WO2020137740A1 - 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム - Google Patents

放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム Download PDF

Info

Publication number
WO2020137740A1
WO2020137740A1 PCT/JP2019/049614 JP2019049614W WO2020137740A1 WO 2020137740 A1 WO2020137740 A1 WO 2020137740A1 JP 2019049614 W JP2019049614 W JP 2019049614W WO 2020137740 A1 WO2020137740 A1 WO 2020137740A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
unit
transmission
carrier
Prior art date
Application number
PCT/JP2019/049614
Other languages
English (en)
French (fr)
Inventor
智昭 保高
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to BR112021006059-6A priority Critical patent/BR112021006059A2/pt
Priority to JP2020563134A priority patent/JP7168001B2/ja
Publication of WO2020137740A1 publication Critical patent/WO2020137740A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/86Arrangements characterised by the broadcast information itself
    • H04H20/95Arrangements characterised by the broadcast information itself characterised by a specific format, e.g. an encoded audio stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/633Control signals issued by server directed to the network components or client
    • H04N21/6332Control signals issued by server directed to the network components or client directed to client

Definitions

  • the present invention relates to a broadcast transmission system, a broadcast reception system, a broadcast transmission/reception system, a broadcast transmission method, and a broadcast transmission program.
  • the television receiver In digital terrestrial television broadcasting, it is possible for the television receiver to reproduce images with a screen resolution of approximately 2000 horizontal x 1000 vertical.
  • Non-Patent Document 1 describes a transmission method of terrestrial digital television broadcasting.
  • the terrestrial digital television broadcasting based on the system described in Non-Patent Document 1 is also referred to as the current terrestrial digital television broadcasting.
  • Patent Document 1 polarized wave MIMO (Multiple-Input and Multiple-Output) transmission is adopted, data for a movable receiving device is transmitted by a signal of one polarization, and fixed by a signal of both polarizations.
  • a television broadcasting system that transmits data for a receiver installed in a conventional manner is described.
  • Patent Document 2 discloses a new terrestrial broadcast (also referred to as new terrestrial broadcast) in which a receiver can reproduce a higher quality image than the image quality that can be reproduced by the current terrestrial digital television broadcasting. It is described that the provision and the coexistence of the new terrestrial broadcasting with the current terrestrial digital television broadcasting are described.
  • a television receiver that can reproduce video according to a received signal input based on the transmission method of the current terrestrial digital television broadcasting even when the new terrestrial broadcasting and the current terrestrial digital television broadcasting coexist.
  • a television receiver compatible with the current terrestrial digital television broadcasting can appropriately equalize the received signal.
  • An object of the present invention is to provide a broadcast transmission system, a broadcast reception system, a broadcast transmission/reception system, a broadcast transmission method, and a broadcast transmission program that enable a television receiver to properly reproduce the video.
  • the broadcasting transmission system is based on the first image quality reproduction data and the second image quality reproduction data, and transmits one polarization antenna transmission data and the other polarization antenna transmission data. And a transmission process that performs a process for transmitting a signal according to the data for transmitting the one polarized antenna and a signal according to the data for transmitting the other polarized antenna. And a means for arranging a pilot signal or a null carrier at a first interval in the data for reproducing the first image quality of the data for transmitting the one polarization antenna.
  • the data forming means is configured to transmit data for transmitting the other polarized antenna so that a null carrier or a pilot signal is arranged at the first interval.
  • the data composing means In the data for reproducing the second image quality of the data for transmitting the one polarized antenna, the data composing means generates the pilot signal at a second interval. Data for polarization antenna transmission is generated, and the data composing means transmits the data with the lowest frequency in the first image quality reproduction data among the one polarization antenna transmission data.
  • the data for transmitting the one polarization antenna is generated so that the pilot signal is arranged in place of the null carrier based on the first interval, and the data configuration unit is configured to generate the data for the other polarization antenna.
  • the data for transmitting the other polarization antenna is generated so that a null carrier is arranged at a position corresponding to the position where the pilot signal is arranged.
  • first image quality reproduction data in which pilot signals or null carriers are arranged at first intervals and second image quality in which pilot signals are arranged at second intervals are provided.
  • a second receiving means for receiving a signal corresponding to the reproduction data; and a second pilot signal arranged in the first image quality reproduction data and the second image quality reproduction data.
  • the equalization means for performing equalization processing on the signal corresponding to the image quality reproduction data and the signal corresponding to the equalized second image quality reproduction data
  • the second image quality reproduction data is reproduced.
  • a television receiver capable of reproducing an image corresponding to data is provided with a reproduction processing unit for reproducing an image corresponding to the second image quality reproducing data, and is the lowest in the first image quality reproducing data.
  • a pilot signal is arranged in place of the null carrier based on the first interval.
  • the broadcast transmitting/receiving system is characterized by including a broadcast transmitting system of any aspect and a broadcast receiving system of any aspect.
  • the broadcast transmission method is based on the first image quality reproduction data and the second image quality reproduction data, and transmits one polarization antenna transmission data and the other polarization antenna transmission data. And a signal corresponding to the data for transmitting the one polarized antenna, and a process for transmitting a signal corresponding to the data for transmitting the other polarized antenna are performed, and the one polarized wave is generated.
  • pilot signals or null carriers are arranged at first intervals in the data for reproduction of the first image quality of the data for transmission of the one polarized antenna.
  • the data for the one polarization antenna transmission when generating the data for the other polarization antenna transmission, so that null carrier or pilot signal is arranged at the first interval, When the data for transmitting the other polarization antenna is generated and the data for transmitting the one polarization antenna is generated, the data for reproducing the second image quality of the data for transmitting the one polarization antenna is generated. Data of the one polarization antenna is generated so that pilot signals are arranged at a second interval, and when one of the polarization antenna transmission data is generated, the one polarization antenna transmission data is generated.
  • the pilot signal is arranged in place of the null carrier based on the first interval.
  • the pilot signal is It is characterized in that the data for transmitting the other polarization antenna is generated so that a null carrier is arranged at a position corresponding to the arranged position.
  • a broadcast transmission program transmits to a computer data for transmitting one polarization antenna and data for transmitting the other polarization antenna to a computer based on the first image quality reproduction data and the second image quality reproduction data.
  • a pilot signal or a null carrier is arranged at a first interval in the first image quality reproduction data of the one polarization antenna transmission data.
  • the data for transmitting the one polarization antenna is generated, and in the data configuration process, the transmission of the other polarization antenna is performed so that the null carrier or the pilot signal is arranged at the first interval.
  • Credit data is generated, and in the data configuration process, pilot signals are arranged at second intervals in the second image quality reproduction data of the one polarization antenna transmission data.
  • the one polarization antenna transmission data is generated, and in the data configuration processing, the carrier of the lowest frequency in the first image quality reproduction data of the one polarization antenna transmission data is used.
  • the data for one polarization antenna transmission is generated so that the pilot signal is arranged in place of the null carrier based on the first interval, and in the data configuration processing, the other data is transmitted.
  • the data for the other polarization antenna transmission is generated so that a null carrier is arranged at a position corresponding to a position where the pilot signal is arranged. ..
  • the present invention even when the new terrestrial broadcasting and the current terrestrial digital television broadcasting coexist, a video corresponding to the received signal input based on the current terrestrial digital television broadcasting transmission system is reproduced.
  • a possible television receiver can properly play the video.
  • FIG. 3 is a block diagram showing a configuration example of a modulator in the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a modulator in the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a modulator in the first embodiment.
  • It is a block diagram which shows the structural example of the demodulation part in 1st Embodiment.
  • It is a block diagram which shows the structural example of the demodulation part in 1st Embodiment.
  • It is a block diagram which shows the structural example of the demodulation part in 1st Embodiment.
  • 5 is a flowchart showing the operation of the transmission unit in the first embodiment. It is explanatory drawing which shows the example of the parameter according to the number of segments utilized by B hierarchy, and the modulation system of the signal for 4K. It is explanatory drawing which shows the example of an OFDM segment structure in 1st Embodiment. It is explanatory drawing which shows the example of an OFDM segment structure in 1st Embodiment. It is a block diagram which shows the structural example of the broadcasting system of 2nd Embodiment. It is a block diagram which shows the structural example of the modulation
  • FIG. 1 is a block diagram showing a configuration example of a broadcasting system 100 according to the first embodiment of the present invention.
  • a broadcasting system (broadcasting transmitting/receiving system) 100 includes a transmitting unit 200 and a receiving unit (broadcasting receiving system) 300.
  • Antennas 501 and 502 are connected to the transmitter 200.
  • An antenna 601 is connected to the receiving unit 300 via a distributor 700.
  • the receiver 400 is connected to the distributor 700.
  • the receiving unit 400 is connected to the antenna 602 and the antenna 601 via the distributor 700.
  • the signal input to the antennas 501 and 502 by the transmission unit 200 is converted into electromagnetic waves and radiated by the antennas 501 and 502. Then, the electromagnetic waves are received by the antennas 601 and 602 and are converted into reception signals, and the converted reception signals are input to the reception units 300 and 400.
  • the distributor 700 inputs the reception signal received by the antenna 601 and converted into a signal to the receiving unit 300 and the receiving unit 400.
  • the antennas 501 and 601 are horizontal polarization antennas
  • the antennas 502 and 602 are vertical polarization antennas.
  • the transmission unit 200, the reception unit 300, and the reception unit 400 may be realized by, for example, a computer equipped with a single or multiple circuits such as a CPU (Central Processing Unit) that executes processing according to program control.
  • a computer equipped with a single or multiple circuits such as a CPU (Central Processing Unit) that executes processing according to program control.
  • the transmission unit 200, the reception unit 300, and the reception unit 400 are equipped with software for realizing each operation described below.
  • the transmitting unit 200, the receiving unit 300, and the receiving unit 400 may be configured to realize each operation described below by executing processing according to the program control of the software.
  • the receiving unit 300 receives, for example, a television receiver capable of reproducing an image corresponding to an input received signal and a process corresponding to the received signal based on the current transmission system of terrestrial digital television broadcasting. It is a machine.
  • the reception unit 300 is configured to include, for example, the reception processing unit of the reception unit 300, the demodulation unit of the reception unit 300, and the decoding unit of the reception unit 300.
  • the transmission unit 200 includes an encoding unit 210, a multiplexing unit 220, a modulation unit (for example, data composing means) 230, a first amplification unit 240, and The second amplification section 250 is included.
  • the transmission processing unit corresponds to, for example, the first amplification unit 240 and the second amplification unit 250 in the first embodiment of the present invention.
  • the broadcast transmission system corresponds to, for example, the broadcast transmission system 251 shown in FIG.
  • the broadcasting transmission system 251 includes, for example, the modulation unit 230, the first amplification unit 240, and the second amplification unit 250 according to the first embodiment of the present invention.
  • the broadcast transmission system may include, for example, the encoding unit 210, the multiplexing unit 220, the modulating unit 230, the first amplifying unit 240, and the second amplifying unit 250 according to the first embodiment of the present invention. It may be configured.
  • the encoding unit 210 includes a first encoder 211, a second encoder 212, and a third encoder 213.
  • a “2K” signal is input to the first encoder 211 and the second encoder 212.
  • 2K is a general term for images having a screen resolution of approximately 2000 horizontal ⁇ 1000 vertical. Therefore, in the example shown in FIG. 1, a signal corresponding to 2K (hereinafter, also referred to as a 2K signal) is input to the first encoder 211 and the second encoder 212.
  • the 2K screen resolution is, for example, horizontal 2048 ⁇ vertical 1080, horizontal 1920 ⁇ vertical 1080, horizontal 2048 ⁇ vertical 1152, horizontal 2560 ⁇ vertical 1600, horizontal 1440 ⁇ vertical 1080, and the like.
  • the 2K signal is also referred to as data corresponding to the 2K signal.
  • the data corresponding to the 2K signal includes output data such as audio data, image data, and subtitle data.
  • the first encoder 211 adds an H.264 signal to the input 2K signal. Encoding processing based on H.264 is performed. Then, the first encoder 211 inputs the 2K signal after encoding processing to the multiplexing unit 220.
  • the first encoder 211 is prepared for providing a one-segment partial reception service (also referred to as a mobile reception service, hereinafter also referred to as one segment) for mobile phones and mobile terminals. Therefore, H.264 by the first encoder 211.
  • the 2K signal after the encoding process based on H.264 is also referred to as a one-segment signal.
  • the one-segment signal is also referred to as data corresponding to the one-segment signal.
  • the data corresponding to the one-segment signal includes output data such as audio data, image data, and caption data.
  • the data corresponding to the one-segment signal is also referred to as mobile data.
  • the second encoder 212 performs an encoding process on the input 2K signal based on MPEG (Moving Picture Experts Group)-2. Then, the second encoder 212 inputs the 2K signal after the encoding processing based on MPEG-2 to the multiplexing unit 220.
  • MPEG Motion Picture Experts Group
  • the multiplexing unit 220 multiplexes the 1Seg signal input by the first encoder 211 and the 2K signal input by the second encoder 212. Then, multiplexing section 220 inputs the multiplexed signal, which is the signal after multiplexing, to modulating section 230.
  • the “4K” signal is input to the third encoder 213.
  • 4K is a general term for images having a screen resolution of about 4000 horizontal ⁇ 2000 vertical. Therefore, in the example shown in FIG. 1, a signal corresponding to 4K (hereinafter, also referred to as a 4K signal) is input to the third encoder 213.
  • the screen resolution of 4K is, for example, 4096 horizontal ⁇ 2160 vertical, 3840 horizontal ⁇ 2160 vertical, 4096 horizontal ⁇ 2304 horizontal, 4096 horizontal ⁇ 2048 vertical.
  • the 4K signal is also referred to as data corresponding to the 4K signal.
  • the data corresponding to the 4K signal includes output data such as audio data, image data, and subtitle data.
  • the third encoder 213 adds an H.264 signal to the input 4K signal. Encoding processing based on H.265 is performed. Then, the third encoder 213 is a H.264 encoder. The 4K signal after the encoding process based on H.265 is input to the modulator 230.
  • 1Seg signal, 2K signal, and 4K signal are all TS (Transport Stream).
  • the modulation unit 230 performs transmission path coding processing on the input 1Seg signal, 2K signal, and 4K signal to generate a first OFDM (Orthogonal Frequency Division Multiplexing) signal and a second OFDM signal. ..
  • the transmission path coding process will be described later.
  • the modulator 230 inputs the generated first OFDM signal to the first amplifier 240. In addition, the modulator 230 inputs the generated second OFDM signal to the second amplifier 250.
  • an antenna 501 for horizontal polarization is connected to the first amplification unit 240.
  • the first amplification unit 240 amplifies the first OFDM signal input by the modulation unit 230 with a predetermined amplification factor. Then, the first amplification unit 240 inputs the amplified first OFDM signal to the antenna 501.
  • the first OFDM signal amplified by the first amplifier 240 is converted into an electromagnetic wave by the antenna 501 and radiated as a horizontally polarized wave.
  • a vertically polarized antenna 502 is connected to the second amplification section 250.
  • the second amplification unit 250 amplifies the second OFDM signal input by the modulation unit 230 with a predetermined amplification factor. Then, the second amplification section 250 inputs the amplified second OFDM signal to the antenna 502.
  • the second OFDM signal amplified by the second amplification section 250 is converted into an electromagnetic wave by the antenna 502 and radiated as a vertically polarized wave.
  • Electromagnetic waves radiated through the antennas 501 and 502 and received by the antenna 601 are converted into a reception signal and input to the reception processing unit (reception means) of the reception unit 300.
  • the reception processing unit converts the frequency of the reception signal into a baseband that is a frequency that allows processing for amplifying the reception signal and processing in a demodulation unit (equalization unit) of the reception unit 300 that is a signal processing unit at a later stage.
  • the received signal is subjected to a predetermined process such as a process to perform.
  • the demodulation unit of the reception unit 300 performs demodulation processing, equalization processing, and the like on the received signal that has been input, according to the channel coding processing that the modulation unit 230 of the transmission unit 200 has performed on the one-segment signal and the 2K signal. Then, a TS signal is generated. Then, the demodulation unit inputs the generated TS signal to the decoding unit (reproduction processing means) of the reception unit 300.
  • the decoding unit has a function of generating a video signal by performing a predetermined decoding process on the input TS signal. Also, the decoding unit can output the generated video signal.
  • the output video signal is input to a video display device such as a television receiver to reproduce a video based on the one-segment signal or the 2K signal.
  • the reception unit 400 includes a first reception processing unit 410, a second reception processing unit 420, a demodulation unit 430, and a decoding unit 440.
  • An antenna 601 for horizontal polarization is connected to the first reception processing unit 410 via a distributor 700. Then, the electromagnetic waves radiated through the antennas 501 and 502 and received by the antenna 601 are converted into received signals and input to the first reception processing unit 410.
  • a vertical polarization antenna 602 is connected to the second reception processing unit 420. Then, the electromagnetic waves radiated through the antennas 501 and 502 and received by the antenna 602 are converted into received signals and input to the second reception processing unit 420.
  • the first reception processing unit 410 and the second reception processing unit 420 receive signals at a baseband, which is a frequency at which a process of amplifying a received signal and a process of a demodulation unit 430 which is a signal processing unit at a later stage can be performed. Predetermined processing such as processing for converting the frequency of the signal is performed on the received signal.
  • the first reception processing unit 410 inputs the reception signal subjected to the predetermined processing to the demodulation unit 430. Further, the second reception processing section 420 inputs the reception signal subjected to the predetermined processing to the demodulation section 430.
  • the demodulation unit 430 performs demodulation processing on the input received signal according to the transmission path coding processing performed by the modulation unit 230 of the transmission unit 200 on the one-segment signal, the 2K signal, and the 4K signal, and then TS Generate a signal. Then, the demodulation unit 430 inputs the generated TS signal to the decoding unit 440.
  • the demodulation processing in demodulation section 430 is performed by each section in demodulation section 430 described later.
  • the decoding unit 440 has a function of performing a predetermined decoding process on the input TS signal to generate a video signal.
  • the decoding unit 440 adds H.264 to the input TS signal. It is assumed that the video signal based on the 4K signal can be generated by performing the decoding process based on H.265. Then, the decoding unit 440 can output the generated video signal. Then, the output video signal is input to a video display device such as a television receiver to reproduce a video based on the 4K signal.
  • the decoding unit 440 is assumed to be capable of performing decoding processing based on MPEG-2 on the input TS signal and generating a video signal based on the 2K signal. Then, the decoding unit 440 can output the generated video signal. Then, the output video signal is input to a video display device such as a television receiver to reproduce a video based on the 2K signal.
  • the decoding unit 440 adds H.264 to the input TS signal. It is assumed that a video signal based on the one-segment signal can be generated by performing a decoding process based on H.264. Then, the decoding unit 440 can output the generated video signal. Then, the output video signal is input to a video display device or the like to reproduce a video based on the one-segment signal.
  • the modulation unit 230 includes an outer code processing unit 261-a, a frame composing unit 261-b, a layer dividing unit 262-a, and an outer code processing unit 262.
  • first byte-bit conversion units 263-a to c energy diffusion units 264-a to c, delay correction units 265-a to c, bit-byte conversion units 266-a to c, byte interleave processing unit 267 -A to c, second byte-bit conversion units 268-a to c, convolutional encoding processing units 269-a to c, bit interleave processing units 270-a to c, mapping processing units 271-a to c, hierarchy Combining unit 272, time interleaving processing unit 273, frequency interleaving processing unit 274, OFDM frame configuration unit (for example, data configuration unit) 275, normalization units 276-a, b, IFFT (Inverse Fast Fourier Transform) processing unit 277-a. , B, a guard interval addition processing unit 278-a, b, and a quadrature modulation processing unit 279-a, b.
  • OFDM frame configuration unit for example, data configuration unit
  • the 1Seg signal and the 2K signal multiplexed with each other are input to the outer code processing unit 261-a.
  • the outer code processing unit 261-a performs a process of adding a predetermined check code to the input 1Seg signal and 2K signal.
  • the outer code processing unit 261-a performs a process of adding the Reed-Solomon code (RS(204, 188)) to the input 1Seg signal and 2K signal, respectively.
  • the outer code processing unit 261-a inputs the 1Seg signal and the 2K signal, to which the inspection code has been added, to the input 1Seg signal and 2K signal, respectively, to the hierarchical division unit 262-a.
  • a 4K signal is input to the frame configuration unit 261-b.
  • the frame configuration unit 261-b performs frame configuration processing such as addition of dummy data (stuffing bytes) for processing the input 4K signal as a TS packet having a predetermined fixed length.
  • the frame configuration unit 261-b inputs the 4K signal subjected to the frame configuration processing to the outer code processing unit 262-b.
  • the outer code processing unit 262-b performs a process of adding a predetermined inspection code to the input 4K signal.
  • the outer code processing unit 262-b performs a process of adding the Reed-Solomon code (RS(204,188)) to the input 4K signal. Then, the outer code processing unit 262-b inputs the 4K signal in which the check code is added to the input 4K signal, to the first byte-bit conversion unit 263-b.
  • RS(204,188) Reed-Solomon code
  • the layer division unit 262-a divides the one-segment signal and the 2K signal multiplexed with each other, and inputs the one-segment signal to the first byte-bit conversion unit 263-a. Further, the layer division unit 262-a inputs the 2K signal to the first byte-bit conversion unit 263-c.
  • FIG. 5 is an explanatory diagram showing an example of the transmission method in this embodiment.
  • the frequency band corresponding to the data transmission between the transmission unit 200 and the reception units 300 and 400 is divided into 13 segments for use.
  • the C layer is indicated by a diagonal line descending to the right.
  • the first segment from the lowest frequency is the segment number.
  • the second segment from the lower frequency is also referred to as segment No. 11.
  • the third segment from the lower frequency is also referred to as segment No. 9.
  • the tenth segment from the lowest frequency is the segment number. 6 is also referred to, and the eleventh segment from the lowest frequency is the segment number. 8 is also referred to, and the 12th segment from the lowest frequency is the segment number. Also referred to as No. 10, the 13th segment from the lowest frequency is the segment No. Also called 12.
  • the frequency band in the horizontal polarization five segments including the 4th to 6th segments and the 8th and 9th segments from the lowest frequency are used for data transmission according to the 4K signal, and Called hierarchy.
  • the B layer is indicated by a diagonal line descending to the left.
  • the fourth segment from the lowest frequency is the segment number. 5 is also referred to, and the fifth segment from the lowest frequency is the segment number. Also referred to as "3", the sixth segment from the lowest frequency is the segment number. Also called 1.
  • the eighth segment from the lowest frequency is the segment number. 2 is also referred to, and the ninth segment from the lower frequency is the segment number. Also referred to as 4.
  • the 7th segment from the lowest frequency is used for data transmission according to the 1Seg signal, and is called A layer.
  • the A layer is shaded.
  • the seventh segment from the lowest frequency is the segment number. Also called 0.
  • the five segments consisting of the 4th to 6th segments and the 8th and 9th segments from the lowest frequency are also used for data transmission in accordance with the 4K signal. , Layer B.
  • data according to the one-segment signal transmitted using the A layer is input to the first byte-bit conversion unit 263-a. Further, the data according to the 4K signal transmitted using the B layer is input to the first byte-bit conversion unit 263-b. Then, the data corresponding to the 2K signal transmitted using the C layer is input to the first byte-bit conversion unit 263-c.
  • the first byte-bit conversion units 263-a to 26-c convert the input byte-unit data into bitstreams in the order of MSB (Most Significant Bit) first.
  • the first byte-bit converters 263-a-c input the converted bit streams to the energy spreaders 264-a-c, respectively.
  • the energy diffusion units 264-a to 264-c perform a predetermined energy diffusion process on the bit stream input by the first byte-bit conversion units 263-a to 263-c.
  • the energy diffusion units 264-a to 264-c are provided with, for example, a predetermined PRBS (Pseudo-Random Binary Sequence: pseudo random code sequence) and bits input by the first byte-bit conversion units 263-a to 263 c.
  • PRBS Physical-Random Binary Sequence: pseudo random code sequence
  • the bit string excluding the synchronization byte is used to calculate the bitwise exclusive OR.
  • the energy spreaders 264-a to 264-c perform the energy spread processing on the respective bitstreams input by the first byte-bit converters 263-a to 263-c. Enter the data for each calculation result.
  • the delay correction units 265-a to 265-c delay the input bit stream as necessary so that the processing end timings of the 1Seg signal, the 2K signal, and the 4K signal in the transmission unit 200 become the same. Is processed. Then, the delay correction units 265-a to 265-c respectively input the bit streams after the processing results to the bit-byte conversion units 266-a to 266-c.
  • the bit-byte conversion units 266-a to 266-c convert the input bit-unit data into byte-unit data in MSB first order.
  • the byte interleaving processing units 267-a to 267-c perform convolutional byte interleaving processing for differentiating the delay amounts of the respective data in byte units converted by the bit-byte conversion units 266-a to 266-c.
  • the interleave depth is, for example, 12 bytes.
  • the second byte-bit conversion units 268-a to 268-c convert the byte-unit data input by the convolutional byte interleaving process by the byte interleave processing units 267-a to 267c into a bit stream in MSB first order. Convert.
  • the convolutional coding processing units 269-a to 269-c perform predetermined convolutional coding processing on the bitstreams that have been subjected to the convolutional byte interleaving processing by the second byte-bit conversion units 268-a to 268c, respectively.
  • the punctured convolutional code is coded at the coded rate, that is, at the coded rates set by the convolutional coding processing units 269-a to 269c.
  • the bit interleave processing units 270-a to 270-c perform bit interleaving processing on the encoded bit stream according to the mapping performed by the mapping processing units 271-a to c in the subsequent stage.
  • a mapping processing unit 271-a performs a QPSK (Quadrature Phase Shift Keying) mapping process on a bitstream based on the one-segment signal that has been encoded by the convolutional encoding process unit 269-a. Will be given. Therefore, the bit interleave processing unit 270-a performs a bit interleave process of inserting, for example, a 120-bit delay element into the bit stream based on the one-segment signal.
  • QPSK Quadrature Phase Shift Keying
