WO2020137399A1 - レーザアニール方法およびレーザアニール装置 - Google Patents

レーザアニール方法およびレーザアニール装置 Download PDF

Info

Publication number
WO2020137399A1
WO2020137399A1 PCT/JP2019/047443 JP2019047443W WO2020137399A1 WO 2020137399 A1 WO2020137399 A1 WO 2020137399A1 JP 2019047443 W JP2019047443 W JP 2019047443W WO 2020137399 A1 WO2020137399 A1 WO 2020137399A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam spot
laser
laser annealing
energy density
continuous wave
Prior art date
Application number
PCT/JP2019/047443
Other languages
English (en)
French (fr)
Inventor
映保 楊
後藤 順
水村 通伸
香織 齋藤
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020137399A1 publication Critical patent/WO2020137399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing method and a laser annealing apparatus.
  • TFT Thin Film Transistor
  • FPD Flat Panel Display
  • Amorphous silicon a-Si: amorphous Silicon
  • polycrystalline silicon p-Si: polycrystalline Silicon
  • TFT Thin film transistor
  • Amorphous silicon has a low mobility ( ⁇ ), which is an index of electron mobility. For this reason, amorphous silicon cannot support the high mobility required for FPDs, which are becoming higher in density and definition. Therefore, as the switching element in the FPD, it is preferable to form the channel semiconductor layer from polycrystalline silicon having a mobility significantly higher than that of amorphous silicon.
  • a method for forming a polycrystalline silicon film an amorphous silicon film is irradiated with laser light by an excimer laser annealing (ELA) device using an excimer laser to recrystallize the amorphous silicon film. There is a method for forming polycrystalline silicon.
  • the region to be processed is irradiated with a high energy portion for generating a pulsed laser beam, and after passing through this high energy portion, a low energy portion consisting of a laser beam with a smaller energy than that is successively obtained. Irradiation.
  • the residual poorly crystallized region generated by the high energy portion by the irradiation of the low energy portion is crystallized.
  • the ELA device is a gas laser that uses a special gas, and there is a problem that the equipment cost and maintenance cost are high. Further, the ELA device has a problem that the generated output is strong, and it is difficult to keep the phase (coherence) of the phase of the laser light and the output constant.
  • the laser annealing method disclosed in Patent Document 1 requires a large number of light sources, and thus has a problem of higher cost.
  • the crystal grain size of polycrystalline silicon formed by irradiation with excimer laser pulse light is approximately several tens to 350 nm. With such a crystal grain size, higher mobility cannot be satisfied.
  • a TFT of a driver circuit for turning on/off a pixel transistor in an FPD is required to have high mobility in a channel semiconductor layer region. Further, in the FPD, as the size thereof is increased, the resolution is increased, and the moving image characteristics are increased in speed, the TFT as a switching element of the pixel is also required to have high mobility.
  • the present invention has been made in view of the above problems, and can stably form a high-mobility polycrystalline silicon film, a pseudo single crystal silicon film, or the like in a necessary region, and perform laser irradiation on a substrate to be processed. It is an object of the present invention to provide a laser annealing method and a laser annealing apparatus which have good controllability of conditions and can achieve significant cost reduction.
  • an aspect of the present invention is to move a beam spot of laser light relatively to a region to be modified in an amorphous silicon film
  • a laser annealing method for modifying a crystallized silicon by laser annealing a silicon film wherein the laser beam is a continuous wave laser beam emitted from a continuous wave laser, and the beam spot in the beam spot is a relative beam.
  • the energy density of the downstream side portion of the moving direction to be moved more than the energy density of the upstream side portion of the beam spot in the moving direction, and the beam spot is formed at the edge of the reforming target area.
  • the beam spot is moved in the movement direction to reform the entire surface of the reforming target region into a crystallized silicon film starting from the seed crystal region.
  • the emission of the continuous wave laser beam is stopped, and then the emission of the continuous wave laser beam is started within a predetermined time to move the beam spot. Is preferred.
  • the beam spot is continuously moved while the continuous oscillation laser light is emitted.
  • the energy density of the upstream side portion of the beam spot gradually decreases toward the upstream side in the moving direction.
  • the continuous wave laser is preferably a semiconductor laser.
  • the energy density of the downstream side portion of the beam spot is set higher than a threshold value for melting the amorphous silicon film, and the energy density of the upstream side portion of the beam spot in the moving direction is set. It is preferable that the threshold value is set so as to pass through the threshold value and gradually decrease toward the upstream side.
  • the beam spot is formed in an elongated rectangular shape, and the beam spot is projected onto the amorphous silicon film so that the major axis of the beam spot is in a direction orthogonal to the moving direction. It is preferable.
  • the beam spot is relatively moved with respect to the amorphous silicon film formed on the substrate to be processed, and the amorphous silicon film is laser-annealed to crystallize silicon.
  • An energy density of a downstream portion of the beam spot of the continuous wave laser beam emitted from the continuous wave laser in the moving direction in which the beam spot is relatively moved. Is set to be higher than the energy density of the upstream side portion of the beam spot in the moving direction.
  • the energy density of the upstream side portion of the beam spot is set to gradually decrease toward the upstream side in the moving direction.
  • the continuous wave laser is preferably a semiconductor laser.
  • the energy density in the downstream portion of the beam spot is set higher than a threshold value for melting the amorphous silicon film, and the energy density in the upstream portion of the beam spot is in the moving direction. It is preferable that the threshold value is set so as to gradually decrease by passing the threshold value toward the upstream side.
  • the beam spot is formed in an elongated rectangular shape, and the long axis of the beam spot is arranged in a direction orthogonal to the moving direction.
  • the laser beam irradiation unit includes an asymmetric cylindrical lens set such that the energy density of the downstream side portion is higher than the energy density of the upstream side portion of the beam spot. Is preferred.
