WO2020138042A1 - Optical film, flexible display device and polyamide-imide resin - Google Patents

Optical film, flexible display device and polyamide-imide resin Download PDF

Info

Publication number
WO2020138042A1
WO2020138042A1 PCT/JP2019/050538 JP2019050538W WO2020138042A1 WO 2020138042 A1 WO2020138042 A1 WO 2020138042A1 JP 2019050538 W JP2019050538 W JP 2019050538W WO 2020138042 A1 WO2020138042 A1 WO 2020138042A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
structural unit
optical film
Prior art date
Application number
PCT/JP2019/050538
Other languages
French (fr)
Japanese (ja)
Inventor
建太朗 増井
皓史 宮本
勝紀 望月
拓志 畔見
坂本 宏
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019218262A external-priority patent/JP2020109156A/en
Priority claimed from JP2019218263A external-priority patent/JP2020109157A/en
Priority claimed from JP2019218261A external-priority patent/JP2020109155A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980086081.2A priority Critical patent/CN113227222A/en
Priority to KR1020217023794A priority patent/KR20210110647A/en
Publication of WO2020138042A1 publication Critical patent/WO2020138042A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical film containing a polyamide-imide resin, a flexible display device including the optical film, and a polyamide-imide resin.
  • display devices such as liquid crystal display devices and organic EL display devices are widely used in various applications such as mobile phones and smart watches as well as televisions.
  • glass has been used as the front plate of such a display device.
  • glass has high transparency and can exhibit high hardness depending on the type, it is extremely rigid and easily broken, so that it is difficult to use it as a front plate material of a flexible display device.
  • an object of the present invention is to provide an optical film having high elastic modulus and surface hardness.
  • the inventors of the present invention have focused their attention on the structure of the monomer that constitutes the polyamide-imide-based resin contained in the optical film and have conducted earnest studies. As a result, they have found that an optical film containing a polyamide-imide resin having at least a specific structural unit has both high elastic modulus and surface hardness, and have completed the present invention.
  • R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number.
  • V is a single bond, —O—, a diphenylmethylene group, a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein hydrogen atoms contained in the hydrocarbon group, independently of each other, are halogen atoms.
  • R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 4
  • p represents an integer of 0 to 4
  • q represents an integer of 0 to 4]
  • R 1 in the formula (1) independently represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms or a halogeno group, and hydrogen atoms contained in R 1 are mutually
  • the optical film according to the above [1] which may be independently substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group.
  • V in the formula (1) represents a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms,
  • the hydrogen atom contained in this hydrocarbon group is mutually independently
  • the optical film as described in said [1] or [2] which may be substituted by the halogen atom.
  • the polyamide-imide-based resin has the following formula (4) as a constitutional unit represented by the formula (1):
  • R 1 and V are, independently of each other, as defined for R 1 and V in formula (1), and R 19 and R 20 are independently of each other a hydrogen atom or a formula ( Represents the groups described for R 2 in 1)]
  • R 1 in the formula (4) is a fluoroalkyl group having 1 to 12 carbon atoms.
  • R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. It represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms or a halogeno group, wherein the hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom or a carbon atom having 1 to 12 carbon atoms.
  • V is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein the hydrogen atoms contained in the hydrocarbon group are halogen atoms independently of each other.
  • R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 4
  • p represents an integer of 0 to 4
  • q represents an integer of 0 to 4]
  • the optical film of the present invention has high elastic modulus and surface hardness.
  • the optical film of the present invention has the formula (1):
  • R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number.
  • V is a single bond, —O—, a diphenylmethylene group, a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein hydrogen atoms contained in the hydrocarbon group, independently of each other, are halogen atoms.
  • R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 4
  • p represents an integer of 0 to 4
  • q represents an integer of 0 to 4]
  • a polyamide-imide resin having a structural unit represented by The constitutional unit represented by the formula (1) is a constitutional unit formed by reacting a dicarboxylic acid compound and a diamine compound, and the constitutional unit represented by the formula (2) is a tetracarboxylic acid compound and a diamine compound. And are structural units formed by reaction.
  • the polyamide-imide resin contained in the optical film of the present invention may have one type of structural unit represented by the formula (1), or two or more types of structural unit represented by the formula (1). May have.
  • the polyamide-imide resin may have one type of structural unit represented by the formula (2) or two or more types of structural unit represented by the formula (2). May be.
  • the polyamide-imide resin may include a further structural unit which does not correspond to the structural unit represented by the formula (1) or the structural unit represented by the formula (2).
  • the constitutional unit represented by the formula (1) is also referred to as “constitutional unit (1)”
  • the constitutional unit represented by the formula (2) is also referred to as “constitutional unit (2)”.
  • the bond represented by the dotted line represents a bond that bonds to an adjacent structural unit.
  • a bond represented by a dotted line in other chemical structural formulas similarly represents a bond that bonds to an adjacent structural unit or group.
  • the reason why the elastic modulus and the surface hardness are improved is not clear.
  • the structural unit (1) and the structural unit (2) are included, the skeleton thereof has appropriate rigidity and side chains have appropriate mobility.
  • both the elastic modulus and the surface hardness of the optical film containing such a polyamide-imide resin are improved.
  • the polyamide-imide resin contained in the optical film of the present invention has the structural unit (1) and the structural unit (2). From the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, when the total of the structural unit (1) and the structural unit (2) contained in the polyamide-imide resin is 100 mol %, the structural unit (1) The proportion of is preferably 20 to 99 mol %, more preferably 40 to 98 mol %, further preferably 50 to 95 mol %, and particularly preferably 60 to 93 mol %. When the ratio of the structural unit (1) is at least the above lower limit, it is easy to improve the elastic modulus and surface hardness of the optical film.
  • the ratio of the structural unit (1) is at most the above upper limit, it is easy to secure the solubility in a solvent.
  • the contents of the structural unit (1) and the structural unit (2) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
  • the content of the structural unit represented by the formula (1) is preferably 0.1 mol or more, more preferably 0.1 mol or less with respect to 1 mol of the structural unit represented by the formula (2). It is 5 mol or more, more preferably 1.0 mol or more, particularly preferably 1.5 mol or more, preferably 15 mol or less, more preferably 12 mol or less, and further preferably 10 mol or less.
  • the content of the constituent unit represented by the formula (1) is at least the above lower limit, the elastic modulus and surface hardness of the optical film can be easily improved. Further, when the content of the constitutional unit represented by the formula (1) is at most the above upper limit, thickening due to hydrogen bonds between amide bonds in the formula (1) is suppressed, and the processability of the optical film is improved. Easy to make.
  • R 1 and R 2 in the formula (1) are, independently of each other, (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, and (iii) having 6 to 12 carbon atoms.
  • the structural unit (1) has at least one type of R 1 .
  • the structural unit (1) may have one type of R 1 or two or more types of R 1 .
  • the structural unit (1) may have one type of R 2 , two or more types of R 2 , or may not have R 2 .
  • alkyl group having 1 to 12 carbon atoms examples include linear, branched or alicyclic alkyl groups having 1 to 12 carbon atoms.
  • linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-group.
  • alkyl group having 1 to 12 carbon atoms may be a linear alkyl group, a branched alkyl group, or an alicyclic alkyl group containing an alicyclic hydrocarbon structure.
  • the alkyl group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 or 2 carbon atoms.
  • At least one hydrogen atom of the alkyl group having 1 to 12 carbon atoms is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom (for example, an alkyl group having 1 to 4 carbon atoms)
  • the number of carbon atoms contained in the substituent is It is not included in the number of carbon atoms of the alkyl group of the numbers 1 to 12.
  • the above-mentioned group in which an alkyl group having 1 to 12 carbon atoms is substituted with an alkyl group having 1 to 4 carbon atoms has an alkyl group having 1 to 12 carbon atoms as a main chain and at least one hydrogen atom of the alkyl group Is a group substituted with an alkyl group having 1 to 4 carbon atoms.
  • the total number of carbon atoms in the alkyl group may exceed 12.
  • a group in which an alkyl group having 1 to 12 carbon atoms is substituted with an alkyl group having 1 to 4 carbon atoms has 1 to 12 carbon atoms. It is a group included in the definition of a branched alkyl group.
  • Examples of the alkoxy group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, Examples thereof include a cyclohexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group and a decyloxy group.
  • the alkyl group portion and/or alkylene group portion in the alkoxy group having 1 to 12 carbon atoms may be linear, branched, or alicyclic.
  • the alkoxy group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 or 2 carbon atoms.
  • at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with.
  • the halogen atom include the atoms described above.
  • the alkoxy group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom
  • the number of carbon atoms contained in the substituent is equal to the carbon number of the alkoxy group having 1 to 12 carbon atoms. exclude.
  • Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group.
  • the aryl group having 6 to 12 carbon atoms preferably has 6 or 10 or 12 carbon atoms, and more preferably has 6 carbon atoms.
  • at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with.
  • Examples of the halogen atom include the atoms described above.
  • the number of carbon atoms contained in the substituent is smaller than that of the aryl group having 6 to 12 carbon atoms. exclude.
  • Examples of the aryloxy group having 6 to 12 carbon atoms include phenoxy group, tolyloxy group, xylyloxy group, naphthyloxy group and biphenyloxy group.
  • the aryloxy group having 6 to 12 carbon atoms preferably has 6 or 10 or 12 carbon atoms, and more preferably has 6 carbon atoms.
  • at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with a group.
  • halogen atom examples include the atoms described above.
  • the aryloxy group having 6 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is the same as that of the aryloxy group having 6 to 12 carbon atoms. Not included in.
  • R a include the groups described for (i) an alkyl group having 1 to 12 carbons
  • R b include at least one hydrogen atom of the group described for (i) an alkyl group having 1 to 12 carbons.
  • At least one hydrogen atom independently of each other is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with.
  • the halogen atom include the atoms described above.
  • the carbonyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is equal to the carbon number of the carbonyl group having 1 to 12 carbon atoms. exclude.
  • R a include the groups described for (i) an alkyl group having 1 to 12 carbons
  • examples of R b include at least one hydrogen atom of the group described for (i) an alkyl group having 1 to 12 carbons.
  • a divalent alkylene group having 1 to 12 carbon atoms in which is replaced by a bond are examples of R a
  • At least one hydrogen atom independently of one another is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with a group.
  • the halogen atom include the atoms described above.
  • the oxycarbonyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom
  • the number of carbon atoms contained in the substituent is the number of carbon atoms of the oxycarbonyl group having 1 to 12 carbon atoms. Not included in.
  • Examples of the (vii) halogeno group include a fluoro group, a chloro group, a bromo group and an iodo group.
  • R 1 and R 2 in formula (1) are, independently of each other, (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or , (Vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or , May be substituted with a carboxyl group.
  • R 1 and R 2 in the formula (1) are (i) a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group. Independently of each other, a group substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group (preferably a halogen atom), or (vii) A halogeno group, more preferably a group in which at least one hydrogen atom of a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms is substituted with a halogen atom (preferably fluorine atom).
  • V in the formula (1) is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, Represents —S—, —CO—, —PO—, —PO 2 —, —N(R 30 )— or —Si(R 31 ) 2 —, wherein the hydrogen atom contained in the hydrocarbon group is They may be independently substituted with a halogen atom, and R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • a divalent alkylene group having 1 to 12 carbon atoms in which at least one hydrogen atom is replaced with a bond is mentioned.
  • V in the formula (1) is preferably a single bond, a divalent hydrocarbon group having 1 to 12 carbon atoms, or a hydrogen atom contained in the divalent hydrocarbon group having 1 to 12 carbon atoms is a halogen atom. It represents a substituted group, and more preferably represents a group in which a hydrogen atom contained in a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom.
  • V represents a divalent hydrocarbon group having 1 to 12 carbon atoms, or a hydrogen atom contained in the divalent hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom
  • the number of carbon atoms is 1
  • the divalent hydrocarbon group having 12 to 12 include groups in which at least one hydrogen atom of a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms is replaced with a bond.
  • Examples of the linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and sec-butyl group.
  • the divalent hydrocarbon group having 1 to 12 carbon atoms may be a linear alkylene group, a branched alkylene group, or an alicyclic alkylene group containing an alicyclic hydrocarbon structure.
  • the divalent hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 to 3 carbon atoms.
  • the divalent hydrocarbon group having 1 to 12 carbon atoms may be a group in which at least one hydrogen atom is independently substituted with a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • V in the formula (1) is preferably a single bond or at least one hydrogen atom of a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms.
  • halogen atom preferably a fluorine atom
  • It is a group (preferably a perfluoroalkylene group, more preferably a ditrifluoromethylmethylene group) in which all hydrogen atoms of the alkylene group are substituted with halogen atoms (preferably fluorine atoms).
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 4
  • p represents an integer of 0 to 4
  • q represents an integer of 0 to 4.
  • M in the formula (1) is preferably 0 or 1, and more preferably 0.
  • N in the formula (1) is preferably 1 or 2, and more preferably 1.
  • P in the formula (1) is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • Q in the formula (1) is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • V and q in the formula (1) V represents a single bond, and q is 1 or 2 (preferably 1), or V has 1 to 2 carbon atoms. 12 linear, branched or alicyclic alkylene groups (more preferably fluoroalkylene groups, further preferably perfluoroalkylene groups, particularly preferably difluoromethylmethylene groups), and q is 0 or 1 (Preferably 0).
  • the polyamide-imide-based resin has the following formula (1a) as a structural unit represented by formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • R 3 to R 10 each independently represent a hydrogen atom or a group described for R 1 in the formula (1), provided that at least one of R 3 to R 10 is the same as R 1 in the formula (1). Is the listed group, R 2 , q and V are as defined for R 2 , q and V in formula (1) respectively] Including a structural unit represented by.
  • the constitutional unit represented by the formula (1a) is also referred to as “constitutional unit (1a)”.
  • the polyamide-imide resin contains the structural unit (1a) as the structural unit (1)
  • the polyamide-imide resin contains one structural unit represented by the formula (1a) as the structural unit (1).
  • the polyamide-imide resin may include two or more types of structural units represented by formula (1a), and may correspond to formula (1) in addition to the structural unit represented by formula (1a). It may further include a structural unit which does not correspond to the formula (1a).
  • the polyamide-imide resin contained in the optical film of the present invention has at least the structural unit (1) and the structural unit (2) as described above, and the resin is usually a plurality of structural units (1) and a plurality of structural units.
  • that the polyamide-imide resin contains a constitutional unit represented by the formula (1a) as the constitutional unit (1) means that at least a part of a plurality of constitutional units (1) included in the polyamide-imide resin. It means that the structural unit (1) is a structural unit represented by the formula (1a).
  • the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (1a) as the constitutional unit (1).
  • the proportion of the structural unit represented by the formula (1a) is preferably 70 to 100 mol %, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (1a).
  • the content of the structural unit (1) and the structural unit (1a) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamide-imide-based resin has the following formula (1aa) as a constitutional unit represented by formula (1a) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • R 3 to R 10 are, independently of each other, as defined for R 3 to R 10 in formula (1a), R 11 to R 18 each independently represent a hydrogen atom or a group described for R 2 in the formula (1), provided that at least one of R 11 to R 18 is the same as R 2 in the formula (1). It is the stated group] And/or the formula (1ab):
  • R 3 to R 10 independently of each other are as defined for R 3 to R 10 in formula (1a), and V is as defined for V in formula (1)].
  • the constitutional unit represented by the formula (1aa) is also referred to as “constitutional unit (1aa)”
  • the constitutional unit represented by the formula (1ab) is also referred to as “constitutional unit (1ab)”.
  • the polyamide-imide resin is represented by the formula (1aa) as the structural unit (1a). May include one type of structural unit represented by the formula (1aa), may include two or more types of structural units represented by the formula (1aa), and may include one type of structural unit represented by the formula (1ab). It may contain, or may contain two or more types of structural units represented by the formula (1ab), both one or more types of structural units (1aa) and one or more types of structural units (1ab) May be included.
  • the polyamide-imide-based resin includes, in addition to the structural unit (1aa) or the structural unit (1ab), a structural unit that corresponds to the formula (1a) but does not correspond to the formula (1aa) or the formula (1ab). It may further include.
  • the polyamideimide-based resin contained in the optical film of the present invention contains the structural unit represented by the formula (1aa) as the structural unit (1a).
  • the ratio of the structural unit represented by the formula (1aa) is preferably 70 to 100 from the viewpoint of easily improving the elastic modulus, surface hardness and flex resistance of the optical film. It is mol%, more preferably 80 to 100 mol%, further preferably 90 to 100 mol%, and all the structural units (1a) may be structural units represented by the formula (1aa).
  • the content of the structural unit (1a) and the structural unit (1aa) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamide-imide resin contained in the optical film of the present invention may contain a structural unit represented by the formula (1ab) as the structural unit (1a).
  • the ratio of the constituent unit represented by the formula (1ab) is from the viewpoint of flex resistance and solubility in a solvent. Therefore, it is preferably 0 to 100 mol %, more preferably 0 to 50 mol %, and further preferably 0 to 30 mol %.
  • the proportion of the structural unit represented by the formula (1ab) is at most the above upper limit, the elastic modulus and bending resistance of the optical film can be more easily improved.
  • the content of the structural unit (1a) and the structural unit (1ab) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamideimide resin included in the optical film includes both a structural unit represented by the formula (1aa) and a structural unit represented by the formula (1ab) as the structural unit (1a). You can leave.
  • the constituent unit (1a) contained in the polyamide-imide resin is 100 mol %
  • the total ratio of the constituent unit (1aa) and the constituent unit (1ab) is the elastic modulus and surface hardness of the optical film. From the viewpoint of easily improving the ratio, it is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and all the structural units (1a) are structural units (1aa) and It may be the structural unit (1ab).
  • the content of the structural unit (1aa) is preferably 1 mol or more, more preferably 4 mol or more, further preferably 6 mol or more, and particularly preferably 8 mol or more, relative to 1 mol of the structural unit (1ab). Is.
  • the content of the structural unit represented by the formula (1aa) is at least the above lower limit, the bending resistance, elastic modulus and surface hardness of the optical film can be easily improved.
  • R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab) each independently represent a hydrogen atom or a group described for R 1 in formula (1), provided that R 3 to At least one of R 10 is the group described for R 1 in formula (1), preferably at least two of R 3 to R 10 are the groups described for R 1 in formula (1).
  • the preferred embodiments for the groups mentioned for R 1 in formula (1) likewise apply to R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab).
  • at least R 5 and R 7 in the formula (1a) are preferably the groups described for R 1 in the formula (1), and more preferably the formula (1).
  • R 5 and R 7 in 1a) are the groups described for R 1 in the formula (1), and R 3 , R 4 and R 6 , and R 8 to R 10 are hydrogen atoms.
  • R 1 in formula (1) which can be represented by R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab), include (i) alkyl having 1 to 12 carbons. Group, (ii) an alkoxy group having 1 to 12 carbon atoms, or (vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom or a hydrogen atom having 1 to 4 carbon atoms. It may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group.
  • the group described for R 1 in formula (1) is more preferably (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group is independently a halogen atom or a carbon number.
  • examples thereof include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably a carbon number.
  • Examples thereof include a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which at least one hydrogen atom of an alkyl group having 1 to 12 is substituted with a halogen atom (preferably fluorine atom), and particularly preferably 1 to 12 carbon atoms.
  • a group preferably a perfluoroalkyl group having 1 to 12 carbon atoms in which all hydrogen atoms of 12 straight, branched or alicyclic alkyl groups are substituted with halogen atoms (preferably fluorine atoms) Can be mentioned.
  • the polyamide-imide-based resin has the following formula (1b) as a structural unit represented by formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • R 1 , R 2 , q and V are as defined for R 1 , R 2 , q and V in the formula (1), respectively] Including a structural unit represented by.
  • constitutional unit represented by the formula (1b) is also referred to as “constitutional unit (1b)”.
  • R 5 and R 7 in the formula (1a) are the groups described for R 1 in the formula (1), and R 3 , R 4 , R 6 and R 8 to R 8 10 corresponds to a structural unit in which a hydrogen atom is used.
  • the polyamide-imide resin includes the structural unit (1b) as the structural unit (1)
  • the polyamide-imide resin includes one type of structural unit represented by the formula (1b) as the structural unit (1). And may include two or more types of constitutional units represented by formula (1b), and in addition to the constitutional unit represented by formula (1b), It may further include a structural unit which does not correspond to the formula (1b).
  • the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (1b) as the constitutional unit (1).
  • the ratio of the structural unit represented by the formula (1b) is preferably 70 to 100 mol %, more preferably from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (1b).
  • the contents of the structural unit (1) and the structural unit (1b) can be measured, for example, by 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
  • the polyamide-imide-based resin has the following formula (1ba) as a structural unit represented by formula (1b) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • R 1 is, independently of one another, as defined for R 1 in formula (1), R 11 to R 18 each independently represent a hydrogen atom or a group described for R 2 in the formula (1), provided that at least one of R 11 to R 18 is the same as R 2 in the formula (1). It is the stated group] And/or the formula (1bb):
  • R 1 is, independently of one another, as defined for R 1 in formula (1), V is as defined for V in formula (1)] Including a structural unit represented by.
  • the constitutional unit represented by the formula (1ba) is also referred to as “constitutional unit (1ba)”
  • the constitutional unit represented by the formula (1bb) is also referred to as “constitutional unit (1bb)”.
  • the polyamide-imide resin includes the structural unit (1ba) and/or the structural unit (1bb) as the structural unit (1b)
  • the polyamide-imide resin is represented by the formula (1ba) as the structural unit (1b).
  • 1 type of constitutional unit may be included, two or more types of constitutional units represented by the formula (1bb) may be included, and 1 or more types of constitutional units (1ba) and 1 or more types of Both of the structural units (1bb) may be included.
  • the polyamide-imide-based resin includes, in addition to the structural unit (1ba) or the structural unit (1bb), a structural unit that corresponds to the formula (1b) but does not correspond to the formula (1ba) or the formula (1bb). It may further include.
  • the polyamideimide-based resin contained in the optical film of the present invention contains the structural unit represented by the formula (1ba) as the structural unit (1b).
  • the ratio of the structural unit represented by the formula (1ba) is preferably 70 to 100 from the viewpoint of easily improving the elastic modulus, surface hardness and flex resistance of the optical film.
  • Mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%, and all of the structural units (1b) may be structural units represented by the formula (1ba).
  • the content of the structural unit (1b) and the structural unit (1ba) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamide-imide resin contained in the optical film of the present invention may contain a structural unit represented by the formula (1bb) as the structural unit (1b).
  • the ratio of the constitutional unit represented by the formula (1bb) is from the viewpoint of flex resistance and solubility in a solvent. Therefore, it is preferably 0 to 100 mol %, more preferably 0 to 50 mol %, and further preferably 0 to 30 mol %.
  • the proportion of the structural unit represented by the formula (1bb) is at most the above upper limit, the elastic modulus and bending resistance of the optical film can be more easily improved.
  • the content of the structural unit (1b) and the structural unit (1bb) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
  • the polyamideimide resin included in the optical film includes both a structural unit represented by the formula (1ba) and a structural unit represented by the formula (1bb) as the structural unit (1b). You can leave.
  • the constituent unit (1b) contained in the polyamide-imide resin is 100 mol %
  • the total ratio of the constituent unit (1ba) and the constituent unit (1bb) is preferably 70 to 100 mol %, It is more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and all of the structural units (1b) may be either structural units (1ba) or structural units (1bb).
  • the content of the structural unit (1ba) is preferably 1 mol or more, more preferably 4 mol or more, further preferably 6 mol or more, and particularly preferably 8 mol or more, relative to 1 mol of the structural unit (1bb). Is.
  • the content of the structural unit represented by the formula (1ba) is at least the above lower limit, the elastic modulus and surface hardness of the optical film can be easily improved.
  • R 1 in formula (1b), formula (1ba) and formula (1bb) is the group described for R 1 in formula (1), and the preferred descriptions for R 1 in formula (1) also apply. .. That is, R 1 in formula (1b), formula (1ba) and formula (1bb) is preferably (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or (Vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or It may be substituted with a carboxyl group.
  • an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group are independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a carbon number. 1 to 4 alkoxy group, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably at least one alkyl group having 1 to 12 carbon atoms.
  • a group in which one hydrogen atom is replaced by a halogen atom (preferably a fluorine atom), and particularly preferably a straight chain or branched chain having 1 to 12 carbon atoms.
  • halogen atom preferably a fluorine atom
  • examples thereof include groups (preferably perfluoroalkyl groups having 1 to 12 carbon atoms) in which all hydrogen atoms of a cyclic or alicyclic alkyl group are substituted with halogen atoms (preferably fluorine atoms).
  • R 2 , V and q in formulas (1a) and (1b) are, independently of each other, as defined for R 2 , V and q in formula (1), and the preferred descriptions thereof also apply.
  • V represents a single bond and q is 1 or 2 (preferably 1), or V is a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms ( A fluoroalkylene group is more preferable, a perfluoroalkylene group is still more preferable, and a difluoromethylmethylene group is particularly preferable, and q is preferably 0 or 1 (preferably 0).
  • V in formulas (1ab) and (1bb) is as defined for V in formula (1), but is preferably a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms. Is more preferable, a fluoroalkylene group is more preferable, a perfluoroalkylene group is still more preferable, and a difluoromethylmethylene group is particularly preferable.
  • R 11 to R 18 in formulas (1aa) and (1ba) each independently represent a hydrogen atom or a group described for R 2 in formula (1), provided that at least one of R 11 to R 18 is present. is a group as described for R 2 in the formula (1), preferably at least two R 11 ⁇ R 18 is as described for R 2 in the formula (1) group.
  • the preferred embodiments for the groups mentioned for R 2 in formula (1) likewise apply to R 11 to R 18 in formula (1aa) and formula (1ba).
  • R 12 and R 18 in formula (1a) and formula (1ba) are preferably the groups described for R 2 in formula (1), More preferably, R 12 and R 18 in formula (1aa) and formula (1ba) are the groups described for R 2 in formula (1), and R 11 and R 13 to R 17 are hydrogen atoms. ..
  • R 2 in the formula (1) which can be represented by R 11 to R 18 in the formulas (1aa) and (1ba), include (i) an alkyl group having 1 to 12 carbon atoms, and (ii) a carbon atom.
  • An alkoxy group having a number of 1 to 12 or (vii) a halogeno group is preferable, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having a carbon number of 1 to 4, and a carbon number of 1 It may be substituted with an alkoxy group of 4 to 4, a hydroxyl group or a carboxyl group.
  • the group described for R 2 in the formula (1) is more preferably (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group is independently a halogen atom or a carbon atom.
  • examples thereof include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably carbon.
  • Examples thereof include a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which at least one hydrogen atom of an alkyl group having 1 to 12 atoms is substituted with a halogen atom (preferably a fluorine atom), and particularly preferably a carbon number 1 A group (preferably a perfluoroalkyl group having 1 to 12 carbon atoms) in which all hydrogen atoms of a linear, branched or alicyclic alkyl group of 1 to 12 are substituted with halogen atoms (preferably fluorine atoms), More preferably, it is a perfluoroalkyl group having 1 to 4 carbon atoms.
  • the polyamide-imide-based resin has a formula (4) as a structural unit represented by the formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • R 1 and V are, independently of each other, as defined for R 1 and V in formula (1), and R 19 and R 20 are independently of each other a hydrogen atom or a formula ( Represents the groups described for R 2 in 1)] Including a structural unit represented by.
  • constitutional unit represented by the formula (4) is also referred to as “constitutional unit (4)”.
  • the polyamide-imide resin contains the structural unit (4) as the structural unit (1)
  • the polyamide-imide resin contains one structural unit represented by the formula (4) as the structural unit (1). And may include two or more types of constitutional units represented by formula (4), and in addition to the constitutional unit represented by formula (4), It may further include a structural unit which does not correspond to the formula (4).
  • the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (4) as the constitutional unit (1).
  • the proportion of the structural unit represented by the formula (4) is preferably 70 to 100 mol %, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (4).
  • the contents of the structural unit (1) and the structural unit (4) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • R 1 in the formula (4) are each independently as defined for R 1 in formula (1), R 1 of the preferred described for R 1 in formula (1) has the formula (4) The same applies to. That is, R 1 in the formula (4) is preferably (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or (vii) a halogeno group, wherein , R 1 and R 2 may be independently substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group.
  • an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group are independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a carbon number. 1 to 4 alkoxy group, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably at least one alkyl group having 1 to 12 carbon atoms.
  • a group in which one hydrogen atom is replaced by a halogen atom (preferably a fluorine atom), and particularly preferably a straight chain or branched chain having 1 to 12 carbon atoms.
  • halogen atom preferably a fluorine atom
  • examples thereof include groups (preferably perfluoroalkyl groups having 1 to 12 carbon atoms) in which all hydrogen atoms of a cyclic or alicyclic alkyl group are substituted with halogen atoms (preferably fluorine atoms).
  • V in formula (4) is as defined for V in formula (1), and the preferred description regarding V in formula (1) also applies to V in formula (4).
  • R 19 and R 20 in formula (4) each independently represent a hydrogen atom or a group described for R 2 in formula (1).
  • R 19 and R 20 in the formula (4) represents the group described for R 2 in the formula (1)
  • preferable description for R 2 in the formula (1) is R 19 and R 20. The same applies to at least one group of
  • R 19 , R 20 and V in formula (4) are, in one preferred embodiment, V represents a single bond, and at least one of R 19 and R 20 is the group described for R 2 in formula (1).
  • V is a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms (more preferably a fluoroalkylene group having 1 to 12 carbon atoms, further preferably 1 to 12 carbon atoms).
  • R 19 and R 20 each represent a hydrogen atom.
  • X in the structural unit (2) represents a divalent organic group, preferably a C4-40 divalent organic group, and more preferably a C4-40 divalent organic group having a cyclic structure.
  • the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure.
  • the organic group, the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, the carbon number of the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably Is 1 to 8.
  • the structural unit (2) contained in the polyamide-imide resin may contain one type of organic group as X, or may contain two or more types of organic groups.
  • the constitutional unit represented by the formula (2) is represented by the formula (1X) as X from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film:
  • R 2 , q and V are as defined for R 2 , q and V in the formula (1), respectively, and * represents a bond] Including a divalent organic group represented by.
  • the structural unit (2) may be one type or two or more types represented by the formula (1X) as X.
  • the divalent organic group may be included.
  • the structural unit (2) may contain, as X, a divalent organic group which does not correspond to the formula (1X), in addition to the divalent organic group represented by the formula (1X).
  • the structural unit (2) when the structural unit (2) has a divalent organic group represented by the formula (1X) as X, the structural unit ( When 2) is set to 100 mol %, the ratio of the constitutional unit in which X in the formula (2) is a divalent organic group represented by the formula (1X) improves the elastic modulus and surface hardness of the optical film. From the viewpoint of easy control, it is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and in all the structural units of the structural unit (2), X is the formula (1X). It may be a divalent organic group represented by.
  • the content of the structural unit (2) and the structural unit (2) in which X is represented by the formula (1X) can be measured, for example, by 1 H-NMR, or from the charging ratio of raw materials. It can also be calculated.
  • R 2 , q and V in formula (1X) are, independently of one another, as defined for R 2 , q and V in formula (1), and relate to R 2 , q and V in formula (1).
  • the preferred statements likewise apply to R 2 , q and V in formula (1X).
  • Y in the structural unit represented by the formula (2) represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 to 4 carbon atoms having a cyclic structure.
  • 40 tetravalent organic groups are represented.
  • the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure.
  • the organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, a hydrocarbon group and a fluorine-substituted hydrocarbon group
  • the carbon number is preferably 1-8.
  • the structural unit (2) may have, as Y, one type of tetravalent organic group, or may have two or more types of tetravalent organic groups.
  • Y equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) and equation A group represented by (29); a group in which a hydrogen atom in the group represented by formula (20) to formula (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and 4 A chain hydrocarbon group having a valence of 6 or less is exemplified.
  • W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Alternatively, it represents —Ar—SO 2 —Ar—.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be replaced by a fluorine atom, and a specific example thereof is a phenylene group.
  • Ars may be the same or different from each other.
  • W 1 is a single bond, —O—, independently of each other from the viewpoint of easily increasing the elastic modulus, surface hardness and bending resistance of the optical film, and easily reducing the yellowness (hereinafter also referred to as YI value).
  • -CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 - or -C (CF 3) 2 - is preferably a single bond, -O- , —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —C(CH 3 ) 2 — or More preferably, it is —C(CF 3 ) 2 —.
  • R 21 to R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms,
  • the hydrogen atoms contained in R 21 to R 28 may be independently substituted with a halogen atom, * Represents a bond]
  • the structural unit (2) contains, as Y, a tetravalent organic group represented by the formula (6), it is easy to improve the elastic modulus and the surface hardness of the optical film.
  • the solubility of the polyamide-imide resin in the solvent is increased, the viscosity of the varnish containing the resin is easily reduced, and the processability of the optical film is easily improved. Furthermore, it is easy to improve the optical characteristics of the optical film.
  • R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a carbon number 1 It represents an alkoxy group having 12 to 12 or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms and the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 12 carbon atoms in R 1 and R 2 in the formula (1), Examples of the alkoxy group having 1 to 12 carbon atoms or the aryl group having 6 to 12 carbon atoms include those exemplified above.
  • R 21 to R 28 each independently represent, preferably, a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein R 21 to R 28 The hydrogen atoms contained in R 28 may be independently substituted with a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 21 to R 28 are, independently of each other, more preferably a hydrogen atom or a methyl group from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, and easily improving the surface hardness, flex resistance and transparency.
  • a fluoro group, a chloro group or a trifluoromethyl group, and particularly preferably R 24 and R 25 are a methyl group or a trifluoromethyl group.
  • the structural unit (2) contained in the polyamide-imide resin contained in the optical film of the present invention contains, as Y, a tetravalent organic group represented by the formula (6). From the viewpoint of easily improving the elastic modulus and the surface hardness of Y, Y in the formula (2) is represented by the formula (6) when the total of the structural units (2) contained in the polyamide-imide resin is 100 mol %.
  • the ratio of the structural unit which is a tetravalent organic group is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and the total amount of the structural unit (2) is
  • Y may be a tetravalent organic group represented by the formula (6).
  • the structural unit represented by formula (2) is represented by formula (6a) as Y:
  • R 24 and R 25 in the formula (6) are triflufluoromethyl groups, and R 21 , R 22 , R 23 , R 26 , and R 27 are And R 28 corresponds to a group in which a hydrogen atom is present.
  • the structural unit (2) contains, as Y, a tetravalent organic group represented by the formula (6a)
  • the solubility of the polyamide-imide resin in the solvent is increased, the viscosity of the varnish containing the resin is easily reduced, and the processability of the optical film is easily improved. Furthermore, it is easy to improve the optical characteristics of the optical film.
  • the structural unit (2) contained in the polyamide-imide resin contained in the optical film of the present invention contains, as Y, a tetravalent organic group represented by the formula (6a). From the viewpoint of easily improving the elastic modulus and surface hardness of Y, Y in the formula (2) is represented by the formula (6a) when the total of the structural units (2) contained in the polyamide-imide resin is 100 mol %.
  • the ratio of the structural unit which is a tetravalent organic group is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and the total amount of the structural unit (2) is
  • Y may be a tetravalent organic group represented by the formula (6a).
  • the polyamide-imide resin contained in the optical film of the present invention includes the structural unit (1) and the structural unit (2), as well as the formula (3) not corresponding to the formula (1):
  • [Z in Formula (3) is a divalent organic group, and X'represents a divalent organic group]
  • the constitutional unit represented by may be included.
  • the polyamide-imide resin contains the structural unit represented by the formula (3) in addition to the structural unit (1) and the structural unit (2), it is easy to improve the bending resistance and surface hardness of the optical film.
  • Z in the formula (3) is, for example, a cyclic structure (preferably an alicyclic structure, an aromatic group) which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. And a divalent organic group having 4 to 40 carbon atoms including a ring structure or a heterocyclic structure).
  • Examples of the divalent organic group having 4 to 40 carbon atoms including a cyclic structure include the above formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), Among the bonds of the groups represented by the formula (26), the formula (27), the formula (28) and the formula (29), two groups which are not adjacent to each other are replaced by hydrogen atoms, and a group having a thiophene ring structure is Can be mentioned.
  • the constitutional unit represented by the formula (3) is different from the constitutional unit represented by the formula (1) at least in the portion Z, and does not correspond to the constitutional unit represented by the formula (1). Is.
  • Examples of the divalent organic group containing a cyclic structure and having 4 to 40 carbon atoms as Z in the formula (3) include formula (20′), formula (21′), formula (22′) and formula (23′). ), formula (24′), formula (25′), formula (26′), formula (27′), formula (28′) and formula (29′):
  • W 1 and * are as defined in the formulas (20) to (29)]
  • a divalent organic group represented by is more preferable.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the aryl group having 6 to 12 carbon atoms are respectively represented by R 1 and R 2 in the formula (1) having 1 carbon atom.
  • Examples of the alkyl group having 12 to 12, the alkoxy group having 1 to 12 carbons, and the aryl group having 6 to 12 carbons include those exemplified above.
  • R e and R f are both hydrogen atoms (a structural unit derived from a dicarboxylic acid compound), R e is both a hydrogen atom, and R f
  • a structural unit (a structural unit derived from a tricarboxylic acid compound) and the like represent —C( ⁇ O)-*.
  • the constitutional unit represented by the formula (3) is represented by the formula (7a) as Z:
  • R g and R h each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • A, s and * are the same as A, s and * in the formula (7)
  • t and u are each independently an integer of 0 to 4, provided that s is an integer of 1 to 4
  • R 31 to R 38 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • A is, independently of one another, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, Represents —SO 2 —, —S—, —CO— or —N(R 39 )—, wherein R 39 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom; s is an integer from 0 to 4, * Represents a bond] It is more preferable to contain a divalent organic group represented by
  • each benzene ring may be bonded to any of the ortho position, the meta position or the para position with respect to -A-, preferably the meta position or the para position. May be.
  • R g and R h in formula (7a) each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • t and u are preferably 0, but when t and/or u is 1 or more, R g and R h preferably represent an alkyl group having 1 to 6 carbon atoms, More preferably, it represents an alkyl group having 1 to 3 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are respectively represented by the formula (7 Examples of the halogen atom, the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, or the aryl group having 6 to 12 carbon atoms in ).
  • t and u are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • A is, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 —, —SO 2 —, —S—, —CO— or —N(R 39 )—, and from the viewpoint of flex resistance of the optical film, preferably —O— or —S—. Represents, more preferably -O-.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37, and R 38 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a carbon number 1 It represents an alkoxy group having 12 to 12 or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms and the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 12 carbon atoms in R 1 and R 2 in the formula (1), Examples of the alkoxy group having 1 to 12 carbon atoms or the aryl group having 6 to 12 carbon atoms include those exemplified above.
  • R 31 to R 38 each independently represent preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or 1 to 3 carbon atoms. Represents an alkyl group, more preferably represents a hydrogen atom.
  • R 39 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and 2-methyl- group.
  • the structural unit represented by the formula (3) may contain, as Z, one kind of divalent organic group represented by the formula (7) or the formula (7a), Two or more types of organic groups represented by formula (7) or formula (7a) may be included.
  • s is an integer in the range of 0 to 4, and when s is in this range, the bending resistance and elastic modulus of the optical film tend to be good.
  • s is preferably an integer in the range of 0 to 3, more preferably 0 to 2, even more preferably 0 or 1, and most preferably 0. When s is within this range, it is easy to improve the bending resistance and elastic modulus of the optical film.
  • Examples of X′ in the formula (7) include the groups described above for X in the structural unit (2).
  • It may have a structural unit represented by.
  • the surface hardness and flex resistance of the optical film are easily improved, and the YI value is easily reduced.
  • the polyamide-imide-based resin contained in the optical film of the present invention includes a structural unit (1) and a structural unit (2) as well as a structural unit represented by the formula (3) (hereinafter, “structural unit (3)”). Also referred to as “)”, the total of the structural unit (1), the structural unit (2) and the structural unit (3) contained in the polyamide-imide resin is 100, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
  • the total ratio of the structural unit (1) and the structural unit (2) is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, even more preferably Is 85 mol% or more, particularly preferably 90 mol% or more.
  • the upper limit of the ratio of the total of the structural unit (1) and the structural unit (2) may be less than 100 mol %.
  • the content of the structural unit (1), the structural unit (2) or the structural unit (3) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamide-imide-based resin contained in the optical film of the present invention includes the structural unit (1) and the structural unit (2) as well as the structural unit represented by the formula (3) (hereinafter, “structural unit (3)”). Also referred to as “)”, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, when the total of the structural unit (1) and the structural unit (3) contained in the polyamide-imide resin is 100 mol %.
  • the proportion of the structural unit (1) is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more.
  • the upper limit of the ratio of the structural unit (1) may be less than 100 mol%.
  • the content of the structural unit (1), the structural unit (2) or the structural unit (3) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyamide-imide resin contains a constitutional unit represented by the formula (30) and/or a constitutional unit represented by the formula (31) in addition to the constitutional units represented by the formulas (1) and (2). You can leave.
  • Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of Y 1 include the groups described as Y in the formula (2).
  • the polyamide-imide-based resin may include a plurality of types of Y 1 , and the plurality of types of Y 1 may be the same as or different from each other.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of Y 2 include a group in which any one of the bonds of the group described as Y in the formula (2) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms.
  • the polyamide-imide-based resin may include a plurality of types of Y 2 , and the plurality of types of Y 2 may be the same as or different from each other.
  • X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group in which a hydrogen atom in the organic group is substituted or a fluorine-substituted hydrocarbon group. Is an organic group which may be substituted with. Examples of X 1 and X 2 include the groups described as X in the formula (2).
  • the polyamide-imide resin is a structural unit represented by the formula (1), a structural unit represented by the formula (2), and optionally a structural unit represented by the formula (3). , And/or a structural unit represented by the formula (31).
  • the constitutional unit represented by the formula (1) and the formula (2) is represented by the formula (1).
  • the formula (30) and the formula (31) preferably 80 mol% or more, more preferably 90 mol% or more, It is preferably 95 mol% or more.
  • the constitutional units represented by the formulas (1) and (2) are represented by the formulas (1) and (2), and optionally the formulas (3), (30) and/or It is usually 100% or less based on all the structural units represented by formula (31).
  • the above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the content of the polyamideimide resin in the optical film is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 50 parts by mass with respect to 100 parts by mass of the optical film. It is at least 9 parts by mass, preferably at most 99.5 parts by mass, more preferably at most 95 parts by mass.
  • the content of the polyamide-imide resin is within the above range, the optical characteristics, elastic modulus and surface hardness of the optical film can be easily improved.
  • the weight average molecular weight (Mw) of the polyamide-imide resin is preferably 200,000 or more, more preferably 250,000 or more in terms of standard polystyrene, from the viewpoint of easily increasing the elastic modulus, surface hardness and flex resistance of the optical film. , More preferably 270,000 or more, particularly preferably 300,000 or more.
  • the weight average molecular weight of the resin is preferably 1,000,000 or less, from the viewpoint of easily improving the solubility of the polyamideimide resin in a solvent and easily improving the stretchability and processability of the optical film. It is preferably 800,000 or less, more preferably 700,000 or less, particularly preferably 600,000 or less.
  • the weight average molecular weight can be determined by, for example, GPC measurement and standard polystyrene conversion, and may be calculated by the method described in Examples, for example.
  • the elastic modulus of the optical film of the present invention is preferably 4.5 GPa or more, more preferably 4.8 GPa or more, further preferably 5.0 GPa or more, and usually 100 GPa, from the viewpoint of easily preventing scratches and the like of the optical film. It is as follows.
  • the elastic modulus can be measured by using a tensile tester (distance between chucks: 50 mm, pulling speed: 10 mm/min), and can be measured, for example, by the method described in Examples.
  • the total light transmittance (and/or light transmittance for light of 300 to 800 nm) of the optical film of the present invention is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more, even more preferably It is 89% or more, particularly preferably 90% or more, and particularly preferably 91% or more.
  • the total light transmittance is not less than the above lower limit, it is easy to improve the visibility when the optical film is incorporated into a display device, particularly as a front plate. Since the optical film of the present invention usually exhibits a high total light transmittance, for example, as compared with the case of using a film having a low transmittance, the emission intensity of a display element or the like required to obtain constant brightness is suppressed.
  • the optical film of the present invention when the optical film of the present invention is incorporated into a display device, bright display tends to be obtained even if the light amount of the backlight is reduced, which can contribute to energy saving.
  • the upper limit of the total light transmittance is usually 100% or less.
  • the optical film in order to increase the elastic modulus of an optical film, for example, the optical film may be heated at a high temperature of more than 200° C. during production, but in this case, the light transmittance of the optical film is lowered and It is easy to get worse. Since the optical film of the present invention has a high elastic modulus without being heated at a high temperature exceeding 200° C., it is possible to suppress a decrease in total light transmittance.
  • the total light transmittance can be measured by using a haze computer in accordance with JIS K 7361-1:1997, for example.
  • the total light transmittance may be the total light transmittance in the range of the thickness of the optical film described below.
  • the haze of the optical film of the present invention is preferably 5% or less, more preferably 4% or less, even more preferably 3% or less, even more preferably 2.5% or less, particularly preferably 2% or less, and particularly preferably It is 1% or less, particularly preferably 0.5% or less, particularly preferably 0.2% or less, and usually 0.01% or more.
  • the haze of the optical film is equal to or less than the above upper limit, the visibility is likely to be enhanced when the optical film is incorporated into a display device, particularly as a front plate.
  • the haze can be measured using a haze computer according to JIS K 7136:2000.
  • the YI value of the optical film of the present invention is preferably 3.5 or less, more preferably 3.0 or less, and further preferably 2.5 or less.
  • the YI value is usually -5 or more, preferably -2 or more.
  • that the optical film is excellent in optical characteristics means that the light transmittance is high.
  • the thickness of the optical film of the present invention is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably It is 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, and a combination of these upper and lower limits may be used.
  • the thickness of the optical film can be measured using a micrometer, for example, the method described in the examples.
  • the number of times of bending is not less than the above lower limit, it has sufficient bending resistance as a front plate material for flexible display devices and the like.
  • the number of times of bending in the bending resistance test is performed by repeatedly bending the optical film using a bending tester under the condition that the bending radius (curvature radius) R is 1 mm, and making a reciprocating motion until the film is cracked. The number of times of bending (one reciprocation is once) is shown.
  • the pencil hardness of at least one surface of the optical film of the present invention is preferably H or higher, more preferably 2H or higher.
  • the pencil hardness can be measured according to JIS K 5600-5-4:1999, and can be measured, for example, by the method described in the examples.
  • the imidization ratio of the polyamide-imide resin is preferably 90% or higher, more preferably 93% or higher, even more preferably 96% or higher, and usually 100% or lower. From the viewpoint of easily improving the optical characteristics of the optical film, it is preferable that the imidization ratio is not less than the above lower limit.
  • the imidization ratio indicates the ratio of the molar amount of imide bonds in the polyamideimide-based resin to the double value of the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyamideimide-based resin.
  • the polyamide-imide-based resin contains a tricarboxylic acid compound
  • the value of twice the molar amount of the constitutional unit derived from the tetracarboxylic acid compound in the polyamide-imide-based resin and the constitutional unit derived from the tricarboxylic acid compound The ratio of the molar amount of the imide bond in the polyamide-imide resin to the total of the molar amount is shown.
  • the imidization ratio can be determined by IR method, NMR method, or the like.
  • the present invention provides, in addition to the optical film containing the above polyamideimide resin, the above polyamideimide resin suitable for producing the optical film.
  • a polyamide-imide resin has, for example, the formula (1):
  • R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. It represents a carboxyl group of 1 to 12, an oxycarbonyl group of 1 to 12 carbon atoms or a halogeno group, wherein the hydrogen atoms contained in R 1 and R 2 may be independently substituted with a halogen atom.
  • V is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein the hydrogen atoms contained in the hydrocarbon group are halogen atoms independently of each other.
  • R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 4
  • p represents an integer of 0 to 4
  • q represents an integer of 0 to 4]
  • the content of halogen atoms in the polyamideimide resin is preferably 1 to 60% by mass, more preferably 5 to 55% by mass, and further preferably 10 to 50% by mass, based on the mass of the polyamideimide resin.
  • the content of halogen atoms is at least the above lower limit, the elastic modulus, surface hardness, transparency and visibility of the optical film can be more easily improved.
  • the content of halogen atoms is at most the above upper limit, the resin will be easily synthesized.
  • the polyamide-imide resin can be produced using, for example, a tetracarboxylic acid compound, a dicarboxylic acid compound and a diamine compound as main raw materials.
  • the constitutional unit represented by the above formula (1) is a constitutional unit formed by reacting a dicarboxylic acid compound and a diamine compound
  • the constitutional unit represented by the above formula (2) is It is a structural unit formed by the reaction of a tetracarboxylic acid compound and a diamine compound. Therefore, a polyamide-imide resin may be produced using a dicarboxylic acid compound, a tetracarboxylic acid compound, and a diamine compound, which are constituent units represented by the above formulas (1) and (2).
  • the dicarboxylic acid compound preferably contains at least the compound represented by the formula (8).
  • R 1 , m, n, and p are respectively as defined for R 1 , m, n, and p in formula (1), and R c and R d are independent of each other.
  • the dicarboxylic acid compound is a compound represented by formula (8), wherein R c and R d are chlorine atoms. Moreover, you may use a diisocyanate compound instead of a diamine compound.
  • an aromatic dicarboxylic acid having the structure represented by the formula (8) or an acid chloride compound thereof for example, a biphenyldicarboxylic acid or an acid chloride compound thereof is preferably used.
  • other dicarboxylic acid compounds may be used.
  • the other dicarboxylic acid compound include other aromatic dicarboxylic acids, aliphatic dicarboxylic acids and their related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination.
  • 2,2'-bis(trifluoromethyl)-4,4'-biphenyldicarboxylic acid chloride is preferable.
  • dicarboxylic acid compound the compound represented by the formula (8) and another dicarboxylic acid compound may be used.
  • dicarboxylic acid compounds include those represented by the formula (7′):
  • R 31 to R 38 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • R 31 to R 38 may be independently substituted with a halogen atom
  • A is, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - SO 2 - , -S-, -CO- or -N(R 39 )-
  • R 39 represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, s is an integer from 0 to 4,
  • R c and R d are as defined for R c and R d in the formula (8)]
  • the other dicarboxylic acid compound may be a compound represented by the formula (7′) in which s is 1 to 4 and A is an oxygen atom.
  • the diamine compound used for resin production examples include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • the "aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and may have an aliphatic group or another substituent in a part of its structure.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring, but are not limited thereto. Of these, a benzene ring is preferable.
  • the "aliphatic diamine” represents a diamine in which an amino group is directly bonded to the aliphatic group, and may have an aromatic ring or other substituent in a part of its structure.
  • aliphatic diamines examples include acyclic aliphatic diamines such as hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine and 4,4′.
  • -Cyclic aliphatic diamines such as diaminodicyclohexylmethane and the like. These may be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diaminonaphthalene.
  • An aromatic diamine having one aromatic ring 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -Aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-
  • the aromatic diamine is preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone.
  • At least one selected from the group consisting of aromatic diamines having a biphenyl structure is selected from the viewpoint of high surface hardness, high transparency, high flexibility, high bending resistance and low colorability of the optical film. It is preferable to use.
  • Examples of the tetracarboxylic acid compound used for producing the resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride.
  • aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride
  • aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride.
  • the tetracarboxylic acid compounds may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
  • aromatic tetracarboxylic dianhydride examples include a non-condensed polycyclic aromatic tetracarboxylic dianhydride, a monocyclic aromatic tetracarboxylic dianhydride and a condensed polycyclic aromatic tetraanhydride.
  • aromatic tetracarboxylic dianhydride examples include carboxylic acid dianhydride.
  • non-condensed polycyclic aromatic tetracarboxylic acid dianhydride examples include 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2 ',3,3'-Benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride ,3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di) Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4′-(hexafluor
  • examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride, and condensed polycyclic aromatic tetracarboxylic dianhydrides. Examples thereof include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2′,3,3′-benzophenone tetracarboxylic acid dianhydride are preferable.
  • Examples of the aliphatic tetracarboxylic acid dianhydride include cyclic or acyclic aliphatic tetracarboxylic acid dianhydride.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers thereof.
  • cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. These may be used alone or in combination of two or more. Moreover, you may use combining cycloaliphatic tetracarboxylic dianhydride and acyclic aliphatic tetracarboxylic dianhydride.
  • the polyamide-imide resin in the range that does not impair the various physical properties of the optical laminate, in addition to the tetracarboxylic acid compound, tetracarboxylic acid and tricarboxylic acid and those anhydrides and derivatives thereof are further reacted. It may be.
  • tetracarboxylic acid examples include water adducts of the above-mentioned tetracarboxylic acid compound anhydrides.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination.
  • Specific examples are 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid are single bonds, -O- , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a compound linked by a phenylene group.
  • the amount of the diamine compound, the tetracarboxylic acid compound and/or the dicarboxylic acid compound used can be appropriately selected according to the desired ratio of each constitutional unit of the polyamideimide resin.
  • the method for producing a polyamide-imide resin having at least the structural unit (1) and the structural unit (2) is not particularly limited as long as the polyamide-imide resin can be obtained, but the elastic modulus and surface hardness of the optical film are increased. From a viewpoint that is easy, it is a production method of reacting a diamine compound, a tetracarboxylic acid compound, and a dicarboxylic acid compound, and it is preferable to produce a polyamideimide resin by a production method of dividing and adding a dicarboxylic acid compound.
  • a method including a step (II) of reacting and in the step (II), the dicarboxylic acid compound is dividedly added.
  • the reason is not clear, but it is considered that an optimal resin can be obtained for improving the elastic modulus and surface hardness of the optical film. Further, it is easy to adjust the weight average molecular weight of the polyamide-imide resin within the above range.
  • the polyamide-imide-based resin contained in the optical film of the present invention, and the polyamide-imide-based resin of the present invention is a production method of reacting a diamine compound, a tetracarboxylic acid compound, and a dicarboxylic acid compound, and a dicarboxylic acid compound. It is preferable that the resin is produced by a production method in which the diamine compound and the tetracarboxylic acid compound are reacted to produce an intermediate (A), and the intermediate (A).
  • a production method comprising a step (II) of reacting a dicarboxylic acid compound with a dicarboxylic acid compound (preferably a compound represented by the formula (8)), wherein the dicarboxylic acid compound is dividedly added in the step (II). More preferably, it is a resin produced by.
  • a dicarboxylic acid compound preferably a compound represented by the formula (8)
  • the reaction temperature is not particularly limited, but may be, for example, 5 to 200° C., preferably 5 to 100° C., more preferably 5 to 50° C., and further preferably 5° C. to room temperature (about 25° C.).
  • the reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours.
  • the reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or an inert gas atmosphere with stirring.
  • an inert gas atmosphere for example, nitrogen, argon, etc.
  • step (I) the diamine compound and the tetracarboxylic acid compound react to produce an intermediate (A), that is, a polyamic acid. Therefore, the intermediate (A) has at least a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound.
  • step (II) it is preferable to react the intermediate (A) with the dicarboxylic acid compound, and to add the dicarboxylic acid compound in portions.
  • the dicarboxylic acid compound is dividedly added to the reaction solution obtained in the step (I) to react the intermediate (A) with the dicarboxylic acid compound.
  • divided addition means that the dicarboxylic acid compound to be added is dividedly added several times, more specifically, the dicarboxylic acid to be added is divided into specific amounts, and a predetermined interval (predetermined time) is set. It means to add each. Since the predetermined interval (predetermined time) includes a very short interval (or time), the divided addition also includes continuous addition (or continuous feed).
  • the number of divisions when the dicarboxylic acid compound is dividedly added can be appropriately selected depending on the reaction scale, the kind of the raw material, etc., and is preferably 2 to 20 times, more preferably 3 to 10 times, and further preferably 3 times. ⁇ 6 times.
  • the dicarboxylic acid compound may be divided and added in an equal amount, or may be divided and added in an uneven amount.
  • the time between each addition (sometimes referred to as an addition interval) may be the same or different.
  • the term “divided addition” means that the total amount of all dicarboxylic acid compounds is divided and added, and the method of dividing each dicarboxylic acid compound is not particularly limited. However, each dicarboxylic acid compound may be added separately or collectively or in a divided manner, each dicarboxylic acid compound may be added in a divided manner together, or a combination thereof may be used.
  • the weight average molecular weight of the polyamide resin is preferably 10% or more, more preferably 15% or more, based on the weight average molecular weight of the obtained polyamide resin, and the dicarboxylic acid compound to be added.
  • the dicarboxylic acid compound is preferably added in an amount of 1 to 40 mol %, more preferably 2 to 25 mol %, based on the total molar amount of
  • the reaction temperature in step (II) is not particularly limited, but is, for example, 5 to 200° C., preferably 5 to 100° C., more preferably 5 to 50° C., further preferably 5° C. to room temperature (about 25° C.). Good.
  • the reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, step (II) is carried out under normal pressure and/or an inert gas atmosphere with stirring.
  • the mixture is stirred for a predetermined time and reacted to obtain a polyamideimide precursor.
  • the polyamide-imide precursor can be isolated by, for example, adding a large amount of water or the like to a reaction liquid containing the polyamide-imide precursor to precipitate the polyamide-imide precursor, and performing filtration, concentration, drying, or the like.
  • the intermediate (A) reacts with the dicarboxylic acid compound to obtain a polyamideimide precursor.
  • the polyamideimide precursor refers to a polyamideimide before imidization (before ring closure) that has at least a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid, and a structural unit derived from a dicarboxylic acid compound.
  • the reaction temperature of the diamine compound, the tetracarboxylic acid compound and the dicarboxylic acid compound is not particularly limited, but is, for example, 5 to 350°C, preferably 5 to 200°C, more preferably 5 to 100°C.
  • the reaction time is not particularly limited, it is, for example, about 30 minutes to 10 hours.
  • the reaction may be performed under an inert atmosphere or reduced pressure. In a preferred embodiment, the reaction is carried out under normal pressure and/or an inert gas atmosphere with stirring. In addition, the reaction is preferably carried out in a solvent inert to the reaction.
  • the solvent is not particularly limited as long as it does not affect the reaction, and for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, heptane; alicyclic
  • the method for producing a polyamide-imide resin may further include a step (III) of imidizing a polyamide-imide precursor in the presence of an imidization catalyst.
  • a step (III) of imidizing a polyamide-imide precursor in the presence of an imidization catalyst By subjecting the polyamide-imide precursor obtained in the step (II) to the step (III), the structural unit portion having a polyamic acid structure in the constitutional unit of the polyamide-imide precursor is imidized (ring closed), and the formula ( It is possible to obtain a polyamide-imide resin containing the structural unit represented by 1) and the structural unit represented by the formula (2).
  • imidization catalyst examples include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro.
  • Alicyclic amine (monocyclic) such as azepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and azabicyclo[3.2.
  • Alicyclic amine such as nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4-picoline), 2- Ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydroisoquinoline, and Aromatic amines such as isoquinoline may be mentioned. From the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst.
  • Examples of the acid anhydride include conventional acid anhydrides used in imidization reaction, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and aromatics such as phthalic acid. Examples thereof include acid anhydrides.
  • the polyamide-imide resin may be isolated (separated and purified) by a conventional method, for example, separation means such as filtration, concentration, extraction, crystallization, recrystallization and column chromatography, or a separation means combining these.
  • separation means such as filtration, concentration, extraction, crystallization, recrystallization and column chromatography, or a separation means combining these.
  • a large amount of alcohol such as methanol is added to a reaction liquid containing a polyamide-imide resin to precipitate the resin, which can be isolated by concentration, filtration and drying.
  • the optical film of the present invention may include at least one filler.
  • the filler include organic particles and inorganic particles, and preferably inorganic particles.
  • the inorganic particles include silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, metal oxide particles such as cerium oxide, magnesium fluoride, fluorine.
  • metal fluoride particles such as sodium fluoride, and among these, from the viewpoint of increasing the elastic modulus and/or tear strength of the optical film and easily improving impact resistance, silica particles, zirconia particles, and alumina particles are preferable. And more preferably silica particles.
  • These fillers can be used alone or in combination of two or more.
  • the average primary particle size of the filler preferably silica particles
  • the average primary particle size of the filler is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, particularly preferably 20 nm or more, preferably 100 nm or less, more preferably It is 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, particularly preferably 60 nm or less, especially more preferably 50 nm or less, and even more preferably 40 nm or less.
  • the average primary particle diameter of the filler can be measured by the BET method.
  • the average primary particle size may be measured by image analysis with a transmission electron microscope or a scanning electron microscope.
  • the content of the filler is usually 0.1 part by mass or more, preferably 1 part by mass or more, and more preferably 100 parts by mass of the optical film. It is 5 parts by mass or more, more preferably 10 parts by mass or more, even more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and preferably 60 parts by mass or less.
  • the content of the filler is at least the above lower limit, the elastic modulus of the obtained optical film can be easily improved.
  • the content of the filler is not more than the above upper limit, the optical characteristics of the optical film are likely to be improved.
  • the optical film of the present invention may include at least one UV absorber.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may include a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.
  • the ultraviolet absorbers can be used alone or in combination of two or more kinds. Since the optical film contains the ultraviolet absorber, the deterioration of the resin is suppressed, so that the visibility can be enhanced when the optical film of the present invention is applied to a display device or the like.
  • system compound refers to a derivative of the compound to which the “system compound” is attached.
  • benzophenone-based compound refers to a compound having benzophenone as a base skeleton and a substituent bonded to benzophenone.
  • the content of the ultraviolet absorber is preferably 0.01 to 10% by mass, and more preferably the mass of the polyamideimide resin contained in the optical film. It is 1 to 8% by mass, more preferably 2 to 7% by mass.
  • the content of the ultraviolet absorber is at least the above lower limit, it is easy to improve the ultraviolet absorptivity.
  • the content of the ultraviolet absorber is not more than the above upper limit, decomposition of the ultraviolet absorber due to heat during manufacturing of the base material can be suppressed, optical characteristics can be easily improved, and haze, for example, can be easily reduced.
  • the optical film of the present invention may further contain an additive other than the filler and the ultraviolet absorber.
  • additives include, for example, antioxidants, release agents, stabilizers, coloring agents such as bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents. Can be mentioned.
  • their content is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, and still more preferably 0.1 to 10% by mass based on the mass of the optical film. It may be 10% by weight.
  • the method for producing the optical film of the present invention is not particularly limited, but for example, the following steps: (A) a step of preparing a polyamide-imide resin composition (hereinafter, also referred to as "varnish") containing at least the polyamide-imide resin and a solvent (varnish preparation step), (B) a step of applying a varnish to a support material to form a coating film (application step), and (c) a step of drying the applied liquid (coating film) to form an optical film (optical film forming step) ) It may be a manufacturing method including.
  • a polyamide-imide resin is dissolved in a solvent, and if necessary, additives such as the filler and the ultraviolet absorber are added and mixed by stirring to prepare a varnish.
  • additives such as the filler and the ultraviolet absorber are added and mixed by stirring to prepare a varnish.
  • silica particles are used as a filler, a dispersion of a silica sol containing silica particles may be added to the resin with a solvent capable of dissolving the resin, for example, a silica sol obtained by substituting with a solvent used for preparing a varnish described below. ..
  • the solvent used for preparing the varnish is not particularly limited as long as it can dissolve the resin.
  • the solvent include amide solvents such as N,N-dimethylacetamide and N,N-dimethylformamide; lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone; dimethyl sulfone, dimethyl sulfoxide, sulfolane and the like.
  • a carbonate-based solvent such as ethylene carbonate and propylene carbonate; and a combination thereof (mixed solvent).
  • amide solvents or lactone solvents are preferable. These solvents can be used alone or in combination of two or more.
  • the varnish may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent, or the like.
  • the solid content concentration of the varnish is preferably 1 to 25% by mass, more preferably 5 to 20% by mass, and further preferably 5 to 15% by mass.
  • a varnish is coated on the support material by a known coating method to form a coating film.
  • a known coating method for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping method, A spray method, a spout molding method and the like can be mentioned.
  • the optical film can be formed by drying the coating film and peeling it from the support material. You may provide the process of drying an optical film further after peeling.
  • the coating film can be dried usually at a temperature of 50 to 350°C. If necessary, the coating film may be dried under an inert atmosphere or a reduced pressure condition.
  • the support material examples include a SUS plate if it is a metal system, a PET film, a PEN film, a polyamide resin film, a polyimide resin film, a cycloolefin polymer (COP) film, an acrylic film if it is a resin system.
  • a PET film, a COP film and the like are preferable from the viewpoint of excellent smoothness and heat resistance, and further, a PET film is more preferable from the viewpoint of adhesion to an optical film and cost.
  • optical film of the present invention is not particularly limited and may be used for various purposes.
  • the optical film of the present invention may be a single layer as described above, or may be a laminate, the optical film of the present invention may be used as it is, or a laminate with another film. May be used as.
  • the optical film is a laminated body, all the layers laminated on one side or both sides of the optical film are collectively referred to as an optical film.
  • One or more functional layers may be laminated on at least one surface of the optical film of the present invention.
  • the functional layer include an ultraviolet absorbing layer, a hard coat layer, a primer layer, a gas barrier layer, an adhesive layer, a hue adjusting layer and a refractive index adjusting layer.
  • the functional layer may be used alone or in combination of two or more kinds.
  • the ultraviolet absorbing layer is a layer having a function of absorbing ultraviolet rays, and for example, a main material selected from a transparent resin of an ultraviolet curable type, a transparent resin of an electron beam curable type, and a transparent resin of a thermosetting type, and the main material It is composed of dispersed ultraviolet absorbers.
  • a hard coat layer may be provided on at least one surface of the optical film of the present invention.
  • the thickness of the hard coat layer is not particularly limited and may be, for example, 2 to 100 ⁇ m. When the thickness of the hard coat layer is within the above range, sufficient scratch resistance can be ensured, bending resistance is unlikely to decrease, and a problem of curling due to curing shrinkage tends not to occur. ..
  • the hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or application of heat energy, and irradiation with active energy rays is preferable.
  • Active energy rays are defined as energy rays capable of decomposing compounds that generate active species to generate active species, such as visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays and electron rays. And the like, and preferably ultraviolet rays.
  • the hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the radical polymerizable compound is a compound having a radical polymerizable group.
  • the radical polymerizable group contained in the radical polymerizable compound may be any functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. And (meth)acryloyl group.
  • the radical-polymerizable compound has two or more radical-polymerizable groups, these radical-polymerizable groups may be the same as or different from each other.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer.
  • the radically polymerizable compound is preferably a compound having a (meth)acryloyl group. Specifically, 2 to 6 (meth)acryloyl groups are included in one molecule.
  • Thousands of oligomers may be mentioned, preferably one or more selected from epoxy (meth)acrylate, urethane (meth)acrylate and polyester (meth)acrylate.
  • the cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group and a vinyl ether group.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that the shrinkage accompanying the polymerization reaction is small.
  • compounds having an epoxy group among cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radically polymerizable compound.
  • the oxetanyl group of the cyclic ether group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound.
  • the cationically polymerizable compound having an epoxy group for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring or a cyclohexene ring, a cyclopentene ring-containing compound, hydrogen peroxide, with a suitable oxidizing agent such as peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth)acrylate, Aliphatic epoxy resins such as copolymers; glycidyl ethers produced by the reaction of bisphenol A, bisphenol F, bisphenols such as hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide a
  • the hard coat composition may further include a polymerization initiator.
  • the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which are appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • the radical polymerization initiator may be any one that can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating.
  • thermal radical polymerization initiators examples include hydrogen peroxide, organic peroxides such as perbenzoic acid, and azo compounds such as azobisbutyronitrile.
  • active energy ray radical polymerization initiator a Type 1 type radical polymerization initiator that produces a radical by decomposition of a molecule and a Type 2 type radical polymerization initiator that produces a radical by a hydrogen abstraction type reaction coexisting with a tertiary amine Yes, they are used alone or in combination. Any cationic polymerization initiator may be used as long as it can release a substance that initiates cationic polymerization by irradiation with active energy rays and/or heating.
  • an aromatic iodonium salt an aromatic sulfonium salt, a cyclopentadienyl iron(II) complex or the like can be used. These can initiate cationic polymerization either by irradiation with active energy rays or by heating, or both, depending on the difference in structure.
  • the polymerization initiator may preferably be contained in an amount of 0.1 to 10% by mass based on 100% by mass of the entire hard coat composition.
  • content of the polymerization initiator is in the above range, curing can be sufficiently advanced, and the mechanical properties and adhesion of the finally obtained coating film can be set in a good range, and Poor adhesion due to curing shrinkage, cracking and curling tend to occur less easily.
  • the hard coat composition may further include one or more selected from the group consisting of a solvent and an additive.
  • the solvent is a solvent that can dissolve or disperse the polymerizable compound and the polymerization initiator, if the solvent is known as a solvent of the hard coat composition of the present technical field, does not impair the effects of the present invention Can be used in a range.
  • the additive may further include inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent, and the like.
  • the adhesive layer is a layer having an adhesive function and has a function of adhering the optical film to another member.
  • a commonly known material can be used as the material for forming the adhesive layer.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the resin composition can be polymerized and cured by supplying energy afterwards.
  • the adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be an adhesive that is "a substance that has adhesiveness at room temperature and that adheres to an adherend with a light pressure" (JIS K 6800), or "a protective film (microcapsule) for specific components. ), and a capsule type adhesive which is an adhesive (JIS K6800) capable of maintaining stability until the coating is broken by an appropriate means (pressure, heat, etc.).
  • the hue adjusting layer is a layer having a function of adjusting hue, and is a layer capable of adjusting the laminate including the optical film to a desired hue.
  • the hue adjustment layer is, for example, a layer containing a resin and a colorant.
  • the colorant include titanium oxide, zinc oxide, rouge, titanium oxide-based calcined pigment, ultramarine blue, cobalt aluminate, and inorganic pigments such as carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, slene compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
  • the refractive index adjusting layer is a layer having a refractive index adjusting function, for example, a layer having a refractive index different from that of the optical film and capable of imparting a predetermined refractive index to the optical laminate.
  • the refractive index adjusting layer may be, for example, a resin layer containing an appropriately selected resin and optionally a pigment, or a metal thin film.
  • the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle diameter of the pigment may be 0.1 ⁇ m or less.
  • the metal used for the refractive index adjusting layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. An oxide or a metal nitride is mentioned.
  • the optical film of the present invention may be a single layer or a laminate, for example, the optical film produced as described above may be used as it is, or a laminate with another film. May be used as.
  • the optical film may have a protective film on at least one surface (one surface or both surfaces).
  • the protective film may be laminated on the surface of the optical film side or the surface of the functional layer side, and is laminated on both the optical film side and the functional layer side. May be.
  • the protective film may be laminated on one surface of the functional layer side or on both surfaces of the functional layer side.
  • the protective film is a film for temporarily protecting the surface of the optical film or the functional layer, and is not particularly limited as long as it is a peelable film capable of protecting the surface of the optical film or the functional layer.
  • the protective film examples include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; polyolefin resin films, polyethylene. It is preferably selected from the group consisting of terephthalate resin films and acrylic resin films.
  • each protective film may be the same as or different from each other.
  • the thickness of the protective film is not particularly limited, but is usually 10 to 120 ⁇ m, preferably 15 to 110 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the thickness of each protective film may be the same or different.
  • the optical film of the present invention is useful as a front plate of a display device, particularly as a front plate of a flexible display device (hereinafter sometimes referred to as a window film).
  • the flexible display device has, for example, a flexible functional layer and an optical film that is superposed on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display device is arranged on the visible side above the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
  • Examples of display devices include TVs, smartphones, mobile phones, car navigations, tablet PCs, portable game consoles, electronic paper, indicators, bulletin boards, watches, and wearable devices such as smart watches.
  • Examples of the flexible display device include all display devices having flexible characteristics.
  • the present invention also provides a flexible display device comprising the optical film of the present invention.
  • the optical film of the present invention is preferably used as a front plate in a flexible display device, and the front plate is sometimes referred to as a window film.
  • the flexible display device includes a flexible display device laminate and an organic EL display panel, and the flexible display device laminate is arranged on the viewing side of the organic EL display panel and is configured to be bendable.
  • the laminate for a flexible display device may contain a window film, a polarizing plate, and a touch sensor, and the order of laminating them is arbitrary, but the window film, the polarizing plate, the touch sensor or the window film, and the touch from the viewing side.
  • the senor and the polarizing plate are laminated in this order.
  • the presence of the polarizing plate on the viewing side of the touch sensor is preferable because the pattern of the touch sensor is less visible and the visibility of the display image is improved.
  • Each member can be laminated using an adhesive, a pressure-sensitive adhesive or the like. Further, a light-shielding pattern formed on at least one surface of any one of the window film, the polarizing plate, and the touch sensor may be provided.
  • the flexible display device may include a polarizing plate, and preferably includes a circular polarizing plate.
  • the circularly polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component by laminating a ⁇ /4 retardation plate on a linearly polarizing plate. For example, by converting the external light into right circularly polarized light and blocking the external light reflected by the organic EL panel to become left circularly polarized light, and transmitting only the luminescent component of the organic EL, the influence of reflected light is suppressed and the image is displayed. It is used to make it easier to see.
  • the absorption axis of the linear polarizing plate and the slow axis of the ⁇ /4 retardation plate are theoretically required to be 45°, but they are practically 45 ⁇ 10°.
  • the linearly polarizing plate and the ⁇ /4 retardation plate are not necessarily required to be laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but this is not necessary in practice, so the circularly polarizing plate in the present invention also includes an elliptically polarizing plate. It is also preferable to further laminate a ⁇ /4 retardation film on the visible side of the linearly polarizing plate to make the emitted light circularly polarized light to improve the visibility in the state of wearing polarized sunglasses.
  • the linearly polarizing plate is a functional layer having a function of transmitting light oscillating in the transmission axis direction but blocking polarized light of an oscillating component perpendicular thereto.
  • the linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof.
  • the thickness of the linear polarizing plate may be 200 ⁇ m or less, preferably 0.5 to 100 ⁇ m. When the thickness is in the above range, the flexibility tends to be difficult to decrease.
  • the linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film.
  • a dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed on PVA, whereby the dichroic dye is oriented and exhibits polarization performance.
  • the production of the film-type polarizer may further include steps such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying.
  • the stretching and dyeing steps may be performed on the PVA film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate.
  • the thickness of the PVA-based film used is preferably 10 to 100 ⁇ m, and the stretching ratio is preferably 2 to 10 times.
  • a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition may be used.
  • the liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound.
  • the liquid crystalline compound is only required to have a property of exhibiting a liquid crystal state, and it is preferable to have a higher order alignment state such as a smectic phase because high polarization performance can be exhibited. It is also preferable that the liquid crystal compound has a polymerizable functional group.
  • the dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or has a polymerizable functional group. You can also Any of the compounds in the liquid crystal polarizing composition has a polymerizable functional group.
  • the liquid crystal polarizing composition may further include an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
  • the liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on the alignment film to form a liquid crystal polarizing layer.
  • the liquid crystal polarizing layer can be formed thinner than a film type polarizer.
  • the thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the alignment film can be produced, for example, by applying the composition for forming an alignment film on a substrate and imparting the alignment property by rubbing, irradiation of polarized light, or the like.
  • the composition for forming an alignment film may contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the alignment agent.
  • the alignment agent for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used.
  • an aligning agent containing a cinnamate group When photo-alignment is applied, it is preferable to use an aligning agent containing a cinnamate group.
  • the weight average molecular weight of the polymer used as the aligning agent may be about 10,000 to 1,000,000.
  • the thickness of the alignment film is preferably 5 to 10,000 nm, more preferably 10 to 500 nm, from the viewpoint of the alignment regulating force.
  • the liquid crystal polarizing layer can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material of a protective film, a retardation plate, or a window.
  • the protective film may be any transparent polymer film, and the materials and additives used for the transparent substrate can be used. Cellulose type films, olefin type films, acrylic films and polyester type films are preferable. It may be a coating type protective film obtained by applying and curing a cationically curable composition such as an epoxy resin or a radical curable composition such as an acrylate. If necessary, plasticizers, ultraviolet absorbers, infrared absorbers, colorants such as pigments and dyes, optical brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May be included.
  • the thickness of the protective film may be 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness of the protective film is within the above range, the flexibility of the protective film does not easily deteriorate.
  • the protective film can also serve as the transparent base material of the window.
  • the ⁇ /4 retardation plate is a film that gives a ⁇ /4 retardation in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film).
  • the ⁇ /4 retardation plate may be a stretchable retardation plate produced by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film.
  • retarder, plasticizer, ultraviolet absorber, infrared absorber, colorant such as pigment or dye, fluorescent brightening agent, dispersant, heat stabilizer, light stabilizer, antistatic agent, antioxidant. , A lubricant, a solvent, etc. may be contained.
  • the thickness of the stretchable retardation plate may be 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness is in the above range, the flexibility of the film tends to be less likely to decrease.
  • another example of the ⁇ /4 retardation plate may be a liquid crystal coating type retardation plate formed by applying a liquid crystal composition.
  • the liquid crystal composition contains a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, or smectic. Any compound in the liquid crystal composition, including the liquid crystal compound, has a polymerizable functional group.
  • the liquid crystal coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
  • the liquid crystal coating type retardation plate can be manufactured by coating and curing the liquid crystal composition on the alignment film to form the liquid crystal retardation layer as in the case of the liquid crystal polarizing layer.
  • the liquid crystal coating type retardation plate can be formed thinner than the stretched type retardation plate.
  • the thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the liquid crystal coating type retardation plate can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material of a protective film, a retardation plate, or a window.
  • phase difference of ⁇ /4 cannot be achieved in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, which is ⁇ /4 near 560 nm where the visibility is high. Often designed to be ⁇ 150 nm. It is preferable to use an inverse dispersion ⁇ /4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one because the visibility can be improved.
  • the positive C plate may be a liquid crystal coating type retardation plate or a stretching type retardation plate.
  • the retardation in the thickness direction is -200 to -20 nm, preferably -140 to -40 nm.
  • the flexible display device of the present invention may further include a touch sensor.
  • the touch sensor is used as an input means.
  • various types such as a resistance film type, a surface acoustic wave type, an infrared type, an electromagnetic induction type, and a capacitance type have been proposed, and any type may be used. Of these, the capacitance method is preferable.
  • the capacitive touch sensor is divided into an active region and a non-active region located outside the active region.
  • the active area is an area corresponding to a display area where a screen is displayed on the display panel and is an area where a user's touch is sensed, and the inactive area is a non-display area where the screen is not displayed on the display device.
  • the touch sensor includes a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad unit. Each sensing line can be included.
  • the substrate having flexible characteristics the same material as the transparent substrate for the window can be used.
  • the toughness of the substrate of the touch sensor is preferably 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%.
  • the toughness is defined as the area under the curve to the breaking point in a stress (MPa)-strain (%) curve (Stress-strain curve) obtained through a tensile test of a polymer material.
  • the sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction.
  • the first pattern and the second pattern are arranged in different directions.
  • the first pattern and the second pattern are formed on the same layer, and the respective patterns must be electrically connected in order to detect a touched point.
  • the first pattern has a structure in which the unit patterns are connected to each other through a joint, but the second pattern has a structure in which the unit patterns are separated from each other in an island shape.
  • a separate bridge electrode is required to make the connection.
  • a known transparent electrode material can be applied to the sensing pattern.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • IZTO indium zinc tin oxide
  • IGZO indium gallium zinc oxide
  • CTO cadmium tin oxide
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • carbon nanotube carbon nanotube
  • graphene metal wire, and the like, and these may be used alone or in combination of two or more.
  • ITO can be used.
  • the metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, selenium, and chromium. These may be used alone or in combination of two or more.
  • the bridge electrode may be formed on the sensing layer via an insulating layer, and the bridge electrode may be formed on the substrate, and the insulating layer and the sensing pattern may be formed on the bridge electrode.
  • the bridge electrode may be formed of the same material as the sensing pattern, and may be formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in the structure of the layer covering the sensing pattern.
  • the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer.
  • the touch sensor has a difference in transmittance between a pattern area where a pattern is formed and a non-pattern area where the pattern is not formed, specifically, a light transmittance induced by a difference in refractive index in these areas.
  • An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating the difference, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material.
  • the optical adjustment layer may be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate.
  • the photocurable composition may further include inorganic particles.
  • the inorganic particles can increase the refractive index of the optical adjustment layer.
  • the photocurable organic binder may include, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer.
  • the photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
  • the inorganic particles can include, for example, zirconia particles, titania particles, alumina particles, and the like.
  • the photocurable composition may further include various additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
  • Each layer such as a window film, a polarizing plate, and a touch sensor, which forms the laminate for a flexible display device, and a film member such as a linear polarizing plate and a ⁇ /4 retardation plate, which constitutes each layer, may be bonded with an adhesive. it can.
  • a water-based adhesive As the adhesive, a water-based adhesive, an organic solvent-based adhesive, a solvent-free adhesive, a solid adhesive, a solvent volatilization type adhesive, a water-based solvent volatilization type adhesive, a moisture-curable adhesive, a heat-curable adhesive, Anaerobic curable adhesives, active energy ray curable adhesives, hardener mixed adhesives, hot melt adhesives, pressure sensitive adhesives, pressure sensitive adhesives, rewet adhesives, etc. are widely used. Things can be used. Of these, water-based solvent volatilizing adhesives, active energy ray-curing adhesives, and pressure-sensitive adhesives are often used.
  • the thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, and is, for example, 0.01 to 500 ⁇ m, preferably 0.1 to 300 ⁇ m.
  • a plurality of adhesive layers may be present in the laminate for a flexible display device, but the thickness of each and the type of adhesive used may be the same or different.
  • polyvinyl alcohol-based polymer As the water-based solvent volatilizing adhesive, polyvinyl alcohol-based polymer, water-soluble polymer such as starch, water-dispersed polymer such as ethylene-vinyl acetate emulsion, styrene-butadiene emulsion can be used as the main polymer.
  • a cross-linking agent a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be added.
  • the water-based solvent volatile adhesive may be injected between the adhered layers to bond the adhered layers and then dried to impart adhesiveness.
  • the thickness of the adhesive layer when the water-based solvent volatilizing adhesive is used may be 0.01 to 10 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the thickness of each layer and the type of the adhesive may be the same or different.
  • the active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates an active energy ray to form an adhesive layer.
  • the active energy ray-curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound similar to the hard coat composition.
  • the radical-polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used.
  • As the radically polymerizable compound used in the adhesive layer a compound having an acryloyl group is preferable. It is also preferable to include a monofunctional compound in order to reduce the viscosity of the adhesive composition.
  • the cationically polymerizable compound is the same as that used in the hard coat composition, and the same kind as the hard coat composition can be used.
  • an epoxy compound is more preferable. It is also preferable to include a monofunctional compound as a reactive diluent to reduce the viscosity of the adhesive composition.
  • the active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • an initiator capable of initiating radical polymerization and/or cationic polymerization by irradiation with active energy rays can be used.
  • the active energy ray-curable composition is further an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, a solvent. Can be included.
  • the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and activated through either adherent layer or both adherent layers. It can be adhered by irradiating it with an energy ray and curing it.
  • the thickness of the adhesive layer when the active energy ray-curable adhesive is used may be 0.01 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • the thickness of each layer and the type of adhesive used may be the same or different.
  • the pressure-sensitive adhesive may be classified into an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, etc. depending on the base polymer, and any of these may be used.
  • the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like.
  • a pressure-sensitive adhesive layer is formed by dissolving and dispersing each component constituting the pressure-sensitive adhesive in a solvent to obtain a pressure-sensitive adhesive composition, applying the pressure-sensitive adhesive composition on a substrate, and then drying it. To be done.
  • the adhesive layer may be directly formed, or may be separately formed on a substrate and transferred. It is also preferable to use a release film to cover the adhesive surface before adhesion.
  • the thickness of the adhesive layer may be 1 to 500 ⁇ m, preferably 2 to 300 ⁇ m.
  • the thickness of each layer and the type of pressure-sensitive adhesive used may be the same or different.
  • the light shielding pattern may be applied as at least a part of a bezel or a housing of the flexible display device.
  • the visibility of the image is improved by hiding the wiring arranged at the peripheral portion of the flexible display device by the light-shielding pattern and making it difficult to see.
  • the light-shielding pattern may be in the form of a single layer or multiple layers.
  • the color of the light-shielding pattern is not particularly limited, and may have various colors such as black, white and metallic colors.
  • the light-shielding pattern can be formed of a pigment for realizing color and a polymer such as acrylic resin, ester resin, epoxy resin, polyurethane, or silicone. These may be used alone or as a mixture of two or more kinds.
  • the light-shielding pattern can be formed by various methods such as printing, lithography and inkjet.
  • the thickness of the light-shielding pattern is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m. Further, it is also preferable to provide a shape such as an inclination in the thickness direction of the light shielding pattern.
  • Example 1 [Preparation of polyamide-imide resin (1)] Under a nitrogen atmosphere, in a separable flask equipped with a stirring blade, 2,2′-bis(trifluoromethyl)benzidine (TFMB) and N,N-dimethylacetamide (DMAc) were added at a solid content of TFMB of 2.36% by mass. And TFMB were dissolved in DMAc with stirring at room temperature. Next, 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) was added to the flask at 30.30 mol% with respect to TFMB, and the mixture was stirred at room temperature for 3 hours.
  • TFMB 2,2′-bis(trifluoromethyl)benzidine
  • DMAc N,N-dimethylacetamide
  • 6FDA 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride
  • OBBC 4,4′ oxybis(benzoyl chloride)
  • 6FBPDOC 4,4′ oxybis(benzoyl chloride)
  • the obtained reaction liquid was cooled to room temperature, put into a large amount of methanol in a filament form, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 60° C. to obtain a polyamideimide resin (1).
  • the weight average molecular weight of the polyamide-imide resin (1) was 363,000.
  • DMAc was added to the obtained polyamide-imide resin (1) so that the concentration was 10% by mass to prepare a polyamide-imide varnish (1).
  • the obtained polyamide-imide varnish (1) was coated on a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) using an applicator so that the thickness of the self-supporting film was 50 ⁇ m, It was dried at 50°C for 30 minutes and then at 140°C for 15 minutes to obtain a free-standing film.
  • the self-supporting film was fixed to a metal frame and further dried at 200° C. for 60 minutes to obtain a polyamideimide film (1) having a thickness of 45 ⁇ m.
  • Example 2 [Preparation of polyamide-imide resin (2)] Under a nitrogen atmosphere, TFMB and DMAc were added to a separable flask equipped with a stirring blade so that the solid content of TFMB was 4.20% by mass, and 4,4′-(hexafluoropropylidene)dianiline (6FDAM) was added. 11.11 mol% was added to TFMB, and TFMB and 6FDAM were dissolved in DMAc while stirring at room temperature. Next, 6FDA was added to the flask at a concentration of 5.59 mol% with respect to TFMB, and the mixture was stirred at room temperature for 3 hours.
  • 6FDAM 4,4′-(hexafluoropropylidene)dianiline
  • OBBC was added to TFMB at 10.17 mol% and 6FBPDOC to 40.21 mol% to TFMB, and after stirring for 10 minutes, OBBC was further added to TFMB at 5. 59 mol% and 6FBPDOC were added to 40.21 mol% and stirred for 30 minutes. Thereafter, the same amount of DMAc as the initially added DMAc was added, and the mixture was stirred for 10 minutes, then 6FBDPOC was added so as to be 8.93 mol% with respect to TFMB, and stirred for 2 hours.
  • the obtained reaction liquid was cooled to room temperature, put into a large amount of methanol in a filament form, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 60° C. to obtain a polyamideimide resin (3).
  • the weight average molecular weight of the polyamide-imide resin (4) was 174,000.