  • mapping processing unit 271-b performs mapping processing such as 4096QAM (Quadrature Amplitude Modulation) and 1024QAM and 256QAM on the bitstream based on the 4K signal that has been encoded by the convolutional encoding processing unit 269-b. Will be given. Therefore, the bit interleave processing unit 270-b performs a bit interleaving process of inserting, for example, delay elements having the number of bits corresponding to the mapping process into the bit stream based on the 4K signal. It is assumed that the mapping processing unit 271-c performs mapping processing such as 64QAM on the bitstream based on the 2K signal subjected to the coding processing by the convolutional coding processing unit 269-c. Therefore, the bit interleave processing unit 270-c performs a bit interleaving process of inserting a delay element of, for example, 24 to 120 bits into the bit stream based on the 2K signal.
  • mapping processing unit 270-b performs mapping processing such as 4096QAM
  • the mapping processing units 271-a to 27-c perform mapping processing on the bit stream subjected to the bit interleaving processing by the bit interleaving processing units 270-a to 270-c. Specifically, for example, the mapping processing unit 271-a performs QPSK mapping processing on the bit stream based on the one-segment signal which has been subjected to the bit interleaving processing by the bit interleaving processing unit 270-a. Further, the mapping processing unit 271-b, for example, performs mapping processing such as 4096QAM, 1024QAM, 256QAM, etc. on the bit stream based on the 4K signal subjected to the bit interleaving processing by the bit interleaving processing unit 270-b.
  • the mapping processing unit 271-c for example, performs mapping processing such as 64QAM on the bit stream based on the 2K signal subjected to the bit interleaving processing by the bit interleaving processing unit 270-c. Then, the mapping processing units 271-a to 27-c map the signal into which the bit stream based on the one-segment signal is mapped, the signal into which the bit stream based on the 4K signal is mapped, and the bit stream based on the 2K signal are mapped.
  • the signals are input to the hierarchical synthesis unit 272, respectively.
  • the layer synthesizing unit 272 synthesizes the signals respectively input by the mapping processing units 271-a to 27 c with the parameters designated in advance and inserts them into the data segment, and also performs the layer synthesizing process for performing the speed conversion.
  • one data segment corresponds to the A layer (that is, the signal for 1Seg), 10 data segments according to the B layer (that is, 4K signal), and one data segment according to the C layer (that is, 2K signal). 7 are prepared.
  • the time interleave processing unit 273 temporally disperses the symbol data after modulation (mapping processing), and performs hierarchical synthesis processing in units of modulation symbols (I and Q axis units) in order to improve anti-fading performance.
  • the interleaved signal is applied to the signal for a predetermined time.
  • the frequency interleave processing unit 274 changes (rotates) the frequency of the carrier (carrier wave) within the 13 segments described above according to the time, or exchanges the frequency band used between the segments. Perform processing. For the segment based on the one-segment signal, for example, inter-segment interleaving processing for exchanging frequency bands with other segments may not be performed. Further, the frequency interleaving processing unit 274 is configured to perform interleaving between the segments and interleaving within the segment so that a sufficient interleaving effect can be exhibited while ensuring the segment configuration.
  • a signal subjected to frequency interleaving processing by the frequency interleaving processing section 274, a pilot signal, a TMCC (Transmission and Multiplexing Configuration Control) signal, and an AC (Auxiliary Channel) signal are input to the OFDM frame configuration section 275.
  • the pilot signal is, for example, a continuous carrier.
  • the TMCC signal is, for example, a signal for transmitting control information, and is assumed to include, for example, information indicating a sync byte of the TS packet.
  • the AC signal is, for example, an extension signal for transmitting additional information regarding broadcasting.
  • the pilot signal is, for example, pilot signal data.
  • the TMCC signal is, for example, TMCC signal data.
  • the AC signal is, for example, AC signal data. Further, the data corresponding to the signal subjected to the frequency interleaving, the pilot signal data, the TMCC signal data, and the AC signal data are collectively referred to as data.
  • the OFDM frame composing unit 275 composes an OFDM frame based on each input signal. Specifically, the OFDM frame configuration unit 275, for example, for each symbol in each carrier of OFDM, the value of each signal (one-segment signal, 2K signal, 4K signal, pilot signal, TMCC signal, and AC signal) To set. Also, the OFDM frame configuration unit 275 inserts a null carrier at a predetermined location in the OFDM frame. Details of the insertion location of the null carrier will be described later.
  • the OFDM frame configuration unit 275 configures an OFDM frame for horizontal polarization and an OFDM frame for vertical polarization, for example.
  • the OFDM frame configuration unit 275 may include a signal corresponding to a segment corresponding to a 1Seg signal, a signal corresponding to a segment corresponding to a 2K signal, and 10 segments corresponding to a 4K signal.
  • An OFDM frame for horizontal polarization is configured according to the signals corresponding to the five segments, the pilot signal, the TMCC signal, and the AC signal.
  • the OFDM frame configuration unit 275 for example, according to the signal corresponding to the remaining 5 segments among the 10 segments corresponding to the 4K signal, the pilot signal, the TMCC signal, and the AC signal, Construct an OFDM frame for vertical polarization. Even if each pilot signal is configured such that a broadcast wave by polarization MIMO is transmitted to the B layer as in this example, it is possible to appropriately receive the broadcast wave on the C layer. It is inserted at a position in the set frequency domain. Details of the OFDM frame configured by the OFDM frame configuration unit 275 and specific insertion positions of pilot signals will be described later.
  • the OFDM frame configured by the OFDM frame configuration unit 275 is also referred to as an OFDM segment configuration.
  • the OFDM frame configuration unit 275 transmits to the reception unit 300 a horizontal polarization signal so as to transmit a TMCC signal indicating that the signal in the B layer is differentially modulated and the signal in the C layer is synchronously modulated. It may be configured to form an OFDM frame.
  • the receiving unit 300 When it is indicated that the signal in the B layer is differentially modulated and the signal in the C layer is synchronously modulated by the TMCC information, the receiving unit 300 performs the B
  • the segment according to the hierarchy and the segment according to the C hierarchy are separately processed. By performing such processing, it is possible to prevent the segment corresponding to the B layer and the segment corresponding to the C layer from being mixed as a result of frequency deinterleaving.
  • the OFDM frame configuration unit 275 inputs, for example, an OFDM frame for horizontal polarization to the normalization unit 276-a. Further, the OFDM frame configuration unit 275 inputs, for example, an OFDM frame for vertical polarization to the normalization unit 276-b.
  • the normalization sections 276-a and 276b make the transmission signal levels of the respective carriers equal to each other in the input OFDM frames, and make the ratio of the average powers of the OFDM symbols to 1 regardless of the modulation method. , Normalization processing is performed. Then, the normalization units 276-a, b input the respective normalized OFDM frames to the IFFT processing units 277-a, 277-a, b.
  • the IFFT processing units 277-a and 277-b perform IFFT processing on each input OFDM frame, and convert the frequency domain signal into a time domain signal. Then, the IFFT processing units 277-a, b input the converted time domain signals to the guard interval addition processing units 278-a, 278-a, respectively.
  • the guard interval addition processing units 278-a and 278b perform a guard interval addition process for adding data for a predetermined time to the input time domain signal before a valid symbol in the time domain signal.
  • the quadrature modulation processing units 279-a and 279b perform a predetermined quadrature modulation process on the time domain signal input by the guard interval addition processing units 278-a and 278b. Specifically, the quadrature modulation processing unit 279-a performs, for example, a predetermined quadrature modulation process on the time domain signal input by the guard interval addition processing unit 278-a, and outputs a first quadrature signal having a predetermined transmission frequency. Convert to OFDM signal. Then, the quadrature modulation processing unit 279-a inputs the first OFDM signal to the first amplification unit 240.
  • the quadrature modulation processing unit 279-b performs a predetermined quadrature modulation process on the time domain signal input by the guard interval addition processing unit 278-b to generate a second OFDM signal having a predetermined transmission frequency. Convert. Then, the quadrature modulation processing unit 279-b inputs the second OFDM signal to the second amplification unit 250.
  • FIG. 6 to 9 are block diagrams showing the configuration of the demodulation unit 430 according to the first embodiment of the present invention.
  • the demodulation unit 430 includes an AD (Analog to Digital) conversion unit 511-a, b, an orthogonal demodulation processing unit 512-a, b, a synchronization unit.
  • AD Analog to Digital
  • Playback unit 513-a,b FFT (Fast Fourier Transform) processing unit 514-a,b, frame extraction unit 515-a,b, TMCC signal decoding unit 516-a,b, AC signal decoding unit 517-a,b , Carrier demodulation section 518, frequency deinterleave processing section 519, time deinterleave processing section 520, first hierarchical division section 521, demapping processing sections 522-a to c, bit deinterleave processing sections 523-a to c, depuncture.
  • FFT Fast Fourier Transform
  • the reproduction processing unit 530 and the outer code decoding unit 531 are included.
  • the A/D conversion units 511-a and b receive the reception signals that have been subjected to predetermined processing by the first reception processing unit 410 and the second reception processing unit 420, respectively. Specifically, for example, the received signal that has been subjected to a predetermined process by the first reception processing unit 410 is input to the AD conversion unit 511-a. Then, the AD conversion unit 511-a converts the input received signal, which is an analog signal, into a digital signal. Then, the AD converter 511-a inputs the received signal converted into a digital signal to the orthogonal demodulation processor 512-a.
  • the A/D conversion unit 511-b receives, for example, a reception signal that has been subjected to predetermined processing by the second reception processing unit 420. Then, the AD conversion unit 511-b converts the input reception signal which is an analog signal into a digital signal. Then, the AD converter 511-b inputs the received signal converted into a digital signal to the orthogonal demodulation processor 512-b.
  • the quadrature demodulation processing units 512-a and b perform a predetermined quadrature demodulation process on the input reception signal. Specifically, the quadrature demodulation processing units 512-a and b mix the input received signal and the demodulation signals that are orthogonal to each other to obtain an I component signal and a Q component signal.
  • the quadrature demodulation processing units 512-a and b input these signals, which are received signals after the quadrature demodulation processing, to the synchronous reproduction units 513-a and b and the FFT processing units 514-a and b, respectively.
  • the synchronization reproducing units 513-a, b include signals input by the orthogonal demodulation processing units 512-a, b, signals subjected to FFT processing by the FFT processing units 514-a, b, and frame extraction units 515-a, b.
  • the OFDM symbol synchronization and FFT sample frequency are reproduced according to the mode (in this example, mode 3) according to the number of carriers in OFDM based on the frame synchronization signal extracted by the above, and according to the guard interval length.
  • the synchronous reproduction units 513-a and 513 specify (reproduce) the timing for synchronizing the OFDM symbols and the FFT sample frequency based on the signals input from the respective units, for example.
  • the FFT processing units 514-a, b perform FFT processing on the signals input by the orthogonal demodulation processing units 512-a, b based on the information reproduced by the synchronous reproduction units 513-a, b, and the orthogonal demodulation processing units
  • the time domain signal input by 512-a, b is converted into a frequency domain signal.
  • the FFT processing units 514-a, b send the converted frequency domain signals to the synchronous reproduction units 513-a, b, the frame extraction units 515-a, b, and the AC signal decoding units 517-a, b. input.
  • the frame extraction units 515-a, b extract frame synchronization signals from the frequency domain signals input by the FFT processing units 514-a, b. Then, the frame extraction unit 515-a,b inputs the extracted frame synchronization signal to the synchronous reproduction unit 513-a,b and the TMCC signal decoding unit 516-a,b. The frame extraction units 515-a, b also input the frequency domain signals input by the FFT processing units 514-a, b to the TMCC signal decoding units 516-a, b.
  • the TMCC signal decoding units 516-a and 516-b extract TMCC information from the TMCC signals in the frequency domain signals output from the FFT processing units 514-a and b. Then, the TMCC signal decoding units 516-a and 516b include a carrier demodulation unit 518, a frequency deinterleave processing unit 519, a time deinterleave processing unit 520, a first hierarchical division unit 521, demapping processing units 522-a to 522c.
  • the extracted TMCC information is input to the bit deinterleave processing units 523-a-c, the depuncture processing units 524-a-c, the layer combining unit 525, the second layer dividing unit 527, and the TS reproduction processing unit 530.
  • the AC signal decoding unit 517-a, b extracts the AC signal from the frequency domain signal input by the FFT processing unit 514-a, b. Then, the AC signal decoding units 517-a and 517-b extract the seismic-motion warning information when the configuration identification of the AC signal indicates that the seismic-motion warning information is transmitted.
  • the carrier demodulation unit 518 receives the frequency domain signals converted by the FFT processing units 514-a and 514-b. Therefore, the carrier demodulation unit 518 inputs the TMCC information input by the TMCC signal decoding units 516-a and 516 (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the above, signals in the frequency domain input by the FFT processing units 514-a and 514b are subjected to differential demodulation processing and synchronous demodulation processing.
  • the carrier demodulation unit 518 identifies each carrier forming the OFDM signal based on the OFDM segment in the frequency domain signal input by the FFT processing units 514-a, b, and determines the amplitude of each carrier. The generated amplitude information and the phase information indicating the phase of each carrier are generated. Then, the carrier demodulation unit 518 inputs the frequency domain signal converted by the FFT processing units 514-a, b, the amplitude information, and the phase information to the frequency deinterleave processing unit 519.
  • the frequency deinterleave processing unit 519 based on each information input by the carrier demodulation unit 518, changes the frequency of each carrier changed by the frequency interleaving processing performed by the frequency interleaving processing unit 274 and other segments that have been exchanged.
  • the frequency deinterleaving process for restoring the frequency band exchanged between the FFT processing units 514-a and b is performed on the frequency domain signals.
  • the time deinterleave processing unit 520 uses the frequency deinterleave processing unit 519 to perform time deinterleave processing for returning the symbol data temporally dispersed by the time interleaving processing performed by the time interleaving processing unit 273 to the original time order. It is applied to a signal that has been subjected to frequency deinterleaving.
  • the first hierarchical division unit 521 receives the TMCC input by the TMCC signal decoding units 516-a and 516 (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the information, the time deinterleave processing unit 520 divides the signal subjected to the time deinterleave processing into signals according to each layer. Specifically, the first layer division unit 521, for example, in the signal subjected to the time deinterleave processing by the time deinterleave processing unit 520, demaps the signal of the carrier in the frequency band corresponding to the A layer.
  • the signal of the carrier of the frequency band corresponding to the B layer is input to the demapping processing unit 522-b, and the signal of the carrier of the frequency band corresponding to the C layer is input to the demapping processing unit 522-c.
  • the demapping processing unit 522-a receives the TMCC input from the TMCC signal decoding units 516-a and 516-(may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the information, the demapping processing corresponding to the mapping processing performed by the mapping processing unit 271-a is performed on the signal input by the first hierarchical division unit 521. In this example, the signal of the carrier in the frequency band corresponding to the A layer is subjected to QPSK mapping processing by the mapping processing unit 271-a. Therefore, the demapping processing unit 522-a performs demapping processing according to QPSK on the signal input by the first hierarchical division unit 521, and extracts bit information (bit stream).
  • the demapping processing unit 522-b inputs the TMCC input by the TMCC signal decoding units 516-a and 516b (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the information, demapping processing corresponding to the mapping processing performed by the mapping processing unit 271-b is performed on the signal input by the first hierarchical division unit 521.
  • the signal of the carrier in the frequency band corresponding to the B layer is subjected to mapping processing such as 4096QAM, 1024QAM, 256QAM by the mapping processing unit 271-b. Therefore, the demapping processing unit 522-b performs demapping processing according to the mapping processing on the signal input by the first hierarchical division unit 521, and extracts bit information (bit stream).
  • the demapping processing unit 522-c receives the TMCC input by the TMCC signal decoding units 516-a and 516-(may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the information, demapping processing corresponding to the mapping processing performed by the mapping processing unit 271-c is performed on the signal input by the first hierarchical division unit 521.
  • the signal of the carrier in the frequency band corresponding to the C layer is subjected to mapping processing such as 64QAM in the mapping processing unit 271-c. Therefore, the demapping processing unit 522-c performs demapping processing according to 64QAM or the like on the signal input by the first hierarchical division unit 521 and extracts bit information (bit stream).
  • the bit deinterleave processing unit 523-a performs the bit deinterleave processing according to the bit interleave processing performed by the bit interleave processing unit 270-a on the bitstream extracted by the demapping processing unit 522-a. Specifically, in this example, the bit interleave processing unit 270-a performs a bit interleaving process in which a 120-bit delay element is inserted in the bit stream based on the one-segment signal. Therefore, for example, the bit deinterleave processing unit 523-a performs a bit deinterleaving process of erasing, for example, a 120-bit delay element from the bitstream extracted by the demapping processing unit 522-a.
  • the bit deinterleave processing unit 523-b performs bit deinterleaving processing according to the bit interleaving processing performed by the bit interleaving processing unit 270-b on the bitstream extracted by the demapping processing unit 522-b. Specifically, in this example, the bit interleave processing unit 270-b inserts, into the bit stream based on the 4K signal, a delay element having a bit number according to the mapping processing in the mapping processing unit 271-b, for example. Has been interleaved. Therefore, for example, the bit deinterleave processing unit 523-b performs, for example, a bit deinterleave processing of erasing the delay element from the bitstream extracted by the demapping processing unit 522-b.
  • the bit deinterleave processing unit 523-c performs the bit deinterleave processing according to the bit interleave processing performed by the bit interleave processing unit 270-c on the bit stream extracted by the demapping processing unit 522-c. Specifically, in this example, the bit interleave processing unit 270-c inserts, for example, a 24-120-bit delay element in accordance with the mapping processing in the mapping processing unit 271-c into the bit stream based on the 2K signal. Bit interleave processing has been performed. Therefore, for example, the bit deinterleave processing unit 523-c performs, for example, a bit deinterleave processing of erasing the delay element from the bitstream extracted by the demapping processing unit 522-c.
  • the depuncture processing units 524-a to 524-c are inputted by the TMCC signal decoding units 516-a and 516b (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Bit interpolation of the convolutional code is performed according to the convolutional coding rate designated by the TMCC information. It is assumed that the TMCC information indicates the coding rate for each layer. Therefore, the depuncture processing unit 524-a performs bit interpolation of the convolutional code according to the coding rate of the A layer indicated by the TMCC information.
  • the depuncture processing unit 524-b performs bit interpolation of the convolutional code according to the coding rate of the B layer indicated by the TMCC information. Then, the depuncture processing unit 524-c performs bit interpolation of the convolutional code according to the coding rate of the C layer indicated by the TMCC information.
  • the layer synthesizing unit 525 synthesizes the bit stream of each layer in which the bits are interpolated by the depuncture processing units 524-a to 524-c.
  • the inner code decoding unit 526 performs a decoding process on the bit stream that has been bit-interpolated by the depuncture processing units 524-ac to 524-c and synthesized by the hierarchical synthesis unit 525. Specifically, the inner code decoding unit 526 performs a decoding process on the bitstream based on, for example, a Viterbi algorithm.
  • the second layer division unit 527 converts the bitstream decoded by the inner code decoding unit 526 into a bitstream corresponding to each layer based on the TMCC information input by the TMCC signal decoding units 516-a and 516-b. To divide. Specifically, for example, the second layer division unit 527 configures a bit stream with bits according to the A layer among the bit streams that have been subjected to the decoding process, and the bit deinterleave processing unit 528-a input. In addition, for example, the second layer dividing unit 527 forms a bitstream of bits corresponding to the B layer in the bitstream subjected to the decoding process, and inputs the bitstream to the byte deinterleaving processing unit 528-b. Then, the second layer division unit 527 forms a bit stream of bits corresponding to the C layer of the bit stream subjected to the decoding process, and inputs the bit stream to the byte deinterleave processing unit 528-c.
  • the byte deinterleave processing units 528-a to 528-c convert the input bit unit data (bit stream) into byte unit data. Then, the byte deinterleave processing units 528-a to 528-c perform, for example, the byte deinterleave processing that resets the delay amount set by the convolutional byte interleaving processing performed by the byte interleave processing units 267-a to 267-c. Apply to the data.
  • the energy despreading processing units 529-a to 5c convert the byte-unit data, which has been subjected to the byte deinterleaving processing by the byte deinterleaving processing units 528-a to 528c, into a bit-unit bitstream, and convert the converted bits.
  • Energy despreading is applied to the stream.
  • the energy despreading processing units 529-a to 5c use, for example, a bit string excluding the synchronization byte of the TS packet in the bitstream and the energy spreading units 264-a to c for energy diffusion processing.
  • a bitwise exclusive OR is calculated with a predetermined PRBS. Then, the energy despreading processing units 529-a to 5c input the data of the respective calculation results to the TS reproduction processing unit 530 as a result of performing the energy despreading processing.
  • the TS reproduction processing unit 530 uses the TMCC information input by the TMCC signal decoding units 516-a and 516-b (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the TS sync byte, the input data is multiplexed with each other and divided into TS packets to reproduce the same TS frame structure as on the transmitting side.
  • the outer code decoding unit 531 detects an error in the TS packet having the TS frame structure reproduced by the TS reproduction processing unit 530, based on the predetermined check code added by the outer code processing units 261-a and 262-b.
  • a TS packet is generated by performing a decoding process of detecting and correcting.
  • the TS packet generated by the outer code decoding unit 531 is converted into a video signal by the decoding unit 440, and the video is reproduced by the video display device or the like.
  • the reception signal received by the horizontal polarization antenna 601 is also input to the reception unit 300 via the distributor 700. Then, the receiving unit 300 causes the television receiver to reproduce an image corresponding to the input received signal, for example, based on the current transmission system of terrestrial digital television broadcasting.
  • the video based on the 4K signal is reproduced on the video display device or the like connected to the receiving unit 400 according to the first embodiment of the present invention.
  • an image based on the current transmission system of terrestrial digital television broadcasting is reproduced on the television receiver connected to the receiving unit 300 according to the 2K signal. Therefore, the broadcasting system 100 according to the first embodiment of the present invention can coexist with the current broadcasting system for terrestrial digital television broadcasting.
  • FIG. 10 is a flowchart showing the operation of the modulation unit 230 according to the first embodiment of the present invention.
  • the one-segment signal, the 2K signal, and the 4K signal are input to the modulator 230 (step S101).
  • Each unit of the modulation unit 230 synthesizes the input 1Seg signal, 2K signal, and 4K signal and performs transmission path coding processing (step S102).
  • the OFDM frame composing unit 275 composes an OFDM frame described later.
  • the modulation unit 230 generates a first OFDM signal for electromagnetic waves transmitted by the antenna 501 for horizontal polarization and a second OFDM signal for electromagnetic waves transmitted by the antenna 502 for vertical polarization (step). S103).
  • the modulator 230 inputs the generated first OFDM signal to the first amplifier 240.
  • the modulator 230 inputs the generated second OFDM signal to the second amplifier 250.
  • the first amplification unit 240 amplifies the first OFDM signal input by the modulation unit 230 with a predetermined amplification factor (step S104). Then, the first amplification unit 240 inputs the amplified first OFDM signal to the antenna 501.
  • the first OFDM signal amplified by the first amplifier 240 is converted into an electromagnetic wave by the antenna 501 and radiated as a horizontally polarized wave.
  • the second amplification unit 250 amplifies the second OFDM signal input by the modulation unit 230 with a predetermined amplification factor (step S104). Then, the second amplification section 250 inputs the amplified second OFDM signal to the antenna 502. The second OFDM signal amplified by the second amplification unit 250 is converted into an electromagnetic wave by the antenna 502 and is radiated as a vertically polarized wave.
  • the modulator 230 of the transmitter 200 generates two types of OFDM transmission signals that can be transmitted with different polarization planes based on the input 2K signal and 4K signal. .. Then, the demodulation unit 430 of the reception unit 400 demodulates the reception signal based on the OFDM transmission signal generated and transmitted by the transmission unit 200, and the TS packet that can be converted into the 2K signal and the 4K signal by the decoding unit 440. To generate.
  • the electromagnetic wave used for the current transmission of terrestrial digital television broadcasting and the electromagnetic wave having a polarization plane different from the polarization plane of the electromagnetic wave, a video corresponding to the 1Seg signal and a 2K signal are obtained on the receiving side.
  • the data can be transmitted so that at least one of the corresponding video and the video corresponding to the 4K signal can be reproduced.
  • the reception side will use the current terrestrial digital television. It is possible to newly reproduce the image corresponding to the 4K signal while continuing the state where the John broadcast can be received and the image can be reproduced.
  • 10 segments (5 in horizontal polarization and 5 in vertical polarization, 10 in total) are used in the B layer for transmitting/receiving data corresponding to the 4K signal.
  • another number of segments such as eight (8 in total for horizontal polarization and four for vertical polarization) may be used depending on the B layer in which data corresponding to the 4K signal is transmitted and received. May be configured as.
  • FIG. 11 is an explanatory diagram showing an example of parameters according to the number of segments used by the B layer and the modulation scheme of the 4K signal.
  • the 2K column shows values according to the current terrestrial digital television broadcasting.
  • the TS rate for each modulation scheme is shown for the case where 4 segments are used and the case where 5 segments are used for each of the B layer and the C layer.
  • the larger the multi-valued number of the 4K modulation method the larger the value of the TS rate.
  • the larger the number of segments used for transmitting the data corresponding to the 4K signal the larger the TS rate value of the data transmitting according to the 4K signal. ..
  • the larger the number of segments used for data transmission according to the 2K signal the larger the TS rate value of the data transmission according to the 2K signal. Become.
  • FIG. 12 touches a boundary between an OFDM segment configuration corresponding to a 2K signal (hereinafter also referred to as a 2K OFDM segment configuration) and an OFDM segment configuration corresponding to a 4K signal (hereinafter also referred to as a 4K OFDM segment configuration).
  • 3 illustrates an example of an OFDM segment configuration including portions.
  • the 2K OFDM segment structure shown in FIG. 12 is composed of, for example, 432 carriers and 204 OFDM symbols. Further, the 4K OFDM segment structure shown in FIG. 12 includes, for example, 432 carriers and 204 OFDM symbols.
  • the OFDM symbol is also referred to as a symbol.
  • a portion where the null carrier is inserted is indicated by “x”. In FIG. 12, the location where the pilot signal is inserted is indicated by “1". In the 2K OFDM segment configuration of FIG. 12, a portion where a 2K signal is inserted is indicated by “D”. In the 4K OFDM segment configuration of FIG. 12, a portion where a 4K signal is inserted is indicated by “D”. Further, in FIG. 12, a portion where an AC signal or a TMCC signal or the like is inserted is also indicated by “D”. That is, the parts other than the part where the pilot signal or the null carrier is inserted are the parts where the 2K signal, the 4K signal, the AC signal, the TMCC signal, etc. are inserted and transmitted.
  • pilot signals are inserted at predetermined intervals in the 2K OFDM segment configuration according to the current transmission system of terrestrial digital television broadcasting.
  • a pilot signal is inserted once in 12 carriers in the carrier direction and once in 4 symbols in the symbol direction and transmitted.
