WO2020137517A1 - 成分濃度測定方法および装置 - Google Patents

成分濃度測定方法および装置 Download PDF

Info

Publication number
WO2020137517A1
WO2020137517A1 PCT/JP2019/048257 JP2019048257W WO2020137517A1 WO 2020137517 A1 WO2020137517 A1 WO 2020137517A1 JP 2019048257 W JP2019048257 W JP 2019048257W WO 2020137517 A1 WO2020137517 A1 WO 2020137517A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
component concentration
concentration measuring
measurement site
unit
Prior art date
Application number
PCT/JP2019/048257
Other languages
English (en)
French (fr)
Inventor
昌人 中村
雄次郎 田中
倫子 瀬山
大地 松永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/416,611 priority Critical patent/US20220079479A1/en
Publication of WO2020137517A1 publication Critical patent/WO2020137517A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a component concentration measuring method and device, and more specifically to a component concentration measuring method and device for non-invasively measuring the concentration of components such as glucose in blood.
  • the blood glucose level is the concentration of glucose in blood, and the photoacoustic method is well known as a method for measuring the concentration of this type of component (see Patent Document 1).
  • the photoacoustic method is a method of measuring the amount of molecules in a living body by measuring this sound wave (photoacoustic signal).
  • a sound wave is a pressure wave propagating in a living body and has a characteristic of being less likely to be scattered than an electromagnetic wave. Therefore, it can be said that the photoacoustic method is suitable for measuring a blood component of a living body.
  • the photoacoustic method it is possible to continuously monitor the glucose concentration in blood.
  • the photoacoustic method does not require a blood sample and does not cause discomfort to the measurement subject.
  • the diameter of the blood vessel constantly fluctuates and is not constant.
  • the blood flow is measured, there is a periodic fluctuation at intervals of about 10 seconds other than the heartbeat even when the person is at rest.
  • This fluctuation of about 10 seconds period represents the influence of the contraction movement of blood vessels called bathomotion. If the diameter of the blood vessel changes due to such contracting movement of the blood vessel, the ratio of plasma to interstitial fluid in the blood at this location changes, leading to an error in measuring the component concentration.
  • the present invention has been made in order to solve the above problems, in the measurement of the concentration of components such as glucose in the human body by the photoacoustic method of the measurement error caused by a change in the state of blood vessels Intended for suppression.
  • the component concentration measuring method comprises a first step of compressing the periphery of the measurement site so as to suppress blood flow in the measurement site of the measurement subject, and a measurement point of a beam light having a wavelength absorbed by the substance to be measured.
  • a third step of obtaining is obtaining.
  • the configuration example of the above component concentration measuring method includes a fourth step of stopping the compression around the measurement site after detecting the photoacoustic signal.
  • the start of compression, the detection of the photoacoustic signal, and the stop of compression are periodically repeated.
  • the second step detects a photoacoustic signal at the time when half the period from the start of compression to the start of the next compression has elapsed.
  • the period from the start of compression to the start of the next compression is 5 to 20 seconds.
  • the substance is glucose
  • the component concentration measuring apparatus includes a light emitting unit that irradiates a measurement site of a measurement subject with a beam of a wavelength that a substance to be measured absorbs, and a periphery of the measurement site so as to suppress blood flow in the measurement site. And a detection unit that detects a photoacoustic signal generated from the measurement site irradiated with the beam light emitted from the light emitting unit while the compression unit presses the periphery of the measurement site, and And a concentration calculation unit that obtains the concentration of the substance based on the acoustic signal.
  • the detection unit detects the photoacoustic signal when a preset time elapses after the compression unit starts to compress the periphery of the measurement site.
  • the configuration example of the component concentration measuring device includes a control unit that controls the compression operation by the compression unit and the detection operation of the photoacoustic signal by the detection unit.
  • control unit periodically repeats the start of compression by the compression unit, the detection of the photoacoustic signal by the detection unit, and the stop of compression by the compression unit.
  • control unit causes the detection unit to detect the photoacoustic signal when half the period from the start of compression to the start of the next compression has elapsed.
  • control unit sets the control cycle from the start of compression to the next compression for 5 to 20 seconds.
  • the substance is glucose
  • the light emitting unit irradiates a beam of light having a wavelength absorbed by glucose.
  • the photoacoustic signal is detected at the time when the set time has elapsed since the start of compression around the measurement site, glucose in the human body by the photoacoustic method, etc.
  • An excellent effect is obtained in that the measurement error caused by the change of the blood vessel condition in the measurement of the component concentration of can be suppressed.
  • FIG. 1 is a configuration diagram showing a configuration of a component concentration measuring method device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a hardware configuration of the concentration calculating unit 104 which constitutes the component concentration measuring method device according to the embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a hardware configuration of the control unit 105 that constitutes the component concentration measuring method apparatus according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a more detailed configuration of the component concentration measuring apparatus according to the embodiment of the present invention.
  • FIG. 5 is a flow chart for explaining the component concentration measuring method according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining compression around the measurement site and a measurement interval.
  • This component concentration measuring device includes a light emitting unit 101, a compression unit 102, a detection unit 103, a concentration calculation unit 104, and a control unit 105.