Abstract

Provided is an optical film having a high modulus of elasticity and surface hardness. The optical film comprises a polyamide-imide resin containing a structural unit represented by formula (1): (In formula (1), R1 and R2 independently represent a C1-12 alkyl group, a C1-12 alkoxy group, a C6-12 aryl group, a C6-12 aryloxy group, a C1-12 carbonyl group, a C1-12 oxycarbonyl group or a halogen group, where the hydrogen atoms contained in R1 and R2 are may each be independently substituted with a halogen atom, a C1-4 alkyl group, a C1-4 alkoxy group, a hydroxyl group, or a carboxyl group, and V represents a single bond, -O-, a diphenylmethylene group, a C1-12 linear, branched or alicyclic divalent hydrocarbon group, -SO2-, -S-, -CO-, -PO-, PO2-, -N(R30)- or -Si(R31)2-, where the hydrogen atoms contained in said hydrocarbon group may each be independently substituted with a halogen atom, and R30 and R31 each independently represent hydrogen atoms or C1-12 alkyl groups which may be substituted with halogen atoms, m represents an integer of 0-2, n represents an integer of 1-4, p represents an integer of 0-4, and q represents an integer of 0-4) and a structural unit represented by formula (2): (in formula (2) X represents a divalent organic group and Y represents a tetravalent organic group).