  • a high-mobility polycrystalline silicon film, a pseudo single crystal silicon film, or the like can be stably formed in a required region, controllability of laser irradiation conditions on a substrate to be processed is good, and significant cost reduction is achieved. It is possible to realize a laser annealing method and a laser annealing apparatus that can achieve high efficiency.
  • FIG. 1 is a schematic configuration diagram of a laser annealing apparatus used in a laser annealing method according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an asymmetric cylindrical lens used in the laser annealing apparatus according to the embodiment of the present invention.
  • 3A is an explanatory view showing the energy density distribution of the laser beam at the position A in FIG. 1
  • FIG. 3B is an explanatory view showing the energy density distribution of the laser beam at the position B in FIG.
  • C is an explanatory view showing the energy density distribution of the laser beam at the position C in FIG. 1.
  • FIG. 1 is a schematic configuration diagram of a laser annealing apparatus used in a laser annealing method according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an asymmetric cylindrical lens used in the laser annealing apparatus according to the embodiment of the present invention.
  • 3A is an explanatory view showing the energy density distribution of the laser beam at the position A in FIG. 1
  • FIG. 4 is an explanatory plan view showing a state in which the substrate to be processed is moved and laser annealing is started using the laser annealing apparatus according to the embodiment of the present invention.
  • FIG. 5A is an explanatory plan view showing a substrate to be processed which is subjected to laser annealing by the laser annealing method according to the embodiment of the present invention.
  • FIG. 5B is an explanatory plan view showing a state in which the beam spot is projected on the edge of the modification target area by the laser annealing method according to the embodiment of the present invention.
  • FIG. 5C is an explanatory plan view showing a state in which the beam spot is moved to the middle portion of the modification target area by the laser annealing method according to the embodiment of the present invention.
  • FIG. 5A is an explanatory plan view showing a substrate to be processed which is subjected to laser annealing by the laser annealing method according to the embodiment of the present invention.
  • FIG. 5B is an explanatory
  • FIG. 6A is an explanatory plan view showing a state in which the beam spot has been moved to the other end edge of the modification target region by the laser annealing method according to the embodiment of the present invention.
  • FIG. 6-2 is an explanatory diagram showing a relationship between time and energy intensity when laser annealing is performed on a region to be modified by the laser annealing method according to the embodiment of the present invention.
  • FIG. 6C is an explanatory diagram showing a relationship between time and energy intensity when laser annealing is performed on a region to be modified by another example of the laser annealing method according to the embodiment of the present invention.
  • FIG. 7 is a perspective view showing a modified example of the asymmetric cylindrical lens used in the laser annealing apparatus according to the present embodiment of the present invention.
  • the substrate 1 to be processed includes a glass substrate 2, a gate wiring 3 arranged on the surface of the glass substrate 2, a glass substrate 2 and a gate insulating film 4 formed on the gate wiring 3. And an amorphous silicon film 5 deposited on the entire surface of the gate insulating film 4.
  • the substrate 1 to be processed finally becomes a TFT substrate in which a thin film transistor (TFT) or the like is formed.
  • TFT thin film transistor
  • the entire surface of the amorphous silicon film 5 is used as the modified region, but the present invention is not limited to this, and the size and shape can be changed as appropriate.
  • the laser annealing apparatus 10 includes a base 11 and a laser beam irradiation unit 12.
  • the base 11 is provided with a board transfer means (not shown).
  • a substrate moving means T (not shown) moves a substrate moving direction T opposite to a relative moving direction Tr of a beam spot LBS described later. Transport to.
  • the relative movement direction Tr of the beam spot LBS is a direction indicated by an arrow Tr in FIG. 6A, which is a direction opposite to the substrate movement direction T of the substrate 1 to be processed. Is.
  • the laser beam irradiation unit 12 includes a semiconductor laser 13 as a light source that oscillates continuous wave laser light (CW laser light), a first lens 14, a second lens 15, and a first fly's eye.
  • the lens 16, the second fly-eye lens 17, the first cylindrical lens 18, the second cylindrical lens 19, and the asymmetric cylindrical lens 20 are provided.
  • the beam spot LBS projected on the amorphous silicon film 5 is set to have an elongated rectangular shape.
  • the continuous wave laser light emitted from the semiconductor laser 13 becomes a laser beam that is diffused and expanded by the first lens 14 and the second lens 15.
  • the laser beam emitted from the semiconductor laser 13 (the laser beam at the position A in FIG. 1) has an energy density distribution as shown in FIG. 3A and has a bilaterally symmetrical Gaussian distribution.
  • the laser beam that has passed through the second cylindrical lens 19 has a rectangular wave-shaped energy density distribution as shown in FIG.
  • the asymmetric cylindrical lens 20 is formed so that a convex lens portion 21 and a concave lens portion 22 respectively extend along the longitudinal direction.
  • the convex lens portion 21 has a function of converging light rays forming the laser beam LB.
  • the concave lens portion 22 has a function of dispersing the light rays forming the laser beam LB.
  • the minor axis direction (direction parallel to the substrate moving direction T) of the laser beam LB (the laser beam at the position C in FIG. 1) that has passed through the asymmetric cylindrical lens 20.
  • the energy density distribution of has a high area AH and a low area AL.
  • the high region AH is projected as a part of the beam spot LBS, the temperature at which the amorphous silicon film 5 is heated due to this high energy density is higher than the threshold of the temperature at which the amorphous silicon film 5 is melted. Is also set high.
  • the energy density is set to gradually decrease toward the upstream side in the moving direction of the beam spot LBS (direction opposite to the substrate moving direction T). Has been done.
  • the slope portion SP in the energy density distribution of the low region AL in FIG. 3(C) there is a slope that gradually decreases after passing the temperature at which the amorphous silicon film 5 is melted.
  • the degree of inclination of the inclined portion SP is set based on experimental values.
