuits.
  • the prediction device 3 can form each constituent member that configures the prediction device 3 with a plurality of electronic components and circuits.
  • the plurality of electronic components may be, for example, active elements such as transistors or diodes, or passive elements such as capacitors, and may be formed by a conventionally known method.
  • the input information I is input to the input unit 31 as described above.
  • the input unit 31 may include a communication unit so that the input information I acquired by the terminal device 2 is directly input from the terminal device 2. Further, the input unit 31 may include an input device capable of inputting the input information I or other information.
  • the input device may be, for example, a keyboard, a touch panel, a mouse, or the like.
  • the control unit 34 can comprehensively manage the operation of the prediction device 3 by controlling the other components of the prediction device 3.
  • the control unit 34 can also be called a control device or a control circuit.
  • the control unit 34 includes at least one processor to provide control and processing power to perform various functions, as described in further detail below.
  • a processor includes one or more circuits or units configured to perform one or more data calculation procedures or processes, eg, by executing instructions stored in associated memory.
  • the processor may be firmware (eg, discrete logic component) configured to perform one or more data calculation procedures or processes.
  • the processor is one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or the like. Any combination of devices or configurations, or combinations of other known devices and configurations, may be included to perform the functions described below.
  • the control unit 34 includes, for example, a CPU (Central Processing Unit).
  • the storage unit 35 includes a non-temporary recording medium such as a ROM (Read Only Memory) and a RAM (Random Access Memory) that can be read by the CPU of the control unit 34.
  • the storage unit 35 stores a control program for controlling the prediction device 3.
  • the various functions of the control unit 34 are realized by the CPU of the control unit 34 executing the control program in the storage unit 35. It can be said that the control program is a prediction program for causing the computer device 1 to function as the prediction device 3.
  • control unit 34 executes the control program stored in the storage unit 35 to form the prediction unit 32 capable of estimating the prediction result O.
  • the prediction unit 32 includes, for example, a neural network. It can be said that the control program is a program for causing the computer device 1 to function as a neural network (prediction unit 32). A configuration example of the neural network will be described later in detail.
  • the storage unit 35 stores learned parameters related to the neural network, estimation data (hereinafter, also referred to as “input information”), learning data, and teacher data.
  • the learning data and the teacher data are data used when learning the neural network.
  • the learned parameters and the estimation data are data used when the learned neural network estimates the onset of a disease.
  • the prediction unit 32 can predict the onset of future disease of the subject from the input information I input to the input unit 31.
  • the prediction unit 32 has AI (Artificial Intelligence).
  • the AI of the present disclosure may be, for example, a neural network.
  • the prediction unit 32 is preliminarily learned. That is, the prediction unit 32 can calculate the prediction result O from the input information I by applying the machine learning to the prediction unit 32 using the learning data and the teacher data.
  • the learning data or the teacher data may be data corresponding to the input information I input to the prediction device 3 and the prediction result O output from the prediction device 3.
  • 3 and 4 show the concept of the configuration of the prediction unit 32 of the present disclosure.
  • the prediction unit 32 has a first neural network 321 and a second neural network 322.
  • the first neural network 321 may be any neural network suitable for handling time series information.
  • the first neural network 321 may be a ConvLSTM network in which a CNN (Convolutional Neural Network) and an LSTM (Long short-term memory) are combined.
  • the second neural network 322 may be, for example, a convolutional network composed of CNN.
  • FIG. 3 illustrates the concept of the configuration of the first neural network 321 of the present disclosure.
  • FIG. 4 shows the concept of the configuration of the second neural network 322.
  • the first neural network 321 has an encoding unit E and a decoding unit D.
  • the encoding unit E can extract the time change of the input information I and the feature amount of the position information.
  • the decoding unit D can calculate a new characteristic amount based on the characteristic amount extracted by the encoding unit E, the time change of the input information I, and the initial value.
  • the encoding unit E has a plurality of ConvLSTM layers (Convolutional Long Short-term memory) E1.
  • the decoding unit D includes a plurality of ConvLSTM layers (Convolutional Long Short-term memory) D1.
  • the plurality of ConvLSTM layers E1 may have different learning contents.
  • the plurality of ConvLSTM layers D1 may have different learning contents. For example, one ConvLTSM layer may learn a detailed content such as a change in each pixel, and another ConvLTSM layer may learn a detailed content such as a change in the entire image.
  • the second neural network 322 has a conversion unit C.
  • the conversion unit C can convert the feature amount calculated by the decoding unit D into a bone amount.
  • the conversion unit C has a plurality of convolutional layers C1, a plurality of pooling layers C2, and a fully connected layer C3.
  • the total coupling layer C3 is located in the front stage of the output unit 33, and the plurality of convolutional layers C1 and the plurality of pooling layers C2 are alternately arranged.
  • the learning data is input to the encoding unit E of the prediction unit 32, and the teacher data is compared with the output data output from the conversion unit C of the prediction unit 32.
  • the output unit 33 can display the prediction result O.
  • the output unit 33 is, for example, a liquid crystal display or an organic EL display.
  • the output unit 33 can display various information such as characters, symbols, and graphics.
  • the output unit 33 can display, for example, numbers or images.
  • the input information I has the first information I1 of the subject used to diagnose the disease.
  • the first information I1 may be, for example, a test result of a subject or a medical image. Specifically, for example, when the disease prediction system 1 predicts osteoporosis, if the bone mass of the subject, a bone metabolism marker, a chest X-ray image of the lower back or the femur, a CT image, etc. Good.
  • the first information I1 specifically has image data of a simple X-ray image showing the bones of the subject.
  • the bones to be photographed are mainly cortical bones and cancellous bones of biological origin, but the target bones are artificial bones containing calcium phosphate as a main component, or regenerated bones artificially manufactured by regenerative medicine or the like. May be included.
  • the input information I may also include second information regarding the hormone-like acting substance that affects the disease related to the first information I1.
  • the second information I2 may be, for example, information on the presence or absence of the hormone-like acting substance or the concentration thereof.
  • the first information I1 is data related to osteoporosis
  • the second information I2 may be information about hormone-like acting substances that affect osteoporosis.
  • concentration information of fibroblast growth factor 23 (FGF23), leptin, insulin, sclerostin, or the like may be used.
  • At least one type of concentration information such as steroidal estrogen such as estrone, estradiol, estriol, nonsteroidal estrogen, progesterone, or estrogen receptor may be used.
  • steroidal estrogen such as estrone, estradiol, estriol, nonsteroidal estrogen, progesterone, or estrogen receptor
  • androgen concentration information such as androgen such as testosterone and dihydrotestosterone, and androgen receptor may be used.
  • the second information I2 may be, for example, information about hormone-like substances that affect sarcopenia when the first information I1 is data related to sarcopenia.
  • concentration information such as ghrelin, leptin, adiponectin, etc.
  • concentration information such as ghrelin, leptin, adiponectin, etc.
