WO2020137395A1 - タッチセンサおよびタッチセンサ用導電性フィルム - Google Patents

タッチセンサおよびタッチセンサ用導電性フィルム Download PDF

Info

Publication number
WO2020137395A1
WO2020137395A1 PCT/JP2019/047373 JP2019047373W WO2020137395A1 WO 2020137395 A1 WO2020137395 A1 WO 2020137395A1 JP 2019047373 W JP2019047373 W JP 2019047373W WO 2020137395 A1 WO2020137395 A1 WO 2020137395A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection electrodes
touch sensor
electrode
insulating substrate
lead
Prior art date
Application number
PCT/JP2019/047373
Other languages
English (en)
French (fr)
Inventor
昌哉 中山
中平 真一
浩行 小林
遠藤 靖
稔也 藤井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020562989A priority Critical patent/JP7090179B2/ja
Publication of WO2020137395A1 publication Critical patent/WO2020137395A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a three-dimensional touch sensor and a conductive film for a touch sensor used for the three-dimensional touch sensor.
  • a display device such as a liquid crystal display device
  • various electronic devices including a portable information device such as a tablet computer and a smart phone, and an electronic device is provided by bringing a finger or a stylus pen into contact with or close to a screen.
  • Touch sensors that perform input operations to devices are becoming widespread.
  • a touch sensor is usually equipped with a detection electrode for detecting a touch operation with a finger or a stylus pen, and the detection electrode is an ITO (Indium Tin Oxide) thin film, a thin wire pattern such as a mesh shape.
  • ITO Indium Tin Oxide
  • a conductive member such as a metal wire that the user has is used. Since a metal has an advantage that it can be patterned more easily than a transparent conductive oxide such as ITO and has a lower resistance value, a touch sensor provided with a detection electrode formed of a metal thin wire has attracted attention.
  • Patent Document 1 discloses a three-dimensional touch sensor that includes a detection electrode made of ITO and extends along a hemispherical surface.
  • Patent Document 2 discloses a spherical touch sensor in which a detection electrode formed of a light-transmissive conductive layer made of carbon nanotubes is connected to a capacitance change detection circuit via a lead wiring.
  • Patent Document 3 discloses a touch sensor including a detection electrode made of a thin metal wire.
  • the touch sensor disclosed in Patent Document 3 has a transparent rectangular insulating substrate, and a plurality of mesh-shaped detection electrodes are arranged in a grid pattern on the insulating substrate.
  • the plurality of detection electrodes are arranged in a state of being insulated from each other, and lead-out wirings are respectively drawn from the plurality of detection electrodes along the arrangement direction of the detection electrodes.
  • the touch sensor when a touch sensor is incorporated in an electric device installed on a tabletop, a floor surface, a wall surface, or the like, the touch sensor is exposed to the outside such as the outer surface of the electric device visually recognized by the user. If the detection electrodes of the touch sensor as disclosed in Patent Document 1 are arranged only in the portion, the user can perform a sufficient touch operation. However, for example, with respect to an electric device that can be viewed by a user from all directions, such as a lighting device that is suspended by a wire or a cable, if the detection electrodes of the touch sensor are arranged only on a part of the outer surface of the electric device, The direction and location of the touch operation are limited, and the operability is reduced.
  • a three-dimensional touch sensor not a capacitive touch switch that can simply detect a finger touch, but a self-capacitive projection type that allows so-called multi-touch and gestures. It is desired to employ a capacitive touch sensor or a mutual capacitive projected capacitive touch sensor.
  • the detection electrodes of the projected capacitive touch sensor are to be arranged on the entire outer surface of an electric device or the like, the area occupied by the detection electrodes increases and the electric resistance value of the detection electrodes increases.
  • the sensitivity of the touch sensor is reduced because the value increases as a whole.
  • the detection electrodes of the projection capacitive touch sensor are formed on all the outer surfaces of the electric device or the like, it is necessary to form the lead wiring as disclosed in Patent Document 2 on the outer surface of the electric device or the like. ..
  • a low resistance metal is usually used for the extraction wiring, but a transparent conductive material such as ITO and carbon nanotubes is used for the detection electrodes disclosed in Patent Documents 1 and 2.
  • a transparent conductive material such as ITO and carbon nanotubes
  • the metal lead wiring is conspicuous and the visibility of the touch sensor is deteriorated.
  • the lead wiring is also formed of a transparent conductive material, there is a problem that the resistance of the lead wiring increases and the sensitivity of the touch sensor decreases.
  • the detection electrodes in the touch sensor are subdivided and each has a small area. It is desirable to arrange a large number of detection electrodes.
  • a large number of detection electrodes are arranged. Due to this, the handling of the extraction wiring becomes complicated, and a large space for arranging a large number of extraction wiring must be secured, and a plurality of detection electrodes are arranged in a grid pattern on a rectangular insulating substrate.
  • the present invention has been made in order to solve such a conventional problem, and a touch sensor and a touch sensor capable of improving the operability, sensitivity, and visibility of the touch sensor while having a three-dimensional shape.
  • the purpose is to provide a conductive film for use.
  • the touch sensor of the present invention has a detection electrode arranged over at least one curved surface, a plurality of flat surfaces, or all surfaces of a solid body surrounded by at least one curved surface and at least one flat surface. And a lead-out wiring connected to the detection electrode, and the detection electrode and the lead-out wiring are constituted by thin metal wires.
  • the touch sensor includes an insulating substrate arranged over all surfaces of the solid body, and the detection electrode and the lead wiring are formed on or in the insulating substrate.
  • the detection electrode includes a plurality of first detection electrodes and a plurality of second detection electrodes which are arranged at positions overlapping with the first detection electrodes while being insulated from the first detection electrodes.
  • the second detection electrode is arranged so as to face both surfaces of the insulating material with an insulating material interposed therebetween
  • the lead-out wiring includes a plurality of first lead-out wirings connected to the plurality of first detection electrodes and a plurality of second detection electrodes. A plurality of second lead wirings connected to the electrodes can be included.
  • the plurality of first detection electrodes and the plurality of first lead wires are formed on one surface of the insulating substrate, and the plurality of second detection electrodes and the plurality of second lead wires are formed on the other surface of the insulating substrate. It is preferably formed.
  • the detection electrode preferably has a mesh shape.
  • the thin metal wires preferably have a line width of 1 ⁇ m to 50 ⁇ m. Further, the thin metal wire may include a blackening layer or a black metal layer. Further, the solid is preferably a sphere or a polyhedron.
  • the conductive film for a touch sensor of the present invention includes an insulating substrate, and A plurality of first detection electrodes formed on one surface of the insulating substrate, and arranged on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed and connected to the plurality of first detection electrodes And a plurality of first lead wires, It has a plurality of electrode areas in which a plurality of first detection electrodes are arranged, respectively, and the first detection electrodes respectively arranged in the plurality of electrode areas are electrically connected by the first lead wiring between the plurality of electrode areas. Has been done.
  • the insulating substrate has a peripheral wiring region extending in a strip shape and a plurality of electrode regions arranged on one side or both sides of the peripheral wiring region and arranged along a direction in which the peripheral wiring region extends, and the insulating substrate is
  • the plurality of first detection electrodes are arranged in the plurality of electrode regions, and each of the plurality of first lead-out wirings has at least a part thereof. It is arranged in the peripheral wiring area.
  • the plurality of first detection electrodes are arranged in each of the plurality of electrode regions in a direction intersecting the direction in which the peripheral wiring region extends, and the plurality of first lead-out lines are arranged in the peripheral wiring region and the plurality of electrode regions.
  • the plurality of first lead-out lines are arranged in the peripheral wiring region and the plurality of electrode regions.
  • the conductive film for a touch sensor has a position overlapping the first detection electrode while being insulated from the first detection electrode on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed or on the other surface of the insulating substrate.
  • a plurality of first detection electrodes and at least one second detection electrode are respectively arranged in the plurality of electrode regions.
  • the second detection electrodes are insulated from the second detection electrodes arranged in the adjacent electrode regions.
  • the plurality of electrode regions each extend in a predetermined first direction and are arranged in parallel to each other, and the plurality of first detection electrodes are arranged in the first direction in each of the plurality of electrode regions. be able to.
  • ground wire arranged on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed and in the vicinity of the plurality of first lead wires.
  • each of the plurality of first lead wires extends from the corresponding electrode region through the peripheral wiring region to the adjacent electrode region and is connected to the plurality of first detection electrodes arranged in the adjacent electrode regions. It is preferable.
  • the conductive film for a touch sensor detects the first detection electrode while being insulated from the first detection electrode on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed or on the other surface of the insulating substrate.
  • ground wire arranged on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed and in the vicinity of the plurality of first lead wires.
  • the plurality of first detection electrodes may extend in a direction intersecting the direction in which the peripheral wiring region extends, and the plurality of first lead-out lines may be arranged only in the peripheral wiring region.
  • the touch sensor conductive film is insulated from the first detection electrode on the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed or on the other surface of the insulating substrate while being insulated from the first detection electrode.
  • Two lead-out wirings, a plurality of second detection electrodes and at least one first detection electrode are arranged in each of the plurality of electrode areas, and the plurality of second lead-out wirings include a peripheral wiring area and a plurality of electrodes. It is preferably arranged in the region. Further, it is preferable that the plurality of electrode regions extend on both sides of the peripheral wiring region in a direction orthogonal to the peripheral wiring region and are arranged in parallel with each other.
  • the insulating substrate may have at least one curved surface, a plurality of flat surfaces, or an expanded shape of a solid body surrounded by at least one curved surface and at least one flat surface.
  • each of the plurality of first detection electrodes is made of a metal thin wire and has a mesh shape
  • each of the plurality of first lead wires is made of a metal thin wire.
  • a three-dimensional touch sensor uses the above conductive film for a touch sensor, and is surrounded by at least one curved surface, a plurality of flat surfaces, or at least one curved surface and at least one flat surface. It is a feature.
