WO2020137933A1 - Electrical circuit and electrical device - Google Patents

Electrical circuit and electrical device Download PDF

Info

Publication number
WO2020137933A1
WO2020137933A1 PCT/JP2019/050257 JP2019050257W WO2020137933A1 WO 2020137933 A1 WO2020137933 A1 WO 2020137933A1 JP 2019050257 W JP2019050257 W JP 2019050257W WO 2020137933 A1 WO2020137933 A1 WO 2020137933A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric circuit
sensor element
circuit according
barrier diode
layer
Prior art date
Application number
PCT/JP2019/050257
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 稲田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201980083462.5A priority Critical patent/CN113169224A/en
Priority to JP2020563232A priority patent/JP7456940B2/en
Publication of WO2020137933A1 publication Critical patent/WO2020137933A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes

Definitions

  • the present disclosure relates to an electric circuit and an electric device including a sensor element.
  • the current output of the sensor element is often a very small current, it is necessary to amplify the signal once and remove the noise before inputting it to the microcomputer, after which the active elements such as transistors are activated.
  • An electric circuit connects a gate electrode to a sensor element that outputs a current signal, a Schottky barrier diode connected to the sensor element, and a connection point between the sensor element and the Schottky barrier diode.
  • the voltage-driven transistor described above, and the Schottky barrier diode has an insulator layer in a partial region between a metal layer forming a Schottky junction and a semiconductor layer.
  • the electric circuit of the present embodiment includes a sensor element S1 that outputs a current signal, a Schottky barrier diode D1 having an anode connected to the sensor element S1, and a connection of the sensor element S1 and the Schottky barrier diode D1.
  • the point includes a voltage-driven transistor T1 connected to a gate electrode.
  • the Schottky barrier diode D1 (D2) has an insulator layer 3 in a partial region between the metal layer 1 and the semiconductor layer 2 forming the Schottky junction SB as shown in FIGS. 2A and 2B.
  • a cathode electrode metal layer 4 is formed on the lower surface of the semiconductor layer 2 and corresponds to an electrode connected to the high potential side in the circuit diagram of FIG.
  • the Schottky barrier diode D1 is connected to the high potential (Hi) side.
  • the sensor element S1 is connected to the low potential (GND) side of the Schottky barrier diode D1.
  • the Schottky barrier diode D1 has a cathode on the high potential side and an anode on the low potential side in the reverse connection.
  • the sensor element S1 is connected to the anode of the Schottky barrier diode D1.
  • the Schottky barrier diode D1 is on the first potential side, and the sensor element S1 is an electric circuit on the second potential side lower than the first potential.
  • an electric circuit in which the sensor element S1 is on the first potential side and the Schottky barrier diode D2 is on the second potential side lower than the first potential can be similarly implemented.
  • the Schottky barrier diode D2 is connected to the low potential (GND) side.
  • the sensor element S1 is connected to the high potential (Hi) side of the Schottky barrier diode D2.
  • the reverse connection is such that the Schottky barrier diode D2 has a cathode on the high potential side and an anode on the low potential side.
  • the sensor element S1 is connected to the cathode of the Schottky barrier diode D2.
  • the Schottky barrier diode D1 includes the insulator layer 3 in a region surrounded by the Schottky junction SB between the metal layer 1 and the semiconductor layer 2 in plan view (FIG. 2B). And has the insulator layer 3 between the metal layer 1 and the semiconductor layer 2.
  • FIG. 3 is a cross-sectional view showing the laminated structure of the Schottky barrier diode D3 of the comparative example.
  • FIG. 4 is a graph showing the relationship (reverse voltage-current characteristic) of the reverse leakage current IR with respect to the reverse voltage VR of the diode (D3) of the comparative example and the diodes (D1, D2) of the present invention. Up to about 80 [V], the diode (D3) of the comparative example and the diodes (D1, D2) of the present invention change with almost the same characteristics. This indicates that the voltage range 11 is mainly the reverse leakage current IRs of the Schottky junction SB.
  • the current value of the diodes (D1, D2) of the present invention rises significantly (voltage range 12) with respect to the current value of the diode (D3) of the comparative example.
  • the diode (D1, D2) of the example of the present invention has a reverse direction that passes through the insulator layer 3 when the Schottky junction SB between the metal layer 1 and the semiconductor layer 2 is in a state before breakdown when a reverse voltage is applied. It means that it has a reverse voltage-current characteristic that allows a leakage current IRt to flow.