Description

光学フィルム、フレキシブル表示装置及びポリアミドイミド系樹脂Optical film, flexible display device, and polyamide-imide resin
 本発明は、ポリアミドイミド系樹脂を含む光学フィルム、該光学フィルムを備えるフレキシブル表示装置及びポリアミドイミド系樹脂に関する。 The present invention relates to an optical film containing a polyamide-imide resin, a flexible display device including the optical film, and a polyamide-imide resin.
 現在、液晶表示装置や有機EL表示装置等の表示装置は、テレビのみならず、携帯電話やスマートウォッチといった種々の用途で広く活用されている。従来、このような表示装置の前面板としてはガラスが用いられてきた。しかし、ガラスは透明度が高く、種類によっては高硬度を発現できる反面、非常に剛直であり、割れやすいため、フレキシブル表示装置の前面板材料としての利用は難しい。 Currently, display devices such as liquid crystal display devices and organic EL display devices are widely used in various applications such as mobile phones and smart watches as well as televisions. Conventionally, glass has been used as the front plate of such a display device. However, while glass has high transparency and can exhibit high hardness depending on the type, it is extremely rigid and easily broken, so that it is difficult to use it as a front plate material of a flexible display device.
 そのため、ガラスに代わる材料として高分子材料の活用が検討されている。高分子材料からなる前面板はフレキシブル特性を発現し易いため、種々の用途に用いることが期待される。柔軟性を有する高分子材料の1つとして、例えばポリアミドイミド系樹脂を用いる光学フィルムが検討されている(特許文献1及び2)。 Therefore, the use of polymer materials is being considered as an alternative to glass. Since a front plate made of a polymer material easily exhibits flexible properties, it is expected to be used for various purposes. As one of the polymer materials having flexibility, an optical film using, for example, a polyamide-imide resin has been studied (Patent Documents 1 and 2).
特表2015-521686号公報Japanese Patent Publication No. 2015-521686 特開2018-119132号公報Japanese Patent Laid-Open No. 2018-119132
 しかしながら、ポリアミドイミド系樹脂を用いる光学フィルムをフレキシブル表示装置等において使用する場合、屈曲や外部要因との接触に起因して、光学フィルムに傷、しわ等の欠陥が生じることがあった。本発明者は上記を改善する手段を種々検討し、光学フィルムの弾性率及び表面硬度を高めることにより、光学フィルムに傷等の欠陥の発生を効果的に防止できることを見出した。 However, when an optical film using a polyamide-imide resin is used in a flexible display device or the like, defects such as scratches and wrinkles may occur in the optical film due to bending and contact with external factors. The present inventor has studied various means for improving the above, and found that defects such as scratches in the optical film can be effectively prevented by increasing the elastic modulus and surface hardness of the optical film.
 従って本発明は、高い弾性率及び表面硬度を有する光学フィルムを提供することを課題とする。 Therefore, an object of the present invention is to provide an optical film having high elastic modulus and surface hardness.
 本発明者らは、上記課題を解決すべく、光学フィルムに含まれるポリアミドイミド系樹脂を構成するモノマーの構造に着目し、鋭意検討を行った。その結果、特定の構成単位を少なくとも有するポリアミドイミド系樹脂を含む光学フィルムが、高い弾性率及び表面硬度を兼ね備えることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the inventors of the present invention have focused their attention on the structure of the monomer that constitutes the polyamide-imide-based resin contained in the optical film and have conducted earnest studies. As a result, they have found that an optical film containing a polyamide-imide resin having at least a specific structural unit has both high elastic modulus and surface hardness, and have completed the present invention.
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕式(1):
That is, the present invention includes the following preferred embodiments.
[1] Formula (1):
Figure JPOXMLDOC01-appb-C000006
[式(1)中、
 R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボニル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよく、
 Vは、単結合、-O-、ジフェニルメチレン基、炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
 mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
で表される構成単位、及び、式(2):
Figure JPOXMLDOC01-appb-C000006
[In the formula (1),
R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. Represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms, or a halogeno group, wherein hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom, a hydrogen atom having 1 to 4 carbon atoms. It may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group,
V is a single bond, —O—, a diphenylmethylene group, a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein hydrogen atoms contained in the hydrocarbon group, independently of each other, are halogen atoms. R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
And a structural unit represented by the formula (2):
Figure JPOXMLDOC01-appb-C000007
[式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
で表される構成単位を有するポリアミドイミド系樹脂を含む光学フィルム。
〔2〕式(1)中のRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又はハロゲノ基を表し、Rに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい、前記〔1〕に記載の光学フィルム。
〔3〕式(1)中のVは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい、前記〔1〕又は〔2〕に記載の光学フィルム。
〔4〕ポリアミドイミド系樹脂は、式(1)で表される構成単位として、式(4):
Figure JPOXMLDOC01-appb-C000007
[In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
An optical film containing a polyamide-imide resin having a structural unit represented by.
[2] R 1 in the formula (1) independently represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms or a halogeno group, and hydrogen atoms contained in R 1 are mutually The optical film according to the above [1], which may be independently substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group.
[3] V in the formula (1) represents a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, Here, the hydrogen atom contained in this hydrocarbon group is mutually independently, The optical film as described in said [1] or [2] which may be substituted by the halogen atom.
[4] The polyamide-imide-based resin has the following formula (4) as a constitutional unit represented by the formula (1):
Figure JPOXMLDOC01-appb-C000008
[式(4)中、R及びVは、互いに独立に、式(1)中のR及びVについて定義したとおりであり、R19及びR20は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表す]
で表される構成単位を含む、前記〔1〕~〔3〕のいずれかに記載の光学フィルム。
〔5〕式(4)中のRは炭素数1~12のフルオロアルキル基である、前記〔4〕に記載の光学フィルム。
〔6〕厚さが10~200μmである、前記〔1〕~〔5〕のいずれかに記載の光学フィルム。
〔7〕前記〔1〕~〔6〕のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。
〔8〕タッチセンサをさらに備える、前記〔7〕に記載のフレキシブル表示装置。
〔9〕偏光板をさらに備える、前記〔7〕又は〔8〕に記載のフレキシブル表示装置。
〔10〕式(1):
Figure JPOXMLDOC01-appb-C000008
[In formula (4), R 1 and V are, independently of each other, as defined for R 1 and V in formula (1), and R 19 and R 20 are independently of each other a hydrogen atom or a formula ( Represents the groups described for R 2 in 1)]
The optical film as described in any of [1] to [3] above, which comprises a structural unit represented by:
[5] The optical film as described in [4] above, wherein R 1 in the formula (4) is a fluoroalkyl group having 1 to 12 carbon atoms.
[6] The optical film as described in any of [1] to [5] above, which has a thickness of 10 to 200 μm.
[7] A flexible display device including the optical film according to any one of [1] to [6].
[8] The flexible display device according to [7], further including a touch sensor.
[9] The flexible display device according to [7] or [8], further including a polarizing plate.
[10] Formula (1):
Figure JPOXMLDOC01-appb-C000009
[式(1)中、
 R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボ二ル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよく、
 Vは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
 mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
で表される構成単位、及び、式(2):
Figure JPOXMLDOC01-appb-C000009
[In the formula (1),
R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. It represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms or a halogeno group, wherein the hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom or a carbon atom having 1 to 12 carbon atoms. 4 may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group,
V is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein the hydrogen atoms contained in the hydrocarbon group are halogen atoms independently of each other. R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
And a structural unit represented by the formula (2):
Figure JPOXMLDOC01-appb-C000010
[式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
で表される構成単位を有するポリアミドイミド系樹脂。
Figure JPOXMLDOC01-appb-C000010
[In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
A polyamide-imide resin having a structural unit represented by:
 本発明の光学フィルムは、高い弾性率及び表面硬度を有する。 The optical film of the present invention has high elastic modulus and surface hardness.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.
 本発明の光学フィルムは、式(1): The optical film of the present invention has the formula (1):
Figure JPOXMLDOC01-appb-C000011
[式(1)中、
 R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボニル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよく、
 Vは、単結合、-O-、ジフェニルメチレン基、炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
 mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
で表される構成単位、及び、式(2):
Figure JPOXMLDOC01-appb-C000011
[In the formula (1),
R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. Represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms, or a halogeno group, wherein hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom, a hydrogen atom having 1 to 4 carbon atoms. It may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group,
V is a single bond, —O—, a diphenylmethylene group, a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein hydrogen atoms contained in the hydrocarbon group, independently of each other, are halogen atoms. R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
And a structural unit represented by the formula (2):
Figure JPOXMLDOC01-appb-C000012
[式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
で表される構成単位を有するポリアミドイミド系樹脂を含む。式(1)で表される構成単位は、ジカルボン酸化合物とジアミン化合物とが反応して形成される構成単位であり、式(2)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。本発明の光学フィルムに含まれるポリアミドイミド系樹脂は、式(1)で表される1種類の構成単位を有していてもよいし、式(1)で表される2種類以上の構成単位を有していてもよい。同様に、該ポリアミドイミド系樹脂は、式(2)で表される1種類の構成単位を有していてもよいし、式(2)で表される2種類以上の構成単位を有していてもよい。なお、該ポリアミドイミド系樹脂は、式(1)で表される構成単位にも式(2)で表される構成単位にも該当しない、さらなる構成単位を含んでいてもよい。本明細書において、式(1)で表される構成単位を「構成単位(1)」とも称し、式(2)で表される構成単位を「構成単位(2)」とも称する。なお、式(1)及び式(2)中、点線で表される結合は、隣接する構成単位と結合する結合手を表す。本明細書において、他の化学構造式中の点線で表される結合も、同様に、隣接する構成単位又は基と結合する結合手を表す。
Figure JPOXMLDOC01-appb-C000012
[In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
A polyamide-imide resin having a structural unit represented by The constitutional unit represented by the formula (1) is a constitutional unit formed by reacting a dicarboxylic acid compound and a diamine compound, and the constitutional unit represented by the formula (2) is a tetracarboxylic acid compound and a diamine compound. And are structural units formed by reaction. The polyamide-imide resin contained in the optical film of the present invention may have one type of structural unit represented by the formula (1), or two or more types of structural unit represented by the formula (1). May have. Similarly, the polyamide-imide resin may have one type of structural unit represented by the formula (2) or two or more types of structural unit represented by the formula (2). May be. The polyamide-imide resin may include a further structural unit which does not correspond to the structural unit represented by the formula (1) or the structural unit represented by the formula (2). In the present specification, the constitutional unit represented by the formula (1) is also referred to as “constitutional unit (1)”, and the constitutional unit represented by the formula (2) is also referred to as “constitutional unit (2)”. In addition, in Formula (1) and Formula (2), the bond represented by the dotted line represents a bond that bonds to an adjacent structural unit. In the present specification, a bond represented by a dotted line in other chemical structural formulas similarly represents a bond that bonds to an adjacent structural unit or group.
 上記のような構成単位(1)及び構成単位(2)を有するポリアミドイミド系樹脂を含む本発明の光学フィルムにおいて、弾性率及び表面硬度が向上する理由は明らかではないが、ポリアミドイミド系樹脂が構成単位(1)及び構成単位(2)を有する場合、その骨格が、適度に剛直性を有し、かつ側鎖に適度な運動性を有することになる。その結果、驚くべきことに、かかるポリアミドイミド系樹脂を含む光学フィルムの弾性率及び表面硬度のいずれもが向上すると考えられる。 In the optical film of the present invention containing the polyamide-imide resin having the structural unit (1) and the structural unit (2) as described above, the reason why the elastic modulus and the surface hardness are improved is not clear. When the structural unit (1) and the structural unit (2) are included, the skeleton thereof has appropriate rigidity and side chains have appropriate mobility. As a result, it is considered that, surprisingly, both the elastic modulus and the surface hardness of the optical film containing such a polyamide-imide resin are improved.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂は、構成単位(1)及び構成単位(2)を有する。光学フィルムの弾性率及び表面硬度を向上させやすい観点からは、ポリアミドイミド系樹脂に含まれる構成単位(1)及び構成単位(2)の合計を100モル%としたときに、構成単位(1)の割合は、好ましくは20~99モル%、より好ましくは40~98モル%、さらに好ましくは50~95モル%、とりわけ好ましくは60~93モル%である。構成単位(1)の割合が上記の下限以上である場合、光学フィルムの弾性率及び表面硬度を向上させやすい。また、構成単位(1)の割合が上記の上限以下である場合、溶媒への溶解性を確保しやすい。なお、構成単位(1)及び構成単位(2)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 The polyamide-imide resin contained in the optical film of the present invention has the structural unit (1) and the structural unit (2). From the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, when the total of the structural unit (1) and the structural unit (2) contained in the polyamide-imide resin is 100 mol %, the structural unit (1) The proportion of is preferably 20 to 99 mol %, more preferably 40 to 98 mol %, further preferably 50 to 95 mol %, and particularly preferably 60 to 93 mol %. When the ratio of the structural unit (1) is at least the above lower limit, it is easy to improve the elastic modulus and surface hardness of the optical film. Moreover, when the ratio of the structural unit (1) is at most the above upper limit, it is easy to secure the solubility in a solvent. The contents of the structural unit (1) and the structural unit (2) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
 ポリアミドイミド系樹脂において、式(1)で表される構成単位の含有量は、式(2)で表される構成単位1モルに対して、好ましくは0.1モル以上、より好ましくは0.5モル以上、さらに好ましくは1.0モル以上、とりわけ好ましくは1.5モル以上であり、好ましくは15モル以下、より好ましくは12モル以下、さらに好ましくは10モル以下である。式(1)で表される構成単位の含有量が上記の下限以上であると、光学フィルムの弾性率及び表面硬度を向上させやすい。また、式(1)で表される構成単位の含有量が上記の上限以下であると、式(1)中のアミド結合間の水素結合による増粘を抑制し、光学フィルムの加工性を向上させやすい。 In the polyamide-imide resin, the content of the structural unit represented by the formula (1) is preferably 0.1 mol or more, more preferably 0.1 mol or less with respect to 1 mol of the structural unit represented by the formula (2). It is 5 mol or more, more preferably 1.0 mol or more, particularly preferably 1.5 mol or more, preferably 15 mol or less, more preferably 12 mol or less, and further preferably 10 mol or less. When the content of the constituent unit represented by the formula (1) is at least the above lower limit, the elastic modulus and surface hardness of the optical film can be easily improved. Further, when the content of the constitutional unit represented by the formula (1) is at most the above upper limit, thickening due to hydrogen bonds between amide bonds in the formula (1) is suppressed, and the processability of the optical film is improved. Easy to make.
 式(1)中のR及びRは、互いに独立に、(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、(iii)炭素数6~12のアリール基、(iv)炭素数6~12のアリールオキシ基、(v)炭素数1~12のカルボニル基、(vi)炭素数1~12のオキシカルボニル基、又は、(vii)ハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。構成単位(1)は、少なくとも1種類のRを有する。構成単位(1)が1種類のRを有していてもよいし、2種以上のRを有していてもよい。また、構成単位(1)は、1種類のRを有していてもよいし、2種以上のRを有していてもよいし、Rを有していなくてもよい。 R 1 and R 2 in the formula (1) are, independently of each other, (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, and (iii) having 6 to 12 carbon atoms. An aryl group, (iv) an aryloxy group having 6 to 12 carbon atoms, (v) a carbonyl group having 1 to 12 carbon atoms, (vi) an oxycarbonyl group having 1 to 12 carbon atoms, or (vii) a halogeno group Here, the hydrogen atoms contained in R 1 and R 2 are independently substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. May be. The structural unit (1) has at least one type of R 1 . The structural unit (1) may have one type of R 1 or two or more types of R 1 . The structural unit (1) may have one type of R 2 , two or more types of R 2 , or may not have R 2 .
 (i)炭素数1~12のアルキル基としては、炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基が挙げられる。炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。炭素数1~12のアルキル基は、直鎖状のアルキル基、分枝状のアルキル基、又は、脂環式炭化水素構造を含む脂環式のアルキル基であってよい。炭素数1~12のアルキル基の炭素数は、好ましくは1~6、より好ましくは1~4、さらに好ましくは1又は2である。上記の炭素数1~12のアルキル基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ここで、炭素数1~12のアルキル基が、炭素原子を含む置換基(例えば炭素数1~4のアルキル基)で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数1~12のアルキル基の炭素数には含めない。例えば上記の炭素数1~12のアルキル基が、炭素数1~4のアルキル基で置換された基は、炭素数1~12のアルキル基を主鎖とし、該アルキル基の少なくとも1つの水素原子が炭素数1~4のアルキル基で置換された基である。主鎖となるアルキル基部分の炭素数が1~12であれば、アルキル基全体としての炭素数は12を超えていてもよい。なお、アルキル基全体としての炭素原子の数が12を超えない基の場合、炭素数1~12のアルキル基が炭素数1~4のアルキル基で置換された基は、炭素数1~12の分枝状のアルキル基の定義にも包含される基である。 (I) Examples of the alkyl group having 1 to 12 carbon atoms include linear, branched or alicyclic alkyl groups having 1 to 12 carbon atoms. Examples of the linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-group. Butyl group, n-pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group , N-decyl group, cyclopentyl group, cyclohexyl group and the like. The alkyl group having 1 to 12 carbon atoms may be a linear alkyl group, a branched alkyl group, or an alicyclic alkyl group containing an alicyclic hydrocarbon structure. The alkyl group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 or 2 carbon atoms. At least one hydrogen atom of the alkyl group having 1 to 12 carbon atoms is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Here, when the alkyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom (for example, an alkyl group having 1 to 4 carbon atoms), the number of carbon atoms contained in the substituent is It is not included in the number of carbon atoms of the alkyl group of the numbers 1 to 12. For example, the above-mentioned group in which an alkyl group having 1 to 12 carbon atoms is substituted with an alkyl group having 1 to 4 carbon atoms has an alkyl group having 1 to 12 carbon atoms as a main chain and at least one hydrogen atom of the alkyl group Is a group substituted with an alkyl group having 1 to 4 carbon atoms. If the number of carbon atoms in the main chain alkyl group portion is 1 to 12, the total number of carbon atoms in the alkyl group may exceed 12. When the number of carbon atoms in the alkyl group as a whole does not exceed 12, a group in which an alkyl group having 1 to 12 carbon atoms is substituted with an alkyl group having 1 to 4 carbon atoms has 1 to 12 carbon atoms. It is a group included in the definition of a branched alkyl group.
 (ii)炭素数1~12のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基及びデシルオキシ基等が挙げられる。炭素数1~12のアルコキシ基におけるアルキル基部分及び/又はアルキレン基部分は、直鎖状、分枝状、又は、脂環式のいずれであってもよい。炭素数1~12のアルコキシ基の炭素数は、好ましくは1~6、より好ましくは1~4、さらに好ましくは1又は2である。上記の炭素数1~12のアルコキシ基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、上記に記載した原子が挙げられる。ここで、炭素数1~12のアルコキシ基が炭素原子を含む置換基で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数1~12のアルコキシ基の炭素数には含めない。 (Ii) Examples of the alkoxy group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, Examples thereof include a cyclohexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group and a decyloxy group. The alkyl group portion and/or alkylene group portion in the alkoxy group having 1 to 12 carbon atoms may be linear, branched, or alicyclic. The alkoxy group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 or 2 carbon atoms. In the above alkoxy group having 1 to 12 carbon atoms, at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with. Examples of the halogen atom include the atoms described above. Here, when the alkoxy group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is equal to the carbon number of the alkoxy group having 1 to 12 carbon atoms. exclude.
 (iii)炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等が挙げられる。炭素数6~12のアリール基の炭素数は、好ましくは6又10又は12であり、より好ましくは6である。上記の炭素数6~12のアリール基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、上記に記載した原子が挙げられる。ここで、炭素数6~12のアリール基が炭素原子を含む置換基で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数6~12のアリール基の炭素数には含めない。 (Iii) Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group. The aryl group having 6 to 12 carbon atoms preferably has 6 or 10 or 12 carbon atoms, and more preferably has 6 carbon atoms. In the aryl group having 6 to 12 carbon atoms, at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with. Examples of the halogen atom include the atoms described above. Here, when the aryl group having 6 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is smaller than that of the aryl group having 6 to 12 carbon atoms. exclude.
 (iv)炭素数6~12のアリールオキシ基としては、フェノキシ基、トリルオキシ基、キシリルオキシ基、ナフチルオキシ基、ビフェニルオキシ基等が挙げられる。炭素数6~12のアリールオキシ基の炭素数は、好ましくは6又は10又は12であり、より好ましくは6である。上記の炭素数6~12のアリールオキシ基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、上記に記載した原子が挙げられる。ここで、炭素数6~12のアリールオキシ基が炭素原子を含む置換基で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数6~12のアリールオキシ基の炭素数には含めない。 (Iv) Examples of the aryloxy group having 6 to 12 carbon atoms include phenoxy group, tolyloxy group, xylyloxy group, naphthyloxy group and biphenyloxy group. The aryloxy group having 6 to 12 carbon atoms preferably has 6 or 10 or 12 carbon atoms, and more preferably has 6 carbon atoms. In the aryloxy group having 6 to 12 carbon atoms, at least one hydrogen atom is independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with a group. Examples of the halogen atom include the atoms described above. Here, when the aryloxy group having 6 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is the same as that of the aryloxy group having 6 to 12 carbon atoms. Not included in.
 (v)炭素数1~12のカルボニル基は、*-CO-R又は*-R-CO-Rで表される基である。Rとしては、(i)炭素数1~12のアルキル基について記載した基が挙げられ、Rとしては、(i)炭素数1~12のアルキル基について記載した基の少なくとも1つの水素原子が結合手に置き換わった、炭素数1~12の2価のアルキレン基が挙げられる。上記の炭素数1~12のカルボニル基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、上記に記載した原子が挙げられる。ここで、炭素数1~12のカルボニル基が炭素原子を含む置換基で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数1~12のカルボニル基の炭素数には含めない。 (V) a carbonyl group having 1 to 12 carbon atoms, * - is CO-R a or * -R b -CO-R a group represented by. Examples of R a include the groups described for (i) an alkyl group having 1 to 12 carbons, and examples of R b include at least one hydrogen atom of the group described for (i) an alkyl group having 1 to 12 carbons. And a divalent alkylene group having 1 to 12 carbon atoms in which is replaced by a bond. In the carbonyl group having 1 to 12 carbon atoms, at least one hydrogen atom independently of each other is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with. Examples of the halogen atom include the atoms described above. Here, when the carbonyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is equal to the carbon number of the carbonyl group having 1 to 12 carbon atoms. exclude.
 (vi)炭素数1~12のオキシカルボニル基は、*-CO-O-R、*-R-CO-O-R、*-O-CO-R、又は、-R-O-CO-Rで表される基である。Rとしては、(i)炭素数1~12のアルキル基について記載した基が挙げられ、Rとしては、(i)炭素数1~12のアルキル基について記載した基の少なくとも1つの水素原子が結合手に置き換わった、炭素数1~12の2価のアルキレン基が挙げられる。上記の炭素数1~12のオキシカルボニル基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換された基であってもよい。ハロゲン原子としては、上記に記載した原子が挙げられる。ここで、炭素数1~12のオキシカルボニル基が炭素原子を含む置換基で置換されている場合、当該置換基に含まれる炭素原子の数は、炭素数1~12のオキシカルボニル基の炭素数には含めない。 (Vi) oxycarbonyl group having 1 to 12 carbon atoms, * - CO-O-R a, * - R b -CO-O-R a, * - O-CO-R a, or, -R b - It is a group represented by O—CO—R a . Examples of R a include the groups described for (i) an alkyl group having 1 to 12 carbons, and examples of R b include at least one hydrogen atom of the group described for (i) an alkyl group having 1 to 12 carbons. And a divalent alkylene group having 1 to 12 carbon atoms in which is replaced by a bond. In the above-mentioned oxycarbonyl group having 1 to 12 carbon atoms, at least one hydrogen atom independently of one another is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. It may be a group substituted with a group. Examples of the halogen atom include the atoms described above. Here, when the oxycarbonyl group having 1 to 12 carbon atoms is substituted with a substituent containing a carbon atom, the number of carbon atoms contained in the substituent is the number of carbon atoms of the oxycarbonyl group having 1 to 12 carbon atoms. Not included in.
 (vii)ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基又はヨード基が挙げられる。 Examples of the (vii) halogeno group include a fluoro group, a chloro group, a bromo group and an iodo group.
 本発明の好ましい一態様において、式(1)中のR及びRは、互いに独立に、(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、又は、(vii)ハロゲノ基を表し、ここで、R及びRの水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。 In a preferred embodiment of the present invention, R 1 and R 2 in formula (1) are, independently of each other, (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or , (Vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or , May be substituted with a carboxyl group.
 式(1)中のR及びRは、より好ましくは、(i)炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基、該アルキル基の少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基(好ましくはハロゲン原子)で置換された基、又は、(vii)ハロゲノ基を表し、さらに好ましくは炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくはフルオロアルキル基)を表し、とりわけ好ましくは、炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくはパーフルオロアルキル基)を表す。これらの基の炭素数は、好ましくは1~6、より好ましくは1~4、さらに好ましくは1又は2である More preferably, R 1 and R 2 in the formula (1) are (i) a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group. Independently of each other, a group substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group (preferably a halogen atom), or (vii) A halogeno group, more preferably a group in which at least one hydrogen atom of a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms is substituted with a halogen atom (preferably fluorine atom). Represents a fluoroalkyl group), and particularly preferably, all hydrogen atoms of a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms are substituted with halogen atoms (preferably fluorine atoms). Represents a group (preferably a perfluoroalkyl group). The carbon number of these groups is preferably 1 to 6, more preferably 1 to 4, and further preferably 1 or 2.
 式(1)中のVは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表す。炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基としては、式(1)中のRの(i)炭素数1~12のアルキル基について記載した基において、少なくとも1つの水素原子が結合手に置き換わった、炭素数1~12の2価のアルキレン基が挙げられる。 V in the formula (1) is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, Represents —S—, —CO—, —PO—, —PO 2 —, —N(R 30 )— or —Si(R 31 ) 2 —, wherein the hydrogen atom contained in the hydrocarbon group is They may be independently substituted with a halogen atom, and R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom. As the linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, the description is made of (i) the alkyl group having 1 to 12 carbon atoms of R 1 in the formula (1). In the group, a divalent alkylene group having 1 to 12 carbon atoms in which at least one hydrogen atom is replaced with a bond is mentioned.
 式(1)中のVは、好ましくは単結合、炭素数1~12の2価の炭化水素基、又は、炭素数1~12の2価の炭化水素基に含まれる水素原子がハロゲン原子で置換された基を表し、より好ましくは単結合又は炭素数1~12の2価の炭化水素基に含まれる水素原子がハロゲン原子で置換された基を表す。 V in the formula (1) is preferably a single bond, a divalent hydrocarbon group having 1 to 12 carbon atoms, or a hydrogen atom contained in the divalent hydrocarbon group having 1 to 12 carbon atoms is a halogen atom. It represents a substituted group, and more preferably represents a group in which a hydrogen atom contained in a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom.
 Vが、炭素数1~12の2価の炭化水素基、又は、炭素数1~12の2価の炭化水素基に含まれる水素原子がハロゲン原子で置換された基を表す場合、炭素数1~12の2価の炭化水素基としては、炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の少なくとも1つの水素原子が結合手に置き換わった基が挙げられる。なお、かかる炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。炭素数1~12の2価の炭化水素基は、直鎖状のアルキレン基、分枝状のアルキレン基、又は、脂環式炭化水素構造を含む脂環式のアルキレン基であってよい。炭素数1~12の2価の炭化水素基の炭素数は、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~3である。上記の炭素数1~12の2価の炭化水素基は、少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、で置換された基であってもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 When V represents a divalent hydrocarbon group having 1 to 12 carbon atoms, or a hydrogen atom contained in the divalent hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom, the number of carbon atoms is 1 Examples of the divalent hydrocarbon group having 12 to 12 include groups in which at least one hydrogen atom of a linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms is replaced with a bond. Examples of the linear, branched or alicyclic alkyl group having 1 to 12 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and sec-butyl group. , Tert-butyl group, n-pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n Examples thereof include nonyl group, n-decyl group, cyclopentyl group and cyclohexyl group. The divalent hydrocarbon group having 1 to 12 carbon atoms may be a linear alkylene group, a branched alkylene group, or an alicyclic alkylene group containing an alicyclic hydrocarbon structure. The divalent hydrocarbon group having 1 to 12 carbon atoms preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 1 to 3 carbon atoms. The divalent hydrocarbon group having 1 to 12 carbon atoms may be a group in which at least one hydrogen atom is independently substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 本発明の好ましい一態様において、式(1)中のVは、好ましくは単結合、又は、炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくはフルオロアルキレン基)であり、より好ましくは単結合、又は、炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくはパーフルオロアルキレン基、さらに好ましくはジトリフルオロメチルメチレン基)である。 In one preferable embodiment of the present invention, V in the formula (1) is preferably a single bond or at least one hydrogen atom of a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms. Is a group (preferably fluoroalkylene group) substituted with a halogen atom (preferably a fluorine atom), more preferably a single bond, or a straight chain, branched or alicyclic group having 1 to 12 carbon atoms. It is a group (preferably a perfluoroalkylene group, more preferably a ditrifluoromethylmethylene group) in which all hydrogen atoms of the alkylene group are substituted with halogen atoms (preferably fluorine atoms).
 式(1)中のmは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す。式(1)中のmは、好ましくは0又は1であり、より好ましくは0である。式(1)中のnは、好ましくは1又は2、より好ましくは1である。式(1)中のpは、好ましくは0~2の整数、より好ましくは0又は1である。式(1)中のqは、好ましくは0~2の整数、より好ましくは0又は1である。 In the formula (1), m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4. M in the formula (1) is preferably 0 or 1, and more preferably 0. N in the formula (1) is preferably 1 or 2, and more preferably 1. P in the formula (1) is preferably an integer of 0 to 2, and more preferably 0 or 1. Q in the formula (1) is preferably an integer of 0 to 2, and more preferably 0 or 1.
 本発明の好ましい一態様において、式(1)中のV及びqは、Vが単結合を表し、かつ、qが1又は2(好ましくは1)であるか、又は、Vが炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基(より好ましくはフルオロアルキレン基、さらに好ましくはパーフルオロアルキレン基、とりわけ好ましくはジフルオロメチルメチレン基)を表し、かつ、qが0又は1(好ましくは0)である。 In one preferred embodiment of the present invention, V and q in the formula (1), V represents a single bond, and q is 1 or 2 (preferably 1), or V has 1 to 2 carbon atoms. 12 linear, branched or alicyclic alkylene groups (more preferably fluoroalkylene groups, further preferably perfluoroalkylene groups, particularly preferably difluoromethylmethylene groups), and q is 0 or 1 (Preferably 0).
 本発明の好ましい一態様において、ポリアミドイミド系樹脂は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、式(1)で表される構成単位として、式(1a): In a preferred embodiment of the present invention, the polyamide-imide-based resin has the following formula (1a) as a structural unit represented by formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
Figure JPOXMLDOC01-appb-C000013
[式(1a)中、
 R~R10は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表し、但し、R~R10の少なくとも1つは式(1)中のRについて記載した基であり、
 R、q及びVは、それぞれ、式(1)中のR、q及びVについて定義したとおりである]
で表される構成単位を含む。以下において、式(1a)で表される構成単位を、「構成単位(1a)」とも称する。
Figure JPOXMLDOC01-appb-C000013
[In Formula (1a),
R 3 to R 10 each independently represent a hydrogen atom or a group described for R 1 in the formula (1), provided that at least one of R 3 to R 10 is the same as R 1 in the formula (1). Is the listed group,
R 2 , q and V are as defined for R 2 , q and V in formula (1) respectively]
Including a structural unit represented by. Hereinafter, the constitutional unit represented by the formula (1a) is also referred to as “constitutional unit (1a)”.
 ポリアミドイミド系樹脂が、構成単位(1)として、構成単位(1a)を含む場合、ポリアミドイミド系樹脂は、構成単位(1)として、式(1a)で表される1種類の構成単位を含んでいてもよいし、式(1a)で表される2種類以上の構成単位を含んでいてもよいし、式(1a)で表される構成単位の他に、式(1)に該当するが式(1a)に該当しない構成単位をさらに含んでいてもよい。 When the polyamide-imide resin contains the structural unit (1a) as the structural unit (1), the polyamide-imide resin contains one structural unit represented by the formula (1a) as the structural unit (1). And may include two or more types of structural units represented by formula (1a), and may correspond to formula (1) in addition to the structural unit represented by formula (1a). It may further include a structural unit which does not correspond to the formula (1a).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂は、上記のように構成単位(1)及び構成単位(2)を少なくとも有し、該樹脂は通常、複数個の構成単位(1)、複数個の構成単位(2)及び場合により他の構成単位を有している。本明細書において、ポリアミドイミド樹脂が、構成単位(1)として式(1a)で表される構成単位を含むとは、ポリアミドイミド系樹脂が有する複数の構成単位(1)において、少なくとも一部の構成単位(1)が式(1a)で表される構成単位であることを意味する。上記の記載は、本明細書中の同様の他の記載にも当てはまる。 The polyamide-imide resin contained in the optical film of the present invention has at least the structural unit (1) and the structural unit (2) as described above, and the resin is usually a plurality of structural units (1) and a plurality of structural units. The structural unit (2) and optionally other structural units. In the present specification, that the polyamide-imide resin contains a constitutional unit represented by the formula (1a) as the constitutional unit (1) means that at least a part of a plurality of constitutional units (1) included in the polyamide-imide resin. It means that the structural unit (1) is a structural unit represented by the formula (1a). The above statements also apply to other similar statements herein.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1)として、式(1a)で表される構成単位を含む本発明の好ましい一態様において、ポリアミドイミド系樹脂に含まれる構成単位(1)を100モル%としたときに、式(1a)で表される構成単位の割合は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1)の全てが、式(1a)で表される構成単位であってもよい。なお、構成単位(1)及び構成単位(1a)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (1a) as the constitutional unit (1). When (1) is 100 mol %, the proportion of the structural unit represented by the formula (1a) is preferably 70 to 100 mol %, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (1a). The content of the structural unit (1) and the structural unit (1a) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の好ましい一態様において、ポリアミドイミド系樹脂は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、式(1a)で表される構成単位として、式(1aa): In a preferred embodiment of the present invention, the polyamide-imide-based resin has the following formula (1aa) as a constitutional unit represented by formula (1a) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
Figure JPOXMLDOC01-appb-C000014
[式(1aa)中、
 R~R10は、互いに独立に、式(1a)中のR~R10について定義したとおりであり、
 R11~R18は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表し、但し、R11~R18の少なくとも1つは式(1)中のRについて記載した基である]
で表される構成単位、及び/又は、式(1ab):
Figure JPOXMLDOC01-appb-C000014
[In the formula (1aa),
R 3 to R 10 are, independently of each other, as defined for R 3 to R 10 in formula (1a),
R 11 to R 18 each independently represent a hydrogen atom or a group described for R 2 in the formula (1), provided that at least one of R 11 to R 18 is the same as R 2 in the formula (1). It is the stated group]
And/or the formula (1ab):
Figure JPOXMLDOC01-appb-C000015
[式(1ab)中、
 R~R10は、互いに独立に、式(1a)中のR~R10について定義したとおりであり、Vは式(1)中のVについて定義したとおりである]
で表される構成単位を含む。以下において、式(1aa)で表される構成単位を「構成単位(1aa)」とも称し、式(1ab)で表される構成単位を「構成単位(1ab)」とも称する。
Figure JPOXMLDOC01-appb-C000015
[In the formula (1ab),
R 3 to R 10 independently of each other are as defined for R 3 to R 10 in formula (1a), and V is as defined for V in formula (1)].
Including a structural unit represented by. Hereinafter, the constitutional unit represented by the formula (1aa) is also referred to as “constitutional unit (1aa)”, and the constitutional unit represented by the formula (1ab) is also referred to as “constitutional unit (1ab)”.
 ポリアミドイミド系樹脂が、構成単位(1a)として、構成単位(1aa)及び/又は構成単位(1ab)を含む場合、ポリアミドイミド系樹脂は、構成単位(1a)として、式(1aa)で表される1種類の構成単位を含んでいてもよいし、式(1aa)で表される2種類以上の構成単位を含んでいてもよいし、式(1ab)で表される1種類の構成単位を含んでいてもよいし、式(1ab)で表される2種類以上の構成単位を含んでいてもよいし、1種以上の構成単位(1aa)及び1種以上の構成単位(1ab)の両方を含んでいてもよい。なお、この態様において、ポリアミドイミド系樹脂は、構成単位(1aa)又は構成単位(1ab)の他に、式(1a)に該当するが式(1aa)及び式(1ab)に該当しない構成単位をさらに含んでいてもよい。 When the polyamide-imide resin includes the structural unit (1aa) and/or the structural unit (1ab) as the structural unit (1a), the polyamide-imide resin is represented by the formula (1aa) as the structural unit (1a). May include one type of structural unit represented by the formula (1aa), may include two or more types of structural units represented by the formula (1aa), and may include one type of structural unit represented by the formula (1ab). It may contain, or may contain two or more types of structural units represented by the formula (1ab), both one or more types of structural units (1aa) and one or more types of structural units (1ab) May be included. In addition, in this aspect, the polyamide-imide-based resin includes, in addition to the structural unit (1aa) or the structural unit (1ab), a structural unit that corresponds to the formula (1a) but does not correspond to the formula (1aa) or the formula (1ab). It may further include.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1a)として、式(1aa)で表される構成単位を含む本発明の好ましい一態様において、ポリアミドイミド系樹脂に含まれる構成単位(1a)を100モル%としたときに、式(1aa)で表される構成単位の割合は、光学フィルムの弾性率、表面硬度及び耐屈曲性を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1a)の全てが、式(1aa)で表される構成単位であってもよい。なお、構成単位(1a)及び構成単位(1aa)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamideimide-based resin contained in the optical film of the present invention contains the structural unit represented by the formula (1aa) as the structural unit (1a). When (1a) is 100 mol %, the ratio of the structural unit represented by the formula (1aa) is preferably 70 to 100 from the viewpoint of easily improving the elastic modulus, surface hardness and flex resistance of the optical film. It is mol%, more preferably 80 to 100 mol%, further preferably 90 to 100 mol%, and all the structural units (1a) may be structural units represented by the formula (1aa). The content of the structural unit (1a) and the structural unit (1aa) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1a)として、式(1ab)で表される構成単位を含んでいてもよい。この態様において、ポリアミドイミド系樹脂に含まれる構成単位(1a)を100モル%としたときに、式(1ab)で表される構成単位の割合は、耐屈曲性と溶媒への溶解性の観点から、好ましくは0~100モル%、より好ましくは0~50モル%、さらに好ましくは0~30モル%である。式(1ab)で表される構成単位の割合が上記の上限以下である場合、光学フィルムの弾性率及び耐屈曲性をより向上させやすい。構成単位(1a)及び構成単位(1ab)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 The polyamide-imide resin contained in the optical film of the present invention may contain a structural unit represented by the formula (1ab) as the structural unit (1a). In this aspect, when the constituent unit (1a) contained in the polyamide-imide resin is 100 mol %, the ratio of the constituent unit represented by the formula (1ab) is from the viewpoint of flex resistance and solubility in a solvent. Therefore, it is preferably 0 to 100 mol %, more preferably 0 to 50 mol %, and further preferably 0 to 30 mol %. When the proportion of the structural unit represented by the formula (1ab) is at most the above upper limit, the elastic modulus and bending resistance of the optical film can be more easily improved. The content of the structural unit (1a) and the structural unit (1ab) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の一態様において、光学フィルムに含まれるポリアミドイミド系樹脂は、構成単位(1a)として、式(1aa)で表される構成単位及び式(1ab)で表される構成単位の両方を含んでいてもよい。この態様において、ポリアミドイミド系樹脂に含まれる構成単位(1a)を100モル%としたときに、構成単位(1aa)及び構成単位(1ab)の合計の割合は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1a)の全てが、構成単位(1aa)及び構成単位(1ab)であってもよい。この場合、構成単位(1aa)の含有量は、構成単位(1ab)1モルに対して、好ましくは1モル以上、より好ましくは4モル以上、さらに好ましくは6モル以上、とりわけ好ましくは8モル以上である。式(1aa)で表される構成単位の含有量が上記の下限以上であると、光学フィルムの耐屈曲性、弾性率及び表面硬度を向上させやすい。 In one embodiment of the present invention, the polyamideimide resin included in the optical film includes both a structural unit represented by the formula (1aa) and a structural unit represented by the formula (1ab) as the structural unit (1a). You can leave. In this aspect, when the constituent unit (1a) contained in the polyamide-imide resin is 100 mol %, the total ratio of the constituent unit (1aa) and the constituent unit (1ab) is the elastic modulus and surface hardness of the optical film. From the viewpoint of easily improving the ratio, it is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and all the structural units (1a) are structural units (1aa) and It may be the structural unit (1ab). In this case, the content of the structural unit (1aa) is preferably 1 mol or more, more preferably 4 mol or more, further preferably 6 mol or more, and particularly preferably 8 mol or more, relative to 1 mol of the structural unit (1ab). Is. When the content of the structural unit represented by the formula (1aa) is at least the above lower limit, the bending resistance, elastic modulus and surface hardness of the optical film can be easily improved.
 式(1a)、式(1aa)及び式(1ab)中のR~R10は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表し、但し、R~R10の少なくとも1つは式(1)中のRについて記載した基であり、好ましくはR~R10の少なくとも2つは式(1)中のRについて記載した基である。式(1)中のRについて記載した基についての好ましい態様は、式(1a)、式(1aa)及び式(1ab)中のR~R10にも同様に当てはまる。光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは式(1a)中の少なくともR及びRが式(1)中のRについて記載した基であり、より好ましくは式(1a)中のR及びRが式(1)中のRについて記載した基であり、かつ、R、R及びR、R~R10が水素原子である。 R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab) each independently represent a hydrogen atom or a group described for R 1 in formula (1), provided that R 3 to At least one of R 10 is the group described for R 1 in formula (1), preferably at least two of R 3 to R 10 are the groups described for R 1 in formula (1). The preferred embodiments for the groups mentioned for R 1 in formula (1) likewise apply to R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab). From the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, at least R 5 and R 7 in the formula (1a) are preferably the groups described for R 1 in the formula (1), and more preferably the formula (1). R 5 and R 7 in 1a) are the groups described for R 1 in the formula (1), and R 3 , R 4 and R 6 , and R 8 to R 10 are hydrogen atoms.
 式(1a)、式(1aa)及び式(1ab)中のR~R10が表し得る、式(1)中のRについて記載した基としては、(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、又は、(vii)ハロゲノ基が好ましく、ここで、R及びRの水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。式(1)中のRについて記載した基としては、より好ましくは(i)炭素数1~12のアルキル基、該アルキル基の少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基(好ましくはハロゲン原子)で置換された基、又は、(vii)ハロゲノ基が挙げられ、さらに好ましくは炭素数1~12のアルキル基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のフルオロアルキル基)が挙げられ、とりわけ好ましくは炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のパーフルオロアルキル基)が挙げられる。 The groups described for R 1 in formula (1), which can be represented by R 3 to R 10 in formula (1a), formula (1aa) and formula (1ab), include (i) alkyl having 1 to 12 carbons. Group, (ii) an alkoxy group having 1 to 12 carbon atoms, or (vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom or a hydrogen atom having 1 to 4 carbon atoms. It may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. The group described for R 1 in formula (1) is more preferably (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group is independently a halogen atom or a carbon number. Examples thereof include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably a carbon number. Examples thereof include a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which at least one hydrogen atom of an alkyl group having 1 to 12 is substituted with a halogen atom (preferably fluorine atom), and particularly preferably 1 to 12 carbon atoms. A group (preferably a perfluoroalkyl group having 1 to 12 carbon atoms) in which all hydrogen atoms of 12 straight, branched or alicyclic alkyl groups are substituted with halogen atoms (preferably fluorine atoms) Can be mentioned.
 本発明の好ましい一態様において、ポリアミドイミド系樹脂は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、式(1)で表される構成単位として、式(1b): In a preferred embodiment of the present invention, the polyamide-imide-based resin has the following formula (1b) as a structural unit represented by formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
Figure JPOXMLDOC01-appb-C000016
[式(1b)中、R、R、q及びVは、それぞれ、式(1)中のR、R、q及びVについて定義したとおりである]
で表される構成単位を含む。以下において、式(1b)で表される構成単位を、「構成単位(1b)」とも称する。なお、式(1b)は、式(1a)中のR及びRが式(1)中のRについて記載した基であり、かつ、R、R、R及びR~R10が水素原子である構成単位に相当する。
Figure JPOXMLDOC01-appb-C000016
[In the formula (1b), R 1 , R 2 , q and V are as defined for R 1 , R 2 , q and V in the formula (1), respectively]
Including a structural unit represented by. Hereinafter, the constitutional unit represented by the formula (1b) is also referred to as “constitutional unit (1b)”. In the formula (1b), R 5 and R 7 in the formula (1a) are the groups described for R 1 in the formula (1), and R 3 , R 4 , R 6 and R 8 to R 8 10 corresponds to a structural unit in which a hydrogen atom is used.
 ポリアミドイミド系樹脂が、構成単位(1)として、構成単位(1b)を含む場合、ポリアミドイミド系樹脂は、構成単位(1)として、式(1b)で表される1種類の構成単位を含んでいてもよいし、式(1b)で表される2種類以上の構成単位を含んでいてもよいし、式(1b)で表される構成単位の他に、式(1)に該当するが式(1b)に該当しない構成単位をさらに含んでいてもよい。 When the polyamide-imide resin includes the structural unit (1b) as the structural unit (1), the polyamide-imide resin includes one type of structural unit represented by the formula (1b) as the structural unit (1). And may include two or more types of constitutional units represented by formula (1b), and in addition to the constitutional unit represented by formula (1b), It may further include a structural unit which does not correspond to the formula (1b).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1)として、式(1b)で表される構成単位を含む本発明の好ましい一態様において、ポリアミドイミド系樹脂に含まれる構成単位(1)を100モル%としたときに、式(1b)で表される構成単位の割合は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1)の全てが、式(1b)で表される構成単位であってもよい。なお、構成単位(1)及び構成単位(1b)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (1b) as the constitutional unit (1). When (1) is 100 mol %, the ratio of the structural unit represented by the formula (1b) is preferably 70 to 100 mol %, more preferably from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (1b). The contents of the structural unit (1) and the structural unit (1b) can be measured, for example, by 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
 本発明の好ましい一態様において、ポリアミドイミド系樹脂は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、式(1b)で表される構成単位として、式(1ba): In a preferred embodiment of the present invention, the polyamide-imide-based resin has the following formula (1ba) as a structural unit represented by formula (1b) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
Figure JPOXMLDOC01-appb-C000017
[式(1ba)中、
 Rは、互いに独立に、式(1)中のRについて定義したとおりであり、
 R11~R18は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表し、但し、R11~R18の少なくとも1つは式(1)中のRについて記載した基である]
で表される構成単位、及び/又は、式(1bb):
Figure JPOXMLDOC01-appb-C000017
[In the formula (1ba),
R 1 is, independently of one another, as defined for R 1 in formula (1),
R 11 to R 18 each independently represent a hydrogen atom or a group described for R 2 in the formula (1), provided that at least one of R 11 to R 18 is the same as R 2 in the formula (1). It is the stated group]
And/or the formula (1bb):
Figure JPOXMLDOC01-appb-C000018
[式(1bb)中、
 Rは、互いに独立に、式(1)中のRについて定義したとおりであり、
 Vは式(1)中のVについて定義したとおりである]
で表される構成単位を含む。以下において、式(1ba)で表される構成単位を「構成単位(1ba)」とも称し、式(1bb)で表される構成単位を「構成単位(1bb)」とも称する。
Figure JPOXMLDOC01-appb-C000018
[In formula (1bb),
R 1 is, independently of one another, as defined for R 1 in formula (1),
V is as defined for V in formula (1)]
Including a structural unit represented by. Hereinafter, the constitutional unit represented by the formula (1ba) is also referred to as “constitutional unit (1ba)”, and the constitutional unit represented by the formula (1bb) is also referred to as “constitutional unit (1bb)”.
 ポリアミドイミド系樹脂が、構成単位(1b)として、構成単位(1ba)及び/又は構成単位(1bb)を含む場合、ポリアミドイミド系樹脂は、構成単位(1b)として、式(1ba)で表される1種類の構成単位を含んでいてもよいし、式(1ba)で表される2種類以上の構成単位を含んでいてもよいし、構成単位(1b)として、式(1bb)で表される1種類の構成単位を含んでいてもよいし、式(1bb)で表される2種類以上の構成単位を含んでいてもよいし、1種以上の構成単位(1ba)及び1種以上の構成単位(1bb)の両方を含んでいてもよい。なお、この態様において、ポリアミドイミド系樹脂は、構成単位(1ba)又は構成単位(1bb)の他に、式(1b)に該当するが式(1ba)及び式(1bb)に該当しない構成単位をさらに含んでいてもよい。 When the polyamide-imide resin includes the structural unit (1ba) and/or the structural unit (1bb) as the structural unit (1b), the polyamide-imide resin is represented by the formula (1ba) as the structural unit (1b). May be contained in one kind of constitutional unit, or may be contained in two or more kinds of constitutional unit represented by the formula (1ba), or as the constitutional unit (1b) is represented by the formula (1bb). 1 type of constitutional unit may be included, two or more types of constitutional units represented by the formula (1bb) may be included, and 1 or more types of constitutional units (1ba) and 1 or more types of Both of the structural units (1bb) may be included. In addition, in this aspect, the polyamide-imide-based resin includes, in addition to the structural unit (1ba) or the structural unit (1bb), a structural unit that corresponds to the formula (1b) but does not correspond to the formula (1ba) or the formula (1bb). It may further include.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1b)として、式(1ba)で表される構成単位を含む本発明の好ましい一態様において、ポリアミドイミド系樹脂に含まれる構成単位(1b)を100モル%としたときに、式(1ba)で表される構成単位の割合は、光学フィルムの弾性率、表面硬度及び耐屈曲性を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1b)の全てが、式(1ba)で表される構成単位であってもよい。なお、構成単位(1b)及び構成単位(1ba)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamideimide-based resin contained in the optical film of the present invention contains the structural unit represented by the formula (1ba) as the structural unit (1b). When (1b) is 100 mol %, the ratio of the structural unit represented by the formula (1ba) is preferably 70 to 100 from the viewpoint of easily improving the elastic modulus, surface hardness and flex resistance of the optical film. Mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%, and all of the structural units (1b) may be structural units represented by the formula (1ba). The content of the structural unit (1b) and the structural unit (1ba) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1b)として、式(1bb)で表される構成単位を含んでいてもよい。この態様において、ポリアミドイミド系樹脂に含まれる構成単位(1a)を100モル%としたときに、式(1bb)で表される構成単位の割合は、耐屈曲性と溶媒への溶解性の観点から、好ましくは0~100モル%、より好ましくは0~50モル%、さらに好ましくは0~30モル%である。式(1bb)で表される構成単位の割合が上記の上限以下である場合、光学フィルムの弾性率及び耐屈曲性をより向上させやすい。構成単位(1b)及び構成単位(1bb)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 The polyamide-imide resin contained in the optical film of the present invention may contain a structural unit represented by the formula (1bb) as the structural unit (1b). In this aspect, when the constitutional unit (1a) contained in the polyamide-imide resin is 100 mol %, the ratio of the constitutional unit represented by the formula (1bb) is from the viewpoint of flex resistance and solubility in a solvent. Therefore, it is preferably 0 to 100 mol %, more preferably 0 to 50 mol %, and further preferably 0 to 30 mol %. When the proportion of the structural unit represented by the formula (1bb) is at most the above upper limit, the elastic modulus and bending resistance of the optical film can be more easily improved. The content of the structural unit (1b) and the structural unit (1bb) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