  • the touch sensor includes a detection electrode arranged over at least one curved surface, a plurality of flat surfaces, or all surfaces of a solid body surrounded by at least one curved surface and at least one flat surface, and Since the detection electrode and the extraction wiring are formed of thin metal wires, the operability, sensitivity, and visibility of the touch sensor can be improved while having a three-dimensional shape.
  • the conductive film for a touch sensor has an insulating substrate, a plurality of first detection electrodes formed on one surface of the insulating substrate, and the same surface as the surface of the insulating substrate on which the plurality of first detection electrodes are formed.
  • a plurality of first lead-out wirings arranged above and connected to the plurality of first detection electrodes, the insulating substrate is arranged in a strip-shaped peripheral wiring region and one or both sides of the peripheral wiring region, and It has a plurality of electrode regions arranged along the direction in which the peripheral wiring region extends and a plurality of electrode regions each having a discontinuous portion between the electrode regions adjacent to each other in the plurality of electrode regions.
  • the electrodes are arranged in a plurality of electrode areas, and the plurality of first detection electrodes are arranged in at least one adjacent electrode area via the plurality of first lead wires at least partially arranged in the peripheral wiring area. Since it is connected to the arranged first detection electrode, a three-dimensional touch sensor can be easily realized.
  • FIG. 3 is a perspective view showing the touch sensor according to the first embodiment of the present invention.
  • FIG. 3 is a development view showing the conductive film according to Embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged view showing the detection electrode and the lead wiring of the conductive film according to the first embodiment of the present invention.
  • FIG. 3 is a partial enlarged view showing a crossing region of the detection electrodes of the conductive film according to the first embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing the conductive film according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a support body according to the first embodiment of the present invention.
  • FIG. 6 is a partially enlarged view showing a detection electrode and a lead wire of a conductive film according to a first modified example of the first embodiment of the present invention.
  • FIG. 6 is a partially enlarged view showing a detection electrode and a lead wire of a conductive film according to a second modification of the first embodiment of the present invention.
  • FIG. 9 is a perspective view showing a touch sensor according to a third modification of the first embodiment of the present invention.
  • FIG. 9 is an exploded perspective view showing a support body according to a third modification of the first embodiment of the present invention. It is a perspective view which shows the touch sensor which concerns on Embodiment 2 of this invention. It is a development view showing a conductive film concerning Embodiment 2 of the present invention.
  • FIG. 6 is a partially enlarged view showing a detection electrode and a lead wire of the conductive film according to the second embodiment of the present invention.
  • Angles including “orthogonal” and “parallel” include an error range generally accepted in the technical field, unless otherwise specified.
  • “Transparent” means that the light transmittance is at least 40% or more, preferably 75% or more, more preferably 80% or more, still more preferably in the visible light wavelength range of 400 nm to 800 nm. 90% or more.
  • the light transmittance is measured by using "Plastics--Method for obtaining total light transmittance and total light reflectance" defined in JIS K 7375:2008.
  • FIG. 1 shows a touch sensor 1 according to the first embodiment of the present invention.
  • the touch sensor 1 has a substantially spherical shape surrounded by 12 curved surfaces C1 having the same shape.
  • Each curved surface C1 has one end located on the first pole B1 on the axis A and the other end located on the second pole B2 on the axis A, and a line segment connecting the first pole B1 and the second pole B2. Is formed along a cylindrical surface having a diameter of.
  • each curved surface C1 is with respect to the midpoint of the line segment connecting the first pole B1 and the second pole B2, that is, with respect to the plane that passes through the center Q of the substantially spherical body forming the touch sensor 1 and is orthogonal to the axis A.
  • the curved surface C1 has a symmetrical shape, and the width of the curved surface C1 increases from one end and the other end toward the central portion.
  • a conductive film 11 for detecting a touch operation by a user's finger, a stylus pen, or the like is arranged over the entire surface of the touch sensor 1, that is, along a three-dimensional shape formed by 12 curved surfaces C1.
  • FIG. 2 shows the conductive film 11 spread on a plane.
  • the conductive film 11 includes a transparent insulating substrate 12 made of a flexible resin material having flexibility, and the insulating substrate 12 has a shape corresponding to the curved surface C1 of the touch sensor 1 and the first direction D1. It consists of twelve extensions E1 extending along.
  • the twelve extension portions E1 are connected to each other at the central portion of the extension portion E1 in the first direction D1 so as to be arranged along the second direction D2 orthogonal to the first direction D1, and the insulating substrate 12 is , Has a shape corresponding to a development view of a three-dimensional shape surrounded by 12 curved surfaces C1 of the touch sensor 1 as a whole.
  • the insulating substrate 12 includes one main peripheral wiring region R1 extending in a strip shape along the second direction D2 on the central portion of the twelve extending portions E1 connected to each other in the first direction D1, and twelve of the main peripheral wiring regions R1.
  • Each of the extending portions E1 has an electrode region R2 arranged on both sides of the main peripheral wiring region R1 in the first direction D1.
  • the insulating substrate 12 has sub-peripheral wiring regions R3 on both sides of the electrode region R2 in the second direction D2. Twelve electrode regions R2 are arranged along the second direction D2 on both sides of the main peripheral wiring region R1 in the first direction D1, and the insulating substrate 12 has a total of 24 electrode regions R2.
  • Detection electrodes for detecting a touch operation by a user's finger, a stylus pen, or the like are arranged in the 24 electrode regions R2, and lead wires are respectively extracted from the respective detection electrodes via the sub-peripheral wiring region R3. , Or directly to the main peripheral wiring region R1. Further, the insulating substrate 12 has discontinuous portions R0 between the electrode regions R2 adjacent to each other in the second direction D2 on both sides of the main peripheral wiring region R1 in the first direction D1.
  • FIG. 3 is a partially enlarged view of the conductive film 11.
  • the insulating substrate 12 has a first surface and a second surface that form the front and back surfaces of the insulating substrate 12, and the detection electrodes arranged in the 24 electrode regions R2 of the insulating substrate 12 are the same as those of the insulating substrate 12.
  • a plurality of first detection electrodes S1 made of the first thin metal wires arranged on the first surface and a plurality of second detection electrodes S2 made of the second thin metal wires arranged on the second surface of the insulating substrate 12 are formed. included.
  • the first detection electrode S1 and the second detection electrode S2 are arranged to face both surfaces of the insulating substrate 12.
  • the first detection electrode S1 extends along the second direction D2, and the plurality of first detection electrodes S1 are arranged in the first direction D1 at each extension E1.
  • the second detection electrode S2 extends along the first direction D1, and one second detection electrode S2 is arranged in each extension portion E1.
  • the plurality of first detection electrodes S1 arranged in the first direction D1 and one second detection electrode S2 are insulated from each other with the insulating substrate 12 therebetween and overlap each other. It is arranged.
  • the first detection electrode S1 and the second detection electrode S2 are electrodes for detecting a touch operation by a user's finger, a stylus pen, or the like, and the line width and the second extraction line F1 of the first extraction line F1 described later, respectively.
  • the electrode width is wider than the line width of the wiring F2.
  • the first detection electrode S1 and the second detection electrode S2 may be arranged via an insulating material (except air) different from the insulating base material 12.
  • the insulating base material 12, the first detection electrode S1, the insulating material, and the second detection electrode S2 may be stacked in this order.
  • the insulating material is a material excluding air and is not particularly limited as long as it is an organic or inorganic material having an insulating property.
  • the electrode region R2 is arranged along the direction in which the main peripheral wiring region R1 extends, that is, the second direction D2, and the first detection electrode S1 and the second detection electrode S2 are arranged. Area.
  • the electrode regions R2 adjacent to each other refer to the electrode regions R2 adjacent to each other in the direction in which the main peripheral wiring region R1 extends.
  • two or more electrode regions R2 may be set on the insulating substrate 12, and the number of electrode regions R2 to be set has no particular upper limit, It is preferably 1000 or less.
  • the number of the first detection electrodes S1 and the second detection electrodes S2 arranged in the electrode region R2 is determined by the size of the touch sensor 1, the size of the first detection electrode S1, the size of the second detection electrode S2, and the like. However, it may be 1 or more. Further, the shape of the electrode region R1 may be a rectangle, a square, a triangle, a polygon, a circle, an ellipse, etc., which is determined by the shapes and arrangements of the first detection electrode S1 and the second detection electrode S2. Is preferred.
  • the lead-out wirings drawn from the detection electrodes include the first lead-out wirings F1 connected to the first detection electrodes S1 arranged on the first surface of the insulating substrate 12, and the second lead-out wirings on the second surface of the insulating substrate 12.
  • the second lead-out wiring F2 connected to the arranged second detection electrode S2 is included.
  • the first wiring F1 connects the first detection electrodes S1 adjacent to each other in the second direction D2 with the discontinuous portion R0 therebetween, and at this time, the first lead-out wiring F1 is connected to the corresponding electrode region R2.
  • the first detection electrodes S1 adjacent to each other in the second direction D2 are connected to each other through the first lead wiring F1. ..
  • the twelve extension parts E1 only two extension parts E1 located at one end of the second direction D2 are arranged between the extension parts E1 adjacent to each other in the first direction D1.
  • the 1 detection electrodes S1 may be connected to each other via the first lead-out wiring F1.
  • the plurality of first lead-out wirings F1 drawn out to the side opposite to the extending portion E1 adjacent to the second direction D2 pass through the sub-peripheral wiring region R3 and the main peripheral wiring region R1 and are connected to an external circuit board (not shown) or the like. Connected to.
  • the second lead-out wiring F2 connected to the second detection electrode S2 is also connected to an external circuit board (not shown) or the like through the main peripheral wiring region R1.
  • the first detection electrode S1 and the first lead wire F1 are made of the same thin metal wire
  • the second detection electrode S2 and the second lead wire F2 are made of the same thin metal wire.