  • the reverse leakage current IRt passing through the insulator layer 3 located between the metal layer 1 and the semiconductor layer 2 is also called a tunnel current.
  • the reverse leakage current passing through the insulator layer 3 is increased, so that the characteristic curve of the diode (D3) of the comparative example, which is a simple Schottky diode, is higher than that of the characteristic curve. It shows the characteristic that it rises apart. That is, in the diode (D1, D2) of the example of the present invention, the reverse leakage current IRt passing through the insulator layer 3 has a reverse voltage-current characteristic that rises larger than the reverse leakage current IRs of the Schottky junction.
  • the diodes (D1, D2) of the example of the present invention have characteristics in which the reverse leakage current IRt passing through these insulator layers 3 and the reverse leakage current IRs of the Schottky junction are added.
  • the reverse leakage current IRt passing through the insulating layer 3 increases semi-logarithmically, and linearity in which the current IR changes linearly with respect to the voltage VR in the voltage range 12 is realized.
  • FIG. 5 is a graph showing the temperature dependence of the diodes (D1, D2) of the present invention example having the insulator layer 3 described above.
  • the current value is different between 25° C. and 125° C. due to the temperature dependence of the Schottky junction.
  • the high voltage range 14 the influence of the temperature dependence of the Schottky junction is reduced, and the current values at 25° C. and 125° C. are almost the same.
  • the reverse leakage current (IRt) passing through the insulator layer 3 rises more than the reverse leakage current (IRs) of the Schottky junction (SB), and
  • the temperature dependence of the former is smaller than the temperature dependence of the latter, as compared with the voltage range mainly including the reverse leakage current (IRs) of the Schottky junction (SB) of less than.
  • the current signal of the sensor element S1 is set in the high voltage range 14, and the connection point between the sensor element S1 and the diode D1 (D2) is the ON voltage and the OFF voltage of the transistor T1. Set to change.
  • the sensor element S1 is normally ON and an external factor (light, pressure, etc.) to be detected is detected, and the detection signal is output as a current signal, the anode potential of the diode D1 changes to that of the transistor T1.
  • the transistor is turned off and the transistor T1 is turned off. Therefore, an electric circuit that is normally ON and is OFF when detected by the sensor element S1 is configured.
  • the sensor element S1 when normally off, the sensor element S1 detects an external factor (light, pressure, etc.) to be detected, and outputs the detection signal as a current signal, the cathode potential of the diode D2 of the transistor T1. The potential becomes ON, and the transistor T1 becomes ON. Therefore, an electrical circuit that is normally OFF and is turned ON by detection by the sensor element S1 is configured. Further, as shown in FIG. 5, in the high voltage range 14, since the linearity of the gate voltage according to the current signal of the sensor element can be realized with little temperature dependency, the operation can be performed accurately regardless of the environmental temperature.
  • the insulator layer 3 is thinned to a desired voltage equal to or lower than the breakdown voltage of the Schottky junction SB.
  • the diodes D1 and D2 are configured so that the leakage current IRt is sufficiently generated in the range.
  • One method is to form the edge structure of the insulator layer 3 shown in FIG. As shown in FIG. 6, the edge portion 31 of the insulator layer 3 is formed with a gradient in which the thickness gradually decreases toward the edge 32, and the gradient is a central portion inside the edge portion 31 from the edge 32. As it approaches 33, the slope changes steeply.
  • An electric device having the electric circuit described above as a detection unit can be implemented.
  • various production machines, IoT devices, etc. can be implemented.
  • the operation status of the production machine can be detected by the sensor element S1, output as an ON/OFF signal by the transistor T1, and transmitted to the production management computer system via the communication path.
  • the IoT device can be implemented by causing the sensor element S1 to detect an external factor, outputting it as an ON/OFF signal by the transistor T1, and transmitting the ON/OFF signal to a personal computer or a mobile computer via a communication network. ..
  • the present disclosure can be used for electric circuits and electric devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