  • the laser annealing apparatus 10 has been described above. Next, the laser annealing method for performing the laser annealing process on the amorphous silicon film 5 on the surface of the substrate 1 to be processed using the laser annealing apparatus 10 is described. Will be described.
  • the substrate 1 to be processed is placed at the standby position with respect to the position of the beam spot LBS created by the laser beam irradiation unit 12. At this point, the laser beam irradiation unit 12 is turned off.
  • the substrate 1 to be processed is transported in the substrate moving direction T at a predetermined speed.
  • the laser beam irradiation unit 12 is shortened by a predetermined length. After turning on for a time, switch it off.
  • the seed crystal region 5A is formed at the edge of the amorphous silicon film 5 by the irradiation of the laser beam with the beam spot LBS for a short time (FIGS. 5-3 and 6). -1).
  • the width dimension W of the seed crystal region 5A in the short axis direction shown in FIG. 6A is the same as the width of the beam spot LBS in the short axis direction, and as shown in FIG. It corresponds to the time width t in the energy density distribution in the axial direction (the substrate length direction).
  • the amorphous silicon film 5 in the region corresponding to the high region AH shown in FIG. 3C is instantly melted.
  • a temperature gradient energy density gradient
  • the amorphous silicon film 5 (molten silicon) in which the amorphous silicon film 5 in the region corresponding to the low region AL is melted is gradually lowered in the substrate moving direction T.
  • the seed crystal region 5A made of microcrystalline silicon is formed in the substrate moving direction T.
  • the laser beam irradiation unit 12 is turned on again to restart the irradiation of the laser beam LB, as shown in FIG. 6B.
  • the substrate 1 to be processed is moved along the substrate moving direction T at a constant speed. Then, when it reaches the position where the beam spot LBS is projected on the other end of the modification target region of the substrate to be processed 1, the laser beam irradiation unit 12 is turned off.
  • the pseudo single crystal silicon film 5B as silicon can be modified.
  • the seed crystal region 5A serves as a starting point to promote the crystal growth of the high quality pseudo single crystal silicon film 5B.
  • the beam spot LBS having the distribution of the region AH having high energy intensity and the region AL having low energy intensity was used when forming the seed crystal region 5A, but a beam spot having uniform energy intensity was used. You may use.
  • the seed crystal region 5A may be formed while the substrate 1 to be processed is stationary with respect to the beam spot LBS.
  • the laser used to form the seed crystal region 5A may be a pulse laser.
  • the CW laser light emitted from the continuous wave laser is used as the laser light.
  • the energy density of the beam spot LBS in the downstream side portion (higher area AH) in the moving direction (direction opposite to the substrate moving direction T) in which the beam spot LBS is relatively moved is changed to the upstream side (lower area). It is set higher than the energy density of AL).
  • the laser beam irradiation unit 12 is turned off to stop the emission of continuous wave laser light. After that, the emission of the continuous wave laser beam is started within a predetermined short time, and the beam spot LBS is moved relative to the substrate 1 to be processed.
  • the energy density of the low region AH (upstream side portion) in the beam spot LBS is directed toward the upstream side of the moving direction (direction opposite to the substrate moving direction T) Tr.
  • the seed crystal region 5A of good quality can be formed only by projecting the beam spot LBS onto the amorphous silicon film 5. Therefore, the seed crystal region 5A can be used as a starting point for subsequent growth of the high-quality pseudo single crystal silicon film 5B.
  • the laser annealing apparatus 10 uses the semiconductor laser as the continuous wave laser, the apparatus can be downsized.
  • the beam spot LBS is formed in an elongated rectangular shape, and the long axis of the beam spot LBS is perpendicular to the moving direction (direction opposite to the substrate moving direction T) Tr.
  • crystallized silicon such as a polycrystalline silicon film or a pseudo single crystal silicon film having high mobility, It can be stably formed in a necessary area.
  • the laser annealing apparatus 10 since continuous wave laser light can be used, particularly the semiconductor laser 13 can be used, the controllability of the laser irradiation conditions on the substrate 1 to be processed is good and the It is possible to achieve an extremely low cost.
  • the laser annealing apparatus 10 since the seed crystal region 5A and the pseudo single crystal silicon film 5B can be produced by using a single light source, the effect of significantly reducing the number of laser annealing steps can be obtained. is there. Therefore, by applying the laser annealing apparatus 10 according to the present embodiment to the manufacture of the TFT, the manufacturing process of the TFT can be simplified.
  • the semiconductor laser 13 as a light source that oscillates continuous wave laser light (CW laser light) is applied, but the invention is not limited to this. It is also possible to use various lasers that oscillate continuous wave laser light such as a solid laser, a gas laser, and a metal laser. As the continuous wave laser, it is also possible to use a pseudo continuous wave laser including a laser having a pulse width longer than the cooling time of the molten silicon, for example, a laser having a pulse width of several hundreds ns to 1 ms or more. It is a range.
  • the laser beam irradiation unit 12 is turned off to stop the emission of continuous wave laser light.
  • the beam spot LBS may be continuously moved relatively after forming the seed crystal region 5A.
  • the structure having the concave lens portion 22 as the asymmetric cylindrical lens 20 is applied, but as in the asymmetric cylindrical lens 20A shown in FIG. A structure having a flat portion 23 and a flat portion 23 may be applied.
  • the beam to be created depends on whether the concave lens portion 22 such as the asymmetric cylindrical lens 20 shown in FIG. 2 is selected or the plane portion 23 such as the asymmetric cylindrical lens 20 shown in FIG. 7 is selected. It can be determined according to the energy density distribution applied to the spot LBS.
  • the pseudo single crystal silicon film 5B is formed as the crystallized silicon film, but it is of course possible to grow the polycrystalline silicon film from the seed crystal region. Also in this case, it is possible to form a high quality polycrystalline silicon film starting from the seed crystal region 5A.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