  • the first detection electrode S1, the second detection electrode S2, the first lead wiring F1, and the second lead wiring F2 are made of the same thin metal wire, the first detection electrode S1, the second detection electrode S2, and the first lead wire
  • the wiring F1 and the second lead wiring F2 can be formed at the same time when they are manufactured.
  • FIG. 4 shows an enlarged view of the intersection region G where the first detection electrode S1 and the second detection electrode S2 overlap with each other via the insulating substrate 12.
  • the first detection electrode S1 is made of the first thin metal wire M1 and has a mesh shape.
  • the second detection electrode S2 is made of the second thin metal wire M2 and has a mesh shape like the first detection electrode S1.
  • the first detection electrode S1 and the second detection electrode S2 are formed by forming a mesh shape with the first metal thin line M1 forming the first detection electrode S1 and the second metal thin line M2 forming the second detection electrode S2. Since the resistance of the first detection electrode S1 and the second detection electrode S2 can be increased, and the parasitic capacitance of the first detection electrode S1 and the second detection electrode S2 can be reduced.
  • a touch sensor with high sensitivity and excellent visibility is realized.
  • the first detection electrode S1 and the second detection electrode S2 have the same rhombus mesh shape, and the apex of the rhombus mesh of the first sensing electrode S1 is the rhombus mesh of the second sensing electrode S2. , And the apex of the rhombus mesh of the second detection electrode S2 is located at the center of the rhombus mesh of the first detection electrode S1. Therefore, the first detection electrode S1 and the second detection electrode S2 form a rhombus mesh having a smaller mesh pitch.
  • the shape of the mesh is not particularly limited, and a square, a parallelogram, a rhombus, a regular pentagon, a regular hexagon, a random shape, or the like can be used, but a rhombus is more preferable.
  • the acute angle of the rhombus is preferably 20 degrees or more and 80 degrees or less
  • the mesh pitch of the rhombus (corresponding to the length of one side of the rhombus) is preferably 100 ⁇ m or more and 700 ⁇ m or less
  • the first detection electrode S1 and The mesh pitch of the small diamond-shaped mesh formed in combination with the two detection electrodes S2 is preferably 50 ⁇ m or more and 350 ⁇ m or less.
  • the first detection electrode S1 and the second detection electrode S2 are preferably made of metal thin wires having a mesh shape, but not limited to these, ITO, silver nanowires, conductive polymers, It may be made of a conductive material such as carbon nanotube, carbon nanobud, or graphene.
  • FIG. 5 shows a sectional view taken along a plane orthogonal to the intersection region G.
  • the first electrode layer 13 is formed on the first surface 12A of the insulating substrate 12 of the conductive film 11, and the second electrode layer 14 is formed on the second surface 12B of the insulating substrate 12.
  • the first electrode layer 13 includes the first metal thin wire M1 and the protective layer 13A, and the protective layer 13A covers the first surface 12A and the first metal thin wire M1.
  • the second electrode layer 14 includes the second metal thin wire M2 and the protective layer 14A, and the protective layer 14A covers the second surface 12B and the second metal thin wire M2.
  • the protective layer 13A and the protective layer 14A an organic film of gelatin, acrylic resin, urethane resin, epoxy resin, or the like, and an inorganic film of silicon dioxide or the like can be used, and the film thickness is 10 nm or more and 100 nm or more. The following is preferable.
  • the protective layer 13A and the protective layer 14A may contain organic or inorganic particles for the purpose of improving physical properties and optical properties, and further, an antioxidant, a light stabilizer, an ultraviolet absorber, Functional components such as a surfactant, an antifoaming agent, a leveling agent, a cross-linking agent, a plasticizer, an antistatic agent, and a coloring agent (hue adjusting agent) such as a dye or a pigment can be contained.
  • a functional layer such as a refractive index adjusting layer that adjusts the refractive index of the adhesive layer and the insulating substrate 12 to reduce reflection may be provided.
  • a material for the easy-adhesion layer and the refractive index adjusting layer an organic film of gelatin, acrylic resin, urethane resin, polyester resin or the like can be used.
  • the film thickness is preferably 10 nm or more and 1000 nm or less.
  • high refractive index inorganic fine particles such as zirconia and titania may be added to the easy-adhesion layer or the refractive index adjusting layer.
  • the touch sensor 1 has a three-dimensional support 21 shown in FIG.
  • the support 21 is composed of a first support component 21A and a second support component 21B, for example, as shown in FIG.
  • the shapes of the first support component 21A and the second support component 21B are such that the touch sensor 1 having a substantially spherical shape is divided into two in a plane that passes through the center Q and is orthogonal to the axis A. It is equivalent.
  • the first support component 21A has twelve curved surfaces C2 corresponding to the twelve curved surfaces C1 of the touch sensor 1 formed on the outer surface. Further, the inside of the first support component 21A is hollowed out in a hemispherical shape with the axis A as the central axis, and an opening K1 is formed on the side opposite to the first pole B1. In addition, the second support component 21B also has twelve curved surfaces C3 formed on the outer surface similarly to the first support component 21A. Further, the inside of the second support component 21B is hollowed out in a hemispherical shape to form an opening K2.
  • a support 21 having a three-dimensional shape of the touch sensor 1 is configured.
  • first support member 21A and the second support member 21B are both hollowed out in a hemispherical shape, a hollow portion is formed inside the support member 21.
  • 12 curved surfaces C2 of the first support component 21A and 12 curved surfaces C3 of the second support component 21B form 12 curved surfaces corresponding to the 12 curved surfaces C1 of the touch sensor 1. There is.
  • the touch sensor 1 shown in FIG. 1 is configured by arranging the conductive film 11 over all 12 curved surfaces of the outer surface of the support body 21 with no space.
  • a transparent adhesive or the like may be used to attach the conductive film 11 to the outer surface of the support 21. Since the insulating substrate 12 of the conductive film 11 has a discontinuous portion between the electrode regions R2 adjacent to each other in the second direction D2, when the conductive film 11 is attached to the support 21, the insulating substrate 12 is not attached to the insulating substrate 12. Insulating substrate without wrinkling, that is, without causing distortion in the first detection electrode S1, the second detection electrode S2, the first lead wiring F1, the second lead wiring F2, etc.
  • the conductive film 11 can easily cope with a three-dimensional shape.
  • the touch sensor 1 since the conductive film 11 is arranged on all 12 curved surfaces of the support body 21, the insulating substrate 12 is also arranged on all curved surfaces of the support body 21, and the first detection is performed.
  • the detection electrodes including the electrode S1 and the second detection electrode S2 are also arranged over the entire curved surface of the support 21. Therefore, the touch sensor 1 according to the first embodiment of the present invention can detect a touch operation by the user's finger, a stylus pen, or the like from all directions surrounding the touch sensor 1, for example.
  • the support 21 is formed as a transparent material having a light-transmitting property, and a light source such as a fluorescent lamp, an incandescent lamp, or an LED (Light Emitting Diode) is arranged in the hollow portion of the transparent support 21.
  • a light source such as a fluorescent lamp, an incandescent lamp, or an LED (Light Emitting Diode)
  • the first detection electrode S1 of the conductive film 11 is composed of the first metal thin wire M1 and the second detection electrode S2 is composed of the second metal thin wire M2, the first detection electrode S1 and the second detection electrode S1.
  • the first detection electrode S1 and the second detection electrode S2 are formed. It is possible to greatly reduce the electric resistance value of the touch sensor 1, improve the sensitivity of the touch sensor 1 to a touch operation, and improve the visibility without the conspicuous first lead wiring and second lead wiring. ..
  • the touch sensor 1 of the first embodiment it is possible to improve operability, sensitivity, and visibility while having a three-dimensional shape.
  • the conductive film 11 is supported by the support 21 without causing distortion in the first detection electrode S1, the second detection electrode S2, the first lead-out wiring F1, the second lead-out wiring F2, and the like arranged on the insulating substrate 12. Since it can be attached along the outer surface of the touch sensor 1, it is possible to realize the touch sensor 1 having a three-dimensional shape and uniform touch sensitivity. Further, since the conductive film 11 has one continuous insulating substrate 12, the substantially spherical touch sensor 1 can be easily manufactured only by disposing the conductive film 11 on the support 21. be able to. Also, since the external circuits connected to the first lead-out wiring and the second lead-out wiring can be integrated into one, the touch sensor 1 having a substantially spherical shape can be easily manufactured. Further, the detection electrode is arranged at a predetermined position on the insulating substrate 12, and when the touch sensor 1 is manufactured, the displacement of the arrangement position of the detection electrode is suppressed, and the detection position accuracy of the touch sensor 1 is improved. be able to.
  • the light source is arranged in the hollow portion of the support body 21 as an example, the light source arranged in the hollow portion of the support body 21 is not limited to the light source, and a display device or the like may be arranged.
  • the support 21 is divided into two parts, that is, the first support part 21A and the second support part 21B, but may be divided into three or more parts. Alternatively, it may be formed of one component without being divided into a plurality of components. Further, the hollow portion may not be formed inside the support 21.
  • the plurality of first detection electrodes S1 arranged in the first direction D1 are not directly connected to an external circuit board (not shown) or the like, but are not directly connected to the plurality of first detection electrodes S1. It is connected to the first detection electrode S1 arranged in the electrode region R2 adjacent to the second direction D2 via the lead wiring F1. Therefore, the handling of the plurality of first lead-out wirings F1 in the touch sensor 1 is simplified, and the plurality of first lead-out wirings F1 are not provided on the respective extended portions E1 without securing a large arrangement space for arranging the plurality of lead-out wirings F1.
  • the one detection electrode S1 and the plurality of first lead-out wirings F1 can be easily arranged. As described above, according to the conductive film 11 according to the first embodiment of the present invention, it is possible to easily realize the three-dimensional touch sensor 1.
  • the touch sensor 1 can accurately detect the touch position with the user's finger, a stylus pen, or the like.