This electrical circuit includes: a sensor element S1 that outputs current signals; a Schottky barrier diode D1 connected to the sensor element; and, at the connection point between the sensor element and the Schottky barrier diode, a voltage-driven transistor T1 to which a gate electrode is connected. The Schottky barrier diode has an insulator layer 3 in part of the region between a metal layer 1 and a semiconductor layer 2 that form a Schottky junction SB. A reverse tunnel current can flow through the insulator layer 3.

Description

電気回路及び電気装置Electric circuits and devices
 本開示は、センサ素子を含む電気回路及び電気装置に関する。 The present disclosure relates to an electric circuit and an electric device including a sensor element.
 センサ素子の電流出力は微小電流であることが多いため、一旦、信号を増幅しノイズ除去した上で、マイコンに入力する必要があり、その後、トランジスタ等の能動素子を作動させることが行われる。 Since the current output of the sensor element is often a very small current, it is necessary to amplify the signal once and remove the noise before inputting it to the microcomputer, after which the active elements such as transistors are activated.
 本開示の1つの態様の電気回路は、電流信号を出力するセンサ素子と、前記センサ素子に接続したショットキーバリアダイオードと、前記センサ素子と前記ショットキーバリアダイオードの接続点に、ゲート電極を接続した電圧駆動のトランジスタと、を有し、前記ショットキーバリアダイオードは、ショットキー接合を形成する金属層と半導体層の間の一部の領域に、絶縁体層を有する。 An electric circuit according to one aspect of the present disclosure connects a gate electrode to a sensor element that outputs a current signal, a Schottky barrier diode connected to the sensor element, and a connection point between the sensor element and the Schottky barrier diode. The voltage-driven transistor described above, and the Schottky barrier diode has an insulator layer in a partial region between a metal layer forming a Schottky junction and a semiconductor layer.
本開示の一実施形態に係る電気回路図である。It is an electric circuit diagram concerning one embodiment of this indication. 本発明例のショットキーバリアダイオードの垂直断面図である。It is a vertical cross-sectional view of the Schottky barrier diode of the example of the present invention. 本発明例のショットキーバリアダイオードの水平断面図である。It is a horizontal sectional view of the Schottky barrier diode of the example of the present invention. 比較例のショットキーバリアダイオードの断面図である。It is sectional drawing of the Schottky barrier diode of a comparative example. 比較例のダイオードと、本発明例のダイオードの逆方向電圧電流特性を示すグラフである。It is a graph which shows the reverse voltage current characteristic of the diode of a comparative example, and the diode of this invention example. 本発明例のダイオードの逆方向電圧電流特性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the reverse voltage-current characteristic of the diode of the example of this invention. 本発明例のショットキーバリアダイオードの絶縁体層の縁部構造を示す断面図である。It is sectional drawing which shows the edge part structure of the insulator layer of the Schottky barrier diode of the example of this invention. 本開示の他の一実施形態に係る電気回路図である。It is an electric circuit diagram concerning other one embodiment of this indication.
 以下に本開示の一実施形態につき図面を参照して説明する。 An embodiment of the present disclosure will be described below with reference to the drawings.
 図1に示すように本実施形態の電気回路は、電流信号を出力するセンサ素子S1と、センサ素子S1にアノードを接続したショットキーバリアダイオードD1と、センサ素子S1とショットキーバリアダイオードD1の接続点に、ゲート電極を接続した電圧駆動のトランジスタT1と、を有する。
 ショットキーバリアダイオードD1(D2)は、図2A,2Bに示すようにショットキー接合SBを形成する金属層1と半導体層2の間の一部の領域に、絶縁体層3を有する。
 シリコン酸化膜等により構成される絶縁体層3を上下に挟み、絶縁体層3に接合する一方の金属層1と、他方の半導体層2は、絶縁体層3に隣接した領域でショットキー接合SBを形成する金属と半導体の層である。
 半導体層2の下面にはカソード電極金属層4が形成されており、図1の回路図で高電位側に接続される電極に相当する。
As shown in FIG. 1, the electric circuit of the present embodiment includes a sensor element S1 that outputs a current signal, a Schottky barrier diode D1 having an anode connected to the sensor element S1, and a connection of the sensor element S1 and the Schottky barrier diode D1. The point includes a voltage-driven transistor T1 connected to a gate electrode.
The Schottky barrier diode D1 (D2) has an insulator layer 3 in a partial region between the metal layer 1 and the semiconductor layer 2 forming the Schottky junction SB as shown in FIGS. 2A and 2B.
The metal layer 1 on one side and the semiconductor layer 2 on the other side, which sandwich the insulator layer 3 composed of a silicon oxide film or the like in the upper and lower sides and are bonded to the insulator layer 3, are Schottky bonded in a region adjacent to the insulator layer 3. These are the metal and semiconductor layers that form the SB.