  • pilot signals are inserted at predetermined intervals in the horizontal polarization side and vertical polarization side 4K OFDM segment configurations.
  • a pilot signal is inserted once in 24 carriers in the carrier direction and once in 8 symbols in the symbol direction and transmitted.
  • null carriers are inserted at predetermined intervals. Note that, for example, no signal is transmitted at a location where a null carrier is inserted.
  • the null carrier is also called a null pilot signal.
  • null carriers are inserted once in 24 carriers in the carrier direction and once in 8 symbols in the symbol direction.
  • a pilot signal is inserted at a position where the carrier number is 0 and the OFDM symbol number is 0, and the 4K OFDM segment configuration on the vertical polarization side is configured.
  • a null carrier is inserted at the position where the carrier number is 0 and the OFDM symbol number is 0.
  • the OFDM symbol number is also referred to as a symbol number.
  • a null carrier is inserted at a location where the carrier number is 3 and the symbol number is 1, and in the 4K OFDM segment configuration on the vertical polarization side.
  • the carrier number is 3, and the symbol number is 1, a pilot signal is inserted.
  • the receiving unit 300 estimates the transmission path characteristics based on the pilot signal according to the current transmission system of terrestrial digital television broadcasting, and performs equalization processing on the received signal. Specifically, for example, the receiving unit 300 determines phase information (for example, the phase difference between the transmitted pilot signal and the known pilot signal) based on the transmitted pilot signal and the known pilot signal. Value) is acquired, and the transmission path characteristic is estimated based on the phase information. Then, the receiving unit 300 performs equalization processing on the received signal based on the estimation result of the transmission path characteristics.
  • phase information for example, the phase difference between the transmitted pilot signal and the known pilot signal
  • the receiving unit 300 performs equalization processing on the received signal based on the estimation result of the transmission path characteristics.
  • the receiving unit 300 when the signal in the B layer is differentially modulated is indicated by the TMCC information, the receiving unit 300, even in the 4K OFDM segment configuration on the horizontal polarization side, receives the current terrestrial signal.
  • the 2K signal is subjected to equalization processing on the assumption that the pilot signal is inserted according to the transmission system of digital television broadcasting.
  • the receiving unit 300 presupposes that the pilot signal is inserted in the first carrier (that is, the carrier whose carrier number is 0) in the 4K OFDM segment configuration on the horizontal polarization side.
  • the 2K signal is subjected to equalization processing and the like.
  • the receiving unit 300 may not be able to properly perform equalization processing on the received signal. For this reason, in the B layer and the C layer, the MER (Modulation Error Ratio) of the carrier in the portion in contact with the boundary between them may deteriorate, and the BER (Bit Error Rate) may deteriorate.
  • the MER Modulation Error Ratio
  • the OFDM frame configuration unit 275 of the present embodiment appropriately selects the pilot signal in the 4K OFDM segment configuration on the horizontal polarization side so that the reception unit 300 can appropriately perform equalization processing on the received signal. Configured to be inserted into position.
  • FIG. 13 shows an example of an OFDM segment configuration configured by the OFDM frame configuration section 275, and shows an example of an OFDM segment configuration including a portion in contact with the boundary between the 2K OFDM segment configuration and the 4K OFDM segment configuration. There is.
  • the 2K OFDM segment structure shown in FIG. 13 is composed of, for example, 432 carriers and 204 symbols. Further, the 4K OFDM segment configuration shown in FIG. 13 includes, for example, 432 carriers and 204 symbols.
  • a portion where the null carrier is inserted is indicated by “x”. In FIG. 13, the location where the pilot signal is inserted is indicated by “1". In the 2K OFDM segment configuration of FIG. 13, a portion where a 2K signal is inserted is indicated by “D”. In the 4K OFDM segment configuration of FIG. 13, a portion where a 4K signal is inserted is indicated by “D”. Further, in FIG. 13, a portion where an AC signal or a TMCC signal or the like is inserted is also indicated by “D”. That is, the parts other than the part where the pilot signal or the null carrier is inserted are the parts where the 2K signal, the 4K signal, the AC signal, the TMCC signal, etc. are inserted and transmitted.
  • the first image quality reproducing data is, for example, data corresponding to the 4K signal included in the 4K OFDM segment configuration on the horizontal polarization side, pilot signal data, TMCC signal data, and AC signal data. Corresponds to data.
  • the OFDM frame configuration unit 275 predetermines a pilot signal and a null carrier in the 2K OFDM segment configuration and the 4K OFDM segment configuration, as in the OFDM segment configuration shown in FIG. Insert at intervals.
  • the receiving unit 400 estimates the transmission path characteristics based on the pilot signal inserted in the 4K OFDM segment configuration, and performs equalization processing on the received signal. Specifically, for example, the receiving unit 400, based on the inserted pilot signal and the known pilot signal, phase information (for example, the inserted pilot signal and the known pilot signal A value corresponding to the phase difference) is acquired, and the transmission path characteristic is estimated based on the phase information. Then, the reception unit 400 performs equalization processing on the received signal based on the estimation result of the transmission path characteristic.
  • phase information for example, the inserted pilot signal and the known pilot signal A value corresponding to the phase difference
  • the second image quality reproducing data is, for example, data corresponding to the 2K signal included in the 2K OFDM segment configuration on the horizontal polarization side, pilot signal data, TMCC signal data, and AC signal data. Corresponds to data.
  • Data for transmitting one polarization antenna is, for example, data corresponding to a 2K signal included in the horizontal polarization side 2K OFDM segment configuration and the 4K OFDM segment configuration shown in FIG. 4K signal, pilot signal data, TMCC signal data, and AC signal data.
  • the data for transmitting the other polarization antenna is, for example, data corresponding to the 4K signal included in the vertically polarized 4K OFDM segment configuration shown in FIG. 13, pilot signal data, It corresponds to TMCC signal data and AC signal data.
  • the OFDM frame configuration section 275 inserts the pilot signal and the null carrier once in 12 carriers in the carrier direction. That is, a pilot signal and a null carrier are inserted every 12 carriers. Therefore, the pilot signal and null carrier are inserted at 11 carrier intervals. Further, specifically, for example, in the 2K OFDM segment configuration, the OFDM frame configuration section 275 inserts the pilot signal and the null carrier once in every 4 symbols in the symbol direction. That is, a pilot signal and a null carrier are inserted every 4 symbols. Therefore, the pilot signal and null carrier are inserted at 3-symbol intervals.
  • the second interval corresponds to, for example, frequencies of 11 consecutive carriers. Further, the second interval corresponds to, for example, the time of three consecutive symbols.
  • the OFDM frame configuration unit 275 has a 4K OFDM segment configuration on the horizontal polarization side and a vertical polarization side similarly to the OFDM segment configuration shown in FIG.
  • the pilot signal and null carrier are inserted at a predetermined interval.
  • the OFDM frame configuration section 275 inserts the pilot signal and the null carrier once in 24 carriers in the carrier direction. That is, a pilot signal and a null carrier are inserted every 24 carriers. Therefore, the pilot signal and null carrier are inserted at intervals of 23 carriers. Further, specifically, for example, in the 4K OFDM segment configuration, the OFDM frame configuration section 275 inserts the pilot signal and the null carrier once in eight symbols in the symbol direction. That is, a pilot signal and a null carrier are inserted every 8 symbols. Therefore, the pilot signal and null carrier are inserted at 7-symbol intervals.
  • the first interval corresponds to a frequency of 23 consecutive carriers, for example. In addition, the first interval corresponds to, for example, time for seven consecutive symbols.
  • the OFDM frame configuration section 275 is similar to the OFDM segment configuration shown in FIG. 12, and is where the pilot signal is inserted in the 4K OFDM segment configuration on the horizontal polarization side.
  • a null carrier is inserted at a position in the vertical polarization side 4K OFDM segment configuration corresponding to.
  • the OFDM frame configuration unit 275 inserts a pilot signal at a position where the carrier number is 0 and the symbol number is 0 in the 4K OFDM segment configuration on the horizontal polarization side, and the vertical polarization side is inserted.
  • the null carrier is inserted at the position where the carrier number is 0 and the symbol number is 0.
  • the OFDM frame configuration unit 275 like the OFDM segment configuration shown in FIG. 12, has null carriers inserted in the 4K OFDM segment configuration on the horizontal polarization side.
  • a pilot signal is inserted at a location corresponding to the location in the vertical polarization side 4K OFDM segment configuration.
  • the OFDM frame configuration unit 275 inserts a null carrier at a location where the carrier number is 3 and the symbol number is 1 in the 4K OFDM segment configuration on the horizontal polarization side, and In the 4K OFDM segment configuration, a pilot signal is inserted at a location where the carrier number is 3 and the symbol number is 1.
  • the OFDM frame configuration unit 275 inserts a pilot signal into the first carrier (that is, the carrier whose carrier number is 0) in the 4K OFDM segment configuration on the horizontal polarization side. ..
  • the carrier with the lowest frequency corresponds to, for example, the carrier whose carrier number is 0 in the 4K OFDM segment configuration on the horizontal polarization side shown in FIG.
  • the OFDM frame configuration unit 275 inserts a null carrier into the first carrier (that is, the carrier whose carrier number is 0) in the vertical polarization side 4K OFDM segment configuration.
  • symbols having symbol numbers 8 to 15 have the same signal arrangement as that of symbols having symbol numbers 0 to 7. That is, in the 2K OFDM segment configuration, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • symbols having symbol numbers 8 to 15 have the same signal arrangement as that of symbols having symbol numbers 0 to 7. ing. That is, in the 4K OFDM segment configuration on the horizontal polarization side, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • symbols having symbol numbers 8 to 15 have the same signal arrangement as that of symbols having symbol numbers 0 to 7. ing. That is, in the 4K OFDM segment configuration on the vertical polarization side, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • the receiving unit 300 equalizes the 2K signal based on the pilot signal inserted in the first carrier in the 4K OFDM segment structure on the horizontal polarization side. It can be treated. That is, the deterioration of the MER and the BER of the carrier at the portion in contact with the boundary between the B layer and the C layer is suppressed.
  • the receiving unit 300 for example, based on the current transmission system of terrestrial digital television broadcasting, displays an image corresponding to the input received signal on the television receiver (corresponding to the second image quality reproduction data). The image can be reproduced on a reproducible television receiver). Therefore, even if the new terrestrial broadcasting and the current terrestrial digital television broadcasting coexist, a television capable of reproducing a video according to a received signal input based on the transmission method of the current terrestrial digital television broadcasting. The receiver can properly reproduce the video.
  • the OFDM frame may be configured to have an interval wider than the insertion interval of the pilot signal and the null carrier shown in FIG. 13, and the OFDM frame of the pilot signal and the null carrier shown in FIG.
  • the OFDM frame may be configured so that the interval is narrower than the insertion interval.
  • an OFDM frame may be configured such that a pilot signal is inserted once in 48 carriers in the carrier direction and once in 6 symbols in the symbol direction. That is, for example, an OFDM frame may be configured such that a pilot signal is inserted every 48 carriers and a pilot signal is inserted every 6 symbols.
  • the pilot signal is inserted over all symbols in the first carrier in the 4K OFDM segment configuration on the horizontal polarization side, but in the 2K OFDM segment configuration
  • the frame may be configured such that the pilot signal is inserted only at a position corresponding to the pilot signal insertion interval.
  • the OFDM frame configuration unit 275 inserts a pilot signal at a position where the carrier number is 0 and the symbol number is 4 in the 4K OFDM segment configuration on the horizontal polarization side, and In the 4K OFDM segment configuration, a null carrier may be inserted at a location where the carrier number is 0 and the symbol number is 4.
  • the OFDM frame configuration unit 275 determines that the pilot signal and the null carrier are in the 4K OFDM segment configuration on the horizontal polarization side and the vertical polarization side.
  • the OFDM frame may be configured so that the 4K signal is transmitted at a position other than the inserted position.
  • the OFDM frame composing unit 275 composes an OFDM frame so that a 4K signal is transmitted to the places where the carrier number is 0 and the symbol numbers are 1 to 3 and 5 to 7. May be configured.
  • the OFDM frame configuration section 275 is configured to insert a pilot signal and a null carrier also in the B layer at the portion in contact with the boundary with the A layer, as in the OFDM segment configuration shown in FIG. Good.
  • the OFDM frame configuration unit 275 in a portion in contact with the boundary between the OFDM segment configuration corresponding to the one-segment signal and the 4K OFDM segment configuration, is the head of the 4K OFDM segment configuration on the horizontal polarization side. It may be configured to insert a pilot signal into the carrier and to insert a null carrier into the leading carrier in the 4K OFDM segment configuration on the vertical polarization side.
  • the OFDM frame configuration unit 275 may be configured to insert a pilot signal also into the last carrier (that is, the carrier whose carrier number is 432) in the 4K OFDM segment configuration on the horizontal polarization side. .. In this case, the OFDM frame configuration unit 275 inserts a null carrier into the last carrier in the 4K OFDM segment configuration on the vertical polarization side. Specifically, for example, the OFDM frame configuration unit 275 may be configured to insert a pilot signal over all symbols in the last carrier in the 4K OFDM segment configuration on the horizontal polarization side.
  • the reception unit 400 can perform equalization processing on the received signal also using the pilot signal inserted in the tail carrier, the estimation accuracy of the transmission path characteristics can be improved. Can be improved.
  • the one-segment signal, the 2K signal, and the 4K signal are all described as TS, but other formats such as a signal corresponding to an MMT (MPEG Media Transport) system packet are used. It may be a signal.
  • MMT MPEG Media Transport
  • the receiving unit 300 and the receiving unit 400 are configured to share the antenna 601 for horizontal polarization, but separate antennas are connected to the receiving unit 300 and the receiving unit 400, respectively. It may be configured as follows.
  • the data configuration unit may be configured to include all the units of the modulation unit 230 shown in FIGS. 2 to 4, or may be configured to include some of the units of the modulation unit 230. May be
  • the data configuration unit may be configured to include the OFDM frame configuration unit 275 of the modulation unit 230, for example.
  • FIG. 14 is a block diagram which shows the structural example of the broadcasting system 101 of the 2nd Embodiment of this invention.
  • the broadcasting system 101 differs from the broadcasting system 100 according to the first embodiment in that the transmitting unit 201 inserts TMCC signals and AC signals at predetermined positions in the OFDM segment configuration and the receiving unit 401 is based on a predetermined pilot signal. Then, the received signal is equalized. Since other components are similar to those in the first embodiment shown in FIG. 1 and the like, the same reference numerals as those of the corresponding components in the first embodiment shown in FIG. Is attached and the description is omitted.
  • the broadcasting system 101 includes a transmitting unit 201, a receiving unit 300, and a receiving unit 401.
  • the transmitting unit 201, the receiving unit 300, and the receiving unit 401 may be realized by, for example, a computer equipped with a single circuit or a plurality of circuits such as a CPU that executes processing according to program control.
  • the transmission unit 201, the reception unit 300, and the reception unit 401 are equipped with software for realizing each operation described below.
  • the transmitting unit 201, the receiving unit 300, and the receiving unit 401 may be configured to realize each operation described below by executing processing according to the program control of the software.
  • the transmitting unit 201 includes an encoding unit 210, a multiplexing unit 220, a modulating unit 231, a first amplifying unit 240, and a second amplifying unit 250. Including.
  • the modulation unit 231 performs a channel coding process on the input 1Seg signal, 2K signal, and 4K signal to generate a first OFDM signal and a second OFDM signal.
  • the modulator 231 inputs the generated first OFDM signal to the first amplifier 240. Further, the modulator 231 inputs the generated second OFDM signal to the second amplifier 250.
  • the reception unit 401 includes a first reception processing unit 410, a second reception processing unit 420, a demodulation unit 431, and a decoding unit 440.
  • the demodulation unit 431 performs demodulation processing on the input received signal in accordance with the transmission path coding processing performed by the modulation unit 231 of the transmission unit 201 on the one-segment signal, the 2K signal, and the 4K signal, and then TS Generate a signal. Then, the demodulation unit 431 inputs the generated TS signal to the decoding unit 440.
  • the demodulation processing in the demodulation unit 431 is performed by each unit in the demodulation unit 431 described later.
  • 15 to 17 are block diagrams showing a configuration example of the modulation unit 231 in the second embodiment of the present invention.
  • the modulation unit 231 according to the second embodiment of the present invention includes an outer code processing unit 261-a, a frame composing unit 261-b, a layer dividing unit 262-a, and an outer code processing unit 262.
  • first byte-bit conversion units 263-a to c energy diffusion units 264-a to c, delay correction units 265-a to c, bit-byte conversion units 266-a to c, byte interleave processing unit 267 -A to c, second byte-bit conversion units 268-a to c, convolutional encoding processing units 269-a to c, bit interleave processing units 270-a to c, mapping processing units 271-a to c, hierarchy Combining unit 272, time interleave processing unit 273, frequency interleave processing unit 274, OFDM frame configuration unit 280, normalization units 276-a, b, IFFT processing units 277-a, b, guard interval addition processing units 278-a, b.
  • a quadrature modulation processing unit 279-a, b a quadrature modulation processing unit 279-a, b.
  • the components other than the OFDM frame configuration unit 280 are similar to the configurations in the first embodiment shown in FIGS. 2 to 4 and so on, and therefore the components are the same as those in the first embodiment shown in FIGS. In the above, the same reference numerals as those of the corresponding components are given and the description thereof will be omitted.
  • the OFDM frame configuration unit 280 receives the signal subjected to the frequency interleave processing by the frequency interleave processing unit 274, the pilot signal, the TMCC signal, and the AC signal.
  • the OFDM frame configuration unit 280 configures an OFDM frame based on each input signal. Specifically, the OFDM frame configuration unit 280, for example, for each symbol in each carrier of OFDM, values of each signal (one-segment signal, 2K signal, 4K signal, pilot signal, TMCC signal, and AC signal) To set. Also, the OFDM frame configuration unit 280 inserts a null carrier at a predetermined location in the OFDM frame. Details of the insertion location of the null carrier will be described later.
  • the OFDM frame configuration unit 280 configures, for example, an OFDM frame for horizontal polarization and an OFDM frame for vertical polarization.
  • the OFDM frame configuration unit 280 for example, the signal corresponding to the segment corresponding to the 1Seg signal, the signal corresponding to the segment corresponding to the 2K signal, and the 10 segments corresponding to the 4K signal.
  • An OFDM frame for horizontal polarization is configured according to the signals corresponding to the five segments, the pilot signal, the TMCC signal, and the AC signal.
  • the OFDM frame configuration unit 280 for example, according to the signal corresponding to the remaining 5 segments among the 10 segments corresponding to the 4K signal, the pilot signal, the TMCC signal, and the AC signal, Construct an OFDM frame for vertical polarization. Even if each pilot signal is configured such that a broadcast wave by polarization MIMO is transmitted to the B layer as in this example, it is possible to appropriately receive the broadcast wave on the C layer. It is inserted at a position in the set frequency domain. Details of the OFDM frame configured by the OFDM frame configuration unit 280 and specific insertion positions of the pilot signal, TMCC signal, and AC signal will be described later.
  • the OFDM frame configured by the OFDM frame configuration unit 280 is also referred to as an OFDM segment configuration.
  • the OFDM frame configuration unit 280 transmits to the receiving unit 300 a horizontal polarization so as to transmit a TMCC signal indicating that the signal in the B layer is differentially modulated and the signal in the C layer is synchronously modulated. It may be configured to form an OFDM frame.
  • the receiving unit 300 When it is indicated that the signal in the B layer is differentially modulated and the signal in the C layer is synchronously modulated by the TMCC information, the receiving unit 300 performs the B
  • the segment according to the hierarchy and the segment according to the C hierarchy are separately processed. By performing such processing, it is possible to prevent the segment corresponding to the B layer and the segment corresponding to the C layer from being mixed as a result of frequency deinterleaving.
  • the OFDM frame configuration unit 280 inputs, for example, an OFDM frame for horizontal polarization to the normalization unit 276-a. Further, the OFDM frame configuration unit 280 inputs, for example, an OFDM frame for vertical polarization to the normalization unit 276-b.
  • 18 to 21 are block diagrams showing the configuration of the demodulation unit 431 according to the second embodiment of the present invention.
  • the demodulation unit 431 includes an AD conversion unit 511-a, b, an orthogonal demodulation processing unit 512-a, b, a synchronous reproduction unit 513-a. , B, FFT processing units 514-a, b, frame extraction units 515-a, b, TMCC signal decoding units 516-a, b, AC signal decoding units 517-a, b, carrier demodulation unit 532, frequency deinterleave processing.
  • Unit 519 temporal deinterleave processing unit 520, first hierarchical division unit 521, demapping processing units 522-a to c, bit deinterleave processing units 523-a to c, depuncture processing units 524-a to c, hierarchical composition.
  • Unit 525 inner code decoding unit 526, second hierarchical division unit 527, byte deinterleave processing units 528-a to 528c, energy despreading processing units 529-a to 5c, TS reproduction processing unit 530, and outer code decoding unit. 531 is included.
  • the components other than the carrier demodulation unit 532 are similar to those in the first embodiment shown in FIGS. 6 to 9 and so on. Therefore, the components are the same as those in the first embodiment shown in FIGS. The same reference numerals as those of the corresponding components are given to omit the description.
  • the signals in the frequency domain converted by the FFT processing units 514-a and 514a are input to the carrier demodulation unit 532. Therefore, the carrier demodulation unit 532 inputs the TMCC information input by the TMCC signal decoding units 516-a and 516 (which may be either the TMCC signal decoding unit 516-a or the TMCC signal decoding unit 516-b). Based on the above, signals in the frequency domain input by the FFT processing units 514-a, b are subjected to differential demodulation processing, synchronous demodulation processing, equalization processing, and the like.
  • the carrier demodulation unit 532 identifies each carrier forming the OFDM signal based on the OFDM segment in the frequency domain signal input by the FFT processing units 514-a, b, and determines the amplitude of each carrier. The generated amplitude information and the phase information indicating the phase of each carrier are generated. Then, the carrier demodulation unit 532 inputs the frequency domain signal converted by the FFT processing units 514-a and 514a, the amplitude information, and the phase information to the frequency deinterleave processing unit 519.
  • the carrier demodulation unit 532 extracts a pilot signal from the signals input from the FFT processing units 514-a and 514, estimates the transmission channel characteristic based on the pilot signal, and estimates the transmission channel characteristic. Using the result, equalization processing is performed on the signals input from the FFT processing units 514-a, b.
  • the modulator 231 of the transmitter 201 generates two types of OFDM transmission signals that can be transmitted with different polarization planes based on the input 2K signal and 4K signal. .. Then, the demodulation unit 431 of the reception unit 401 demodulates the reception signal based on the OFDM transmission signal generated and transmitted by the transmission unit 200, and the TS packet that can be converted into the 2K signal and the 4K signal by the decoding unit 440. To generate.
  • the electromagnetic wave used for the current transmission of terrestrial digital television broadcasting and the electromagnetic wave having a polarization plane different from the polarization plane of the electromagnetic wave, a video corresponding to the 1Seg signal and a 2K signal are obtained on the receiving side.
  • the data can be transmitted so that at least one of the corresponding video and the video corresponding to the 4K signal can be reproduced.
  • the reception side will use the current terrestrial digital television. It is possible to newly reproduce the image corresponding to the 4K signal while continuing the state where the John broadcast can be received and the image can be reproduced.
  • the receiving unit 300 may determine the reception quality using the MER measured based on the AC signal and the TMCC signal, and may display the determined reception quality. Further, the receiving unit 300 may determine whether to cause the television receiver to reproduce the video based on the 2K signal, based on the determined reception quality.
  • an electromagnetic wave radiated through the antennas 501 and 502 and received by the antenna 601 is converted into a reception signal and input to the reception processing unit of the reception unit 300.
  • the demodulation unit of the reception unit 300 measures the MER based on, for example, the AC signal and the TMCC signal, and determines the reception quality using the MER.
  • the decoding unit of the reception unit 300 determines that the reception quality is lower than the predetermined threshold, the decoding unit of the reception unit 300 does not cause the television receiver to reproduce the video based on the 2K signal. Further, for example, when the demodulation unit of the reception unit 300 determines that the reception quality is higher than the predetermined threshold value, the decoding unit of the reception unit 300 causes the television receiver to reproduce the video based on the 2K signal.
  • the receiving unit 300 when the signal in the B layer is differentially modulated is indicated by the TMCC information, the receiving unit 300, even in the 4K OFDM segment configuration on the horizontal polarization side, receives the current terrestrial signal. According to the transmission system of digital television broadcasting, the reception quality is determined on the assumption that the AC signal and the TMCC signal are inserted.
  • AC is provided at a portion corresponding to the transmission method of the current terrestrial digital television broadcasting.
  • the signal or TMCC signal may not be inserted.
  • the receiving unit 300 cannot correctly determine the reception quality and may erroneously determine that the reception quality is lower than the predetermined threshold. If the receiving unit 300 erroneously determines that the reception quality is lower than the predetermined threshold value, the image based on the 2K signal may not be reproduced on the television receiver.
  • the OFDM frame configuration unit 280 of this embodiment is configured to insert the AC signal and the TMCC signal even in the 4K OFDM segment configuration on the horizontal polarization side according to the current transmission system of terrestrial digital television broadcasting. ing.
  • the OFDM frame configuration unit 280 is configured to insert an AC signal at a position of carrier number 30 and a TMCC signal at a position of carrier number 51.
  • FIGS. 22 and 23 show an example of a 4K OFDM segment configuration configured by the OFDM frame configuration section 280.
  • TMCC TMCC
  • the symbols having symbol numbers 8 to 15 have the same signal arrangement as that of the symbols having symbol numbers 0 to 7. Has been done. That is, in the 4K OFDM segment configuration on the horizontal polarization side, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • the symbols having symbol numbers 8 to 15 have the same signal arrangement as that of the symbols having symbol numbers 0 to 7. Has been done. That is, in the 4K OFDM segment configuration on the vertical polarization side, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • the OFDM segment is configured such that the 2K OFDM segment configuration is adjacent to the horizontal polarization side 4K OFDM segment configuration shown in FIGS. Good.
  • the OFDM frame configuration unit 280 inserts the pilot signal and the null carrier into the 4K OFDM segment configuration at predetermined intervals, as in the first embodiment of the present invention. ..
  • the OFDM frame configuration unit 280 as in the first embodiment of the present invention, has the same structure as the first carrier (that is, A pilot signal is inserted into a carrier having a carrier number of 0), and a null carrier is inserted into a leading carrier (that is, a carrier having a carrier number of 0) in the vertical polarization side 4K OFDM segment configuration.
  • the OFDM frame configuration unit 280 inserts an AC signal and a TMCC signal at a predetermined location in the 4K OFDM segment configuration.
  • the OFDM frame configuration unit 280 in the 4K OFDM segment configuration on the horizontal polarization side, transmits AC signals at locations of carrier numbers 10 and 30. insert.
  • the OFDM frame configuration unit 280 has nulls at carrier numbers 10 and 30 in the vertical polarization side 4K OFDM segment configuration. Insert the carrier.
  • the OFDM frame configuration unit 280 inserts a TMCC signal at a carrier number of 23, 37, 51 in the 4K OFDM segment configuration on the horizontal polarization side. To do.