  • the light emitting unit 101 has rigidity to generate the beam light 121 having a wavelength absorbed by the substance to be measured, and can emit the generated beam light 121 toward the measurement site 151 of the measurement subject.
  • the light emitting unit 101 includes a light source unit 101a including a light source such as a light emitting element that generates a beam light 121 having a wavelength absorbed by glucose and a drive circuit thereof, and a light source.
  • a pulse generation unit 101b for converting the light beam 121 generated by the above into a pulsed light having a preset pulse width.
  • the beam light 121 emitted from the light emitting unit 101 is a beam light having a pulse width of 0.02 seconds or more.
  • the compression unit 102 compresses the circumference of the measurement site 151 so as to suppress blood flow in the measurement site 151 of the measurement subject.
  • the compression unit 102 includes, for example, an air bag 111, a pump 112, a pressure sensor 113, and a control valve 114.
  • the air is supplied from the pump 112 via the pipe 115 to expand the air bag 111 and press the measurement site 151.
  • the pressure of the supplied air is measured by the pressure sensor 113 via the pipe 115, and the pump 112 supplies the air so that the air pressure measured by the pressure sensor 113 becomes a set value.
  • control valve 114 opens and closes the valve at intervals of a set time (compression time), for example.
  • a set time compression time
  • the control valve 114 is closed, the supply of air by the pump 112 is started as described above, and the air bag 111 is expanded. Further, when the control valve 114 is in the open state, the supply of air by the pump 112 is stopped, the inside of the air bag 111 is decompressed, and the compression of the measurement site 151 by the air bag 111 is stopped.
  • the detection unit 103 detects a photoacoustic signal generated from the measurement site 151 irradiated with the beam light 121 while the compression unit 102 compresses the periphery of the measurement site 151.
  • the detection unit 103 detects a photoacoustic signal when a set time has elapsed since the compression unit 102 started compressing the circumference of the measurement site 151.
  • the photoacoustic signal detected by the detection unit 103 is stored, for example, together with the measured time information in an external storage device 104b (not shown) included in the concentration calculation unit 104 described later.
  • the detection unit 103 uses a crystal microphone, a ceramic microphone, a ceramic ultrasonic sensor or the like that uses the piezoelectric effect/electrostrictive effect, a dynamic microphone, a ribbon microphone or the like that uses electromagnetic induction, or a condenser microphone or the like electrostatic effect. And those using magnetostriction such as a magnetostrictive oscillator can be used. Examples of the material having a piezoelectric effect include those including crystals such as a flat frequency electrostrictive element (ZT) or PVDF (polyvinylidene fluoride).
  • the detection unit 103 can also be composed of a PZT having a built-in FET (field effect transistor) amplifier.
  • the concentration calculation unit 104 calculates the concentration of the above-mentioned substance from the photoacoustic signal detected by the detection unit 103. For example, the concentration calculator 104 obtains the concentration of glucose to be measured in blood in the measurement site 151 based on the photoacoustic signal.
  • the concentration calculation unit 104 is a computer device including a CPU (Central Processing Unit) 104a, an external storage device 104b, a main storage device 104c, an input/output device 104d for connecting an external device, and the like. is there.
  • the photoacoustic signal detected by the detection unit 103 is stored as digital data in the external storage device 104b via the input/output device 104d, and the CPU 104a operates according to the program expanded in the main storage device 104c to calculate the concentration described above.
  • the function of the unit 104 is realized.
  • the obtained density is stored in the external storage device 104c in a state in which it can be read out via the input/output device 104d.
  • the control unit 105 controls the compression operation by the compression unit 102 and the detection operation of the photoacoustic signal by the detection unit 103. For example, when an instruction to start the concentration measurement is input, the control unit 105 closes the control valve 114 to operate the pump 112, and starts the compression around the measurement site 151 by the air bladder 111. Next, the control unit 105 causes the detection unit 103 to detect a photoacoustic signal when a preset time has elapsed from the start of compression. Next, when the detection unit 103 detects the photoacoustic signal, the control unit 105 stops the operation of the pump 112, opens the control valve 114, and stops the pressure around the measurement site 151 by the air bladder 111.
  • control unit 105 periodically starts the compression around the measurement site 151 by the compression unit 102, the detection of the photoacoustic signal by the detection unit 103, and the stop of the compression around the measurement site 151 by the compression unit 102. To repeat. In this case, the control unit 105 causes the detection unit 103 to detect the photoacoustic signal at the time when half the period from the start of compression to the start of the next compression has elapsed. In addition, the control unit 105 repeats the series of controls described above, for example, in a preset time period.
  • the control unit 105 is a computer device including a CPU 105a, an external storage device 105b, a main storage device 105c, an input/output device 105d for connecting an external device and the like.
  • the functions of the control unit 105 described above are realized by the operation of the CPU 105a by the program expanded in the main storage device 105c.
  • the light source unit 101a includes a first light source 201, a second light source 202, a drive circuit 203, a drive circuit 204, a phase circuit 205, and a multiplexer 206.
  • the detector 103 also includes a detector 207, a phase detection amplifier 208, and an oscillator 209.
  • the oscillator 209 is connected to the drive circuit 203, the phase circuit 205, and the phase detection amplifier 208 by signal lines.
  • the oscillator 209 transmits a signal to each of the drive circuit 203, the phase circuit 205, and the phase detection amplifier 208.
  • the drive circuit 203 receives the signal transmitted from the oscillator 209, supplies drive power to the first light source 201, and causes the first light source 201 to emit light intensity-modulated in synchronization with the frequency of the signal.
  • the first light source 201 is, for example, a semiconductor laser.
  • the phase circuit 205 receives the signal transmitted from the oscillator 209, and transmits the signal obtained by adding a phase change of 180° to the received signal to the drive circuit 204 via the signal line.