A cathode electrode metal layer 4 is formed on the lower surface of the semiconductor layer 2 and corresponds to an electrode connected to the high potential side in the circuit diagram of FIG.
 図1に示すようにショットキーバリアダイオードD1は、高電位(Hi)側に接続される。センサ素子S1は、ショットキーバリアダイオードD1より、低電位(GND)側に接続される。
 ショットキーバリアダイオードD1のカソードが高電位側に、アノードが低電位側とされた逆方向接続である。
  両者の接続関係としては、センサ素子S1を、ショットキーバリアダイオードD1のアノードに対して接続している。
 ショットキーバリアダイオードD1は第1電位側にあり、センサ素子S1は第1電位より低い第2電位側にある電気回路が構成される。
As shown in FIG. 1, the Schottky barrier diode D1 is connected to the high potential (Hi) side. The sensor element S1 is connected to the low potential (GND) side of the Schottky barrier diode D1.
The Schottky barrier diode D1 has a cathode on the high potential side and an anode on the low potential side in the reverse connection.
As for the connection relationship between the two, the sensor element S1 is connected to the anode of the Schottky barrier diode D1.
The Schottky barrier diode D1 is on the first potential side, and the sensor element S1 is an electric circuit on the second potential side lower than the first potential.
 又は、図7に示すようにセンサ素子S1は第1電位側にあり、ショットキーバリアダイオードD2は第1電位より低い第2電位側にある電気回路も同様に実施し得る。この場合、ショットキーバリアダイオードD2は、低電位(GND)側に接続される。センサ素子S1は、ショットキーバリアダイオードD2より、高電位(Hi)側に接続される。
 ショットキーバリアダイオードD2のカソードが高電位側に、アノードが低電位側とされた逆方向接続である。
 両者の接続関係としては、センサ素子S1を、ショットキーバリアダイオードD2のカソードに対して接続している。
Alternatively, as shown in FIG. 7, an electric circuit in which the sensor element S1 is on the first potential side and the Schottky barrier diode D2 is on the second potential side lower than the first potential can be similarly implemented. In this case, the Schottky barrier diode D2 is connected to the low potential (GND) side. The sensor element S1 is connected to the high potential (Hi) side of the Schottky barrier diode D2.
The reverse connection is such that the Schottky barrier diode D2 has a cathode on the high potential side and an anode on the low potential side.
As for the connection relationship between the two, the sensor element S1 is connected to the cathode of the Schottky barrier diode D2.
 図2A,2Bに示すように、ショットキーバリアダイオードD1(D2)は、平面視(図2B)で金属層1と半導体層2とのショットキー接合SBに囲まれた領域に絶縁体層3を有し、該絶縁体層3を金属層1と半導体層2との間に有する。 As shown in FIGS. 2A and 2B, the Schottky barrier diode D1 (D2) includes the insulator layer 3 in a region surrounded by the Schottky junction SB between the metal layer 1 and the semiconductor layer 2 in plan view (FIG. 2B). And has the insulator layer 3 between the metal layer 1 and the semiconductor layer 2.
 図3は、比較例のショットキーバリアダイオードD3の積層構造を示す断面図である。
 図4は、比較例のダイオード(D3)と、本発明例のダイオード(D1,D2)の逆方向電圧VRに対する逆方向漏れ電流IRの関係(逆方向電圧電流特性)を示すグラフである。
 約80〔V〕までは、比較例のダイオード(D3)及び本発明例のダイオード(D1,D2)は、互いにほぼ同じ特性で変遷する。これは、ショットキー接合SBの逆方向漏れ電流IRsを主とした電圧範囲11であることを示す。
 同電圧範囲11を超えて電圧が増加すると、比較例のダイオード(D3)の電流値に対して本発明例のダイオード(D1,D2)の電流値は、大きく立ち上がる(電圧範囲12)。
 これは、本発明例のダイオード(D1,D2)は、金属層1と半導体層2とのショットキー接合SBが逆電圧印加時で降伏前の状態にあるとき、絶縁体層3を通る逆方向漏れ電流IRtを流す逆方向電圧電流特性を有することを意味する。金属層1と半導体層2の間に位置する絶縁体層3を通る逆方向漏れ電流IRtをトンネル電流ともいう。
 本発明例のダイオード(D1,D2)では、絶縁体層3を通る逆方向漏れ電流が増加する分だけ、単純なショットキーダイオードである比較例のダイオード(D3)の特性曲線に対して上に離れて上昇していく特性を示す。すなわち、本発明例のダイオード(D1,D2)では、絶縁体層3を通る逆方向漏れ電流IRtは、ショットキー接合の逆方向漏れ電流IRsより大きく立ち上がる逆方向電圧電流特性を有する。
 本発明例のダイオード(D1,D2)は、これらの絶縁体層3を通る逆方向漏れ電流IRtと、ショットキー接合の逆方向漏れ電流IRsとを合算した特性となる。
 絶縁体層3を通る逆方向漏れ電流IRtが片対数的に増加し、電圧範囲12において電圧VRに対して電流IRが直線的に変化するリニアリティが実現される。
FIG. 3 is a cross-sectional view showing the laminated structure of the Schottky barrier diode D3 of the comparative example.
FIG. 4 is a graph showing the relationship (reverse voltage-current characteristic) of the reverse leakage current IR with respect to the reverse voltage VR of the diode (D3) of the comparative example and the diodes (D1, D2) of the present invention.
Up to about 80 [V], the diode (D3) of the comparative example and the diodes (D1, D2) of the present invention change with almost the same characteristics. This indicates that the voltage range 11 is mainly the reverse leakage current IRs of the Schottky junction SB.
When the voltage increases beyond the voltage range 11, the current value of the diodes (D1, D2) of the present invention rises significantly (voltage range 12) with respect to the current value of the diode (D3) of the comparative example.