 本発明の一態様において、光学フィルムに含まれるポリアミドイミド系樹脂は、構成単位(1b)として、式(1ba)で表される構成単位及び式(1bb)で表される構成単位の両方を含んでいてもよい。この態様において、ポリアミドイミド系樹脂に含まれる構成単位(1b)を100モル%としたときに、構成単位(1ba)及び構成単位(1bb)の合計の割合は、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1b)の全てが、構成単位(1ba)又は構成単位(1bb)のいずれかであってもよい。この場合、構成単位(1ba)の含有量は、構成単位(1bb)1モルに対して、好ましくは1モル以上、より好ましくは4モル以上、さらに好ましくは6モル以上、とりわけ好ましくは8モル以上である。式(1ba)で表される構成単位の含有量が上記の下限以上であると、光学フィルムの弾性率及び表面硬度を向上させやすい。 In one embodiment of the present invention, the polyamideimide resin included in the optical film includes both a structural unit represented by the formula (1ba) and a structural unit represented by the formula (1bb) as the structural unit (1b). You can leave. In this aspect, when the constituent unit (1b) contained in the polyamide-imide resin is 100 mol %, the total ratio of the constituent unit (1ba) and the constituent unit (1bb) is preferably 70 to 100 mol %, It is more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and all of the structural units (1b) may be either structural units (1ba) or structural units (1bb). In this case, the content of the structural unit (1ba) is preferably 1 mol or more, more preferably 4 mol or more, further preferably 6 mol or more, and particularly preferably 8 mol or more, relative to 1 mol of the structural unit (1bb). Is. When the content of the structural unit represented by the formula (1ba) is at least the above lower limit, the elastic modulus and surface hardness of the optical film can be easily improved.
 式(1b)、式(1ba)及び式(1bb)中のRは、式(1)中のRについて記載した基であり、式(1)中のRに関する好ましい記載が同様にあてはまる。すなわち、式(1b)、式(1ba)及び式(1bb)中のRは、好ましくは(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、又は、(vii)ハロゲノ基であり、ここで、R及びRの水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。かかる基としては、より好ましくは、(i)炭素数1~12のアルキル基、該アルキル基の少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基(好ましくはハロゲン原子)で置換された基、又は、(vii)ハロゲノ基が挙げられ、さらに好ましくは炭素数1~12のアルキル基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のフルオロアルキル基)が挙げられ、とりわけ好ましくは、炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のパーフルオロアルキル基)が挙げられる。 R 1 in formula (1b), formula (1ba) and formula (1bb) is the group described for R 1 in formula (1), and the preferred descriptions for R 1 in formula (1) also apply. .. That is, R 1 in formula (1b), formula (1ba) and formula (1bb) is preferably (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or (Vii) a halogeno group, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or It may be substituted with a carboxyl group. As such a group, more preferably, (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group are independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a carbon number. 1 to 4 alkoxy group, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably at least one alkyl group having 1 to 12 carbon atoms. And a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which one hydrogen atom is replaced by a halogen atom (preferably a fluorine atom), and particularly preferably a straight chain or branched chain having 1 to 12 carbon atoms. Examples thereof include groups (preferably perfluoroalkyl groups having 1 to 12 carbon atoms) in which all hydrogen atoms of a cyclic or alicyclic alkyl group are substituted with halogen atoms (preferably fluorine atoms).
 式(1a)及び(1b)中のR、V及びqは、互いに独立に、式(1)中のR、V及びqについて定義したとおりであり、これらに関する好ましい記載が同様にあてはまる。例えば、Vが単結合を表し、かつ、qが1又は2(好ましくは1)であるか、又は、Vが炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基(より好ましくはフルオロアルキレン基、さらに好ましくはパーフルオロアルキレン基、とりわけ好ましくはジフルオロメチルメチレン基)を表し、かつ、qが0又は1(好ましくは0)であることが好ましい。 R 2 , V and q in formulas (1a) and (1b) are, independently of each other, as defined for R 2 , V and q in formula (1), and the preferred descriptions thereof also apply. For example, V represents a single bond and q is 1 or 2 (preferably 1), or V is a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms ( A fluoroalkylene group is more preferable, a perfluoroalkylene group is still more preferable, and a difluoromethylmethylene group is particularly preferable, and q is preferably 0 or 1 (preferably 0).
 式(1ab)及び(1bb)中のVは、式(1)中のVについて定義したとおりであるが、好ましくは炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基であり、より好ましくはフルオロアルキレン基であり、さらに好ましくはパーフルオロアルキレン基であり、とりわけ好ましくはジフルオロメチルメチレン基である。 V in formulas (1ab) and (1bb) is as defined for V in formula (1), but is preferably a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms. Is more preferable, a fluoroalkylene group is more preferable, a perfluoroalkylene group is still more preferable, and a difluoromethylmethylene group is particularly preferable.
 式(1aa)及び(1ba)中のR11~R18は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表し、但し、R11~R18の少なくとも1つは式(1)中のRについて記載した基であり、好ましくはR11~R18の少なくとも2つは式(1)中のRについて記載した基である。式(1)中のRについて記載した基についての好ましい態様は、式(1aa)及び式(1ba)中のR11~R18にも同様に当てはまる。光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは式(1a)及び式(1ba)中の少なくともR12及びR18が式(1)中のRについて記載した基であり、より好ましくは式(1aa)及び式(1ba)中のR12及びR18が式(1)中のRについて記載した基であり、かつ、R11及びR13~R17が水素原子である。 R 11 to R 18 in formulas (1aa) and (1ba) each independently represent a hydrogen atom or a group described for R 2 in formula (1), provided that at least one of R 11 to R 18 is present. is a group as described for R 2 in the formula (1), preferably at least two R 11 ~ R 18 is as described for R 2 in the formula (1) group. The preferred embodiments for the groups mentioned for R 2 in formula (1) likewise apply to R 11 to R 18 in formula (1aa) and formula (1ba). From the viewpoint of easily improving the elastic modulus and the surface hardness of the optical film, at least R 12 and R 18 in formula (1a) and formula (1ba) are preferably the groups described for R 2 in formula (1), More preferably, R 12 and R 18 in formula (1aa) and formula (1ba) are the groups described for R 2 in formula (1), and R 11 and R 13 to R 17 are hydrogen atoms. ..
 式(1aa)及び(1ba)中のR11~R18が表し得る、式(1)中のRについて記載した基としては、(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、又は、(vii)ハロゲノ基が好ましく、ここで、R及びRの水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。式(1)中のRについて記載した基としては、より好ましくは、(i)炭素数1~12のアルキル基、該アルキル基の少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基(好ましくはハロゲン原子)で置換された基、又は、(vii)ハロゲノ基が挙げられ、さらに好ましくは炭素数1~12のアルキル基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のフルオロアルキル基)が挙げられ、とりわけ好ましくは炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のパーフルオロアルキル基、より好ましくは炭素数1~4のパーフルオロアルキル基)が挙げられる。 The groups described for R 2 in the formula (1), which can be represented by R 11 to R 18 in the formulas (1aa) and (1ba), include (i) an alkyl group having 1 to 12 carbon atoms, and (ii) a carbon atom. An alkoxy group having a number of 1 to 12 or (vii) a halogeno group is preferable, wherein the hydrogen atoms of R 1 and R 2 are, independently of each other, a halogen atom, an alkyl group having a carbon number of 1 to 4, and a carbon number of 1 It may be substituted with an alkoxy group of 4 to 4, a hydroxyl group or a carboxyl group. The group described for R 2 in the formula (1) is more preferably (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group is independently a halogen atom or a carbon atom. Examples thereof include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably carbon. Examples thereof include a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which at least one hydrogen atom of an alkyl group having 1 to 12 atoms is substituted with a halogen atom (preferably a fluorine atom), and particularly preferably a carbon number 1 A group (preferably a perfluoroalkyl group having 1 to 12 carbon atoms) in which all hydrogen atoms of a linear, branched or alicyclic alkyl group of 1 to 12 are substituted with halogen atoms (preferably fluorine atoms), More preferably, it is a perfluoroalkyl group having 1 to 4 carbon atoms.
 本発明の好ましい一態様において、ポリアミドイミド系樹脂は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、式(1)で表される構成単位として、式(4): In a preferred embodiment of the present invention, the polyamide-imide-based resin has a formula (4) as a structural unit represented by the formula (1) from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film.
Figure JPOXMLDOC01-appb-C000019
[式(4)中、R及びVは、互いに独立に、式(1)中のR及びVについて定義したとおりであり、R19及びR20は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表す]
で表される構成単位を含む。以下において、式(4)で表される構成単位を、「構成単位(4)」とも称する。
Figure JPOXMLDOC01-appb-C000019
[In formula (4), R 1 and V are, independently of each other, as defined for R 1 and V in formula (1), and R 19 and R 20 are independently of each other a hydrogen atom or a formula ( Represents the groups described for R 2 in 1)]
Including a structural unit represented by. Hereinafter, the constitutional unit represented by the formula (4) is also referred to as “constitutional unit (4)”.
 ポリアミドイミド系樹脂が、構成単位(1)として、構成単位(4)を含む場合、ポリアミドイミド系樹脂は、構成単位(1)として、式(4)で表される1種類の構成単位を含んでいてもよいし、式(4)で表される2種類以上の構成単位を含んでいてもよいし、式(4)で表される構成単位の他に、式(1)に該当するが式(4)に該当しない構成単位をさらに含んでいてもよい。 When the polyamide-imide resin contains the structural unit (4) as the structural unit (1), the polyamide-imide resin contains one structural unit represented by the formula (4) as the structural unit (1). And may include two or more types of constitutional units represented by formula (4), and in addition to the constitutional unit represented by formula (4), It may further include a structural unit which does not correspond to the formula (4).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1)として、式(4)で表される構成単位を含む本発明の好ましい一態様において、ポリアミドイミド系樹脂に含まれる構成単位(1)を100モル%としたときに、式(4)で表される構成単位の割合は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(1)の全てが、式(4)で表される構成単位であってもよい。なお、構成単位(1)及び構成単位(4)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamide-imide resin contained in the optical film of the present invention contains the constitutional unit represented by the formula (4) as the constitutional unit (1). When (1) is 100 mol %, the proportion of the structural unit represented by the formula (4) is preferably 70 to 100 mol %, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. It is preferably 80 to 100 mol %, more preferably 90 to 100 mol %, and all the structural units (1) may be structural units represented by the formula (4). The contents of the structural unit (1) and the structural unit (4) can be measured by using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 式(4)中のRは、互いに独立に、式(1)中のRについて定義したとおりであり、式(1)中のRに関する好ましい記載が、式(4)中のRに同様に当てはまる。すなわち、式(4)中のRは、好ましくは(i)炭素数1~12のアルキル基、(ii)炭素数1~12のアルコキシ基、又は、(vii)ハロゲノ基であり、ここで、R及びRの水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい。かかる基としては、より好ましくは、(i)炭素数1~12のアルキル基、該アルキル基の少なくとも1つの水素原子が、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基(好ましくはハロゲン原子)で置換された基、又は、(vii)ハロゲノ基が挙げられ、さらに好ましくは炭素数1~12のアルキル基の少なくとも1つの水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のフルオロアルキル基)が挙げられ、とりわけ好ましくは、炭素数1~12の直鎖状、分枝状又は脂環式のアルキル基の全ての水素原子がハロゲン原子(好ましくはフッ素原子)で置換された基(好ましくは炭素数1~12のパーフルオロアルキル基)が挙げられる。 R 1 in the formula (4) are each independently as defined for R 1 in formula (1), R 1 of the preferred described for R 1 in formula (1) has the formula (4) The same applies to. That is, R 1 in the formula (4) is preferably (i) an alkyl group having 1 to 12 carbon atoms, (ii) an alkoxy group having 1 to 12 carbon atoms, or (vii) a halogeno group, wherein , R 1 and R 2 may be independently substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group. As such a group, more preferably, (i) an alkyl group having 1 to 12 carbon atoms, and at least one hydrogen atom of the alkyl group are independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a carbon number. 1 to 4 alkoxy group, a hydroxyl group, a group substituted with a carboxyl group (preferably a halogen atom), or (vii) a halogeno group, and more preferably at least one alkyl group having 1 to 12 carbon atoms. And a group (preferably a fluoroalkyl group having 1 to 12 carbon atoms) in which one hydrogen atom is replaced by a halogen atom (preferably a fluorine atom), and particularly preferably a straight chain or branched chain having 1 to 12 carbon atoms. Examples thereof include groups (preferably perfluoroalkyl groups having 1 to 12 carbon atoms) in which all hydrogen atoms of a cyclic or alicyclic alkyl group are substituted with halogen atoms (preferably fluorine atoms).
 式(4)中のVは、式(1)中のVについて定義したとおりであり、式(1)中のVに関する好ましい記載が、式(4)中のVに同様に当てはまる。 V in formula (4) is as defined for V in formula (1), and the preferred description regarding V in formula (1) also applies to V in formula (4).
 式(4)中のR19及びR20は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表す。式(4)中のR19及びR20の少なくとも1つが式(1)中のRについて記載した基を表す場合、式(1)中のRに関する好ましい記載が、該R19及びR20の少なくとも1つの基に同様に当てはまる。 R 19 and R 20 in formula (4) each independently represent a hydrogen atom or a group described for R 2 in formula (1). When at least one of R 19 and R 20 in the formula (4) represents the group described for R 2 in the formula (1), preferable description for R 2 in the formula (1) is R 19 and R 20. The same applies to at least one group of
 式(4)中のR19、R20及びVは、好ましい一態様において、Vが単結合を表し、かつ、R19及びR20の少なくとも1つが式(1)中のRについて記載した基を表すか、又は、Vが炭素数1~12の直鎖状、分枝状若しくは脂環式のアルキレン基(より好ましくは炭素数1~12のフルオロアルキレン基、さらに好ましくは炭素数1~12のパーフルオロアルキレン基、とりわけ好ましくはジフルオロメチルメチレン基)を表し、R19及びR20が水素原子を表す。 R 19 , R 20 and V in formula (4) are, in one preferred embodiment, V represents a single bond, and at least one of R 19 and R 20 is the group described for R 2 in formula (1). Or V is a linear, branched or alicyclic alkylene group having 1 to 12 carbon atoms (more preferably a fluoroalkylene group having 1 to 12 carbon atoms, further preferably 1 to 12 carbon atoms). Of the above, particularly preferably a difluoromethylmethylene group), and R 19 and R 20 each represent a hydrogen atom.
 構成単位(2)中のXは、2価の有機基を表し、好ましくは炭素数4~40の2価の有機基、より好ましくは環状構造を有する炭素数4~40の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。本発明の一実施形態において、ポリアミドイミド系樹脂に含まれる構成単位(2)は、Xとして1種類の有機基を含んでいてもよいし、2種類以上の有機基を含んでいてもよい。 X in the structural unit (2) represents a divalent organic group, preferably a C4-40 divalent organic group, and more preferably a C4-40 divalent organic group having a cyclic structure. Represents. Examples of the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure. The organic group, the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, the carbon number of the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably Is 1 to 8. In one embodiment of the present invention, the structural unit (2) contained in the polyamide-imide resin may contain one type of organic group as X, or may contain two or more types of organic groups.
 本発明の好ましい一態様において、式(2)で表される構成単位は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、Xとして、式(1X): In a preferred embodiment of the present invention, the constitutional unit represented by the formula (2) is represented by the formula (1X) as X from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film:
Figure JPOXMLDOC01-appb-C000020
[式(1X)中、R、q及びVは、それぞれ、式(1)中のR、q及びVについて定義したとおりであり、*は結合手を表す]
で表される2価の有機基を含む。構成単位(2)が、Xとして式(1X)で表される2価の有機基を含む場合、構成単位(2)は、Xとして、式(1X)で表される1種類又は2種類以上の2価の有機基を含んでよい。構成単位(2)は、Xとして、式(1X)で表される2価の有機基の他に、式(1X)に該当しない2価の有機基を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000020
[In the formula (1X), R 2 , q and V are as defined for R 2 , q and V in the formula (1), respectively, and * represents a bond]
Including a divalent organic group represented by. When the structural unit (2) contains a divalent organic group represented by the formula (1X) as X, the structural unit (2) may be one type or two or more types represented by the formula (1X) as X. The divalent organic group may be included. The structural unit (2) may contain, as X, a divalent organic group which does not correspond to the formula (1X), in addition to the divalent organic group represented by the formula (1X).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂において、構成単位(2)がXとして、式(1X)で表される2価の有機基を含む場合、ポリアミドイミド系樹脂に含まれる構成単位(2)を100モル%としたときに、式(2)中のXが式(1X)で表される2価の有機基である構成単位の割合は、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(2)の全構成単位において、Xが式(1X)で表される2価の有機基であってもよい。なお、構成単位(2)、及び、Xが式(1X)で表される構成単位(2)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In the polyamide-imide-based resin contained in the optical film of the present invention, when the structural unit (2) has a divalent organic group represented by the formula (1X) as X, the structural unit ( When 2) is set to 100 mol %, the ratio of the constitutional unit in which X in the formula (2) is a divalent organic group represented by the formula (1X) improves the elastic modulus and surface hardness of the optical film. From the viewpoint of easy control, it is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and in all the structural units of the structural unit (2), X is the formula (1X). It may be a divalent organic group represented by. The content of the structural unit (2) and the structural unit (2) in which X is represented by the formula (1X) can be measured, for example, by 1 H-NMR, or from the charging ratio of raw materials. It can also be calculated.
 式(1X)中のR、q及びVは、互いに独立に、式(1)中のR、q及びVについて定義したとおりであり、式(1)中のR、q及びVに関する好ましい記載が、式(1X)中のR、q及びVに同様に当てはまる。 R 2 , q and V in formula (1X) are, independently of one another, as defined for R 2 , q and V in formula (1), and relate to R 2 , q and V in formula (1). The preferred statements likewise apply to R 2 , q and V in formula (1X).
 式(2)で表される構成単位中のYは、4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。本発明の一実施形態において、構成単位(2)は、Yとして、1種類の4価の有機基を有していてもよいし、2種類以上の4価の有機基を有していてもよい。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;該式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が例示される。 Y in the structural unit represented by the formula (2) represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 to 4 carbon atoms having a cyclic structure. 40 tetravalent organic groups are represented. Examples of the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure. The organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, a hydrocarbon group and a fluorine-substituted hydrocarbon group The carbon number is preferably 1-8. In one embodiment of the present invention, the structural unit (2) may have, as Y, one type of tetravalent organic group, or may have two or more types of tetravalent organic groups. Good. As Y, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) and equation A group represented by (29); a group in which a hydrogen atom in the group represented by formula (20) to formula (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and 4 A chain hydrocarbon group having a valence of 6 or less is exemplified.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(20)~式(29)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。Arが複数存在する場合、Arは互いに同一であってもよいし、異なっていてもよい。
In formulas (20) to (29),
* Represents a bond,
W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Alternatively, it represents —Ar—SO 2 —Ar—. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be replaced by a fluorine atom, and a specific example thereof is a phenylene group. When there are a plurality of Ars, Ars may be the same or different from each other.
 式(20)~式(29)で表される基の中でも、光学フィルムの弾性率、表面硬度及び耐屈曲性の観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、光学フィルムの弾性率、表面硬度及び耐屈曲性を高めやすく、黄色度(以下、YI値とも称する)を低減しやすい観点から、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることがより好ましく、単結合、-C(CH-又は-C(CF-であることがさらに好ましい。 Among the groups represented by the formulas (20) to (29), they are represented by the formula (26), the formula (28) or the formula (29) from the viewpoint of the elastic modulus, surface hardness and bending resistance of the optical film. Group represented by formula (26) is more preferable. W 1 is a single bond, —O—, independently of each other from the viewpoint of easily increasing the elastic modulus, surface hardness and bending resistance of the optical film, and easily reducing the yellowness (hereinafter also referred to as YI value). -CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 - or -C (CF 3) 2 - is preferably a single bond, -O- , —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —C(CH 3 ) 2 — or More preferably, it is —C(CF 3 ) 2 —.
 本発明の好ましい一実施形態において、式(2)で表される構成単位は、Yとして、式(6): In a preferred embodiment of the present invention, the structural unit represented by formula (2) is represented by formula (6):
Figure JPOXMLDOC01-appb-C000022
[式(6)中、R21~R28は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R21~R28に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
*は結合手を表す]
で表される4価の有機基を含む。構成単位(2)がYとして式(6)で表される4価の有機基を含む場合、光学フィルムの弾性率及び表面硬度を向上させやすい。また、この場合、ポリアミドイミド系樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。さらに、光学フィルムの光学特性を向上させやすい。
Figure JPOXMLDOC01-appb-C000022
[In the formula (6), R 21 to R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The hydrogen atoms contained in R 21 to R 28 may be independently substituted with a halogen atom,
* Represents a bond]
Including a tetravalent organic group represented by. When the structural unit (2) contains, as Y, a tetravalent organic group represented by the formula (6), it is easy to improve the elastic modulus and the surface hardness of the optical film. Further, in this case, the solubility of the polyamide-imide resin in the solvent is increased, the viscosity of the varnish containing the resin is easily reduced, and the processability of the optical film is easily improved. Furthermore, it is easy to improve the optical characteristics of the optical film.
 式(6)において、R21、R22、R23、R24、R25、R26、R27及びR28は、互いに独立に、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~12のアルキル基、炭素数1~12のアルコキシ基及び炭素数6~12のアリール基としては、式(1)中のR及びRにおける炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。R21~R28は、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R21~R28に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。R21~R28は、互いに独立に、光学フィルムの弾性率、表面硬度を向上させやく、また、表面硬度、耐屈曲性及び透明性を向上させやすい観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、よりさらに好ましくはR21、R22、R23、R26、R27及びR28が水素原子、R24及びR25が水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、とりわけ好ましくはR24及びR25がメチル基又はトリフルオロメチル基である。 In the formula (6), R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a carbon number 1 It represents an alkoxy group having 12 to 12 or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms and the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 12 carbon atoms in R 1 and R 2 in the formula (1), Examples of the alkoxy group having 1 to 12 carbon atoms or the aryl group having 6 to 12 carbon atoms include those exemplified above. R 21 to R 28 each independently represent, preferably, a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein R 21 to R 28 The hydrogen atoms contained in R 28 may be independently substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. R 21 to R 28 are, independently of each other, more preferably a hydrogen atom or a methyl group from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, and easily improving the surface hardness, flex resistance and transparency. , A fluoro group, a chloro group or a trifluoromethyl group, and more preferably R 21 , R 22 , R 23 , R 26 , R 27 and R 28 are hydrogen atoms, and R 24 and R 25 are hydrogen atoms and a methyl group. , A fluoro group, a chloro group or a trifluoromethyl group, and particularly preferably R 24 and R 25 are a methyl group or a trifluoromethyl group.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂に含まれる構成単位(2)が、Yとして、式(6)で表される4価の有機基を含む本発明の好ましい一態様において、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、ポリアミドイミド系樹脂に含まれる構成単位(2)の合計を100モル%としたときに、式(2)中のYが式(6)で表される4価の有機基である構成単位の割合は、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(2)の全構成単位において、Yが式(6)で表される4価の有機基であってもよい。 In a preferred embodiment of the present invention, the structural unit (2) contained in the polyamide-imide resin contained in the optical film of the present invention contains, as Y, a tetravalent organic group represented by the formula (6). From the viewpoint of easily improving the elastic modulus and the surface hardness of Y, Y in the formula (2) is represented by the formula (6) when the total of the structural units (2) contained in the polyamide-imide resin is 100 mol %. The ratio of the structural unit which is a tetravalent organic group is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and the total amount of the structural unit (2) is In the structural unit, Y may be a tetravalent organic group represented by the formula (6).
 本発明の好ましい一実施形態において、式(2)で表される構成単位は、Yとして、式(6a): In a preferred embodiment of the present invention, the structural unit represented by formula (2) is represented by formula (6a) as Y:
Figure JPOXMLDOC01-appb-C000023
で表される4価の有機基を含む。なお、式(6a)で表される4価の有機基は、式(6)中のR24及びR25がトリフルフルオロメチル基であり、R21、R22、R23、R26、R27及びR28が水素原子である基に相当する。構成単位(2)がYとして式(6a)で表される4価の有機基を含む場合、光学フィルムの弾性率及び表面硬度を向上させやすい。また、この場合、ポリアミドイミド系樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。さらに、光学フィルムの光学特性を向上させやすい。
Figure JPOXMLDOC01-appb-C000023
Including a tetravalent organic group represented by. In addition, in the tetravalent organic group represented by the formula (6a), R 24 and R 25 in the formula (6) are triflufluoromethyl groups, and R 21 , R 22 , R 23 , R 26 , and R 27 are And R 28 corresponds to a group in which a hydrogen atom is present. When the structural unit (2) contains, as Y, a tetravalent organic group represented by the formula (6a), it is easy to improve the elastic modulus and surface hardness of the optical film. Further, in this case, the solubility of the polyamide-imide resin in the solvent is increased, the viscosity of the varnish containing the resin is easily reduced, and the processability of the optical film is easily improved. Furthermore, it is easy to improve the optical characteristics of the optical film.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂に含まれる構成単位(2)が、Yとして、式(6a)で表される4価の有機基を含む本発明の好ましい一態様において、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、ポリアミドイミド系樹脂に含まれる構成単位(2)の合計を100モル%としたときに、式(2)中のYが式(6a)で表される4価の有機基である構成単位の割合は、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%であり、構成単位(2)の全構成単位において、Yが式(6a)で表される4価の有機基であってもよい。 In a preferred embodiment of the present invention, the structural unit (2) contained in the polyamide-imide resin contained in the optical film of the present invention contains, as Y, a tetravalent organic group represented by the formula (6a). From the viewpoint of easily improving the elastic modulus and surface hardness of Y, Y in the formula (2) is represented by the formula (6a) when the total of the structural units (2) contained in the polyamide-imide resin is 100 mol %. The ratio of the structural unit which is a tetravalent organic group is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, further preferably 90 to 100 mol %, and the total amount of the structural unit (2) is In the structural unit, Y may be a tetravalent organic group represented by the formula (6a).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂は、構成単位(1)及び構成単位(2)の他に、式(1)に該当しない式(3): The polyamide-imide resin contained in the optical film of the present invention includes the structural unit (1) and the structural unit (2), as well as the formula (3) not corresponding to the formula (1):
Figure JPOXMLDOC01-appb-C000024
[式(3)中のZは、2価の有機基であり、X’は2価の有機基を表す]
で表される構成単位を含んでいてもよい。ポリアミドイミド系樹脂が構成単位(1)及び構成単位(2)の他に、式(3)で表される構成単位を含む場合、光学フィルムの耐屈曲性と表面硬度を向上させやすい。
Figure JPOXMLDOC01-appb-C000024
[Z in Formula (3) is a divalent organic group, and X'represents a divalent organic group]
The constitutional unit represented by may be included. When the polyamide-imide resin contains the structural unit represented by the formula (3) in addition to the structural unit (1) and the structural unit (2), it is easy to improve the bending resistance and surface hardness of the optical film.
 式(3)中のZは、例えば炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい環状構造(好ましくは脂環構造、芳香環構造、ヘテロ環構造)を含む炭素数4~40の2価の有機基が挙げられる。環状構造を含む炭素数4~40の2価の有機基としては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基、及び、チオフェン環構造を有する基が挙げられる。なお、式(3)で表される構成単位は、少なくともZの部分において、式(1)で表される構成単位と相違し、式(1)で表される構成単位には該当しない構成単位である。 Z in the formula (3) is, for example, a cyclic structure (preferably an alicyclic structure, an aromatic group) which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. And a divalent organic group having 4 to 40 carbon atoms including a ring structure or a heterocyclic structure). Examples of the divalent organic group having 4 to 40 carbon atoms including a cyclic structure include the above formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), Among the bonds of the groups represented by the formula (26), the formula (27), the formula (28) and the formula (29), two groups which are not adjacent to each other are replaced by hydrogen atoms, and a group having a thiophene ring structure is Can be mentioned. The constitutional unit represented by the formula (3) is different from the constitutional unit represented by the formula (1) at least in the portion Z, and does not correspond to the constitutional unit represented by the formula (1). Is.
 式(3)中のZとしての、環状構造を含む炭素数4~40の2価の有機基としては、式(20’)、式(21’)、式(22’)、式(23’)、式(24’)、式(25’)、式(26’)、式(27’)、式(28’)及び式(29’): Examples of the divalent organic group containing a cyclic structure and having 4 to 40 carbon atoms as Z in the formula (3) include formula (20′), formula (21′), formula (22′) and formula (23′). ), formula (24′), formula (25′), formula (26′), formula (27′), formula (28′) and formula (29′):
Figure JPOXMLDOC01-appb-C000025
[式(20’)~式(29’)中、W及び*は、式(20)~式(29)において定義する通りである]
で表される2価の有機基がより好ましい。
Figure JPOXMLDOC01-appb-C000025
[In the formulas (20′) to (29′), W 1 and * are as defined in the formulas (20) to (29)]
A divalent organic group represented by is more preferable.
 ポリアミドイミド系樹脂は、式(1)で表される構成単位に加えて、及び/又は、式(3)中のZが上記の式(20’)~式(29’)のいずれかで表される構成単位を有する場合、中でも式(3)中のZが後述する式(7)で表される構成単位を有する場合は、該構成単位に加えて、次の式(d1): In the polyamide-imide resin, in addition to the constitutional unit represented by the formula (1), and/or Z in the formula (3) is represented by any one of the above formulas (20′) to (29′). In the case where Z has a structural unit represented by the following formula (7), in addition to the structural unit, the following formula (d1):
Figure JPOXMLDOC01-appb-C000026
[式(d1)中、Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、Rは、R又は-C(=O)-*を表し、*は結合手を表す]
で表されるカルボン酸由来の構成単位をさらに有することが、ワニスの成膜性を高めやすく、光学フィルムの均一性を得やすい観点から好ましい。
Figure JPOXMLDOC01-appb-C000026
[In the formula (d1), R e independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and R f is , Re or -C(=O)-*, where * represents a bond]
It is preferable to further include a structural unit derived from a carboxylic acid, from the viewpoints of easily improving the film forming property of the varnish and easily obtaining the uniformity of the optical film.
 Rにおいて、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(1)中のR及びRにおける炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。構成単位(d1)としては、具体的には、R及びRがいずれも水素原子である構成単位(ジカルボン酸化合物に由来する構成単位)、Rがいずれも水素原子であり、Rが-C(=O)-*を表す構成単位(トリカルボン酸化合物に由来する構成単位)等が挙げられる。 In R e , the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the aryl group having 6 to 12 carbon atoms are respectively represented by R 1 and R 2 in the formula (1) having 1 carbon atom. Examples of the alkyl group having 12 to 12, the alkoxy group having 1 to 12 carbons, and the aryl group having 6 to 12 carbons include those exemplified above. As the structural unit (d1), specifically, a structural unit in which R e and R f are both hydrogen atoms (a structural unit derived from a dicarboxylic acid compound), R e is both a hydrogen atom, and R f A structural unit (a structural unit derived from a tricarboxylic acid compound) and the like represent —C(═O)-*.
 式(3)で表される構成単位は、Zとして、式(7a): The constitutional unit represented by the formula (3) is represented by the formula (7a) as Z:
Figure JPOXMLDOC01-appb-C000027
[式(7a)中、R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表し、A、s及び*は式(7)中のA、s及び*と同じであり、t及びuは互いに独立に0~4の整数であり、但し、sが1~4の整数である]
で表される2価の有機基を含むことが好ましく、式(7):
Figure JPOXMLDOC01-appb-C000027
[In the formula (7a), R g and R h each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. , A, s and * are the same as A, s and * in the formula (7), t and u are each independently an integer of 0 to 4, provided that s is an integer of 1 to 4]
It is preferable that the divalent organic group represented by the formula (7):
Figure JPOXMLDOC01-appb-C000028
[式(7)中、R31~R38は、互いに独立に、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~12のアリール基を表し、
 Aは、互いに独立に、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R39)-を表し、R39は水素原子、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
 sは0~4の整数であり、
 *は結合手を表す]
で表される2価の有機基を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000028
[In the formula (7), R 31 to R 38 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. ,
A is, independently of one another, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, Represents —SO 2 —, —S—, —CO— or —N(R 39 )—, wherein R 39 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom;
s is an integer from 0 to 4,
* Represents a bond]
It is more preferable to contain a divalent organic group represented by
 式(7a)において、各ベンゼン環の結合手は、-A-を基準に、オルト位、メタ位又はパラ位のいずれに結合していてもよく、好ましくはメタ位又はパラ位に結合していてもよい。式(7a)中のR及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表す。式(7a)中のt及びuは0であることが好ましいが、t及び/又はuが1以上である場合、R及びRは、好ましくは炭素数1~6のアルキル基を表し、より好ましくは炭素数1~3のアルキル基を表す。式(7a)中のR及びRにおいて、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(7)におけるハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として例示のものが挙げられる。 In the formula (7a), the bond of each benzene ring may be bonded to any of the ortho position, the meta position or the para position with respect to -A-, preferably the meta position or the para position. May be. R g and R h in formula (7a) each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. In the formula (7a), t and u are preferably 0, but when t and/or u is 1 or more, R g and R h preferably represent an alkyl group having 1 to 6 carbon atoms, More preferably, it represents an alkyl group having 1 to 3 carbon atoms. In R g and R h in the formula (7a), a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are respectively represented by the formula (7 Examples of the halogen atom, the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, or the aryl group having 6 to 12 carbon atoms in ).
 式(7a)中のt及びuは、互いに独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、さらにより好ましくは0である。 In the formula (7a), t and u are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 式(7)及び式(7a)において、Aは、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R39)-を表し、光学フィルムの耐屈曲性の観点から、好ましくは-O-又は-S-を表し、より好ましくは-O-を表す。
 式(7)において、R31、R32、R33、R34、R35、R36、R37及びR38は、互いに独立に、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~12のアリール基を表す。炭素数1~12のアルキル基、炭素数1~12のアルコキシ基及び炭素数6~12のアリール基としては、式(1)中のR及びRにおける炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。光学フィルムの表面硬度及び柔軟性の観点から、R31~R38は、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、さらに好ましくは水素原子を表す。
 R39は水素原子、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表す。炭素数1~12のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基等が挙げられ、これらはハロゲン原子で置換されていてもよい。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。ポリアミドイミド系樹脂において、式(3)で表される構成単位は、Zとして、式(7)又は式(7a)で表される1種類の2価の有機基を含んでいてもよいし、式(7)又は式(7a)で表される2種類以上の有機基を含んでいてもよい。
In the formula (7) and (7a), A is, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 —, —SO 2 —, —S—, —CO— or —N(R 39 )—, and from the viewpoint of flex resistance of the optical film, preferably —O— or —S—. Represents, more preferably -O-.
In formula (7), R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37, and R 38 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a carbon number 1 It represents an alkoxy group having 12 to 12 or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms and the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 12 carbon atoms in R 1 and R 2 in the formula (1), Examples of the alkoxy group having 1 to 12 carbon atoms or the aryl group having 6 to 12 carbon atoms include those exemplified above. From the viewpoint of surface hardness and flexibility of the optical film, R 31 to R 38 each independently represent preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or 1 to 3 carbon atoms. Represents an alkyl group, more preferably represents a hydrogen atom.
R 39 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and 2-methyl- group. Examples thereof include butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. It may be substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. In the polyamide-imide resin, the structural unit represented by the formula (3) may contain, as Z, one kind of divalent organic group represented by the formula (7) or the formula (7a), Two or more types of organic groups represented by formula (7) or formula (7a) may be included.
 式(7)及び式(7a)において、sは、0~4の範囲の整数であり、sがこの範囲内であると、光学フィルムの耐屈曲性や弾性率が良好になりやすい。また、式(7)及び式(7a)において、sは、好ましくは0~3の範囲の整数、より好ましくは0~2、さらに好ましくは0又は1、とりわけ好ましくは0である。sがこの範囲内であると、光学フィルムの耐屈曲性や弾性率を向上させやすい。式(7)中のX’としては、構成単位(2)中のXについて上記に記載した基が挙げられる。 In the formulas (7) and (7a), s is an integer in the range of 0 to 4, and when s is in this range, the bending resistance and elastic modulus of the optical film tend to be good. In the formulas (7) and (7a), s is preferably an integer in the range of 0 to 3, more preferably 0 to 2, even more preferably 0 or 1, and most preferably 0. When s is within this range, it is easy to improve the bending resistance and elastic modulus of the optical film. Examples of X′ in the formula (7) include the groups described above for X in the structural unit (2).
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂において、式(3)で表される構成単位は、Zとして、式(3’): In the polyamide-imide resin included in the optical film of the present invention, the structural unit represented by the formula (3) is represented by the formula (3′):
Figure JPOXMLDOC01-appb-C000029
で表される構成単位を有してよい。この場合、光学フィルムの表面硬度及び耐屈曲性を向上させやすく、YI値を低減しやすい。
Figure JPOXMLDOC01-appb-C000029
It may have a structural unit represented by. In this case, the surface hardness and flex resistance of the optical film are easily improved, and the YI value is easily reduced.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1)及び構成単位(2)の他に、式(3)で表される構成単位(以下において、「構成単位(3)」とも称する)を含む場合、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、ポリアミドイミド系樹脂に含まれる構成単位(1)、構成単位(2)及び構成単位(3)の合計を100モル%としたときに、構成単位(1)及び構成単位(2)の合計の割合は、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上、さらにより好ましくは85モル%以上、とりわけ好ましくは90モル%以上である。構成単位(1)及び構成単位(2)の合計の上記割合の上限は100モル%未満であればよい。なお、構成単位(1)、構成単位(2)又は構成単位(3)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 The polyamide-imide-based resin contained in the optical film of the present invention includes a structural unit (1) and a structural unit (2) as well as a structural unit represented by the formula (3) (hereinafter, “structural unit (3)”). Also referred to as “)”, the total of the structural unit (1), the structural unit (2) and the structural unit (3) contained in the polyamide-imide resin is 100, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film. When it is defined as mol %, the total ratio of the structural unit (1) and the structural unit (2) is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, even more preferably Is 85 mol% or more, particularly preferably 90 mol% or more. The upper limit of the ratio of the total of the structural unit (1) and the structural unit (2) may be less than 100 mol %. The content of the structural unit (1), the structural unit (2) or the structural unit (3) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の光学フィルムに含まれるポリアミドイミド系樹脂が、構成単位(1)及び構成単位(2)の他に、式(3)で表される構成単位(以下において、「構成単位(3)」とも称する)を含む場合、光学フィルムの弾性率及び表面硬度を向上させやすい観点から、ポリアミドイミド系樹脂に含まれる構成単位(1)及び構成単位(3)の合計を100モル%としたときに、構成単位(1)の割合は、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上である。構成単位(1)の上記割合の上限は100モル%未満であればよい。構成単位(1)、構成単位(2)又は構成単位(3)の含有量は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 The polyamide-imide-based resin contained in the optical film of the present invention includes the structural unit (1) and the structural unit (2) as well as the structural unit represented by the formula (3) (hereinafter, “structural unit (3)”). Also referred to as “)”, from the viewpoint of easily improving the elastic modulus and surface hardness of the optical film, when the total of the structural unit (1) and the structural unit (3) contained in the polyamide-imide resin is 100 mol %. The proportion of the structural unit (1) is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. The upper limit of the ratio of the structural unit (1) may be less than 100 mol%. The content of the structural unit (1), the structural unit (2) or the structural unit (3) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 ポリアミドイミド系樹脂は、式(1)及び式(2)で表される構成単位の他に、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含んでいてもよい。 The polyamide-imide resin contains a constitutional unit represented by the formula (30) and/or a constitutional unit represented by the formula (31) in addition to the constitutional units represented by the formulas (1) and (2). You can leave.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(30)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(2)中のYとして記載した基が挙げられる。本発明の一実施形態において、ポリアミドイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であってもよいし、異なっていてもよい。 In formula (30), Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of Y 1 include the groups described as Y in the formula (2). In one embodiment of the present invention, the polyamide-imide-based resin may include a plurality of types of Y 1 , and the plurality of types of Y 1 may be the same as or different from each other.
 式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(2)中のYとして記載した基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施形態において、ポリアミドイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であってもよいし、異なっていてもよい。 In formula (31), Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of Y 2 include a group in which any one of the bonds of the group described as Y in the formula (2) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. In one embodiment of the present invention, the polyamide-imide-based resin may include a plurality of types of Y 2 , and the plurality of types of Y 2 may be the same as or different from each other.
 式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。X及びXとしては、式(2)中のXとして記載した基が例示される。 In formulas (30) and (31), X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group in which a hydrogen atom in the organic group is substituted or a fluorine-substituted hydrocarbon group. Is an organic group which may be substituted with. Examples of X 1 and X 2 include the groups described as X in the formula (2).
 本発明の一実施形態において、ポリアミドイミド系樹脂は、式(1)で表される構成単位、式(2)で表される構成単位、並びに、場合により式(3)で表される構成単位、式(30)で表される構成単位、及び/又は、式(31)で表される構成単位からなる。光学フィルムの弾性率、光学特性、表面硬度及び耐屈曲性を向上させやすい観点から、上記ポリアミドイミド系樹脂において、式(1)及び式(2)で表される構成単位は、式(1)及び式(2)、並びに場合により式(3)、式(30)及び式(31)で表される全構成単位に基づいて、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。なお、ポリアミドイミド系樹脂において、式(1)及び式(2)で表される構成単位は、式(1)及び式(2)、並びに場合により式(3)、式(30)及び/又は式(31)で表される全構成単位に基づいて、通常100%以下である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, the polyamide-imide resin is a structural unit represented by the formula (1), a structural unit represented by the formula (2), and optionally a structural unit represented by the formula (3). , And/or a structural unit represented by the formula (31). From the viewpoint of easily improving the elastic modulus, optical characteristics, surface hardness and bending resistance of the optical film, in the polyamideimide resin, the constitutional unit represented by the formula (1) and the formula (2) is represented by the formula (1). And based on all the structural units represented by the formula (2), and optionally the formula (3), the formula (30) and the formula (31), preferably 80 mol% or more, more preferably 90 mol% or more, It is preferably 95 mol% or more. In the polyamide-imide resin, the constitutional units represented by the formulas (1) and (2) are represented by the formulas (1) and (2), and optionally the formulas (3), (30) and/or It is usually 100% or less based on all the structural units represented by formula (31). The above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明の一実施形態において、光学フィルム中におけるポリアミドイミド系樹脂の含有量は、光学フィルム100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上であり、好ましくは99.5質量部以下、より好ましくは95質量部以下である。ポリアミドイミド系樹脂の含有量が上記範囲内であると、光学フィルムの光学特性、弾性率及び表面硬度を向上させやすい。 In one embodiment of the present invention, the content of the polyamideimide resin in the optical film is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 50 parts by mass with respect to 100 parts by mass of the optical film. It is at least 9 parts by mass, preferably at most 99.5 parts by mass, more preferably at most 95 parts by mass. When the content of the polyamide-imide resin is within the above range, the optical characteristics, elastic modulus and surface hardness of the optical film can be easily improved.
 ポリアミドイミド系樹脂の重量平均分子量(Mw)は、光学フィルムの弾性率、表面硬度及び耐屈曲性を高めやすい観点から、標準ポリスチレン換算で、好ましくは200,000以上、より好ましくは250,000以上、さらに好ましくは270,000以上、とりわけ好ましくは300,000以上である。また、ポリアミドイミド系樹脂の溶媒に対する溶解性を向上しやすいと共に、光学フィルムの延伸性及び加工性を向上させやすい観点から、該樹脂の重量平均分子量は、好ましくは1,000,000以下、より好ましくは800,000以下、さらに好ましくは700,000以下、とりわけ好ましくは600,000以下である。重量平均分子量は、例えばGPC測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により算出してよい。 The weight average molecular weight (Mw) of the polyamide-imide resin is preferably 200,000 or more, more preferably 250,000 or more in terms of standard polystyrene, from the viewpoint of easily increasing the elastic modulus, surface hardness and flex resistance of the optical film. , More preferably 270,000 or more, particularly preferably 300,000 or more. In addition, the weight average molecular weight of the resin is preferably 1,000,000 or less, from the viewpoint of easily improving the solubility of the polyamideimide resin in a solvent and easily improving the stretchability and processability of the optical film. It is preferably 800,000 or less, more preferably 700,000 or less, particularly preferably 600,000 or less. The weight average molecular weight can be determined by, for example, GPC measurement and standard polystyrene conversion, and may be calculated by the method described in Examples, for example.
 本発明の光学フィルムの弾性率は、光学フィルムの傷付き等を防止しやすい観点から、好ましくは4.5GPa以上、より好ましくは4.8GPa以上、さらに好ましくは5.0GPa以上であり、通常100GPa以下である。なお、弾性率は、引張試験機(チャック間距離50mm、引張速度10mm/分)を用いて測定でき、例えば実施例に記載の方法により測定できる。 The elastic modulus of the optical film of the present invention is preferably 4.5 GPa or more, more preferably 4.8 GPa or more, further preferably 5.0 GPa or more, and usually 100 GPa, from the viewpoint of easily preventing scratches and the like of the optical film. It is as follows. The elastic modulus can be measured by using a tensile tester (distance between chucks: 50 mm, pulling speed: 10 mm/min), and can be measured, for example, by the method described in Examples.
 本発明の光学フィルムの全光線透過率(及び/又は300~800nmの光に対する光線透過率)は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは88%以上、さらにより好ましくは89%以上、とりわけ好ましくは90%以上、とりわけより好ましくは91%以上である。全光線透過率が上記の下限以上であると、光学フィルムを、特に前面板として、表示装置に組み込んだ際に視認性を高めやすい。本発明の光学フィルムは通常、高い全光線透過率を示すので、例えば、透過率の低いフィルムを用いた場合と比べて、一定の明るさを得るために必要な表示素子等の発光強度を抑えることが可能となる。このため、消費電力を削減することができる。例えば、本発明の光学フィルムを表示装置に組みこむ場合、バックライトの光量を減らしても明るい表示を得られる傾向があり、エネルギーの節約に貢献できる。全光線透過率の上限は、通常100%以下である。従来、光学フィルムの弾性率を高めるために、例えば光学フィルムを製造時に200℃を越えるような高温での加熱が行われる場合があるが、この場合、光学フィルムの光線透過率が低下し、視認性が悪くなりやすい。本発明の光学フィルムは、200℃を越えるような高温で加熱を行わずとも高い弾性率を有するため、全光線透過率の低下を抑制することができる。なお、全光線透過率は、例えばJIS K 7361-1:1997に準拠してヘーズコンピュータを用いて測定できる。全光線透過率は、後述する光学フィルムの厚さの範囲における全光線透過率であってよい。 The total light transmittance (and/or light transmittance for light of 300 to 800 nm) of the optical film of the present invention is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more, even more preferably It is 89% or more, particularly preferably 90% or more, and particularly preferably 91% or more. When the total light transmittance is not less than the above lower limit, it is easy to improve the visibility when the optical film is incorporated into a display device, particularly as a front plate. Since the optical film of the present invention usually exhibits a high total light transmittance, for example, as compared with the case of using a film having a low transmittance, the emission intensity of a display element or the like required to obtain constant brightness is suppressed. It becomes possible. Therefore, power consumption can be reduced. For example, when the optical film of the present invention is incorporated into a display device, bright display tends to be obtained even if the light amount of the backlight is reduced, which can contribute to energy saving. The upper limit of the total light transmittance is usually 100% or less. Conventionally, in order to increase the elastic modulus of an optical film, for example, the optical film may be heated at a high temperature of more than 200° C. during production, but in this case, the light transmittance of the optical film is lowered and It is easy to get worse. Since the optical film of the present invention has a high elastic modulus without being heated at a high temperature exceeding 200° C., it is possible to suppress a decrease in total light transmittance. The total light transmittance can be measured by using a haze computer in accordance with JIS K 7361-1:1997, for example. The total light transmittance may be the total light transmittance in the range of the thickness of the optical film described below.
