WO2020138035A1 - Oxide superconducting wire material and method for manufacturing same - Google Patents

Oxide superconducting wire material and method for manufacturing same Download PDF

Info

Publication number
WO2020138035A1
WO2020138035A1 PCT/JP2019/050519 JP2019050519W WO2020138035A1 WO 2020138035 A1 WO2020138035 A1 WO 2020138035A1 JP 2019050519 W JP2019050519 W JP 2019050519W WO 2020138035 A1 WO2020138035 A1 WO 2020138035A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide superconducting
superconducting
superconducting wire
metal layer
Prior art date
Application number
PCT/JP2019/050519
Other languages
French (fr)
Japanese (ja)
Inventor
智 羽生
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020138035A1 publication Critical patent/WO2020138035A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to an oxide superconducting wire and a method for manufacturing the same.
  • the present application claims priority to Japanese Patent Application No. 2018-243592 filed in Japan on December 26, 2018, and the content thereof is incorporated herein.
  • Patent Document 1 describes a superconducting wire in which an intermediate layer and an oxide superconducting layer are formed on a substrate having a metal base material, and a copper electrolytic plating film is formed as a stabilizing layer around the substrate.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide superconducting wire having excellent properties per unit cross-sectional area and a method for manufacturing the same.
  • a first aspect of the present invention is a superconducting wire having an oxide superconducting layer containing a rare earth element, wherein the oxide superconducting layer has an orientation degree ⁇ in a plane parallel to a thickness direction of 6.0° or less.
  • the superconducting wire is laminated on the first surface of the oxide superconducting layer in the thickness direction, and is a Ag layer or a first metal layer that is a layer containing Ag, and a second surface opposite to the first surface.
  • a second metal layer that is an Ag layer or a layer containing Ag and is in contact with the first metal layer or the second metal layer in the thickness direction of the oxide superconducting layer and contains a Cu layer or Cu.
  • a metal layer is an Ag layer or a layer containing Ag.
  • the metal layer may include a first Cu metal layer in contact with the first metal layer and a second Cu metal layer in contact with the second metal layer.
  • the first surface in the width direction of the oxide superconducting layer may be covered with the first metal layer, and the second surface may be covered with the second metal layer.
  • the total thickness of the superconducting wire in the thickness direction of the oxide superconducting layer may be 50 ⁇ m or less.
  • a second aspect of the present invention is a method for producing a superconducting wire having an oxide superconducting layer containing a rare earth element, a step of laminating the oxide superconducting layer on a substrate, and a thickness of the oxide superconducting layer.
  • the first metal layer and the second metal layer may be Ag layers or layers containing Ag.
  • a Cu layer or a metal layer containing Cu may be laminated so as to be in contact with the first metal layer or the second metal layer.
  • the conventional superconducting wire is It is possible to provide a superconducting wire having excellent characteristics per unit cross-sectional area, as compared with the substrate used for film formation remaining on one side in the thickness direction of the oxide superconducting layer.
  • FIG. 1 shows a superconducting wire according to the first embodiment.
  • the protective layer (first metal layer) 12 is laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and the second surface opposite to the first surface 11a.
  • a protective layer 14 (second metal layer) is laminated on 11b.
  • a stabilizing layer (metal layer) 13 is laminated on the surface of the protective layer 12 opposite to the oxide superconducting layer 11.
  • the protective layers 12 and 14 may be referred to as the first protective layer 12 and the second protective layer 14 in some cases.
  • the first protective layer 12 and the second protective layer 14 may have the same thickness, the same material, or the like, or may differ from each other in at least one of these viewpoints.
  • FIG. 2 shows a superconducting wire according to the second embodiment.
  • the superconducting wire 10A of the second embodiment includes a first protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and a stabilizing layer 13 laminated on the outer side of the first protective layer 12.
  • a second protective layer 14 laminated on the side surface.
  • FIG. 3 shows a superconducting wire according to the third embodiment.
  • the superconducting wire 10B of the third embodiment includes a protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, a protective layer 14 laminated on the second surface 11b, and a stabilizing layer ( It has a first Cu metal layer 13 and a stabilizing layer (second Cu metal layer) 15.
  • the respective stabilizing layers 13 and 15 may be distinguished from each other to be referred to as a first stabilizing layer 13 and a second stabilizing layer 15.
  • the first stabilizing layer 13 is stacked on the surface of the protective layer 12 opposite to the oxide superconducting layer 11.
  • the second stabilizing layer 15 is laminated on the surface of the protective layer 14 opposite to the oxide superconducting layer 11.
  • the first stabilizing layer 13 and the second stabilizing layer 15 may have the same thickness, the same material, or the like, or may differ from each other in at least one of these viewpoints.
  • FIG. 4 shows a superconducting wire according to the fourth embodiment.
  • the superconducting wire 10C of the fourth embodiment includes a first protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and an outer side of the first protective layer 12 (oxidation of the first protective layer 12).
  • Stabilization layer 13 laminated on the surface opposite to the oxide superconducting layer 11), the second surface 11b opposite to the first surface 11a of the oxide superconducting layer 11, and the side surface of the oxide superconducting layer 11.
  • the second stabilizing layer 15 covers the exposed surfaces of the first stabilizing layer 13 and the second protective layer 14.
  • the oxide superconducting layer 11 is composed of an oxide superconductor containing a rare earth element.
  • the oxide superconductor include an RE-Ba-Cu-O-based oxide superconductor represented by the general formula REBa2Cu3O7-x (RE123).
  • the rare earth element RE include one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the oxide superconducting layer 11 has a thickness of, for example, about 0.5 to 5 ⁇ m.
  • the oxide superconducting layer 11 is a superconducting layer oriented in the plane direction.
  • the degree of orientation ⁇ in the plane parallel to the thickness direction of the oxide superconducting layer 11 is preferably 6.0° or less.
  • the oxide superconducting layer 11 may be a superconducting layer oriented in the entire width direction.
  • the oxide superconducting layer 11 may be divided into two or more superconducting layers with a gap in a part in the width direction. Examples of the gap portion include a non-oriented portion, a void portion such as a groove, a conductor portion such as a metal, and an electrical insulating portion such as a resin.
  • the non-oriented portion may be an oxide having a composition similar to that of the superconducting layer.
  • each of the two or more superconducting layers preferably has a structure in which oriented superconducting layers are continuous in the longitudinal direction.
  • An artificial pin made of a different material may be introduced into the oxide superconducting layer 11 as an artificial crystal defect.
  • Examples of different materials used to introduce artificial pins into the oxide superconducting layer 11 include BaSnO3 (BSO), BaZrO3 (BZO), BaHfO3 (BHO), BaTiO3 (BTO), SnO2, TiO2, ZrO2, LaMnO3, At least one kind of ZnO and the like can be mentioned.
  • the protective layers 12 and 14 have a function of bypassing an overcurrent generated at the time of an accident and suppressing a chemical reaction that occurs between the oxide superconducting layer 11 and the layers provided on the protective layers 12 and 14.
  • the protective layers 12 and 14 include a silver (Ag) layer or a layer containing Ag (for example, an Ag alloy layer).
  • the Ag alloy preferably contains silver in a molar ratio or a weight ratio of 50% or more.
  • the protective layer 12 is in contact with the first surface 11 a of the oxide superconducting layer 11 in the thickness direction, and the protective layer 14 is in contact with the second surface 11 b of the oxide superconducting layer 11.
  • the thickness of the protective layers 12 and 14 is preferably about 1 to 30 ⁇ m, and may be 10 ⁇ m or less, 5 ⁇ m or less, 2 ⁇ m or less when thinning the protective layers 12 and 14.
  • the stabilizing layers 13 and 15 have functions such as bypassing an overcurrent generated at the time of an accident and mechanically reinforcing the oxide superconducting layer 11 and the protective layers 12 and 14.
  • the stabilizing layers 13 and 15 include a copper (Cu) layer or a layer containing Cu (for example, a Cu alloy layer). It is preferable that the Cu alloy contains 50% or more of silver in a molar ratio or a weight ratio.
  • the stabilizing layer 13 is in contact with one surface of the protective layer 12 in the thickness direction of the oxide superconducting layer 11, and the stabilizing layer 15 is in the thickness direction of the oxide superconducting layer 11. Touches one side of.
  • the thickness of the stabilizing layers 13 and 15 is not particularly limited, but is preferably about 1 to 300 ⁇ m, for example, 200 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 20 ⁇ m or the like.