  • concentration information such as steroidal estrogen such as estrone, estradiol, estriol, nonsteroidal estrogen, progesterone, or estrogen receptor may be used.
  • at least one androgen concentration information such as androgen such as testosterone and dihydrotestosterone, and androgen receptor may be used.
  • the first information I1 may be an X-ray image of the affected area.
  • the first information I1 may be a bone mass, a bone metabolism marker, a bone fracture history, and an X-ray image.
  • the first information I1 may be a roentgenogram of the lower leg, muscle mass, grip strength, and walking speed.
  • the first information I1 may be information about grip strength, walking speed, activity amount, oral function, malaise, and sociality.
  • the first information I1 When predicting menopause, the first information I1 is hot flashes on the face, easiness of sweating, chills on the face and limbs, shortness of breath/palpitations, sleep/sleep depth, irritability, degree of depression, headache/ It may be dizziness/nausea, tiredness, stiff shoulders/backache/limb pain.
  • the first information I1 may be information relating to the degree of success and satisfaction of sexual intercourse.
  • the first information I1 When predicting periodontal disease, the first information I1 may be information such as an X-ray image, a CT image, a periodontal pocket depth, an attachment level, and an oral hygiene state.
  • the learning data has the same first learning information as the first input information I1.
  • the learning data may also have a simple X-ray image.
  • the learning data may also have the bone mass.
  • the learning data takes into consideration changes over time. That is, the learning data may be a series of data obtained by inspecting the same person on different time axes.
  • the learning data may be a data group of another person.
  • the image data may be a series of data having different time axes of the same person and the same body imaged.
  • the prediction unit 32 that has performed the learning process can predict the onset of future diseases.
  • the learning data has the same second learning information as the second input information I2. That is, the learning data is information regarding the hormone-like acting substance of the subject. Further, the second learning information may be information of a predetermined period before or after the acquisition of the first learning information. For example, if the subject is a woman, the second input information I2 may be at least one concentration information such as steroidal estrogen such as estrone, estradiol, estriol, nonsteroidal estrogen, progesterone, or estrogen receptor. Good.
  • steroidal estrogen such as estrone, estradiol, estriol, nonsteroidal estrogen, progesterone, or estrogen receptor. Good.
  • the learning data may be acquired using the terminal device 2 as with the input information I. If it is the first learning information, it may be acquired using, for example, the first terminal device 21 such as a simple X-ray imaging apparatus. Further, the second learning information may be acquired using the second terminal device 22 such as a SAW (Surface Acoustic Wave) sensor, for example.
  • the learning data can be acquired using the second terminal device 22 as described above, for example, if it is the concentration of nonsteroidal estrogen.
  • the teacher data includes the diagnosis result of the disease corresponding to the learning data.
  • the teacher data is the actual bone mass value or the osteoporosis diagnosis result corresponding to each of the plurality of learning image data.
  • the actual measurement value of bone mass or the diagnosis result of osteoporosis may be evaluated at almost the same time as the learning image data was captured.
  • the teacher data may be measured by, for example, the DEXA (Dual-Energy X-ray Absorptiometry) method or the ultrasonic method.
  • DEXA Direct-Energy X-ray Absorptiometry
  • ultrasonic method the teacher data may be measured by, for example, the DEXA (Dual-Energy X-ray Absorptiometry) method or the ultrasonic method.
  • the prediction unit 32 is optimized by machine learning using the learning data and the teacher data so that the prediction result O can be calculated from the input information I. That is, the control unit 34 calculates the prediction result O from the input information I based on the approximate expression (prediction unit 32) optimized by machine learning, but it is calculated from the learning data input to the input unit 31. Machine learning is performed by adjusting the parameters in the prediction unit 32 so that the difference between the pseudo prediction result output from the output unit 33 and the teacher data becomes small. As a result, the prediction unit 32 can perform the calculation on the input information I based on the learned parameter and output the prediction result O.
  • the parameters include, for example, parameters used in the encoding unit E, the decoding unit D, and the conversion unit C.
  • the parameters include the ConvLSTM layers of the encoding unit E and the decoding unit D, and the weighting coefficients used in the convolutional layer and the fully connected layer of the conversion unit C.
  • the disease prediction system 1 can predict the onset of a disease by outputting the prediction result O from the input information I.
  • a conventional osteoporosis diagnosis support device determines osteoporosis by using a feature amount related to cortical bone.
  • the conventional osteoporosis diagnosis support device is a device for diagnosing osteoporosis under the present circumstances, and does not show the possibility of future development.
  • the disease prediction system 1 can predict the onset of future disease of the subject from the input information I. Therefore, from the input information I at the time of data acquisition, it is possible to predict how the disease will change after data acquisition.
  • the disease prediction system 1 according to the present invention also has information (second information) regarding hormone-like acting substances as the input information I. For example, since the manner of disease transition changes depending on the presence or absence of a hormone-like acting substance, the accuracy of future prediction can be further improved by inputting the second information.
  • the prediction result O of the disease prediction system 1 may be a prediction in the future from the acquisition date of the input information I.
  • the disease prediction system 1 may perform prediction from 3 months to 50 years after the date of acquisition of the input information I, more preferably from 6 months to 10 years.
  • Prediction result O may be output as a future numerical value.
  • the prediction result O may be a numerical value represented by at least one of YAM (Young Adult Mean), T score, and Z score.
  • the prediction result O may be KL (Kellgren-Lawrence) grade classification or the like.
  • KL Kergren-Lawrence
  • the prediction result O may be the presence or absence of onset. The presence or absence of onset may be determined by a predetermined threshold value based on the numerical value output by the prediction result.
  • Prediction result O may output the future onset probability of the disease.
  • the onset probability for example, the onset probability of a specific date may be output. In this case, the output may be “probability of disease after 1 year is 10%”. Also, the date when the disease occurs may be output. In this case, the output may be, for example, "there is a possibility that osteoporosis will develop after 7 years”.
  • Prediction result O may output changes over time.
  • the transition of the prediction result O with respect to the time axis such as the onset probability after 1 year, the onset probability after 5 years, the onset probability after 10 years, may be output.
  • the disease prediction system 1 may output a prediction result O that predicts the onset of a plurality of diseases from one type of first information I1.
  • a prediction result O that predicts the onset of a plurality of diseases from one type of first information I1.
  • the concentration of nonsteroidal estrogen in urine as the first information I1
  • the disease prediction system 1 may output a prediction result O for predicting the onset of a plurality of diseases from one type of first information I1 and one type of second information I2.
  • a prediction result O for predicting the onset of a plurality of diseases from one type of first information I1 and one type of second information I2.
  • the disease prediction system 1 may output a prediction result O for predicting the onset of a plurality of diseases from one type of first information I1 and one type of second information I2.
  • a prediction result O for predicting the onset of a plurality of diseases from one type of first information I1 and one type of second information I2.