  • the OFDM frame configuration unit 280 has a carrier number of 23, 37, 51 in the vertical polarization side 4K OFDM segment configuration. Insert a null carrier into.
  • the receiving unit 300 can determine the reception quality using the AC signal and the TMCC signal inserted in the horizontal polarization side 4K OFDM segment configuration. That is, it is possible to suppress the possibility that the receiving unit 300 may erroneously determine that the reception quality is lower than the predetermined threshold value. As a result, the receiving unit 300 can cause the television receiver to reproduce an image corresponding to the input received signal based on the current transmission system of terrestrial digital television broadcasting.
  • a pilot signal was inserted in the OFDM segment configuration of the first embodiment at a location where the carrier number is 30, but the OFDM segment of the present embodiment is In the configuration, the AC signal is inserted instead of the pilot signal in order for the receiving unit 300 to determine the reception quality.
  • receiving section 401 outputs the received signal even if the pilot signal is not inserted at that location. It is preferable that the chemical conversion treatment is appropriately performed.
  • FIGS. 24 and 25 show an example of a 4K OFDM segment configuration on the horizontal polarization side configured by the OFDM frame configuration section 280. Note that the OFDM segment configurations shown in FIGS. Regarding 5.
  • a pilot signal is inserted at a location where the carrier number is 30 and the symbol number is 2 according to the arrangement of pilot signals described in the first embodiment.
  • the AC signal is inserted in the relevant portion in order for the receiving unit 300 to determine the reception quality.
  • a pilot signal is inserted at a location where the carrier number is 51 and the symbol number is 5 according to the pilot signal arrangement described in the first embodiment.
  • the TMCC signal is inserted in the relevant portion in order for the receiving unit 300 to determine the reception quality.
  • the symbols having symbol numbers 8 to 15 have the same signal arrangement as that of the symbols having symbol numbers 0 to 7. Has been done. That is, in the 4K OFDM segment configuration on the horizontal polarization side, the signal arrangement similar to the signal arrangement in the symbols having the symbol numbers 0 to 7 is repeated.
  • the carrier demodulation unit 532 for example, based on each pilot signal inserted in the symbols of symbol numbers 0 to 7 in the 4K OFDM segment configuration on the horizontal polarization side. , The transmission path characteristics of each carrier are estimated to create a symbol string as shown in FIGS.
  • phase information calculated based on pilot signals inserted in each carrier for example, each inserted pilot signal and a known pilot signal
  • the value corresponding to the phase difference of is indicated by "1".
  • “1” corresponding to the 0th carrier is the phase difference calculated based on the pilot signal in the 0th carrier and the known pilot signal. It shows the corresponding value. That is, the symbol strings shown in FIGS. 24 and 25 include phase information calculated based on the pilot signal inserted in a predetermined symbol in each carrier.
  • the carrier demodulation unit 532 calculates the average value of the values corresponding to the phase differences calculated based on the pilot signals inserted in the places where the carrier number is 0 and the symbol numbers are 0 to 7, in FIG.
  • the symbol string shown in 25 the symbol string may be configured to have a value corresponding to the phase difference in "1" corresponding to the 0th carrier.
  • carrier demodulation section 532 sets the value corresponding to the phase difference calculated based on the pilot signal inserted at the position where the carrier number is 0 and the symbol number is 7, to the symbol sequence shown in FIG.
  • a value may be configured according to the phase difference in “1” corresponding to the 0th carrier.
  • the position where the transmission path characteristic is estimated based on the phase information indicated by “1” included in the symbol sequence is “0”. Indicated by. Specifically, for example, in the symbol string shown in FIG. 24, the transmission path characteristics at “0” corresponding to the first carrier and the second carrier are the 0th carrier and the third carrier in the symbol string. It is estimated based on the phase information in "1" corresponding to the carrier.
  • the carrier demodulation unit 532 calculates, for example, the phase information of the carrier in which the location where the AC signal or the TMCC signal is inserted and the location where the pilot signal is inserted overlap with each other based on the preceding and following pilot signals. ..
  • a carrier in which an AC signal or TMCC signal is inserted and a pilot signal is inserted is indicated by “C”.
  • the carrier demodulation unit 532 responds to the phase difference calculated based on the pilot signal inserted at the location where the carrier number is 27.
  • the average value of the value and the value corresponding to the phase difference calculated based on the pilot signal inserted at the carrier number 33 is set to be the value corresponding to the phase difference in the carrier with the carrier number 30. May be configured.
  • the carrier demodulation unit 532 determines the phase difference calculated based on the pilot signal inserted at the carrier number 48.
  • the average value of the corresponding value and the value corresponding to the phase difference calculated based on the pilot signal inserted at the carrier number 54 is the value corresponding to the phase difference in the carrier with the carrier number 51. May be configured to do so.
  • the carrier demodulation unit 532 estimates the transmission path characteristics in the carrier direction using the created symbol string. Specifically, for example, the carrier demodulation unit 532 sets the value corresponding to the phase difference corresponding to “1” in the symbol sequence shown in FIGS. 24 and 25 and the phase difference corresponding to “C” in the symbol sequence. And a value according to the above are used to estimate the transmission path characteristic in the carrier corresponding to “0” in the symbol string.
  • the carrier demodulation unit 532 performs equalization processing on the signal input from the FFT processing unit 514-a using the estimation result of the transmission path characteristic.
  • the carrier demodulation unit 532 uses the FIR (Finite Impulse Response) filter to create smoothed data based on the created symbol sequence, It is used for estimation and equalization processing is performed on the signal input from the FFT processing unit 514-a.
  • FIR Finite Impulse Response
  • the equalization process specifically, for example, by multiplying a value corresponding to the signal input from the FFT processing unit 514-a by a value corresponding to the inverse characteristic of the estimated transmission path characteristic, The amplitude and phase distortion of the signal is corrected.
  • the carrier demodulation unit 532 performs equalization processing on the signal input from the FFT processing unit 514-b using the same processing method as the equalization processing performed on the signal input from the FFT processing unit 514-a. It is configured to give.
  • FIG. 26 is a flowchart showing the operation of the modulator 231 according to the second embodiment of the present invention.
  • the 1Seg signal, the 2K signal, and the 4K signal are input to the modulator 231 (step S201).
  • Each unit of the modulation unit 231 synthesizes the input 1Seg signal, 2K signal, and 4K signal, and performs transmission path coding processing (step S202).
  • the OFDM frame composing unit 280 composes the OFDM frame as shown in FIGS.
  • the modulator 231 generates a first OFDM signal for electromagnetic waves transmitted by the antenna 501 for horizontal polarization, and a second OFDM signal for electromagnetic waves transmitted by the antenna 502 for vertical polarization (step). S203).
  • the modulator 231 inputs the generated first OFDM signal to the first amplifier 240. Further, the modulator 231 inputs the generated second OFDM signal to the second amplifier 250.
  • the first amplification unit 240 amplifies the first OFDM signal input by the modulation unit 231 with a predetermined amplification factor (step S204). Then, the first amplification unit 240 inputs the amplified first OFDM signal to the antenna 501.
  • the first OFDM signal amplified by the first amplifier 240 is converted into an electromagnetic wave by the antenna 501 and radiated as a horizontally polarized wave.
  • the second amplification unit 250 amplifies the second OFDM signal input by the modulation unit 231 with a predetermined amplification factor (step S204). Then, the second amplification section 250 inputs the amplified second OFDM signal to the antenna 502. The second OFDM signal amplified by the second amplification unit 250 is converted into an electromagnetic wave by the antenna 502 and is radiated as a vertically polarized wave.
  • FIG. 27 is a flowchart showing the operation of the reception unit 401 according to the second embodiment of the present invention.
  • signals are input to the carrier demodulation unit 532 from the FFT processing units 514-a and 514 (step S301).
  • the carrier demodulation unit 532 extracts a pilot signal from the signals input from the FFT processing units 514-a and 514-b, and estimates the transmission path characteristic based on the pilot signal (step S302).
  • the carrier demodulation unit 532 performs equalization processing on the signals input from the FFT processing units 514-a and 514-a and b, using the estimation result of the transmission path characteristics (step S303).
  • the signal subjected to the equalization processing is subjected to the above-described processing in each unit of the demodulation unit 431, so that the TS signal is generated. Then, the generated TS signal is input to the decoding unit 440.
  • the decoding unit 440 has a function of generating a video signal by performing a predetermined decoding process on the TS signal input from the demodulation unit 431 (step S304). For example, the decoding unit 440 may add H.264 to the input TS signal. It is assumed that the video signal based on the 4K signal can be generated by performing the decoding process based on H.265. Then, the decoding unit 440 can output the generated video signal. Then, the output video signal is input to a video display device such as a television receiver to reproduce a video based on the 4K signal.
  • a video display device such as a television receiver to reproduce a video based on the 4K signal.
  • the receiving unit 300 can appropriately determine the reception quality based on the current transmission system of terrestrial digital television broadcasting. That is, since the AC signal and the TMCC signal are inserted in the carrier according to the current transmission method of terrestrial digital television broadcasting, the receiving unit 300 appropriately determines the reception quality using the AC signal and the TMCC signal. It can be carried out. Therefore, the receiving unit 300 can cause the television receiver to reproduce an image corresponding to the input received signal based on the current transmission system of terrestrial digital television broadcasting. Therefore, even if the new terrestrial broadcasting and the current terrestrial digital television broadcasting coexist, it is possible to reproduce a video according to the received signal input based on the transmission method of the current terrestrial digital television broadcasting. The receiver can properly reproduce the video.
  • the reception unit 401 sets the value according to the phase difference in the carrier where the position where the AC signal or TMCC signal is inserted and the position where the pilot signal is overlapped, to the pilot signals before and after the pilot signal. Calculate based on the signal.
  • the reception section 401 can appropriately perform equalization processing on the received signal. For this reason, the receiving unit 401 can newly reproduce the image corresponding to the 4K signal while continuing the state in which the current terrestrial digital television broadcast can be received and the image can be reproduced. Therefore, even if the new terrestrial broadcasting and the current terrestrial digital television broadcasting coexist, a television receiver capable of reproducing an image corresponding to the received signal input based on the transmission method of the new terrestrial broadcasting is not available. , The video can be reproduced properly.
  • the pilot signal and the null carrier are inserted in the leading carrier as in the first embodiment of the present invention, but the pilot signal and the null carrier are
  • the OFDM frame may be configured not to be inserted.
  • the carrier demodulation unit 532 creates a symbol string based on pilot signals in symbols with symbol numbers 0 to 7 (that is, based on pilot signals for 8 symbols). Is not limited to eight symbols.
  • FIGS. 28 and 29 show an example of a 4K OFDM segment configuration on the horizontal polarization side configured by the OFDM frame configuration section 280. Note that the OFDM segment configurations shown in FIGS. Regarding 5.
  • the pilot signal and null carrier are inserted once in 48 carriers in the carrier direction and once in 6 symbols in the symbol direction. Has been done. That is, the pilot signal and null carrier are inserted every 48 carriers, and the pilot signal and null carrier are inserted every 6 symbols.
  • carrier demodulation section 532 determines that the pilot signals in the symbols having symbol numbers 0 to 5 (that is, the pilot signals for 6 symbols) It may be configured to create a symbol sequence.
  • the carrier demodulation unit 532 may be configured to determine the number of symbols to be used when creating a symbol sequence, depending on the pilot signal insertion interval.
  • the carrier demodulation unit 532 sets the value according to the phase difference in the carrier in which the location where the AC signal or TMCC signal is inserted and the location where the pilot signal is overlapped, although it is calculated based on the pilot signal, it may be configured to calculate a value according to the phase difference in the overlapping carriers based on the three pilot signals before and after.
  • the carrier demodulation unit 532 calculates the carrier numbers based on the pilot signals inserted at the carrier numbers 21, 24 and 27, respectively. Of the carrier number of 30, and the average value of the values calculated according to the respective phase differences calculated based on the pilot signals inserted at the carrier numbers 33, 36, and 39.
  • the carrier may be configured to have a value corresponding to the phase difference.
  • FIG. 30 is a block diagram showing a configuration example of the broadcast transmission system 20 according to the third embodiment of the present invention.
  • the broadcast transmission system 20 according to the third embodiment of the present invention includes a data configuration unit 21 and a transmission processing unit 22.
  • the broadcasting transmission system 20 corresponds to, for example, the transmission unit 200 according to the first embodiment of the present invention.
  • the broadcast transmission system 20 corresponds to, for example, the broadcast transmission system 251 according to the first embodiment of the present invention.
  • the data configuration unit 21 corresponds to, for example, the modulation unit 230 in the first embodiment of the present invention.
  • the transmission processing unit 22 corresponds to, for example, the first amplification unit 240 and the second amplification unit 250 in the first embodiment of the present invention.
  • the data configuration unit 21 generates data for one polarization antenna transmission and data for the other polarization antenna transmission based on the first image quality reproduction data and the second image quality reproduction data. To do.
  • the first image quality reproducing data is, for example, data corresponding to the 4K signal included in the 4K OFDM segment configuration on the horizontal polarization side in the first embodiment, pilot signal data, and TMCC signal data. It corresponds to data and data for AC signals.
  • the second image quality reproduction data is, for example, data corresponding to the 2K signal included in the 2K OFDM segment configuration on the horizontal polarization side in the first embodiment, pilot signal data, and TMCC signal data. It corresponds to data and data for AC signals.
  • One polarization antenna transmission data is, for example, data corresponding to a 2K signal included in the horizontal polarization side 2K OFDM segment configuration and the 4K OFDM segment configuration shown in FIG.
  • the data for transmitting the other polarization antenna is, for example, data corresponding to the 4K signal included in the vertically polarized 4K OFDM segment configuration shown in FIG. 13, pilot signal data, and TMCC signal. Data and AC signal data.
  • the data configuration unit 21 selects the pilot signal or the null carrier at the first interval in the first image quality reproduction data of the one polarization antenna transmission data. Data for transmitting one polarized antenna is generated.
  • the first interval corresponds to, for example, the frequency of 23 consecutive carriers. In addition, the first interval corresponds to, for example, time for seven consecutive symbols.
  • the data configuration unit 21 also generates data for transmitting the other polarization antenna so that the null carrier or the pilot signal is arranged at the first interval.
  • the data configuration unit 21 sets the polarization of the one polarization antenna so that pilot signals are arranged at a second interval in the data for reproducing the second image quality of the data for transmitting the polarization antenna.
  • the second interval corresponds to, for example, the frequency of 11 consecutive carriers. Further, the second interval corresponds to, for example, the time of three consecutive symbols.
  • the data configuration unit 21 is based on the first interval in the data transmitted by the carrier of the lowest frequency in the first image quality reproduction data of the one polarization antenna transmission data.
  • Data for transmitting the one polarized antenna is generated so that a pilot signal is arranged in place of the null carrier.
  • the carrier of the lowest frequency corresponds to, for example, the carrier whose carrier number is 0 in the 4K OFDM segment configuration on the horizontal polarization side shown in FIG.
  • the data configuration unit 21 transmits the other polarization antenna transmission data so that the null carrier is arranged at a position corresponding to the position where the pilot signal is arranged in the other polarization antenna transmission data. Generate credit data.
  • the transmission processing unit 22 performs processing for transmitting a signal corresponding to the data for transmitting the one polarized antenna and a signal corresponding to the data for transmitting the other polarized antenna.
  • the data configuration unit 21 uses one polarization antenna transmission data and the other polarization antenna based on the first image quality reproduction data and the second image quality reproduction data. And data for transmission are generated.
  • the data configuration unit 21 selects the pilot signal or the null carrier at the first interval in the first image quality reproduction data of the one polarization antenna transmission data. Data for transmitting one polarized antenna is generated.
  • the data configuration unit 21 also generates data for transmitting the other polarization antenna so that the null carrier or the pilot signal is arranged at the first interval.
  • the data configuration unit 21 sets the polarization of the one polarization antenna so that pilot signals are arranged at a second interval in the data for reproducing the second image quality of the data for transmitting the polarization antenna. Generate data for wave antenna transmission.
  • the data configuration unit 21 is based on the first interval in the data transmitted by the carrier of the lowest frequency in the first image quality reproduction data of the one polarization antenna transmission data. Data for transmitting the one polarized antenna is generated so that a pilot signal is arranged in place of the null carrier.
  • the data configuration unit 21 transmits the other polarization antenna so that the null carrier is arranged at a position corresponding to the position where the pilot signal is arranged in the data for transmitting the other polarization antenna. Generate credit data.
  • the transmission processing unit 22 performs processing for transmitting a signal corresponding to the data for transmitting the one polarized antenna and a signal corresponding to the data for transmitting the other polarized antenna.
  • a television capable of reproducing a video according to a received signal input based on the transmission method of the current terrestrial digital television broadcasting.
  • the receiver can properly reproduce the video.
  • FIG. 31 is a block diagram showing a configuration example of the broadcast receiving system 30 according to the fourth embodiment of the present invention.
  • the broadcast receiving system 30 according to the fourth embodiment of the present invention includes a receiving unit 31, an equalizing unit 32, and a reproduction processing unit 33.
  • the reception unit 31 corresponds to, for example, the reception processing unit of the reception unit 300 according to the first embodiment of the present invention.
  • the equalizer 32 corresponds to, for example, the demodulator of the receiver 300 according to the first embodiment of the present invention.
  • the reproduction processing unit 33 corresponds to, for example, the decoding unit of the receiving unit 300 according to the first embodiment of the present invention.
  • the receiving unit 31 includes first data for reproducing image quality in which pilot signals or null carriers are arranged at first intervals, and second data for reproducing image quality in which pilot signals are arranged at second intervals. Receive a signal according to and. In the data transmitted on the carrier of the lowest frequency in the data for reproducing the first image quality, the pilot signal is arranged in place of the null carrier based on the first interval.
  • the first interval corresponds to, for example, the frequency of 23 consecutive carriers.
  • the first interval corresponds to, for example, time for seven consecutive symbols.
  • the second interval corresponds to, for example, frequencies of 11 consecutive carriers. Further, the second interval corresponds to, for example, the time of three consecutive symbols.
  • the carrier of the lowest frequency corresponds to, for example, the carrier whose carrier number is 0 in the 4K OFDM segment configuration on the horizontal polarization side shown in FIG.
  • the first image quality reproducing data is, for example, data corresponding to the 4K signal included in the 4K OFDM segment configuration on the horizontal polarization side in the first embodiment, pilot signal data, and TMCC signal data. It corresponds to data and data for AC signals.
  • the second image quality reproduction data is, for example, data corresponding to the 2K signal included in the 2K OFDM segment configuration on the horizontal polarization side in the first embodiment, pilot signal data, and TMCC signal data. It corresponds to data and data for AC signals.
  • the equalization unit 32 generates a signal corresponding to the second image quality reproduction data based on the pilot signal arranged in the first image quality reproduction data and the second image quality reproduction data. Perform equalization processing.
  • the reproduction processing unit 33 is a television receiver capable of reproducing an image corresponding to the second image quality reproducing data based on the signal corresponding to the equalized second image quality reproducing data. , A video corresponding to the second image quality reproduction data is reproduced.
  • the reception unit 31 includes the first image quality reproduction data in which the pilot signal or the null carrier is arranged at the first interval and the pilot signal in which the pilot signal is arranged at the second interval.
  • a signal corresponding to the image quality reproduction data of No. 2 is received.
  • the pilot signal is arranged in place of the null carrier based on the first interval.
  • the equalization unit 32 generates a signal corresponding to the second image quality reproduction data based on the pilot signal arranged in the first image quality reproduction data and the second image quality reproduction data.
  • the reproduction processing unit 33 is a television receiver capable of reproducing an image corresponding to the second image quality reproducing data based on the signal corresponding to the equalized second image quality reproducing data. , A video corresponding to the second image quality reproduction data is reproduced.
  • a television capable of reproducing a video according to a received signal input based on the transmission method of the current terrestrial digital television broadcasting.
  • the receiver can properly reproduce the video.
  • the present invention can be implemented based on the modification, replacement, and adjustment of each embodiment. Further, the present invention can be implemented by arbitrarily combining the embodiments. That is, the present invention includes various variations and modifications that can be realized according to all the disclosures and technical ideas of the present specification.
  • the reference numerals attached to the drawings are added to the respective elements for convenience as an example for facilitating understanding, and are not intended to limit the present invention to the illustrated modes.
  • (Appendix 1) Data composition means for generating data for one polarization antenna transmission and data for the other polarization antenna transmission based on the first image quality reproduction data and the second image quality reproduction data. A signal according to the data for one polarization antenna transmission, and a transmission processing means for performing a process for transmitting a signal according to the data for the other polarization antenna transmission, The data configuration means, In the data for reproducing the first image quality of the data for transmitting the one polarized antenna, the data for transmitting the one polarized antenna is arranged so that pilot signals or null carriers are arranged at first intervals.
  • the data configuration means Generating data for transmitting the other polarization antenna so that null carriers or pilot signals are arranged at the first interval
  • the data configuration means In the data for reproducing the second image quality of the data for transmitting the one polarized antenna, the data for transmitting the one polarized antenna is generated so that pilot signals are arranged at a second interval. Then In the data transmitted by the carrier of the lowest frequency in the data for reproducing the first image quality of the data for transmitting the one polarization antenna, the data forming unit is a null carrier based on the first interval.
  • the data forming means is arranged for transmitting the other polarization antenna so that a null carrier is arranged at a position corresponding to a position where the pilot signal is arranged.
  • a broadcasting transmission system characterized by generating data. (Appendix 2) In the data transmitted on the carrier of the lowest frequency, the data configuration unit generates data for transmitting the one polarized antenna so that the pilot signal is arranged over all symbols. The broadcast transmission system according to Appendix 1.
  • the data forming unit nulls a portion of the data for transmitting the other polarized antenna, which corresponds to a portion where pilot signals are arranged at the first interval.
  • the one polarization antenna is arranged so that a pilot signal is arranged at a position corresponding to a position where a carrier is arranged and null carriers are arranged at the first interval in the data for transmitting the other polarization antenna. 3.
  • the broadcast transmission system according to appendix 1 or 2, wherein transmission data is generated.
  • the data composing means based on the data for reproducing the first image quality, the data for reproducing the second image quality, and the data for the moving body, the data for transmitting the one polarization antenna and the data for transmitting the polarization antenna. Generate data for the other polarization antenna transmission, In the data transmitted by the carrier of the lowest frequency in the data for reproducing the first image quality of the data for transmitting the one polarization antenna, the data forming unit is a null carrier based on the first interval. 4.
  • the broadcasting transmission system according to any one of appendices 1 to 3, wherein the data for transmitting the one polarization antenna is generated so that a pilot signal is arranged instead.
  • the data composing means transmits the TMCC (Transmission and Multiplexing Configuration Control) signal indicating that the modulation method of the signal corresponding to the first image quality reproduction data is differential modulation.
  • the broadcast transmission system according to any one of appendices 1 to 4, wherein data for polarization antenna transmission is generated.
  • the pilot signal included in the data transmitted on the carrier of the lowest frequency includes a pilot signal arranged from the first symbol to the fifth symbol of the frame in which the first image quality reproduction data is transmitted. 7.
  • the broadcast transmission system according to any one of appendices 1 to 6.
  • the data composing means arranges a pilot signal in at least a part of the data transmitted at the highest frequency in the first image quality reproducing data of the one polarization antenna transmitting data.
  • the broadcast transmission system according to any one of appendices 1 to 7, wherein data for transmitting the one polarized antenna is generated.
  • Receiving means for receiving A signal corresponding to the second image quality reproducing data is subjected to equalization processing based on pilot signals arranged in the first image quality reproducing data and the second image quality reproducing data.
  • a second image quality is applied to a television receiver capable of reproducing an image corresponding to the second image quality reproduction data.
  • a reproduction processing means for reproducing an image corresponding to the reproduction data In the data transmitted on the carrier of the lowest frequency in the data for reproducing the first image quality, a pilot signal is arranged in place of the null carrier based on the first interval. .. (Appendix 10)
  • a broadcast transmission/reception system comprising: the broadcast reception system according to attachment 9.
  • the data for the other polarization antenna transmission is generated, so that the null carrier or the pilot signal is arranged at the first interval, the data for the other polarization antenna transmission is generated, When the data for transmitting the one polarized antenna is generated, pilot signals are arranged at second intervals in the data for reproducing the second image quality of the data for transmitting the one polarized antenna.
  • the pilot signal or the null carrier is arranged at the first interval so that the pilot signal or the null carrier is arranged.
  • Generate data for polarized antenna transmission In the data configuration process, data for transmitting the other polarization antenna is generated so that null carriers or pilot signals are arranged at the first interval, In the data configuration process, the one polarization antenna is arranged such that pilot signals are arranged at a second interval in the second image quality reproduction data of the one polarization antenna transmission data.
  • Generate data for transmission In the data configuration process, in the data transmitted on the carrier of the lowest frequency in the data for the first image quality reproduction among the data for the one polarization antenna transmission, a null carrier based on the first interval is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本発明は、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づく信号に応じた映像を再生可能なテレビジョン受像機が当該映像を適切に再生できる放送用送信システムを提供する。放送用送信システムは、一方の偏波アンテナ送信用のデータのうちの第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、一方の偏波アンテナ送信用のデータを生成し、他方の偏波アンテナ送信用のデータにおいて、パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、他方の偏波アンテナ送信用のデータを生成する。