  • the protective layers 12, 14 and the stabilizing layers 13, 15 are provided as the metal layers 12, 13, 14, 15 on both surfaces in the thickness direction of the oxide superconducting layer 11. Because of the laminated structure, the cross-sectional area of the wire as a whole can be reduced. If the cross-sectional area of the wire as a whole can be reduced, the superconducting wire can be easily bent and deformed, and a superconducting coil wound to have a smaller diameter than in the conventional case can be formed. In addition, there are advantages that the superconducting wire can be made lighter and the fine wire can be easily processed.
  • the protective layers 12 and 14 and the stabilizing layers 13 and 15 can be formed by one or a combination of two or more of vapor deposition, sputtering, and plating (electrolytic plating, electroless plating, etc.).
  • the total thickness of the superconducting wire rods 10, 10A, 10B, 10C in the thickness direction of the oxide superconducting layer 11 may be 10 to 1000 ⁇ m, for example, 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 70 ⁇ m or less, 50 ⁇ m or less. And so on.
  • the total thickness of the superconducting wire does not need to include all the configurations that can be attached to the superconducting wire, and for example, the outer surfaces of the metal layers 13, 14, 15 on both sides of the oxide superconducting layer 11 in the thickness direction. It may be the maximum distance between them.
  • the total thickness of the superconducting wires 10 and 10A may be the distance between the outer surface of the stabilizing layer 13 and the outer surface of the second protective layer 14.
  • the total thickness of the superconducting wire 10B may be the distance between the outer surface of the first stabilizing layer 13 and the outer surface of the second stabilizing layer 15.
  • the total thickness of the superconducting wire 10C may be the distance between the outer surfaces on both sides of the second stabilizing layer 15 in the thickness direction.
  • the width of the superconducting wire is not particularly limited, but, for example, 1 to 20 mm.
  • the length of the superconducting wire is not particularly limited, but is, for example, 1 m or more, and 10 m or more, 100 m or more, 200 m or more, 500 m or more, 1 km or more. It is also possible to connect a plurality of superconducting wires to form a longer wire. A short superconducting wire may be interposed while connecting the ends of the long superconducting wire in the longitudinal direction.
  • the superconducting wire for connection may have a short length of, for example, 1 m or less.
  • both sides in the width direction of the oxide superconducting layer 11 are preferably covered with metal layers such as the protective layers 12 and 14 or the stabilizing layers 13 and 15. .
  • the substrate used for forming the oxide superconducting layer 11 is composed of the metal substrate 21 and the intermediate layer 22.
  • the metal substrate 21 is a tape-shaped metal substrate 21 having main surfaces on both sides in the thickness direction.
  • Specific examples of the metal forming the metal substrate 21 include nickel alloys represented by Hastelloy (registered trademark), stainless steel, oriented Ni—W alloys in which a texture is introduced into nickel alloys, and the like.
  • the thickness of the metal substrate 21 may be appropriately adjusted according to the purpose and is, for example, in the range of 10 to 1000 ⁇ m.
  • the intermediate layer 22 may have a multi-layered structure, and may have, for example, a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, etc. in the order from the substrate side to the superconducting layer side. These layers are not always provided one by one, and some layers may be omitted or two or more layers of the same type may be repeatedly laminated.
  • the intermediate layer 22 may be a metal oxide.
  • the diffusion prevention layer has a function of suppressing a part of components of the metal substrate 21 from being diffused and being mixed as an impurity into the oxide superconducting layer 11 side.
  • the diffusion prevention layer is made of, for example, Si3N4, Al2O3, GZO (Gd2Zr2O7), or the like.
  • the diffusion prevention layer has a thickness of 10 to 400 nm, for example.
  • the bed layer has a function of reducing the reaction at the interface between the metal substrate 21 and the oxide superconducting layer 11, and improving the orientation of the layer formed thereon. Examples of the material of the bed layer include Y2O3, Er2O3, CeO2, Dy2O3, Eu2O3, Ho2O3 and La2O3.
  • the bed layer has a thickness of, for example, 10 to 100 nm.
  • the orientation layer is formed of a biaxially oriented material for controlling the crystal orientation of the cap layer.
  • the material of the orientation layer include metal oxides such as Gd2Zr2O7, MgO, ZrO2-Y2O3 (YSZ), SrTiO3, CeO2, Y2O3, Al2O3, Gd2O3, Zr2O3, Ho2O3, and Nd2O3.
  • This alignment layer is preferably formed by the IBAD method.
  • the cap layer is formed on the surface of the orientation layer, and is made of a material in which crystal grains can self-orient in the in-plane direction.
  • Examples of the material of the cap layer include CeO2, Y2O3, Al2O3, Gd2O3, ZrO2, YSZ, Ho2O3, Nd2O3, LaMnO3 and the like.
  • the thickness of the cap layer is in the range of 50 to 5000 nm.
  • the method for forming the intermediate layer 22 and the oxide superconducting layer 11 is not particularly limited as long as appropriate film formation is possible depending on the composition of the metal oxide.
  • the film forming method include a dry film forming method such as a sputtering method, an evaporation method, an ion beam assisted film forming method (IBAD method), and a wet film forming method such as a sol-gel method.
  • the vapor deposition method include an electron beam vapor deposition method, a pulse laser vapor deposition method (PLD method), and a chemical vapor deposition method (CVD method).
  • the oxide superconducting layer 11 is formed on the side opposite to the metal substrate 21 in the thickness direction of the oxide superconducting layer 11. It can be manufactured by a step of laminating a metal layer composed of the protective layer 12 and the plating layer 23 on top.
  • heat treatment such as oxygen annealing may be performed.
  • oxygen gas can be passed through during heat treatment to supply oxygen to the oxide superconducting layer 11.
  • the plating layer 23 may have a front surface portion 23A laminated on the protective layer 12, a back surface portion 23B laminated on the back surface of the metal substrate 21, and a side surface portion 23C provided on a side surface of the superconducting wire 20. ..
  • the side surface portion 23C may be removed prior to the step of removing the substrate. Thereby, as shown in FIG. 6, end faces in the width direction of each layer such as the metal substrate 21, the oxide superconducting layer 11 and the like may be exposed on the side surface of the stacked body 24. When removing the side surface portion 23C, a part of the oxide superconducting layer 11 may be removed. Examples of methods for removing the side surface portion 23C include mechanical processing such as grinding and laser processing.
  • the intermediate layer 22 may be removed. Moreover, on the surface of the oxide superconducting layer 11 after removing the metal substrate 21, the intermediate layer 22 may remain in at least a partial region in the width direction or the longitudinal direction. Further, when the metal substrate 21 is removed, a part (for example, a part in the thickness direction) of the oxide superconducting layer 11 may be removed.
  • a peeling method of applying a peeling force between the metal substrate 21 and the surface portion 23A of the plating layer can be mentioned. Alternatively, the substrate may be removed by mechanical processing such as grinding or laser processing.
  • a laminate 25 having a structure having the protective layer 12 and the surface portion 23A of the plating layer on one surface of the oxide superconducting layer 11 is obtained.
  • the surface portion 23A left in the laminated body 25 may form a part or the whole of the first stabilizing layer 13 in the superconducting wire according to the above embodiment.
  • the above-mentioned second protective layer 14 and second stabilizing layer 15 are laminated as a metal layer on the oxide superconducting layer 11.
  • the superconducting wire rods 10, 10A, 10B, 10C of the above embodiment can be manufactured.
  • heat treatment such as oxygen annealing may be performed.
  • oxygen gas can be passed through during heat treatment to supply oxygen to the oxide superconducting layer 11.
  • an insulating tape such as polyimide may be wound or a resin layer may be formed in order to ensure electric insulation with respect to the surroundings of the superconducting wire.
  • an insulating coating layer such as an insulating tape or a resin layer is not essential, and an insulating coating layer may be appropriately provided depending on the application of the superconducting wire rod, or the insulating coating layer may not be provided.
  • the superconducting wire of the above embodiment does not require a substrate such as a metal, but in some cases, the substrate can be laminated on the outside of at least one metal layer in the thickness direction of the oxide superconducting layer.
  • the substrate When laminating the substrate on the outer side of the metal layer, the substrate may be laminated over the entire length or width of the superconducting wire, or the substrate may be laminated only in a part of the longitudinal or width direction of the superconducting wire.
  • a reinforcing wire rod, a detection wire rod such as an optical fiber sensor, etc. may be vertically provided (arranged in parallel along the longitudinal direction) at the end portion in the width direction of the superconducting wire rod.
  • the metal layer having the Ag layer or the layer containing Ag is laminated in contact with both surfaces in the thickness direction of the oxide superconducting layer having crystal orientation, the conventional superconducting wire is oxidized. It is possible to provide a superconducting wire having excellent characteristics per unit cross-sectional area as compared with the substrate used for film formation remaining on one side in the thickness direction of the object superconducting layer.