  • the first detection electrodes S1 adjacent to each other in the second direction D2 are connected to each other via the first lead wiring F1.
  • the first detection electrodes S1 adjacent to each other in the second direction D2 may be connected to each other via the first lead-out wiring F1 only in a part of the extension E1 of E1. Also in this case, since the handling of the plurality of first lead-out wirings F1 in the touch sensor 1 is simplified, the three-dimensional touch sensor 1 can be easily realized.
  • the insulating substrate 12 has a plurality of electrode regions R2 on both sides of the main peripheral wiring region R1 in the first direction D1, but the plurality of first detection electrodes S1 are provided in at least one adjacent electrode region R2.
  • a plurality of electrode regions R2 may be provided on only one side of the main peripheral wiring region R1 in the first direction D1 as long as it is connected to the arranged first detection electrode S1.
  • the first support member 21A and the second support member 21B of the support member 21 are both hollowed out in a hemispherical shape, so that the inside of the support member 21 has a spherical shape.
  • a hollow portion is formed.
  • the support 21 is formed as a transparent material having a light-transmitting property, and a light source such as a fluorescent lamp, an incandescent lamp, or an LED (Light Emitting Diode) is arranged in the hollow portion of the transparent support 21.
  • Control such as adjusting the light emission intensity of a light source by configuring a lighting or light emitting body and detecting a touch operation by a user's finger or the like via the first detection electrode S1 and the second detection electrode S2 of the conductive film 11. It can be performed. Further, a light-transmitting colored layer, a light-scattering layer, a polarizing layer, an optical interference layer, or the like may be arranged on the surface or inside of the support 21 to adjust the characteristics of the light from the light source.
  • what is arranged in the hollow portion of the support body 21 is not limited to the light source, and a display device, an acoustic device, a vibration generating device, an acceleration sensor, a gyro sensor, a geomagnetic sensor (electronic compass), a magnetic sensor, a temperature/humidity sensor. It is also possible to dispose a pressure sensor (atmospheric pressure sensor), a light receiving device, an electromagnetic wave transmitting/receiving device (antenna), a GPS receiving device, a microphone, a camera, a power supply device, a storage device, a computing device and the like.
  • these devices or sensors can be controlled based on a touch operation via the first detection electrode S1 and the second detection electrode S2.
  • these sensors are arranged in the cavity of the support body 21, and the arranged sensors are used to display coordinate information such as the orientation, inclination, and position of the touch sensor 1 and a motion state, or information about the external environment. It is also possible to control the above-mentioned device that is acquired and placed in the cavity in response to that information.
  • the touch sensor 1 is carried by an external carrying means that is separately prepared, and coordinate information such as the orientation and inclination of the touch sensor 1 with respect to the carrying means is arranged in the cavity of the support body 21 or the first detection electrode. It is also possible to detect using S1 and the second detection electrode S2 and control various devices arranged inside or outside the cavity of the support 21.
  • first detection electrode S1, the second detection electrode S2, the first lead-out wiring F1, and the second lead-out wiring F2 are formed on the insulating substrate 12, but may be formed in the insulating substrate 12.
  • a ground line F3 can be arranged in the vicinity of the plurality of first lead wires F1.
  • the ground line F3 is arranged outside the plurality of first lead-out wirings F1 in the main peripheral wiring region R1 and the sub-peripheral wiring region R3 so as to surround the electrode region R2.
  • the ground line F3 becomes a reference potential (ground potential) by being connected to a ground pattern having a so-called reference potential (ground potential) on an external circuit board (not shown). Therefore, due to the ground line F3, the plurality of first lead-out wirings F1 receive, for example, an electric wave from the outside, and the first detection electrode S1 detects a touch operation by the user's finger, a stylus pen, etc. It can be prevented from being included.
  • the ground line F4 can be arranged in the vicinity of the second lead wiring F2 in the same manner as the ground line F3 arranged in the vicinity of the first lead wiring F1. In this case, it is possible to prevent the second lead-out wiring F2 from receiving a radio wave or the like from the outside and including noise in the detection signal of the second detection electrode S2.
  • each extension portion E1 a plurality of first detection electrodes S1 extending in the second direction D2 and arranged in the first direction D1 and extending in the first direction D1
  • the two second detection electrodes S2 are arranged so as to overlap each other, but a plurality of second detection electrodes S2 extending in the first direction D1 may be arranged in each extension portion E1.
  • a plurality of second detection electrodes S2 extending in the first direction D1 may be arranged in each extension portion E1.
  • S2 may be arranged so as to overlap. In this way, by increasing the number of the second detection electrodes S2 in the second direction D2, it is possible to improve the detection sensitivity of the touch operation position by the user's finger, the stylus pen, or the like.
  • the shapes of the first detection electrode S1 and the second detection electrode S2 are shown as rectangles in the examples shown in FIGS. 3 and 7, but the shapes are not limited to this, and trapezoids, arrow blades, and curves are also available. Alternatively, it can have any shape consisting of contours represented by straight lines. Further, the shape and area between the plurality of first detection electrodes S1 and between the plurality of second electrodes may be the same or different. It is preferable to set the widths of the first detection electrode S1 and the second detection electrode S2 in the D2 direction to be wider as they get closer to the peripheral wiring region because the area of the dead region of the touch sensor 1 can be reduced.
  • the first detection electrode S1 is arranged on the first surface 12A of the insulating substrate 12 and the second detection electrode S2 is arranged on the second surface 12B of the insulating substrate 12.
  • Both the first detection electrode S1 and the second detection electrode S2 can be arranged on either the first surface 12A side or the second surface 12B side.
  • the first electrode layer 13 including the first detection electrode S1 and the second electrode layer 14 including the second detection electrode S2 can be laminated via an insulating layer (not shown).
  • the touch sensor is preferably configured as a mutual capacitive projection capacitive touch sensor from the viewpoint of position detection accuracy in so-called multi-touch.
  • the first detection electrode S1 is used as a transmission electrode and the second detection electrode S2 is used as a reception electrode.
  • the detection electrode arranged on the first surface 12A side of the insulating substrate 12 is referred to as a first detection electrode S1
  • the detection electrode arranged on the second surface 12B side of the insulating substrate 12 is referred to as a second detection electrode S1.
  • the detection electrode S2 the detection electrode arranged on the first surface 12A side of the insulating substrate 12 is called the second detection electrode, and the detection electrode arranged on the second surface 12B side of the insulating substrate 12 is called. It may be called the first detection electrode.
  • the first lead-out wiring F1 in the first embodiment is called a second lead-out wiring
  • the second lead-out wiring F2 is called a first lead-out wiring.
  • the arrangement direction of the plurality of first detection electrodes S1 and the direction in which the main peripheral wiring region R1 extends are orthogonal to each other, but are not limited to this, and intersect with each other. Just do it.
  • the direction in which the first detection electrode S1 extends and the direction in which the electrode region R2 extends are orthogonal to each other, the invention is not limited to this and it is sufficient that they intersect with each other.
  • the direction in which the second detection electrode S2 extends and the direction in which the main peripheral wiring region R1 extends are orthogonal to each other, but the invention is not limited to this and it is sufficient if they intersect with each other.
  • the insulating substrate 12 has a plurality of electrode regions R2 on both sides of the main peripheral wiring region R1 in the first direction D1, but the discontinuous portion R0 is formed between the extending portions E1 adjacent to each other.
  • the plurality of electrode regions R2 may be provided only on one side of the main peripheral wiring region R1 in the first direction D1.
  • FIG. 1 shows an example in which the touch sensor 1 has a substantially spherical shape surrounded by 12 curved surfaces C1, but the shape of the touch sensor 1 is not limited to this.
  • the touch sensor 1 can have a substantially spherical shape surrounded by curved surfaces of more than twelve.
  • the touch sensor 1 can also have a substantially spherical shape surrounded by a curved surface having a number smaller than 12.
  • the shape of the touch sensor 1 may be a spherical shape as shown in FIG. 9, for example.
  • the touch sensor 1A shown in FIG. 9 has a spherical support and a conductive film 11A arranged on the outer surface of the support without any gap.
  • the conductive film 11A has the same configuration as the conductive film 11 shown in FIG. 1 except that it is curved along the outer surface of the support, that is, the spherical surface, and the touch sensor 1A shown in FIG.
  • the difference from the touch sensor 1 in FIG. 1 is that it has a spherical support. Further, as shown in FIG.
  • the spherical support 31 can be composed of a first support part 31A having a hemispherical outer shape and a second support part 31B having a hemispherical outer shape. Both the first support component 31A and the second support component 31B are hollowed out in a hemispherical shape, and have openings K3 and K4, respectively. As a result, a spherical hollow portion is formed inside the support 31, and a light source or the like can be arranged in this hollow portion to form an illumination or a light emitting body.
  • the support 31 is formed as a transparent material having a light-transmitting property, and a light source such as a fluorescent lamp, an incandescent lamp, or an LED (Light Emitting Diode) is arranged in the hollow portion of the transparent support 21.
  • a light source such as a fluorescent lamp, an incandescent lamp, or an LED (Light Emitting Diode)
  • Control such as adjusting the light emission intensity of a light source by configuring a lighting or light emitting body and detecting a touch operation by a user's finger or the like via the first detection electrode S1 and the second detection electrode S2 of the conductive film 11. It can be performed.
  • a light-transmitting colored layer, a light-scattering layer, a polarizing layer, an optical interference layer, or the like may be arranged on the surface or inside of the support 21 to adjust the characteristics of the light from the light source.
  • what is arranged in the hollow portion of the support body 31 is not limited to the light source, but a display device, an acoustic device, a vibration generating device, an acceleration sensor, a gyro sensor, a geomagnetic sensor (electronic compass), a magnetic sensor, a temperature/humidity sensor. It is also possible to dispose a pressure sensor (atmospheric pressure sensor), a light receiving device, an electromagnetic wave transmitting/receiving device (antenna), a GPS receiving device, a microphone, a camera, a power supply device, a storage device, a computing device, and the like.