Description

放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
 本発明は、放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラムに関する。
 地上デジタルテレビジョン放送では、画面解像度が横2000程度×縦1000程度となるような画像をテレビジョン受像機が再生可能になっている。
 非特許文献1には、地上デジタルテレビジョン放送の伝送方式について記載されている。以下、非特許文献1に記載されている方式に基づく地上デジタルテレビジョン放送を、現状の地上デジタルテレビジョン放送ともいう。
 特許文献1には、偏波MIMO(Multiple-Input and Multiple-Output)伝送を採用し、一方の偏波の信号によって移動可能な受信装置向けのデータを送信し、両方の偏波の信号によって固定的に設置された受信装置向けのデータを送信するテレビジョン放送システムが記載されている。
 また、特許文献2には、現状の地上デジタルテレビジョン放送によって再生可能な画質に比べて、より高画質な画像を受像機が再生可能な新たな地上波放送(新地上波放送ともいう)を提供することや当該新地上波放送を現状の地上デジタルテレビジョン放送と共存させることが記載されている。
特開2016-076789号公報 国際公開第2018/155544号
"地上デジタルテレビジョン放送の伝送方式 ARIB STD-B31 2.2版"、[online]、2014年3月、一般社団法人電波産業会、[2018年11月20日検索]、インターネット<URL: https://www.arib.or.jp/kikaku/kikaku_hoso/std-b31.html2>
 新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機が現状の地上デジタルテレビジョン放送における当該映像を適切に再生できることが望ましい。例えば、現状の地上デジタルテレビジョン放送に対応したテレビジョン受像機が受信信号を適切に等化処理できることが望ましい。
 そこで、本発明は、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機が当該映像を適切に再生できる放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラムを提供することを目的とする。
 本発明による放送用送信システムは、第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成手段と、前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理手段とを備え、前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記データ構成手段は、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記データ構成手段は、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成することを特徴とする。
 本発明による放送用受信システムは、第1の間隔でパイロット信号またはヌルキャリアが配置されている第1の画質再生用のデータと、第2の間隔でパイロット信号が配置されている第2の画質再生用のデータとに応じた信号を受信する受信手段と、前記第1の画質再生用のデータおよび前記第2の画質再生用のデータに配置されているパイロット信号に基づいて、前記第2の画質再生用のデータに応じた信号に等化処理を施す等化手段と、等化処理された前記第2の画質再生用のデータに応じた信号に基づいて、前記第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機に、前記第2の画質再生用のデータに応じた映像を再生させる再生処理手段とを備え、前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されていることを特徴とする。
 本発明による放送用送受信システムは、いずれかの態様の放送用送信システムと、いずれかの態様の放送用受信システムとを備えたことを特徴とする。
 本発明による放送用送信方法は、第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成し、前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行い、前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記他方の偏波アンテナ送信用のデータを生成するときに、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、前記他方の偏波アンテナ送信用のデータを生成するときに、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成することを特徴とする。
 本発明による放送用送信プログラムは、コンピュータに、第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成処理と、前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理とを実行させ、前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、前記データ構成処理では、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成させ、前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、前記データ構成処理では、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成させることを特徴とする。
 本発明によれば、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機が当該映像を適切に再生できる。
第1の実施形態の放送システムの構成例を示すブロック図である。 第1の実施形態における変調部の構成例を示すブロック図である。 第1の実施形態における変調部の構成例を示すブロック図である。 第1の実施形態における変調部の構成例を示すブロック図である。 伝送方式の例を示す説明図である。 第1の実施形態における復調部の構成例を示すブロック図である。 第1の実施形態における復調部の構成例を示すブロック図である。 第1の実施形態における復調部の構成例を示すブロック図である。 第1の実施形態における復調部の構成例を示すブロック図である。 第1の実施形態における送信部の動作を示すフローチャートである。 B階層によって利用されるセグメントの数と、4K用信号の変調方式とに応じたパラメータの例を示す説明図である。 第1の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第1の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第2の実施形態の放送システムの構成例を示すブロック図である。 第2の実施形態における変調部の構成例を示すブロック図である。 第2の実施形態における変調部の構成例を示すブロック図である。 第2の実施形態における変調部の構成例を示すブロック図である。 第2の実施形態における復調部の構成例を示すブロック図である。 第2の実施形態における復調部の構成例を示すブロック図である。 第2の実施形態における復調部の構成例を示すブロック図である。 第2の実施形態における復調部の構成例を示すブロック図である。 第2の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第2の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第2の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第2の実施形態におけるOFDMセグメント構成の例を示す説明図である。 第2の実施形態における送信部の動作を示すフローチャートである。 第2の実施形態におけるキャリア復調部の動作を示すフローチャートである。 第2の実施形態におけるOFDMセグメント構成の他の例を示す説明図である。 第2の実施形態におけるOFDMセグメント構成の他の例を示す説明図である。 第3の実施形態の放送用送信システムの構成例を示すブロック図である。 第4の実施形態の放送用受信システムの構成例を示すブロック図である。
 実施形態1.
 本発明の第1の実施形態の放送システムについて、図面を参照して説明する。図1は、本発明の第1の実施形態の放送システム100の構成例を示すブロック図である。
 図1に示すように、本発明の第1の実施形態の放送システム(放送用送受信システム)100は、送信部200と受信部(放送用受信システム)300とを含む。
 送信部200には、アンテナ501,502が接続されている。また、受信部300には、分配器700を介してアンテナ601が接続されている。また、分配器700には、受信部400が接続されている。そして、受信部400には、アンテナ602と、分配器700を介してアンテナ601とが接続されている。
 送信部200によってアンテナ501,502に入力された信号は当該アンテナ501,502によって電磁波に変換されて放射される。そして、アンテナ601,602によって、当該電磁波は受信されて受信信号に変換され、変換後の受信信号が受信部300,400に入力される。
 なお、分配器700は、アンテナ601によって受信されて信号に変換された受信信号を受信部300と受信部400とに入力する。また、本例では、アンテナ501,601は水平偏波用のアンテナであり、アンテナ502,602は垂直偏波用のアンテナであるとする。
 また、送信部200、受信部300および受信部400は、例えば、プログラム制御に従って処理を実行する、CPU(Central Processing Unit)等の単数または複数の回路が搭載されたコンピュータによって実現されてもよい。具体的には、例えば、送信部200、受信部300および受信部400に、以下に述べる各動作を実現させるためのソフトウェアが搭載される。そして、送信部200、受信部300および受信部400は、当該ソフトウェアのプログラム制御に従って処理を実行することにより、以下に述べる各動作を実現するように構成されていてもよい。
 また、受信部300は、例えば、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、入力された受信信号に応じた映像を再生可能なテレビジョン受像機や受信信号に応じた処理を行う受信機である。受信部300は、例えば、受信部300の受信処理部、受信部300の復調部および受信部300の復号部を含むように構成されている。
 次に、送信部200の構成について、図面を参照して説明する。図1に示すように、本発明の第1の実施形態における送信部200は、符号化部210、多重化部220、変調部(例えば、データ構成手段)230、第1の増幅部240、および第2の増幅部250を含む。
 なお、送信処理手段は、例えば、本発明の第1の実施形態における第1の増幅部240および第2の増幅部250に相当する。放送用送信システムは、例えば、図1に示されている放送用送信システム251に相当する。放送用送信システム251は、例えば、本発明の第1の実施形態における変調部230、第1の増幅部240および第2の増幅部250を含む。なお、放送用送信システムは、例えば、本発明の第1の実施形態における符号化部210、多重化部220、変調部230、第1の増幅部240および第2の増幅部250を含むように構成されていてもよい。
 符号化部210は、第1のエンコーダ211、第2のエンコーダ212、および第3のエンコーダ213を含む。
 第1のエンコーダ211、および第2のエンコーダ212には、「2K」の信号が入力される。なお、2Kとは、画面解像度が横2000程度×縦1000程度となるような映像の総称である。したがって、図1に示す例では、2Kに対応した信号(以下、2K用信号ともいう)が第1のエンコーダ211、および第2のエンコーダ212に入力される。なお、2Kの画面解像度とは、例えば、横2048×縦1080や、横1920×縦1080、横2048×縦1152、横2560×縦1600、横1440×縦1080等である。2K用信号は、2K用信号に応じたデータとも称される。なお、2K用信号に応じたデータは、例えば、音声データ、画像データおよび字幕データ等の出力用データを含む。
 そして、第1のエンコーダ211は、入力された2K用信号に、H.264に基づく符号化処理を施す。そして、第1のエンコーダ211は、符号化処理後の2K用信号を多重化部220に入力する。なお、第1のエンコーダ211は、携帯電話・移動体端末向けの1セグメント部分受信サービス(移動体受信サービスともいう。以下、ワンセグともいう)の提供用に用意されている。そこで、第1のエンコーダ211によるH.264に基づく符号化処理後の2K用信号をワンセグ用信号ともいう。ワンセグ用信号は、ワンセグ用信号に応じたデータとも称される。なお、ワンセグ用信号に応じたデータは、例えば、音声データ、画像データおよび字幕データ等の出力用データを含む。また、ワンセグ用信号に応じたデータは、移動体用のデータとも称される。
 また、第2のエンコーダ212は、入力された2K用信号に、MPEG(Moving Picture Experts Group)-2に基づく符号化処理を施す。そして、第2のエンコーダ212は、MPEG-2に基づく符号化処理後の2K用信号を多重化部220に入力する。
 多重化部220は、第1のエンコーダ211が入力したワンセグ用信号と、第2のエンコーダ212が入力した2K用信号とを互いに多重する。そして、多重化部220は、多重化後の信号である多重化信号を変調部230に入力する。
 また、第3のエンコーダ213には、「4K」の信号が入力される。なお、4Kとは、画面解像度が横4000程度×縦2000程度となるような映像の総称である。したがって、図1に示す例では、4Kに対応した信号(以下、4K用信号ともいう)が第3のエンコーダ213に入力される。なお、4Kの画面解像度とは、例えば、横4096×縦2160や、横3840×縦2160、横4096×縦2304、横4096×縦2048等である。4K用信号は、4K用信号に応じたデータとも称される。なお、4K用信号に応じたデータは、例えば、音声データ、画像データおよび字幕データ等の出力用データを含む。
 そして、第3のエンコーダ213は、入力された4K用信号に、H.265に基づく符号化処理を施す。そして、第3のエンコーダ213は、H.265に基づく符号化処理後の4K用信号を変調部230に入力する。
 なお、ワンセグ用信号、2K用信号、および4K用信号はいずれもそれぞれTS(Transport Stream)である。
 変調部230は、入力されたワンセグ用信号、2K用信号、および4K用信号に伝送路符号化処理を施して、第1のOFDM(Orthogonal Frequency Division Multiplexing)信号および第2のOFDM信号を生成する。伝送路符号化処理については後述する。
 変調部230は、第1の増幅部240に、生成した第1のOFDM信号を入力する。また、変調部230は、第2の増幅部250に、生成した第2のOFDM信号を入力する。
 なお、第1の増幅部240には、水平偏波用のアンテナ501が接続されている。第1の増幅部240は、変調部230が入力した第1のOFDM信号を所定の増幅率で増幅する。そして、第1の増幅部240は、増幅後の第1のOFDM信号をアンテナ501に入力する。
 第1の増幅部240によって増幅された第1のOFDM信号は、アンテナ501によって電磁波に変換されて水平偏波で放射される。
 また、第2の増幅部250には、垂直偏波用のアンテナ502が接続されている。第2の増幅部250は、変調部230が入力した第2のOFDM信号を予め決められた増幅率で増幅する。そして、第2の増幅部250は、増幅後の第2のOFDM信号をアンテナ502に入力する。
 第2の増幅部250によって増幅された第2のOFDM信号は、アンテナ502によって電磁波に変換されて垂直偏波で放射される。
 受信部300の受信処理部(受信手段)には、アンテナ501,502を介して放射されてアンテナ601によって受信された電磁波が受信信号に変換されて入力される。当該受信処理部は、受信信号を増幅する処理や、より後段の信号処理手段である受信部300の復調部(等化手段)における処理が可能な周波数であるベースバンドに受信信号の周波数を変換する処理等の所定の処理を受信信号に施す。受信部300の復調部は、入力された受信信号に、送信部200の変調部230がワンセグ用信号および、2K用信号に施した伝送路符号化処理に応じた復調処理や等化処理等を施して、TS信号を生成する。そして、当該復調部は、生成したTS信号を受信部300の復号部(再生処理手段)に入力する。当該復号部は、入力されたTS信号に、所定の復号処理を施して、映像信号を生成可能な機能を有する。また、当該復号部は、生成した映像信号を出力可能である。出力された映像信号は、テレビジョン受像機等の映像表示装置に入力されて、ワンセグ用信号または、2K用信号に基づく映像が再生される。
 次に、受信部400の構成について、図面を参照して説明する。図1に示すように、本発明の第1の実施形態における受信部400は、第1の受信処理部410、第2の受信処理部420、復調部430、および復号部440を含む。
 第1の受信処理部410には、分配器700を介して水平偏波用のアンテナ601が接続されている。そして、第1の受信処理部410には、アンテナ501,502を介して放射されてアンテナ601によって受信された電磁波が受信信号に変換されて入力される。
 また、第2の受信処理部420には、垂直偏波用のアンテナ602が接続されている。そして、第2の受信処理部420には、アンテナ501,502を介して放射されてアンテナ602によって受信された電磁波が受信信号に変換されて入力される。
 第1の受信処理部410および第2の受信処理部420は、それぞれ、受信信号を増幅する処理や、より後段の信号処理手段である復調部430における処理が可能な周波数であるベースバンドに受信信号の周波数を変換する処理等の所定の処理を受信信号に施す。
 そして、第1の受信処理部410は、所定の処理を施した受信信号を復調部430に入力する。また、第2の受信処理部420は、所定の処理を施した受信信号を復調部430に入力する。
 復調部430は、入力された受信信号に、送信部200の変調部230がワンセグ用信号、2K用信号、および4K用信号に施した伝送路符号化処理に応じた復調処理を施して、TS信号を生成する。そして、復調部430は、生成したTS信号を復号部440に入力する。なお、復調部430における復調処理については後述する復調部430における各部によって行われる。
 復号部440は、入力されたTS信号に、所定の復号処理を施して、映像信号を生成可能な機能を有する。
 例えば、復号部440は、入力されたTS信号にH.265に基づく復号処理を施して、4K用信号に基づく映像信号を生成可能であるとする。すると、復号部440は、生成した映像信号を出力可能である。そして、出力された映像信号は、テレビジョン受像機等の映像表示装置に入力されて、4K用信号に基づく映像が再生される。
 また、例えば、復号部440は、入力されたTS信号にMPEG-2に基づく復号処理を施して、2K用信号に基づく映像信号を生成可能であるとする。すると、復号部440は、生成した映像信号を出力可能である。そして、出力された映像信号は、テレビジョン受像機等の映像表示装置に入力されて、2K用信号に基づく映像が再生される。
 また、例えば、復号部440は、入力されたTS信号にH.264に基づく復号処理を施して、ワンセグ用信号に基づく映像信号を生成可能であるとする。すると、復号部440は、生成した映像信号を出力可能である。そして、出力された映像信号は、映像表示装置等に入力されて、ワンセグ用信号に基づく映像が再生される。
 次に、変調部230が行う伝送路符号化処理について説明する。図2~4は、本発明の第1の実施形態における変調部230の構成例を示すブロック図である。図2~4に示すように、本発明の第1の実施形態における変調部230は、外符号処理部261-a、フレーム構成部261-b、階層分割部262-a、外符号処理部262-b、第1バイト-ビット変換部263-a~c、エネルギー拡散部264-a~c、遅延補正部265-a~c、ビット-バイト変換部266-a~c、バイトインターリーブ処理部267-a~c、第2バイト-ビット変換部268-a~c、畳込み符号化処理部269-a~c、ビットインターリーブ処理部270-a~c、マッピング処理部271-a~c、階層合成部272、時間インターリーブ処理部273、周波数インターリーブ処理部274、OFDMフレーム構成部(例えば、データ構成手段)275、正規化部276-a,b、IFFT(Inverse Fast Fourier Transform)処理部277-a,b、ガードインターバル付加処理部278-a,b、および直交変調処理部279-a,bを含む。
 外符号処理部261-aには、互いに多重されたワンセグ用信号および2K用信号が入力される。そして、外符号処理部261-aは、入力されたワンセグ用信号および2K用信号に、それぞれ所定の検査用の符号を付す処理を施す。本例では、外符号処理部261-aは、入力されたワンセグ用信号および2K用信号に、それぞれリードソロモン符号(RS(204,188))を付す処理を施す。そして、外符号処理部261-aは、入力されたワンセグ用信号および2K用信号に、それぞれ検査用の符号が付されたワンセグ用信号および2K用信号を階層分割部262-aに入力する。
 フレーム構成部261-bには、4K用信号が入力される。そして、フレーム構成部261-bは、例えば、入力された4K用信号を所定の固定長のTSパケットとして処理するためのダミーデータ(スタッフィングバイト)の付加等のフレーム構成の処理を行う。そして、フレーム構成部261-bは、外符号処理部262-bに、フレーム構成の処理が施された4K用信号を入力する。
 外符号処理部262-bには、入力された4K用信号に、所定の検査用の符号を付す処理を施す。本例では、外符号処理部262-bは、入力された4K用信号に、リードソロモン符号(RS(204,188))を付す処理を施す。そして、外符号処理部262-bは、入力された4K用信号に、検査用の符号が付された4K用信号を第1バイト-ビット変換部263-bに入力する。
 階層分割部262-aは、互いに多重されたワンセグ用信号および2K用信号を分割し、第1バイト-ビット変換部263-aに、ワンセグ用信号を入力する。また、階層分割部262-aは、第1バイト-ビット変換部263-cに、2K用信号を入力する。
 ここで、伝送方式について、図面を参照して説明する。図5は、本実施形態における伝送方式の例を示す説明図である。本例では、送信部200と受信部300,400との間のデータの伝送に応じた周波数帯は、13個のセグメントに分割されて用いられる。
 そして、水平偏波における当該周波数帯において、周波数が低い方から1~3番目のセグメントおよび10~13番目のセグメントによって成る7個のセグメントが2K用信号に応じたデータの伝送に用いられ、C階層と呼ばれる。図5において、C階層は右下がり斜線で示されている。なお、周波数が低い方から1番目のセグメントは、セグメントNo.11とも称され、周波数が低い方から2番目のセグメントは、セグメントNo.9とも称され、周波数が低い方から3番目のセグメントは、セグメントNo.7とも称される。また、周波数が低い方から10番目のセグメントは、セグメントNo.6とも称され、周波数が低い方から11番目のセグメントは、セグメントNo.8とも称され、周波数が低い方から12番目のセグメントは、セグメントNo.10とも称され、周波数が低い方から13番目のセグメントは、セグメントNo.12とも称される。
 また、水平偏波における当該周波数帯において、周波数が低い方から4~6番目のセグメントおよび8,9番目のセグメントによって成る5個のセグメントが4K用信号に応じたデータの伝送に用いられ、B階層と呼ばれる。図5において、B階層は左下がり斜線で示されている。なお、周波数が低い方から4番目のセグメントは、セグメントNo.5とも称され、周波数が低い方から5番目のセグメントは、セグメントNo.3とも称され、周波数が低い方から6番目のセグメントは、セグメントNo.1とも称される。また、周波数が低い方から8番目のセグメントは、セグメントNo.2とも称され、周波数が低い方から9番目のセグメントは、セグメントNo.4とも称される。
 水平偏波における当該周波数帯において、周波数が低い方から7番目のセグメントがワンセグ用信号に応じたデータの伝送に用いられ、A階層と呼ばれる。図5において、A階層は網掛けで示されている。なお、周波数が低い方から7番目のセグメントは、セグメントNo.0とも称される。
 さらに、垂直偏波における当該周波数帯において、周波数が低い方から4~6番目のセグメントおよび8,9番目のセグメントによって成る5個のセグメントも4K用信号に応じたデータの伝送に用いられ、やはり、B階層と呼ばれる。
 したがって、4K用信号に応じたデータの送信には、水平偏波の5個のセグメントと垂直偏波の5個のセグメントとを合わせた10個のセグメントが用いられる。
 本例では、A階層を用いて伝送されるワンセグ用信号に応じたデータが、第1バイト-ビット変換部263-aに入力される。また、B階層を用いて伝送される4K用信号に応じたデータが、第1バイト-ビット変換部263-bに入力される。そして、C階層を用いて伝送される2K用信号に応じたデータが、第1バイト-ビット変換部263-cに入力される。
 ここで、第1バイト-ビット変換部263-a~cには、バイト単位でデータが入力されるとする。そこで、第1バイト-ビット変換部263-a~cは、入力されたバイト単位のデータをMSB(Most Significant Bit)ファーストの順のビットストリームにそれぞれ変換する。
 そして、第1バイト-ビット変換部263-a~cは、変換後のビットストリームをエネルギー拡散部264-a~cにそれぞれ入力する。
 エネルギー拡散部264-a~cは、第1バイト-ビット変換部263-a~cが入力したビットストリームに所定のエネルギー拡散処理を施す。具体的には、エネルギー拡散部264-a~cは、例えば、所定のPRBS(Pseudo-Random Binary Sequence:擬似ランダム符号系列)と、第1バイト-ビット変換部263-a~cが入力したビットストリームにおいて同期バイトを除いたビット列とで、それぞれビット単位の排他的論理和を算出する。そして、エネルギー拡散部264-a~cは、第1バイト-ビット変換部263-a~cが入力したそれぞれのビットストリームにエネルギー拡散処理を施した結果として、遅延補正部265-a~cにそれぞれの算出結果のデータを入力する。
 遅延補正部265-a~cは、ワンセグ用信号、2K用信号、および4K用信号の送信部200における処理終了タイミングが同じになるように、入力されたビットストリームに、必要に応じて遅延補正の処理を施す。そして、遅延補正部265-a~cは、ビット-バイト変換部266-a~cに処理結果後のビットストリームをそれぞれ入力する。
 ビット-バイト変換部266-a~cは、入力されたビット単位のデータをMSBファーストの順のバイト単位のデータに変換する。
 バイトインターリーブ処理部267-a~cは、ビット-バイト変換部266-a~cによって変換されたバイト単位のそれぞれのデータに互いの遅延量を異ならせる畳込みバイトインターリーブの処理を施す。なお、インターリーブの深さは、例えば、12バイトである。
 第2バイト-ビット変換部268-a~cは、バイトインターリーブ処理部267-a~cによって畳込みバイトインターリーブの処理が施されて入力されたバイト単位のデータをMSBファーストの順のビットストリームに変換する。
 畳込み符号化処理部269-a~cは、第2バイト-ビット変換部268-a~cによってそれぞれ畳込みバイトインターリーブの処理が施されたビットストリームに、所定の畳込み符号化処理をそれぞれ施す。具体的には、畳込み符号化処理部269-a~cは、当該ビットストリームに、例えば、拘束長k=7、符号化率1/2の原符号をマザーコードとし、階層ごとにそれぞれ設定された符号化率で、つまり、畳込み符号化処理部269-a~cがそれぞれ設定された符号化率で、パンクチャード畳込み符号の符号化処理を施す。
 ビットインターリーブ処理部270-a~cは、符号化処理が施されたビットストリームに、後段のマッピング処理部271-a~cでなされるマッピングに応じたビットインターリーブの処理を施す。具体的には、例えば、畳込み符号化処理部269-aで符号化処理が施されたワンセグ用信号に基づくビットストリームに、マッピング処理部271-aでQPSK(Quadrature Phase Shift Keying)のマッピング処理が施されるとする。そこで、ビットインターリーブ処理部270-aは、ワンセグ用信号に基づくビットストリームに、例えば、120ビットの遅延素子を挿入するビットインターリーブの処理を施す。また、畳込み符号化処理部269-bで符号化処理が施された4K用信号に基づくビットストリームに、マッピング処理部271-bで4096QAM(Quadrature Amplitude Modulation)や、1024QAM、256QAM等のマッピング処理が施されるとする。そこで、ビットインターリーブ処理部270-bは、4K用信号に基づくビットストリームに、例えば、それらマッピング処理に応じたビット数の遅延素子を挿入するビットインターリーブの処理を施す。畳込み符号化処理部269-cで符号化処理が施された2K用信号に基づくビットストリームに、マッピング処理部271-cで64QAM等のマッピング処理が施されるとする。そこで、ビットインターリーブ処理部270-cは、2K用信号に基づくビットストリームに、例えば、24~120ビットの遅延素子を挿入するビットインターリーブの処理を施す。
 マッピング処理部271-a~cは、ビットインターリーブ処理部270-a~cによってビットインターリーブの処理が施されたビットストリームに、マッピング処理を行う。具体的には、マッピング処理部271-aは、例えば、ビットインターリーブ処理部270-aがビットインターリーブの処理を施したワンセグ用信号に基づくビットストリームに、QPSKのマッピング処理を施す。また、マッピング処理部271-bは、例えば、ビットインターリーブ処理部270-bがビットインターリーブの処理を施した4K用信号に基づくビットストリームに、4096QAMや、1024QAM、256QAM等のマッピング処理を施す。マッピング処理部271-cは、例えば、ビットインターリーブ処理部270-cがビットインターリーブの処理を施した2K用信号に基づくビットストリームに、64QAM等のマッピング処理を施す。そして、マッピング処理部271-a~cは、ワンセグ用信号に基づくビットストリームがマッピングされた信号、4K用信号に基づくビットストリームがマッピングされた信号、および2K用信号に基づくビットストリームがマッピングされた信号をそれぞれ階層合成部272に入力する。
 階層合成部272は、予め指定されたパラメータで、マッピング処理部271-a~cがそれぞれ入力した信号を合成してデータセグメントに挿入するとともに、速度変換を行う階層合成処理を行う。なお、データセグメントは、例えば、A階層(つまり、ワンセグ用信号)に応じて1個、B階層(つまり、4K用信号)に応じて10個、およびC階層(つまり、2K用信号)に応じて7個用意されているとする。
 時間インターリーブ処理部273は、変調(マッピング処理)後のシンボルデータを時間的に分散させ、耐フェージング性能を改善させるために、変調シンボル単位(I,Q軸単位)で、階層合成処理が施された信号に所定の時間インターリーブ処理を施す。
 周波数インターリーブ処理部274は、時間に応じて、前述した13個のセグメント内でキャリア(搬送波)の周波数を変更(ローテーション)させたり、各セグメント間で使用する周波数帯を交換したりする周波数インターリーブの処理を行う。なお、ワンセグ用信号に基づくセグメントについては、例えば、他のセグメントとの間で周波数帯を交換したりするセグメント間インターリーブの処理は行われなくてもよい。また、周波数インターリーブ処理部274は、セグメント構成を確保しつつ、十分なインターリーブ効果が発揮できるよう、例えば、セグメント間とセグメント内のインターリーブを組み合わせて行うように構成されている。
 OFDMフレーム構成部275には、周波数インターリーブ処理部274によって周波数インターリーブの処理が施された信号と、パイロット信号と、TMCC(Transmission and Multiplexing Configuration Control)信号と、AC(Auxiliary Channel)信号とが入力される。なお、パイロット信号は、例えば、連続キャリアである。また、TMCC信号は、例えば、制御情報を伝送するための信号であり、例えば、TSパケットの同期バイトを示す情報が含まれているとする。AC信号は、例えば、放送に関する付加情報を伝送するための拡張用信号である。なお、パイロット信号は、例えば、パイロット信号用データである。また、TMCC信号は、例えば、TMCC信号用データである。AC信号は、例えば、AC信号用データである。さらに、上記周波数インターリーブの処理が施された信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データをまとめてデータとも総称する。
 そして、OFDMフレーム構成部275は、入力された各信号に基づいてOFDMフレームを構成する。具体的には、OFDMフレーム構成部275は、例えば、OFDMの各キャリアにおける各シンボルに、各信号(ワンセグ用信号、2K用信号、4K用信号、パイロット信号、TMCC信号、およびAC信号)の値を設定する。また、OFDMフレーム構成部275は、OFDMフレームの所定の箇所にヌルキャリアを挿入する。ヌルキャリアの挿入箇所の詳細については後述する。
 なお、OFDMフレーム構成部275は、例えば、水平偏波用のOFDMフレームと、垂直偏波用のOFDMフレームとを構成する。具体的には、OFDMフレーム構成部275は、例えば、ワンセグ用信号に応じたセグメントに対応する信号と、2K用信号に応じたセグメントに対応する信号と、4K用信号に応じた10個のセグメントのうち5個のセグメントに対応する信号と、パイロット信号と、TMCC信号と、AC信号とに応じて、水平偏波用のOFDMフレームを構成する。また、OFDMフレーム構成部275は、例えば、4K用信号に応じた10個のセグメントのうち残りの5個のセグメントに対応する信号と、パイロット信号と、TMCC信号と、AC信号とに応じて、垂直偏波用のOFDMフレームを構成する。なお、各パイロット信号は、本例のようにB階層に偏波MIMOによる放送波が送信されるように構成された場合であっても、C階層における放送波の適切な受信が可能なように設定された周波数領域における位置に挿入される。OFDMフレーム構成部275によって構成されるOFDMフレームの詳細およびパイロット信号の具体的な挿入位置については後述する。以下、OFDMフレーム構成部275によって構成されるOFDMフレームをOFDMセグメント構成とも称する。
 また、OFDMフレーム構成部275は、受信部300に、B階層における信号が差動変調され、C階層における信号が同期変調されていることを示すTMCC信号を送信するように、水平偏波用のOFDMフレームを構成するように構成されていてもよい。
 なお、TMCC情報によってB階層における信号が差動変調され、C階層における信号が同期変調されていることが示されている場合に、受信部300は、周波数デインターリーブの処理を行う際に、B階層に応じたセグメントと、C階層に応じたセグメントとをそれぞれ別々に処理する。このように処理することによって、周波数デインターリーブの結果、B階層に応じたセグメントと、C階層に応じたセグメントとが混在してしまうことを防ぐことができる。
 そして、OFDMフレーム構成部275は、例えば、水平偏波用のOFDMフレームを正規化部276-aに入力する。また、OFDMフレーム構成部275は、例えば、垂直偏波用のOFDMフレームを正規化部276-bに入力する。
 正規化部276-a,bは、入力されたそれぞれのOFDMフレームについて、各キャリアの送信信号レベルが同等になり、変調方式によらずOFDMシンボルの平均電力の互いの比が1になるように、正規化の処理を施す。そして、正規化部276-a,bは、正規化の処理が施された各OFDMフレームをそれぞれIFFT処理部277-a,bに入力する。
 IFFT処理部277-a,bは、入力された各OFDMフレームにそれぞれIFFTの処理を施し、周波数領域の信号を時間領域の信号に変換する。そして、IFFT処理部277-a,bは、変換後の時間領域の信号をガードインターバル付加処理部278-a,bにそれぞれ入力する。
 ガードインターバル付加処理部278-a,bは、入力された時間領域の信号に、当該時間領域の信号における有効シンボルの前に所定の時間分のデータを付加するガードインターバルの付加処理を施す。
 直交変調処理部279-a,bは、ガードインターバル付加処理部278-a,bによって入力された時間領域の信号に、所定の直交変調処理を施す。具体的には、直交変調処理部279-aは、例えば、ガードインターバル付加処理部278-aによって入力された時間領域の信号に所定の直交変調処理を施して、所定の送信周波数の第1のOFDM信号に変換する。そして、直交変調処理部279-aは、当該第1のOFDM信号を第1の増幅部240に入力する。また、直交変調処理部279-bは、例えば、ガードインターバル付加処理部278-bによって入力された時間領域の信号に所定の直交変調処理を施して、所定の送信周波数の第2のOFDM信号に変換する。そして、直交変調処理部279-bは、当該第2のOFDM信号を第2の増幅部250に入力する。
 次に、復調部430の構成について、図面を参照して説明する。図6~9は、本発明の第1の実施形態における復調部430の構成を示すブロック図である。
 図6~9に示すように、本発明の第1の実施形態における復調部430は、A-D(Analog to Digital)変換部511-a,b、直交復調処理部512-a,b、同期再生部513-a,b、FFT(Fast Fourier Transform)処理部514-a,b、フレーム抽出部515-a,b、TMCC信号復号部516-a,b、AC信号復号部517-a,b、キャリア復調部518、周波数デインターリーブ処理部519、時間デインターリーブ処理部520、第1の階層分割部521、デマッピング処理部522-a~c、ビットデインターリーブ処理部523-a~c、デパンクチャ処理部524-a~c、階層合成部525、内符号復号部526、第2の階層分割部527、バイトデインターリーブ処理部528-a~c、エネルギー逆拡散処理部529-a~c、TS再生処理部530、および外符号復号部531を含む。
 A-D変換部511-a,bには、第1の受信処理部410,第2の受信処理部420によって所定の処理が施された受信信号がそれぞれ入力される。具体的には、A-D変換部511-aには、例えば、第1の受信処理部410によって所定の処理が施された受信信号が入力される。そして、A-D変換部511-aは、入力されたアナログ信号である受信信号をデジタル信号に変換する。そして、A-D変換部511-aは、デジタル信号に変換した受信信号を直交復調処理部512-aに入力する。
 また、A-D変換部511-bには、例えば、第2の受信処理部420によって所定の処理が施された受信信号が入力される。そして、A-D変換部511-bは、入力されたアナログ信号である受信信号をデジタル信号に変換する。そして、A-D変換部511-bは、デジタル信号に変換した受信信号を直交復調処理部512-bに入力する。
 そして、直交復調処理部512-a,bは、入力された受信信号に所定の直交復調処理を施す。具体的には、直交復調処理部512-a,bは、入力された受信信号と、互いに直交する復調用信号とをそれぞれ混合して、I成分の信号とQ成分の信号とを得る。
 そして、直交復調処理部512-a,bは、直交復調処理後の受信信号であるそれら信号を同期再生部513-a,bおよびFFT処理部514-a,bにそれぞれ入力する。
 同期再生部513-a,bは、直交復調処理部512-a,bが入力した信号、FFT処理部514-a,bによってFFT処理が施された信号、およびフレーム抽出部515-a,bが抽出したフレーム同期信号に基づいて、OFDMにおけるキャリア数に応じたモード(本例では、モード3)、およびガードインターバル長に応じて、OFDMシンボル同期およびFFTサンプル周波数を再生する。具体的には、同期再生部513-a,bは、例えば、各部から入力された信号に基づいて、OFDMシンボルの同期をとるためのタイミング、およびFFTサンプル周波数を特定(再生)する。
 FFT処理部514-a,bは、同期再生部513-a,bが再生した情報に基づいて、直交復調処理部512-a,bが入力した信号にFFTの処理を施し、直交復調処理部512-a,bが入力した時間領域の信号を周波数領域の信号に変換する。そして、FFT処理部514-a,bは、同期再生部513-a,b、フレーム抽出部515-a,b、およびAC信号復号部517-a,bに、変換後の周波数領域の信号を入力する。
 フレーム抽出部515-a,bは、FFT処理部514-a,bが入力した周波数領域の信号からフレーム同期信号を抽出する。そして、フレーム抽出部515-a,bは、同期再生部513-a,bおよびTMCC信号復号部516-a,bに、抽出したフレーム同期信号を入力する。なお、フレーム抽出部515-a,bは、TMCC信号復号部516-a,bに、FFT処理部514-a,bが入力した周波数領域の信号も入力する。
 TMCC信号復号部516-a,bは、FFT処理部514-a,bから出力された周波数領域の信号のうちのTMCC信号から、TMCC情報を抽出する。そして、TMCC信号復号部516-a,bは、キャリア復調部518、周波数デインターリーブ処理部519、時間デインターリーブ処理部520、第1の階層分割部521、デマッピング処理部522-a~c、ビットデインターリーブ処理部523-a~c、デパンクチャ処理部524-a~c、階層合成部525、第2の階層分割部527、およびTS再生処理部530に、抽出したTMCC情報を入力する。