Abstract

A superconducting wire material having an oxide superconducting layer that includes a rare earth element, wherein the oxide superconducting layer has a degree of orientation Δφ of 6.0° or less in a plane parallel to the thickness direction, and the superconducting wire material is provided with: a first metal layer that is an Ag layer or a layer containing Ag, and is laminated on a first surface in the thickness direction of the oxide superconducting layer; a second metal layer that is an Ag layer or a layer containing Ag, and is laminated on a second surface on the opposite side from the first surface; and a Cu layer or a layer containing Cu that contacts the first metal layer or the second metal layer in the thickness direction of the oxide superconducting layer.

Description

酸化物超電導線材及びその製造方法Oxide superconducting wire and method for producing the same
 本発明は、酸化物超電導線材及びその製造方法に関する。
 本願は、2018年12月26日に日本に出願された特願2018-243592号について優先権を主張し、その内容をここに援用する。
The present invention relates to an oxide superconducting wire and a method for manufacturing the same.
The present application claims priority to Japanese Patent Application No. 2018-243592 filed in Japan on December 26, 2018, and the content thereof is incorporated herein.
 超電導線材は、電流損失が低いため、電力供給用ケーブル、磁気コイル等として使用されている。特許文献1には、金属の基材を有する基板上に中間層、酸化物超電導層を成膜し、周囲に安定化層として銅の電解めっき膜を形成した超電導線材が記載されている。 Superconducting wire has low current loss, so it is used as a power supply cable, magnetic coil, etc. Patent Document 1 describes a superconducting wire in which an intermediate layer and an oxide superconducting layer are formed on a substrate having a metal base material, and a copper electrolytic plating film is formed as a stabilizing layer around the substrate.
日本国特許第5634166号公報Japanese Patent No. 5634166
 超電導線材をケーブル、コイル等として応用する場合、多数本の超電導線材を並列させたり、超電導線材を多数回巻回したりする等、超電導線材が断面方向に多数集積された状態で使用される。しかし、結晶配向性に優れた酸化物超電導層を形成するためには、厚い金属基板を用意し、その金属基板を土台にして中間層、酸化物超電導層を積層する必要がある。このため、酸化物超電導層の断面積に比べて、金属基板を含む超電導線材全体の断面積が大きいという問題がある。 When applying superconducting wires as cables, coils, etc., many superconducting wires are used in a state in which a large number of superconducting wires are integrated in the cross-sectional direction, such as arranging a number of superconducting wires in parallel or winding a plurality of superconducting wires. However, in order to form the oxide superconducting layer having excellent crystal orientation, it is necessary to prepare a thick metal substrate and stack the intermediate layer and the oxide superconducting layer on the basis of the metal substrate. Therefore, there is a problem that the cross-sectional area of the entire superconducting wire including the metal substrate is larger than the cross-sectional area of the oxide superconducting layer.
 本発明は、上記事情に鑑みてなされたものであり、単位断面積当たりの特性が優れた酸化物超電導線材及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide superconducting wire having excellent properties per unit cross-sectional area and a method for manufacturing the same.
 本発明の第一態様は、希土類元素を含む酸化物超電導層を有する超電導線材であって、前記酸化物超電導層は、厚さ方向に平行な面内の配向度Δφが6.0°以下であり、前記超電導線材は、前記酸化物超電導層の厚さ方向の第一面に積層され、Ag層又はAgを含む層である第一金属層と、前記第一面と反対側の第二面に積層され、Ag層又はAgを含む層である第二金属層と、前記酸化物超電導層の厚さ方向において、前記第一金属層または前記第二金属層に接し、Cu層又はCuを含む金属層と、を備える。 A first aspect of the present invention is a superconducting wire having an oxide superconducting layer containing a rare earth element, wherein the oxide superconducting layer has an orientation degree Δφ in a plane parallel to a thickness direction of 6.0° or less. The superconducting wire is laminated on the first surface of the oxide superconducting layer in the thickness direction, and is a Ag layer or a first metal layer that is a layer containing Ag, and a second surface opposite to the first surface. And a second metal layer that is an Ag layer or a layer containing Ag and is in contact with the first metal layer or the second metal layer in the thickness direction of the oxide superconducting layer and contains a Cu layer or Cu. And a metal layer.
 前記金属層は、前記第一金属層に接する第一Cu金属層と、前記第二金属層に接する第二Cu金属層とを有してもよい。
 前記酸化物超電導層の幅方向の前記第一面が前記第一金属層で覆われ、前記第二面が前記第二金属層で覆われていてもよい。
 前記酸化物超電導層の厚さ方向における前記超電導線材の総厚さが50μm以下であってもよい。
The metal layer may include a first Cu metal layer in contact with the first metal layer and a second Cu metal layer in contact with the second metal layer.
The first surface in the width direction of the oxide superconducting layer may be covered with the first metal layer, and the second surface may be covered with the second metal layer.
The total thickness of the superconducting wire in the thickness direction of the oxide superconducting layer may be 50 μm or less.
 本発明の第二態様は、希土類元素を含む酸化物超電導層を有する超電導線材の製造方法であって、基板上に、前記酸化物超電導層を積層する工程と、前記酸化物超電導層の厚さ方向のうち前記基板とは反対側において前記酸化物超電導層上に第一金属層を積層する工程と、前記基板を除去する工程と、前記酸化物超電導層の厚さ方向のうち前記基板が除去された側において前記酸化物超電導層上に第二金属層を積層する工程と、を有する。 A second aspect of the present invention is a method for producing a superconducting wire having an oxide superconducting layer containing a rare earth element, a step of laminating the oxide superconducting layer on a substrate, and a thickness of the oxide superconducting layer. A step of stacking a first metal layer on the oxide superconducting layer on the side opposite to the substrate in the direction, a step of removing the substrate, and a step of removing the substrate in the thickness direction of the oxide superconducting layer. Laminating a second metal layer on the oxide superconducting layer on the exposed side.
 前記第一金属層及び前記第二金属層が、Ag層又はAgを含む層であってもよい。
 前記酸化物超電導層の厚さ方向において、前記第一金属層または前記第二金属層に接するようにCu層又はCuを含む金属層を積層してもよい。
The first metal layer and the second metal layer may be Ag layers or layers containing Ag.
In the thickness direction of the oxide superconducting layer, a Cu layer or a metal layer containing Cu may be laminated so as to be in contact with the first metal layer or the second metal layer.
 本発明の上記態様によれば、結晶配向性を有する酸化物超電導層の厚さ方向の両面に接してAg層又はAgを含む層を有する金属層が積層されているため、従来の超電導線材が酸化物超電導層の厚さ方向の片側に成膜に用いた基板が残されているのと比べて、単位断面積当たりの特性が優れた超電導線材を提供することができる。 According to the above aspect of the present invention, since the metal layer having the Ag layer or the layer containing Ag is laminated in contact with both surfaces in the thickness direction of the oxide superconducting layer having crystal orientation, the conventional superconducting wire is It is possible to provide a superconducting wire having excellent characteristics per unit cross-sectional area, as compared with the substrate used for film formation remaining on one side in the thickness direction of the oxide superconducting layer.
第1実施形態の超電導線材を示す断面図である。It is sectional drawing which shows the superconducting wire of 1st Embodiment. 第2実施形態の超電導線材を示す断面図である。It is sectional drawing which shows the superconducting wire of 2nd Embodiment. 第3実施形態の超電導線材を示す断面図である。It is sectional drawing which shows the superconducting wire of 3rd Embodiment. 第4実施形態の超電導線材を示す断面図である。It is sectional drawing which shows the superconducting wire of 4th Embodiment. 基板を有する超電導線材の一例を示す断面図である。It is sectional drawing which shows an example of the superconducting wire which has a board|substrate. 基板を有する超電導線材から側面部を除去した例の断面図である。It is sectional drawing of the example which removed the side surface part from the superconducting wire which has a board|substrate. 基板を有する超電導線材から基板を除去した例の断面図である。It is sectional drawing of the example which removed the board|substrate from the superconducting wire which has a board|substrate.
 以下、各実施形態に係る酸化物超電導線材の構成を、図面を参照して説明する。これらの断面図は、超電導線材の長手方向に垂直な断面を模式的に表す。断面図の上下方向が超電導線材の厚さ方向であり、断面図の左右方向が超電導線材の幅方向である。 Hereinafter, the structure of the oxide superconducting wire according to each embodiment will be described with reference to the drawings. These cross-sectional views schematically show a cross section perpendicular to the longitudinal direction of the superconducting wire. The vertical direction of the cross-sectional view is the thickness direction of the superconducting wire, and the horizontal direction of the cross-sectional view is the width direction of the superconducting wire.
 図1に、第1実施形態の超電導線材を示す。第1実施形態の超電導線材10では、酸化物超電導層11の厚さ方向の第一面11aに、保護層(第一金属層)12が積層され、第一面11aと反対側の第二面11bに保護層14(第二金属層)が積層されている。また、保護層12の酸化物超電導層11とは反対側の面に安定化層(金属層)13が積層されている。なお、それぞれの保護層12,14を区別して、第1保護層12、第2保護層14と称する場合がある。第1保護層12と第2保護層14とは、厚さ、材料等が同一でもよく、これらの少なくとも1つの観点で互いに異なってもよい。 FIG. 1 shows a superconducting wire according to the first embodiment. In the superconducting wire 10 of the first embodiment, the protective layer (first metal layer) 12 is laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and the second surface opposite to the first surface 11a. A protective layer 14 (second metal layer) is laminated on 11b. Further, a stabilizing layer (metal layer) 13 is laminated on the surface of the protective layer 12 opposite to the oxide superconducting layer 11. The protective layers 12 and 14 may be referred to as the first protective layer 12 and the second protective layer 14 in some cases. The first protective layer 12 and the second protective layer 14 may have the same thickness, the same material, or the like, or may differ from each other in at least one of these viewpoints.