レーザ光として、連続発振レーザから出射される連続発振レーザ光を用い、ビームスポットLBSにおける、ビームスポットLBSを相対的に移動させる移動方向(基板移動方向Tと反対の方向)の下流側部分のエネルギー密度を、ビームスポットLBSの移動方向の上流側部分のエネルギー密度よりも高く設定し、改質予定領域の端縁部に、ビームスポットLBSを投影して種結晶領域を形成させた後、ビームスポットLBSを移動方向へ移動して、種結晶領域を起点として前記改質予定領域の全面を結晶化シリコン膜に改質させる。

Description

レーザアニール方法およびレーザアニール装置
 本発明は、レーザアニール方法およびレーザアニール装置に関する。
 薄膜トランジスタ(TFT:Thin Film Transistor)は、薄型ディスプレイ(FPD:Flat Panel Display)をアクティブ駆動するためのスイッチング素子として用いられている。薄膜トランジスタ(以下、TFTという)の半導体層の材料としては、非晶質シリコン(a-Si:amorphous Silicon)や、多結晶シリコン(p-Si:polycrystalline Silicon)などが用いられている。
 非晶質シリコンは、電子の動き易さの指標である移動度(μ)が低い。このため、非晶質シリコンでは、さらに高密度・高精細化が進むFPDで要求される高移動度には対応しきれない。そこで、FPDにおけるスイッチング素子としては、非晶質シリコンよりも移動度が大幅に高い多結晶シリコンでチャネル半導体層を形成することが好ましい。多結晶シリコン膜を形成する方法としては、エキシマレーザを使ったエキシマレーザアニール(ELA:Excimer Laser Annealing)装置で、非晶質シリコン膜にレーザ光を照射し、非晶質シリコンを再結晶化させて多結晶シリコンを形成する方法がある。
 従来のレーザアニール方法としては、被照射領域において、エキシマレーザアニール(以下、ELAという)装置により発生させたエキシマレーザ光のパルスレーザビームを用いた技術が知られている(特許文献1参照)。
 このレーザアニール方法では、被処理領域を、パルスレーザビームを発生させる高エネルギー部により照射し、この高エネルギー部が通過した後、逐次的に、それよりも小さなエネルギーのレーザビームでなる低エネルギー部の照射を行う。このレーザアニール方法では、低エネルギー部の照射によって高エネルギー部によって生じた残存結晶化不良領域の結晶化を図っている。
 この他のレーザアニール方法としては、ELA装置によるパルスレーザ光のレーザビームに走査方向に沿ってエネルギー分布を持たせたものなどが提案されている。
特開2002-313724号公報
 しかしながら、ELA装置は特殊なガスを使ったガスレーザであり、設備コストならびに維持コストが高いという問題がある。また、ELA装置は、発生出力が強く、レーザ光の位相のそろい具合(コヒーレンス)や出力を一定の状態に保つことが難しいという問題がある。
 上記の特許文献1に開示されたレーザアニール方法では、多くの数の光源を要するため、さらにコスト高となるという問題がある。また、エキシマレーザのパルス光照射によって形成される多結晶シリコンは、結晶粒径が数10~350nm程度である。この程度の結晶粒径では、さらに高い移動度を満足することができない。現在でも、FPDにおける画素トランジスタをオン・オフするドライバ回路のTFTはチャネル半導体層領域に高い移動度が要求されている。さらに、FPDにおいては、その大型化、高解像度化、動画特性の高速化に伴って、画素のスイッチング素子としてのTFTにおいても高移動度化が要望される。
 本発明は、上記の課題に鑑みてなされたものであって、移動度の高い多結晶シリコン膜や疑似単結晶シリコン膜などを必要な領域に安定して形成でき、被処理基板へのレーザ照射条件の制御性がよく、大幅な低コスト化を達成できるレーザアニール方法およびレーザアニール装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の態様は、非晶質シリコン膜の改質予定領域に対して、レーザ光のビームスポットを相対的に移動させ、前記非晶質シリコン膜をレーザアニールして結晶化シリコンへ改質させるレーザアニール方法であって、前記レーザ光は、連続発振レーザから出射される連続発振レーザ光であり、前記ビームスポットにおける、当該ビームスポットを相対的に移動させる移動方向の下流側部分のエネルギー密度を、前記ビームスポットの前記移動方向の上流側部分のエネルギー密度よりも高く設定し、 前記改質予定領域の端縁部に、前記ビームスポットを投影して種結晶領域を形成させた後、前記ビームスポットを前記移動方向へ移動して、前記種結晶領域を起点として前記改質予定領域の全面を結晶化シリコン膜に改質させることを特徴とする。
 上記態様としては、前記種結晶領域を形成した後、前記連続発振レーザ光の出射を停止させ、その後、所定時間内に前記連続発振レーザ光の出射を開始させて、前記ビームスポットを移動させることが好ましい。
 上記態様としては、前記種結晶領域を形成した後、前記連続発振レーザ光を出射させた状態のまま連続して前記ビームスポットを移動させることが好ましい。
 上記態様としては、前記ビームスポットにおける前記上流側部分のエネルギー密度が前記移動方向の上流側へ向けて漸次減少することが好ましい。
 上記態様としては、前記連続発振レーザは、半導体レーザであることが好ましい。
 上記態様としては、前記ビームスポットにおける前記下流側部分のエネルギー密度を、前記非晶質シリコン膜を溶融させる閾値より高く設定し、前記ビームスポットの前記上流側部分におけるエネルギー密度を、前記移動方向の上流側に向けて前記閾値を通過して漸次低下するように設定することが好ましい。
 上記態様としては、前記ビームスポットを、細長い矩形状に形成し、前記ビームスポットの長軸が、前記移動方向に直交する方向となるように、当該ビームスポットを前記非晶質シリコン膜へ投影することが好ましい。
 本発明の他の態様としては、被処理基板の上に形成された非晶質シリコン膜に対して、ビームスポットを相対的に移動させ、前記非晶質シリコン膜をレーザアニールして結晶化シリコンへ改質させるレーザアニール装置であって、前記被処理基板を配置する基台と、前記基台に配置された前記被処理基板に対して相対的に移動され、連続発振レーザ光を出射する連続発振レーザを備えたレーザビーム照射部と、を備え、前記連続発振レーザから出射される連続発振レーザ光の前記ビームスポットにおける、当該ビームスポットを相対的に移動させる移動方向の下流側部分のエネルギー密度が、前記ビームスポットの前記移動方向の上流側部分のエネルギー密度よりも高く設定されていることを特徴とする。
 上記態様としては、前記ビームスポットにおける前記上流側部分のエネルギー密度が前記移動方向の上流側へ向けて漸次減少するように設定されていることが好ましい。
 上記態様としては、前記連続発振レーザは、半導体レーザであることが好ましい。
 上記態様としては、前記ビームスポットの前記下流側部分におけるエネルギー密度は、前記非晶質シリコン膜を溶融させる閾値より高く設定され、前記ビームスポットの前記上流側部分におけるエネルギー密度は、前記移動方向の上流側に向けて前記閾値を通過して漸次低下するように設定されていることが好ましい。
 上記態様としては、前記ビームスポットが、細長い矩形状に形成され、前記ビームスポットの長軸が、前記移動方向に直交する方向となるように配置されていることが好ましい。