  • the input information I may include the third information I3 having the individual data of the target person.
  • the third information I3 may be information about the health condition of the subject.
  • the individual data for example, age information, sex information, height information, weight information, systolic blood pressure, total cholesterol, neutral fat, bad cholesterol (LDL-C, neutral fat), good cholesterol (HDL-cholesterol), It suffices to include one or more types of information regarding the insulin resistance index (HOMA-R index), blood glucose level, presence or absence of menopause, sperm count, and the like.
  • third learning information of the same type as the third information I3 may be learned. Further, the third learning information may be information at the time of acquisition of the first learning information or a predetermined period before and after acquisition.
  • the third information I3 may include lifestyle information.
  • the lifestyle information may include any one type or a plurality of types of information regarding dietary habits, drinking habits, smoking habits, or exercise habits such as walking speed or number of steps.
  • the input information I may include the fourth information I4 regarding the intervention to the target person.
  • the fourth information I4 may be information about a change schedule (future) such as the lifestyle of the target person.
  • the fourth information I4 may include, for example, any one type or a plurality of types of information regarding dietary changes, lifestyle changes, weight changes, physical therapy, drug therapy, or supplements to be taken.
  • the fourth learning information of the same type as the fourth information I4 may be learned. Further, the fourth learning information may be information at the time of acquisition of the first learning information or a predetermined period before and after acquisition.
  • the information about the supplement to be taken is input as the fourth information I4.
  • the information about the supplement is any one of the information about taking calcium, vitamin D, vitamin K, branched chain amino acids, flavonoids or probiotics, or It only has to include multiple types.
  • the probiotics may be, for example, Bacillus subtilis C-3102 strain.
  • the prediction result O is the first result based on the input information I selected from the input information I excluding the fourth information I4, the input information I including the fourth information I4 and at least the first input information I1. And a second result based on
  • the prediction result O which is a future prediction
  • the current diagnosis result may be output.
  • the input information I may include the fifth input information I5 including the bone metabolism marker information of the subject.
  • the bone metabolism information may be, for example, bone resorption ability or bone formation ability.
  • These include, for example, bone resorption markers type I collagen cross-linked N-telopeptide (NTX), type I collagen cross-linked C-telopeptide (CTX), tartrate-resistant acid phosphatase (TRACP-5b), deoxypyridinoline ( DPD), bone formation alkaline phosphatase (BAP), type I collagen cross-linked N-propeptide (P1NP), and bone-related matrix marker undercarboxylated osteocalcin (ucOC). is there.
  • the bone resorption marker may be measured using serum or urine as a sample.
  • the fifth learning information of the same type as the fifth information I5 may be learned. Further, the fifth learning information may be information at the time of acquisition of the first learning information or a predetermined period before and after the acquisition.
  • the disease prediction system 1 may include a third terminal device that acquires the fifth input information I5. Further, the second terminal device 22 may be used to simultaneously measure the fifth input information I5 together with the second input information I2. For example, the concentration of the bone metabolism marker DPD and the hormone-like substance nonsteroidal estrogen may be simultaneously measured from one urine sample of the subject. Further, the second terminal device 22 may simultaneously measure a plurality of the bone metabolism marker that is one of the first input information I1 and the hormone-like acting substance of the second input information I2. Specifically, the concentrations of bone metabolism markers DPD and CTX and the hormone-like substances steroidal estrogen and nonsteroidal estrogen may be simultaneously measured from one urine sample of a subject.
  • FIG. 5 illustrates the concept of the configuration of the prediction unit 32a using the linear regression model of the present disclosure.
  • the prediction unit 32 has described the example in which the neural network is used as the prediction unit 32.
  • the prediction unit 32 uses the input information as the explanatory variable, the prediction parameter as the coefficient of the explanatory variable, and the prediction result. It may be a linear regression model in which is a target variable.
  • the prediction parameter may be optimized by the least squares method using the learning data and the teacher data. That is, the learning data may be used as an explanatory variable vector and the teacher data may be used as a target variable vector to determine an explanatory variable coefficient vector that minimizes the sum of squared errors.
  • the prediction unit 32a using the linear regression model calculates the prediction result Y by inputting the input information into the explanatory variables X1, X2... Xk.
  • the explanatory variable coefficients ⁇ 1, ⁇ 2,..., And ⁇ k, which are prediction parameters, may be optimized in advance by the least-squares method using learning data and teacher data, for example.
  • Predictor 32a using a linear regression model can easily predict diseases such as osteoporosis, bone fracture, sarcopenia, flail, menopausal disorder, ED (Erectile Dysfunction) or periodontal disease.
  • diseases such as osteoporosis, bone fracture, sarcopenia, flail, menopausal disorder, ED (Erectile Dysfunction) or periodontal disease.
  • the prediction unit 32 may use RNN (Recurrent Neural Network) or GAN (Generative Adversarial Network). Further, the prediction unit 32 may combine a plurality of neural networks. Specifically, it may be a complex neural network in which a ConvLSTM network and a convolutional neural network are combined.
  • the prediction unit 32 includes an example having a neural network and an example having a linear regression model, respectively, but in the present invention, the prediction device 3 of the disease prediction system 1 is Alternatively, a plurality of different prediction units may be included.
  • the prediction unit 32a using the linear regression model and the prediction 32b using the ConvLSTM neural network may be provided at the same time.
  • the prediction unit 32a outputs the first prediction result O1. Further, the prediction unit 32b outputs the second prediction result as the second prediction result O2. As a result, as the prediction result O, the first prediction result and the second prediction result can be compared.
  • the disease prediction system 1 may output, as the prediction result O, a third prediction result based on the first prediction result and the second prediction result.