 図2に、第2実施形態の超電導線材を示す。第2実施形態の超電導線材10Aは、酸化物超電導層11の厚さ方向の第一面11aに積層された第1保護層12と、第1保護層12の外側に積層された安定化層13と、酸化物超電導層11の第1保護層12とは反対側の面(第二面11b)と、酸化物超電導層11の側面と、第1保護層12の側面と、安定化層13の側面とに積層された第2保護層14とを有する。 FIG. 2 shows a superconducting wire according to the second embodiment. The superconducting wire 10A of the second embodiment includes a first protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and a stabilizing layer 13 laminated on the outer side of the first protective layer 12. A surface (second surface 11b) of the oxide superconducting layer 11 opposite to the first protective layer 12, a side surface of the oxide superconducting layer 11, a side surface of the first protective layer 12, and a stabilizing layer 13. And a second protective layer 14 laminated on the side surface.
 図3に、第3実施形態の超電導線材を示す。第3実施形態の超電導線材10Bは、酸化物超電導層11の厚さ方向の第一面11aに積層された保護層12と、第二面11bに積層された保護層14と、安定化層(第一Cu金属層)13と、安定化層(第二Cu金属層)15とを有する。なお、それぞれの安定化層13,15を区別して、第1安定化層13、第2安定化層15という場合がある。
 第1安定化層13は、保護層12の酸化物超電導層11とは反対側の面に積層されている。第2安定化層15は、保護層14の酸化物超電導層11とは反対側の面に積層されている。第1安定化層13と第2安定化層15とは、厚さ、材料等が同一でもよく、これらの少なくとも1つの観点で互いに異なってもよい。
FIG. 3 shows a superconducting wire according to the third embodiment. The superconducting wire 10B of the third embodiment includes a protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, a protective layer 14 laminated on the second surface 11b, and a stabilizing layer ( It has a first Cu metal layer 13 and a stabilizing layer (second Cu metal layer) 15. In addition, the respective stabilizing layers 13 and 15 may be distinguished from each other to be referred to as a first stabilizing layer 13 and a second stabilizing layer 15.
The first stabilizing layer 13 is stacked on the surface of the protective layer 12 opposite to the oxide superconducting layer 11. The second stabilizing layer 15 is laminated on the surface of the protective layer 14 opposite to the oxide superconducting layer 11. The first stabilizing layer 13 and the second stabilizing layer 15 may have the same thickness, the same material, or the like, or may differ from each other in at least one of these viewpoints.
 図4に、第4実施形態の超電導線材を示す。第4実施形態の超電導線材10Cは、酸化物超電導層11の厚さ方向の第一面11aに積層された第1保護層12と、第1保護層12の外側(第1保護層12の酸化物超電導層11とは反対側の面)に積層された第1安定化層13と、酸化物超電導層11の第一面11aと反対側の第二面11bと、酸化物超電導層11の側面と、第1保護層12の側面と、安定化層13の側面とに積層された第2保護層14と、超電導線材10Cの外周に積層された第2安定化層15とを有する。第2安定化層15は、第1安定化層13と第2保護層14との露出面を覆っている。 FIG. 4 shows a superconducting wire according to the fourth embodiment. The superconducting wire 10C of the fourth embodiment includes a first protective layer 12 laminated on the first surface 11a in the thickness direction of the oxide superconducting layer 11, and an outer side of the first protective layer 12 (oxidation of the first protective layer 12). Stabilization layer 13 laminated on the surface opposite to the oxide superconducting layer 11), the second surface 11b opposite to the first surface 11a of the oxide superconducting layer 11, and the side surface of the oxide superconducting layer 11. A second protective layer 14 laminated on the side surface of the first protective layer 12 and a side surface of the stabilizing layer 13, and a second stabilizing layer 15 laminated on the outer periphery of the superconducting wire 10C. The second stabilizing layer 15 covers the exposed surfaces of the first stabilizing layer 13 and the second protective layer 14.
 上記実施形態の超電導線材10,10A,10B,10Cにおいて、酸化物超電導層11は、希土類元素を含む酸化物超電導体から構成される。酸化物超電導体としては、例えば一般式REBa2Cu3O7-x(RE123)等で表されるRE-Ba-Cu-O系酸化物超電導体が挙げられる。希土類元素REとしては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。酸化物超電導層11の厚さは、例えば0.5~5μm程度である。 In the superconducting wire rods 10, 10A, 10B, and 10C of the above embodiment, the oxide superconducting layer 11 is composed of an oxide superconductor containing a rare earth element. Examples of the oxide superconductor include an RE-Ba-Cu-O-based oxide superconductor represented by the general formula REBa2Cu3O7-x (RE123). Examples of the rare earth element RE include one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The oxide superconducting layer 11 has a thickness of, for example, about 0.5 to 5 μm.
 酸化物超電導層11は、面方向に配向した超電導層である。例えば酸化物超電導層11の厚さ方向に平行な面内の配向度Δφが6.0°以下であることが好ましい。酸化物超電導層11が幅方向の全体にわたって配向した超電導層であってもよい。酸化物超電導層11が、幅方向の一部において間隙部を介して2本以上の超電導層に分割されていてもよい。間隙部としては、非配向部、溝等の空隙部、金属等の導体部、樹脂等の電気絶縁部等が挙げられる。非配向部は、超電導層と同様な組成を有する酸化物であってもよい。この場合、2本以上の超電導層のそれぞれは、配向した超電導層が長手方向に連続した構造であることが好ましい。 The oxide superconducting layer 11 is a superconducting layer oriented in the plane direction. For example, the degree of orientation Δφ in the plane parallel to the thickness direction of the oxide superconducting layer 11 is preferably 6.0° or less. The oxide superconducting layer 11 may be a superconducting layer oriented in the entire width direction. The oxide superconducting layer 11 may be divided into two or more superconducting layers with a gap in a part in the width direction. Examples of the gap portion include a non-oriented portion, a void portion such as a groove, a conductor portion such as a metal, and an electrical insulating portion such as a resin. The non-oriented portion may be an oxide having a composition similar to that of the superconducting layer. In this case, each of the two or more superconducting layers preferably has a structure in which oriented superconducting layers are continuous in the longitudinal direction.
 酸化物超電導層11には、人工的な結晶欠陥として、異種材料による人工ピンなどが導入されてもよい。酸化物超電導層11に人工ピンを導入するために用いられる異種材料としては、例えば、BaSnO3(BSO)、BaZrO3(BZO)、BaHfO3(BHO)、BaTiO3(BTO)、SnO2、TiO2、ZrO2、LaMnO3、ZnO等の少なくとも1種以上が挙げられる。 An artificial pin made of a different material may be introduced into the oxide superconducting layer 11 as an artificial crystal defect. Examples of different materials used to introduce artificial pins into the oxide superconducting layer 11 include BaSnO3 (BSO), BaZrO3 (BZO), BaHfO3 (BHO), BaTiO3 (BTO), SnO2, TiO2, ZrO2, LaMnO3, At least one kind of ZnO and the like can be mentioned.
 保護層12,14は、事故時に発生する過電流をバイパスしたり、酸化物超電導層11と保護層12、14の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層12、14としては、銀(Ag)層又はAgを含む層(例えばAg合金層)が挙げられる。Ag合金は、モル比又は重量比で50%以上の銀を含むことが好ましい。上記実施形態では、保護層12は酸化物超電導層11の厚さ方向の第一面11aに接し、保護層14は酸化物超電導層11の第二面11bに接している。保護層12,14の厚さは、例えば1~30μm程度が好ましく、保護層12,14を薄くする場合は、10μm以下、5μm以下、2μm以下等でもよい。 The protective layers 12 and 14 have a function of bypassing an overcurrent generated at the time of an accident and suppressing a chemical reaction that occurs between the oxide superconducting layer 11 and the layers provided on the protective layers 12 and 14. Have. Examples of the protective layers 12 and 14 include a silver (Ag) layer or a layer containing Ag (for example, an Ag alloy layer). The Ag alloy preferably contains silver in a molar ratio or a weight ratio of 50% or more. In the above embodiment, the protective layer 12 is in contact with the first surface 11 a of the oxide superconducting layer 11 in the thickness direction, and the protective layer 14 is in contact with the second surface 11 b of the oxide superconducting layer 11. The thickness of the protective layers 12 and 14 is preferably about 1 to 30 μm, and may be 10 μm or less, 5 μm or less, 2 μm or less when thinning the protective layers 12 and 14.
 安定化層13,15は、事故時に発生する過電流をバイパスしたり、酸化物超電導層11及び保護層12,14を機械的に補強したりする等の機能を有する。安定化層13,15としては、銅(Cu)層又はCuを含む層(例えばCu合金層)が挙げられる。Cu合金は、モル比又は重量比で50%以上の銀を含むことが好ましい。上記実施形態では、安定化層13は、酸化物超電導層11の厚さ方向において、保護層12の片面に接し、安定化層15は、酸化物超電導層11の厚さ方向において、保護層14の片面に接している。安定化層13,15の厚さは特に限定されないが、例えば1~300μm程度が好ましく、例えば200μm以下、100μm以下、50μm以下、20μm等でもよい。 The stabilizing layers 13 and 15 have functions such as bypassing an overcurrent generated at the time of an accident and mechanically reinforcing the oxide superconducting layer 11 and the protective layers 12 and 14. Examples of the stabilizing layers 13 and 15 include a copper (Cu) layer or a layer containing Cu (for example, a Cu alloy layer). It is preferable that the Cu alloy contains 50% or more of silver in a molar ratio or a weight ratio. In the above embodiment, the stabilizing layer 13 is in contact with one surface of the protective layer 12 in the thickness direction of the oxide superconducting layer 11, and the stabilizing layer 15 is in the thickness direction of the oxide superconducting layer 11. Touches one side of. The thickness of the stabilizing layers 13 and 15 is not particularly limited, but is preferably about 1 to 300 μm, for example, 200 μm or less, 100 μm or less, 50 μm or less, 20 μm or the like.