This is because the diode (D1, D2) of the example of the present invention has a reverse direction that passes through the insulator layer 3 when the Schottky junction SB between the metal layer 1 and the semiconductor layer 2 is in a state before breakdown when a reverse voltage is applied. It means that it has a reverse voltage-current characteristic that allows a leakage current IRt to flow. The reverse leakage current IRt passing through the insulator layer 3 located between the metal layer 1 and the semiconductor layer 2 is also called a tunnel current.
In the diodes (D1, D2) of the present invention example, the reverse leakage current passing through the insulator layer 3 is increased, so that the characteristic curve of the diode (D3) of the comparative example, which is a simple Schottky diode, is higher than that of the characteristic curve. It shows the characteristic that it rises apart. That is, in the diode (D1, D2) of the example of the present invention, the reverse leakage current IRt passing through the insulator layer 3 has a reverse voltage-current characteristic that rises larger than the reverse leakage current IRs of the Schottky junction.
The diodes (D1, D2) of the example of the present invention have characteristics in which the reverse leakage current IRt passing through these insulator layers 3 and the reverse leakage current IRs of the Schottky junction are added.
The reverse leakage current IRt passing through the insulating layer 3 increases semi-logarithmically, and linearity in which the current IR changes linearly with respect to the voltage VR in the voltage range 12 is realized.
 図5は、以上説明した絶縁体層3を有する本発明例のダイオード(D1,D2)の温度依存性を示すグラフである。
 図5に示すように、低電圧範囲13では、ショットキー接合の温度依存性に起因して、25℃と125℃とで電流値が異なっている。
 これに対し、高電圧範囲14では、ショットキー接合の温度依存性の影響が小さくなり、25℃と125℃とで電流値がほぼ異ならない。
 すなわち、本発明例のダイオード(D1,D2)では、絶縁体層3を通る逆方向漏れ電流(IRt)がショットキー接合(SB)の逆方向漏れ電流(IRs)より大きく立ち上がる電圧範囲と、それ未満のショットキー接合(SB)の逆方向漏れ電流(IRs)を主とした電圧範囲とを比較して、前者の温度依存性が後者の温度依存性より小さい。
FIG. 5 is a graph showing the temperature dependence of the diodes (D1, D2) of the present invention example having the insulator layer 3 described above.
As shown in FIG. 5, in the low voltage range 13, the current value is different between 25° C. and 125° C. due to the temperature dependence of the Schottky junction.
On the other hand, in the high voltage range 14, the influence of the temperature dependence of the Schottky junction is reduced, and the current values at 25° C. and 125° C. are almost the same.
That is, in the diodes (D1, D2) of the example of the present invention, the reverse leakage current (IRt) passing through the insulator layer 3 rises more than the reverse leakage current (IRs) of the Schottky junction (SB), and The temperature dependence of the former is smaller than the temperature dependence of the latter, as compared with the voltage range mainly including the reverse leakage current (IRs) of the Schottky junction (SB) of less than.
 以上の本実施形態の電気回路において、センサ素子S1の電流信号を高電圧範囲14に設定し、センサ素子S1とダイオードD1(D2)との接続点がトランジスタT1のON電圧と、OFF電圧とに変化するように設定する。
 図1の電気回路では、ノーマリーONで、センサ素子S1が検出対象の外的要因(光、圧力など)を検出してその検出信号を電流信号として出力すると、ダイオードD1のアノード電位がトランジスタT1のOFF電位となり、トランジスタT1がOFFとなる。したがって、ノーマリーONで、センサ素子S1による検出でOFFとなる電気回路が構成される。
 図7の電気回路では、ノーマリーOFFで、センサ素子S1が検出対象の外的要因(光、圧力など)を検出してその検出信号を電流信号として出力すると、ダイオードD2のカソード電位がトランジスタT1のON電位となり、トランジスタT1がONとなる。したがって、ノーマリーOFFで、センサ素子S1による検出でONとなる電気回路が構成される。
 そして、図5に示したように高電圧範囲14では、センサ素子の電流信号に応じたゲート電圧のリニアリティを温度依存性少なく実現できるので、環境温度によらず精度よく動作させることができる。
In the electric circuit of the present embodiment described above, the current signal of the sensor element S1 is set in the high voltage range 14, and the connection point between the sensor element S1 and the diode D1 (D2) is the ON voltage and the OFF voltage of the transistor T1. Set to change.
In the electric circuit of FIG. 1, when the sensor element S1 is normally ON and an external factor (light, pressure, etc.) to be detected is detected, and the detection signal is output as a current signal, the anode potential of the diode D1 changes to that of the transistor T1. The transistor is turned off and the transistor T1 is turned off. Therefore, an electric circuit that is normally ON and is OFF when detected by the sensor element S1 is configured.
In the electrical circuit of FIG. 7, when normally off, the sensor element S1 detects an external factor (light, pressure, etc.) to be detected, and outputs the detection signal as a current signal, the cathode potential of the diode D2 of the transistor T1. The potential becomes ON, and the transistor T1 becomes ON. Therefore, an electrical circuit that is normally OFF and is turned ON by detection by the sensor element S1 is configured.