 本発明の光学フィルムのヘーズは、好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、さらにより好ましくは2.5%以下、とりわけ好ましくは2%以下、とりわけより好ましくは1%以下、とりわけさらに好ましくは0.5%以下、ことさら好ましくは0.2%以下であり、通常0.01%以上である。光学フィルムのヘーズが上記の上限以下であると、光学フィルムを、特に前面板として、表示装置に組み込んだ際に、視認性を高めやすい。なお、ヘーズは、JIS K 7136:2000に準拠してヘーズコンピュータを用いて測定できる。 The haze of the optical film of the present invention is preferably 5% or less, more preferably 4% or less, even more preferably 3% or less, even more preferably 2.5% or less, particularly preferably 2% or less, and particularly preferably It is 1% or less, particularly preferably 0.5% or less, particularly preferably 0.2% or less, and usually 0.01% or more. When the haze of the optical film is equal to or less than the above upper limit, the visibility is likely to be enhanced when the optical film is incorporated into a display device, particularly as a front plate. The haze can be measured using a haze computer according to JIS K 7136:2000.
 本発明の光学フィルムのYI値は、好ましくは3.5以下、より好ましくは3.0以下、さらに好ましくは2.5以下である。光学フィルムのYI値が上記の上限以下であると、透明性が良好となり、表示装置の前面板に使用した場合に、高い視認性に寄与することができる。またYI値は通常-5以上であり、好ましくは-2以上である。なお、YI値は紫外可視近赤外分光光度計を用いて300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X-1.0592Z)/Yの式に基づいて算出できる。なお、本明細書において、光学フィルムが光学特性に優れるとは、光線透過率が高いことを意味する。 The YI value of the optical film of the present invention is preferably 3.5 or less, more preferably 3.0 or less, and further preferably 2.5 or less. When the YI value of the optical film is less than or equal to the above upper limit, the transparency is good, and when used for the front plate of the display device, it is possible to contribute to high visibility. The YI value is usually -5 or more, preferably -2 or more. For the YI value, the transmittance for light of 300 to 800 nm is measured using an ultraviolet-visible near-infrared spectrophotometer, tristimulus values (X, Y, Z) are calculated, and YI=100×(1.2769X− It can be calculated based on the formula 1.0592Z)/Y. In addition, in this specification, that the optical film is excellent in optical characteristics means that the light transmittance is high.
 本発明の光学フィルムの厚さは、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは25μm以上、とりわけ好ましくは30μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、さらにより好ましくは80μm以下、とりわけ好ましくは60μm以下であり、これらの上限と下限の組合せであってよい。光学フィルムの厚さが上記の範囲内であると、光学フィルムの弾性率をより高めやすい。なお、光学フィルムの厚さは、マイクロメーターを用いて測定でき、例えば実施例に記載の方法により測定できる。 The thickness of the optical film of the present invention is preferably 10 μm or more, more preferably 20 μm or more, further preferably 25 μm or more, particularly preferably 30 μm or more, preferably 200 μm or less, more preferably 100 μm or less, even more preferably It is 80 μm or less, particularly preferably 60 μm or less, and a combination of these upper and lower limits may be used. When the thickness of the optical film is within the above range, the elastic modulus of the optical film can be easily increased. The thickness of the optical film can be measured using a micrometer, for example, the method described in the examples.
 本発明の光学フィルムにおける、耐屈曲性試験における屈曲回数(屈曲半径R=1mm)は、好ましくは90,000回以上、より好ましくは120,000回以上、さらに好ましくは150,000回以上、とりわけ好ましくは180,000回以上である。屈曲回数が上記の下限以上であると、フレキシブル表示装置等の前面板材料として十分な耐屈曲性を有する。なお、耐屈曲性試験における屈曲回数は、折り曲げ試験機を用いて、屈曲半径(曲率半径)Rが1mmの条件で、光学フィルムの繰り返し折り曲げを行い、該フィルムに割れが生じる時点までの往復の折り曲げ回数(1往復を1回とする)を示す。 The number of times of bending in the bending resistance test (bending radius R=1 mm) in the optical film of the present invention is preferably 90,000 times or more, more preferably 120,000 times or more, further preferably 150,000 times or more, and particularly It is preferably 180,000 times or more. When the number of times of bending is not less than the above lower limit, it has sufficient bending resistance as a front plate material for flexible display devices and the like. In addition, the number of times of bending in the bending resistance test is performed by repeatedly bending the optical film using a bending tester under the condition that the bending radius (curvature radius) R is 1 mm, and making a reciprocating motion until the film is cracked. The number of times of bending (one reciprocation is once) is shown.
 本発明の光学フィルムの少なくとも一方の面の鉛筆硬度は、好ましくはH以上、より好ましくは2H以上である。光学フィルムの少なくとも一方の面の鉛筆硬度が上記の硬度以上である場合、光学フィルムの該表面における傷等を防止しやすい。なお、鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定でき、例えば実施例に記載の方法により測定できる。 The pencil hardness of at least one surface of the optical film of the present invention is preferably H or higher, more preferably 2H or higher. When the pencil hardness of at least one surface of the optical film is not less than the above hardness, it is easy to prevent scratches and the like on the surface of the optical film. The pencil hardness can be measured according to JIS K 5600-5-4:1999, and can be measured, for example, by the method described in the examples.
 ポリアミドイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは96%以上であり、通常100%以下である。光学フィルムの光学特性を向上させやすい観点から、イミド化率が上記の下限以上であることが好ましい。イミド化率は、ポリアミドイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリアミドイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリアミドイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリアミドイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリアミドイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。 The imidization ratio of the polyamide-imide resin is preferably 90% or higher, more preferably 93% or higher, even more preferably 96% or higher, and usually 100% or lower. From the viewpoint of easily improving the optical characteristics of the optical film, it is preferable that the imidization ratio is not less than the above lower limit. The imidization ratio indicates the ratio of the molar amount of imide bonds in the polyamideimide-based resin to the double value of the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyamideimide-based resin. When the polyamide-imide-based resin contains a tricarboxylic acid compound, the value of twice the molar amount of the constitutional unit derived from the tetracarboxylic acid compound in the polyamide-imide-based resin and the constitutional unit derived from the tricarboxylic acid compound The ratio of the molar amount of the imide bond in the polyamide-imide resin to the total of the molar amount is shown. The imidization ratio can be determined by IR method, NMR method, or the like.
 本発明は、上記ポリアミドイミド系樹脂を含む光学フィルムに加えて、該光学フィルムを製造するに適した上記のポリアミドイミド系樹脂も提供する。かかるポリアミドイミド系樹脂は、例えば、式(1): The present invention provides, in addition to the optical film containing the above polyamideimide resin, the above polyamideimide resin suitable for producing the optical film. Such a polyamide-imide resin has, for example, the formula (1):
Figure JPOXMLDOC01-appb-C000031
[式(1)中、
 R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボキシル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
 Vは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
 mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
で表される構成単位、及び、式(2):
Figure JPOXMLDOC01-appb-C000031
[In the formula (1),
R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. It represents a carboxyl group of 1 to 12, an oxycarbonyl group of 1 to 12 carbon atoms or a halogeno group, wherein the hydrogen atoms contained in R 1 and R 2 may be independently substituted with a halogen atom. ,
V is a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein the hydrogen atoms contained in the hydrocarbon group are halogen atoms independently of each other. R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
And a structural unit represented by the formula (2):
Figure JPOXMLDOC01-appb-C000032
[式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
で表される構成単位を有するポリアミドイミド系樹脂であってよい。該ポリアミドイミド系樹脂中の各記号の種類及び構成単位の割合の例示及び好ましい態様等に関しては、本発明の光学フィルムに含まれるポリアミドイミド系樹脂に関する上記の記載が同様に当てはまる。
Figure JPOXMLDOC01-appb-C000032
[In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
A polyamide-imide resin having a structural unit represented by The above description regarding the polyamide-imide resin contained in the optical film of the present invention similarly applies to the examples of the types of respective symbols in the polyamide-imide resin and the proportions of the constituent units, and preferred embodiments.
 ポリアミドイミド系樹脂におけるハロゲン原子の含有量は、ポリアミドイミド系樹脂の質量を基準として、好ましくは1~60質量%、より好ましくは5~55質量%、さらに好ましくは10~50質量%である。ハロゲン原子の含有量が上記の下限以上であると、光学フィルムの弾性率、表面硬度、透明性及び視認性をより向上させやすい。ハロゲン原子の含有量が上記の上限以下であると、樹脂の合成がしやすくなる。 The content of halogen atoms in the polyamideimide resin is preferably 1 to 60% by mass, more preferably 5 to 55% by mass, and further preferably 10 to 50% by mass, based on the mass of the polyamideimide resin. When the content of halogen atoms is at least the above lower limit, the elastic modulus, surface hardness, transparency and visibility of the optical film can be more easily improved. When the content of halogen atoms is at most the above upper limit, the resin will be easily synthesized.
 <樹脂の製造方法>
 ポリアミドイミド系樹脂は、例えば、テトラカルボン酸化合物、ジカルボン酸化合物及びジアミン化合物を主な原料として製造できる。ここで、上記の式(1)で表される構成単位は、ジカルボン酸化合物とジアミン化合物とが反応して形成される構成単位であり、上記の式(2)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。そのため、上記の式(1)及び式(2)で表される構成単位となるような、ジカルボン酸化合物、テトラカルボン酸化合物及びジアミン化合物を用いて、ポリアミドイミド系樹脂を製造してよい。この観点で、ジカルボン酸化合物は少なくとも式(8)で表される化合物を含むことが好ましい。
<Resin manufacturing method>
The polyamide-imide resin can be produced using, for example, a tetracarboxylic acid compound, a dicarboxylic acid compound and a diamine compound as main raw materials. Here, the constitutional unit represented by the above formula (1) is a constitutional unit formed by reacting a dicarboxylic acid compound and a diamine compound, and the constitutional unit represented by the above formula (2) is It is a structural unit formed by the reaction of a tetracarboxylic acid compound and a diamine compound. Therefore, a polyamide-imide resin may be produced using a dicarboxylic acid compound, a tetracarboxylic acid compound, and a diamine compound, which are constituent units represented by the above formulas (1) and (2). From this viewpoint, the dicarboxylic acid compound preferably contains at least the compound represented by the formula (8).
Figure JPOXMLDOC01-appb-C000033
[式(8)中、R、m、n及びpは、それぞれ、式(1)中のR、m、n及びpについて定義した通りであり、R及びRは、互いに独立に、ヒドロキシル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基又は塩素原子を表す。]
Figure JPOXMLDOC01-appb-C000033
[In formula (8), R 1 , m, n, and p are respectively as defined for R 1 , m, n, and p in formula (1), and R c and R d are independent of each other. , A hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group or a chlorine atom. ]
 本発明の好ましい一実施形態において、ジカルボン酸化合物は、R、Rが塩素原子である、式(8)で表される化合物である。また、ジアミン化合物に代えて、ジイソシアネート化合物を用いてもよい。 In one preferred embodiment of the present invention, the dicarboxylic acid compound is a compound represented by formula (8), wherein R c and R d are chlorine atoms. Moreover, you may use a diisocyanate compound instead of a diamine compound.
 樹脂の製造に用いられるジカルボン酸化合物としては、好ましくは式(8)で表される構造を有する芳香族ジカルボン酸又はそれらの酸クロリド化合物、例えばビフェニルジカルボン酸又はそれらの酸クロリド化合物が用いられる。式(8)で表される構造を有する芳香族ジカルボン酸又はそれらの酸クロリド化合物に加えて、他のジカルボン酸化合物が用いられてもよい。他のジカルボン酸化合物としては、他の芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。式(8)で表される構造を有する芳香族ジカルボン酸の具体例としては、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸クロライドが好ましい。 As the dicarboxylic acid compound used for producing the resin, an aromatic dicarboxylic acid having the structure represented by the formula (8) or an acid chloride compound thereof, for example, a biphenyldicarboxylic acid or an acid chloride compound thereof is preferably used. In addition to the aromatic dicarboxylic acid having the structure represented by formula (8) or the acid chloride compound thereof, other dicarboxylic acid compounds may be used. Examples of the other dicarboxylic acid compound include other aromatic dicarboxylic acids, aliphatic dicarboxylic acids and their related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. As a specific example of the aromatic dicarboxylic acid having the structure represented by the formula (8), 2,2'-bis(trifluoromethyl)-4,4'-biphenyldicarboxylic acid chloride is preferable.
 ジカルボン酸化合物として、式(8)で表される化合物と、他のジカルボン酸化合物とを使用してもよい。他のジカルボン酸化合物としては、式(7'): As the dicarboxylic acid compound, the compound represented by the formula (8) and another dicarboxylic acid compound may be used. Other dicarboxylic acid compounds include those represented by the formula (7′):
Figure JPOXMLDOC01-appb-C000034
[式(7’)中、R31~R38は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表し、R31~R38に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
 Aは、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R39)-を表し、
 R39は水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表し、
 sは0~4の整数であり、
 R及びRは、式(8)中のR及びRについて定義した通りである]
で表されるジカルボン酸化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000034
[In the formula (7′), R 31 to R 38 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The hydrogen atoms contained in R 31 to R 38 may be independently substituted with a halogen atom,
A is, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - SO 2 - , -S-, -CO- or -N(R 39 )-,
R 39 represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom,
s is an integer from 0 to 4,
R c and R d are as defined for R c and R d in the formula (8)]
The dicarboxylic acid compound represented by
 本発明の一実施形態において、他のジカルボン酸化合物は、sが1~4であり、Aが酸素原子である式(7')で表される化合物であってよい。 In one embodiment of the present invention, the other dicarboxylic acid compound may be a compound represented by the formula (7′) in which s is 1 to 4 and A is an oxygen atom.
 樹脂の製造に使用されるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Examples of the diamine compound used for resin production include aliphatic diamines, aromatic diamines, and mixtures thereof. In addition, in this embodiment, the "aromatic diamine" represents a diamine in which an amino group is directly bonded to an aromatic ring, and may have an aliphatic group or another substituent in a part of its structure. The aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring, but are not limited thereto. Of these, a benzene ring is preferable. The "aliphatic diamine" represents a diamine in which an amino group is directly bonded to the aliphatic group, and may have an aromatic ring or other substituent in a part of its structure.
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of aliphatic diamines include acyclic aliphatic diamines such as hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine and 4,4′. -Cyclic aliphatic diamines such as diaminodicyclohexylmethane and the like. These may be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diaminonaphthalene. , An aromatic diamine having one aromatic ring, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -Aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB and May be mentioned), 4,4'-bis(4-aminophenoxy)biphenyl, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene And aromatic diamines having two or more aromatic rings, such as 9,9-bis(4-amino-3-chlorophenyl)fluorene and 9,9-bis(4-amino-3-fluorophenyl)fluorene. These may be used alone or in combination of two or more.
 芳香族ジアミンは、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリン(6FDAM)であり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリン(6FDAM)である。これらは単独又は2種以上を組合せて使用できる。 The aromatic diamine is preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone. ,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2 ,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, 2,2′-bis( Trifluoromethyl)-4,4′-diaminodiphenyl (TFMB), 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-(hexafluoropropylidene)dianiline (6FDAM), and more preferred Is 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[ 4-(4-aminophenoxy)phenyl] sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, 2,2′-bis(trifluoromethyl)- 4,4'-diaminodiphenyl (TFMB), 4,4'-bis(4-aminophenoxy)biphenyl and 4,4'-(hexafluoropropylidene)dianiline (6FDAM). These may be used alone or in combination of two or more.
 上記ジアミン化合物の中でも、光学フィルムの高表面硬度、高透明性、高柔軟性、高屈曲耐性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテル、4,4’-(ヘキサフルオロプロピリデン)ジアニリンからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)及び/又は4,4’-(ヘキサフルオロプロピリデン)ジアニリン(6FDAM)を用いることがよりさらに好ましい。 Among the above diamine compounds, at least one selected from the group consisting of aromatic diamines having a biphenyl structure is selected from the viewpoint of high surface hardness, high transparency, high flexibility, high bending resistance and low colorability of the optical film. It is preferable to use. 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-bis(4-aminophenoxy)biphenyl and 4,4'-diaminodiphenyl ether, 4,4'-(hexa It is more preferable to use one or more selected from the group consisting of fluoropropylidene)dianiline, and 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl (TFMB) and/or 4,4′ It is even more preferable to use -(hexafluoropropylidene)dianiline (6FDAM).
 樹脂の製造に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of the tetracarboxylic acid compound used for producing the resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. To be The tetracarboxylic acid compounds may be used alone or in combination of two or more. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。 Specific examples of the aromatic tetracarboxylic dianhydride include a non-condensed polycyclic aromatic tetracarboxylic dianhydride, a monocyclic aromatic tetracarboxylic dianhydride and a condensed polycyclic aromatic tetraanhydride. Examples include carboxylic acid dianhydride. Examples of the non-condensed polycyclic aromatic tetracarboxylic acid dianhydride include 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2 ',3,3'-Benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride ,3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di) Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride (described as 6FDA , 1,2-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,3) 4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3 -Dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy)diphthalic acid dianhydride and 4,4'-(m-phenylenedioxy)diphthalic acid dianhydride. In addition, examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride, and condensed polycyclic aromatic tetracarboxylic dianhydrides. Examples thereof include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
 これらの中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられ、より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独又は2種以上を組合せて使用できる。 Among these, 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2′,3,3′-benzophenone tetracarboxylic acid dianhydride are preferable. Anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl Sulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2- Bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA), 1,2-bis(2,3-dicarboxyphenyl) Ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3 ,4-Dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4,4'-(p- Examples thereof include phenylenedioxy)diphthalic acid dianhydride and 4,4′-(m-phenylenedioxy)diphthalic acid dianhydride, and more preferably 4,4′-oxydiphthalic acid dianhydride, 3,3′, 4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA) , Bis(3,4-dicarboxyphenyl)methane dianhydride and 4,4′-(p-phenylenedioxy)diphthalic dianhydride. These may be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic acid dianhydride include cyclic or acyclic aliphatic tetracarboxylic acid dianhydride. The cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. Compounds, cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers thereof. To be These may be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. These may be used alone or in combination of two or more. Moreover, you may use combining cycloaliphatic tetracarboxylic dianhydride and acyclic aliphatic tetracarboxylic dianhydride.
 上記テトラカルボン酸二無水物の中でも、光学フィルムの高表面硬度、高透明性、高柔軟性、高屈曲耐性、及び低着色性の観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)がさらに好ましい。 Among the above tetracarboxylic acid dianhydrides, 4,4′-oxydiphthalic acid dianhydride, 3,4′-oxydiphthalic acid dianhydride, in view of high surface hardness, high transparency, high flexibility, high bending resistance, and low colorability of the optical film. 3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride ,3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene ) Diphthalic dianhydride, and mixtures thereof are preferable, and 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride, and These mixtures are more preferable, and 4,4'-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) is further preferable.
 なお、上記ポリアミドイミド系樹脂は、光学積層体の各種物性を損なわない範囲で、上記テトラカルボン酸化合物に加えて、テトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。 Incidentally, the polyamide-imide resin, in the range that does not impair the various physical properties of the optical laminate, in addition to the tetracarboxylic acid compound, tetracarboxylic acid and tricarboxylic acid and those anhydrides and derivatives thereof are further reacted. It may be.
 テトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Examples of the tetracarboxylic acid include water adducts of the above-mentioned tetracarboxylic acid compound anhydrides.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples are 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid are single bonds, -O- , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a compound linked by a phenylene group.
 樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及び/又はジカルボン酸化合物の使用量は、所望とするポリアミドイミド系樹脂の各構成単位の比率に応じて適宜選択できる。 In the production of the resin, the amount of the diamine compound, the tetracarboxylic acid compound and/or the dicarboxylic acid compound used can be appropriately selected according to the desired ratio of each constitutional unit of the polyamideimide resin.
 上記の構成単位(1)及び構成単位(2)を少なくとも有するポリアミドイミド系樹脂の製造方法は、上記のポリアミドイミド系樹脂が得られる限り特に限定されないが、光学フィルムの弾性率及び表面硬度を高めやすい観点からは、ジアミン化合物とテトラカルボン酸化合物とジカルボン酸化合物とを反応させる製造方法であって、ジカルボン酸化合物を分割添加する製造方法により、ポリアミドイミド系樹脂を製造することが好ましく、ジアミン化合物とテトラカルボン酸化合物とを反応させて中間体(A)を生成する工程(I)、及び、該中間体(A)とジカルボン酸化合物(好ましくは式(8)で表される化合物)とを反応させる工程(II)を含み、該工程(II)において、該ジカルボン酸化合物を分割添加する方法によりポリアミドイミド系樹脂を製造することがより好ましい。ジカルボン酸化合物を分割添加する方法を用いる場合、理由は明らかではないが、光学フィルムの弾性率及び表面硬度を向上させるに最適な樹脂が得られると考えられる。また、ポリアミドイミド系樹脂の重量平均分子量を上記範囲内に調整しやすい。 The method for producing a polyamide-imide resin having at least the structural unit (1) and the structural unit (2) is not particularly limited as long as the polyamide-imide resin can be obtained, but the elastic modulus and surface hardness of the optical film are increased. From a viewpoint that is easy, it is a production method of reacting a diamine compound, a tetracarboxylic acid compound, and a dicarboxylic acid compound, and it is preferable to produce a polyamideimide resin by a production method of dividing and adding a dicarboxylic acid compound. A step (I) of reacting a tetracarboxylic acid compound with an intermediate (A) to produce an intermediate (A), and the intermediate (A) and a dicarboxylic acid compound (preferably a compound represented by the formula (8)) It is more preferable to produce the polyamide-imide resin by a method including a step (II) of reacting, and in the step (II), the dicarboxylic acid compound is dividedly added. When the method of dividing and adding the dicarboxylic acid compound is used, the reason is not clear, but it is considered that an optimal resin can be obtained for improving the elastic modulus and surface hardness of the optical film. Further, it is easy to adjust the weight average molecular weight of the polyamide-imide resin within the above range.
 したがって、本発明の光学フィルムに含まれるポリアミドイミド系樹脂、及び、本発明のポリアミドイミド系樹脂は、ジアミン化合物とテトラカルボン酸化合物とジカルボン酸化合物とを反応させる製造方法であって、ジカルボン酸化合物を分割添加する製造方法により製造された樹脂であることが好ましく、ジアミン化合物とテトラカルボン酸化合物とを反応させて中間体(A)を生成する工程(I)、及び、該中間体(A)とジカルボン酸化合物(好ましくは式(8)で表される化合物)とを反応させる工程(II)を含む製造方法であって、該工程(II)において、該ジカルボン酸化合物を分割添加する製造方法により製造された樹脂であることがより好ましい。 Therefore, the polyamide-imide-based resin contained in the optical film of the present invention, and the polyamide-imide-based resin of the present invention is a production method of reacting a diamine compound, a tetracarboxylic acid compound, and a dicarboxylic acid compound, and a dicarboxylic acid compound. It is preferable that the resin is produced by a production method in which the diamine compound and the tetracarboxylic acid compound are reacted to produce an intermediate (A), and the intermediate (A). A production method comprising a step (II) of reacting a dicarboxylic acid compound with a dicarboxylic acid compound (preferably a compound represented by the formula (8)), wherein the dicarboxylic acid compound is dividedly added in the step (II). More preferably, it is a resin produced by.
 上記の工程(I)及び工程(II)を含む製造方法によりポリアミドイミド系樹脂を製造する場合、ジアミン化合物とテトラカルボン酸化合物とを反応させて中間体(A)を生成する工程(I)の反応温度は、特に限定されないが、例えば5~200℃、好ましくは5~100℃、より好ましくは5~50℃、さらに好ましくは5℃~室温(25℃程度)であってよい。反応時間は、例えば1分~72時間、好ましくは10分~24時間であってよい。また、反応は空気中又は不活性ガス雰囲気(例えば窒素、アルゴン等)で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい実施態様では、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。 In the case of producing a polyamide-imide resin by a production method including the above steps (I) and (II), the step (I) of reacting a diamine compound with a tetracarboxylic acid compound to produce an intermediate (A) The reaction temperature is not particularly limited, but may be, for example, 5 to 200° C., preferably 5 to 100° C., more preferably 5 to 50° C., and further preferably 5° C. to room temperature (about 25° C.). The reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours. The reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or an inert gas atmosphere with stirring.
 工程(I)では、ジアミン化合物とテトラカルボン酸化合物とが反応して中間体(A)、すなわち、ポリアミック酸が生成する。そのため、中間体(A)はジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とを少なくとも有する。 In step (I), the diamine compound and the tetracarboxylic acid compound react to produce an intermediate (A), that is, a polyamic acid. Therefore, the intermediate (A) has at least a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound.
 次に工程(II)において、中間体(A)とジカルボン酸化合物とを反応させ、ここで、該ジカルボン酸化合物を分割添加することが好ましい。工程(I)で得られた反応液にジカルボン酸化合物を分割添加し、中間体(A)とジカルボン酸化合物とを反応させる。ジカルボン酸化合物を一度に添加するのではなく、分割添加することにより、ポリアミドイミド系樹脂の重量平均分子量を上記の好ましい範囲に調整しやすい。なお、本明細書において、分割添加とは、添加するジカルボン酸化合物を何回かに分けて添加すること、より詳細には添加するジカルボン酸を特定量に分け、所定間隔(所定時間)あけてそれぞれ添加することを意味する。該所定間隔(所定時間)は非常に短い間隔(又は時間)も含まれるため、分割添加には連続添加(又は連続フィード)も含まれる。 Next, in step (II), it is preferable to react the intermediate (A) with the dicarboxylic acid compound, and to add the dicarboxylic acid compound in portions. The dicarboxylic acid compound is dividedly added to the reaction solution obtained in the step (I) to react the intermediate (A) with the dicarboxylic acid compound. By adding the dicarboxylic acid compound in portions instead of adding it all at once, it is easy to adjust the weight average molecular weight of the polyamide-imide resin within the above preferable range. In the present specification, divided addition means that the dicarboxylic acid compound to be added is dividedly added several times, more specifically, the dicarboxylic acid to be added is divided into specific amounts, and a predetermined interval (predetermined time) is set. It means to add each. Since the predetermined interval (predetermined time) includes a very short interval (or time), the divided addition also includes continuous addition (or continuous feed).
 工程(II)において、ジカルボン酸化合物を分割添加する際の分割回数は、反応スケールや原料の種類等により適宜選択でき、好ましくは2~20回、より好ましくは3~10回、さらに好ましくは3~6回である。 In step (II), the number of divisions when the dicarboxylic acid compound is dividedly added can be appropriately selected depending on the reaction scale, the kind of the raw material, etc., and is preferably 2 to 20 times, more preferably 3 to 10 times, and further preferably 3 times. ~6 times.
 ジカルボン酸化合物は、均等な量に分割して添加してもよく、不均等な量に分割して添加してもよい。各添加の間の時間(添加間隔という場合がある)は、全て同一であってもよいし、異なっていてもよい。また、ジカルボン酸化合物を二種以上添加する場合、用語「分割添加」は、全てのジカルボン酸化合物の合計量を分割して添加することを意味し、各ジカルボン酸化合物の分割の仕方は特に限定されないが、例えば各ジカルボン酸化合物を別々に一括又は分割添加してもよいし、各ジカルボン酸化合物を一緒に分割添加してもよいし、これらの組合せであってもよい。 The dicarboxylic acid compound may be divided and added in an equal amount, or may be divided and added in an uneven amount. The time between each addition (sometimes referred to as an addition interval) may be the same or different. When two or more dicarboxylic acid compounds are added, the term “divided addition” means that the total amount of all dicarboxylic acid compounds is divided and added, and the method of dividing each dicarboxylic acid compound is not particularly limited. However, each dicarboxylic acid compound may be added separately or collectively or in a divided manner, each dicarboxylic acid compound may be added in a divided manner together, or a combination thereof may be used.
 工程(II)において、ポリアミド系樹脂の重量平均分子量が、得られるポリアミド系樹脂の重量平均分子量に対して好ましくは10%以上、より好ましくは15%以上に達した時点で、添加するジカルボン酸化合物の総モル量に対して好ましくは1~40モル%、より好ましくは2~25モル%のジカルボン酸化合物を添加することが好ましい。 In the step (II), the weight average molecular weight of the polyamide resin is preferably 10% or more, more preferably 15% or more, based on the weight average molecular weight of the obtained polyamide resin, and the dicarboxylic acid compound to be added. The dicarboxylic acid compound is preferably added in an amount of 1 to 40 mol %, more preferably 2 to 25 mol %, based on the total molar amount of
 工程(II)の反応温度は、特に限定されないが、例えば5~200℃、好ましくは5~100℃、より好ましくは5~50℃、さらに好ましくは5℃~室温(25℃程度)であってよい。また、反応は空気中又は不活性ガス雰囲気(例えば窒素、アルゴン等)で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、撹拌しながら工程(II)を行う。 The reaction temperature in step (II) is not particularly limited, but is, for example, 5 to 200° C., preferably 5 to 100° C., more preferably 5 to 50° C., further preferably 5° C. to room temperature (about 25° C.). Good. The reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, step (II) is carried out under normal pressure and/or an inert gas atmosphere with stirring.
 工程(II)において、ジカルボン酸化合物を分割添加後、所定時間撹拌等して反応させることで、ポリアミドイミド前駆体が得られる。なお、ポリアミドイミド前駆体は、例えば、ポリアミドイミド前駆体を含む反応液に多量の水等を加え、ポリアミドイミド前駆体を析出させ、濾過、濃縮、乾燥等を行うことにより単離できる。 In the step (II), after the dicarboxylic acid compound is dividedly added, the mixture is stirred for a predetermined time and reacted to obtain a polyamideimide precursor. The polyamide-imide precursor can be isolated by, for example, adding a large amount of water or the like to a reaction liquid containing the polyamide-imide precursor to precipitate the polyamide-imide precursor, and performing filtration, concentration, drying, or the like.
 工程(II)では、中間体(A)とジカルボン酸化合物とが反応してポリアミドイミド前駆体が得られる。そのため、ポリアミドイミド前駆体は、ジアミン化合物由来の構成単位、テトラカルボン酸由来の構成単位、及びジカルボン酸化合物由来の構成単位を少なくとも有するイミド化前(閉環前)のポリアミドイミドを示す。 In step (II), the intermediate (A) reacts with the dicarboxylic acid compound to obtain a polyamideimide precursor. Therefore, the polyamideimide precursor refers to a polyamideimide before imidization (before ring closure) that has at least a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid, and a structural unit derived from a dicarboxylic acid compound.
 樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及びジカルボン酸化合物の反応温度は、特に限定されないが、例えば5~350℃、好ましくは5~200℃、より好ましくは5~100℃である。反応時間も特に限定されないが、例えば30分~10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。好ましい態様では、反応は、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。また、反応は、反応に不活性な溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せ(混合溶媒)などが挙げられる。これらの中でも、溶解性の観点から、アミド系溶媒を好適に使用できる。 In the production of resin, the reaction temperature of the diamine compound, the tetracarboxylic acid compound and the dicarboxylic acid compound is not particularly limited, but is, for example, 5 to 350°C, preferably 5 to 200°C, more preferably 5 to 100°C. Although the reaction time is not particularly limited, it is, for example, about 30 minutes to 10 hours. If necessary, the reaction may be performed under an inert atmosphere or reduced pressure. In a preferred embodiment, the reaction is carried out under normal pressure and/or an inert gas atmosphere with stirring. In addition, the reaction is preferably carried out in a solvent inert to the reaction. The solvent is not particularly limited as long as it does not affect the reaction, and for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, γ-valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, heptane; alicyclic hydrocarbon solvents such as ethylcyclohexane; toluene, xylene Aromatic hydrocarbon solvent such as acetonitrile; Nitrile solvent such as acetonitrile; Ether solvent such as tetrahydrofuran and dimethoxyethane; Chlorine-containing solvent such as chloroform and chlorobenzene; Amide such as N,N-dimethylacetamide, N,N-dimethylformamide Examples thereof include system solvents; sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide, and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof (mixed solvent). Among these, amide solvents can be preferably used from the viewpoint of solubility.
 ポリアミドイミド系樹脂の製造方法は、さらに、イミド化触媒の存在下、ポリアミドイミド前駆体をイミド化する工程(III)を含んでいてもよい。工程(II)で得たポリアミドイミド前駆体を工程(III)に供することにより、ポリアミドイミド前駆体の構成単位のうち、ポリアミック酸構造を有する構造単位部分がイミド化され(閉環され)、式(1)で表される構成単位と式(2)で表される構成単位とを含むポリアミドイミド系樹脂を得ることができる。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。 The method for producing a polyamide-imide resin may further include a step (III) of imidizing a polyamide-imide precursor in the presence of an imidization catalyst. By subjecting the polyamide-imide precursor obtained in the step (II) to the step (III), the structural unit portion having a polyamic acid structure in the constitutional unit of the polyamide-imide precursor is imidized (ring closed), and the formula ( It is possible to obtain a polyamide-imide resin containing the structural unit represented by 1) and the structural unit represented by the formula (2). Examples of the imidization catalyst include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro. Alicyclic amine (monocyclic) such as azepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and azabicyclo[3.2. 2] Alicyclic amine (polycyclic) such as nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4-picoline), 2- Ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydroisoquinoline, and Aromatic amines such as isoquinoline may be mentioned. From the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst. Examples of the acid anhydride include conventional acid anhydrides used in imidization reaction, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and aromatics such as phthalic acid. Examples thereof include acid anhydrides.
 ポリアミドイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により単離(分離精製)してもよく、好ましい態様では、ポリアミドイミド系樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。 The polyamide-imide resin may be isolated (separated and purified) by a conventional method, for example, separation means such as filtration, concentration, extraction, crystallization, recrystallization and column chromatography, or a separation means combining these. In a preferred embodiment, a large amount of alcohol such as methanol is added to a reaction liquid containing a polyamide-imide resin to precipitate the resin, which can be isolated by concentration, filtration and drying.
<フィラー>
 本発明の光学フィルムは、少なくとも1種のフィラーを含んでよい。フィラーとしては、例えば有機粒子、無機粒子などが挙げられ、好ましくは無機粒子が挙げられる。無機粒子としては、シリカ、ジルコニア、アルミナ、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子などが挙げられ、これらの中でも、光学フィルムの弾性率及び/又は引裂き強度を高め、耐衝撃性を向上しやすい観点から、好ましくはシリカ粒子、ジルコニア粒子、アルミナ粒子が挙げられ、より好ましくはシリカ粒子が挙げられる。これらのフィラーは単独又は2種以上を組合せて使用できる。
<Filler>
The optical film of the present invention may include at least one filler. Examples of the filler include organic particles and inorganic particles, and preferably inorganic particles. Examples of the inorganic particles include silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, metal oxide particles such as cerium oxide, magnesium fluoride, fluorine. Examples thereof include metal fluoride particles such as sodium fluoride, and among these, from the viewpoint of increasing the elastic modulus and/or tear strength of the optical film and easily improving impact resistance, silica particles, zirconia particles, and alumina particles are preferable. And more preferably silica particles. These fillers can be used alone or in combination of two or more.
 フィラー、好ましくはシリカ粒子の平均一次粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上、とりわけ好ましくは20nm以上であり、好ましくは100nm以下、より好ましくは90nm以下、さらに好ましくは80nm以下、さらにより好ましくは70nm以下、とりわけ好ましくは60nm以下、とりわけより好ましくは50nm以下、とりわけさらに好ましくは40nm以下である。シリカ粒子の平均一次粒子径が上記範囲内であると、シリカ粒子の凝集を抑制し、得られる光学フィルムの光学特性を向上しやすい。フィラーの平均一次粒子径は、BET法により測定できる。なお、透過型電子顕微鏡や走査型電子顕微鏡の画像解析により、平均一次粒子径を測定してもよい。 The average primary particle size of the filler, preferably silica particles, is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, particularly preferably 20 nm or more, preferably 100 nm or less, more preferably It is 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, particularly preferably 60 nm or less, especially more preferably 50 nm or less, and even more preferably 40 nm or less. When the average primary particle diameter of the silica particles is within the above range, aggregation of the silica particles is suppressed and the optical properties of the obtained optical film are easily improved. The average primary particle diameter of the filler can be measured by the BET method. The average primary particle size may be measured by image analysis with a transmission electron microscope or a scanning electron microscope.
 本発明の光学フィルムがフィラー、好ましくはシリカ粒子を含有する場合、フィラーの含有量は、光学フィルム100質量部に対して、通常0.1質量部以上、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上、さらによりに好ましくは20質量部以上、とりわけ好ましくは30質量部以上であり、好ましくは60質量部以下である。フィラーの含有量が上記の下限以上であると、得られる光学フィルムの弾性率を向上しやすい。また、フィラーの含有量が上記の上限以下であると、光学フィルムの光学特性を向上しやすい。 When the optical film of the present invention contains a filler, preferably silica particles, the content of the filler is usually 0.1 part by mass or more, preferably 1 part by mass or more, and more preferably 100 parts by mass of the optical film. It is 5 parts by mass or more, more preferably 10 parts by mass or more, even more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and preferably 60 parts by mass or less. When the content of the filler is at least the above lower limit, the elastic modulus of the obtained optical film can be easily improved. Moreover, when the content of the filler is not more than the above upper limit, the optical characteristics of the optical film are likely to be improved.
<紫外線吸収剤>
 本発明の光学フィルムは、少なくとも1種の紫外線吸収剤を含んでもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。紫外線吸収剤は単独又は二種以上を組合せて使用できる。光学フィルムが紫外線吸収剤を含有することにより、樹脂の劣化が抑制されるため、本発明の光学フィルムを表示装置等に適用した場合に視認性を高めることができる。本明細書において、「系化合物」とは、当該「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
<Ultraviolet absorber>
The optical film of the present invention may include at least one UV absorber. The ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials. The ultraviolet absorber may include a compound that absorbs light having a wavelength of 400 nm or less. Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds. The ultraviolet absorbers can be used alone or in combination of two or more kinds. Since the optical film contains the ultraviolet absorber, the deterioration of the resin is suppressed, so that the visibility can be enhanced when the optical film of the present invention is applied to a display device or the like. In the present specification, the “system compound” refers to a derivative of the compound to which the “system compound” is attached. For example, “benzophenone-based compound” refers to a compound having benzophenone as a base skeleton and a substituent bonded to benzophenone.
 本発明の光学フィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、光学フィルムに含まれるポリアミドイミド系樹脂の質量に対して、好ましくは0.01~10質量%、より好ましくは1~8質量%、さらに好ましくは2~7質量%である。紫外線吸収剤の含有量が上記の下限以上であると、紫外線吸収性を向上させやすい。紫外線吸収剤の含有量が上記の上限以下であると、基材製造時の熱による紫外線吸収剤の分解を抑制でき、光学特性を向上させやすく、例えばヘーズを低減させやすい。 When the optical film of the present invention contains an ultraviolet absorber, the content of the ultraviolet absorber is preferably 0.01 to 10% by mass, and more preferably the mass of the polyamideimide resin contained in the optical film. It is 1 to 8% by mass, more preferably 2 to 7% by mass. When the content of the ultraviolet absorber is at least the above lower limit, it is easy to improve the ultraviolet absorptivity. When the content of the ultraviolet absorber is not more than the above upper limit, decomposition of the ultraviolet absorber due to heat during manufacturing of the base material can be suppressed, optical characteristics can be easily improved, and haze, for example, can be easily reduced.
<他の添加剤>
 本発明の光学フィルムは、フィラー、紫外線吸収剤以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤等の着色剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。他の添加剤を含有する場合、その含有量は、光学フィルムの質量に対して、好ましくは0.001~20質量%、より好ましくは0.01~15質量%、さらに好ましくは0.1~10質量%であってよい。
<Other additives>
The optical film of the present invention may further contain an additive other than the filler and the ultraviolet absorber. Other additives include, for example, antioxidants, release agents, stabilizers, coloring agents such as bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents. Can be mentioned. When other additives are contained, their content is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, and still more preferably 0.1 to 10% by mass based on the mass of the optical film. It may be 10% by weight.
(光学フィルムの製造方法)
 本発明の光学フィルムの製造方法は、特に限定されないが、例えば以下の工程:
(a)前記ポリアミドイミド系樹脂及び溶媒を少なくとも含むポリアミドイミド系樹脂組成物(以下において、「ワニス」とも称する)を調製する工程(ワニス調製工程)、
(b)ワニスを支持材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)塗布された液(塗膜)を乾燥させて、光学フィルムを形成する工程(光学フィルム形成工程)
を含む製造方法であってよい。
(Method of manufacturing optical film)
The method for producing the optical film of the present invention is not particularly limited, but for example, the following steps:
(A) a step of preparing a polyamide-imide resin composition (hereinafter, also referred to as "varnish") containing at least the polyamide-imide resin and a solvent (varnish preparation step),
(B) a step of applying a varnish to a support material to form a coating film (application step), and (c) a step of drying the applied liquid (coating film) to form an optical film (optical film forming step) )
It may be a manufacturing method including.
 ワニス調製工程において、ポリアミドイミド系樹脂を溶媒に溶解させ、必要に応じて、前記フィラー、紫外線吸収剤等の添加剤を添加して撹拌混合することによりワニスを調製する。なお、フィラーとしてシリカ粒子を用いる場合、シリカ粒子を含むシリカゾルの分散液を、前記樹脂が溶解可能な溶媒、例えば下記のワニスの調製に用いられる溶媒で置換したシリカゾルを樹脂に添加してもよい。 In the varnish preparation step, a polyamide-imide resin is dissolved in a solvent, and if necessary, additives such as the filler and the ultraviolet absorber are added and mixed by stirring to prepare a varnish. When silica particles are used as a filler, a dispersion of a silica sol containing silica particles may be added to the resin with a solvent capable of dissolving the resin, for example, a silica sol obtained by substituting with a solvent used for preparing a varnish described below. ..
 ワニスの調製に用いる溶媒は、前記樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えばN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せ(混合溶媒)が挙げられる。これらの中でも、アミド系溶媒又はラクトン系溶媒が好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、ワニスには水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。ワニスの固形分濃度は、好ましくは1~25質量%、より好ましくは5~20質量%、さらに好ましくは5~15質量%である。 The solvent used for preparing the varnish is not particularly limited as long as it can dissolve the resin. Examples of the solvent include amide solvents such as N,N-dimethylacetamide and N,N-dimethylformamide; lactone solvents such as γ-butyrolactone (GBL) and γ-valerolactone; dimethyl sulfone, dimethyl sulfoxide, sulfolane and the like. And a carbonate-based solvent such as ethylene carbonate and propylene carbonate; and a combination thereof (mixed solvent). Among these, amide solvents or lactone solvents are preferable. These solvents can be used alone or in combination of two or more. Further, the varnish may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent, or the like. The solid content concentration of the varnish is preferably 1 to 25% by mass, more preferably 5 to 20% by mass, and further preferably 5 to 15% by mass.
 塗布工程において、公知の塗布方法により、支持材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。 In the coating process, a varnish is coated on the support material by a known coating method to form a coating film. As a known coating method, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping method, A spray method, a spout molding method and the like can be mentioned.
 フィルム形成工程において、塗膜を乾燥し、支持材から剥離することによって、光学フィルムを形成することができる。剥離後にさらに光学フィルムを乾燥する工程を設けてもよい。塗膜の乾燥は、通常50~350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。 In the film forming step, the optical film can be formed by drying the coating film and peeling it from the support material. You may provide the process of drying an optical film further after peeling. The coating film can be dried usually at a temperature of 50 to 350°C. If necessary, the coating film may be dried under an inert atmosphere or a reduced pressure condition.
 支持材の例としては、金属系であれば、SUS板、樹脂系であればPETフィルム、PENフィルム、ポリアミド系樹脂フィルム、ポリイミド系樹脂フィルム、シクロオレフィン系ポリマー(COP)フィルム、アクリル系フィルム等が挙げられる。中でも、平滑性、耐熱性に優れる観点から、PETフィルム、COPフィルム等が好ましく、さらに光学フィルムとの密着性及びコストの観点から、PETフィルムがより好ましい。 Examples of the support material include a SUS plate if it is a metal system, a PET film, a PEN film, a polyamide resin film, a polyimide resin film, a cycloolefin polymer (COP) film, an acrylic film if it is a resin system. Is mentioned. Among them, a PET film, a COP film and the like are preferable from the viewpoint of excellent smoothness and heat resistance, and further, a PET film is more preferable from the viewpoint of adhesion to an optical film and cost.
 本発明の光学フィルムの用途は特に限定されず、種々の用途に使用してよい。本発明の光学フィルムは、上記に述べたように単層であっても、積層体であってもよく、本発明の光学フィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。なお、光学フィルムが積層体である場合、光学フィルムの片面又は両面に積層された全ての層を含めて光学フィルムと称する。 The use of the optical film of the present invention is not particularly limited and may be used for various purposes. The optical film of the present invention may be a single layer as described above, or may be a laminate, the optical film of the present invention may be used as it is, or a laminate with another film. May be used as. When the optical film is a laminated body, all the layers laminated on one side or both sides of the optical film are collectively referred to as an optical film.
(機能層)
 本発明の光学フィルムの少なくとも一方の面には、1以上の機能層が積層されていてもよい。機能層としては、例えば紫外線吸収層、ハードコート層、プライマー層、ガスバリア層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上を組合せて使用できる。
(Functional layer)
One or more functional layers may be laminated on at least one surface of the optical film of the present invention. Examples of the functional layer include an ultraviolet absorbing layer, a hard coat layer, a primer layer, a gas barrier layer, an adhesive layer, a hue adjusting layer and a refractive index adjusting layer. The functional layer may be used alone or in combination of two or more kinds.
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。 The ultraviolet absorbing layer is a layer having a function of absorbing ultraviolet rays, and for example, a main material selected from a transparent resin of an ultraviolet curable type, a transparent resin of an electron beam curable type, and a transparent resin of a thermosetting type, and the main material It is composed of dispersed ultraviolet absorbers.
 本発明の光学フィルムの少なくとも一方の面には、ハードコート層が設けられていてもよい。ハードコート層の厚さは特に限定されず、例えば、2~100μmであってもよい。前記ハードコート層の厚さが前記の範囲にあると、十分な耐擦傷性を確保することができ、また耐屈曲性が低下しにくく、硬化収縮によるカール発生の問題が発生し難い傾向がある。
 前記ハードコート層は、活性エネルギー線照射、或いは熱エネルギー付与により架橋構造を形成し得る反応性材料を含むハードコート組成物を硬化させて形成することができ、活性エネルギー線照射によるものが好ましい。活性エネルギー線は、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義され、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられ、好ましくは紫外線が挙げられる。前記ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
A hard coat layer may be provided on at least one surface of the optical film of the present invention. The thickness of the hard coat layer is not particularly limited and may be, for example, 2 to 100 μm. When the thickness of the hard coat layer is within the above range, sufficient scratch resistance can be ensured, bending resistance is unlikely to decrease, and a problem of curling due to curing shrinkage tends not to occur. ..
The hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or application of heat energy, and irradiation with active energy rays is preferable. Active energy rays are defined as energy rays capable of decomposing compounds that generate active species to generate active species, such as visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays and electron rays. And the like, and preferably ultraviolet rays. The hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
 前記ラジカル重合性化合物は、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素‐炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基は、互いに同一であってもよいし、異なっていてもよい。前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上である。前記ラジカル重合性化合物としては、反応性の高さの点から、好ましくは(メタ)アクリロイル基を有する化合物が挙げられ、具体的には1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーが挙げられ、好ましくはエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートから選択された1種以上が挙げられる。 The radical polymerizable compound is a compound having a radical polymerizable group. The radical polymerizable group contained in the radical polymerizable compound may be any functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. And (meth)acryloyl group. When the radical-polymerizable compound has two or more radical-polymerizable groups, these radical-polymerizable groups may be the same as or different from each other. The number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer. From the viewpoint of high reactivity, the radically polymerizable compound is preferably a compound having a (meth)acryloyl group. Specifically, 2 to 6 (meth)acryloyl groups are included in one molecule. A compound called a polyfunctional acrylate monomer, an epoxy (meth)acrylate, a urethane (meth)acrylate, or a polyester (meth)acrylate, which has several (meth)acryloyl groups in the molecule, has a molecular weight of from several hundred. Thousands of oligomers may be mentioned, preferably one or more selected from epoxy (meth)acrylate, urethane (meth)acrylate and polyester (meth)acrylate.
 前記カチオン重合性化合物は、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性基を有する化合物である。前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上であり、より好ましくは3以上である。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなりやすく、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
The cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group and a vinyl ether group. The number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