 上記実施形態の超電導線材10,10A,10B,10Cは、酸化物超電導層11の厚さ方向の両面に金属層12,13,14,15として保護層12,14及び安定化層13,15が積層された構造であるため、線材全体としての断面積を小さくすることができる。線材全体としての断面積を小さくすることが可能となれば、超電導線材の曲げ変形が容易となり、従来よりも小径に巻回した超電導コイルを形成することができる。その他、超電導線材の軽量化、細線加工が容易、という利点も得られる。保護層12,14及び安定化層13,15は、それぞれ蒸着法、スパッタ法、めっき法(電解めっき、無電解めっき等)の1種又は2種以上の組み合わせにより形成することができる。 In the superconducting wire rods 10, 10A, 10B, 10C of the above-described embodiment, the protective layers 12, 14 and the stabilizing layers 13, 15 are provided as the metal layers 12, 13, 14, 15 on both surfaces in the thickness direction of the oxide superconducting layer 11. Because of the laminated structure, the cross-sectional area of the wire as a whole can be reduced. If the cross-sectional area of the wire as a whole can be reduced, the superconducting wire can be easily bent and deformed, and a superconducting coil wound to have a smaller diameter than in the conventional case can be formed. In addition, there are advantages that the superconducting wire can be made lighter and the fine wire can be easily processed. The protective layers 12 and 14 and the stabilizing layers 13 and 15 can be formed by one or a combination of two or more of vapor deposition, sputtering, and plating (electrolytic plating, electroless plating, etc.).
 酸化物超電導層11の厚さ方向における超電導線材10,10A,10B,10Cの総厚さは、例えば10~1000μmとしてもよく、500μm以下、300μm以下、200μm以下、100μm以下、70μm以下、50μm以下等でもよい。ここで、超電導線材の総厚さとは、超電導線材に付属し得る全ての構成を包含する必要はなく、例えば、酸化物超電導層11の厚さ方向の両側における金属層13,14,15の外面間の最大距離としてもよい。例えば、超電導線材10,10Aの総厚さは、安定化層13の外面と第2保護層14の外面との距離としてもよい。超電導線材10Bの総厚さは、第1安定化層13の外面と第2安定化層15の外面との距離としてもよい。超電導線材10Cの総厚さは、第2安定化層15の厚さ方向の両側の外面間距離としてもよい。 The total thickness of the superconducting wire rods 10, 10A, 10B, 10C in the thickness direction of the oxide superconducting layer 11 may be 10 to 1000 μm, for example, 500 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, 70 μm or less, 50 μm or less. And so on. Here, the total thickness of the superconducting wire does not need to include all the configurations that can be attached to the superconducting wire, and for example, the outer surfaces of the metal layers 13, 14, 15 on both sides of the oxide superconducting layer 11 in the thickness direction. It may be the maximum distance between them. For example, the total thickness of the superconducting wires 10 and 10A may be the distance between the outer surface of the stabilizing layer 13 and the outer surface of the second protective layer 14. The total thickness of the superconducting wire 10B may be the distance between the outer surface of the first stabilizing layer 13 and the outer surface of the second stabilizing layer 15. The total thickness of the superconducting wire 10C may be the distance between the outer surfaces on both sides of the second stabilizing layer 15 in the thickness direction.
 超電導線材の幅は特に限定されないが、例えば1~20mmが挙げられる。超電導線材の長さは特に限定されないが、例えば1m以上であり、10m以上、100m以上、200m以上、500m以上、1km以上が挙げられる。複数本の超電導線材を接続して、より長尺の線材を構成することも可能である。長尺の超電導線材の端部を長手方向に接続する間に、短尺の超電導線材を介在させてもよい。接続用の超電導線材は、例えば1m以下の短尺でもよい。酸化物超電導層11に対する水分等の影響を抑制するため、酸化物超電導層11の幅方向の両側が保護層12,14又は安定化層13,15等の金属層で覆われていることが好ましい。 The width of the superconducting wire is not particularly limited, but, for example, 1 to 20 mm. The length of the superconducting wire is not particularly limited, but is, for example, 1 m or more, and 10 m or more, 100 m or more, 200 m or more, 500 m or more, 1 km or more. It is also possible to connect a plurality of superconducting wires to form a longer wire. A short superconducting wire may be interposed while connecting the ends of the long superconducting wire in the longitudinal direction. The superconducting wire for connection may have a short length of, for example, 1 m or less. In order to suppress the influence of moisture or the like on the oxide superconducting layer 11, both sides in the width direction of the oxide superconducting layer 11 are preferably covered with metal layers such as the protective layers 12 and 14 or the stabilizing layers 13 and 15. ..
 本実施形態の超電導線材を製造する場合、例えば図5に示すように、基板を有する超電導線材20を製造してから、基板を除去する方法を採用してもよい。本実施形態の製造方法において、酸化物超電導層11の成膜に使用される基板は、金属基板21及び中間層22から構成される。金属基板21は、厚さ方向の両側に、それぞれ主面を有するテープ状の金属基板21である。金属基板21を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni-W合金などが挙げられる。金属基板21の厚さは、目的に応じて適宜調整すれば良く、例えば10~1000μmの範囲である。 When manufacturing the superconducting wire of this embodiment, for example, as shown in FIG. 5, a method of manufacturing the superconducting wire 20 having a substrate and then removing the substrate may be adopted. In the manufacturing method of the present embodiment, the substrate used for forming the oxide superconducting layer 11 is composed of the metal substrate 21 and the intermediate layer 22. The metal substrate 21 is a tape-shaped metal substrate 21 having main surfaces on both sides in the thickness direction. Specific examples of the metal forming the metal substrate 21 include nickel alloys represented by Hastelloy (registered trademark), stainless steel, oriented Ni—W alloys in which a texture is introduced into nickel alloys, and the like. The thickness of the metal substrate 21 may be appropriately adjusted according to the purpose and is, for example, in the range of 10 to 1000 μm.
 中間層22は、多層構成でもよく、例えば基板側から超電導層側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。中間層22は、金属酸化物であってもよい。配向性に優れた中間層22の上に酸化物超電導層11を成膜することにより、配向性に優れた酸化物超電導層11を得ることが容易になる。 The intermediate layer 22 may have a multi-layered structure, and may have, for example, a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, etc. in the order from the substrate side to the superconducting layer side. These layers are not always provided one by one, and some layers may be omitted or two or more layers of the same type may be repeatedly laminated. The intermediate layer 22 may be a metal oxide. By forming the oxide superconducting layer 11 on the intermediate layer 22 having excellent orientation, it becomes easy to obtain the oxide superconducting layer 11 having excellent orientation.
 拡散防止層は、金属基板21の成分の一部が拡散し、不純物として酸化物超電導層11側に混入することを抑制する機能を有する。拡散防止層は、例えば、Si3N4、Al2O3、GZO(Gd2Zr2O7)等から構成される。拡散防止層の厚さは、例えば10~400nmである。
 ベッド層は、金属基板21と酸化物超電導層11との界面における反応を低減し、その上に形成される層の配向性を向上する等の機能を有する。ベッド層の材質としては、例えばY2O3、Er2O3、CeO2、Dy2O3、Eu2O3、Ho2O3、La2O3等が挙げられる。ベッド層の厚さは、例えば10~100nmである。
 配向層は、キャップ層の結晶配向性を制御するために2軸配向する物質から形成される。配向層の材質としては、例えば、Gd2Zr2O7、MgO、ZrO2-Y2O3(YSZ)、SrTiO3、CeO2、Y2O3、Al2O3、Gd2O3、Zr2O3、Ho2O3、Nd2O3等の金属酸化物を例示することができる。この配向層はIBAD法で形成することが好ましい。
 キャップ層は、配向層の表面に成膜されて、結晶粒が面内方向に自己配向し得る材料からなる。キャップ層の材質としては、例えば、CeO2、Y2O3、Al2O3、Gd2O3、ZrO2、YSZ、Ho2O3、Nd2O3、LaMnO3等が挙げられる。キャップ層の厚さは、50~5000nmの範囲が挙げられる。
The diffusion prevention layer has a function of suppressing a part of components of the metal substrate 21 from being diffused and being mixed as an impurity into the oxide superconducting layer 11 side. The diffusion prevention layer is made of, for example, Si3N4, Al2O3, GZO (Gd2Zr2O7), or the like. The diffusion prevention layer has a thickness of 10 to 400 nm, for example.
The bed layer has a function of reducing the reaction at the interface between the metal substrate 21 and the oxide superconducting layer 11, and improving the orientation of the layer formed thereon. Examples of the material of the bed layer include Y2O3, Er2O3, CeO2, Dy2O3, Eu2O3, Ho2O3 and La2O3. The bed layer has a thickness of, for example, 10 to 100 nm.
The orientation layer is formed of a biaxially oriented material for controlling the crystal orientation of the cap layer. Examples of the material of the orientation layer include metal oxides such as Gd2Zr2O7, MgO, ZrO2-Y2O3 (YSZ), SrTiO3, CeO2, Y2O3, Al2O3, Gd2O3, Zr2O3, Ho2O3, and Nd2O3. This alignment layer is preferably formed by the IBAD method.
The cap layer is formed on the surface of the orientation layer, and is made of a material in which crystal grains can self-orient in the in-plane direction. Examples of the material of the cap layer include CeO2, Y2O3, Al2O3, Gd2O3, ZrO2, YSZ, Ho2O3, Nd2O3, LaMnO3 and the like. The thickness of the cap layer is in the range of 50 to 5000 nm.
 中間層22及び酸化物超電導層11の成膜法は、金属酸化物の組成に応じて適宜の成膜が可能であれば特に限定されない。成膜法としては、例えばスパッタ法、蒸着法、イオンビームアシスト成膜法(IBAD法)等の乾式成膜法、ゾルゲル法等の湿式成膜法が挙げられる。蒸着法としては、電子ビーム蒸着法、パルスレーザ蒸着法(PLD法)、化学気相蒸着法(CVD法)等が挙げられる。 The method for forming the intermediate layer 22 and the oxide superconducting layer 11 is not particularly limited as long as appropriate film formation is possible depending on the composition of the metal oxide. Examples of the film forming method include a dry film forming method such as a sputtering method, an evaporation method, an ion beam assisted film forming method (IBAD method), and a wet film forming method such as a sol-gel method. Examples of the vapor deposition method include an electron beam vapor deposition method, a pulse laser vapor deposition method (PLD method), and a chemical vapor deposition method (CVD method).