Further, as shown in FIG. 5, in the high voltage range 14, since the linearity of the gate voltage according to the current signal of the sensor element can be realized with little temperature dependency, the operation can be performed accurately regardless of the environmental temperature.
 以上のような絶縁体層3を通る逆方向漏れ電流IRtに起因した逆方向電圧電流特性を実現するために、絶縁体層3を薄膜化して、ショットキー接合SBの降伏電圧以下の所望の電圧範囲で、漏れ電流IRtが十分に発生するように、ダイオードD1,D2を構成する。
 その一つの手法としては、図6に示す絶縁体層3の縁部構造を構成することである。
 図6に示すように、絶縁体層3の縁部31は、厚みが縁32に向かって漸減する勾配を有して形成され、当該勾配は、当該縁32から縁部31より内側の中央部33に近づくほど急勾配に変化している。
 かかる構造により、絶縁体層3の縁32付近の薄い部分での漏れ電流IRtの発生を比較的低電圧で引き起こすことができる。
 また、かかる構造は、絶縁体層3のウエットエッチングにより容易に形成することができるので、容易に実施することができる。
 以上の構成に拘わらず、絶縁体層3を全体的に薄膜化して所望の特性の漏れ電流IRtを実現してもよいことは勿論である。
In order to realize the reverse voltage-current characteristic due to the reverse leakage current IRt passing through the insulator layer 3 as described above, the insulator layer 3 is thinned to a desired voltage equal to or lower than the breakdown voltage of the Schottky junction SB. The diodes D1 and D2 are configured so that the leakage current IRt is sufficiently generated in the range.
One method is to form the edge structure of the insulator layer 3 shown in FIG.
As shown in FIG. 6, the edge portion 31 of the insulator layer 3 is formed with a gradient in which the thickness gradually decreases toward the edge 32, and the gradient is a central portion inside the edge portion 31 from the edge 32. As it approaches 33, the slope changes steeply.
With such a structure, generation of the leakage current IRt in the thin portion near the edge 32 of the insulator layer 3 can be caused at a relatively low voltage.
Further, since such a structure can be easily formed by wet etching of the insulator layer 3, it can be easily implemented.
Regardless of the above configuration, it goes without saying that the insulator layer 3 may be entirely thinned to realize the leakage current IRt having desired characteristics.
 以上説明した電気回路を検出部として有する電気装置を実施し得る。例えば、各種生産機械、IoT機器等を実施し得る。例えば、生産機械における稼働状況をセンサ素子S1に感知させてトランジスタT1によりON/OFF信号として出力させ、通信路を介して生産管理コンピューターシステムに送信するように実施することができる。
 IoT機器でも同様に、外的要因をセンサ素子S1に感知させてトランジスタT1によりON/OFF信号として出力させ、通信ネットワークを介してパーソナル・コンピューターやモバイル・コンピューターに送信するように実施することができる。
 また、データ通信により離れた装置に送信する実施形態のみならず、同電気装置に備わるモーター、ライトその他の電気機器の動作を、必要により制御ICを介して操作するように実施することができる。
 このような電気装置において、電圧駆動のトランジスタを作動させるために、マイコン(ICチップ)が不要となり、低コスト化、小型軽量化を図ることができ、温度依存性が小さく、高い動作信頼性を実現できる。
An electric device having the electric circuit described above as a detection unit can be implemented. For example, various production machines, IoT devices, etc. can be implemented. For example, the operation status of the production machine can be detected by the sensor element S1, output as an ON/OFF signal by the transistor T1, and transmitted to the production management computer system via the communication path.
Similarly, the IoT device can be implemented by causing the sensor element S1 to detect an external factor, outputting it as an ON/OFF signal by the transistor T1, and transmitting the ON/OFF signal to a personal computer or a mobile computer via a communication network. ..
Further, not only the embodiment in which data is transmitted to a distant device, but the operation of a motor, a light, and other electric equipment provided in the electric device can be performed so as to be operated via a control IC as necessary.
In such an electric device, since a voltage-driven transistor is operated, a microcomputer (IC chip) is not required, cost reduction, size reduction and weight reduction can be achieved, temperature dependence is small, and high operation reliability is achieved. realizable.
 本開示は、電気回路及び電気装置に利用することができる。 The present disclosure can be used for electric circuits and electric devices.
1     金属層
2     半導体層
3     絶縁体層
4     カソード電極金属層
D1,D2    ショットキーバリアダイオード
D3   比較例のショットキーバリアダイオード
S1   センサ素子
SB   ショットキー接合
T1   トランジスタ
1 Metal Layer 2 Semiconductor Layer 3 Insulator Layer 4 Cathode Electrode Metal Layers D1, D2 Schottky Barrier Diode D3 Schottky Barrier Diode S1 of Comparative Example Sensor Element SB Schottky Junction T1 Transistor