In addition, as the cationically polymerizable compound, among others, a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable. A cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that the shrinkage accompanying the polymerization reaction is small. In addition, compounds having an epoxy group among cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radically polymerizable compound. There is an advantage that. In addition, the oxetanyl group of the cyclic ether group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound. Even in the area to be filled, there is an advantage that an independent network is formed without leaving unreacted monomer in the film.
As the cationically polymerizable compound having an epoxy group, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring or a cyclohexene ring, a cyclopentene ring-containing compound, hydrogen peroxide, with a suitable oxidizing agent such as peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth)acrylate, Aliphatic epoxy resins such as copolymers; glycidyl ethers produced by the reaction of bisphenol A, bisphenol F, bisphenols such as hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts with epichlorohydrin, And glycidyl ether type epoxy resins derived from bisphenols, such as novolac epoxy resins.
 前記ハードコート組成物は重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
 ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸等の有機過酸化物、アゾビスブチロニトリル等のアゾ化合物等があげられる。
 活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤があり、それらは単独で又は併用して使用される。
 カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体等が使用できる。これらは、構造の違いによって活性エネルギー線照射又は加熱のいずれか又はいずれでもカチオン重合を開始することができる。
The hard coat composition may further include a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which are appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
The radical polymerization initiator may be any one that can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating. Examples of thermal radical polymerization initiators include hydrogen peroxide, organic peroxides such as perbenzoic acid, and azo compounds such as azobisbutyronitrile.
As the active energy ray radical polymerization initiator, a Type 1 type radical polymerization initiator that produces a radical by decomposition of a molecule and a Type 2 type radical polymerization initiator that produces a radical by a hydrogen abstraction type reaction coexisting with a tertiary amine Yes, they are used alone or in combination.
Any cationic polymerization initiator may be used as long as it can release a substance that initiates cationic polymerization by irradiation with active energy rays and/or heating. As the cationic polymerization initiator, an aromatic iodonium salt, an aromatic sulfonium salt, a cyclopentadienyl iron(II) complex or the like can be used. These can initiate cationic polymerization either by irradiation with active energy rays or by heating, or both, depending on the difference in structure.
 前記重合開始剤は、前記ハードコート組成物全体100質量%に対して好ましくは0.1~10質量%を含むことができる。前記重合開始剤の含量が前記の範囲にあると、硬化を十分に進行させることができ、最終的に得られる塗膜の機械的物性や密着力を良好な範囲とすることができ、また、硬化収縮による接着力不良や割れ現象及びカール現象が発生し難くなる傾向がある。 The polymerization initiator may preferably be contained in an amount of 0.1 to 10% by mass based on 100% by mass of the entire hard coat composition. When the content of the polymerization initiator is in the above range, curing can be sufficiently advanced, and the mechanical properties and adhesion of the finally obtained coating film can be set in a good range, and Poor adhesion due to curing shrinkage, cracking and curling tend to occur less easily.
 前記ハードコート組成物は、溶剤及び添加剤からなる群から選択される一つ以上をさらに含むことができる。
 前記溶剤は、前記重合性化合物及び重合開始剤を溶解又は分散させることができるもので、本技術分野のハードコート組成物の溶剤として知られている溶剤であれば、本発明の効果を阻害しない範囲で、使用することができる。
 前記添加剤は、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などをさらに含むことができる。
The hard coat composition may further include one or more selected from the group consisting of a solvent and an additive.
The solvent is a solvent that can dissolve or disperse the polymerizable compound and the polymerization initiator, if the solvent is known as a solvent of the hard coat composition of the present technical field, does not impair the effects of the present invention Can be used in a range.
The additive may further include inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent, and the like.
 粘着層は、粘着性の機能を有する層であり、光学フィルムを他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。この場合、事後的にエネルギーを供給することで樹脂組成物を高分子化し硬化させることができる。 The adhesive layer is a layer having an adhesive function and has a function of adhering the optical film to another member. A commonly known material can be used as the material for forming the adhesive layer. For example, a thermosetting resin composition or a photocurable resin composition can be used. In this case, the resin composition can be polymerized and cured by supplying energy afterwards.
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K 6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K 6800)であるカプセル型接着剤であってもよい。 The adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing. The pressure-sensitive adhesive may be an adhesive that is "a substance that has adhesiveness at room temperature and that adheres to an adherend with a light pressure" (JIS K 6800), or "a protective film (microcapsule) for specific components. ), and a capsule type adhesive which is an adhesive (JIS K6800) capable of maintaining stability until the coating is broken by an appropriate means (pressure, heat, etc.).
 色相調整層は、色相調整の機能を有する層であり、光学フィルムを含む積層体を目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。 The hue adjusting layer is a layer having a function of adjusting hue, and is a layer capable of adjusting the laminate including the optical film to a desired hue. The hue adjustment layer is, for example, a layer containing a resin and a colorant. Examples of the colorant include titanium oxide, zinc oxide, rouge, titanium oxide-based calcined pigment, ultramarine blue, cobalt aluminate, and inorganic pigments such as carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, slene compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
 屈折率調整層は、屈折率調整の機能を有する層であり、例えば光学フィルムとは異なる屈折率を有し、光学積層体に所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。該顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。 The refractive index adjusting layer is a layer having a refractive index adjusting function, for example, a layer having a refractive index different from that of the optical film and capable of imparting a predetermined refractive index to the optical laminate. The refractive index adjusting layer may be, for example, a resin layer containing an appropriately selected resin and optionally a pigment, or a metal thin film. Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide. The average primary particle diameter of the pigment may be 0.1 μm or less. By setting the average primary particle diameter of the pigment to 0.1 μm or less, diffuse reflection of light passing through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented. Examples of the metal used for the refractive index adjusting layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. An oxide or a metal nitride is mentioned.
 本発明の光学フィルムは、単層であっても、積層体であってもよく、例えば上記のようにして製造される光学フィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。 The optical film of the present invention may be a single layer or a laminate, for example, the optical film produced as described above may be used as it is, or a laminate with another film. May be used as.
 本発明の一実施態様において、光学フィルムは、少なくとも一方の面(片面又は両面)に保護フィルムを有していてもよい。例えば光学フィルムの片面に機能層を有する場合には、保護フィルムは、光学フィルム側の表面又は機能層側の表面に積層されていてもよく、光学フィルム側と機能層側の両方に積層されていてもよい。光学フィルムの両面に機能層を有する場合には、保護フィルムは、片方の機能層側の表面に積層されていてもよく、両方の機能層側の表面に積層されていてもよい。保護フィルムは、光学フィルム又は機能層の表面を一時的に保護するためのフィルムであり、光学フィルム又は機能層の表面を保護できる剥離可能なフィルムである限り特に限定されない。保護フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂フィルム;ポリエチレン、ポリプロピレンフィルムなどのポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム等が挙げられ、ポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート系樹脂フィルム及びアクリル系樹脂フィルムからなる群から選択されることが好ましい。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムは互いに同一であってもよいし、異なっていてもよい。 In one embodiment of the present invention, the optical film may have a protective film on at least one surface (one surface or both surfaces). For example, when it has a functional layer on one side of the optical film, the protective film may be laminated on the surface of the optical film side or the surface of the functional layer side, and is laminated on both the optical film side and the functional layer side. May be. When the optical film has functional layers on both sides, the protective film may be laminated on one surface of the functional layer side or on both surfaces of the functional layer side. The protective film is a film for temporarily protecting the surface of the optical film or the functional layer, and is not particularly limited as long as it is a peelable film capable of protecting the surface of the optical film or the functional layer. Examples of the protective film include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; polyolefin resin films, polyethylene. It is preferably selected from the group consisting of terephthalate resin films and acrylic resin films. When the optical film has two protective films, each protective film may be the same as or different from each other.
 保護フィルムの厚さは、特に限定されるものではないが、通常、10~120μm、好ましくは15~110μm、より好ましくは20~100μmである。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムの厚さは同一であってもよいし、異なっていてもよい。 The thickness of the protective film is not particularly limited, but is usually 10 to 120 μm, preferably 15 to 110 μm, more preferably 20 to 100 μm. When the optical film has two protective films, the thickness of each protective film may be the same or different.
 本発明の好ましい一実施形態において、本発明の光学フィルムは、表示装置の前面板、特にフレキシブル表示装置の前面板(以下、ウィンドウフィルムと称することがある)として有用である。フレキシブル表示装置は、例えば、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する光学フィルムを有する。すなわち、フレキシブル表示装置の前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層を保護する機能を有する。 In a preferred embodiment of the present invention, the optical film of the present invention is useful as a front plate of a display device, particularly as a front plate of a flexible display device (hereinafter sometimes referred to as a window film). The flexible display device has, for example, a flexible functional layer and an optical film that is superposed on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display device is arranged on the visible side above the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
 表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブル表示装置としては、フレキシブル特性を有する全ての表示装置が挙げられる。 Examples of display devices include TVs, smartphones, mobile phones, car navigations, tablet PCs, portable game consoles, electronic paper, indicators, bulletin boards, watches, and wearable devices such as smart watches. Examples of the flexible display device include all display devices having flexible characteristics.
[フレキシブル表示装置]
 本発明は、本発明の光学フィルムを備える、フレキシブル表示装置も提供する。本発明の光学フィルムは、好ましくはフレキシブル表示装置において前面板として用いられ、該前面板はウィンドウフィルムと称されることがある。該フレキシブル表示装置は、フレキシブル表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル表示装置用積層体は、ウィンドウフィルム、偏光板、タッチセンサを含有していてもよく、それらの積層順は任意であるが、視認側からウィンドウフィルム、偏光板、タッチセンサ又はウィンドウフィルム、タッチセンサ、偏光板の順に積層されていることが好ましい。タッチセンサの視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前記ウィンドウフィルム、偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
[Flexible display device]
The present invention also provides a flexible display device comprising the optical film of the present invention. The optical film of the present invention is preferably used as a front plate in a flexible display device, and the front plate is sometimes referred to as a window film. The flexible display device includes a flexible display device laminate and an organic EL display panel, and the flexible display device laminate is arranged on the viewing side of the organic EL display panel and is configured to be bendable. The laminate for a flexible display device may contain a window film, a polarizing plate, and a touch sensor, and the order of laminating them is arbitrary, but the window film, the polarizing plate, the touch sensor or the window film, and the touch from the viewing side. It is preferable that the sensor and the polarizing plate are laminated in this order. The presence of the polarizing plate on the viewing side of the touch sensor is preferable because the pattern of the touch sensor is less visible and the visibility of the display image is improved. Each member can be laminated using an adhesive, a pressure-sensitive adhesive or the like. Further, a light-shielding pattern formed on at least one surface of any one of the window film, the polarizing plate, and the touch sensor may be provided.
[偏光板]
 フレキシブル表示装置は、偏光板を備えていてもよく、中でも円偏光板を備えることが好ましい。円偏光板は、直線偏光板にλ/4位相差板を積層することにより右円偏光成分又は左円偏光成分のみを透過させる機能を有する機能層である。たとえば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板とは必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
[Polarizer]
The flexible display device may include a polarizing plate, and preferably includes a circular polarizing plate. The circularly polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component by laminating a λ/4 retardation plate on a linearly polarizing plate. For example, by converting the external light into right circularly polarized light and blocking the external light reflected by the organic EL panel to become left circularly polarized light, and transmitting only the luminescent component of the organic EL, the influence of reflected light is suppressed and the image is displayed. It is used to make it easier to see. In order to achieve the circular polarization function, the absorption axis of the linear polarizing plate and the slow axis of the λ/4 retardation plate are theoretically required to be 45°, but they are practically 45±10°. The linearly polarizing plate and the λ/4 retardation plate are not necessarily required to be laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but this is not necessary in practice, so the circularly polarizing plate in the present invention also includes an elliptically polarizing plate. It is also preferable to further laminate a λ/4 retardation film on the visible side of the linearly polarizing plate to make the emitted light circularly polarized light to improve the visibility in the state of wearing polarized sunglasses.
 直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは、0.5~100μmである。厚さが前記の範囲にあると柔軟性が低下し難い傾向にある。
 前記直線偏光子は、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、又はPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは好ましくは10~100μmであり、延伸倍率は好ましくは2~10倍である。
 さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子であってもよい。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は液晶状態を示す性質を有していればよく、スメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は重合性官能基を有していることも好ましい。
The linearly polarizing plate is a functional layer having a function of transmitting light oscillating in the transmission axis direction but blocking polarized light of an oscillating component perpendicular thereto. The linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof. The thickness of the linear polarizing plate may be 200 μm or less, preferably 0.5 to 100 μm. When the thickness is in the above range, the flexibility tends to be difficult to decrease.
The linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film. A dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed on PVA, whereby the dichroic dye is oriented and exhibits polarization performance. The production of the film-type polarizer may further include steps such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying. The stretching and dyeing steps may be performed on the PVA film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate. The thickness of the PVA-based film used is preferably 10 to 100 μm, and the stretching ratio is preferably 2 to 10 times.
Further, as another example of the polarizer, a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition may be used. The liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound. The liquid crystalline compound is only required to have a property of exhibiting a liquid crystal state, and it is preferable to have a higher order alignment state such as a smectic phase because high polarization performance can be exhibited. It is also preferable that the liquid crystal compound has a polymerizable functional group.
 前記二色性色素は、前記液晶化合物とともに配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよいし、重合性官能基を有していることもできる。液晶偏光組成物の中のいずれかの化合物は重合性官能基を有している。
 前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
 前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。
 液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは好ましくは0.5~10μm、より好ましくは1~5μmであってもよい。
 前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することで製造することができる。前記配向膜形成組成物は、配向剤の他に溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用できる。光配向を適用する場合にはシンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子の重量平均分子量が10,000~1,000,000程度であってもよい。前記配向膜の厚さは、配向規制力の観点から、好ましくは5~10,000nm、より好ましは10~500nmである。前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or has a polymerizable functional group. You can also Any of the compounds in the liquid crystal polarizing composition has a polymerizable functional group.
The liquid crystal polarizing composition may further include an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
The liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on the alignment film to form a liquid crystal polarizing layer.
The liquid crystal polarizing layer can be formed thinner than a film type polarizer. The thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
The alignment film can be produced, for example, by applying the composition for forming an alignment film on a substrate and imparting the alignment property by rubbing, irradiation of polarized light, or the like. The composition for forming an alignment film may contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the alignment agent. As the alignment agent, for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used. When photo-alignment is applied, it is preferable to use an aligning agent containing a cinnamate group. The weight average molecular weight of the polymer used as the aligning agent may be about 10,000 to 1,000,000. The thickness of the alignment film is preferably 5 to 10,000 nm, more preferably 10 to 500 nm, from the viewpoint of the alignment regulating force. The liquid crystal polarizing layer can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material of a protective film, a retardation plate, or a window.
 前記保護フィルムとしては、透明な高分子フィルムであればよく、前記透明基材に使用される材料、添加剤が使用できる。セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムが好ましい。エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記保護フィルムの厚さは、200μm以下であってもよく、好ましくは、1~100μmである。前記保護フィルムの厚さが前記の範囲にあると、保護フィルムの柔軟性が低下し難い。保護フィルムは、ウインドウの透明基材の役割を兼ねることもできる。 The protective film may be any transparent polymer film, and the materials and additives used for the transparent substrate can be used. Cellulose type films, olefin type films, acrylic films and polyester type films are preferable. It may be a coating type protective film obtained by applying and curing a cationically curable composition such as an epoxy resin or a radical curable composition such as an acrylate. If necessary, plasticizers, ultraviolet absorbers, infrared absorbers, colorants such as pigments and dyes, optical brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May be included. The thickness of the protective film may be 200 μm or less, preferably 1 to 100 μm. When the thickness of the protective film is within the above range, the flexibility of the protective film does not easily deteriorate. The protective film can also serve as the transparent base material of the window.
 前記λ/4位相差板は、入射光の進行方向に直行する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記延伸型位相差板の厚さは、200μm以下であってもよく、好ましくは1~100μmである。厚さが前記の範囲にあるとフィルムの柔軟性が低下し難い傾向にある。
 さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板であってもよい。前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物の中の液晶性化合物を含むいずれかの化合物は重合性官能基を有している。前記液晶塗布型位相差板はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。前記液晶塗布型位相差板は、前記液晶偏光層での記載と同様に配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、通常0.5~10μm、好ましくは1~5μmであってもよい。前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The λ/4 retardation plate is a film that gives a λ/4 retardation in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film). The λ/4 retardation plate may be a stretchable retardation plate produced by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film. If necessary, retarder, plasticizer, ultraviolet absorber, infrared absorber, colorant such as pigment or dye, fluorescent brightening agent, dispersant, heat stabilizer, light stabilizer, antistatic agent, antioxidant. , A lubricant, a solvent, etc. may be contained. The thickness of the stretchable retardation plate may be 200 μm or less, preferably 1 to 100 μm. When the thickness is in the above range, the flexibility of the film tends to be less likely to decrease.
Further, another example of the λ/4 retardation plate may be a liquid crystal coating type retardation plate formed by applying a liquid crystal composition. The liquid crystal composition contains a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, or smectic. Any compound in the liquid crystal composition, including the liquid crystal compound, has a polymerizable functional group. The liquid crystal coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like. The liquid crystal coating type retardation plate can be manufactured by coating and curing the liquid crystal composition on the alignment film to form the liquid crystal retardation layer as in the case of the liquid crystal polarizing layer. The liquid crystal coating type retardation plate can be formed thinner than the stretched type retardation plate. The thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 μm, preferably 1 to 5 μm. The liquid crystal coating type retardation plate can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material of a protective film, a retardation plate, or a window.
 一般的には、短波長ほど複屈折が大きく長波長になるほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるような面内位相差100~180nm、好ましくは130~150nmとなるように設計されることが多い。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を用いることは視認性をよくすることができるので好ましい。このような材料としては延伸型位相差板の場合は特開2007-232873号公報等、液晶塗布型位相差板の場合には特開2010-30979号公報に記載されているものを用いることも好ましい。
 また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(特開平10-90521号公報)。λ/2位相差板もλ/4位相差板と同様の材料方法で製造される。延伸型位相差板と液晶塗布型位相差板との組合せは任意であるが、どちらも液晶塗布型位相差板を用いることは厚さを薄くすることができるので好ましい。
 前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(特開2014-224837号公報)。正のCプレートも液晶塗布型位相差板であっても延伸型位相差板であってもよい。厚さ方向の位相差は-200~-20nm好ましくは-140~-40nmである。
In general, many materials exhibit large birefringence at shorter wavelengths and smaller birefringence at longer wavelengths. In this case, since a phase difference of λ/4 cannot be achieved in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, which is λ/4 near 560 nm where the visibility is high. Often designed to be ~150 nm. It is preferable to use an inverse dispersion λ/4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one because the visibility can be improved. As such a material, those described in JP-A-2007-232873 in the case of a stretched retardation plate and those disclosed in JP-A-2010-30979 in the case of a liquid crystal coating retardation plate may be used. preferable.
As another method, there is also known a technique for obtaining a broadband λ/4 retardation plate by combining it with a λ/2 retardation plate (Japanese Patent Laid-Open No. 10-90521). The λ/2 retardation plate is also manufactured by the same material method as that of the λ/4 retardation plate. The combination of the stretched retardation plate and the liquid crystal coating type retardation plate is arbitrary, but it is preferable to use the liquid crystal coating type retardation plate for both because the thickness can be reduced.
There is also known a method of laminating a positive C plate on the circularly polarizing plate in order to enhance visibility in an oblique direction (Japanese Patent Laid-Open No. 2014-224837). The positive C plate may be a liquid crystal coating type retardation plate or a stretching type retardation plate. The retardation in the thickness direction is -200 to -20 nm, preferably -140 to -40 nm.
[タッチセンサ]
 本発明のフレキシブル表示装置は、タッチセンサをさらに備えていてもよい。タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される表示部である領域に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない非表示部である領域に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記ウインドウの透明基板と同様の材料が使用できる。タッチセンサの基板は、その靱性が2,000MPa%以上であるものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000~30,000MPa%であってもよい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)-歪み(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
[Touch sensor]
The flexible display device of the present invention may further include a touch sensor. The touch sensor is used as an input means. As the touch sensor, various types such as a resistance film type, a surface acoustic wave type, an infrared type, an electromagnetic induction type, and a capacitance type have been proposed, and any type may be used. Of these, the capacitance method is preferable. The capacitive touch sensor is divided into an active region and a non-active region located outside the active region. The active area is an area corresponding to a display area where a screen is displayed on the display panel and is an area where a user's touch is sensed, and the inactive area is a non-display area where the screen is not displayed on the display device. Is an area corresponding to the area. The touch sensor includes a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad unit. Each sensing line can be included. As the substrate having flexible characteristics, the same material as the transparent substrate for the window can be used. The toughness of the substrate of the touch sensor is preferably 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%. Here, the toughness is defined as the area under the curve to the breaking point in a stress (MPa)-strain (%) curve (Stress-strain curve) obtained through a tensile test of a polymer material.
 前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4-ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独又は2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、セレニウム、クロムなどを挙げることができる。これらは単独又は2種以上混合して使用することができる。 The sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction. The first pattern and the second pattern are arranged in different directions. The first pattern and the second pattern are formed on the same layer, and the respective patterns must be electrically connected in order to detect a touched point. The first pattern has a structure in which the unit patterns are connected to each other through a joint, but the second pattern has a structure in which the unit patterns are separated from each other in an island shape. A separate bridge electrode is required to make the connection. A known transparent electrode material can be applied to the sensing pattern. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), indium gallium zinc oxide (IGZO), cadmium tin oxide (CTO). , PEDOT (poly(3,4-ethylenedioxythiophene)), carbon nanotube (CNT), graphene, metal wire, and the like, and these may be used alone or in combination of two or more. Preferably ITO can be used. The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, selenium, and chromium. These may be used alone or in combination of two or more.
 ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。前記タッチセンサはパターンが形成されたパターン領域と、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、前記光学調節層は無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率を上昇させることができる。
 前記光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
 前記無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
The bridge electrode may be formed on the sensing layer via an insulating layer, and the bridge electrode may be formed on the substrate, and the insulating layer and the sensing pattern may be formed on the bridge electrode. The bridge electrode may be formed of the same material as the sensing pattern, and may be formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in the structure of the layer covering the sensing pattern. In the latter case, the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer. The touch sensor has a difference in transmittance between a pattern area where a pattern is formed and a non-pattern area where the pattern is not formed, specifically, a light transmittance induced by a difference in refractive index in these areas. An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating the difference, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material. The optical adjustment layer may be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. The photocurable composition may further include inorganic particles. The inorganic particles can increase the refractive index of the optical adjustment layer.
The photocurable organic binder may include, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer. The photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
The inorganic particles can include, for example, zirconia particles, titania particles, alumina particles, and the like. The photocurable composition may further include various additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
[接着層]
 前記フレキシブル表示装置用積層体を形成する、ウインドウフィルム、偏光板、タッチセンサ等の各層、並びに各層を構成する直線偏光板、λ/4位相差板等のフィルム部材は接着剤によって接着することができる。接着剤としては、水系接着剤、有機溶剤系接着剤、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、水系溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型接着剤、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤、感圧型粘着剤、再湿型接着剤等、汎用に使用されているものが使用できる。中でも水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよく用いられる。接着層の厚さは、求められる接着力等に応じて適宜調節することができ、例えば0.01~500μm、好ましくは0.1~300μmである。接着層は、前記フレキシブル表示装置用積層体には複数存在してよいが、それぞれの厚さ及び用いられる接着剤の種類は同一であってもよいし、異なっていてもよい。
[Adhesive layer]
Each layer, such as a window film, a polarizing plate, and a touch sensor, which forms the laminate for a flexible display device, and a film member such as a linear polarizing plate and a λ/4 retardation plate, which constitutes each layer, may be bonded with an adhesive. it can. As the adhesive, a water-based adhesive, an organic solvent-based adhesive, a solvent-free adhesive, a solid adhesive, a solvent volatilization type adhesive, a water-based solvent volatilization type adhesive, a moisture-curable adhesive, a heat-curable adhesive, Anaerobic curable adhesives, active energy ray curable adhesives, hardener mixed adhesives, hot melt adhesives, pressure sensitive adhesives, pressure sensitive adhesives, rewet adhesives, etc. are widely used. Things can be used. Of these, water-based solvent volatilizing adhesives, active energy ray-curing adhesives, and pressure-sensitive adhesives are often used. The thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, and is, for example, 0.01 to 500 μm, preferably 0.1 to 300 μm. A plurality of adhesive layers may be present in the laminate for a flexible display device, but the thickness of each and the type of adhesive used may be the same or different.
 前記水系溶剤揮散型接着剤としてはポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン-酢酸ビニル系エマルジョン、スチレン-ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。水、前記主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系溶剤揮散型接着剤によって接着する場合、前記水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系溶剤揮散型接着剤を用いる場合の接着層の厚さは0.01~10μm、好ましくは0.1~1μmであってもよい。前記水系溶剤揮散型接着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び前記接着剤の種類は同一であってもよいし、異なっていてもよい。 As the water-based solvent volatilizing adhesive, polyvinyl alcohol-based polymer, water-soluble polymer such as starch, water-dispersed polymer such as ethylene-vinyl acetate emulsion, styrene-butadiene emulsion can be used as the main polymer. In addition to water and the base polymer, a cross-linking agent, a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be added. In the case of bonding with the water-based solvent volatile adhesive, the water-based solvent volatile adhesive may be injected between the adhered layers to bond the adhered layers and then dried to impart adhesiveness. The thickness of the adhesive layer when the water-based solvent volatilizing adhesive is used may be 0.01 to 10 μm, preferably 0.1 to 1 μm. When the water-based solvent volatile adhesive is used to form a plurality of layers, the thickness of each layer and the type of the adhesive may be the same or different.
 前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物と同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物とは、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。接着層に用いられるラジカル重合性化合物としてはアクリロイル基を有する化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を含むことも好ましい。 The active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates an active energy ray to form an adhesive layer. The active energy ray-curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound similar to the hard coat composition. The radical-polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used. As the radically polymerizable compound used in the adhesive layer, a compound having an acryloyl group is preferable. It is also preferable to include a monofunctional compound in order to reduce the viscosity of the adhesive composition.
 前記カチオン重合性化合物は、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物がより好ましい。接着剤組成物の粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
 活性エネルギー線組成物には重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等であり、適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合又はカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
The cationically polymerizable compound is the same as that used in the hard coat composition, and the same kind as the hard coat composition can be used. As the cationically polymerizable compound used in the active energy ray-curable composition, an epoxy compound is more preferable. It is also preferable to include a monofunctional compound as a reactive diluent to reduce the viscosity of the adhesive composition.
The active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which can be appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization. In the description of the hard coat composition, an initiator capable of initiating radical polymerization and/or cationic polymerization by irradiation with active energy rays can be used.
 前記活性エネルギー線硬化組成物はさらに、イオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれか又は両方に塗布後貼合し、いずれかの被着層又は両方の被着層を通して活性エネルギー線を照射して硬化させることで接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合の接着層の厚さは0.01~20μm、好ましくは0.1~10μmであってもよい。前記活性エネルギー線硬化型接着剤を複数層の形成に用いる場合には、それぞれの層の厚さ及び用いられる接着剤の種類は同一であってもよいし、異なっていてもよい。 The active energy ray-curable composition is further an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, a solvent. Can be included. In the case of adhering with the active energy ray-curable adhesive, the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and activated through either adherent layer or both adherent layers. It can be adhered by irradiating it with an energy ray and curing it. The thickness of the adhesive layer when the active energy ray-curable adhesive is used may be 0.01 to 20 μm, preferably 0.1 to 10 μm. When the active energy ray-curable adhesive is used to form a plurality of layers, the thickness of each layer and the type of adhesive used may be the same or different.
 前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着層(接着層)が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記粘着剤を用いる場合の接着層の厚さは1~500μm、好ましくは2~300μmであってもよい。前記粘着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び用いられる粘着剤の種類は同一であってもよいし、異なっていてもよい。 The pressure-sensitive adhesive may be classified into an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, etc. depending on the base polymer, and any of these may be used. In addition to the base polymer, the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like. A pressure-sensitive adhesive layer (adhesive layer) is formed by dissolving and dispersing each component constituting the pressure-sensitive adhesive in a solvent to obtain a pressure-sensitive adhesive composition, applying the pressure-sensitive adhesive composition on a substrate, and then drying it. To be done. The adhesive layer may be directly formed, or may be separately formed on a substrate and transferred. It is also preferable to use a release film to cover the adhesive surface before adhesion. When the pressure-sensitive adhesive is used, the thickness of the adhesive layer may be 1 to 500 μm, preferably 2 to 300 μm. When the pressure-sensitive adhesive is used for forming a plurality of layers, the thickness of each layer and the type of pressure-sensitive adhesive used may be the same or different.
[遮光パターン]
 前記遮光パターンは前記フレキシブル表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層又は複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有することができる。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独又は2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、通常1~100μm、好ましくは2~50μmである。また、遮光パターンの厚さ方向に傾斜等の形状を付与することも好ましい。
[Shading pattern]
The light shielding pattern may be applied as at least a part of a bezel or a housing of the flexible display device. The visibility of the image is improved by hiding the wiring arranged at the peripheral portion of the flexible display device by the light-shielding pattern and making it difficult to see. The light-shielding pattern may be in the form of a single layer or multiple layers. The color of the light-shielding pattern is not particularly limited, and may have various colors such as black, white and metallic colors. The light-shielding pattern can be formed of a pigment for realizing color and a polymer such as acrylic resin, ester resin, epoxy resin, polyurethane, or silicone. These may be used alone or as a mixture of two or more kinds. The light-shielding pattern can be formed by various methods such as printing, lithography and inkjet. The thickness of the light-shielding pattern is usually 1 to 100 μm, preferably 2 to 50 μm. Further, it is also preferable to provide a shape such as an inclination in the thickness direction of the light shielding pattern.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記しない限り、質量%及び質量部を意味する。まず評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, "%" and "parts" in the examples mean mass% and parts by mass. First, the evaluation method will be described.
<弾性率の測定>
 実施例及び比較例において得られたポリアミドイミドフィルムの弾性率を(株)島津製作所製「オートグラフAG-IS」を用いて測定した。縦横10mm幅のフィルムを作製し、チャック間距離50mm、引張速度10mm/分の条件でS-S曲線を測定し、その傾きから弾性率を算出した。
<Measurement of elastic modulus>
The elastic moduli of the polyamide-imide films obtained in Examples and Comparative Examples were measured using “Autograph AG-IS” manufactured by Shimadzu Corporation. A film having a width of 10 mm and a width of 10 mm was prepared, an SS curve was measured under conditions of a chuck distance of 50 mm and a pulling speed of 10 mm/min, and the elastic modulus was calculated from the inclination.
<表面硬度の測定>
 実施例及び比較例において得られたポリアミドイミドフィルムの表面硬度として、JIS K 5600-5-4:1999に準拠して、フィルム表面の鉛筆硬度を採用した。荷重は100g、走査速度60mm/分とし、4000ルクスの環境下で、傷の有無の評価を行い、鉛筆硬度を測定した。
<Measurement of surface hardness>
As the surface hardness of the polyamide-imide films obtained in Examples and Comparative Examples, the pencil hardness of the film surface was adopted according to JIS K 5600-5-4:1999. The load was 100 g, the scanning speed was 60 mm/min, and the presence or absence of scratches was evaluated under the environment of 4000 lux to measure the pencil hardness.
<重量平均分子量の測定>
 ゲル浸透クロマトグラフィー(GPC)測定
(1)前処理方法
 サンプルにDMF溶離液(10mmol/L臭化リチウム溶液)を濃度2mg/mLとなるように加え、80℃にて30分間攪拌しながら加熱し、冷却後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:東ソー(株)製TSKgel α-2500((7)7.8mm径×300mm)×1本、α-M((13)7.8mm径×300mm)×2本
溶離液:DMF(10mmol/Lの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<Measurement of weight average molecular weight>
Gel Permeation Chromatography (GPC) Measurement (1) Pretreatment Method DMF eluent (10 mmol/L lithium bromide solution) was added to the sample to a concentration of 2 mg/mL, and heated at 80° C. for 30 minutes with stirring. After cooling, it was filtered with a 0.45 μm membrane filter to obtain a measurement solution.
(2) Measurement condition column: TSKgel α-2500 ((7) 7.8 mm diameter × 300 mm) × 1 column, α-M ((13) 7.8 mm diameter × 300 mm) × 2 column eluent manufactured by Tosoh Corporation : DMF (10 mmol/L lithium bromide added)
Flow rate: 1.0 mL/min Detector: RI detector Column temperature: 40°C
Injection volume: 100 μL
Molecular weight standard: Standard polystyrene
<フィルムの厚さの測定>
 実施例及び比較例で得られたポリアミドイミドフィルムの厚さは、マイクロメーター((株)ミツトヨ製「ID-C112XBS」)を用いて測定した。
<Measurement of film thickness>
The thickness of the polyamide-imide films obtained in Examples and Comparative Examples was measured using a micrometer (“ID-C112XBS” manufactured by Mitutoyo Corporation).
<実施例1>
[ポリアミドイミド樹脂(1)の調製]
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)及びN,N-ジメチルアセトアミド(DMAc)をTFMBの固形分が2.36質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)をTFMBに対して30.30mol%になるように添加し、室温で3時間撹拌した。その後、10℃に冷却した後に、4,4’オキシビス(ベンゾイルクロライド)(OBBC)をTFMBに対して5.05mol%、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸クロライド(6FBPDOC)をTFMBに対して27.28mol%になるように加え、10分攪拌後に、さらにOBBCをTFMBに対して5.05mоl%、6FBPDOCを27.28mоl%になるように加え、30分間攪拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間攪拌した後に、6FBPDOCをTFMBに対して6.06mol%になるように加え、2時間攪拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリンをそれぞれTFMBに対して70.71mol%、無水酢酸をTFMBに対して212.12mol%とを加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(1)を得た。ポリアミドイミド樹脂(1)の重量平均分子量は、363,000であった。
<Example 1>
[Preparation of polyamide-imide resin (1)]
Under a nitrogen atmosphere, in a separable flask equipped with a stirring blade, 2,2′-bis(trifluoromethyl)benzidine (TFMB) and N,N-dimethylacetamide (DMAc) were added at a solid content of TFMB of 2.36% by mass. And TFMB were dissolved in DMAc with stirring at room temperature. Next, 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) was added to the flask at 30.30 mol% with respect to TFMB, and the mixture was stirred at room temperature for 3 hours. Then, after cooling to 10° C., 4,4′ oxybis(benzoyl chloride) (OBBC) was added to 5.05 mol% with respect to TFMB, 2,2′-bis(trifluoromethyl)-4,4′-biphenyldicarboxylic acid. Acid chloride (6FBPDOC) was added to TFMB so as to be 27.28 mol%, and after stirring for 10 minutes, OBBC was further added at 5.05 mol% and 6FBPDOC to 27.28 mol% to TFMB, and 30 Stir for minutes. Thereafter, the same amount of DMAc as the initially added DMAc was added, and the mixture was stirred for 10 minutes, then, 6FBPDOC was added so as to be 6.06 mol% with respect to TFMB, and stirred for 2 hours. Next, add 70.71 mol% of diisopropylethylamine and 4-picoline to TFMB and 212.12 mol% of acetic anhydride to TFMB, and stir for 30 minutes, and then raise the internal temperature to 70°C. The mixture was stirred for 3 hours to obtain a reaction solution.
The obtained reaction liquid was cooled to room temperature, put into a large amount of methanol in a filament form, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 60° C. to obtain a polyamideimide resin (1). The weight average molecular weight of the polyamide-imide resin (1) was 363,000.
[ポリアミドイミドフィルム(1)の製造]
 得られたポリアミドイミド樹脂(1)に、濃度が10質量%となるようにDMAcを加え、ポリアミドイミドワニス(1)を作製した。得られたポリアミドイミドワニス(1)をポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の厚さが50μmとなるようにアプリケーターを用いて塗工し、50℃で30分間、次いで140℃で15分間乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに200℃で60分間乾燥し、厚さ45μmのポリアミドイミドフィルム(1)を得た。
[Production of Polyamideimide Film (1)]
DMAc was added to the obtained polyamide-imide resin (1) so that the concentration was 10% by mass to prepare a polyamide-imide varnish (1). The obtained polyamide-imide varnish (1) was coated on a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) using an applicator so that the thickness of the self-supporting film was 50 μm, It was dried at 50°C for 30 minutes and then at 140°C for 15 minutes to obtain a free-standing film. The self-supporting film was fixed to a metal frame and further dried at 200° C. for 60 minutes to obtain a polyamideimide film (1) having a thickness of 45 μm.
<実施例2>
[ポリアミドイミド樹脂(2)の調製]
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及びDMAcをTFMBの固形分が4.20質量%となるように加え、さらに4,4’-(ヘキサフルオロプロピリデン)ジアニリン(6FDAM)をTFMBに対して11.11mol%を加え、室温で撹拌しながらTFMBと6FDAMをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して5.59mol%になるように添加し、室温で3時間撹拌した。その後、10℃に冷却した後に、OBBCをTFMBに対して10.17mol%、6FBPDOCをTFMBに対して40.21mol%になるように加え、10分攪拌後に、さらにOBBCをTFMBに対して5.59mоl%、6FBPDOCを40.21mоl%になるように加え、30分間攪拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間攪拌した後に、6FBPDOCをTFMBに対して8.93mol%になるように加え、2時間攪拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリンをそれぞれTFMBに対して100.50mol%、無水酢酸をTFMBに対して78.17mol%とを加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(2)を得た。ポリアミドイミド樹脂(2)の重量平均分子量は、227,000であった。
<Example 2>
[Preparation of polyamide-imide resin (2)]
Under a nitrogen atmosphere, TFMB and DMAc were added to a separable flask equipped with a stirring blade so that the solid content of TFMB was 4.20% by mass, and 4,4′-(hexafluoropropylidene)dianiline (6FDAM) was added. 11.11 mol% was added to TFMB, and TFMB and 6FDAM were dissolved in DMAc while stirring at room temperature. Next, 6FDA was added to the flask at a concentration of 5.59 mol% with respect to TFMB, and the mixture was stirred at room temperature for 3 hours. Then, after cooling to 10° C., OBBC was added to TFMB at 10.17 mol% and 6FBPDOC to 40.21 mol% to TFMB, and after stirring for 10 minutes, OBBC was further added to TFMB at 5. 59 mol% and 6FBPDOC were added to 40.21 mol% and stirred for 30 minutes. Thereafter, the same amount of DMAc as the initially added DMAc was added, and the mixture was stirred for 10 minutes, then 6FBDPOC was added so as to be 8.93 mol% with respect to TFMB, and stirred for 2 hours. Next, 100.50 mol% of diisopropylethylamine and 4-picoline to TFMB and 78.17 mol% of acetic anhydride to TFMB were added to the flask, and after stirring for 30 minutes, the internal temperature was raised to 70°C. The mixture was stirred for 3 hours to obtain a reaction solution.
The obtained reaction liquid was cooled to room temperature, put into a large amount of methanol in a filament form, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 60° C. to obtain a polyamideimide resin (2). The weight average molecular weight of the polyamide-imide resin (2) was 227,000.
[ポリアミドイミドフィルム(2)の製造]
 得られたポリアミドイミド樹脂(2)に、濃度が10質量%となるようにDMAcを加え、ポリアミドイミドワニス(2)を作製した。得られたポリアミドイミドワニス(2)をポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗工し、50℃で30分間、次いで140℃で15分間乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに200℃で60分間乾燥し、厚さ50μmのポリアミドイミドフィルム(2)を得た。
[Production of Polyamideimide Film (2)]
DMAc was added to the obtained polyamideimide resin (2) so that the concentration was 10% by mass, to prepare a polyamideimide varnish (2). The obtained polyamide imide varnish (2) was applied onto a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) using an applicator so that the thickness of the self-supporting film was 55 μm, It was dried at 50°C for 30 minutes and then at 140°C for 15 minutes to obtain a free-standing film. The self-supporting film was fixed to a metal frame and further dried at 200° C. for 60 minutes to obtain a polyamideimide film (2) having a thickness of 50 μm.
<比較例1>
[ポリアミドイミド樹脂(3)の調製]
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及びDMAcをTFMBの固形分が5.35wt%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して41.24mol%になるように添加し、室温で3時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して55.67mol%になるように加え、30分間攪拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間攪拌した後に、TPCをTFMBに対して6.19mol%になるように加え、2時間攪拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリンをそれぞれTFMBに対して61.86mol%、無水酢酸をTFMBに対して288.66mol%とを加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(3)を得た。ポリアミドイミド樹脂(4)の重量平均分子量は、174,000であった。
<Comparative Example 1>
[Preparation of polyamide-imide resin (3)]
Under a nitrogen atmosphere, TFMB and DMAc were added to a separable flask equipped with a stirring blade so that the solid content of TFMB was 5.35 wt %, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 6FDA was added to the flask at 41.24 mol% with respect to TFMB, and the mixture was stirred at room temperature for 3 hours. Then, after cooling to 10° C., TPC was added so as to be 55.67 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. Thereafter, the same amount of DMAc as the initially added DMAc was added, and the mixture was stirred for 10 minutes, then TPC was added so as to be 6.19 mol% with respect to TFMB, and stirred for 2 hours. Then, 61.86 mol% of diisopropylethylamine and 4-picoline to TFMB and 288.66 mol% of acetic anhydride to TFMB were added to the flask and stirred for 30 minutes, and then the internal temperature was raised to 70°C. The mixture was stirred for 3 hours to obtain a reaction solution.
The obtained reaction liquid was cooled to room temperature, put into a large amount of methanol in a filament form, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 60° C. to obtain a polyamideimide resin (3). The weight average molecular weight of the polyamide-imide resin (4) was 174,000.
[ポリアミドイミドフィルム(3)の製造]
 得られたポリアミドイミド樹脂(3)に、濃度が10質量%となるようにDMAcを加え、ポリアミドイミドワニス(3)を作製した。得られたポリアミドイミドワニス(3)をポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗工し、50℃で30分間、次いで140℃で15分間乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに200℃で60分間乾燥し、厚さ50μmのポリアミドイミドフィルム(3)を得た。
[Production of Polyamideimide Film (3)]
DMAc was added to the obtained polyamide-imide resin (3) so that the concentration was 10% by mass to prepare a polyamide-imide varnish (3). The obtained polyamide imide varnish (3) was applied on a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name "A4100") using an applicator so that the thickness of the self-supporting film was 55 μm, It was dried at 50°C for 30 minutes and then at 140°C for 15 minutes to obtain a free-standing film. The self-supporting film was fixed to a metal frame and further dried at 200° C. for 60 minutes to obtain a polyamideimide film (3) having a thickness of 50 μm.
 ポリアミドイミド樹脂フィルム(1)~(3)の弾性率及び表面硬度(鉛筆硬度)を上記の方法に従い測定した。得られた結果を表1に示す。 The elastic modulus and surface hardness (pencil hardness) of the polyamide-imide resin films (1) to (3) were measured according to the above method. The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035