 図5に示す超電導線材20は、金属基板21上に酸化物超電導層11を積層する工程の後、酸化物超電導層11の厚さ方向のうち金属基板21とは反対側において酸化物超電導層11上に保護層12及びめっき層23からなる金属層を積層する工程により製造することができる。酸化物超電導層11上に保護層12を積層した段階で、酸素アニール等の熱処理を施してもよい。保護層12がAg層又はAgを含む層からなる場合、熱処理時に酸素ガスを通過させ、酸化物超電導層11に酸素を供給することができる。 In the superconducting wire 20 shown in FIG. 5, after the step of laminating the oxide superconducting layer 11 on the metal substrate 21, the oxide superconducting layer 11 is formed on the side opposite to the metal substrate 21 in the thickness direction of the oxide superconducting layer 11. It can be manufactured by a step of laminating a metal layer composed of the protective layer 12 and the plating layer 23 on top. When the protective layer 12 is laminated on the oxide superconducting layer 11, heat treatment such as oxygen annealing may be performed. When the protective layer 12 is formed of an Ag layer or a layer containing Ag, oxygen gas can be passed through during heat treatment to supply oxygen to the oxide superconducting layer 11.
 めっき層23は、保護層12上に積層される表面部23Aと、金属基板21の裏面に積層される裏面部23Bと、超電導線材20の側面に設けられる側面部23Cとを有してもよい。基板を除去する工程に先立って、側面部23Cを除去してもよい。これにより、図6に示すように、積層体24の側面に金属基板21、酸化物超電導層11等、各層の幅方向における端面が露出されてもよい。側面部23Cを除去する際に、酸化物超電導層11の一部が除去されることもあり得る。側面部23Cを除去する方法としては、例えば、研削などの機械加工、レーザー加工が挙げられる。 The plating layer 23 may have a front surface portion 23A laminated on the protective layer 12, a back surface portion 23B laminated on the back surface of the metal substrate 21, and a side surface portion 23C provided on a side surface of the superconducting wire 20. .. The side surface portion 23C may be removed prior to the step of removing the substrate. Thereby, as shown in FIG. 6, end faces in the width direction of each layer such as the metal substrate 21, the oxide superconducting layer 11 and the like may be exposed on the side surface of the stacked body 24. When removing the side surface portion 23C, a part of the oxide superconducting layer 11 may be removed. Examples of methods for removing the side surface portion 23C include mechanical processing such as grinding and laser processing.
 図7に示すように金属基板21を除去する場合、中間層22の少なくとも一部又は全部が除去されてもよい。また、金属基板21を除去した後の酸化物超電導層11の面上で、幅方向又は長手方向の少なくとも一部の領域に、中間層22が残留することもあり得る。
また、金属基板21を除去する際に、酸化物超電導層11の一部(例えば厚さ方向の一部)が除去されることもあり得る。金属基板21を除去する方法としては、例えば、金属基板21とめっき層の表面部23Aとの間に剥離力を加える剥離法が挙げられる。あるいは研削などの機械加工、レーザー加工等によって基板を除去してもよい。超電導線材20から基板を除去することにより、酸化物超電導層11の片面に保護層12及びめっき層の表面部23Aを有する構成の積層体25が得られる。積層体25に残された表面部23Aは、上記実施形態の超電導線材における第1安定化層13の一部又は全部を構成していてもよい。
When removing the metal substrate 21 as shown in FIG. 7, at least a part or all of the intermediate layer 22 may be removed. Moreover, on the surface of the oxide superconducting layer 11 after removing the metal substrate 21, the intermediate layer 22 may remain in at least a partial region in the width direction or the longitudinal direction.
Further, when the metal substrate 21 is removed, a part (for example, a part in the thickness direction) of the oxide superconducting layer 11 may be removed. As a method of removing the metal substrate 21, for example, a peeling method of applying a peeling force between the metal substrate 21 and the surface portion 23A of the plating layer can be mentioned. Alternatively, the substrate may be removed by mechanical processing such as grinding or laser processing. By removing the substrate from the superconducting wire 20, a laminate 25 having a structure having the protective layer 12 and the surface portion 23A of the plating layer on one surface of the oxide superconducting layer 11 is obtained. The surface portion 23A left in the laminated body 25 may form a part or the whole of the first stabilizing layer 13 in the superconducting wire according to the above embodiment.
 酸化物超電導層11の厚さ方向のうち、金属基板21が除去された側において、酸化物超電導層11上に金属層として、上述の第2保護層14、第2安定化層15を積層することにより、上記実施形態の超電導線材10,10A,10B,10Cを製造することができる。酸化物超電導層11上に第2保護層14を積層した段階で、酸素アニール等の熱処理を施してもよい。第2保護層14がAg層又はAgを含む層からなる場合、熱処理時に酸素ガスを通過させ、酸化物超電導層11に酸素を供給することができる。 On the side where the metal substrate 21 is removed in the thickness direction of the oxide superconducting layer 11, the above-mentioned second protective layer 14 and second stabilizing layer 15 are laminated as a metal layer on the oxide superconducting layer 11. As a result, the superconducting wire rods 10, 10A, 10B, 10C of the above embodiment can be manufactured. When the second protective layer 14 is laminated on the oxide superconducting layer 11, heat treatment such as oxygen annealing may be performed. When the second protective layer 14 is composed of an Ag layer or a layer containing Ag, oxygen gas can be passed through during heat treatment to supply oxygen to the oxide superconducting layer 11.
 超電導線材の外周には、超電導線材の周囲に対する電気絶縁を確保するため、ポリイミド等の絶縁テープを巻きつけたり、樹脂層を形成したりしてもよい。なお、絶縁テープや樹脂層等の絶縁被覆層は必須ではなく、超電導線材の用途に応じて絶縁被覆層を適宜設けてもよく、あるいは絶縁被覆層を有しない構成とすることもできる。
 超電導線材を使用して超電導コイルを作製するには、例えば超電導線材を巻き枠の外周面に沿って必要な層数巻き付けてコイル形状の多層巻きコイルを構成した後、巻き付けた超電導線材を覆うようにエポキシ樹脂等の樹脂を含浸させて、超電導線材を固定することができる。
On the outer periphery of the superconducting wire, an insulating tape such as polyimide may be wound or a resin layer may be formed in order to ensure electric insulation with respect to the surroundings of the superconducting wire. It should be noted that an insulating coating layer such as an insulating tape or a resin layer is not essential, and an insulating coating layer may be appropriately provided depending on the application of the superconducting wire rod, or the insulating coating layer may not be provided.
To make a superconducting coil using a superconducting wire, for example, after winding the required number of layers along the outer peripheral surface of the winding frame to form a coil-shaped multilayer winding coil, cover the wound superconducting wire. The superconducting wire can be fixed by impregnating with a resin such as epoxy resin.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。また、2以上の実施形態に用いられた構成要素を適宜組み合わせることも可能である。 The present invention has been described above based on the preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. Modifications include addition, replacement, omission, and other changes of the constituent elements in each embodiment. It is also possible to appropriately combine the constituent elements used in the two or more embodiments.
 上記実施形態の超電導線材は、金属等の基板を要しない構造であるが、場合により、酸化物超電導層の厚さ方向の少なくとも片側の金属層の外側に、基板を積層することもできる。金属層の外側に基板を積層する場合は、超電導線材の全長又は全幅にわたって基板を積層してもよく、あるいは超電導線材の長手方向又は幅方向の一部の領域に限って基板を積層してもよい。あるいは、超電導線材の幅方向の端部等に補強用の線材、光ファイバセンサー等の検知用線材等を縦添え(長手方向に沿って並設)することもできる。 The superconducting wire of the above embodiment does not require a substrate such as a metal, but in some cases, the substrate can be laminated on the outside of at least one metal layer in the thickness direction of the oxide superconducting layer. When laminating the substrate on the outer side of the metal layer, the substrate may be laminated over the entire length or width of the superconducting wire, or the substrate may be laminated only in a part of the longitudinal or width direction of the superconducting wire. Good. Alternatively, a reinforcing wire rod, a detection wire rod such as an optical fiber sensor, etc. may be vertically provided (arranged in parallel along the longitudinal direction) at the end portion in the width direction of the superconducting wire rod.
 上記各実施形態によれば、結晶配向性を有する酸化物超電導層の厚さ方向の両面に接してAg層又はAgを含む層を有する金属層が積層されているため、従来の超電導線材が酸化物超電導層の厚さ方向の片側に成膜に用いた基板が残されているのと比べて、単位断面積当たりの特性が優れた超電導線材を提供することができる。 According to each of the above-described embodiments, since the metal layer having the Ag layer or the layer containing Ag is laminated in contact with both surfaces in the thickness direction of the oxide superconducting layer having crystal orientation, the conventional superconducting wire is oxidized. It is possible to provide a superconducting wire having excellent characteristics per unit cross-sectional area as compared with the substrate used for film formation remaining on one side in the thickness direction of the object superconducting layer.
10,10A,10B,10C…超電導線材、11…酸化物超電導層、12,14…保護層(金属層)、13,15…安定化層(金属層)、20…基板付き超電導線材、21…金属基板、22…中間層、23…めっき層、23A…表面部、23B…裏面部、23C…側面部、24,25…積層体 10, 10A, 10B, 10C... Superconducting wire, 11... Oxide superconducting layer, 12, 14... Protective layer (metal layer), 13, 15... Stabilizing layer (metal layer), 20... Superconducting wire with substrate, 21... Metal substrate, 22... Intermediate layer, 23... Plating layer, 23A... Front surface portion, 23B... Back surface portion, 23C... Side surface portion, 24, 25... Laminated body