Claims (10)

  1. 電流信号を出力するセンサ素子と、
    前記センサ素子に接続したショットキーバリアダイオードと、
    前記センサ素子と前記ショットキーバリアダイオードの接続点に、ゲート電極を接続した電圧駆動のトランジスタと、を有し、
    前記ショットキーバリアダイオードは、ショットキー接合を形成する金属層と半導体層の間の一部の領域に、絶縁体層を有する電気回路。
    A sensor element that outputs a current signal,
    A Schottky barrier diode connected to the sensor element,
    At a connection point between the sensor element and the Schottky barrier diode, a voltage-driven transistor having a gate electrode connected,
    The Schottky barrier diode is an electric circuit having an insulating layer in a part of a region between a metal layer forming a Schottky junction and a semiconductor layer.
  2. 前記絶縁体層は、ショットキー接合に隣接した領域で一面を前記金属層に接合し、反対面を前記半導体層に接合している請求項1に記載の電気回路。 The electric circuit according to claim 1, wherein the insulating layer has one surface bonded to the metal layer and the other surface bonded to the semiconductor layer in a region adjacent to the Schottky junction.
  3. 平面視で前記金属層と前記半導体層とのショットキー接合に囲まれた領域に前記絶縁体層を前記金属層と前記半導体層との間に有する請求項1又は請求項2に記載の電気回路。 The electric circuit according to claim 1, wherein the insulator layer is provided between the metal layer and the semiconductor layer in a region surrounded by a Schottky junction between the metal layer and the semiconductor layer in a plan view. ..
  4. 前記金属層と前記半導体層とのショットキー接合が逆電圧印加時で降伏前の状態にあるとき、前記絶縁体層を通る逆方向漏れ電流を流す逆方向電圧電流特性を有する請求項1から請求項3のうちいずれか一に記載の電気回路。 2. The reverse voltage-current characteristic of flowing a reverse leakage current through the insulator layer when the Schottky junction between the metal layer and the semiconductor layer is in a state before breakdown when a reverse voltage is applied. Item 4. The electric circuit according to any one of items 3.
  5. 前記絶縁体層を通る逆方向漏れ電流は、前記ショットキー接合の逆方向漏れ電流より大きく立ち上がる逆方向電圧電流特性を有する請求項4に記載の電気回路。 The electric circuit according to claim 4, wherein the reverse leakage current passing through the insulator layer has a reverse voltage-current characteristic that rises more than the reverse leakage current of the Schottky junction.
  6. 前記絶縁体層を通る逆方向漏れ電流が前記ショットキー接合の逆方向漏れ電流より大きく立ち上がる電圧範囲と、それ未満のショットキー接合の逆方向漏れ電流を主とした電圧範囲とを比較して、前者の温度依存性が後者の温度依存性より小さい請求項5に記載の電気回路。 By comparing the voltage range in which the reverse leakage current passing through the insulating layer rises larger than the reverse leakage current of the Schottky junction and the voltage range mainly including the reverse leakage current of the Schottky junction less than that, The electric circuit according to claim 5, wherein the former temperature dependence is smaller than the latter temperature dependence.
  7. 前記絶縁体層の縁部は、厚みが縁に向かって漸減する勾配を有して形成され、当該勾配は、当該縁から前記縁部より内側の中央部に近づくほど急勾配に変化している請求項1から請求項6のうちいずれか一に記載の電気回路。 The edge portion of the insulator layer is formed to have a gradient in which the thickness gradually decreases toward the edge, and the gradient changes steeply from the edge toward the center portion inside the edge portion. The electric circuit according to any one of claims 1 to 6.
  8. 前記ショットキーバリアダイオードは第1電位側にあり、前記センサ素子は前記第1電位より低い第2電位側にある請求項1から請求項7のうちいずれか一に記載の電気回路。 The electric circuit according to any one of claims 1 to 7, wherein the Schottky barrier diode is on a first potential side, and the sensor element is on a second potential side lower than the first potential.
  9. 前記センサ素子は第1電位側にあり、前記ショットキーバリアダイオードは前記第1電位より低い第2電位側にある請求項1から請求項7のうちいずれか一に記載の電気回路。 The electric circuit according to any one of claims 1 to 7, wherein the sensor element is on a first potential side, and the Schottky barrier diode is on a second potential side lower than the first potential.
  10. 請求項1から請求項9のうちいずれか一に記載の電気回路を有する電気装置。 An electric device comprising the electric circuit according to claim 1.
PCT/JP2019/050257 2018-12-27 2019-12-23 Electrical circuit and electrical device WO2020137933A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980083462.5A CN113169224A (en) 2018-12-27 2019-12-23 Circuit and electric device
JP2020563232A JP7456940B2 (en) 2018-12-27 2019-12-23 Electrical circuits and electrical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244517 2018-12-27
JP2018-244517 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137933A1 true WO2020137933A1 (en) 2020-07-02