 上記態様としては、レーザビーム照射部は、前記ビームスポットの前記上流側部分のエネルギー密度よりも、前記下流側部分のエネルギー密度の方が高くなるように設定された非対称シリンドカルレンズを備えることが好ましい。
 本発明によれば、移動度の高い多結晶シリコン膜や疑似単結晶シリコン膜などを必要な領域に安定して形成でき、被処理基板へのレーザ照射条件の制御性がよく、大幅な低コスト化を達成できるレーザアニール方法およびレーザアニール装置を実現できる。
図1は、本発明の実施の形態に係るレーザアニール方法に用いるレーザアニール装置の概略構成図である。 図2は、本発明の実施の形態に係るレーザアニール装置に用いる非対称シリンドカルレンズを示す斜視図である。 図3(A)は図1のA位置でのレーザビームのエネルギー密度分布を示す説明図、図3(B)は図1のB位置でのレーザビームのエネルギー密度分布を示す説明図、図3(C)は図1のC位置でのレーザビームのエネルギー密度分布を示す説明図である。 図4は、本発明の実施の形態に係るレーザアニール装置を用いて、被処理基板を移動させてレーザアニールを開始する状態を示す平面説明図である。 図5-1は、本発明の実施の形態に係るレーザアニール方法によるレーザアニールを施す被処理基板を示す平面説明図である。 図5-2は、本発明の実施の形態に係るレーザアニール方法により改質予定領域の端縁にビームスポットを投影した状態を示す平面説明図である。 図5-3は、本発明の実施の形態に係るレーザアニール方法により改質予定領域の中間部までビームスポットを移動させた状態を示す平面説明図である。 図6-1は、本発明の実施の形態に係るレーザアニール方法により改質予定領域の他方の端縁までビームスポットを移動させた状態を示す平面説明図である。 図6-2は、本発明の実施の形態に係るレーザアニール方法により改質予定領域をレーザアニールしたときの時間とエネルギー強度との関係を示す説明図である。 図6-3は、本発明の実施の形態に係るレーザアニール方法の他の実施例により改質予定領域をレーザアニールしたときの時間とエネルギー強度との関係を示す説明図である。 図7は、本発明の本実施の形態に係るレーザアニール装置に用いる非対称シリンドカルレンズの変形例を示す斜視図である。
 以下に、本発明の実施の形態に係るレーザアニール方法およびレーザアニール装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の数、各部材の寸法、寸法の比率、形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。
[実施の形態]
 レーザアニール方法の説明に先駆けて、このレーザアニール方法でアニール処理を行う被処理基板の一例と、レーザアニール方法に用いるレーザアニール装置10と、について説明する。
(被処理基板)
 図1に示すように、被処理基板1は、ガラス基板2と、このガラス基板2の表面に配置されたゲート配線3と、ガラス基板2およびゲート配線3の上に形成されたゲート絶縁膜4と、このゲート絶縁膜4の上に全面に堆積された非晶質シリコン膜5と、を備える。被処理基板1は、最終的に薄膜トランジスタ(TFT)などが作り込まれたTFT基板となる。なお、本実施の形態では、非晶質シリコン膜5の全面を改質予定領域とするが、これに限定されるものではなく、大きさや形状は適宜変更可能である。
(レーザアニール装置の概略構成)
 以下、図1から図4を用いて、本実施の形態に係るレーザアニール装置10の概略構成を説明する。図1に示すように、レーザアニール装置10は、基台11と、レーザビーム照射部12と、を備える。
 基台11は、図示しない基板搬送手段を備えている。このレーザアニール装置10においては、被処理基板1を基台11の上に配置した状態で、図示しない基板搬送手段によって、後述するビームスポットLBSの相対的な移動方向Trと反対の基板移動方向Tに向けて搬送する。なお、図6-1に示すように、ビームスポットLBSの相対的な移動方向Trとは、図6-1に矢印Trで示す方向であり、被処理基板1の基板移動方向Tと反対の方向である。
 図1に示すように、レーザビーム照射部12は、連続発振レーザ光(CWレーザ光)を発振する光源としての半導体レーザ13と、第1レンズ14と、第2レンズ15と、第1フライアイレンズ16と、第2フライアイレンズ17と、第1シリンドカルレンズ18と、第2シリンドカルレンズ19と、非対称シリンドカルレンズ20と、を備える。レーザビーム照射部12では、図4に示すように、非晶質シリコン膜5に投影されるビームスポットLBSが細長い矩形状になるように設定されている。
 本実施の形態では、半導体レーザ13から発振された連続発振レーザ光は、第1レンズ14および第2レンズ15により、拡散されて拡がるレーザビームとなる。半導体レーザ13から発振されたレーザビーム(図1の位置Aにおけるレーザビーム)は、図3(A)に示すようなエネルギー密度分布であり、左右対称なガウス分布となる。また、第2シリンドカルレンズ19を通過したレーザビームは、図3(B)に示すような矩形波状のエネルギー密度分布となる。
 図1および図2に示すように、非対称シリンドカルレンズ20は、凸レンズ部21と、凹レンズ部22と、がそれぞれ長手方向に沿って延びるように形成されている。図1に示すように、凸レンズ部21は、レーザビームLBを構成する光線を収束させる作用を有する。また、凹レンズ部22は、レーザビームLBを構成する光線を分散させる作用を有する。
 このため、図3(C)に示すように、非対称シリンドカルレンズ20を通過したレーザビームLB(図1の位置Cおけるレーザビーム)の短軸方向(基板移動方向Tと平行をなす方向)のエネルギー密度の分布は、高い領域AHと低い領域ALとを有する。高い領域AHが、ビームスポットLBSの一部として投影された場合、この高いエネルギー密度に起因して非晶質シリコン膜5を加熱する温度は、非晶質シリコン膜5を溶融させる温度の閾値よりも高く設定されている。
 一方、図3(C)に示したエネルギー密度の低い領域ALでは、エネルギー密度が、ビームスポットLBSの移動方向(基板移動方向Tと反対の方向)の上流側へ向けて漸次低下するように設定されている。
 図3(C)における低い領域ALのエネルギー密度分布における傾斜部SPでは、非晶質シリコン膜5を溶融させる温度を通過して漸次低下する傾斜となっている。なお、この傾斜部SPの傾斜度合いは、実験値に基づいて設定されている。
(レーザアニール方法)
 以上、本実施の形態に係るレーザアニール装置10について説明したが、次に、このレーザアニール装置10を用いて被処理基板1の表面の非晶質シリコン膜5にレーザアニール処理を行うレーザアニール方法について説明する。
 本実施の形態では、図4に示すように基台11の上に複数の被処理基板1を配置した例を用いて説明するが、このような処理形態に限定されるものではない。以下、図5-1に示す1枚の被処理基板1の表面の非晶質シリコン膜5の全面にレーザアニール処理を行う場合について説明する。
 まず、レーザビーム照射部12で作成するビームスポットLBSの位置に対して、被処理基板1を待機位置に配置しておく。なお、この時点では、レーザビーム照射部12はオフの状態にしておく。
 次に、ビームスポットLBSの位置を固定した状態で、被処理基板1を基板移動方向Tへ所定の速度で搬送する。図5-2に示すように、改質予定領域としての非晶質シリコン膜5の端縁部が、ビームスポットLBSが投影される位置に、移動したときに、レーザビーム照射部12を所定短時間オンにした後、オフに切り換える。