  • the result (third prediction result) obtained by correcting the first prediction result based on the second prediction result can be set as the prediction result O.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Acoustics & Sound (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Medicinal Chemistry (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Endocrinology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明の一実施形態に係る疾患予測システムは、疾患の診断に使用される対象者の第1情報および前記対象者のホルモン様作用物質に関する第2情報を有した入力情報が入力される入力部と、前記入力部に入力された前記入力情報から前記対象者の将来の前記疾患の発症を予測する制御部と、を備える。

Description

疾患予測システム
 本開示は、疾患予測システムに関する。
 特許文献1には、疾患の1つである骨粗しょう症の診断支援装置が記載されている。
特開2008-36068号公報
 将来の疾患のリスクなどを把握するために、これらの疾患の将来の発症の予測をすることが求められている。
 本発明の一実施形態に係る疾患予測システムは、疾患の診断に使用される対象者の第1情報および前記対象者のホルモン様作用物質に関する第2情報を有した入力情報が入力される入力部と、前記入力部に入力された前記入力情報から前記対象者の将来の前記疾患の発症を予測する制御部と、を備える。
本開示の疾患予測システム1の構成を模式的に示す概念図である。 本開示の疾患予測システム1の一部の構成を模式的に示す概念図である。 本開示の疾患予測システム1の一部の構成を模式的に示す概念図である。 本開示の疾患予測システム1の一部の構成を模式的に示す概念図である。 本開示の疾患予測システム1の一部の構成を模式的に示す概念図である。
 本開示の疾患予測システム1は、例えば、中高齢者の疾患の発症を予測することができる。中高齢者の疾患とは、例えば、骨粗しょう症、変形性関節症、脊椎症、骨折、サルコペニア、フレイル、更年期障害、ED(Erectile Dysfunction)、歯周病などである。
 なお、以下において、特に記載のない場合には、疾患として骨粗しょう症を例に説明する。
 図1に、本開示の疾患予測システム1の構成の概念を示す。
 本開示の疾患予測システム1は、端末装置2と、予測装置3と、を有している。端末装置2は、疾患の診断に使用される対象者のデータを取得するものである。予測装置3は、端末装置2で取得されたデータに基づき、将来の疾患の発症を予測することができる。
 端末装置2は、上記の通り、データを取得することができる。端末装置2で取得されたデータは、入力情報Iとして、予測装置3に入力される。なお、入力情報Iは、疾患の診断に使用される対象者のデータ(第1情報I1)の他に、対象者のホルモン様作用物質に関する情報(第2情報I2)を有している。そして、端末装置2は、第1情報I1を取得する第1端末装置21と、第2情報を取得する第2端末装置22とを、有している。
 第1端末装置21は、例えば疾患予測システム1が骨粗しょう症の診断に使用される場合、例えば単純X線撮影装置または骨量測定装置などであればよい。また、この場合、第1情報I1は、例えば単純X線画像などの医用画像を有している場合がある。
 第2端末装置22は、第1端末装置21が取得する第1情報I1に関連する疾患に影響を与える第2情報I2を取得することができる。第2情報I2は、例えば、ホルモン様作用物質の有無、または濃度の情報であればよい。第2情報I2は、例えば対象者の血中または尿中のホルモン様作用物質の測定値であればよい。具体的には、第2情報I2は、第1情報I1が骨粗しょう症に関連する場合、非ステロイド性エストロゲンの有無を示すデータなどであればよい。なお、第2端末装置22は、例えば、SAW(Surface Acoustic Wave)センサを用いた検査装置などであればよい。
 端末装置2は、入力情報Iを取得した後に、予測装置3に入力情報Iを転送してもよい。例えば、対象者の単純X線画像を取得する場合、端末装置2(第1端末装置21)は、例えばレントゲン室に設置されて、対象者のレントゲン写真を撮影する。そして、端末装置2から予測装置3に画像データを転送し、予測装置3を介して、疾患の将来の発症を予測することができる。
 なお、端末装置2は、入力情報Iを予測装置3に直接転送しなくてもよい。この場合、例えば端末装置2で取得された入力情報Iが、記憶媒体に記憶されて、記憶媒体を介して、予測装置3に入力情報Iが入力されてもよい。
 第2端末装置22は、第2入力情報I2を取得した後に、予測装置3に第2入力情報I2を転送してもよい。例えば、SAWセンサを用いた検査装置が、対象者の血中または尿中のホルモン様作用物質の濃度の情報を転送する場合、濃度の数値としての情報を転送してもよいし、濃度に換算する前の一次データの情報を転送してもよい。一次データは、例えば、センサによる検出信号の位相変化、振幅変化、周波数変化などに関する情報であればよい。
 図2に、本実施形態に係る予測装置3の構成の概念を示す。
 予測装置3は、予測装置3に入力される入力情報Iから、対象者の疾患の将来の発症を予測することができる。例えば、疾患予測システム1が骨粗しょう症を予想する場合、予測装置3では、端末装置2で取得した医用画像を含む入力情報Iから、対象者の将来の骨粗しょう症の発症を予測して、予測した予測結果Oを出力することができる。
 予測装置3は、入力部31と、制御部34、出力部33、記憶部35と、を有している。入力部31、出力部33、制御部34および記憶部35とは、例えば、バス60で互いに電気的に接続している。入力部31は、端末装置2から入力情報Iが入力されるものである。制御部34は、制御プログラムを実行することによって、後述する予測部32に基づき、入力情報Iに基づいて、疾患の発症を予測することができる。出力部33は、予測部32の予測した予測結果Oを出力することができる。記憶部35は、制御プログラムおよび、制御に必要な種々のデータ、パラメータ等が記憶されている。
 本開示の予測装置3は、複数の電子部品および回路を有している。言い換えれば、予測装置3は、複数の電子部品および回路によって、予測装置3を構成する各構成部材を形成することができる。複数の電子部品は、例えば、トランジスタまたはダイオードなどの能動素子、あるいはコンデンサなどの受動素子であればよく、従来周知の方法によって、形成されていればよい。
 入力部31は、上記の通り、入力情報Iが入力される。入力部31は、端末装置2で取得した入力情報Iが端末装置2から直接入力されるように、通信部を有していてもよい。また、入力部31は、入力情報Iまたは他の情報を入力可能な入力装置を備えていてもよい。入力装置は、例えば、キーボード、タッチパネル、またはマウスなどであればよい。
 制御部34は、予測装置3の他の構成要素を制御することによって、予測装置3の動作を統括的に管理することが可能である。制御部34は制御装置あるいは制御回路とも言える。制御部34は、以下にさらに詳細に述べられるように、種々の機能を実行するための制御及び処理能力を提供するために、少なくとも1つのプロセッサを含む。
 1つの実施形態において、プロセッサは、例えば、関連するメモリに記憶された指示を実行することによって1以上のデータ計算手続又は処理を実行するように構成された1以上の回路又はユニットを含む。他の実施形態において、プロセッサは、1以上のデータ計算手続き又は処理を実行するように構成されたファームウェア(例えば、ディスクリートロジックコンポーネント)であってもよい。
 種々の実施形態によれば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、またはこれらのデバイス若しくは構成の任意の組み合わせ、または他の既知のデバイス及び構成の組み合わせを含み、以下に説明される機能を実行してもよい。本例では、制御部34は、例えばCPU(Central Processing Unit)を備えている。