  • These devices or sensors can be controlled based on a touch operation via the first detection electrode S1 and the second detection electrode S2, and these sensors arranged in the cavity can be used to control the touch sensor 1. It is also possible to obtain coordinate information such as orientation, inclination, position, etc., movement state, or information related to the external environment, and control these devices arranged in the cavity according to the information.
  • the touch sensor 1 is supported by an external supporting means that is separately prepared, and coordinate information such as the orientation and inclination of the touch sensor 1 with respect to the supporting means is detected using an internal sensor or the first detection electrode S1 and the second detection electrode S2. It is also possible to detect and control various devices located inside or outside the cavity.
  • the surface of the first metal thin wire M1 and the second metal thin wire M2 facing the outer side of the touch sensor 1 having a substantially spherical shape is subjected to a surface treatment such as an oxidization treatment so that the blackening layer is formed.
  • the blackening layer is included in each of the first thin metal wire M1, the second thin metal wire M2, the first lead wire F1, and the second lead wire F2.
  • a blackening layer can be formed on the surfaces of the first metal thin wires M1 and the second metal thin wires M2 facing the viewing side.
  • the material of the blackening layer for example, copper oxide, molybdenum oxide, carbon, silver oxide or the like can be used.
  • the blackened layer may be further provided on the side of the first metal thin wire M1 and the second metal thin wire M2 on the side of the insulating substrate 12.
  • the multilayer structure of the metal fine wire having the metal and the blackened layer for example, a structure in which molybdenum oxide/aluminum/molybdenum oxide, molybdenum oxide/copper/molybdenum oxide, and copper oxide/copper/copper oxide are sequentially stacked is used. be able to.
  • the thickness of the blackening layer is preferably 0.01 to 0.5 ⁇ m.
  • a black metal layer may be formed on the first thin metal wires M1 and the second thin metal wires M2.
  • a black metal layer may be formed on the first thin metal wires M1 and the second thin metal wires M2.
  • a black metal layer of the same material on both of the detection electrodes and the thin metal wires forming the lead-out wiring, because the lead-out wiring is hard to be visually recognized and from the viewpoint of visibility.
  • the material of the black metal layer for example, chromium, molybdenum, developed silver or the like can be used.
  • the touch sensor 1 of the first embodiment has a substantially spherical shape surrounded by a curved surface, but the shape of the touch sensor of the present invention is not limited to having a curved surface.
  • FIG. 11 shows the touch sensor 40 according to the second embodiment.
  • the touch sensor 40 has a shape of a trihedron that is configured by combining 12 regular pentagons and 20 regular hexagons having sides of the same length. Further, the touch sensor 40 has a support body (not shown) having a shape of a 32-sided body, and a conductive film 41 arranged on all the surfaces of the support body without a gap.
  • FIG. 12 shows a development view of the conductive film 41 developed on a plane.
  • the conductive film 41 includes a transparent insulating substrate 42 made of a flexible soft resin material or the like.
  • the insulating substrate 42 has a shape corresponding to a development view of the three-dimensional shape of the touch sensor 40, and includes extending portions E2, E3, E4, and E5 extending along the first direction D1.
  • the extending portions E2, E3, E4, and E5 are mutually formed with a regular pentagonal plane portion and a regular hexagonal plane portion having the same one side length with respect to the regular pentagonal plane portion as constituent units. It is configured to be connected in the first direction D1 so as to contact one side of the structural unit.
  • the extension part E2 is a regular pentagonal planar part, two regular hexagonal planar parts, and a regular pentagonal planar part in which four planar parts are connected in this order in the first direction D1, and the extension part E3 is a regular pentagonal part.
  • the extension portion E4 has a shape obtained by inverting the extension portion E3 in the first direction D1.
  • the extension E5 has the same shape as the extension E2.
  • extension portions E2, E3, E4, E5 are arranged such that four extension portions E3 and four extension portions E4 are alternately arranged between the extension portions E2 and E5 along the second direction D2. Is linked to. At this time, a total of 10 regular hexagonal flat portions located in the middle portion of the extension portions E2, E3, E4, E5 in the first direction D1 are connected to each other. Discontinuous portions R0 of the insulating substrate 42 are formed on both ends in the one direction D1.
  • the insulating substrate 42 includes one main peripheral wiring region R1 extending in a strip shape along the second direction D2 on the ten hexagonal flat portions that are connected to each other, and the extending portions E2, E3, E4, and E5. Each of them has an electrode region R2 arranged on both sides of the main peripheral wiring region R1 in the first direction D1, and a sub wiring region R3 arranged on both sides of the electrode region R2 in the second direction D2. Detection electrodes are respectively arranged in the plurality of electrode regions R2, and lead wires are drawn from the respective detection electrodes to the main wiring region R1 via the sub-peripheral wiring region R3 or directly to the main wiring region R1. .. Further, the insulating substrate 12 has discontinuous portions R0 between the electrode regions R2 adjacent to each other on both sides of the main peripheral wiring region R1 in the first direction D1.
  • FIG. 13 is a partially enlarged view of the conductive film 41.
  • the insulating substrate 42 has a first surface and a second surface that form the front and back of the insulating substrate 42, and the detection electrodes arranged in the electrode region R2 of the insulating substrate 42 include the first surface of the insulating substrate 42.
  • a plurality of first detection electrodes S1 arranged above and a plurality of second detection electrodes S2 arranged on the second surface of the insulating substrate 42 are included.
  • the first detection electrode S1 and the second detection electrode S2 are arranged to face each other via the insulating substrate 42.
  • the first detection electrode S1 extends along the second direction D2, and the plurality of first detection electrodes S1 are arranged in the first direction D1 at the respective extending portions E2, E3, E4. Further, the second detection electrode S2 extends along the first direction D1, and the three second detection electrodes S2 are arranged in the second direction D2 at the respective extension portions E2, E3, E4. In each of the extended portions E2, E3, and E4, the plurality of first detection electrodes S1 arranged in the first direction D1 and the three second detection electrodes S2 arranged in the second direction D2 are the insulating substrate. They are arranged so as to be insulated from each other and overlap each other by 42.
  • the lead-out wirings drawn from the detection electrodes include the first lead-out wirings F1 connected to the first detection electrodes S1 arranged on the first surface of the insulating substrate 42 and the second lead-out wirings on the second surface of the insulating substrate 42.
  • the second lead-out wiring F2 connected to the arranged second detection electrode S2 is included.
  • the first lead-out wiring F1 is arranged so as to pass through the main peripheral wiring region R1 and the sub-peripheral wiring region R3.
  • the first lead-out wiring F1 is adjacent to the first lead-out wiring F1 in the second direction D2 with the discontinuous portion R0 therebetween and is the same.
  • the first detection electrodes S1 located in the first direction D1 position are connected to each other. Further, on the second surface of the insulating substrate 42 on which the second detection electrode S2 is formed, the second lead-out wiring F2 connected to the second detection electrode S2 is arranged in the main peripheral wiring region R1.
  • the first detection electrode S1, the second detection electrode S2, the first lead-out wiring F1, and the second lead-out wiring F2 are arranged on the extended portion E5 as well as the extended portions E2, E3, and E4. ing.
  • the plurality of first detection electrodes S1 of the conductive film 41 are connected to each other via the first detection electrodes S1 arranged in the electrode region R2 adjacent to the second direction D2 via the first lead wiring F1. Therefore, similarly to the conductive film 11 of the first embodiment, the layout of the plurality of lead wirings F1 in the touch sensor 40 is simplified, and the plurality of first detection electrodes S1 are formed on the extended portions E2, E3, E4, and E5. The plurality of first lead-out wirings F1 can be easily arranged. As described above, according to the conductive film 41 according to the second embodiment, the three-dimensional touch sensor 40 can be easily realized, like the conductive film 11 according to the first embodiment.
  • the insulating substrate 42 of the conductive film 41 has a shape corresponding to a development view of the three-dimensional shape of the touch sensor 40, and has a discontinuous portion R0 between the electrode regions R2 adjacent to each other in the second direction D2. Therefore, similar to the conductive film 11 of the first embodiment, when the conductive film 41 is arranged on the support, it is arranged on the insulating substrate 42 without wrinkling the insulating substrate 42.
  • the first detection electrode S1, the second detection electrode S2, the first lead-out wiring F1, the second lead-out wiring F2, and the like can be easily coped with a three-dimensional shape without causing distortion.
  • the touch sensor 40 is configured by arranging such a conductive film 41 on all surfaces of a support body (not shown) having a 32-hedron shape with no space. At this time, the insulating substrate 42 of the conductive film 41 is also arranged over all the surfaces of the support, and the detection electrodes including the plurality of first detection electrodes S1 and the plurality of second detection electrodes S2 are also supported. Are placed across all sides of. Therefore, according to the touch sensor 40 of the second embodiment, as with the touch sensor 1 of the first embodiment, it is possible to improve operability and sensitivity while having a three-dimensional shape.
  • the touch sensor 40 according to the second embodiment has a shape of a 32-hedron
  • the shape of the touch sensor 40 is not particularly limited, and may have a shape such as an arbitrary polyhedron. ..
  • the touch sensor of the present invention may have at least one curved surface, a plurality of flat surfaces, or a three-dimensional shape surrounded by at least one curved surface and at least one flat surface.
  • the insulating substrates 12 and 42 are not particularly limited as long as they are transparent, have electrical insulating properties, and are flexible or stretchable.
  • the thickness of the insulating substrates 12 and 42 is, for example, 5 ⁇ m to 200 ⁇ m, and particularly preferably 10 ⁇ m to 100 ⁇ m. Particularly, 10 ⁇ m to 100 ⁇ m is preferable.
  • the total light transmittance of the insulating substrate 12 is not limited, it is preferably 40% to 100%, more preferably 80% to 100%.