 本実施の形態では、この短時間のビームスポットLBSでのレーザビームの照射により、非晶質シリコン膜5の端縁部には、種結晶領域5Aが形成される(図5-3および図6-1参照)。なお、図6-1に示す種結晶領域5Aの短軸方向の幅寸法Wは、ビームスポットLBSの短軸方向の幅と同じであり、図6-2に示すように、ビームスポットLBSの短軸方向(基板長さ方向)のエネルギー密度分布における時間幅tに対応する。
 なお、上記の所定短時間のビームスポットLBSによるアニールに際しては、図3(C)に示す高い領域AHに対応する領域の非晶質シリコン膜5が瞬時に溶融する。このとき、低い領域ALに対応する領域の非晶質シリコン膜5が溶融した非晶質シリコン膜5(溶融したシリコン)が徐々に基板移動方向Tに向けて下がる温度勾配(エネルギー密度の勾配)によって、基板移動方向Tに向けて微結晶シリコンでなる種結晶領域5Aが形成されていく。
 次に、上記のように種結晶領域5Aを形成した直後に、図6-2に示すように、レーザビーム照射部12を再度、オン状態にしてレーザビームLBの照射を再開する。このとき、被処理基板1は、一定の速度で、基板移動方向Tに沿って移動させる。そして、被処理基板1の改質予定領域の他方の端縁部にビームスポットLBSが投影される位置に達したときに、レーザビーム照射部12をオフにする。
 このようなレーザアニール方法を行うことにより、図6-1に示すように、非晶質シリコン膜5の一方の端縁部から他方の端縁部まで、改質予定領域の略全面を結晶化シリコンとしての疑似単結晶シリコン膜5Bに改質することができる。ここでは、疑似単結晶シリコン膜5Bの成長に際して、種結晶領域5Aが起点として、良質な疑似単結晶シリコン膜5Bの結晶成長を促す作用を有する。なお、上記実施の形態では、種結晶領域5Aを形成する際に、エネルギー強度の高い領域AHと低い領域ALとの分布を持つビームスポットLBSを用いたが、均一なエネルギー強度を持つビームスポットを用いてもよい。このような種結晶領域5Aの形成は、被処理基板1がビームスポットLBSに対して静止した状態で行ってもよい。また、この種結晶領域5Aの形成に用いるレーザは、パルスレーザであってもよい。
 以上のように、本実施の形態に係るレーザアニール方法では、レーザ光として、連続発振レーザから出射されるCWレーザ光を用いる。また、このレーザアニール方法では、ビームスポットLBSにおける、相対的に移動させる移動方向(基板移動方向Tと反対の方向)の下流側部分(高い領域AH)のエネルギー密度を、上流側部分(低い領域AL)のエネルギー密度よりも高く設定している。
 そして、本実施の形態では、図6-2に示すように、種結晶領域5Aを形成した後、レーザビーム照射部12をオフにして連続発振レーザ光の出射を停止させている。その後、所定短時間内に連続発振レーザ光の出射を開始させて、ビームスポットLBSを被処理基板1に対して相対的に移動させている。
 本実施の形態では、上記のレーザアニール方法のように、ビームスポットLBSにおける低い領域AH(上流側部分)のエネルギー密度が移動方向(基板移動方向Tと反対の方向)Trの上流側へ向けて漸次減少するように設定することで、ビームスポットLBSを非晶質シリコン膜5へ投影させるだけで、良質な種結晶領域5Aを形成できる。このため、この種結晶領域5Aを起点として、その後の良質な疑似単結晶シリコン膜5Bの成長に繋げることができる。
 本実施の形態に係るレーザアニール装置10は、連続発振レーザとして半導体レーザを用いているため、装置の小型化を実現できる。
 上記のレーザアニール方法およびレーザアニール装置10では、ビームスポットLBSを、細長い矩形状に形成し、ビームスポットLBSの長軸が、移動方向(基板移動方向Tと反対の方向)Trに直交する方向となるように設定したことにより、幅の広い改質予定領域に対しても対応することができる。
(レーザアニール方法およびレーザアニール装置の効果) 本実施の形態に係るレーザアニール方法およびレーザアニール装置10によれば、移動度の高い多結晶シリコン膜や疑似単結晶シリコン膜などの結晶化シリコンを、必要な領域に安定して形成できる。
 また、本実施の形態に係るレーザアニール装置10によれば、連続発振レーザ光を用い、特に半導体レーザ13を用いることができるため、被処理基板1へのレーザ照射条件の制御性がよく、大幅な低コスト化を達成できる。
 本実施の形態に係るレーザアニール装置10では、単一の光源を用いて、種結晶領域5Aの作製および疑似単結晶シリコン膜5Bの作製を行えるため、レーザアニール工程数を大幅に低減させる効果がある。このため、TFTの製造に本実施の形態に係るレーザアニール装置10を適用することにより、TFTの製造工程を簡略することが可能となる。
[その他の実施の形態]
 以上、実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
 例えば、上記の実施の形態に係るレーザアニール方法およびレーザアニール装置10では、連続発振レーザ光(CWレーザ光)を発振する光源としての半導体レーザ13を適用したが、これに限定されるものではなく、固体レーザ、気体レーザ、金属レーザなど連続発振レーザ光を発振する各種のレーザを用いることも可能である。また、連続発振レーザとしては、パルス幅が溶融シリコンの冷却時間よりも長い、例えば、数百ns~1ms程度以上のパルス幅を有するレーザを含む、疑似連続発振レーザを用いることも本発明の適用範囲である。
 上記の実施の形態に係るレーザアニール方法では、図6-2に示すように、種結晶領域5Aを形成した後、レーザビーム照射部12をオフにして連続発振レーザ光の出射を停止させているが、図6-3の他の実施例に示すように、種結晶領域5Aを形成した後、連続してビームスポットLBSを相対的に移動させるようにしてもよい。
 上記の実施の形態に係るレーザアニール装置10では、非対称シリンドカルレンズ20として凹レンズ部22を備える構造のものを適用したが、図7に示す非対称シリンドカルレンズ20Aのように、凸レンズ部21と平面部23とを有する構造のものを適用してもよい。なお、図2に示した非対称シリンドカルレンズ20のような凹レンズ部22を選択するか、図7に示した非対称シリンドカルレンズ20のような平面部23を選択するかは、作成するビームスポットLBSに付与するエネルギー密度分布に応じて決定することができる。
 上記の実施の形態では、結晶化シリコン膜として、疑似単結晶シリコン膜5Bを形成したが、種結晶領域から多結晶シリコン膜を成長させる構成としても勿論よい。この場合も、種結晶領域5Aを起点として、良質な多結晶シリコン膜を形成することが可能となる。
 LB レーザビーム
 LBS ビームスポット
 T 基板移動方向(ビームスポットの相対的な移動方向Trと反対の方向)
 Tr 相対的な移動方向
 W 幅寸法
 1 被処理基板
 2 ガラス基板
 3 ゲート配線
 4 ゲート絶縁膜
 5 非晶質シリコン膜
 5A 種結晶領域
 5B 疑似単結晶シリコン(結晶化シリコン)膜
 10 レーザアニール装置
 11 基台
 12 レーザビーム照射部
 13 半導体レーザ
 14 第1レンズ
 15 第2レンズ
 16 第1フライアイレンズ
 17 第2フライアイレンズ
 18 第1シリンドカルレンズ
 19 第2シリンドカルレンズ
 20 非対称シリンドカルレンズ
 