  • the drive circuit 204 receives the signal transmitted from the phase circuit 205, supplies drive power to the second light source 202, and receives a phase change of 180° by the phase circuit 205 at the frequency of the signal from the second light source 202.
  • the intensity-modulated light is emitted in synchronization with the signal.
  • the second light source 202 is, for example, a semiconductor laser.
  • Each of the first light source 201 and the second light source 202 outputs light of different wavelengths, and the light output by each is guided to the multiplexer 206 by the light wave transmission means.
  • the wavelengths of the first light source 201 and the second light source 202 are set such that one light wavelength is a wavelength absorbed by glucose and the other light wavelength is a wavelength absorbed by water.
  • the respective wavelengths are set so that the absorption levels of both are equal.
  • the light output from the first light source 201 and the light output from the second light source 202 are combined by the combiner 206 and enter the pulse generation unit 101b as one light beam.
  • the pulse generator 101b can be composed of, for example, an optical chopper.
  • the pulse generation unit 101b to which the light beam is incident emits the incident light beam to the measurement site 151 as pulsed light having a predetermined pulse width.
  • the detector 207 detects the photoacoustic signal generated at the measurement site 151, converts it into an electrical signal, and transmits it to the phase detection amplifier 208 via a signal line.
  • the phase detection amplifier 208 receives the synchronous signal necessary for synchronous detection transmitted from the oscillator 209, and also receives the electrical signal proportional to the photoacoustic signal transmitted from the detector 207, and performs synchronous detection, amplification, and filtering. Then, an electric signal proportional to the photoacoustic signal is output.
  • the electrical signal (photoacoustic signal) measured and processed in this manner is stored in the external storage device 104b included in the concentration calculation unit 104 together with the information on the measured time.
  • the intensity of the signal output from the phase detection amplifier 208 is proportional to the amount of light output from each of the first light source 201 and the second light source 202, which is absorbed by the components (glucose, water) in the measurement site 151.
  • the intensity of the signal is proportional to the amount of the component in the measurement site 151.
  • the concentration calculation unit 104 obtains the amount (concentration) of the component of the substance to be measured (glucose) in the blood in the measurement site 151 from the measured value (photoacoustic signal) of the intensity of the signal thus output.
  • step S101 the compression part 102 compresses the circumference of the measurement site 151 so as to suppress blood flow in the measurement site 151 of the measurement subject (first step). For example, when an instruction to start measurement is input to the component concentration measuring device, compression around the measurement site 151 is started. Next, when a preset time elapses after the compression around the measurement site 151 is started (yes in step S102), in step S103, a beam having a wavelength absorbed by the substance to be measured is emitted from the light emitting unit 101. The light 121 is emitted toward the measurement site 151, and the photoacoustic signal generated from the measurement site 151 is detected by the detection unit 103 (second step).
  • step S104 when the photoacoustic signal is detected by the detection unit 103, the compression around the measurement site 151 is stopped in step S104 (fourth step).
  • step S105 the concentration calculation unit 104 obtains the amount (concentration) of the component of the substance (glucose) to be measured in the blood in the measurement site 151 from the detected photoacoustic signal (third step). ..
  • step S106 for example, the component concentration measuring device determines whether or not an instruction to stop the measurement is input. When the instruction to stop the measurement is not input, when the set time elapses after the compression around the measurement site 151 is stopped (yes in step S107), the process returns to step S101. The above-described steps S101 to S107 are continued until the instruction to end the measurement is input (yes in step S106).
  • step S101 the compression around the measurement site 151 is stopped in step S104 (fourth step), and the compression is started in the next step S101.
  • the time (cycle T) for one cycle until the start can be set to 5 to 20 seconds.
  • the elapsed time determined in step S102 that is, the preset time is (T- ⁇ t)/2, where ⁇ t is the time required to detect the photoacoustic signal in step S103.
  • the time until the compression started in step S101 is stopped in step S104 is (T+ ⁇ t)/2 (see FIG. 6).
  • the cycle T can be a value obtained by multiplying the average value of the pulse cycle time of the pulse of the measurement subject by a natural number n.
  • the pulse of the measurement subject may be measured at predetermined intervals such as every hour to obtain an average value of the pulsation cycle time, and the cycle T can be determined from the obtained average value.
  • steps S101 to S107 are repeated using the determined cycle T until the next pulse measurement, and when a new cycle T is determined by the next pulse measurement, steps S101 to S107 are executed using the new cycle T. repeat.
  • the determination cycle of the cycle T described above is set appropriately.
  • the cycle T can be updated by obtaining the average value of the pulsation cycle time each time steps S101 to S107 are repeated.
  • the cycle T of one cycle described above may be, for example, the interval of the bathomotion of the blood vessel at the measurement site 151.
  • a laser blood flow meter For measurement of pulse rate, for example, a laser blood flow meter can be used (see Non-Patent Document 1).
  • the laser blood flow meter irradiates the skin at the measurement site with infrared light from a laser light source and detects the scattered light with a light receiving element.
  • the light scattered by the red blood cells moving in the blood vessel causes a frequency shift proportional to the moving speed of the red blood cells due to the Doppler phenomenon of light. Therefore, by analyzing the frequency spectrum of the detected signal, information on the blood flow (pulse Number) can be obtained.
  • the measurement site is irradiated with the light beam and the photoacoustic signal is detected. Therefore, in the measurement of the component concentration of glucose or the like in the human body by the photoacoustic method, it becomes possible to suppress the measurement error caused by the change of the blood vessel state.