 AC信号復号部517-a,bは、FFT処理部514-a,bが入力した周波数領域の信号からAC信号を抽出する。そして、AC信号復号部517-a,bは、AC信号のうち構成識別によって地震動警報情報の伝送であることが示されている場合に、地震動警報情報を抽出する。
 キャリア復調部518には、FFT処理部514-a,bが変換した周波数領域の信号がそれぞれ入力される。そこで、キャリア復調部518は、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、FFT処理部514-a,bが入力した周波数領域の信号に、差動復調の処理や同期復調の処理を施す。具体的には、キャリア復調部518には、FFT処理部514-a,bが入力した周波数領域の信号におけるOFDMセグメントに基づいて、OFDM信号を構成する各キャリアを特定し、各キャリアの振幅を示す振幅情報、および各キャリアの位相を示す位相情報を生成する。そして、キャリア復調部518は、FFT処理部514-a,bが変換した周波数領域の信号と、振幅情報と、位相情報とを周波数デインターリーブ処理部519に入力する。
 周波数デインターリーブ処理部519は、キャリア復調部518が入力した各情報に基づいて、周波数インターリーブ処理部274で施された周波数インターリーブの処理で変更された各キャリアの周波数や、交換された他のセグメントとの間で交換された周波数帯を元に戻す周波数デインターリーブの処理を、FFT処理部514-a,bが変換した周波数領域の信号に施す。
 時間デインターリーブ処理部520は、時間インターリーブ処理部273によって施された時間インターリーブ処理によって時間的に分散したシンボルデータを元の時間的な順序に戻す時間デインターリーブ処理を、周波数デインターリーブ処理部519によって周波数デインターリーブの処理が施された信号に施す。
 第1の階層分割部521は、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、時間デインターリーブ処理部520が時間デインターリーブ処理を施した信号を各階層に応じた信号に分割する。具体的には、第1の階層分割部521は、例えば、時間デインターリーブ処理部520が時間デインターリーブ処理を施した信号において、A階層に応じた周波数帯のキャリアの信号をデマッピング処理部522-aに入力し、B階層に応じた周波数帯のキャリアの信号をデマッピング処理部522-bに入力し、C階層に応じた周波数帯のキャリアの信号をデマッピング処理部522-cに入力する。
 デマッピング処理部522-aは、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、マッピング処理部271-aが施したマッピング処理に応じたデマッピング処理を、第1の階層分割部521が入力した信号に施す。本例では、A階層に応じた周波数帯のキャリアの信号には、マッピング処理部271-aで、QPSKのマッピング処理が施されている。そこで、デマッピング処理部522-aは、第1の階層分割部521が入力した信号にQPSKに応じたデマッピング処理を施し、ビット情報(ビットストリーム)を抽出する。
 デマッピング処理部522-bは、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、マッピング処理部271-bが施したマッピング処理に応じたデマッピング処理を、第1の階層分割部521が入力した信号に施す。本例では、B階層に応じた周波数帯のキャリアの信号には、マッピング処理部271-bで、4096QAMや、1024QAM、256QAM等のマッピング処理が施されている。そこで、デマッピング処理部522-bは、第1の階層分割部521が入力した信号にそれらマッピング処理に応じたデマッピング処理を施し、ビット情報(ビットストリーム)を抽出する。
 デマッピング処理部522-cは、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、マッピング処理部271-cが施したマッピング処理に応じたデマッピング処理を、第1の階層分割部521が入力した信号に施す。本例では、C階層に応じた周波数帯のキャリアの信号には、マッピング処理部271-cで、64QAM等のマッピング処理が施されている。そこで、デマッピング処理部522-cは、第1の階層分割部521が入力した信号に64QAM等に応じたデマッピング処理を施し、ビット情報(ビットストリーム)を抽出する。
 ビットデインターリーブ処理部523-aは、ビットインターリーブ処理部270-aが施したビットインターリーブの処理に応じたビットデインターリーブの処理を、デマッピング処理部522-aが抽出したビットストリームに施す。具体的には、本例では、ビットインターリーブ処理部270-aで、ワンセグ用信号に基づくビットストリームに、例えば、120ビットの遅延素子を挿入したビットインターリーブの処理が施されている。そこで、ビットデインターリーブ処理部523-aは、例えば、デマッピング処理部522-aが抽出したビットストリームから、例えば、120ビットの遅延素子を消去するビットデインターリーブの処理を行う。
 ビットデインターリーブ処理部523-bは、ビットインターリーブ処理部270-bが施したビットインターリーブの処理に応じたビットデインターリーブの処理を、デマッピング処理部522-bが抽出したビットストリームに施す。具体的には、本例では、ビットインターリーブ処理部270-bで、4K用信号に基づくビットストリームに、例えば、マッピング処理部271-bにおけるマッピング処理に応じたビット数の遅延素子を挿入するビットインターリーブの処理が施されている。そこで、ビットデインターリーブ処理部523-bは、例えば、デマッピング処理部522-bが抽出したビットストリームから、例えば、当該遅延素子を消去するビットデインターリーブの処理を行う。
 ビットデインターリーブ処理部523-cは、ビットインターリーブ処理部270-cが施したビットインターリーブの処理に応じたビットデインターリーブの処理を、デマッピング処理部522-cが抽出したビットストリームに施す。具体的には、本例では、ビットインターリーブ処理部270-cで、2K用信号に基づくビットストリームに、例えば、マッピング処理部271-cにおけるマッピング処理に応じた24~120ビットの遅延素子を挿入するビットインターリーブの処理が施されている。そこで、ビットデインターリーブ処理部523-cは、例えば、デマッピング処理部522-cが抽出したビットストリームから、例えば、当該遅延素子を消去するビットデインターリーブの処理を行う。
 デパンクチャ処理部524-a~cは、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報によって指定された畳込み符号化率に応じて、畳込み符号のビット補間を行う。なお、TMCC情報によって階層ごとの符号化率が示されているとする。そこで、デパンクチャ処理部524-aは、TMCC情報によって示されているA階層の符号化率に応じて、畳込み符号のビット補間を行う。また、デパンクチャ処理部524-bは、TMCC情報によって示されているB階層の符号化率に応じて、畳込み符号のビット補間を行う。そして、デパンクチャ処理部524-cは、TMCC情報によって示されているC階層の符号化率に応じて、畳込み符号のビット補間を行う。
 階層合成部525は、デパンクチャ処理部524-a~cによってそれぞれビットが補間された各階層のビットストリームを合成する。
 内符号復号部526は、デパンクチャ処理部524-a~cによってビットが補間されて階層合成部525によって合成されたビットストリームに、復号処理を施す。具体的には、内符号復号部526は、当該ビットストリームに、例えば、ビタビ(Viterbi)アルゴリズムに基づく復号処理を施す。
 第2の階層分割部527は、TMCC信号復号部516-a,bが入力したTMCC情報に基づいて、内符号復号部526によって復号処理が施されたビットストリームを各階層に応じたビットストリームに分割する。具体的には、第2の階層分割部527は、例えば、復号処理が施されたビットストリームのうち、A階層に応じたビットによるビットストリームを構成して、バイトデインターリーブ処理部528-aに入力する。また、第2の階層分割部527は、例えば、復号処理が施されたビットストリームのうち、B階層に応じたビットによるビットストリームを構成して、バイトデインターリーブ処理部528-bに入力する。そして、第2の階層分割部527は、例えば、復号処理が施されたビットストリームのうち、C階層に応じたビットによるビットストリームを構成して、バイトデインターリーブ処理部528-cに入力する。
 バイトデインターリーブ処理部528-a~cは、入力されたビット単位のデータ(ビットストリーム)をバイト単位のデータに変換する。そして、バイトデインターリーブ処理部528-a~cは、例えば、バイトインターリーブ処理部267-a~cで畳込みバイトインターリーブの処理が施されて設定された遅延量をリセットするバイトデインターリーブの処理を当該データに施す。
 エネルギー逆拡散処理部529-a~cは、バイトデインターリーブ処理部528-a~cによってバイトデインターリーブの処理が施されたバイト単位のデータをビット単位のビットストリームに変換し、変換後のビットストリームにエネルギー逆拡散の処理を施す。具体的には、エネルギー逆拡散処理部529-a~cは、例えば、当該ビットストリームのうちTSパケットの同期バイトを除くビット列と、エネルギー拡散部264-a~cがエネルギー拡散の処理に用いた所定のPRBSとで、それぞれビット単位の排他的論理和を算出する。そして、エネルギー逆拡散処理部529-a~cは、エネルギー逆拡散の処理を施した結果として、TS再生処理部530にそれぞれの算出結果のデータを入力する。
 TS再生処理部530は、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいてTSの同期バイトを参照して、入力されたデータを互いに多重してTSパケットに分割することによって、送信側と同様なTSフレーム構成を再現する。
 外符号復号部531は、TS再生処理部530が再現したTSフレーム構成のTSパケットに、外符号処理部261-a,262-bで付された所定の検査用の符号に基づいて、誤りを検出および訂正する復号処理を施して、TSパケットを生成する。
 外符号復号部531が生成したTSパケットは、復号部440によって映像信号に変換され、映像表示装置等によって映像が再生される。
 なお、受信部300にも、分配器700を介して水平偏波用のアンテナ601によって受信された受信信号が入力される。そして、受信部300は、例えば、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、入力された受信信号に応じた映像をテレビジョン受像機に再生させる。
 したがって、本発明の第1の実施形態における受信部400に接続された映像表示装置等には4K用信号に基づく映像が再生される。また、受信部300に接続されたテレビジョン受像機には2K用信号に応じて現状の地上デジタルテレビジョン放送の伝送方式に基づく映像が再生される。よって、本発明の第1の実施形態の放送システム100は、現状の地上デジタルテレビジョン放送の放送システムと共存可能である。
 次に、本発明の第1の実施形態の送信部200の動作について説明する。図10は、本発明の第1の実施形態における変調部230の動作を示すフローチャートである。
 まず、変調部230には、ワンセグ用信号、2K用信号、および4K用信号が入力される(ステップS101)。
 変調部230の各部が、入力されたワンセグ用信号、2K用信号、および4K用信号を合成して、伝送路符号化処理を施す(ステップS102)。例えば、OFDMフレーム構成部275は、後述するOFDMフレームを構成する。
 変調部230は、水平偏波用のアンテナ501によって送信される電磁波用の第1のOFDM信号、および垂直偏波用のアンテナ502によって送信される電磁波用の第2のOFDM信号を生成する(ステップS103)。
 変調部230は、第1の増幅部240に、生成した第1のOFDM信号を入力する。また、変調部230は、第2の増幅部250に、生成した第2のOFDM信号を入力する。第1の増幅部240は、変調部230が入力した第1のOFDM信号を所定の増幅率で増幅する(ステップS104)。そして、第1の増幅部240は、増幅後の第1のOFDM信号をアンテナ501に入力する。第1の増幅部240によって増幅された第1のOFDM信号は、アンテナ501によって電磁波に変換されて水平偏波で放射される。
 第2の増幅部250は、変調部230が入力した第2のOFDM信号を予め決められた増幅率で増幅する(ステップS104)。そして、第2の増幅部250は、増幅後の第2のOFDM信号をアンテナ502に入力する。第2の増幅部250によって増幅された第2のOFDM信号は、アンテナ502によって電磁波に変換されて垂直偏波で放射される。
 本実施形態によれば、送信部200の変調部230が、入力された2K用信号および4K用信号に基づいて、互いの偏波面を異ならせて送信可能な2種類のOFDM送信信号を生成する。そして、受信部400の復調部430が、送信部200によって生成されて送信されたOFDM送信信号に基づく受信信号を復調して、復号部440によって2K用信号および4K用信号に変換可能なTSパケットを生成する。
 したがって、現状の地上デジタルテレビジョン放送の送信に用いられている電磁波、および当該電磁波の偏波面と異なる偏波面の電磁波を用いて、受信側において、ワンセグ用信号に応じた映像、2K用信号に応じた映像、および4K用信号に応じた映像のうち少なくとも1つを再生可能にするように、データを伝送することができる。
 また、2K用信号に応じた電磁波の偏波面を現状の地上デジタルテレビジョン放送の送信に用いられている電磁波の偏波面と同じように設定した場合には、受信側で、現状の地上デジタルテレビジョン放送を受信および映像再生可能な状態を継続させつつ、新たに4K用信号に応じた映像を再生可能にすることができる。
 なお、以上に述べた例では、4K用信号に応じたデータが送受信されるB階層によって10個(水平偏波で5個、垂直偏波で5個の合計で10個)のセグメントが利用されるとして説明した。しかし、4K用信号に応じたデータが送受信されるB階層によって8個(水平偏波で4個、垂直偏波で4個の合計で8個)等の他の数のセグメントが利用されるように構成されてもよい。
 図11は、B階層によって利用されるセグメントの数と、4K用信号の変調方式とに応じたパラメータの例を示す説明図である。
 図11に示す例では、2Kの欄には、現状の地上デジタルテレビジョン放送に応じた値が示されている。また、4Kの欄には、B階層およびC階層において、それぞれ4個のセグメントを用いた場合と、それぞれ5個のセグメントを用いた場合とについて、変調方式毎のTSレートが示されている。
 図11に示されているように、4Kの変調方式の多値数がより大きいほど、TSレートの値がより大きくなる。また、図11に示されているように、4K用の信号に応じたデータの伝送に使用するセグメント数が多いほど、4K用の信号に応じたデータの伝送のTSレートの値がより大きくなる。同様に、図11に示されているように、2K用の信号に応じたデータの伝送に使用するセグメント数が多いほど、2K用の信号に応じたデータの伝送のTSレートの値がより大きくなる。
 次に、OFDMフレーム構成部275によって構成されるOFDMフレームについて、図面を参照して詳細に説明する。
 図12は、2K用信号に応じたOFDMセグメント構成(以下、2K用OFDMセグメント構成とも称する)と4K用信号に応じたOFDMセグメント構成(以下、4K用OFDMセグメント構成とも称する)との境界に接する部分を含むOFDMセグメント構成の一例を示している。
 図12に示されている2K用OFDMセグメント構成は、例えば、432個のキャリアと、204個のOFDMシンボルとから構成されている。また、図12に示されている4K用OFDMセグメント構成は、例えば、432個のキャリアと、204個のOFDMシンボルとから構成されている。以下、OFDMシンボルをシンボルとも称する。
 なお、図12において、ヌルキャリアが挿入されている箇所が「x」で示されている。図12において、パイロット信号が挿入されている箇所が「1」で示されている。図12の2K用OFDMセグメント構成において、2K用信号が挿入されている箇所が「D」で示されている。図12の4K用OFDMセグメント構成において、4K用信号が挿入されている箇所が「D」で示されている。また、図12において、AC信号またはTMCC信号等が挿入されている箇所も「D」で示されている。つまり、パイロット信号またはヌルキャリアが挿入されている箇所以外の箇所は、2K用信号、4K用信号、AC信号またはTMCC信号等が挿入されて送信される箇所である。
 図12に示されているように、2K用OFDMセグメント構成には、現状の地上デジタルテレビジョン放送の伝送方式に従って、パイロット信号が所定の間隔で挿入されている。
 具体的には、例えば、2K用OFDMセグメント構成では、パイロット信号は、キャリア方向において、12キャリアに1回挿入され、シンボル方向において、4シンボルに1回挿入されて送信される。
 また、図12に示されているように、水平偏波側および垂直偏波側の4K用OFDMセグメント構成には、パイロット信号が所定の間隔で挿入されている。
 具体的には、例えば、4K用OFDMセグメント構成において、パイロット信号は、キャリア方向において、24キャリアに1回挿入され、シンボル方向において、8シンボルに1回挿入されて送信される。
 また、図12に示されているように、水平偏波側および垂直偏波側の4K用OFDMセグメント構成において、ヌル(NULL)キャリアが所定の間隔で挿入されている。なお、例えば、ヌルキャリアが挿入されている箇所では信号が送信されない。また、ヌルキャリアは、ヌルパイロット信号とも称される。
 具体的には、例えば、4K用OFDMセグメント構成において、ヌルキャリアは、キャリア方向において、24キャリアに1回挿入され、シンボル方向において、8シンボルに1回挿入されている。
 また、図12に示されているように、水平偏波側の4K用OFDMセグメント構成においてパイロット信号が挿入されている箇所に対応する、垂直偏波側の4K用OFDMセグメント構成における箇所には、ヌルキャリアが挿入されている。
 具体的には、例えば、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、OFDMシンボル番号が0の箇所にはパイロット信号が挿入され、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、OFDMシンボル番号が0の箇所には、ヌルキャリアが挿入されている。なお、以下、OFDMシンボル番号を、シンボル番号とも称する。
 また、図12に示されているように、水平偏波側の4K用OFDMセグメント構成においてヌルキャリアが挿入されている箇所と対応する、垂直偏波側の4K用OFDMセグメント構成における箇所には、パイロット信号が挿入されている。
 具体的には、例えば、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が3で、シンボル番号が1の箇所にはヌルキャリアが挿入され、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が3で、シンボル番号が1の箇所には、パイロット信号が挿入されている。
 受信部300は、現状の地上デジタルテレビジョン放送の伝送方式に従って、パイロット信号に基づいて、伝送路特性の推定を行い、受信した信号に等化処理を施す。具体的には、例えば、受信部300は、送信されたパイロット信号と、既知のパイロット信号とに基づいて、位相情報(例えば、送信されたパイロット信号と、既知のパイロット信号との位相差に応じた値)を取得し、当該位相情報に基づき伝送路特性の推定を行う。そして、受信部300は、当該伝送路特性の推定結果に基づき、受信した信号に等化処理を施す。
 ここで、受信部300は、例えば、TMCC情報によって、B階層における信号が差動変調されていることが示されている場合に、水平偏波側の4K用OFDMセグメント構成においても、現状の地上デジタルテレビジョン放送の伝送方式に従って、パイロット信号が挿入されているという前提で、2K用信号に等化処理を施す。
 具体的には、例えば、受信部300は、水平偏波側の4K用OFDMセグメント構成における先頭のキャリア(つまり、キャリア番号が0のキャリア)には、パイロット信号が挿入されているという前提で、2K用信号に等化処理等を施す。
 しかしながら、現状の地上デジタルテレビジョン放送の伝送方式とは異なる伝送方式に従って設定される水平偏波側の4K用OFDMセグメント構成において、図12に示されているように、キャリア番号が0の箇所にヌルキャリアが挿入された場合に、受信部300は、適切に受信信号に等化処理を施すことができないおそれがある。このため、B階層とC階層とにおいて、互いの境界に接する部分におけるキャリアのMER(Modulation Error Ratio)が悪化し、BER(Bit Error Rate)が劣化してしまう可能性がある。
 そこで、本実施形態のOFDMフレーム構成部275は、受信部300が適切に受信信号に等化処理を施すことができるように、水平偏波側の4K用OFDMセグメント構成において、パイロット信号を適切な位置に挿入するように構成されている。
 図13は、OFDMフレーム構成部275によって構成されたOFDMセグメント構成の一例を示しており、2K用OFDMセグメント構成と4K用OFDMセグメント構成との境界に接する部分を含むOFDMセグメント構成の一例を示している。
 図13に示されている2K用OFDMセグメント構成は、例えば、432個のキャリアと、204個のシンボルとから構成されている。また、図13に示されている4K用OFDMセグメント構成は、例えば、432個のキャリアと、204個のシンボルとから構成されている。
 なお、図13において、ヌルキャリアが挿入されている箇所が「x」で示されている。図13において、パイロット信号が挿入されている箇所が「1」で示されている。図13の2K用OFDMセグメント構成において、2K用信号が挿入されている箇所が「D」で示されている。図13の4K用OFDMセグメント構成において、4K用信号が挿入されている箇所が「D」で示されている。また、図13において、AC信号またはTMCC信号等が挿入されている箇所も「D」で示されている。つまり、パイロット信号またはヌルキャリアが挿入されている箇所以外の箇所は、2K用信号、4K用信号、AC信号またはTMCC信号等が挿入されて送信される箇所である。
 なお、第1の画質再生用のデータは、例えば、水平偏波側の4K用OFDMセグメント構成に含まれている4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 図13に示されているように、OFDMフレーム構成部275は、図12に示されているOFDMセグメント構成と同様に、2K用OFDMセグメント構成および4K用OFDMセグメント構成にパイロット信号およびヌルキャリアを所定の間隔で挿入する。なお、受信部400は、4K用OFDMセグメント構成に挿入されている当該パイロット信号に基づいて、伝送路特性の推定を行い、受信した信号に等化処理を施す。具体的には、例えば、受信部400は、挿入されている当該パイロット信号と、既知のパイロット信号とに基づいて、位相情報(例えば、挿入されている当該パイロット信号と、既知のパイロット信号との位相差に応じた値)を取得し、当該位相情報に基づき伝送路特性の推定を行う。そして、受信部400は、当該伝送路特性の推定結果に基づき、受信した信号に等化処理を施す。
 なお、第2の画質再生用のデータは、例えば、水平偏波側の2K用OFDMセグメント構成に含まれている2K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 また、一方の偏波アンテナ送信用のデータは、例えば、図13に示されている水平偏波側の2K用OFDMセグメント構成および4K用OFDMセグメント構成に含まれている2K用信号に応じたデータ、4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 また、他方の偏波アンテナ送信用のデータは、例えば、図13に示されている垂直偏波側の4K用OFDMセグメント構成に含まれている4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 具体的には、例えば、2K用OFDMセグメント構成において、OFDMフレーム構成部275は、キャリア方向において、12キャリアに1回、パイロット信号およびヌルキャリアを挿入する。すなわち、12キャリア毎にパイロット信号およびヌルキャリアが挿入される。したがって、パイロット信号およびヌルキャリアは11キャリア間隔で挿入される。また、具体的には、例えば、2K用OFDMセグメント構成において、OFDMフレーム構成部275は、シンボル方向において、4シンボルに1回、パイロット信号およびヌルキャリアを挿入する。すなわち、4シンボル毎にパイロット信号およびヌルキャリアが挿入される。したがって、パイロット信号およびヌルキャリアは3シンボル間隔で挿入される。第2の間隔は、例えば、連続する11キャリア分の周波数に相当する。また、第2の間隔は、例えば、連続する3シンボル分の時間に相当する。
 また、図13に示されているように、OFDMフレーム構成部275は、図12に示されているOFDMセグメント構成と同様に、水平偏波側および垂直偏波側の4K用OFDMセグメント構成に、パイロット信号およびヌルキャリアを所定の間隔で挿入する。
 具体的には、例えば、4K用OFDMセグメント構成において、OFDMフレーム構成部275は、キャリア方向において、24キャリアに1回、パイロット信号およびヌルキャリアを挿入する。すなわち、24キャリア毎にパイロット信号およびヌルキャリアが挿入される。したがって、パイロット信号およびヌルキャリアは23キャリア間隔で挿入される。また、具体的には、例えば、4K用OFDMセグメント構成において、OFDMフレーム構成部275は、シンボル方向において、8シンボルに1回、パイロット信号およびヌルキャリアを挿入する。すなわち、8シンボル毎にパイロット信号およびヌルキャリアが挿入される。したがって、パイロット信号およびヌルキャリアは7シンボル間隔で挿入される。第1の間隔は、例えば、連続する23キャリア分の周波数に相当する。また、第1の間隔は、例えば、連続する7シンボル分の時間に相当する。
 図13に示されているように、OFDMフレーム構成部275は、図12に示されているOFDMセグメント構成と同様に、水平偏波側の4K用OFDMセグメント構成においてパイロット信号が挿入されている箇所に対応する、垂直偏波側の4K用OFDMセグメント構成における箇所に、ヌルキャリアを挿入する。
 具体的には、例えば、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、シンボル番号が0の箇所に、パイロット信号を挿入し、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、シンボル番号が0の箇所に、ヌルキャリアを挿入する。
 また、図13に示されているように、OFDMフレーム構成部275は、図12に示されているOFDMセグメント構成と同様に、水平偏波側の4K用OFDMセグメント構成においてヌルキャリアが挿入されている箇所に対応する、垂直偏波側の4K用OFDMセグメント構成における箇所に、パイロット信号を挿入する。
 具体的には、例えば、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が3で、シンボル番号が1の箇所にヌルキャリアを挿入し、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が3で、シンボル番号が1の箇所に、パイロット信号を挿入する。
 このように構成することによって、水平偏波用のアンテナから送信される信号と垂直偏波用のアンテナから送信される信号とが互いに干渉してしまう可能性を低減することができる。
 また、図13に示されているように、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成における先頭のキャリア(つまり、キャリア番号が0のキャリア)に、パイロット信号を挿入する。
 なお、最も低い周波数のキャリアは、例えば、図13に示されている水平偏波側の4K用OFDMセグメント構成におけるキャリア番号が0のキャリアに相当する。
 図13に示されているように、OFDMフレーム構成部275は、垂直偏波側の4K用OFDMセグメント構成における先頭のキャリア(つまり、キャリア番号が0のキャリア)に、ヌルキャリアを挿入する。
 なお、図13に示されている2K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、2K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 また、図13に示されている水平偏波側の4K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、水平偏波側の4K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 また、図13に示されている垂直偏波側の4K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、垂直偏波側の4K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 図13に示されているOFDMセグメント構成の場合に、受信部300は、水平偏波側の4K用OFDMセグメント構成における先頭のキャリアに挿入されているパイロット信号に基づいて、2K用信号に等化処理を施すことができる。つまり、B階層とC階層との境界に接する部分におけるキャリアのMERの悪化およびBERの劣化が抑制されることになる。その結果として、受信部300は、例えば、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、入力された受信信号に応じた映像をテレビジョン受像機(第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機)に再生させることができる。したがって、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機は、当該映像を適切に再生できる。
 なお、4K用OFDMセグメント構成におけるパイロット信号およびヌルキャリアの挿入間隔は、図13に示されている例に限られない。例えば、図13に示されているパイロット信号およびヌルキャリアの挿入間隔よりも広い間隔となるように、OFDMフレームが構成されていてもよいし、図13に示されているパイロット信号およびヌルキャリアの挿入間隔よりも狭い間隔となるようにOFDMフレームが構成されていてもよい。
 具体的には、例えば、パイロット信号がキャリア方向において、48キャリアに1回挿入され、シンボル方向において、6シンボルに1回挿入されるようにOFDMフレームが構成されていてもよい。すなわち、例えば、48キャリア毎にパイロット信号が挿入され、6シンボル毎にパイロット信号が挿入されるようにOFDMフレームが構成されていてもよい。
 また、図13に示されているOFDMセグメント構成では、水平偏波側の4K用OFDMセグメント構成における先頭のキャリアには、すべてのシンボルにわたってパイロット信号が挿入されていたが、2K用OFDMセグメント構成におけるパイロット信号の挿入間隔に応じた箇所にのみパイロット信号が挿入されるようにフレームが構成されていてもよい。
 具体的には、例えば、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、シンボル番号が4の箇所にパイロット信号を挿入し、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が0で、シンボル番号が4の箇所に、ヌルキャリアを挿入するように構成されていてもよい。
 また、上述のようにパイロット信号およびヌルキャリアが挿入された場合に、OFDMフレーム構成部275は、水平偏波側および垂直偏波側の4K用OFDMセグメント構成において、当該パイロット信号および当該ヌルキャリアが挿入された箇所以外の箇所では、4K用信号が送信されるようにOFDMフレームを構成するように構成されていてもよい。具体的には、例えば、OFDMフレーム構成部275は、キャリア番号が0で、シンボル番号が1~3,5~7の箇所には、4K用信号が送信されるようにOFDMフレームを構成するように構成されていてもよい。
 このように構成することによって、B階層におけるデータレートを向上させることができる。
 また、OFDMフレーム構成部275は、B階層において、A階層との境界に接する部分についても、図13で示したOFDMセグメント構成と同様に、パイロット信号およびヌルキャリアを挿入するように構成されていてもよい。具体的には、例えば、OFDMフレーム構成部275は、ワンセグ用信号に応じたOFDMセグメント構成と4K用OFDMセグメント構成との境界に接する部分において、水平偏波側の当該4K用OFDMセグメント構成における先頭のキャリアにパイロット信号を挿入し、垂直偏波側の当該4K用OFDMセグメント構成における先頭のキャリアにヌルキャリアを挿入するように構成されていてもよい。
 また、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成における末尾のキャリア(つまり、キャリア番号が432であるキャリア)にも、パイロット信号を挿入するように構成されていてもよい。この場合に、OFDMフレーム構成部275は、垂直偏波側の4K用OFDMセグメント構成における末尾のキャリアには、ヌルキャリアを挿入する。具体的には、例えば、OFDMフレーム構成部275は、水平偏波側の4K用OFDMセグメント構成における末尾のキャリアにおいて、すべてのシンボルにわたってパイロット信号を挿入するように構成されていてもよい。
 このように構成することによって、例えば、受信部400が当該末尾のキャリアに挿入されているパイロット信号も用いて受信信号に等化処理を施すことができる場合には、伝送路特性の推定精度を向上させることができる。
 なお、以上に述べた例において、一方が水平偏波であり他方が垂直偏波であるとして説明したが、一方が垂直偏波であり他方が水平偏波であってもよい。
 また、本例では、ワンセグ用信号、2K用信号、および4K用信号はいずれもそれぞれTSであるとして説明したが、MMT(MPEG Media Transport)方式のパケットに応じた信号等の、他の形式の信号であってもよい。
 また、本例では、受信部300と受信部400とが水平偏波用のアンテナ601を共有するように構成されているが、受信部300と受信部400とにそれぞれ別個のアンテナが接続されるように構成されていてもよい。
 なお、データ構成手段は、図2~4に示されている変調部230の各部をすべて備えるように構成されていてもよいし、変調部230の各部のうち、一部を備えるように構成されていてもよい。データ構成手段は、例えば、変調部230のOFDMフレーム構成部275を備えるように構成されていてもよい。
 実施形態2.
 本発明の第2の実施形態の放送システムについて、図面を参照して説明する。図14は、本発明の第2の実施形態の放送システム101の構成例を示すブロック図である。
 放送システム101は、第1の実施形態の放送システム100に対して、送信部201がOFDMセグメント構成の所定の箇所にTMCC信号およびAC信号を挿入する点や受信部401が所定のパイロット信号に基づいて、受信信号に等化処理を施す点で異なる。その他の構成要素は、図1等に示す第1の実施形態における構成と同様なため、当該その他の構成要素には、図1等に示す第1の実施形態において対応する構成要素と同じ参照符号を付して説明を省略する。
 図14に示すように、本発明の第2の実施形態の放送システム101は、送信部201と、受信部300と、受信部401とを含む。
 送信部201、受信部300および受信部401は、例えば、プログラム制御に従って処理を実行する、CPU等の単数または複数の回路が搭載されたコンピュータによって実現されてもよい。具体的には、例えば、送信部201、受信部300および受信部401に、以下に述べる各動作を実現させるためのソフトウェアが搭載される。そして、送信部201、受信部300および受信部401は、当該ソフトウェアのプログラム制御に従って処理を実行することにより、以下に述べる各動作を実現するように構成されていてもよい。
 次に、送信部201の構成について、図面を参照して説明する。図14に示すように、本発明の第2の実施形態における送信部201は、符号化部210、多重化部220、変調部231、第1の増幅部240、および第2の増幅部250を含む。
 変調部231は、入力されたワンセグ用信号、2K用信号、および4K用信号に伝送路符号化処理を施して、第1のOFDM信号および第2のOFDM信号を生成する。
 変調部231は、第1の増幅部240に、生成した第1のOFDM信号を入力する。また、変調部231は、第2の増幅部250に、生成した第2のOFDM信号を入力する。
 次に、受信部401の構成について、図面を参照して説明する。図14に示すように、本発明の第2の実施形態における受信部401は、第1の受信処理部410、第2の受信処理部420、復調部431、および復号部440を含む。
 復調部431は、入力された受信信号に、送信部201の変調部231がワンセグ用信号、2K用信号、および4K用信号に施した伝送路符号化処理に応じた復調処理を施して、TS信号を生成する。そして、復調部431は、生成したTS信号を復号部440に入力する。なお、復調部431における復調処理については後述する復調部431における各部によって行われる。
 次に、変調部231が行う伝送路符号化処理について説明する。図15~17は、本発明の第2の実施形態における変調部231の構成例を示すブロック図である。図15~17に示すように、本発明の第2の実施形態における変調部231は、外符号処理部261-a、フレーム構成部261-b、階層分割部262-a、外符号処理部262-b、第1バイト-ビット変換部263-a~c、エネルギー拡散部264-a~c、遅延補正部265-a~c、ビット-バイト変換部266-a~c、バイトインターリーブ処理部267-a~c、第2バイト-ビット変換部268-a~c、畳込み符号化処理部269-a~c、ビットインターリーブ処理部270-a~c、マッピング処理部271-a~c、階層合成部272、時間インターリーブ処理部273、周波数インターリーブ処理部274、OFDMフレーム構成部280、正規化部276-a,b、IFFT処理部277-a,b、ガードインターバル付加処理部278-a,b、および直交変調処理部279-a,bを含む。なお、OFDMフレーム構成部280以外の構成要素は、図2~4等に示す第1の実施形態における構成と同様なため、当該構成要素には、図2~4等に示す第1の実施形態において対応する構成要素と同じ参照符号を付して説明を省略する。
 OFDMフレーム構成部280には、周波数インターリーブ処理部274によって周波数インターリーブの処理が施された信号と、パイロット信号と、TMCC信号と、AC信号とが入力される。
 そして、OFDMフレーム構成部280は、入力された各信号に基づいてOFDMフレームを構成する。具体的には、OFDMフレーム構成部280は、例えば、OFDMの各キャリアにおける各シンボルに、各信号(ワンセグ用信号、2K用信号、4K用信号、パイロット信号、TMCC信号、およびAC信号)の値を設定する。また、OFDMフレーム構成部280は、OFDMフレームの所定の箇所にヌルキャリアを挿入する。ヌルキャリアの挿入箇所の詳細については後述する。
 なお、OFDMフレーム構成部280は、例えば、水平偏波用のOFDMフレームと、垂直偏波用のOFDMフレームとを構成する。具体的には、OFDMフレーム構成部280は、例えば、ワンセグ用信号に応じたセグメントに対応する信号と、2K用信号に応じたセグメントに対応する信号と、4K用信号に応じた10個のセグメントのうち5個のセグメントに対応する信号と、パイロット信号と、TMCC信号と、AC信号とに応じて、水平偏波用のOFDMフレームを構成する。また、OFDMフレーム構成部280は、例えば、4K用信号に応じた10個のセグメントのうち残りの5個のセグメントに対応する信号と、パイロット信号と、TMCC信号と、AC信号とに応じて、垂直偏波用のOFDMフレームを構成する。なお、各パイロット信号は、本例のようにB階層に偏波MIMOによる放送波が送信されるように構成された場合であっても、C階層における放送波の適切な受信が可能なように設定された周波数領域における位置に挿入される。OFDMフレーム構成部280によって構成されるOFDMフレームの詳細やパイロット信号、TMCC信号およびAC信号の具体的な挿入位置については後述する。以下、OFDMフレーム構成部280によって構成されるOFDMフレームをOFDMセグメント構成とも称する。
 また、OFDMフレーム構成部280は、受信部300に、B階層における信号が差動変調され、C階層における信号が同期変調されていることを示すTMCC信号を送信するように、水平偏波用のOFDMフレームを構成するように構成されていてもよい。
 なお、TMCC情報によってB階層における信号が差動変調され、C階層における信号が同期変調されていることが示されている場合に、受信部300は、周波数デインターリーブの処理を行う際に、B階層に応じたセグメントと、C階層に応じたセグメントとをそれぞれ別々に処理する。このように処理することによって、周波数デインターリーブの結果、B階層に応じたセグメントと、C階層に応じたセグメントとが混在してしまうことを防ぐことができる。
 そして、OFDMフレーム構成部280は、例えば、水平偏波用のOFDMフレームを正規化部276-aに入力する。また、OFDMフレーム構成部280は、例えば、垂直偏波用のOFDMフレームを正規化部276-bに入力する。
 次に、復調部431の構成について、図面を参照して説明する。図18~21は、本発明の第2の実施形態における復調部431の構成を示すブロック図である。