Claims (10)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボニル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよく、
     Vは、単結合、-O-、ジフェニルメチレン基、炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(R30)-又は-Si(R31-を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、R30及びR31は、互いに独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12のアルキル基を表し、
     mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
    で表される構成単位、及び、式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
    で表される構成単位を有するポリアミドイミド系樹脂を含む光学フィルム。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1),
    R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. Represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms, or a halogeno group, wherein hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom, a hydrogen atom having 1 to 4 carbon atoms. It may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group,
    V is a single bond, —O—, a diphenylmethylene group, a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, —SO 2 —, —S—, —CO Represents ——, —PO—, —PO 2 —, —N(R 30 )—, or —Si(R 31 ) 2 —, wherein hydrogen atoms contained in the hydrocarbon group, independently of each other, are halogen atoms. R 30 and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, which may be substituted with a halogen atom.
    m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
    And a structural unit represented by the formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
    An optical film containing a polyamide-imide resin having a structural unit represented by.
  2.  式(1)中のRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又はハロゲノ基を表し、Rに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基、又は、カルボキシル基で置換されていてもよい、請求項1に記載の光学フィルム。 R 1 in formula (1) independently represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms or a halogeno group, and hydrogen atoms contained in R 1 independently of each other, The optical film according to claim 1, which may be substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a carboxyl group.
  3.  式(1)中のVは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい、請求項1又は2に記載の光学フィルム。 V in the formula (1) represents a single bond, —O—, a diphenylmethylene group or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, wherein The optical film according to claim 1, wherein the hydrogen atoms contained in the hydrocarbon group may be independently substituted with a halogen atom.
  4.  ポリアミドイミド系樹脂は、式(1)で表される構成単位として、式(4):
    Figure JPOXMLDOC01-appb-C000003
    [式(4)中、R及びVは、互いに独立に、式(1)中のR及びVについて定義したとおりであり、R19及びR20は、互いに独立に、水素原子又は式(1)中のRについて記載した基を表す]
    で表される構成単位を含む、請求項1~3のいずれかに記載の光学フィルム。
    The polyamide-imide resin has the following formula (4) as a constitutional unit represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000003
    [In formula (4), R 1 and V are, independently of each other, as defined for R 1 and V in formula (1), and R 19 and R 20 are independently of each other a hydrogen atom or a formula ( Represents the groups described for R 2 in 1)]
    The optical film according to any one of claims 1 to 3, which comprises a structural unit represented by:
  5.  式(4)中のRは炭素数1~12のフルオロアルキル基である、請求項4に記載の光学フィルム。 The optical film according to claim 4, wherein R 1 in the formula (4) is a fluoroalkyl group having 1 to 12 carbon atoms.
  6.  厚さが10~200μmである、請求項1~5のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 5, which has a thickness of 10 to 200 µm.
  7.  請求項1~6のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。 A flexible display device comprising the optical film according to any one of claims 1 to 6.
  8.  タッチセンサをさらに備える、請求項7に記載のフレキシブル表示装置。 The flexible display device according to claim 7, further comprising a touch sensor.
  9.  偏光板をさらに備える、請求項7又は8に記載のフレキシブル表示装置。 The flexible display device according to claim 7 or 8, further comprising a polarizing plate.
  10.  式(1):
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、
     R及びRは、互いに独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数1~12のカルボ二ル基、炭素数1~12のオキシカルボニル基又はハロゲノ基を表し、ここで、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、水酸基又はカルボキシル基で置換されていてもよく、
     Vは、単結合、-O-、ジフェニルメチレン基又は炭素数1~12の直鎖状、分枝状又は脂環式の2価の炭化水素基を表し、ここで、該炭化水素基に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
     mは0~2の整数を表し、nは1~4の整数を表し、pは0~4の整数を表し、qは0~4の整数を表す]
    で表される構成単位、及び、式(2):
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、Xは2価の有機基を表し、Yは4価の有機基を表す]
    で表される構成単位を有するポリアミドイミド系樹脂。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (1),
    R 1 and R 2 are, independently of each other, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a carbon number. It represents a carbonyl group having 1 to 12 carbon atoms, an oxycarbonyl group having 1 to 12 carbon atoms or a halogeno group, wherein the hydrogen atoms contained in R 1 and R 2 are, independently of each other, a halogen atom or a carbon atom having 1 to 12 carbon atoms. 4 may be substituted with an alkyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group or a carboxyl group,
    V represents a single bond, —O—, a diphenylmethylene group, or a linear, branched or alicyclic divalent hydrocarbon group having 1 to 12 carbon atoms, which is included in the hydrocarbon group. Hydrogen atoms which are independently of each other may be substituted with a halogen atom,
    m represents an integer of 0 to 2, n represents an integer of 1 to 4, p represents an integer of 0 to 4, and q represents an integer of 0 to 4]
    And a structural unit represented by the formula (2):
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (2), X represents a divalent organic group and Y represents a tetravalent organic group]
    A polyamide-imide resin having a structural unit represented by:
PCT/JP2019/050538 2018-12-28 2019-12-24 Optical film, flexible display device and polyamide-imide resin WO2020138042A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980086081.2A CN113227222A (en) 2018-12-28 2019-12-24 Optical film, flexible display device, and polyamide-imide resin
KR1020217023794A KR20210110647A (en) 2018-12-28 2019-12-24 Optical film, flexible display device, and polyamideimide-based resin