  • the insulating substrate 12 can be used as a single layer, but can also be used as a laminated body in which two or more layers are combined. Further, it is preferable to perform surface treatment such as corona treatment, glow treatment, plasma treatment, atmospheric pressure plasma treatment, etc., if necessary, and, although not shown, an easily adhesive layer can be provided on the surface.
  • the first thin metal wire M1 forming the first detection electrode S1 and the second thin metal wire M2 forming the second detection electrode S2 are thin metal wires having a line width of 1.0 ⁇ m to 50 ⁇ m. From the viewpoint of.
  • the more preferable line width of the first metal thin wire M1 forming the first detection electrode S1 and the second metal thin wire M2 forming the second detection electrode S2 is 1.0 ⁇ m to 5.0 ⁇ m.
  • the difference between the line width of the first thin metal wire M1 forming the first detection electrode S1 and the second thin metal wire M2 forming the second detection electrode S2 and the line width of the first lead wiring F1 and the second lead wiring F2 is 30 ⁇ m. It is more preferable that the first lead-out wiring F1 and the second lead-out wiring F2 are more difficult to be visually recognized.
  • first metal thin wire M1 forming the first detection electrode S1, the second metal thin wire M2 forming the second detection electrode S2, the first lead wiring F1, and the second lead wiring F2 are made of the same material. Although it may be different, it is preferable that they are formed of the same material because they are excellent in visibility, flexibility, and compatibility with curved surfaces.
  • Preferable materials for the first thin metal wire M1 and the second thin metal wire M2 include silver, copper, aluminum, gold, molybdenum, chrome, etc., alloys thereof, oxides or laminates thereof, and fine particles made of these materials. It can be used as a mixture with a binder and the like.
  • silver or copper is preferable from the viewpoint of the electric resistance value, and for example, a fine metal wire having a laminated structure of molybdenum/aluminum/molybdenum, molybdenum/copper/molybdenum, copper oxide/copper/copper oxide or the like can be used.
  • the first thin metal wire M1 and the second thin metal wire M2 As a more preferable material for the first thin metal wire M1 and the second thin metal wire M2, a material composed of metal particles and a binder is preferable because it is excellent in flexibility and curved surface compatibility.
  • the metal particles are preferably silver or copper particles, and the binder is preferably gelatin, acrylic resin, urethane resin or the like.
  • developed silver obtained by exposing and developing a silver halide emulsion layer described in JP-A-2014-209332, WO2017/033666, WO2016/157585, JP-A-2012-6377 and the like can be used. it can.
  • the film thickness of the first metal thin wire M1 forming the first detection electrode S1 and the second metal thin wire M2 forming the second detection electrode S2 is preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 2 ⁇ m.
  • the first thin metal wire M1 and the second thin metal wire M1 for improving the visibility of the first thin metal wire M1 and the second thin metal wire M2.
  • a blackening layer can be provided on the surface of M2.
  • the blackening layer copper oxide, molybdenum oxide, carbon, silver oxide or the like can be used.
  • the blackening layer is provided on the insulating substrate side of the first metal thin wires M1 and the second metal thin wires M2, that is, between the insulating substrates 12 and 42 and the first metal thin wires M1, and between the insulating substrates 12 and 42 and the second metal thin wires. It may be further provided between M2.
  • the multilayer structure of the metal fine wire having the metal and the blackened layer for example, a structure in which molybdenum oxide/aluminum/molybdenum oxide, molybdenum oxide/copper/molybdenum oxide, and copper oxide/copper/copper oxide are sequentially stacked is used. be able to.
  • the thickness of the blackening layer is preferably 0.01 to 0.5 ⁇ m.
  • a black metal layer may be formed on the first metal thin wires M1 and the second metal thin wires M2. It is preferable to form the black metal layer of the same material on both the thin metal wire forming the detection electrode and the lead-out wiring, because the lead-out wiring is difficult to be visually recognized.
  • the material of the black metal layer for example, chromium, molybdenum, developed silver or the like can be used.
  • the first detection electrode S1 and the first detection electrode S1 and the second detection electrode S2 and the second detection electrode S2 are provided between the first detection electrode S1 and the first detection electrode S1.
  • a dummy electrode insulated from the second detection electrode S2 may be provided.
  • the dummy electrode is made of a thin metal wire and preferably has the same mesh shape as the first detection electrode S1 and the second detection electrode S2.
  • the material of the first lead-out wiring F1, the second lead-out wiring F2, the ground line F3, and the ground line F4 is not limited as long as it has conductivity, and metal, metal oxide, ITO, conductive polymer, Conductive materials such as carbon nanotubes and graphene can be used alone or in combination.
  • the metal include silver, copper, aluminum, gold, molybdenum, chromium and the like, which can be used as an alloy, an oxide thereof or a laminated body thereof.
  • silver, copper or aluminum is preferable from the viewpoint of electric resistance, and for example, a fine metal wire having a laminated structure such as molybdenum oxide/aluminum/molybdenum oxide, molybdenum oxide/copper/molybdenum oxide, or copper oxide/copper/copper oxide can be used. .. Further, these conductive materials and a binder may be used in combination, and the first lead-out wiring F1 and the second lead-out wiring F2 and the ground line are formed from fine particles made of a conductive material, particularly a mixture of metal fine particles and a binder. It is preferable that it is formed, because it is excellent in flexibility and compatibility with curved surfaces.
  • the binder gelatin, acrylic resin, urethane resin and the like are preferable.
  • developed silver obtained by exposing and developing a silver halide emulsion layer described in JP-A-2014-209332, WO2017/033666, WO2016/157585, JP-A-2012-6377 and the like can be used. it can.
  • the materials of the first lead wire F1, the second lead wire F2, and the ground wire may be the same as or different from those of the first metal thin wire M1 and the second metal thin wire M2, but they are formed of the same material. It is preferable that it is excellent in conductivity, visibility, flexibility and curved surface compatibility.
  • the line width of the first lead-out wiring F1 and the second lead-out wiring F2 being 10 ⁇ m or more and 50 ⁇ m or less reduces the resistance of the first lead-out wiring F1 and the second lead-out wiring F2, and further, the first lead-out wiring F1 and the second lead-out wiring F1 It is preferable that the lead-out wiring F2 becomes hard to be visually recognized.
  • the difference between the line widths of the first thin metal wires M1 and the second thin metal wires M2 forming the first detection electrode S1 and the second detection electrode S2 and the line widths of the first lead wiring F1 and the second lead wiring F2 is It is more preferable that the thickness is 30 ⁇ m or less because it is more difficult for the first lead wiring F1 and the second lead wiring F2 to be visually recognized. Further, the first lead-out wiring F1 and the second lead-out wiring F2 are formed into a mesh shape made of metal thin wires, like the first metal thin wires M1 and the second metal thin wires described above, so that the visibility, flexibility and curved surface correspondence can be improved. It is preferable because it can improve the property.
  • the film thickness of the first lead-out wiring F1 and the second lead-out wiring F2 is preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m.
  • peripheral members that can be stacked on the conductive films 11, 11A, and 41 will be described.
  • a transparent coat layer may be formed on the protective layers 13A and 14A.
  • an organic film such as acrylic resin or urethane resin is used, and the film thickness is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the transparent coat layer can contain organic or inorganic particles for the purpose of improving physical properties and optical properties, and also includes an antioxidant, a light stabilizer, an ultraviolet absorber, a surfactant, an antifoaming agent.
  • Functional components such as a leveling agent, a cross-linking agent, a plasticizer, an antistatic agent, and a coloring agent (hue adjusting agent) such as a dye or a pigment.
  • the adhesive layer is a layer that is disposed on the first electrode layer 13 and that is used to bond the cover member and the conductive film 11 described later to each other.
  • the constituent components of the adhesive layer there is no limitation on the constituent components of the adhesive layer, and known adhesives made of resins having adhesive components such as acrylic, silicone, urethane, rubber, polyether and hybrid types thereof can be used.
  • the method for laminating the pressure-sensitive adhesive layer on the conductive films 11, 11A, and 41 is not particularly limited, and a liquid pressure-sensitive adhesive containing a photocurable resin and a polymerization initiator is applied and then cured by exposure to ultraviolet rays or the like.
  • a method, a method of heating after applying a thermosetting liquid pressure-sensitive adhesive, a method of applying a liquid pressure-sensitive adhesive containing a moisture-curing component such as a silane coupling agent and then curing, or a sheet shape in advance The method of laminating the adhesive formed on the, the method of laminating the hot-melt adhesive after heating, and the method of laminating by heating, and the stimulation of ultraviolet rays and heat after laminating the semi-cured sheet adhesive.
  • the method of giving and additional curing can be preferably used alone or in combination.
  • the adhesive layer is a resin component, as well as an antioxidant, a light stabilizer, an ultraviolet absorber, a surfactant, an antifoaming agent, a leveling agent, a cross-linking agent, a plasticizer, an antistatic agent, a coloring agent such as a dye or a pigment ( A functional component such as a hue adjusting agent) can be preferably contained if necessary.
  • the cover member is an insulating sheet-like substrate arranged on the adhesive layer, and may have a spherical or polyhedral shape.
  • the cover member is used as a detection surface for detecting a touch and also plays a role of protecting the conductive films 11, 11A and 41 from the external environment.
  • the cover member is preferably a flexible or stretchable resin substrate, and the materials exemplified as the insulating substrates 12 and 42 described above can be preferably used. It is desirable that the thickness of the cover member be appropriately selected according to each application.
  • the method of forming the cover member is not particularly limited, and examples thereof include a method of laminating the cover member on the adhesive layer.
  • a decorative layer on the surface or inside of the cover member, a decorative layer, an antireflection layer, an antiglare layer, an antifouling layer, an antifingerprint layer, a scratch resistant layer, a translucent colored layer, a light scattering layer, a polarizing layer, optical interference. Layers and the like may be formed or laminated.