Family

ID=71127971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050257 WO2020137933A1 (en) 2018-12-27 2019-12-23 Electrical circuit and electrical device

Country Status (3)

Country Link
JP (1) JP7456940B2 (en)
CN (1) CN113169224A (en)
WO (1) WO2020137933A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290953B (en) * 2022-06-24 2024-05-17 杭州格蓝丰科技有限公司 Self-driven mechanical signal sensor based on dynamic diode and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106911A (en) * 1980-12-23 1982-07-03 Matsushita Electric Ind Co Ltd Temperature controller
JPH10318783A (en) * 1997-05-16 1998-12-04 Yazaki Corp Magnetic detector and magnetic detection signal processor
WO2000021140A1 (en) * 1998-10-08 2000-04-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, a method of manufacturing the same, and a semiconductor device protective circuit
JP2015002315A (en) * 2013-06-18 2015-01-05 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
JP2018510022A (en) * 2015-03-31 2018-04-12 ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェンDraegerwerk AG & Co.KGaA Measurement signal amplifier and energy supply method for measurement signal amplifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489527A (en) * 1987-09-30 1989-04-04 Nec Corp Schottky diode
JP2009064969A (en) * 2007-09-06 2009-03-26 Panasonic Corp Semiconductor device, and its manufacturing method
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6412781B2 (en) * 2014-11-25 2018-10-24 株式会社メガチップス Image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106911A (en) * 1980-12-23 1982-07-03 Matsushita Electric Ind Co Ltd Temperature controller
JPH10318783A (en) * 1997-05-16 1998-12-04 Yazaki Corp Magnetic detector and magnetic detection signal processor
WO2000021140A1 (en) * 1998-10-08 2000-04-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, a method of manufacturing the same, and a semiconductor device protective circuit
JP2015002315A (en) * 2013-06-18 2015-01-05 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
JP2018510022A (en) * 2015-03-31 2018-04-12 ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェンDraegerwerk AG & Co.KGaA Measurement signal amplifier and energy supply method for measurement signal amplifier

Also Published As

Publication number Publication date
JP7456940B2 (en) 2024-03-27
CN113169224A (en) 2021-07-23
JPWO2020137933A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US8653641B2 (en) Integrated circuit device
US8278731B2 (en) Semiconductor device having SOI substrate and method for manufacturing the same
US9172244B1 (en) Self biased electro-static discharge clamp (ESD) for power rail
US9666505B1 (en) Power MOS transistor die with temperature sensing function and integrated circuit
US20180006214A1 (en) Sensor device and method for manufacturing same
WO2020137933A1 (en) Electrical circuit and electrical device
US9219479B2 (en) Through silicon via repair circuit of semiconductor apparatus
JP2000323654A (en) Semiconductor device
US11043508B2 (en) Semiconductor integrated circuit device, current control device using semiconductor integrated circuit device, and automatic transmission control device using current control device
CN105244404A (en) Integrated photoelectric sensor
US9105753B2 (en) Semiconductor physical quantity sensor and method for manufacturing the same
JP2010175525A (en) Semiconductor magnetic sensor
US10790367B2 (en) High-voltage metal-oxide-semiconductor field effect transistor
CN104282743A (en) Semiconductor device
JP6588229B2 (en) Overheat protection circuit, semiconductor integrated circuit device using the same, and vehicle
US20050285227A1 (en) Semiconductor device
KR101743864B1 (en) Vertical type cmos inverter device
JP6438451B2 (en) Optical receiver circuit
US20020096739A1 (en) Semiconductor device
JPH03148861A (en) Overheat detector of power ic and its structure
EP2618487A2 (en) Switching circuit and power supply device
US6643111B1 (en) Electronic transducer device
US7205581B2 (en) Thyristor structure and overvoltage protection configuration having the thyristor structure
WO2018163839A1 (en) Semiconductor device and production method
JP5783340B2 (en) Diode device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901460

Country of ref document: EP

Kind code of ref document: A1