Abstract

圧迫部(102)は、設定されている圧迫時間の間、被測定者の測定部位(151)における血流を抑制するように測定部位(151)の周囲を圧迫する。検出部(103)は、圧迫部(102)が測定部位(151)の周囲を圧迫している間に、ビーム光(121)が照射された測定部位(151)から発生する光音響信号を検出する。検出部(103)は、圧迫部(102)が測定部位(151)の周囲の圧迫を開始してから予め設定されている時間が経過した時点で光音響信号を検出する。

Description

成分濃度測定方法および装置
 本発明は、成分濃度測定方法および装置に関し、より具体的には、血液中のグルコースなどの成分濃度を非侵襲に測定する成分濃度測定方法および装置に関する。
 糖尿病患者に対するインスリンの投与量の決定や、糖尿病の予防などの観点より、血糖値を把握(測定)することが重要となる。血糖値は、血液中のグルコースの濃度であり、この種の成分濃度の測定方法として、光音響法がよく知られている(特許文献1参照)。
 生体にある量の光(電磁波)を照射した場合、照射した光は生体に含有される分子に吸収される。このため、光が照射された部分における測定対象の分子は、局所的に加熱されて膨張を起こし、音波を発生する。この音波の圧力は、光を吸収する分子の量に依存する。光音響法は、この音波(光音響信号)を測定することにより、生体内の分子の量を測定する方法である。音波は生体内を伝搬する圧力波であり、電磁波に比べ散乱しにくいという特質があり、光音響法は生体の血液成分の測定に適しているものといえる。
 光音響法による測定によれば、連続的な血液中のグルコース濃度の監視が可能となる。また、光音響法の測定は、血液サンプルを必要とせず、測定対象者に不快感を与えることがない。
特開2010-104858号公報
桑原 啓 他、「スマホで視る血液の流れ―超小型ウェアラブル血流センサ」、NTT技術ジャーナル、21-24頁、2014年、11月。
 ところで、この種の測定の対象となる人体の部位においては、血管の径が常に変動し、一定ではないる。例えば、血流量を測定していると、安静にしていても、心拍以外に約10秒間隔の周期的な揺らぎが存在している。この約10秒周期の揺らぎは、バソモーションと呼ばれる血管の収縮運動の影響を表している。このような血管の収縮運動に伴って血管の径が変化すると、この箇所における血液中の血漿と間質液との割合が変化して成分濃度の測定誤差につながる。
 本発明は、以上のような問題点を解消するためになされたものであり、光音響法による人体内のグルコースなどの成分濃度の測定において、血管の状態が変化することによって発生する測定誤差の抑制を目的とする。
 本発明に係る成分濃度測定方法は、被測定者の測定部位における血流を抑制するように測定部位の周囲を圧迫する第1工程と、測定対象の物質が吸収する波長のビーム光を測定部位に照射して、測定部位の周囲の圧迫を開始してから設定されている時間が経過した時点で測定部位から発生する光音響信号を検出する第2工程と、光音響信号により物質の濃度を求める第3工程とを備える。
 上記成分濃度測定方法の一構成例において、光音響信号を検出した後で測定部位の周囲の圧迫を停止する第4工程を備える。
 上記成分濃度測定方法の一構成例において、圧迫の開始と光音響信号の検出と圧迫の停止とを周期的に繰り返す。
 上記成分濃度測定方法の一構成例において、第2工程は、圧迫の開始から次の圧迫の開始までの周期の半分の時間が経過した時点で光音響信号を検出する。
 上記成分濃度測定方法の一構成例において、圧迫の開始から次の圧迫の開始までの周期は5~20秒である。
 上記成分濃度測定方法の一構成例において、物質はグルコースである。
 本発明に係る成分濃度測定装置は、測定対象の物質が吸収する波長のビーム光を被測定者の測定部位に照射する光出射部と、測定部位における血流を抑制するように測定部位の周囲を圧迫する圧迫部と、圧迫部が測定部位の周囲を圧迫している間に、光出射部から出射されたビーム光を照射した測定部位から発生する光音響信号を検出する検出部と、光音響信号により物質の濃度を求める濃度算出部とを備える。
 上記成分濃度測定装置の一構成例において、検出部は、圧迫部が測定部位の周囲の圧迫を開始してから予め設定された時間が経過した時点で光音響信号を検出する。
 上記成分濃度測定装置の一構成例において、圧迫部による圧迫動作と、検出部による光音響信号の検出動作とを制御する制御部を備える。
 上記成分濃度測定装置の一構成例において、制御部は、圧迫部による圧迫の開始と、検出部による光音響信号の検出と、圧迫部による圧迫の停止とを周期的に繰り返させる。
 上記成分濃度測定装置の一構成例において、制御部は、圧迫の開始から次の圧迫の開始までの周期の半分の時間が経過した時点で、検出部に光音響信号を検出させる。
 上記成分濃度測定装置の一構成例において、制御部は、圧迫の開始から次の圧迫の開始までの制御の周期を5~20秒とする。
 上記成分濃度測定装置の一構成例において、物質はグルコースであり、光出射部は、グルコースが吸収する波長のビーム光を照射する。
 以上説明したように、本発明によれば、測定部位の周囲の圧迫を開始してから設定されている時間が経過した時点で光音響信号を検出するので、光音響法による人体内のグルコースなどの成分濃度の測定における、血管の状態が変化することによって発生する測定誤差が抑制できるという優れた効果が得られる。
図1は、本発明の実施の形態に係る成分濃度測定方法装置の構成を示す構成図である。 図2は、本発明の実施の形態に係る成分濃度測定方法装置を構成する濃度算出部104のハードウエア構成示す構成図である。 図3は、本発明の実施の形態に係る成分濃度測定方法装置を構成する制御部105のハードウエア構成示す構成図である。 図4は、本発明の実施の形態に係る成分濃度測定装置のより詳細な構成を示す構成図である。 図5は、本発明の実施の形態に係る成分濃度測定方法を説明するためのフローチャートである。 図6は、測定部位の周囲の圧迫および測定の間隔を説明するための説明図である。
 以下、本発明の実施の形態に係る成分濃度測定装置について図1を参照して説明する。この成分濃度測定装置は、光出射部101、圧迫部102、検出部103、濃度算出部104、制御部105を備える。