 記憶部35は、ROM(Read Only Memory)及びRAM(Random Access Memory)などの、制御部34のCPUが読み取り可能な非一時的な記録媒体を含む。記憶部35には、予測装置3を制御するための制御プログラムが記憶されている。制御部34の各種機能は、制御部34のCPUが記憶部35内の制御プログラムを実行することによって実現される。制御プログラムは、コンピュータ装置1を予測装置3として機能させるための予測プログラムであるとも言える。
 本例では、制御部34が記憶部35内の制御プログラムを実行することによって、制御部34には、予測結果Oを推定可能な予測部32が形成される。予測部32は、例えば、ニューラルネットワークを備える。制御プログラムは、コンピュータ装置1をニューラルネットワーク(予測部32)として機能させるためのプログラムであるとも言える。ニューラルネットワークの構成例については後で詳細に説明する。
 記憶部35には、制御プログラム以外にも、ニューラルネットワークに関する学習済みパラメータ、推定用データ(以下、「入力情報」ともいう)、学習用データ及び教師用データが記憶されている。学習用データ及び教師用データは、ニューラルネットワークを学習させる際に使用されるデータである。学習済みパラメータ及び推定用データは、学習済みのニューラルネットワークが疾患の発症を推定する場合に使用するデータである。
 予測部32は、入力部31に入力された入力情報Iから対象者の将来の疾患の発症を予測することができる。予測部32は、AI(Artificial Intelligence)を有している。本開示のAIは、例えば、ニューラルネットワークであればよい。
 また、予測部32は、予め学習処理されている。すなわち、学習用データおよび教師用データを用いて、予測部32に機械学習を適用することによって、予測部32は、入力情報Iから予測結果Oを算出することができる。なお、学習用データまたは教師用データは、予測装置3に入力する入力情報Iと、予測装置3から出力する予測結果Oに対応したデータであればよい。
 図3、4は、本開示の予測部32の構成の概念を示す。
 予測部32は、第1ニューラルネットワーク321と、第2ニューラルネットワーク322を有している。第1ニューラルネットワーク321は、時系列情報を扱うことに適したニューラルネットワークであればよい。例えば、第1ニューラルネットワーク321は、CNN(Convolutional Neural Network)およびLSTM(Long short-term memory)を組み合わせたConvLSTMネットワークなどであればよい。第2ニューラルネットワーク322は、例えば、CNNで構成された畳み込みネットワークなどであればよい。
 図3は、本開示の第1ニューラルネットワーク321の構成の概念を示す。図4は、第2ニューラルネットワーク322の構成の概念を示す。
 第1ニューラルネットワーク321は、エンコード部Eと、デコード部Dとを有している。エンコード部Eは、入力情報Iの時間変化および位置情報の特徴量を抽出することができる。デコード部Dは、エンコード部Eで抽出した特徴量、入力情報Iの時間変化および初期値に基づいて、新たな特徴量を算出することができる。
 エンコード部Eは、複数のConvLSTM層(Convolutional Long short-term memory)E1を有している。デコード部Dは、複数のConvLSTM層(Convolutional Long short-term memory)D1を有している。なお、複数のConvLSTM層E1は、それぞれ学習する内容が異なっていてもよい。複数のConvLSTM層D1は、それぞれ学習する内容が異なっていてもよい。例えば、あるConvLTSM層では1画素1画素の変化といった細かな内容を、別のConvLSTM層では全体像の変化といった大まかな内容を学習してもよい。
 第2ニューラルネットワーク322は、変換部Cを有している。変換部Cは、デコード部Dで算出された特徴量を骨量に変換することができる。変換部Cは、複数の畳み込み層C1と、複数のプーリング層C2と、全結合層C3と、を有している。全結合層C3は、出力部33の前段に位置しており、複数の畳み込み層C1と複数のプーリング層C2とが交互に配置されている。
 なお、予測部32の学習時、学習用データは、予測部32のエンコード部Eに入力され、教師用データは、予測部32の変換部Cから出力される出力データと比較される。
 出力部33は、予測結果Oを表示することができる。出力部33は、例えば、液晶表示ディスプレイあるいは有機ELディスプレイである。出力部33は、文字、記号、図形などの各種情報を表示することが可能である。出力部33は、例えば、数字または画像などを表示することができる。
 <入力情報、学習用データおよび教師用データの一例>
 入力情報Iは、前記疾患の診断に使用される対象者の第1情報I1を有している。第1情報I1は、例えば対象者の検査結果や医用画像であればよい。具体的には、例えば疾患予測システム1が骨粗しょう症を予測する場合には、対象者の骨量、骨代謝マーカー、胸部、腰部もしくは大腿骨近位部のレントゲン画像、CT像などであればよい。
 なお、骨粗しょう症の場合、第1情報I1は、具体的には、対象者の骨が写る単純X線像の画像データを有している。また、撮影する骨は、主に、生物由来の皮質骨および海綿骨であるが、対象とする骨に、リン酸カルシウムを主成分とする人工骨、あるいは再生医療等によって人工的に製造された再生骨が含まれてもよい。
 また、入力情報Iは、第1情報I1に関連する疾患に影響を与える、ホルモン様作用物質に関する第2情報を有していてもよい。第2情報I2は、例えば、ホルモン様作用物質の有無、または濃度の情報であればよい。第2情報I2は、例えば、第1情報I1が骨粗しょう症に関連するデータである場合は、骨粗しょう症に影響を与えるホルモン様作用物質に関する情報であればよい。具体的には、線維芽細胞増殖因子23(FGF23)、レプチン、インスリン、スクレロスチンなどの少なくとも1種類の濃度情報などであればよい。さらに、対象者が女性であれば、エストロン、エストラジオール、エストリオールなどのステロイド性エストロゲン、非ステロイド性エストロゲン、プロゲステロン、あるいはエストロゲン受容体などの少なくとも1種類の濃度情報などであればよい。対象者が男性であれば、テストステロン、ジヒドロテストステロンなどのアンドロゲン、あるいはアンドロゲン受容体などの少なくとも1種類の濃度情報などであればよい。
 第2情報I2は、例えば、第1情報I1がサルコペニアに関連するデータである場合は、サルコペニアに影響を与えるホルモン様作用物質に関する情報であればよい。具体的には、グレリン、レプチン、アディポネクチンなどの少なくとも1種類の濃度情報などであればよい。加えて、対象者が女性であれば、エストロン、エストラジオール、エストリオールなどのステロイド性エストロゲン、非ステロイド性エストロゲン、プロゲステロン、あるいはエストロゲン受容体などの少なくとも1種類の濃度情報などであればよい。対象者が男性であれば、テストステロン、ジヒドロテストステロンなどのアンドロゲン、あるいはアンドロゲン受容体などの少なくとも1種類の濃度情報などであればよい。
 なお、疾患予測システム1が変形性関節症、脊椎症を予測する場合は、第1情報I1は、患部のレントゲン画像であればよい。また、骨折を予測する場合は、第1情報I1は、骨量、骨代謝マーカー、骨折歴、レントゲン画像であればよい。また、サルコペニアを予測する場合は、第1情報I1は、下腿のレントゲン画像、筋肉量、握力、歩行速度であればよい。また、フレイルを予測する場合は、第1情報I1は、握力、歩行速度、活動量、口腔機能、倦怠感、社会性に関する情報であればよい。また、更年期障害を予測する場合は、第1情報I1は、顔のほてり、汗のかきやすさ、顔や手足の冷え、息切れ・動悸、寝付き・眠りの深さ、イライラ度合、憂うつ度合、頭痛・めまい・吐き気、疲れやすさ、肩こり・腰痛・手足の痛みの有無であればよい。また、EDを予測する場合は、第1情報I1は、性交の成功度や満足度に関する情報であればよい。また、歯周病を予測する場合は、第1情報I1は、レントゲン画像、CT像、歯周ポケット深さ、アタッチメントレベル、口腔衛生状態などの情報であればよい。