  • the decorative layer is preferably arranged on the first lead-out wiring F1 of the conductive films 11, 11A and 41.
  • the cover member may be configured by directly laminating a material such as a curable resin on the conductive film.
  • a curable resin an epoxy-based, acrylic-based, urethane-based, silanol-based material or the like is used, and as a curing method, a method such as photocuring, electron beam curing, heat curing, or moisture curing is used alone or in combination.
  • the touch sensor 1 when a flexible elastic material such as rubber is used as the cover member, for example, when the touch sensor 1 is used in a ball game or a game, the touch sensor 1 may malfunction, the user may be injured, or surrounding objects may be damaged. This is preferable because it can reduce the occurrence of
  • the detection electrode and the lead wire are formed of the same metal thin wire as in the conventional touch sensor in which the detection electrode is formed of a transparent conductive material such as ITO and the lead wire is formed of the metal thin wire. Therefore, it is difficult to see the lead wiring installed on the outer surface of the touch sensor. Further, in the touch sensor of the present invention, the resistance value of the detection electrode and the lead wire can be low, and the parasitic capacitance value can be low, so that the touch sensor can have high sensitivity. Therefore, according to the present invention, it is possible to provide a spherical or multi-faced three-dimensional touch sensor having excellent visibility and high sensitivity and operability.
  • the first detection electrode is provided between the first detection electrode S1 and the first detection electrode S1, and between the second detection electrode S2 and the second detection electrode S2.
  • a dummy electrode insulated from S1 and the second detection electrode S2 may be provided.
  • the dummy electrode is made of a thin metal wire and preferably has the same mesh shape as the first detection electrode S1 and the second detection electrode S2.
  • dummy metal thin wires insulated from the first lead wiring F1 and the second lead wiring F2 may be arranged in the main peripheral wiring region R1 and the sub peripheral wiring region R3 so as to have the same transmittance as that of the electrode region R2. ..
  • a part of the first lead-out wiring F1 and the second lead-out wiring F2 may have a mesh shape made of thin metal wires, like the first detection electrode S1 and the second detection electrode S2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

立体形状を有しながらも操作性、感度および視認性を向上させることができるタッチセンサおよび立体形状のタッチセンサを容易に実現することができるタッチセンサ用導電性フィルムを提供する。 タッチセンサは、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体のすべての面にわたって配置された検出電極と、検出電極に接続された引き出し配線とを備え、検出電極および引き出し配線は、金属細線により構成されている。

Description

タッチセンサおよびタッチセンサ用導電性フィルム
 この発明は、立体形状のタッチセンサおよび立体形状のタッチセンサに用いられるタッチセンサ用導電性フィルムに関する。
 近年、タブレット型コンピュータおよびスマートフォン等の携帯情報機器を始めとした各種の電子機器において、液晶表示装置等の表示装置と組み合わせて用いられ、指およびスタイラスペン等を画面に接触または近接させることにより電子機器への入力操作を行うタッチセンサの普及が進んでいる。
 タッチセンサは、通常、指およびスタイラスペン等によるタッチ操作を検出するための検出電極を備えており、検出電極には、ITO(Indium Tin Oxide:酸化インジウムスズ)薄膜、メッシュ形状等の細線パターンを有する金属細線等の導電部材が用いられることが多い。金属は、ITO等の透明導電性酸化物に比べてパターニングがしやすく、抵抗値がより低い等の利点があるため、金属細線からなる検出電極を備えるタッチセンサは、注目を集めている。
 また、近年では、電子機器の操作性を向上させるために、球体等の立体形状のタッチセンサが要求されている。例えば、特許文献1に、ITOからなる検出電極を備え、半球面に沿った立体形状のタッチセンサが開示されている。また、特許文献2には、カーボンナノチューブからなる光透過性導電層で形成された検出電極が引き出し配線を介して静電容量変化検出回路に接続された球体形状のタッチセンサが開示されている。
 例えば、特許文献3に、金属細線からなる検出電極を備えたタッチセンサが開示されている。特許文献3に開示されているタッチセンサは、透明な矩形の絶縁基板を有しており、絶縁基板上に、メッシュ形状を有する複数の検出電極が格子状に配列されている。複数の検出電極は、互いに絶縁された状態で配置されており、複数の検出電極からそれぞれ検出電極の配列方向に沿って引き出された、引き出し配線が配置されている。
特開2014-126920号公報 特開2010-244772号公報 特開2010-191504号公報
 ところで、例えば、テーブルの天板上、床面上、壁面上等に設置される電気機器にタッチセンサが組み込まれる場合には、ユーザにより視認される電気機器の外面等、外部に露出している部分にのみ、特許文献1に開示されているようなタッチセンサの検出電極が配置されていれば、ユーザは、十分なタッチ操作を行うことが可能である。しかしながら、例えば、ワイヤまたはケーブルにより吊り下げられる照明機器等、すべての方向からユーザが視認可能な電気機器に対して、電気機器の外面の一部にのみタッチセンサの検出電極が配置されると、タッチ操作を行う方向、箇所が限定され、操作性が低下してしまう。また、さらなる操作性を向上させる目的で、立体形状のタッチセンサとして、単に指の接触を検出できる静電容量式のタッチスイッチではなく、いわゆるマルチタッチおよびジェスチャー等が可能な自己容量式の投影型静電容量式タッチセンサまたは相互容量式の投影型静電容量式タッチセンサが採用されることが望まれている。
 そこで、操作性を向上させるために、電気機器等の外面のすべてに投影型静電容量式タッチセンサの検出電極を配置しようとすると、検出電極の占有面積が増大し、検出電極の電気抵抗値が全体として上昇してしまうため、タッチセンサの感度が低下してしまうという問題があった。さらに、電気機器等の外面のすべてに投影型静電容量式タッチセンサの検出電極を形成した場合、特許文献2に開示されるような引き出し配線も、電気機器等の外面に形成する必要がある。引き出し配線には、引き出し配線の抵抗を下げるために、通常、低抵抗な金属が用いられるが、特許文献1、2に開示されている検出電極にITOおよびカーボンナノチューブのような透明導電材料を使用した場合には、金属の引き出し配線が目立って、タッチセンサの視認性が悪化してしまうという問題があった。一方、タッチセンサの視認性を考慮し、引き出し配線も透明導電材料で形成した場合には、引き出し配線の抵抗が上昇し、タッチセンサの感度が低下してしまうという問題があった。
 また、このような立体形状のタッチセンサを実現するためには、タッチセンサを屈曲または湾曲させて立体形状に沿わせる必要があるため、タッチセンサ内の検出電極を細分化してそれぞれ小さな面積を有する多数の検出電極を配置することが望ましい。
しかしながら、特許文献1に開示されているタッチセンサのように、複数の検出電極から引き出された複数の引き出し配線を、それぞれ、外部の回路基板等に接続する構成にすると、多数の検出電極の配置に起因して引き出し配線の取り回しが複雑になり、また、多数の引き出し配線を配置するための大きな配置スペースを確保しなければならないという問題と、矩形の絶縁基板上に複数の検出電極が格子状に配列されているため、矩形の絶縁基板を球体形状等の立体形状に沿って配置することが難しく、立体形状のタッチセンサを得ることが困難であるという問題があった。
そのため、球体形状等の立体形状を有するタッチセンサを容易に得ることが困難であった。
 本発明は、このような従来の問題点を解消するためになされたものであり、立体形状を有しながらもタッチセンサの操作性、感度および視認性を向上させることができるタッチセンサおよびタッチセンサ用導電性フィルムを提供することを目的とする。
 上記目的を達成するために、本発明のタッチセンサは、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体のすべての面にわたって配置された検出電極と、検出電極に接続された引き出し配線とを備え、検出電極および引き出し配線は、金属細線により構成されていることを特徴とする。