Claims (7)

  1.  希土類元素を含む酸化物超電導層を有する超電導線材であって、
     前記酸化物超電導層は、厚さ方向に平行な面内の配向度Δφが6.0°以下であり、
     前記超電導線材は、
     前記酸化物超電導層の厚さ方向の第一面に積層され、Ag層又はAgを含む層である第一金属層と、
     前記第一面と反対側の第二面に積層され、Ag層又はAgを含む層である第二金属層と、
     前記酸化物超電導層の厚さ方向において、前記第一金属層または前記第二金属層に接し、Cu層又はCuを含む金属層と、
    を備える、超電導線材。
    A superconducting wire having an oxide superconducting layer containing a rare earth element,
    The oxide superconducting layer has an orientation degree Δφ in a plane parallel to the thickness direction of 6.0° or less,
    The superconducting wire is
    A first metal layer that is an Ag layer or a layer containing Ag, which is laminated on the first surface in the thickness direction of the oxide superconducting layer;
    A second metal layer which is a Ag layer or a layer containing Ag, which is laminated on the second surface opposite to the first surface;
    In the thickness direction of the oxide superconducting layer, in contact with the first metal layer or the second metal layer, a Cu layer or a metal layer containing Cu,
    A superconducting wire rod.
  2.  前記金属層は、前記第一金属層に接する第一Cu金属層と、前記第二金属層に接する第二Cu金属層とを有する、請求項1に記載の超電導線材。 The superconducting wire according to claim 1, wherein the metal layer has a first Cu metal layer in contact with the first metal layer and a second Cu metal layer in contact with the second metal layer.
  3.  前記酸化物超電導層の幅方向の前記第一面が前記第一金属層で覆われ、前記第二面が前記第二金属層で覆われている、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein the first surface in the width direction of the oxide superconducting layer is covered with the first metal layer, and the second surface is covered with the second metal layer.
  4.  前記酸化物超電導層の厚さ方向における前記超電導線材の総厚さが50μm以下である、請求項1~3のいずれか1項に記載の超電導線材。 The superconducting wire according to any one of claims 1 to 3, wherein the total thickness of the superconducting wire in the thickness direction of the oxide superconducting layer is 50 μm or less.
  5.  希土類元素を含む酸化物超電導層を有する超電導線材の製造方法であって、
     基板上に、前記酸化物超電導層を積層する工程と、
     前記酸化物超電導層の厚さ方向のうち前記基板とは反対側において前記酸化物超電導層上に第一金属層を積層する工程と、
     前記基板を除去する工程と、
     前記酸化物超電導層の厚さ方向のうち前記基板が除去された側において前記酸化物超電導層上に第二金属層を積層する工程と、
    を有する、超電導線材の製造方法。
    A method of manufacturing a superconducting wire having an oxide superconducting layer containing a rare earth element,
    A step of laminating the oxide superconducting layer on a substrate,
    A step of laminating a first metal layer on the oxide superconducting layer on the side opposite to the substrate in the thickness direction of the oxide superconducting layer,
    Removing the substrate,
    A step of laminating a second metal layer on the oxide superconducting layer on the side where the substrate is removed in the thickness direction of the oxide superconducting layer,
    And a method for manufacturing a superconducting wire.
  6.  前記第一金属層及び前記第二金属層が、Ag層又はAgを含む層である、請求項5に記載の超電導線材の製造方法。 The method for producing a superconducting wire according to claim 5, wherein the first metal layer and the second metal layer are Ag layers or layers containing Ag.
  7.  前記酸化物超電導層の厚さ方向において、前記第一金属層または前記第二金属層に接するようにCu層又はCuを含む金属層を積層する、請求項6に記載の超電導線材の製造方法。 The method for producing a superconducting wire according to claim 6, wherein a Cu layer or a metal layer containing Cu is laminated so as to be in contact with the first metal layer or the second metal layer in the thickness direction of the oxide superconducting layer.
PCT/JP2019/050519 2018-12-26 2019-12-24 Oxide superconducting wire material and method for manufacturing same WO2020138035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018243592A JP6724125B2 (en) 2018-12-26 2018-12-26 Oxide superconducting wire and method for producing the same
JP2018-243592 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020138035A1 true WO2020138035A1 (en) 2020-07-02