 学習用データは、第1入力情報I1と同種の第1学習用情報を有している。例えば、第1入力情報I1が単純X線像であれば、学習用データも単純X線像を有していればよい。さらには、第1入力情報I1が骨量の場合、学習用データも骨量を有していればよい。
 学習用データは、時間変化を考慮されている。すなわち、学習用データは、同一人を検査した時間軸の異なる一連のデータであってもよい。また、学習用データは、他人のデータ群であってもよい。また、学習用データが画像データである場合、画像データは、同一人、同一部位を撮影した時間軸の異なる一連のデータであってもよい。その結果、学習処理が行われた予測部32は、将来の疾患の発症を予測することができる。
 また、学習用データは、第2入力情報I2と同種の第2学習用情報を有している。すなわち、学習用データは、対象者のホルモン様作用物質に関する情報である。また、第2学習用情報は、第1学習用情報の取得時または取得前後の所定期間の情報であってもよい。例えば、対象者が女性であれば、第2入力情報I2は、エストロン、エストラジオール、エストリオールなどのステロイド性エストロゲン、非ステロイド性エストロゲン、プロゲステロン、あるいはエストロゲン受容体などの少なくとも1種類の濃度情報であればよい。
 なお、学習用データは、入力情報Iと同様に、端末装置2を使用して取得してもよい。第1学習用情報であれば、例えば、単純X線撮影装置などの第1端末装置21を使用して取得すればよい。また、第2学習用情報であれば、例えば、SAW(Surface Acoustic Wave)センサなどの第2端末装置22を使用して取得すればよい。学習用データは、例えば非ステロイド性エストロゲンの濃度であれば、上述のように、第2端末装置22を使用して取得することができる。
 教師用データは、学習用データに対応した、疾患の診断結果を含む。例えば骨粗しょう症を予測する場合には、教師用データは、複数の学習用画像データのそれぞれに対応した、骨量の実測値または骨粗しょう症の診断結果である。骨量の実測値または骨粗しょう症の診断結果は、学習用画像データが撮影された時期とほぼ同じ時期に評価されていればよい。
 教師用データは、例えば骨量の場合には、例えば、DEXA(Dual-Energy X-ray Absorptiometry)法または超音波法などによって測定されていればよい。
 <ニューラルネットワークの学習例>
 予測部32は、入力情報Iから予測結果Oを算出可能なように、学習用データと教師用データを用いた機械学習によって最適化される。すなわち、制御部34は、機械学習によって最適化された近似式(予測部32)に基づいて入力情報Iから予測結果Oを算出するが、入力部31に入力された学習用データから演算されて出力部33から出力された疑似予測結果と教師用データとの差が小さくなるように、予測部32内のパラメータを調整することによって、機械学習される。その結果、予測部32は、入力情報Iに対して学習済みパラメータに基づく演算を行なって予測結果Oを出力することができる。
 パラメータの調整方法としては、例えば、誤差逆伝播法が採用される。パラメータには、例えば、エンコード部E、デコード部D、変換部Cで使用されるパラメータが含まれる。具体的には、パラメータには、エンコード部Eとデコード部DのConvLSTM層と、変換部Cの畳み込み層および全結合層で使用される重み付け係数とが含まれる。
 以上のように、疾患予測システム1では、入力情報Iから予測結果Oを出力することによって、疾患の発症を予測することができる。
 ここで、例えば、従来の骨粗しょう症診断支援装置は、皮質骨に関する特徴量を用いて骨粗しょう症を判定することが開示されている。しかしながら、従来の骨粗しょう症診断支援装置は、現状での骨粗しょう症を診断するものであって、将来の発症の可能性を示すものではなかった。
 これに対して、本発明に係る疾患予測システム1は、入力情報Iから前記対象者の将来の疾患の発症を予測することができる。したがって、データ取得時の入力情報Iから、データ取得後にどのようにその疾患が推移するのか、予測することができる。そして、本発明に係る疾患予測システム1では、入力情報Iとしてホルモン様作用物質に関する情報(第2情報)も有している。例えば、ホルモン様作用物質の有無などによって疾患の推移の仕方は変わることから、第2情報を入力することによって、より将来予測の精度を向上させることができる。
 疾患予測システム1の予測結果Oは、入力情報Iの取得日よりも未来の予測であればよい。例えば、疾患予測システム1は、入力情報Iの取得日からら3ヶ月後から50年後、より好ましくは、6ヶ月後から10年後までの予測を行なえばよい。
 予測結果Oは、将来の数値として出力されてもよい。例えば、骨量を予測する場合、予測結果Oは、例えば、YAM(Young Adult Mean)、TスコアおよびZスコアの少なくとも1種類によって表される数値であればよい。
 なお、変形性関節症または脊椎症を予測する場合は、予測結果Oは、KL(Kellgren-Lawrence)グレード分類などであってもよい。また、骨折、サルコペニア、フレイル、更年期障害、ED、歯周病を予測する場合は、予測結果Oは、発症の有無であってもよい。発症の有無は、予測結果によって出力された数値をもとに、予め定められた閾値によって判別してもよい。
 予測結果Oは、疾患の将来の発症確率を出力してもよい。発症確率は、例えば、特定の期日の発症確率を出力してもよい。この場合、「1年後の疾患の確率が10%」のように出力されればよい。また、発症する期日はいつか、などを出力してもよい。この場合、例えば、「7年後に骨粗しょう症を発症する可能性があります」のように出力されればよい。
 予測結果Oは、経年変化を出力してもよい。例えば、1年後の発症確率、5年後の発症確率、10年後の発症確率など、時間軸に対する予測結果Oの推移を出力してもよい。
 疾患予測システム1は、1種類の第1情報I1から、複数の疾患の発症を予測する予測結果Oを出力してもよい。この場合、例えば、第1情報I1として尿中の非ステロイド性エストロゲンの濃度を入力することによって、骨粗しょう症と更年期障害という疾患の発症を同時に予測することができる。
 また、疾患予測システム1は、1種類の第1情報I1と1種類の第2情報I2から、複数の疾患の発症を予測する予測結果Oを出力してもよい。この場合、例えば、1種類の第1情報I1としてレントゲン画像を入力し、1種類の第2情報I2として尿中の非ステロイド性エストロゲンの濃度を入力することによって、例えば、骨粗しょう症と変形性関節症という複数の疾患の発症を同時に予測することができる。
 入力情報Iは、対象者の個体データを有する第3情報I3を有していてもよい。第3情報I3は、対象者の健康状態に関する情報であればよい。なお個体データは、例えば、年齢情報、性別情報、身長情報、体重情報、収縮期血圧、総コレステロール、中性脂肪、悪玉コレステロール(LDL-C、中性脂肪)、善玉コレステロール(HDL-コレステロール)、インスリン抵抗性指数(HOMA-R指数)、血糖値、閉経の有無、精子数などに関する情報のいずれか1種類または複数種類を含んでいればよい。
 なお、この場合、学習用データとして、第3情報I3と同種の第3学習用情報を学習させてもよい。また、第3学習用情報は、第1学習用情報の取得時または、取得前後の所定期間の情報であってもよい。
 また第3情報I3は、生活習慣情報を有していてもよい。生活習慣情報は、食事習慣、飲酒習慣、喫煙習慣、あるいは、歩行速度または歩数などの運動習慣などに関する情報のいずれか1種類または複数種類を含んでいればよい。
 入力情報Iは、対象者への介入に関する第4情報I4を有していてもよい。第4情報I4は、対象者の生活習慣などの変更予定(未来)に関する情報であればよい。第4情報I4は、例えば、食生活の変更、生活習慣の変更、体重の変更、理学療法、薬物療法または服用予定のサプリメントに関する情報のいずれか1種類または複数種類を含んでいればよい。
 なお、この場合、学習用データとして、第4情報I4と同種の第4学習用情報を学習させてもよい。また、第4学習用情報は、第1学習用情報の取得時または、取得前後の所定期間の情報であってもよい。