 図18~21に示すように、本発明の第2の実施形態における復調部431は、A-D変換部511-a,b、直交復調処理部512-a,b、同期再生部513-a,b、FFT処理部514-a,b、フレーム抽出部515-a,b、TMCC信号復号部516-a,b、AC信号復号部517-a,b、キャリア復調部532、周波数デインターリーブ処理部519、時間デインターリーブ処理部520、第1の階層分割部521、デマッピング処理部522-a~c、ビットデインターリーブ処理部523-a~c、デパンクチャ処理部524-a~c、階層合成部525、内符号復号部526、第2の階層分割部527、バイトデインターリーブ処理部528-a~c、エネルギー逆拡散処理部529-a~c、TS再生処理部530、および外符号復号部531を含む。なお、キャリア復調部532以外の構成要素は、図6~9等に示す第1の実施形態における構成と同様なため、当該構成要素には、図6~9等に示す第1の実施形態において対応する構成要素と同じ参照符号を付して説明を省略する。
 キャリア復調部532には、FFT処理部514-a,bが変換した周波数領域の信号がそれぞれ入力される。そこで、キャリア復調部532は、TMCC信号復号部516-a,b(TMCC信号復号部516-aとTMCC信号復号部516-bとのうちいずれか一方であってもよい)が入力したTMCC情報に基づいて、FFT処理部514-a,bが入力した周波数領域の信号に、差動復調の処理、同期復調の処理、および等化処理等を施す。具体的には、キャリア復調部532には、FFT処理部514-a,bが入力した周波数領域の信号におけるOFDMセグメントに基づいて、OFDM信号を構成する各キャリアを特定し、各キャリアの振幅を示す振幅情報、および各キャリアの位相を示す位相情報を生成する。そして、キャリア復調部532は、FFT処理部514-a,bが変換した周波数領域の信号と、振幅情報と、位相情報とを周波数デインターリーブ処理部519に入力する。
 また、例えば、キャリア復調部532は、FFT処理部514-a,bから入力された信号からパイロット信号を抽出し、当該パイロット信号に基づいて、伝送路特性を推定し、当該伝送路特性の推定結果を用いて、FFT処理部514-a,bから入力された信号に等化処理を施す。
 本実施形態によれば、送信部201の変調部231が、入力された2K用信号および4K用信号に基づいて、互いの偏波面を異ならせて送信可能な2種類のOFDM送信信号を生成する。そして、受信部401の復調部431が、送信部200によって生成されて送信されたOFDM送信信号に基づく受信信号を復調して、復号部440によって2K用信号および4K用信号に変換可能なTSパケットを生成する。
 したがって、現状の地上デジタルテレビジョン放送の送信に用いられている電磁波、および当該電磁波の偏波面と異なる偏波面の電磁波を用いて、受信側において、ワンセグ用信号に応じた映像、2K用信号に応じた映像、および4K用信号に応じた映像のうち少なくとも1つを再生可能にするように、データを伝送することができる。
 また、2K用信号に応じた電磁波の偏波面を現状の地上デジタルテレビジョン放送の送信に用いられている電磁波の偏波面と同じように設定した場合には、受信側で、現状の地上デジタルテレビジョン放送を受信および映像再生可能な状態を継続させつつ、新たに4K用信号に応じた映像を再生可能にすることができる。
 次に、OFDMフレーム構成部280によって構成されるOFDMセグメント構成について、図面を参照して詳細に説明する。
 受信部300は、AC信号およびTMCC信号に基づいて測定されたMERを用いて受信品質を判定したり、判定した受信品質を表示したりする場合がある。また、受信部300は、当該判定した受信品質に基づいて、テレビジョン受像機に2K用信号に基づく映像を再生させるか否かを判断する場合がある。
 具体的には、例えば、受信部300の受信処理部には、アンテナ501,502を介して放射されてアンテナ601によって受信された電磁波が受信信号に変換されて入力される。
 次に、受信部300の復調部は、例えば、AC信号およびTMCC信号に基づいて、MERを測定し、当該MERを用いて受信品質を判定する。
 そして、受信部300の復調部が受信品質が所定の閾値よりも低いと判断した場合には、受信部300の復号部は、テレビジョン受像機に2K用信号に基づく映像を再生させない。また、例えば、受信部300の復調部が受信品質が所定の閾値よりも高いと判断した場合には、受信部300の復号部は、テレビジョン受像機に2K用信号に基づく映像を再生させる。
 ここで、受信部300は、例えば、TMCC情報によって、B階層における信号が差動変調されていることが示されている場合に、水平偏波側の4K用OFDMセグメント構成においても、現状の地上デジタルテレビジョン放送の伝送方式に従って、AC信号およびTMCC信号が挿入されているという前提で受信品質を判定する。
 しかしながら、現状の地上デジタルテレビジョン放送の伝送方式とは異なる伝送方式に従って設定される水平偏波側の4K用OFDMセグメント構成において、現状の地上デジタルテレビジョン放送の伝送方式に応じた箇所にはAC信号またはTMCC信号が挿入されていない場合がある。
 よって、受信部300は、受信品質を正しく判定することができず、受信品質が所定の閾値よりも低いと誤って判断してしまうおそれがある。そして、受信部300が受信品質を所定の閾値よりも低いと誤って判断してしまうと、2K用信号に基づく映像がテレビジョン受像機に再生されなくなってしまう可能性がある。
 そこで、本実施形態のOFDMフレーム構成部280は、現状の地上デジタルテレビジョン放送の伝送方式に従って、水平偏波側の4K用OFDMセグメント構成においても、AC信号およびTMCC信号を挿入するように構成されている。
 具体的には、例えば、OFDMフレーム構成部280は、キャリア番号が30の箇所にAC信号を挿入し、キャリア番号が51の箇所にTMCC信号を挿入するように構成されている。
 図22,23は、OFDMフレーム構成部280によって構成される4K用OFDMセグメント構成の一例を示している。なお、図22,23に示されている4K用OFDMセグメント構成は、セグメントNo.5に関する。
 なお、図22,23において、ヌルキャリアが挿入されている箇所が「x」で示されている。図22,23において、パイロット信号が挿入されている箇所が「1」で示されている。図22,23において、4K用信号が挿入されている箇所が「D」で示されている。図22,23において、差動セグメントのみにおいてAC信号が挿入されている箇所が「AC2」で示されている。図22,23において、TMCC信号が挿入されている箇所が「TMCC」で示されている。
 なお、図22,23に示されている水平偏波側の4K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、水平偏波側の4K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 また、図22,23に示されている垂直偏波側の4K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、垂直偏波側の4K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 なお、図12に示されているように、図22,23に示されている水平偏波側の4K用OFDMセグメント構成に、2K用OFDMセグメント構成が隣接するようにOFDMセグメントが構成されていてもよい。
 図22,23に示されているように、OFDMフレーム構成部280は、本発明の第1の実施形態と同様に、4K用OFDMセグメント構成に、所定の間隔でパイロット信号およびヌルキャリアを挿入する。
 また、図22,23に示されているように、OFDMフレーム構成部280は、本発明の第1の実施形態と同様に、水平偏波側の4K用OFDMセグメント構成における先頭のキャリア(つまり、キャリア番号が0のキャリア)に、パイロット信号を挿入し、垂直偏波側の4K用OFDMセグメント構成における先頭のキャリア(つまり、キャリア番号が0のキャリア)に、ヌルキャリアを挿入する。
 さらに、OFDMフレーム構成部280は、4K用OFDMセグメント構成における所定の箇所に、AC信号およびTMCC信号を挿入する。
 具体的には、例えば、図22,23に示されているように、OFDMフレーム構成部280は、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が10および30の箇所にAC信号を挿入する。
 また、具体的には、例えば、図22,23に示されているように、OFDMフレーム構成部280は、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が10,30の箇所にヌルキャリアを挿入する。
 さらに、例えば、図22,23に示されているように、OFDMフレーム構成部280は、水平偏波側の4K用OFDMセグメント構成において、キャリア番号が23,37,51の箇所にTMCC信号を挿入する。
 また、具体的には、例えば、図22,23に示されているように、OFDMフレーム構成部280は、垂直偏波側の4K用OFDMセグメント構成において、キャリア番号が23,37,51の箇所にヌルキャリアを挿入する。
 このように構成することによって、水平偏波用のアンテナから送信される信号と垂直偏波用のアンテナから送信される信号とが互いに干渉してしまう可能性を低減することができる。
 上述した4K用OFDMセグメント構成によれば、受信部300は、水平偏波側の4K用OFDMセグメント構成に挿入されているAC信号およびTMCC信号を用いて、受信品質を判定することができる。つまり、受信部300が受信品質が所定の閾値よりも低いと誤って判断してしまう可能性を抑制することができる。その結果として、受信部300は、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、入力された受信信号に応じた映像をテレビジョン受像機に再生させることができる。
 なお、水平偏波側の4K用OFDMセグメント構成について、例えば、キャリア番号が30の箇所には、第1の実施形態のOFDMセグメント構成ではパイロット信号が挿入されていたが、本実施形態のOFDMセグメント構成では、受信部300が受信品質を判定するために、パイロット信号の代わりにAC信号が挿入されている。
 ここで、受信部401は、AC信号またはTMCC信号が挿入される箇所とパイロット信号が挿入される箇所とが重複した場合に、当該箇所にパイロット信号が挿入されていなくても、受信信号に等化処理を適切に施せるように構成されていることが好ましい。
 次に、受信部401のキャリア復調部532による等化処理の一例について、図面を参照して説明する。
 図24,25は、OFDMフレーム構成部280によって構成される水平偏波側の4K用OFDMセグメント構成の一例を示している。なお、図24,25に示されているOFDMセグメント構成は、セグメントNo.5に関する。
 図24,25に示されているように、キャリア番号が30で、シンボル番号が2の箇所には、第1の実施形態で説明したパイロット信号の配置に従うと、パイロット信号が挿入されるが、本実施形態では、受信部300が受信品質を判定するために、当該箇所には、AC信号が挿入されている。
 また、図24,25に示されているように、キャリア番号が51で、シンボル番号が5の箇所には、第1の実施形態で説明したパイロット信号の配置に従うと、パイロット信号が挿入されるが、本実施形態では、受信部300が受信品質を判定するために、当該箇所には、TMCC信号が挿入されている。
 なお、図24,25に示されている水平偏波側の4K用OFDMセグメント構成において、シンボル番号が8~15のシンボルには、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置がなされている。つまり、水平偏波側の4K用OFDMセグメント構成において、シンボル番号が0~7のシンボルにおける信号配置と同様の信号配置が繰り返しなされている。
 キャリア復調部532は、図24,25に示されているように、例えば、水平偏波側の4K用OFDMセグメント構成におけるシンボル番号が0~7のシンボルに挿入されている各パイロット信号に基づいて、各キャリアにおける伝送路特性の推定を行い、図24,25に示されているようなシンボル列を作成する。
 具体的には、例えば、図24,25のシンボル列において、各キャリアに挿入されているパイロット信号に基づいて算出された位相情報(例えば、挿入されている各パイロット信号と、既知のパイロット信号との位相差に応じた値)が「1」で示されている。
 図24,25に示されているシンボル列において、例えば、0番目のキャリアに対応する「1」は、0番目のキャリアにおけるパイロット信号と、既知のパイロット信号とに基づいて算出された位相差に応じた値を示している。つまり、図24,25に示されているシンボル列は、各キャリアにおける所定のシンボルに挿入されているパイロット信号に基づいて算出された位相情報を含む。
 なお、キャリア復調部532は、キャリア番号が0で、シンボル番号が0~7の箇所に挿入されているパイロット信号に基づいてそれぞれ算出された位相差に応じた値の平均値を、図24,25に示されているシンボル列において、0番目のキャリアに対応する「1」における位相差に応じた値とするように構成されていてもよい。
 また、キャリア復調部532は、キャリア番号が0で、シンボル番号が7の箇所に挿入されているパイロット信号に基づいて算出された位相差に応じた値を、図24に示されているシンボル列において、0番目のキャリアに対応する「1」における位相差に応じた値とするように構成されていてもよい。
 また、図24,25に示されているシンボル列において、当該シンボル列に含まれている「1」で示されている位相情報に基づいて、伝送路特性の推定が行われる箇所が「0」で示されている。具体的には、例えば、図24に示されているシンボル列において、1番目のキャリアおよび2番目のキャリアに対応する「0」における伝送路特性は、当該シンボル列における0番目のキャリアおよび3番目のキャリアに対応する「1」における位相情報に基づいて、推定される。
 また、キャリア復調部532は、例えば、AC信号またはTMCC信号が挿入されている箇所と、パイロット信号が挿入されている箇所とが重なったキャリアにおける位相情報を、前後のパイロット信号に基づいて算出する。
 ここで、図24,25のシンボル列において、AC信号またはTMCC信号が挿入される箇所と、パイロット信号が挿入される箇所とが重なったキャリアが「C」で示されている。
 具体的には、例えば、図24,25に示されているシンボル列において、キャリア復調部532は、キャリア番号が27の箇所に挿入されているパイロット信号に基づいて算出された位相差に応じた値と、キャリア番号が33の箇所に挿入されているパイロット信号に基づいて算出された位相差に応じた値との平均値を、キャリア番号が30のキャリアにおける位相差に応じた値とするように構成されていてもよい。
 また、具体的には、例えば、図24,25に示されているシンボル列において、キャリア復調部532は、キャリア番号が48の箇所に挿入されているパイロット信号に基づいて算出された位相差に応じた値と、キャリア番号が54の箇所に挿入されているパイロット信号に基づいて算出された位相差に応じた値との平均値を、キャリア番号が51のキャリアにおける位相差に応じた値とするように構成されていてもよい。
 そして、キャリア復調部532は、作成したシンボル列を用いて、キャリア方向における伝送路特性の推定を行う。具体的には、例えば、キャリア復調部532は、図24,25に示されているシンボル列における「1」に対応する位相差に応じた値と当該シンボル列における「C」に対応する位相差に応じた値とを用いて、当該シンボル列における「0」に対応するキャリアにおける伝送路特性を推定する。
 そして、キャリア復調部532は、当該伝送路特性の推定結果を用いて、FFT処理部514-aから入力された信号に等化処理を施す。
 具体的には、例えば、キャリア復調部532は、作成したシンボル列に基づいて、FIR(Finite Impulse Response)フィルタを用いて、平滑化したデータを作成し、当該平滑化したデータを伝送路特性の推定に使用し、FFT処理部514-aから入力された信号に等化処理を施す。
 なお、等化処理では、具体的には、例えば、FFT処理部514-aから入力された信号に応じた値に、推定した伝送路特性の逆特性に応じた値が乗算されることによって、当該信号の振幅および位相の歪みが補正される。
 また、キャリア復調部532は、FFT処理部514-aから入力された信号に行った等化処理と同様の処理方法を用いて、FFT処理部514-bから入力された信号に等化処理を施すように構成されている。
 次に、本発明の第2の実施形態の送信部201の動作について説明する。図26は、本発明の第2の実施形態における変調部231の動作を示すフローチャートである。
 まず、変調部231には、ワンセグ用信号、2K用信号、および4K用信号が入力される(ステップS201)。
 変調部231の各部が、入力されたワンセグ用信号、2K用信号、および4K用信号を合成して、伝送路符号化処理を施す(ステップS202)。具体的には、例えば、OFDMフレーム構成部280は、図22,23で示したようなOFDMフレームを構成する。
 変調部231は、水平偏波用のアンテナ501によって送信される電磁波用の第1のOFDM信号、および垂直偏波用のアンテナ502によって送信される電磁波用の第2のOFDM信号を生成する(ステップS203)。
 変調部231は、第1の増幅部240に、生成した第1のOFDM信号を入力する。また、変調部231は、第2の増幅部250に、生成した第2のOFDM信号を入力する。第1の増幅部240は、変調部231が入力した第1のOFDM信号を所定の増幅率で増幅する(ステップS204)。そして、第1の増幅部240は、増幅後の第1のOFDM信号をアンテナ501に入力する。第1の増幅部240によって増幅された第1のOFDM信号は、アンテナ501によって電磁波に変換されて水平偏波で放射される。
 第2の増幅部250は、変調部231が入力した第2のOFDM信号を予め決められた増幅率で増幅する(ステップS204)。そして、第2の増幅部250は、増幅後の第2のOFDM信号をアンテナ502に入力する。第2の増幅部250によって増幅された第2のOFDM信号は、アンテナ502によって電磁波に変換されて垂直偏波で放射される。
 次に、本発明の第2の実施形態の受信部401の動作について説明する。図27は、本発明の第2の実施形態における受信部401の動作を示すフローチャートである。
 図27に示すように、キャリア復調部532には、FFT処理部514-a,bから信号が入力される(ステップS301)。
 キャリア復調部532は、FFT処理部514-a,bから入力された信号からパイロット信号を抽出し、当該パイロット信号に基づいて、伝送路特性を推定する(ステップS302)。
 キャリア復調部532は、伝送路特性の推定結果を用いて、FFT処理部514-a,bから入力された信号に等化処理を施す(ステップS303)。等化処理が施された信号に復調部431の各部において上述した処理が施されることによって、TS信号が生成される。そして、生成されたTS信号は、復号部440に入力される。
 復号部440は、復調部431から入力されたTS信号に、所定の復号処理を施して、映像信号を生成可能な機能を有する(ステップS304)。例えば、復号部440は、入力されたTS信号にH.265に基づく復号処理を施して、4K用信号に基づく映像信号を生成可能であるとする。すると、復号部440は、生成した映像信号を出力可能である。そして、出力された映像信号は、テレビジョン受像機等の映像表示装置に入力されて、4K用信号に基づく映像が再生される。
 本実施形態によれば、受信部300は、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、受信品質の判定を適切に行うことができる。つまり、現状の地上デジタルテレビジョン放送の伝送方式に従ったキャリアにAC信号およびTMCC信号が挿入されているので、受信部300は、当該AC信号およびTMCC信号を用いて受信品質の判定を適切に行うことができる。したがって、受信部300は、現状の地上デジタルテレビジョン放送の伝送方式に基づいて、入力された受信信号に応じた映像をテレビジョン受像機に再生させることができる。よって、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機は、当該映像を適切に再生できる。
 また、本実施形態によれば、受信部401は、AC信号またはTMCC信号が挿入される箇所と、パイロット信号が挿入される箇所とが重複するキャリアにおける位相差に応じた値を、前後のパイロット信号に基づいて算出する。このように構成することで、受信部401は、受信信号に等化処理を適切に施すことができる。このため、受信部401は、現状の地上デジタルテレビジョン放送を受信および映像再生可能な状態を継続させつつ、新たに4K用信号に応じた映像を再生可能にすることができる。したがって、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、新地上波放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機は、当該映像を適切に再生できる。
 なお、図22に示されているOFDMセグメント構成では、本発明の第1の実施形態と同様に、先頭のキャリアにパイロット信号およびヌルキャリアが挿入されていたが、当該パイロット信号および当該ヌルキャリアが挿入されないように、OFDMフレームが構成されていてもよい。
 また、本実施形態では、キャリア復調部532は、シンボル番号が0~7のシンボルにおけるパイロット信号に基づいて(つまり、8シンボル分のパイロット信号に基づいて)、シンボル列を作成したが、シンボル列を作成する際に用いるシンボルの数は8個に限られない。
 図28,29は、OFDMフレーム構成部280によって構成される水平偏波側の4K用OFDMセグメント構成の一例を示している。なお、図28,29に示されているOFDMセグメント構成は、セグメントNo.5に関する。
 図28,29に示されている水平偏波側の4K用OFDMセグメント構成において、パイロット信号およびヌルキャリアは、キャリア方向において、48キャリアに1回挿入され、シンボル方向において、6シンボルに1回挿入されている。すなわち、48キャリア毎にパイロット信号およびヌルキャリアが挿入され、6シンボル毎にパイロット信号およびヌルキャリアが挿入されている。
 図28,29に示されているOFDMセグメント構成の場合に、キャリア復調部532は、シンボル番号が0~5のシンボルにおけるパイロット信号に基づいて(つまり、6シンボル分のパイロット信号に基づいて)、シンボル列を作成するように構成されていてもよい。
 つまり、パイロット信号の挿入間隔に応じて、キャリア復調部532がシンボル列を作成する際に用いるシンボル数が決定されるように構成されていてもよい。
 また、本実施形態では、キャリア復調部532は、AC信号またはTMCC信号が挿入されている箇所と、パイロット信号が挿入されている箇所とが重複するキャリアにおける位相差に応じた値を、前後のパイロット信号に基づいて算出したが、前後3つのパイロット信号に基づいて、当該重なったキャリアにおける位相差に応じた値を算出するように構成されていてもよい。
 具体的には、例えば、図24,25に示されているシンボル列において、キャリア復調部532は、キャリア番号が21,24,27の箇所に挿入されているパイロット信号に基づいて算出されたそれぞれの位相差に応じた値と、キャリア番号が33,36,39の箇所に挿入されているパイロット信号に基づいて算出されたそれぞれの位相差に応じた値との平均値を、キャリア番号が30のキャリアにおける位相差に応じた値とするように構成されていてもよい。
 実施形態3.
 本発明の第3の実施形態の放送用送信システムについて、図面を参照して説明する。図30は、本発明の第3の実施形態の放送用送信システム20の構成例を示すブロック図である。図30に示すように、本発明の第3の実施形態の放送用送信システム20は、データ構成部21と、送信処理部22とを含む。放送用送信システム20は、例えば、本発明の第1の実施形態における送信部200に相当する。また、放送用送信システム20は、例えば、本発明の第1の実施形態における放送用送信システム251に相当する。データ構成部21は、例えば、本発明の第1の実施形態における変調部230に相当する。送信処理部22は、例えば、本発明の第1の実施形態における第1の増幅部240および第2の増幅部250に相当する。
 データ構成部21は、第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成する。
 第1の画質再生用のデータは、例えば、第1の実施形態における、水平偏波側の4K用OFDMセグメント構成に含まれている4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。第2の画質再生用のデータは、例えば、第1の実施形態における、水平偏波側の2K用OFDMセグメント構成に含まれている2K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。一方の偏波アンテナ送信用のデータは、例えば、図13に示されている水平偏波側の2K用OFDMセグメント構成および4K用OFDMセグメント構成に含まれている2K用信号に応じたデータ、4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。他方の偏波アンテナ送信用のデータは、例えば、図13に示されている垂直偏波側の4K用OFDMセグメント構成に含まれている4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 また、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。なお、第1の間隔は、例えば、連続する23キャリア分の周波数に相当する。また、第1の間隔は、例えば、連続する7シンボル分の時間に相当する。
 また、データ構成部21は、当該第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、当該他方の偏波アンテナ送信用のデータを生成する。
 また、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。なお、第2の間隔は、例えば、連続する11キャリア分の周波数に相当する。また、第2の間隔は、例えば、連続する3シンボル分の時間に相当する。
 また、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、当該第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。最も低い周波数のキャリアは、例えば、図13に示されている水平偏波側の4K用OFDMセグメント構成におけるキャリア番号が0のキャリアに相当する。
 また、データ構成部21は、当該他方の偏波アンテナ送信用のデータにおいて、当該パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、当該他方の偏波アンテナ送信用のデータを生成する。
 送信処理部22は、当該一方の偏波アンテナ送信用のデータに応じた信号と、当該他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う。
 本実施形態によれば、データ構成部21は、第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成する。
 また、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。
 また、データ構成部21は、当該第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、当該他方の偏波アンテナ送信用のデータを生成する。
 また、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。
 さらに、データ構成部21は、当該一方の偏波アンテナ送信用のデータのうちの当該第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、当該第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、当該一方の偏波アンテナ送信用のデータを生成する。
 そして、データ構成部21は、当該他方の偏波アンテナ送信用のデータにおいて、当該パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、当該他方の偏波アンテナ送信用のデータを生成する。
 送信処理部22は、当該一方の偏波アンテナ送信用のデータに応じた信号と、当該他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う。
 したがって、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機が当該映像を適切に再生できる。
 実施形態4.
 本発明の第4の実施形態の放送用受信システムについて、図面を参照して説明する。図31は、本発明の第4の実施形態の放送用受信システム30の構成例を示すブロック図である。図31に示すように、本発明の第4の実施形態の放送用受信システム30は、受信部31と、等化部32と、再生処理部33とを含む。受信部31は、例えば、本発明の第1の実施形態における受信部300の受信処理部に相当する。等化部32は、例えば、本発明の第1の実施形態における受信部300の復調部に相当する。再生処理部33は、例えば、本発明の第1の実施形態における受信部300の復号部に相当する。
 受信部31は、第1の間隔でパイロット信号またはヌルキャリアが配置されている第1の画質再生用のデータと、第2の間隔でパイロット信号が配置されている第2の画質再生用のデータとに応じた信号を受信する。当該第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、当該第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されている。なお、第1の間隔は、例えば、連続する23キャリア分の周波数に相当する。また、第1の間隔は、例えば、連続する7シンボル分の時間に相当する。第2の間隔は、例えば、連続する11キャリア分の周波数に相当する。また、第2の間隔は、例えば、連続する3シンボル分の時間に相当する。
 最も低い周波数のキャリアは、例えば、図13に示されている水平偏波側の4K用OFDMセグメント構成におけるキャリア番号が0のキャリアに相当する。
 第1の画質再生用のデータは、例えば、第1の実施形態における、水平偏波側の4K用OFDMセグメント構成に含まれている4K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。第2の画質再生用のデータは、例えば、第1の実施形態における、水平偏波側の2K用OFDMセグメント構成に含まれている2K用信号に応じたデータ、パイロット信号用データ、TMCC信号用データおよびAC信号用データに相当する。
 等化部32は、当該第1の画質再生用のデータおよび当該第2の画質再生用のデータに配置されているパイロット信号に基づいて、当該第2の画質再生用のデータに応じた信号に等化処理を施す。
 再生処理部33は、等化処理された当該第2の画質再生用のデータに応じた信号に基づいて、当該第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機に、当該第2の画質再生用のデータに応じた映像を再生させる。
 本実施形態によれば、受信部31は、第1の間隔でパイロット信号またはヌルキャリアが配置されている第1の画質再生用のデータと、第2の間隔でパイロット信号が配置されている第2の画質再生用のデータとに応じた信号を受信する。当該第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、当該第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されている。等化部32は、当該第1の画質再生用のデータおよび当該第2の画質再生用のデータに配置されているパイロット信号に基づいて、当該第2の画質再生用のデータに応じた信号に等化処理を施す。再生処理部33は、等化処理された当該第2の画質再生用のデータに応じた信号に基づいて、当該第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機に、当該第2の画質再生用のデータに応じた映像を再生させる。
 したがって、新地上波放送と、現状の地上デジタルテレビジョン放送とが共存した場合でも、現状の地上デジタルテレビジョン放送の伝送方式に基づいて入力された受信信号に応じた映像を再生可能なテレビジョン受像機が当該映像を適切に再生できる。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 また、本発明は、各実施形態の変形・置換・調整に基づいて実施できる。また、本発明は、各実施形態を任意に組合せて実施することもできる。すなわち、本発明は、本明細書の全ての開示内容、技術的思想に従って実現できる各種変形、修正を含む。なお、各図面に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成手段と、
 前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理手段と
 を備え、
 前記データ構成手段は、
 前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記データ構成手段は、
 前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、
 前記データ構成手段は、
 前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記データ構成手段は、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする放送用送信システム。
(付記2)
 前記データ構成手段は、前記最も低い周波数のキャリアで送信されるデータにおいて、すべてのシンボルにわたって前記パイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする付記1に記載の放送用送信システム。
(付記3)
 前記データ構成手段は、前記一方の偏波アンテナ送信用のデータにおいて、前記他方の偏波アンテナ送信用のデータでパイロット信号が前記第1の間隔で配置された箇所に応じた箇所には、ヌルキャリアを配置し、前記他方の偏波アンテナ送信用のデータでヌルキャリアが前記第1の間隔で配置された箇所に応じた箇所には、パイロット信号を配置するように、前記一方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする付記1または2に記載の放送用送信システム。
(付記4)
 前記データ構成手段は、前記第1の画質再生用のデータと、前記第2の画質再生用のデータと、移動体用のデータとに基づいて、前記一方の偏波アンテナ送信用のデータと前記他方の偏波アンテナ送信用のデータとを生成し、
 前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする付記1~3のいずれか1項に記載の放送用送信システム。
(付記5)
 前記データ構成手段は、前記第1の画質再生用のデータに応じた信号の変調方式が差動変調であることを示すTMCC(Transmission and Multiplexing Configuration Control)信号が送信されるように、前記一方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする付記1~4のいずれか1項に記載の放送用送信システム。
(付記6)
 前記第1の間隔は、前記第2の間隔と異なる
 ことを特徴とする付記1~5のいずれか1項に記載の放送用送信システム。
(付記7)
 前記最も低い周波数のキャリアで送信されるデータに含まれるパイロット信号は、前記第1の画質再生用のデータが送信されるフレームの先頭のシンボルから5番目のシンボルに配置されるパイロット信号を含む
 ことを特徴とする付記1~6のいずれか1項に記載の放送用送信システム。
(付記8)
 前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、最も高い周波数で送信されるデータの少なくとも一部にパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする付記1~7のいずれか1項に記載の放送用送信システム。
(付記9)
 第1の間隔でパイロット信号またはヌルキャリアが配置されている第1の画質再生用のデータと、第2の間隔でパイロット信号が配置されている第2の画質再生用のデータとに応じた信号を受信する受信手段と、
 前記第1の画質再生用のデータおよび前記第2の画質再生用のデータに配置されているパイロット信号に基づいて、前記第2の画質再生用のデータに応じた信号に等化処理を施す等化手段と、
 等化処理された前記第2の画質再生用のデータに応じた信号に基づいて、前記第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機に、前記第2の画質再生用のデータに応じた映像を再生させる再生処理手段とを備え、
 前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されている
 ことを特徴とする放送用受信システム。
(付記10)
 付記1~8のいずれか1項に記載の放送用送信システムと、
 付記9に記載の放送用受信システムとを備えた
 ことを特徴とする放送用送受信システム。
(付記11)
 第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成し、
 前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行い、
 前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記他方の偏波アンテナ送信用のデータを生成するときに、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、
 前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
 前記他方の偏波アンテナ送信用のデータを生成するときに、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成する
 ことを特徴とする放送用送信方法。
(付記12)
 コンピュータに、
 第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成処理と、
 前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理と
 を実行させ、
 前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
 前記データ構成処理では、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成させ、
 前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
 前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
 前記データ構成処理では、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成させる
 ことを特徴とする放送用送信プログラム。
 この出願は、2018年12月26日に出願された日本出願特願2018-242888を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 20、251  放送用送信システム
 21  データ構成部
 22 送信処理部
 30 放送用受信システム
 31 受信部
 32 等化部
 33 再生処理部
 100、101  放送システム
 200、201  送信部
 210  符号化部
 211  第1のエンコーダ
 212  第2のエンコーダ
 213  第3のエンコーダ
 220  多重化部
 230、231  変調部
 240  第1の増幅部
 250  第2の増幅部
 300、400、401  受信部
 410  第1の受信処理部
 420  第2の受信処理部
 430、431  復調部
 440  復号部
 501、502、601、602  アンテナ
 700  分配器
 261-a、262-b  外符号処理部
 261-b  フレーム構成部
 262-a  階層分割部
 263-a  第1バイト-ビット変換部
 264-a  エネルギー拡散部
 265-a  遅延補正部
 266-a  ビット-バイト変換部
 267-a  バイトインターリーブ処理部
 268-a  第2バイト-ビット変換部
 269-a、269-b、269-c  畳込み符号化処理部
 270-a、270-b、270-c  ビットインターリーブ処理部
 271-a、271-b、271-c  マッピング処理部
 272  階層合成部
 273  時間インターリーブ処理部
 274  周波数インターリーブ処理部
 275、280  OFDMフレーム構成部
 276-a、276-b  正規化部
 277-a  IFFT処理部
 278-a、278-b  ガードインターバル付加処理部
 279-a、279-b  直交変調処理部
 511-a、511-b  A-D変換部
 512-a、512-b  直交復調処理部
 513-a  同期再生部
 514-a、514-b  FFT処理部
 515-a  フレーム抽出部
 516-a、516-b  TMCC信号復号部
 517-a  AC信号復号部
 518、532  キャリア復調部
 519  周波数デインターリーブ処理部
 520  時間デインターリーブ処理部
 521  第1の階層分割部
 522-a、522-b、522-c  デマッピング処理部
 523-a、523-b、523-c  ビットデインターリーブ処理部
 524-a、524-b、524-c  デパンクチャ処理部
 525  階層合成部
 526  内符号復号部
 527  第2の階層分割部
 528-a、528-b、528-c  バイトデインターリーブ処理部
 529-a  エネルギー逆拡散処理部
 530  TS再生処理部
 531  外符号復号部