Claims (13)

  1.  非晶質シリコン膜の改質予定領域に対して、レーザ光のビームスポットを相対的に移動させ、前記非晶質シリコン膜をレーザアニールして結晶化シリコンへ改質させるレーザアニール方法であって、
     前記レーザ光は、連続発振レーザから出射される連続発振レーザ光であり、
     前記ビームスポットにおける、当該ビームスポットを相対的に移動させる移動方向の下流側部分のエネルギー密度を、前記ビームスポットの前記移動方向の上流側部分のエネルギー密度よりも高く設定し、
     前記改質予定領域の端縁部に、前記ビームスポットを投影して種結晶領域を形成させた後、
     前記ビームスポットを前記移動方向へ移動して、前記種結晶領域を起点として前記改質予定領域の全面を結晶化シリコン膜に改質させる
     レーザアニール方法。
  2.  前記種結晶領域を形成した後、前記連続発振レーザ光の出射を停止させ、
     その後、所定時間内に前記連続発振レーザ光の出射を開始させて、前記ビームスポットを移動させる
     請求項1に記載のレーザアニール方法。
  3.  前記種結晶領域を形成した後、前記連続発振レーザ光を出射させた状態のまま連続して前記ビームスポットを移動させる
     請求項1に記載のレーザアニール方法。
  4.  前記ビームスポットにおける前記上流側部分のエネルギー密度が前記移動方向の上流側へ向けて漸次減少する
     請求項1から請求項3のいずれか一項に記載レーザアニール方法。
  5.  前記連続発振レーザは、半導体レーザである
     請求項1から請求項4のいずれか一項に記載のレーザアニール方法。
  6.  前記ビームスポットにおける前記下流側部分のエネルギー密度を、前記非晶質シリコン膜を溶融させる閾値より高く設定し、
     前記ビームスポットの前記上流側部分におけるエネルギー密度を、前記移動方向の上流側に向けて前記閾値を通過して漸次低下するように設定する
     請求項1から請求項5のいずれか一項に記載のレーザアニール方法。
  7.  前記ビームスポットを、細長い矩形状に形成し、
     前記ビームスポットの長軸が、前記移動方向に直交する方向となるように、当該ビームスポットを前記非晶質シリコン膜へ投影する
     請求項1から請求項6のいずれか一項に記載のレーザアニール方法。
  8.  被処理基板の上に形成された非晶質シリコン膜に対して、ビームスポットを相対的に移動させ、前記非晶質シリコン膜をレーザアニールして結晶化シリコンへ改質させるレーザアニール装置であって、
     前記被処理基板を配置する基台と、
     前記基台に配置された前記被処理基板に対して相対的に移動され、連続発振レーザ光を出射する連続発振レーザを備えたレーザビーム照射部と、
     を備え、
     前記連続発振レーザから出射される連続発振レーザ光の前記ビームスポットにおける、当該ビームスポットを相対的に移動させる移動方向の下流側部分のエネルギー密度が、前記ビームスポットの前記移動方向の上流側部分のエネルギー密度よりも高く設定されている
     レーザアニール装置。
  9.  前記ビームスポットにおける前記上流側部分のエネルギー密度が前記移動方向の上流側へ向けて漸次減少するように設定されている
     請求項8に記載のレーザアニール装置。
  10.  前記連続発振レーザは、半導体レーザである
     請求項8または請求項9に記載のレーザアニール装置。
  11.  前記ビームスポットの前記下流側部分におけるエネルギー密度は、前記非晶質シリコン膜を溶融させる閾値より高く設定され、
     前記ビームスポットの前記上流側部分におけるエネルギー密度は、前記移動方向の上流側に向けて前記閾値を通過して漸次低下するように設定されている
     請求項8から請求項10のいずれか一項に記載のレーザアニール装置。
  12.  前記ビームスポットが、細長い矩形状に形成され、
     前記ビームスポットの長軸が、前記移動方向に直交する方向となるように配置されている
     請求項8から請求項11のいずれか一項に記載のレーザアニール装置。
  13.  レーザビーム照射部は、前記ビームスポットの前記上流側部分のエネルギー密度よりも、前記下流側部分のエネルギー密度の方が高くなるように設定された非対称シリンドカルレンズを備える
     請求項8から請求項12のいずれか一項に記載のレーザアニール装置。
     