 また第4情報I4として、服用予定のサプリメントに関する情報を入力する場合、サプリメントに関する情報として、カルシウム、ビタミンD、ビタミンK、分岐鎖アミノ酸、フラボノイドまたはプロバイオティクスの服用に関する情報のいずれか1種類または複数種類を含んでいればよい。プロバイオティクスは、例えば、枯草菌C-3102株などであればよい。
 疾患予測システム1において、予測結果Oは、第4情報I4を除く入力情報Iから選択される入力情報Iに基づく第1結果と、第4情報I4および少なくとも第1入力情報I1を含む入力情報Iに基づく第2結果とを出力してもよい。
 疾患予測システム1において、将来の予測である予測結果Oはだけではなく、現状の診断結果を出力してもよい。その結果、経時の疾患の変化を比較することができる。
 入力情報Iは、被検者の骨代謝マーカー情報を有した第5入力情報I5を有していてもよい。骨代謝情報とは、例えば、骨吸収能力または骨形成能力であればよい。これらは、例えば、骨吸収マーカーであるI型コラーゲン架橋N-テロペプチド(NTX)、I型コラーゲン架橋C-テロペプチド(CTX)、酒石酸抵抗性酸ホスファターゼ(TRACP-5b)、デオキシピリジノリン(DPD)、骨形成マーカーである骨型アルカリホスファターゼ(BAP)、I型コラーゲン架橋N-プロペプチド(P1NP)、骨関連マトリックスマーカーである低カルボキシル化オステオカルシン(ucOC)の少なくとも1種によって、測定可能である。骨吸収マーカーは、血清または尿を検体として測定されてもよい。
 なお、この場合、学習用データとして、第5情報I5と同種の第5学習用情報を学習させてもよい。また、第5学習用情報は、第1学習用情報の取得時または、取得前後の所定期間の情報であってもよい。
 疾患予測システム1は、第5入力情報I5を取得する第3端末装置を有していてもよい。また、第2端末装置22を使用して、第2入力情報I2とともに第5入力情報I5を同時に測定してもよい。例えば、対象者の1つの尿検体から、骨代謝マーカーのDPDと、ホルモン様作用物質の非ステロイド性エストロゲンの濃度を同時に測定してもよい。また、第2端末装置22は、第1入力情報I1の1つである骨代謝マーカーと第2入力情報I2のホルモン様作用物質のうち、複数を同時に測定してもよい。具体的には、対象者の1つの尿検体から、骨代謝マーカーのDPDおよびCTXと、ホルモン様作用物質のステロイド性エストロゲンおよび非ステロイド性エストロゲンの濃度を同時に測定してもよい。
 <その他の実施形態>
 図5は、本開示の線形回帰モデルを用いた予測部32aの構成の概念を示す。
 予測部32は、上記の実施形態では、予測部32としてニューラルネットワークを使用する例を説明したが、予測部32は、入力情報を説明変数とし、予測用パラメータを説明変数の係数とし、予測結果を目標変数とする線形回帰モデルであってもよい。予測用パラメータは、学習用データおよび教師用データを用いて、最小二乗法により最適化されていてもよい。すなわち、学習用データを説明変数ベクトル、教師用データを目標変数ベクトルとして、誤差の二乗和が最小となるような説明変数係数ベクトルを決定してもよい。
 線形回帰モデルを用いた予測部32aは、入力情報を説明変数X1、X2・・・Xkに入力することで、予測結果Yを算出する。予測用パラメータである説明変数の係数θ1、θ2・・・θkは、例えば、学習用データおよび教師用データを用いて、最小二乗法により予め最適化されていればよい。
 線形回帰モデルを用いた予測部32aでは、例えば、骨粗しょう症、骨折、サルコペニア、フレイル、更年期障害、ED(Erectile Dysfunction)または歯周病などの疾患を、簡易に予測することができる。
 なお、本発明は上述の実施形態の例に限定されるものではなく、その内容に矛盾をきたさない限り、種々の変形を含むものである。また、本発明に係る各実施形態は、適宜、組合せ可能である。
 例えば、上記の例では、予測部32としてニューラルネットワークを使用した場合、ConvLSTMネットワークを適用した例を説明したが、本発明はこれに限られない。例えば、予測部32は、RNN(Recurrent Neural Network)やGAN(Generative Adversarial Network)を用いてもよい。また、予測部32は、複数のニューラルネットワークを組み合わせてもよい。具体的には、ConvLSTMネットワークと畳み込みニューラルネットワークを組わせた複合的なニューラルネットワークでもよい。
 また、上記の例では、予測部32として、ニューラルネットワークを有している例と、線形回帰モデルを有している例をそれぞれ記載したが、本発明では、疾患予測システム1の予測装置3は、異なる予測部を複数有していてもよい。例えば、線形回帰モデルを用いた予測部32aとConvLSTMニューラルネットワークを用いた予測32bを同時に有していてもよい。
 この場合、疾患予測システム1において、予測部32aは、第1予測結果O1を出力するものである。さらに、予測部32bは、第2予測結果O2として、第2の予測結果を出力するものである。その結果、予測結果Oとして、第1の予測結果と第2の予測結果を比較することができる。
 疾患予測システム1は、予測結果Oとして、第1の予測結果および第2の予測結果に基づいた第3の予測結果を出力してもよい。その結果、例えば、第2の予測結果に基づいて第1の予測結果を修正した結果(第3の予測結果)を、予測結果Oとすることができる。
 1 疾患予測システム
 2 端末装置
  21 第1端末装置
  22 第2端末装置
 3 予測装置
  31 入力部
  32 予測部
   32a 予測部
   32b 予測部
  33 出力部
  34 制御部
  35 記憶部
 O 予測結果
 I 入力情報

Claims (9)

  1.  疾患の診断に使用される対象者の第1情報および前記対象者のホルモン様作用物質に関する第2情報を有した入力情報が入力される入力部と、
     前記入力部に入力された前記入力情報から前記対象者の将来の前記疾患の発症を予測する制御部と、を備える、疾患予測システム。
  2.  請求項1に記載の疾患予測システムであって、
     前記制御部が予測した予測結果を出力する出力部をさらに備える、疾患予測システム。
  3.  請求項1または2のいずれかに記載の疾患予測システムであって、
     前記疾患のうち2種類以上を同時に予測する、疾患予測システム。
  4.  請求項1~3のいずれかに記載の疾患予測システムであって、
     前記第2情報は、対象者の血中または尿中のホルモン様作用物質の測定値を含む、疾患予測システム。
  5.  請求項1~4のいずれかに記載の疾患予測システムであって、
     前記予測は経年的に予測される、疾患予測システム。
  6.  請求項1~5のいずれかに記載の疾患予測システムであって、
     前記入力情報は、前記被検者の健康状態に関する第3情報を含む、疾患予測システム。
  7.  請求項1~6のいずれかに記載の疾患予測システムあって、
     前記入力情報は、前記被検者への介入に関する第4情報を含む、疾患予測システム。
  8.  請求項1~7のいずれかに記載の疾患予測システムであって、
     前記制御部は、前記第4情報を除く入力情報に基づく第1結果と、前記第4情報を含む入力情報に基づく第2結果と、を予測する、疾患予測システム。
  9.  制御部、入力部および出力部を備えている疾患予測システムにより実行されるプログラムであって、
     前記プログラムは、前記制御部に、
      前記入力部を介して、疾患の診断に使用される対象者の第1情報および前記対象者のホルモン様作用物質に関する第2情報を有した入力情報を取得する取得ステップと、
      前記入力情報から前記対象者の将来の前記疾患の発症を予測する予測ステップと、
      前記制御部が予測した予測結果を出力する出力ステップと、を実行させるプログラム。
PCT/JP2019/050611 2018-12-25 2019-12-24 疾患予測システム WO2020138085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/418,174 US20220082574A1 (en) 2018-12-25 2019-12-24 Disease predicting system