 光出射部101は、測定対象の物質が吸収する波長のビーム光121を生成する剛健を備えし、生成したビーム光121を、被測定者の測定部位151に向けて出射することができる。例えば、測定対象の物質が血中のグルコースの場合、光出射部101は、グルコースが吸収する波長のビーム光121を生成する発光素子などの光源とその駆動回路とを含む光源部101aと、光源が生成したビーム光121を、予め設定されたパルス幅を有するパルス光とするパルス生成部101bとを備える。
 なお、グルコースは1.6μm近傍および2.1μm近傍の光の波長帯において吸収特性を示す(特許文献1参照)。グルコースが測定対象物質の場合、光出射部101が出射するビーム光121は、0.02秒以上のパルス幅を有するビーム光とする。
 圧迫部102は、被測定者の測定部位151における血流を抑制するように測定部位151の周囲を圧迫する。圧迫部102は、例えば、空気袋111、ポンプ112、圧力センサ113、制御バルブ114を備える。
 ポンプ112により配管115を経由して空気を供給することで空気袋111を拡張させて測定部位151を圧迫する。供給している空気の圧力は、配管115を介して圧力センサ113により測定され、圧力センサ113が測定している空気圧が設定されている値となるように、ポンプ112は空気を供給する。この圧迫を予め設定された時間以上継続することにより、測定部位151の血管を圧迫し、血流を抑制する(例えば阻血する)。
 また、制御バルブ114は、例えば、設定されている時間(圧迫時間)の間隔で、バルブの開閉を行う。制御バルブ114が閉状態において、上述したようにポンプ112による空気の供給が開始され、空気袋111を拡張させる。また、制御バルブ114が開状態において、ポンプ112による空気の供給が停止され、空気袋111内が減圧され、空気袋111による測定部位151の圧迫が停止される。
 検出部103は、圧迫部102が測定部位151の周囲を圧迫している間に、ビーム光121が照射された測定部位151から発生する光音響信号を検出する。検出部103は、圧迫部102が測定部位151の周囲の圧迫を開始してから設定されている時間が経過した時点で光音響信号を検出する。検出部103が検出した光音響信号は、例えば、測定された時刻情報とともに後述する濃度算出部104を構成する外部記憶装置104b(不図示)に記憶される。
 検出部103には、クリスタルマイクロフォン、セラミックマイクロフォン、セラミック超音波センサ等の圧電効果・電歪効果を用いたもの、ダイナミックマイクロフォン、リボンマイクロフォン等の電磁誘導を用いたもの、コンデンサマイクロフォン等の静電効果を用いたもの、磁歪振動子等の磁歪を用いたものを用いることができる。圧電効果を持つものには、例えば周波数平坦型電歪素子(ZT)またはPVDF(ポリフッ化ビニリデン)などの結晶を含むものが例示できる。検出部103は、FET(電界効果トランジスタ)増幅器を内蔵するPZTから構成することもできる。
 濃度算出部104は、検出部103が検出した光音響信号により上述した物質の濃度を求める。例えば、濃度算出部104は、光音響信号を元に測定部位151内の血液中の測定対象のグルコースの濃度を求める。
 ここで、濃度算出部104のハードウエア構成について図2を参照して説明する。濃度算出部104は、CPU(Central Processing Unit;中央演算処理装置)104aと外部記憶装置104bと主記憶装置104cと、外部機器などを接続するための入出力装置104dとなどを備えたコンピュータ機器である。検出部103が検出した光音響信号は、入出力装置104dを介してデジタルデータとして外部記憶装置104bに記憶され、主記憶装置104cに展開されたプログラムによりCPU104aが動作することで、上述した濃度算出部104の機能が実現される。求められた濃度は、入出力装置104dを介して読み出し可能な状態で、外部記憶装置104cに記憶される。
 制御部105は、圧迫部102による圧迫動作と、検出部103による光音響信号の検出動作とを制御する。制御部105は、例えば、濃度測定開始の指示が入力されると、制御バルブ114を閉状態としてポンプ112を動作させ、空気袋111による測定部位151の周囲の圧迫を開始させる。次いで、制御部105は、圧迫の開始から予め設定されている時間が経過した時点で、検出部103に光音響信号を検出させる。次いで、検出部103が光音響信号を検出すると、制御部105は、ポンプ112の動作を停止し、制御バルブ114を開状態とし、空気袋111による測定部位151の周囲の圧迫を停止する。
 また、制御部105は、圧迫部102による測定部位151の周囲の圧迫の開始と、検出部103による光音響信号の検出と、圧迫部102による測定部位151の周囲の圧迫の停止とを周期的に繰り返させる。この場合、制御部105は、圧迫の開始から次の圧迫の開始までの周期の半分の時間が経過した時点で、検出部103に光音響信号を検出させる。また、制御部105は、上述した一連の制御の繰り返しを、例えば、予め設定されている時間帯に実施する。
 ここで、制御部105のハードウエア構成について図3を参照して説明する。制御部105は、CPU105aと外部記憶装置105bと主記憶装置105cと、外部機器などを接続するための入出力装置105dとなどを備えたコンピュータ機器である。主記憶装置105cに展開されたプログラムによりCPU105aが動作することで、上述した制御部105の機能が実現される。
 ここで、光出射部101および検出部103について、図4を用いてより詳細に説明する。まず、光源部101aは、第1光源201、第2光源202、駆動回路203、駆動回路204、位相回路205、合波器206を備える。また、検出部103は、検出器207、位相検波増幅器208、発振器209を備える。
 発振器209は、信号線により駆動回路203、位相回路205、位相検波増幅器208にそれぞれ接続される。発振器209は、駆動回路203、位相回路205、位相検波増幅器208のそれぞれに信号を送信する。
 駆動回路203は、発振器209から送信された信号を受信し、第1光源201へ駆動電力を供給し、第1光源201より上記信号の周波数に同期して強度変調された光を出射させる。第1光源201は、例えば、半導体レーザである。
 位相回路205は、発振器209から送信された信号を受信し、受信した信号に180°の位相変化を与えた信号を、信号線を介して駆動回路204へ送信する。
 駆動回路204は、位相回路205から送信された信号を受信し、第2光源202へ駆動電力を供給し、第2光源202より上記信号の周波数でかつ位相回路205により180°の位相変化を受けた信号に同期して強度変調された光を出射させる。第2光源202は、例えば、半導体レーザである。