Family

ID=71127040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050519 WO2020138035A1 (en) 2018-12-26 2019-12-24 Oxide superconducting wire material and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6724125B2 (en)
WO (1) WO2020138035A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038526A (en) * 2010-08-05 2012-02-23 Kyushu Univ RE1Ba2Cu3O7-z SUPERCONDUCTOR
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material
JP2013201014A (en) * 2012-03-23 2013-10-03 Toshiba Corp Oxide superconductor, oriented oxide thin film, and manufacturing method for oxide superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038526A (en) * 2010-08-05 2012-02-23 Kyushu Univ RE1Ba2Cu3O7-z SUPERCONDUCTOR
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material
JP2013201014A (en) * 2012-03-23 2013-10-03 Toshiba Corp Oxide superconductor, oriented oxide thin film, and manufacturing method for oxide superconductor

Also Published As

Publication number Publication date
JP6724125B2 (en) 2020-07-15
JP2020107445A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP2013232297A (en) Oxide superconducting wire
US20170287599A1 (en) Oxide superconducting wire
JP2011008949A (en) Superconductive wire rod and its manufacturing method
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP2013030661A (en) Superconducting coil
WO2020138035A1 (en) Oxide superconducting wire material and method for manufacturing same
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP5693798B2 (en) Oxide superconducting wire
JP2020113509A (en) Oxide superconducting wire and superconducting coil
US9570215B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP2015228357A (en) Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod
JP6904875B2 (en) Connection structure of oxide superconducting wire and connection method of oxide superconducting wire
JP6349439B1 (en) Superconducting coil
WO2018207727A1 (en) Superconducting wire and superconducting coil
JP6461776B2 (en) Superconducting wire and method of manufacturing superconducting wire
US11710583B2 (en) Oxide superconducting wire and superconducting coil
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
JP6869868B2 (en) Connection structure of oxide superconducting wire
JP2023032076A (en) superconducting coil
JP6743232B1 (en) Oxide superconducting wire
WO2023027149A1 (en) Superconducting wire material and superconducting coil
JP6775407B2 (en) Oxide superconducting wire
JP6318284B1 (en) Superconducting wire
JP2023032075A (en) superconducting coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905485

Country of ref document: EP

Kind code of ref document: A1