Claims (12)

  1.  第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成手段と、
     前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理手段と
     を備え、
     前記データ構成手段は、
     前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記データ構成手段は、
     前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、
     前記データ構成手段は、
     前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記データ構成手段は、
     前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記データ構成手段は、
     前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする放送用送信システム。
  2.  前記データ構成手段は、前記最も低い周波数のキャリアで送信されるデータにおいて、すべてのシンボルにわたって前記パイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする請求項1に記載の放送用送信システム。
  3.  前記データ構成手段は、前記一方の偏波アンテナ送信用のデータにおいて、前記他方の偏波アンテナ送信用のデータでパイロット信号が前記第1の間隔で配置された箇所に応じた箇所には、ヌルキャリアを配置し、前記他方の偏波アンテナ送信用のデータでヌルキャリアが前記第1の間隔で配置された箇所に応じた箇所には、パイロット信号を配置するように、前記一方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする請求項1または2に記載の放送用送信システム。
  4.  前記データ構成手段は、前記第1の画質再生用のデータと、前記第2の画質再生用のデータと、移動体用のデータとに基づいて、前記一方の偏波アンテナ送信用のデータと前記他方の偏波アンテナ送信用のデータとを生成し、
     前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする請求項1~3のいずれか1項に記載の放送用送信システム。
  5.  前記データ構成手段は、前記第1の画質再生用のデータに応じた信号の変調方式が差動変調であることを示すTMCC(Transmission and Multiplexing Configuration Control)信号が送信されるように、前記一方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする請求項1~4のいずれか1項に記載の放送用送信システム。
  6.  前記第1の間隔は、前記第2の間隔と異なる
     ことを特徴とする請求項1~5のいずれか1項に記載の放送用送信システム。
  7.  前記最も低い周波数のキャリアで送信されるデータに含まれるパイロット信号は、前記第1の画質再生用のデータが送信されるフレームの先頭のシンボルから5番目のシンボルに配置されるパイロット信号を含む
     ことを特徴とする請求項1~6のいずれか1項に記載の放送用送信システム。
  8.  前記データ構成手段は、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、最も高い周波数で送信されるデータの少なくとも一部にパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする請求項1~7のいずれか1項に記載の放送用送信システム。
  9.  第1の間隔でパイロット信号またはヌルキャリアが配置されている第1の画質再生用のデータと、第2の間隔でパイロット信号が配置されている第2の画質再生用のデータとに応じた信号を受信する受信手段と、
     前記第1の画質再生用のデータおよび前記第2の画質再生用のデータに配置されているパイロット信号に基づいて、前記第2の画質再生用のデータに応じた信号に等化処理を施す等化手段と、
     等化処理された前記第2の画質再生用のデータに応じた信号に基づいて、前記第2の画質再生用のデータに応じた映像を再生可能なテレビジョン受像機に、前記第2の画質再生用のデータに応じた映像を再生させる再生処理手段とを備え、
     前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されている
     ことを特徴とする放送用受信システム。
  10.  請求項1~8のいずれか1項に記載の放送用送信システムと、
     請求項9に記載の放送用受信システムとを備えた
     ことを特徴とする放送用送受信システム。
  11.  第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成し、
     前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行い、
     前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記他方の偏波アンテナ送信用のデータを生成するときに、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成し、
     前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記一方の偏波アンテナ送信用のデータを生成するときに、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成し、
     前記他方の偏波アンテナ送信用のデータを生成するときに、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成する
     ことを特徴とする放送用送信方法。
  12.  コンピュータに、
     第1の画質再生用のデータと第2の画質再生用のデータとに基づいて、一方の偏波アンテナ送信用のデータと他方の偏波アンテナ送信用のデータとを生成するデータ構成処理と、
     前記一方の偏波アンテナ送信用のデータに応じた信号と、前記他方の偏波アンテナ送信用のデータに応じた信号とを送信するための処理を行う送信処理と
     を実行させ、
     前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおいて、第1の間隔でパイロット信号またはヌルキャリアが配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
     前記データ構成処理では、前記第1の間隔でヌルキャリアまたはパイロット信号が配置されるように、前記他方の偏波アンテナ送信用のデータを生成させ、
     前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第2の画質再生用のデータにおいて、第2の間隔でパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
     前記データ構成処理では、前記一方の偏波アンテナ送信用のデータのうちの前記第1の画質再生用のデータにおける最も低い周波数のキャリアで送信されるデータにおいて、前記第1の間隔に基づくヌルキャリアに代えてパイロット信号が配置されるように、前記一方の偏波アンテナ送信用のデータを生成させ、
     前記データ構成処理では、前記他方の偏波アンテナ送信用のデータにおいて、前記パイロット信号が配置された箇所に応じた箇所にはヌルキャリアが配置されるように、前記他方の偏波アンテナ送信用のデータを生成させる
     処理を実行させることを特徴とする放送用送信プログラムを記憶したプログラム記憶媒体。
PCT/JP2019/049614 2018-12-26 2019-12-18 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム WO2020137740A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112021006059-6A BR112021006059A2 (pt) 2018-12-26 2019-12-18 sistema de transmissão de difusão, sistema de recepção de difusão, sistema de transmissão/recepção de difusão, método de transmissão de difusão, e programa de transmissão de difusão
JP2020563134A JP7168001B2 (ja) 2018-12-26 2019-12-18 放送用送信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242888 2018-12-26
JP2018242888 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137740A1 true WO2020137740A1 (ja) 2020-07-02

Family

ID=71126194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049614 WO2020137740A1 (ja) 2018-12-26 2019-12-18 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム

Country Status (3)

Country Link
JP (1) JP7168001B2 (ja)
BR (1) BR112021006059A2 (ja)
WO (1) WO2020137740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192590A1 (ja) * 2020-03-24 2021-09-30 ソニーグループ株式会社 送信装置、受信装置、送受信システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207750A (ja) * 2012-03-29 2013-10-07 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム
JP2018093505A (ja) * 2011-06-24 2018-06-14 サン パテント トラスト 送信装置、送信方法、受信装置および受信方法
WO2018155544A1 (ja) * 2017-02-23 2018-08-30 日本電気株式会社 放送システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970501B2 (ja) * 2016-12-19 2021-11-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、送信方法、受信装置、及び受信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093505A (ja) * 2011-06-24 2018-06-14 サン パテント トラスト 送信装置、送信方法、受信装置および受信方法
JP2013207750A (ja) * 2012-03-29 2013-10-07 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム
WO2018155544A1 (ja) * 2017-02-23 2018-08-30 日本電気株式会社 放送システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192590A1 (ja) * 2020-03-24 2021-09-30 ソニーグループ株式会社 送信装置、受信装置、送受信システム

Also Published As

Publication number Publication date
JP7168001B2 (ja) 2022-11-09
BR112021006059A2 (pt) 2021-07-20
JPWO2020137740A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6753508B2 (ja) 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
US9036720B2 (en) Systems and methods for transmitting and receiving additional data over legacy satellite digital audio radio signals
US11233527B2 (en) Wireless transport framework with uncoded transport tunneling
JP6437548B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
US9537698B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
JP5392554B2 (ja) 受信装置及び方法、プログラム、並びに受信システム
Montalban et al. Cloud transmission frequency domain cancellation
AU2014307164A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
TWI440326B (zh) 信號接收設備,方法,程式及系統
US9668239B2 (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
JP2008245128A (ja) Ofdmを用いた無線送信装置と方法及び無線受信装置と方法
WO2020137740A1 (ja) 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
US9847898B2 (en) Method for transmitting broadcast signal, method for receiving broadcast signal, apparatus for transmitting broadcast signal, and apparatus for receiving broadcast signal
WO2020137744A1 (ja) 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
US20150020143A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
JP4727474B2 (ja) 遅延装置、遅延装置の制御方法、遅延装置の制御プログラムおよび遅延装置の制御プログラムを記録した記録媒体
JP2021158474A (ja) 放送用送信システム、放送用送受信システム、放送用送信方法、および放送用送信往路プログラム
Kim et al. Design of the channel estimation algorithm for advanced terrestrial DMB system
Bedicks et al. Overview of ISDB-T One-Segment Reception
KR20170002187A (ko) 송신 장치, 수신 장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563134

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021006059

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021006059

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210329

122 Ep: pct application non-entry in european phase

Ref document number: 19902299

Country of ref document: EP

Kind code of ref document: A1