 第1光源201および第2光源202の各々は、互いに異なる波長の光を出力し、各々が出力した光を光波伝送手段により合波器206へ導く。第1光源201および第2光源202の各々の波長は、一方の光の波長をグルコースが吸収する波長に設定し、他方の光の波長を、水が吸収をする波長に設定する。また、両者の吸収の程度が等しくなるように、各々の波長を設定する。
 第1光源201の出力した光と第2光源202の出力した光は、合波器206において合波されて、1の光ビームとしてパルス生成部101bに入射する。パルス生成部101bは、例えば、光チョッパーから構成できる。光ビームが入射されたパルス生成部101bでは、入射した光ビームを所定のパルス幅のパルス光として測定部位151に出射する。
 検出器207は、測定部位151で発生した光音響信号を検出し、電気信号に変換して、信号線を介して位相検波増幅器208へ送信する。位相検波増幅器208は、発振器209から送信される同期検波に必要な同期信号を受信するとともに、検出器207から送信されてくる光音響信号に比例する電気信号を受信し、同期検波、増幅、濾波を行って、光音響信号に比例する電気信号を出力する。このようにして測定されて処理された電気信号(光音響信号)が、測定された時刻の情報とともに、濃度算出部104を構成する外部記憶装置104bに記憶される。
 位相検波増幅器208より出力される信号の強度は、測定部位151内の成分(グルコース、水)により吸収された、第1光源201および第2光源202の各々が出力する光の量に比例するので、上記信号の強度は測定部位151内の成分の量に比例する。このように出力される信号の強度の測定値(光音響信号)により、濃度算出部104が、測定部位151内の血液中の測定対象の物質(グルコース)の成分の量(濃度)を求める。
 上記のように、同一の周波数の信号により強度変調された2つの光を用いることで、複数の周波数の信号により強度変調している場合に問題となる、複数の光を用いる場合の周波数特性の不均一性の影響を排除することができる。
 一方、光音響法による測定において問題となる、光音響信号に存在する非線形的な吸収係数依存性は、上述したように等しい吸収係数を与える複数の波長の光を用いて測定することにより解決できる(特許文献1参照)。
 次に、本発明の実施の形態に係る成分濃度測定方法について、図5のフローチャートを用いて説明する。
 まず、ステップS101で、圧迫部102により、被測定者の測定部位151における血流を抑制するように測定部位151の周囲を圧迫する(第1工程)。例えば、成分濃度測定装置に測定開始の指示が入力されると、測定部位151の周囲の圧迫が開始される。次に、測定部位151の周囲の圧迫を開始してから予め設定されている時間が経過すると(ステップS102のyes)、ステップS103で、光出射部101から測定対象の物質が吸収する波長のビーム光121を測定部位151に向けて出射し、検出部103で測定部位151から発生する光音響信号を検出する(第2工程)。
 次に、検出部103により光音響信号が検出されると、ステップS104で、測定部位151の周囲の圧迫を停止する(第4工程)。次に、ステップS105で、検出された光音響信号より、濃度算出部104が、測定部位151内の血液中の測定対象の物質(グルコース)の成分の量(濃度)を求める(第3工程)。次に、ステップS106で、例えば、成分濃度測定装置が、測定停止の指示が入力されたか否かを判断する。測定停止の指示が入力されていない場合、測定部位151の周囲の圧迫を停止してから設定されている時間が経過すると(ステップS107のyes)、ステップS101に戻る。上述したステップS101~ステップS107を、測定終了の指示が入力されるまで継続する(ステップS106のyes)。
 なお、ステップS101(第1工程)で測定部位151の周囲の圧迫を開始してから、ステップS104(第4工程)で測定部位151の周囲の圧迫を停止し、次のステップS101で圧迫を開始するまでの1周期の時間(周期T)は、5~20秒とすることができる。また、ステップS102で判断する経過時間すなわち予め設定された時間は、ステップS103における光音響信号の検出に要する時間をΔtとすると、(T-Δt)/2とする。また、ステップS101で開始した圧迫をステップS104で停止するまでの時間は、(T+Δt)/2とする(図6参照)。
 次に、上述した周期Tの設定について説明する。例えば、周期Tは、被測定者の脈拍の拍動周期時間の平均値に自然数nを乗じた値とすることができる。例えば、1時間毎など所定の間隔で被測定者の脈拍を測定して拍動周期時間の平均値を求め、求めた平均値より周期Tを決定することができる。この場合、次の脈拍測定まで、決定した周期Tを用いてステップS101~S107を繰り返し、次の脈拍測定により新たな周期Tが決定されると、新たな周期Tを用いてステップS101~S107を繰り返す。上述した周期Tの決定周期は、適宜に設定する。例えば、ステップS101~S107を繰り返す毎に、拍動周期時間の平均値を求めて周期Tを更新することもできる。また、上述した1周期の周期Tは、例えば、測定部位151における血管のバソモーションの間隔とすることも可能である。
 なお、脈拍数の測定は、例えば、レーザ血流計を用いることができる(非特許文献1参照)。レーザ血流計は、レーザ光源から赤外光を測定部位の皮膚に照射して散乱された光を受光素子で検出する。血管内を移動する赤血球に当たって散乱する光は,光のドップラー現象により,赤血球の移動速度に比例した周波数シフトを生じるため,検出した信号の周波数スペクトルを分析することにより,血液の流れに関する情報(脈拍数)を取得することができる。
 以上に説明したように、本発明によれば、測定部位の周囲の圧迫を開始してから設定されている時間が経過した時点で、ビーム光を測定部位に照射して光音響信号を検出するので、光音響法による人体内のグルコースなどの成分濃度の測定において、血管の状態が変化することによって発生する測定誤差が抑制できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…光出射部、101a…光源部、101b…パルス生成部、102…圧迫部、103…検出部、104…濃度算出部、105…制御部、111…空気袋、112…ポンプ、113…圧力センサ、114…制御バルブ、115…配管、121…ビーム光、151…測定部位。