EP19905160.8A EP3903666A4 (en) 2018-12-25 2019-12-24 DISEASE PREDICTION SYSTEM
JP2020563306A JPWO2020138085A1 (ja) 2018-12-25 2019-12-24 疾患予測システム
JP2023106415A JP2023121815A (ja) 2018-12-25 2023-06-28 疾患予測システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241064 2018-12-25
JP2018-241064 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020138085A1 true WO2020138085A1 (ja) 2020-07-02

Family

ID=71126433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050611 WO2020138085A1 (ja) 2018-12-25 2019-12-24 疾患予測システム

Country Status (4)

Country Link
US (1) US20220082574A1 (ja)
EP (1) EP3903666A4 (ja)
JP (2) JPWO2020138085A1 (ja)
WO (1) WO2020138085A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830298B1 (ja) * 2020-04-30 2021-02-17 株式会社Jdsc 情報処理システム、情報処理装置、情報処理方法、及びプログラム
WO2022158490A1 (ja) * 2021-01-20 2022-07-28 京セラ株式会社 予測システム、制御方法、および制御プログラム
WO2022190891A1 (ja) * 2021-03-11 2022-09-15 ソニーグループ株式会社 情報処理システム及び情報処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076824B1 (en) * 2020-08-07 2021-08-03 Shenzhen Keya Medical Technology Corporation Method and system for diagnosis of COVID-19 using artificial intelligence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092433A2 (en) * 2006-02-06 2007-08-16 Tethys Bioscience, Inc. Osteoporosis associated markers and methods of use thereof
JP2008036068A (ja) 2006-08-04 2008-02-21 Hiroshima Univ 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
JP2011508228A (ja) * 2007-12-28 2011-03-10 エフ.ホフマン−ラ ロシュ アーゲー 生理学的状態の評価
JP2018044877A (ja) * 2016-09-15 2018-03-22 学校法人慶應義塾 被験者における骨密度低下の発症又は進行を予測する方法
US20180247020A1 (en) * 2017-02-24 2018-08-30 Siemens Healthcare Gmbh Personalized Assessment of Bone Health

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861481B2 (ja) * 2016-07-06 2021-04-21 オムロンヘルスケア株式会社 リスク分析システム及びリスク分析方法
JP2018124702A (ja) * 2017-01-31 2018-08-09 株式会社教育ソフトウェア 病因分析装置および疾病予測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092433A2 (en) * 2006-02-06 2007-08-16 Tethys Bioscience, Inc. Osteoporosis associated markers and methods of use thereof
JP2008036068A (ja) 2006-08-04 2008-02-21 Hiroshima Univ 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
JP2011508228A (ja) * 2007-12-28 2011-03-10 エフ.ホフマン−ラ ロシュ アーゲー 生理学的状態の評価
JP2018044877A (ja) * 2016-09-15 2018-03-22 学校法人慶應義塾 被験者における骨密度低下の発症又は進行を予測する方法
US20180247020A1 (en) * 2017-02-24 2018-08-30 Siemens Healthcare Gmbh Personalized Assessment of Bone Health

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830298B1 (ja) * 2020-04-30 2021-02-17 株式会社Jdsc 情報処理システム、情報処理装置、情報処理方法、及びプログラム
JP2021174477A (ja) * 2020-04-30 2021-11-01 株式会社Jdsc 情報処理システム、情報処理装置、情報処理方法、及びプログラム
WO2022158490A1 (ja) * 2021-01-20 2022-07-28 京セラ株式会社 予測システム、制御方法、および制御プログラム
WO2022190891A1 (ja) * 2021-03-11 2022-09-15 ソニーグループ株式会社 情報処理システム及び情報処理方法

Also Published As

Publication number Publication date
EP3903666A1 (en) 2021-11-03
EP3903666A4 (en) 2022-09-21
US20220082574A1 (en) 2022-03-17
JPWO2020138085A1 (ja) 2021-11-11
JP2023121815A (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
US12033318B2 (en) Estimation apparatus, estimation system, and computer-readable non-transitory medium storing estimation program
WO2020138085A1 (ja) 疾患予測システム
Secretariat Utilization of DXA bone mineral densitometry in Ontario: an evidence-based analysis
US20240354951A1 (en) Estimation apparatus, estimation system, and computer-readable non-transitory medium storing estimation program
WO2024181507A1 (ja) 情報処理システム、端末装置、情報処理システムの制御方法、制御プログラム、および記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905160

Country of ref document: EP

Effective date: 20210726