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2018-248567 2018-12-28
JP2018248562 2018-12-28
JP2018248561 2018-12-28
JP2018-248562 2018-12-28
JP2018248567 2018-12-28
JP2018-248561 2018-12-28
JP2019218262A JP2020109156A (en) 2018-12-28 2019-12-02 Optical film, flexible display device and polyamide-imide resin
JP2019218263A JP2020109157A (en) 2018-12-28 2019-12-02 Polyamide resin, optical film and flexible display device
JP2019-218261 2019-12-02
JP2019-218262 2019-12-02
JP2019218261A JP2020109155A (en) 2018-12-28 2019-12-02 Optical film, flexible display device and polyamide-imide resin
JP2019-218263 2019-12-02

Publications (1)

Publication Number Publication Date
WO2020138042A1 true WO2020138042A1 (en) 2020-07-02

Family

ID=71127025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050538 WO2020138042A1 (en) 2018-12-28 2019-12-24 Optical film, flexible display device and polyamide-imide resin

Country Status (1)

Country Link
WO (1) WO2020138042A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508048A (en) * 1994-10-13 1998-08-04 ザ ユニバーシティ オブ アクロン Negative birefringent rigid rod polymer film
JP2016125063A (en) * 2015-01-02 2016-07-11 三星電子株式会社Samsung Electronics Co., Ltd. Window film for display device, and display device including the same
JP2018119132A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Polyamide-imide resin and optical member containing polyamide-imide resin
JP2018172669A (en) * 2017-03-30 2018-11-08 Jxtgエネルギー株式会社 Polyamide imide, resin solution and film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508048A (en) * 1994-10-13 1998-08-04 ザ ユニバーシティ オブ アクロン Negative birefringent rigid rod polymer film
JP2016125063A (en) * 2015-01-02 2016-07-11 三星電子株式会社Samsung Electronics Co., Ltd. Window film for display device, and display device including the same
JP2018119132A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Polyamide-imide resin and optical member containing polyamide-imide resin
JP2018172669A (en) * 2017-03-30 2018-11-08 Jxtgエネルギー株式会社 Polyamide imide, resin solution and film

Similar Documents

Publication Publication Date Title
KR20220095208A (en) polyamideimide resin
JP2020076067A (en) Optical film
WO2020138043A1 (en) Polyamide-imide-based resin, optical film and flexible display device
JP2020109155A (en) Optical film, flexible display device and polyamide-imide resin
KR20210110643A (en) Polyamideimide-based resin, optical film and flexible display device
JP2020125463A (en) Optical film, flexible display device and resin composition
WO2020138046A1 (en) Optical film
JP2020097710A (en) Optical film, flexible display device, and resin composition
JP2020050864A (en) Composition
WO2020138042A1 (en) Optical film, flexible display device and polyamide-imide resin
JP2020109156A (en) Optical film, flexible display device and polyamide-imide resin
JP2020109154A (en) Polyamide-imide resin, optical film and flexible display device
WO2020138044A1 (en) Polyamide-based resin, optical film, and flexible display device
JP2020109157A (en) Polyamide resin, optical film and flexible display device
JP2020125454A (en) Polyamide-imide resin, polyamide-imide resin varnish, optical film and flexible display device
JP2022163714A (en) Optical laminate and flexible display device
KR20210110647A (en) Optical film, flexible display device, and polyamideimide-based resin
JP2021084941A (en) Optical film and flexible display device
KR20210110646A (en) Optical film, flexible display device, and polyamideimide-based resin
JP2020100805A (en) Optical film, flexible display device, and resin composition
JP2022163622A (en) Optical laminate and flexible display device
WO2020137870A1 (en) Method for producing polyimide resin
JP2020105497A (en) Polyimide resin and manufacturing method thereof
WO2020137871A1 (en) Polyimide resin and method for producing same
JP2020105496A (en) Manufacturing method of polyimide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023794

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19904384

Country of ref document: EP

Kind code of ref document: A1