Claims (13)

  1.  被測定者の測定部位における血流を抑制するように前記測定部位の周囲を圧迫する第1工程と、
     測定対象の物質が吸収する波長のビーム光を前記測定部位に照射して、前記測定部位の周囲の圧迫を開始してから設定されている時間が経過した時点で前記測定部位から発生する光音響信号を検出する第2工程と、
     前記光音響信号により前記物質の濃度を求める第3工程と
     を備えることを特徴とする成分濃度測定方法。
  2.  請求項1記載の成分濃度測定方法において、
     前記光音響信号を検出した後で前記測定部位の周囲の圧迫を停止する第4工程を備えることを特徴とする成分濃度測定方法。
  3.  請求項2記載の成分濃度測定方法において、
     圧迫の開始と前記光音響信号の検出と圧迫の停止とを周期的に繰り返すことを特徴とする成分濃度測定方法。
  4.  請求項3記載の成分濃度測定方法において、
     前記第2工程は、圧迫の開始から次の圧迫の開始までの周期の半分の時間が経過した時点で前記光音響信号を検出する
     ことを特徴とする成分濃度測定方法。
  5.  請求項2~4のいずれか1項に記載の成分濃度測定方法において、
     圧迫の開始から次の圧迫の開始までの周期は5~20秒である
     ことを特徴とする成分濃度測定方法。
  6.  請求項1~5のいずれか1項に記載の成分濃度測定方法において、
     前記物質はグルコースであることを特徴とする成分濃度測定方法。
  7.  測定対象の物質が吸収する波長のビーム光を被測定者の測定部位に照射する光出射部と、
     前記測定部位における血流を抑制するように前記測定部位の周囲を圧迫する圧迫部と、
     前記圧迫部が前記測定部位の周囲を圧迫している間に、前記光出射部から出射された前記ビーム光を照射した前記測定部位から発生する光音響信号を検出する検出部と、
     前記光音響信号により前記物質の濃度を求める濃度算出部と
     を備えることを特徴とする成分濃度測定装置。
  8.  請求項7記載の成分濃度測定装置において、
     前記検出部は、前記圧迫部が前記測定部位の周囲の圧迫を開始してから予め設定された時間が経過した時点で前記光音響信号を検出する
     ことを特徴とする成分濃度測定装置。
  9.  請求項7または8記載の成分濃度測定装置において、
     前記圧迫部による圧迫動作と、前記検出部による前記光音響信号の検出動作とを制御する制御部を備える
     ことを特徴とする成分濃度測定装置。
  10.  請求項9記載の成分濃度測定装置において、
     前記制御部は、
     前記圧迫部による圧迫の開始と、
     前記検出部による前記光音響信号の検出と、
     前記圧迫部による圧迫の停止と
     を周期的に繰り返させることを特徴とする成分濃度測定装置。
  11.  請求項10記載の成分濃度測定装置において、
     前記制御部は、圧迫の開始から次の圧迫の開始までの周期の半分の時間が経過した時点で、前記検出部に前記光音響信号を検出させる
     ことを特徴とする成分濃度測定装置。
  12.  請求項10または11記載の成分濃度測定装置において、
     前記制御部は、圧迫の開始から次の圧迫の開始までの制御の周期を5~20秒とする
     ことを特徴とする成分濃度測定装置。
  13.  請求項7~12のいずれか1項に記載の成分濃度測定装置において、
     前記物質はグルコースであり、
     前記光出射部は、グルコースが吸収する波長の前記ビーム光を照射することを特徴とする成分濃度測定装置。
PCT/JP2019/048257 2018-12-25 2019-12-10 成分濃度測定方法および装置 WO2020137517A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/416,611 US20220079479A1 (en) 2018-12-25 2019-12-10 Method and Device for Measuring Concentration of Component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240800A JP2020101479A (ja) 2018-12-25 2018-12-25 成分濃度測定方法および装置
JP2018-240800 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137517A1 true WO2020137517A1 (ja) 2020-07-02