PCT/JP2019/047443 2018-12-27 2019-12-04 レーザアニール方法およびレーザアニール装置 WO2020137399A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244801A JP2020107716A (ja) 2018-12-27 2018-12-27 レーザアニール方法およびレーザアニール装置
JP2018-244801 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137399A1 true WO2020137399A1 (ja) 2020-07-02

Family

ID=71127254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047443 WO2020137399A1 (ja) 2018-12-27 2019-12-04 レーザアニール方法およびレーザアニール装置

Country Status (3)

Country Link
JP (1) JP2020107716A (ja)
TW (1) TW202036729A (ja)
WO (1) WO2020137399A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038224A (zh) * 2020-09-11 2020-12-04 中国科学院微电子研究所 一种退火方法及装置
WO2022074094A1 (de) * 2020-10-07 2022-04-14 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und verfahren zum erzeugen einer definierten laserlinie auf einer arbeitsebene
DE102022105342A1 (de) 2022-03-08 2023-09-14 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung zum Erzeugen einer definierten Laserlinie auf einer Arbeitsebene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031496A (ja) * 2001-07-17 2003-01-31 Sharp Corp 半導体基板の製造方法及び半導体装置
JP2003218027A (ja) * 2002-01-18 2003-07-31 Sumitomo Heavy Ind Ltd 結晶成長方法及びレーザアニール装置
JP2004087961A (ja) * 2002-08-28 2004-03-18 Sony Corp 非晶質シリコンの結晶化方法
JP2005129769A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
JP2006156676A (ja) * 2004-11-29 2006-06-15 Sumitomo Heavy Ind Ltd レーザアニール方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031496A (ja) * 2001-07-17 2003-01-31 Sharp Corp 半導体基板の製造方法及び半導体装置
JP2003218027A (ja) * 2002-01-18 2003-07-31 Sumitomo Heavy Ind Ltd 結晶成長方法及びレーザアニール装置
JP2004087961A (ja) * 2002-08-28 2004-03-18 Sony Corp 非晶質シリコンの結晶化方法
JP2005129769A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
JP2006156676A (ja) * 2004-11-29 2006-06-15 Sumitomo Heavy Ind Ltd レーザアニール方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038224A (zh) * 2020-09-11 2020-12-04 中国科学院微电子研究所 一种退火方法及装置
CN112038224B (zh) * 2020-09-11 2022-12-02 中国科学院微电子研究所 一种退火方法及装置
WO2022074094A1 (de) * 2020-10-07 2022-04-14 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und verfahren zum erzeugen einer definierten laserlinie auf einer arbeitsebene
DE102022105342A1 (de) 2022-03-08 2023-09-14 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung zum Erzeugen einer definierten Laserlinie auf einer Arbeitsebene

Also Published As

Publication number Publication date
JP2020107716A (ja) 2020-07-09
TW202036729A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
US6635932B2 (en) Thin film crystal growth by laser annealing
US7364952B2 (en) Systems and methods for processing thin films
US8617313B2 (en) Line scan sequential lateral solidification of thin films
US7318866B2 (en) Systems and methods for inducing crystallization of thin films using multiple optical paths
WO2020137399A1 (ja) レーザアニール方法およびレーザアニール装置
JP2004520715A (ja) 単一走査、連続動作の逐次的横方向結晶化を行う方法及びシステム
KR20110094022A (ko) 박막 결정화를 위한 시스템 및 방법
US7445674B2 (en) Crystallization apparatus, crystallization method, device, optical modulation element, and display apparatus
KR100478623B1 (ko) 반도체 박막의 형성방법 및 반도체 박막의 형성장치
WO2020158464A1 (ja) レーザアニール方法およびレーザアニール装置
WO2020137400A1 (ja) レーザアニール装置
WO2020158424A1 (ja) レーザアニール方法、レーザアニール装置、および結晶化シリコン膜基板
JP2007115841A (ja) 薄膜材料の結晶化方法及びその装置
WO2021039365A1 (ja) レーザアニール装置および結晶化膜の形成方法
JP2007287866A (ja) 半導体結晶薄膜の製造方法およびそれに用いられる製造装置、フォトマスク、ならびに半導体素子
WO2020129562A1 (ja) レーザアニール装置
US20070170426A1 (en) Silicon crystallizing mask, apparatus for crystallizing silicon having the mask and method for crystallizing silicon using the apparatus
JP2004266022A (ja) 半導体薄膜の結晶成長装置および結晶成長方法
JP2020072227A (ja) レーザアニール装置およびレーザアニール方法
JP2008294466A (ja) 半導体薄膜の形成方法、半導体薄膜の形成装置、結晶化方法および結晶化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902950

Country of ref document: EP

Kind code of ref document: A1