Family

ID=71127161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048257 WO2020137517A1 (ja) 2018-12-25 2019-12-10 成分濃度測定方法および装置

Country Status (3)

Country Link
US (1) US20220079479A1 (ja)
JP (1) JP2020101479A (ja)
WO (1) WO2020137517A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510492A (ja) * 2003-11-06 2007-04-26 オルセンス リミテッド 人体内の非侵襲的測定の方法およびシステム
JP2007229320A (ja) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2007301154A (ja) * 2006-05-11 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2007300967A (ja) * 2006-05-08 2007-11-22 Toshiba Medical Systems Corp 非侵襲的測定装置及び方法
US20080188724A1 (en) * 2007-02-01 2008-08-07 Samsung Electronics Co., Ltd. Noninvasive apparatus and method for measuring blood sugar concentration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956702A (ja) * 1995-08-18 1997-03-04 Minolta Co Ltd 無侵襲血中成分濃度測定装置
JP2008300967A (ja) * 2007-05-29 2008-12-11 Toshiba Corp 放送番組データ受信装置、コンピュータシステムおよび情報処理装置
US11490836B2 (en) * 2016-06-28 2022-11-08 Alan Abul-Haj Sample depth resolved noninvasive glucose concentration determination analyzer apparatus and method of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510492A (ja) * 2003-11-06 2007-04-26 オルセンス リミテッド 人体内の非侵襲的測定の方法およびシステム
JP2007229320A (ja) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2007300967A (ja) * 2006-05-08 2007-11-22 Toshiba Medical Systems Corp 非侵襲的測定装置及び方法
JP2007301154A (ja) * 2006-05-11 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
US20080188724A1 (en) * 2007-02-01 2008-08-07 Samsung Electronics Co., Ltd. Noninvasive apparatus and method for measuring blood sugar concentration

Also Published As

Publication number Publication date
US20220079479A1 (en) 2022-03-17
JP2020101479A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
US20130190589A1 (en) Multiple peak analysis in a photoacoustic system
JP2011152273A (ja) 生体情報処理装置および生体情報処理方法
JP5647583B2 (ja) 光音響分析装置および光音響分析方法
WO2013063540A1 (en) Methods and systems for continuous non-invasive blood pressure measurement using photoacoustics
JP2007229320A (ja) 成分濃度測定装置
JP4755016B2 (ja) 成分濃度測定装置
KR20160005240A (ko) 광음향 촬영 장치 및 이를 이용한 산소포화도 측정방법
WO2013063541A1 (en) Methods and systems for determining physiological parameters using two photoacoustic peaks
US20190320997A1 (en) Methods for the use of inherent frequency shifting mechanisms for sensors response reading with continuous wave excitation
WO2020137517A1 (ja) 成分濃度測定方法および装置
JP6845182B2 (ja) 成分濃度測定装置
JP2006326224A (ja) 生体成分濃度測定装置及び生体成分濃度測定方法
JP7067460B2 (ja) 成分濃度測定装置
US20150011859A1 (en) Elastic modulus measuring apparatus and elastic modulus measuring method
JP5330364B2 (ja) 非侵襲生体情報計測装置
Zhang et al. Photoacoustic identification of blood vessel deformation under pressure
JP7135837B2 (ja) 成分濃度測定装置
JP2013074995A (ja) 光音響分光装置及びその制御方法
JP7110972B2 (ja) 成分濃度測定装置
JP7127530B2 (ja) 成分濃度測定装置
WO2019244559A1 (ja) 成分濃度測定装置
JP2013103022A (ja) 音響波取得装置およびその制御方法
JP7134657B2 (ja) 光音響計測装置
WO2019235184A1 (ja) 成分濃度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904957

Country of ref document: EP

Kind code of ref document: A1