 また、タッチセンサは、立体のすべての面にわたって配置された絶縁基板を備え、検出電極および引き出し配線は、絶縁基板上および絶縁基板中のいずれかに形成されていることが好ましい。
 この際に、検出電極は、複数の第1検出電極と、第1検出電極から絶縁されながら第1検出電極に重なる位置に配置された複数の第2検出電極とを含み、第1検出電極と第2検出電極とは、絶縁材料を介して絶縁材料の両面に対向して配置され、引き出し配線は、複数の第1検出電極に接続された複数の第1引き出し配線と、複数の第2検出電極に接続された複数の第2引き出し配線とを含むことができる。
 ここで、複数の第1検出電極と複数の第1引き出し配線は、絶縁基板の一方の面に形成され、複数の第2検出電極と複数の第2引き出し配線は、絶縁基板の他方の面に形成されていることが好ましい。
 検出電極は、メッシュ形状を有することが好ましい。
 金属細線は、1μm~50μmの線幅を有することが好ましい。
 また、金属細線は、黒化層または黒色金属層を含んでいてもよい。
 また、立体は、球体または多面体であることが好ましい。
 同様に、本発明のタッチセンサ用導電性フィルムは、絶縁基板を備え、且つ、
絶縁基板の一方の面上に形成された複数の第1検出電極と、複数の第1検出電極が形成された絶縁基板の面と同じ面上に配置され且つ複数の第1検出電極に接続された複数の第1引き出し配線とを備え、
それぞれ複数の第1検出電極が配置された複数の電極領域を有し、複数の電極領域間において、第1引き出し配線により、複数の電極領域にそれぞれ配置された第1検出電極が電気的に接続されている。
もしくは、絶縁基板は、帯状に延びる周辺配線領域と、周辺配線領域の片側または両側に配置され且つ周辺配線領域が延びる方向に沿って配列された複数の電極領域とを有し、絶縁基板は、複数の電極領域における互いに隣接する電極領域間にそれぞれ不連続部分を有し、複数の第1検出電極は、複数の電極領域に配置され、複数の第1引き出し配線は、それぞれ、少なくとも一部が周辺配線領域に配置される。
 複数の第1検出電極は、複数の電極領域のそれぞれにおいて、周辺配線領域が延びる方向と交差する方向に配列され、複数の第1引き出し配線は、周辺配線領域と複数の電極領域とに配置されることが好ましい。
 タッチセンサ用導電性フィルムは、複数の第1検出電極が形成された絶縁基板の面と同じ面上または絶縁基板の他方の面上において第1検出電極から絶縁されながら第1検出電極に重なる位置に配置された複数の第2検出電極と、複数の第2検出電極が形成された絶縁基板の面と同じ面上に配置され且つ複数の第2検出電極に接続された複数の第2引き出し配線とを備え、複数の電極領域には、それぞれ、複数の第1検出電極と少なくとも1つの第2検出電極とが配置されることが好ましい。
 この際に、第2検出電極は、隣接する電極領域に配置されている第2検出電極から絶縁されていることが好ましい。
 複数の電極領域は、それぞれ、定められた第1の方向に延び、且つ、互いに平行に配置され、複数の第1検出電極は、複数の電極領域のそれぞれにおいて、第1の方向に配列されることができる。
 また、複数の第1検出電極が形成された絶縁基板の面と同じ面上で且つ複数の第1引き出し配線の近傍に配置された接地線を有することができる。
さらに、複数の第1引き出し配線は、それぞれ、対応する電極領域から周辺配線領域を通って隣接する電極領域まで延び、隣接する電極領域に配置されている複数の第1検出電極に接続されていることが好ましい。
 この際に、タッチセンサ用導電性フィルムは、複数の第1検出電極が形成された絶縁基板の面と同じ面上または絶縁基板の他方の面上において第1検出電極から絶縁されながら第1検出電極に重なる位置に配置された複数の第2検出電極と、複数の第2検出電極が形成された絶縁基板の面と同じ面上に配置され且つ複数の第2検出電極に接続された複数の第2引き出し配線とを備え、複数の電極領域には、それぞれ、複数の第1検出電極と少なくとも1つの第2検出電極とが配置されることが好ましい。
 また、複数の第1検出電極が形成された絶縁基板の面と同じ面上で且つ複数の第1引き出し配線の近傍に配置された接地線を有することができる。
 また、複数の第1検出電極は、それぞれ、周辺配線領域が延びる方向と交差する方向に延び、複数の第1引き出し配線は、周辺配線領域のみに配置されていてもよい。
 この際に、タッチセンサ用導電フィルムは、複数の第1検出電極が形成された絶縁基板の面と同じ面上または絶縁基板の他方の面上において第1検出電極から絶縁されながら第1検出電極に重なる位置に配置された複数の第2検出電極と、複数の第2検出電極が形成された絶縁基板の面と同じ面上に配置され且つ複数の第2検出電極に接続された複数の第2引き出し配線とを備え、複数の電極領域には、それぞれ、複数の第2検出電極と少なくとも1つの第1検出電極とが配置され、複数の第2引き出し配線は、周辺配線領域と複数の電極領域とに配置されることが好ましい。
 さらに、複数の電極領域は、周辺配線領域の両側において、それぞれ、周辺配線領域に対して直交する方向に延び、且つ、互いに平行に配置されることが好ましい。
 また、絶縁基板は、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体を展開した形状を有することができる。
 また、複数の第1検出電極は、それぞれ、金属細線からなり且つメッシュ形状を有し、複数の第1引き出し配線は、それぞれ、金属細線からなることが好ましい。
 本発明に係る立体形状のタッチセンサは、上記のタッチセンサ用導電性フィルムを用い、且つ、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれたことを特徴とする。
 この発明によれば、タッチセンサが、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体のすべての面にわたって配置された検出電極と、検出電極に接続された引き出し配線とを備え、検出電極および引き出し配線は、金属細線により構成されているため、立体形状を有しながらもタッチセンサの操作性、感度および視認性を向上させることができる。
 さらに、タッチセンサ用導電性フィルムが、絶縁基板と、絶縁基板の一方の面上に形成された複数の第1検出電極と、複数の第1検出電極が形成された絶縁基板の面と同じ面上に配置され且つ複数の第1検出電極に接続された複数の第1引き出し配線とを備え、絶縁基板は、帯状に延びる周辺配線領域と、周辺配線領域の片側または両側に配置され、且つ、周辺配線領域が延びる方向に沿って配列された複数の電極領域と、複数の電極領域における互いに隣接する電極領域間にそれぞれ不連続部分を有した複数の電極領域を有し、複数の第1検出電極は、複数の電極領域に配置され、複数の第1検出電極は、それぞれ、少なくとも一部が周辺配線領域に配置された複数の第1引き出し配線を介して、少なくとも1つの隣接する電極領域に配置されている第1検出電極に接続されているため、立体形状のタッチセンサを容易に実現することができる。
本発明の実施の形態1に係るタッチセンサを示す斜視図である。 本発明の実施の形態1に係る導電性フィルムを示す展開図である。 本発明の実施の形態1に係る導電性フィルムの検出電極および引き出し配線を示す部分拡大図である。 本発明の実施の形態1に係る導電性フィルムの検出電極の交差領域を示す部分拡大図である。 本発明の実施の形態1に係る導電性フィルムを示す部分断面図である。 本発明の実施の形態1における支持体の分解斜視図である。 本発明の実施の形態1の第1の変形例に係る導電性フィルムの検出電極および引き出し配線を示す部分拡大図である。 本発明の実施の形態1の第2の変形例に係る導電性フィルムの検出電極および引き出し配線を示す部分拡大図である。 本発明の実施の形態1の第3の変形例に係るタッチセンサを示す斜視図である。 本発明の実施の形態1の第3の変形例における支持体を示す分解斜視図である。 本発明の実施の形態2に係るタッチセンサを示す斜視図である。 本発明の実施の形態2に係る導電性フィルムを示す展開図である。 本発明の実施の形態2に係る導電性フィルムの検出電極および引き出し配線を示す部分拡大図である。
 以下に、添付の図面に示す好適な実施の形態に基づいて、この発明に係るタッチセンサを詳細に説明する。
 「直交」および「平行」等を含め角度は、特に記載がなければ、技術分野で一般的に許容される誤差範囲を含むものとする。
 「透明」とは、光透過率が、波長400nm~800nmの可視光波長域において、少なくとも40%以上のことであり、好ましくは75%以上であり、より好ましくは80%以上、さらにより好ましくは90%以上のことである。光透過率は、JIS K 7375:2008に規定される「プラスチック--全光線透過率および全光線反射率の求め方」を用いて測定されるものである。
実施の形態1
 図1に、本発明の実施の形態1に係るタッチセンサ1を示す。タッチセンサ1は、互いに同一の形状を有する12個の曲面C1により囲まれた概ね球体形状を有している。各曲面C1は、一端が軸A上の第1極B1に位置し、他端が軸A上の第2極B2上に位置しており、第1極B1および第2極B2を結ぶ線分を直径とする円筒面に沿って湾曲形成されている。また、各曲面C1は、第1極B1と第2極B2とを結ぶ線分の中点、すなわち、タッチセンサ1を形成する概ね球体の中心Qを通り且つ軸Aに直交する平面に対して対称な形状を有しており、一端および他端から中央部に向かうほど曲面C1の幅が広くなっている。
 このタッチセンサ1の表面のすべての面にわたって、すなわち、12個の曲面C1により構成される立体形状に沿って、ユーザの指およびスタイラスペン等によるタッチ操作を検出するための導電性フィルム11が配置されている。図2に、平面上に展開された導電性フィルム11を示す。導電性フィルム11は、屈曲性を有する柔らかい樹脂素材等からなる透明な絶縁基板12を備えており、絶縁基板12は、それぞれタッチセンサ1の曲面C1に対応する形状を有し且つ第1方向D1に沿って延びる12個の伸長部E1からなる。これら12個の伸長部E1は、第1方向D1に直交する第2方向D2に沿って配列するように、伸長部E1の第1方向D1における中央部分で互いに連結されており、絶縁基板12は、全体として、タッチセンサ1の12個の曲面C1により囲まれた立体形状の展開図に相当する形状を有する。
 また、絶縁基板12は、互いに連結された12個の伸長部E1の第1方向D1における中央部分上で且つ第2方向D2に沿って帯状に延びる1つの主周辺配線領域R1と、12個の伸長部E1のそれぞれにおいて主周辺配線領域R1の第1方向D1の両側に配置された電極領域R2とを有している。また、絶縁基板12は、電極領域R2の第2方向D2の両側には、副周辺配線領域R3を有している。主周辺配線領域R1の第1方向D1の両側においては、それぞれ、12個の電極領域R2が第2方向D2に沿って配置されており、絶縁基板12は、合計で24個の電極領域R2を有している。この24個の電極領域R2には、ユーザの指およびスタイラスペン等によるタッチ操作を検出するための検出電極が配置され、それぞれの検出電極からは、引き出し配線が、副周辺配線領域R3を介して、または直接、主周辺配線領域R1に引き出される。
 また、絶縁基板12は、主周辺配線領域R1の第1方向D1の両側において、第2方向D2に互いに隣接する電極領域R2間にそれぞれ不連続部分R0を有している。
 図3は、導電性フィルム11の部分拡大図である。絶縁基板12は、絶縁基板12の表裏を形成する第1面と第2面を有しており、絶縁基板12の24個の電極領域R2に配置されている検出電極には、絶縁基板12の第1面上に配置される第1金属細線からなる複数の第1検出電極S1と、絶縁基板12の第2面上に配置される第2金属細線からなる複数の第2検出電極S2とが含まれる。第1検出電極S1と第2検出電極S2とは、絶縁基板12の両面に対向して配置されている。第1検出電極S1は、第2方向D2に沿って延びており、それぞれの伸長部E1において複数の第1検出電極S1が第1方向D1に配列している。また、第2検出電極S2は、第1方向D1に沿って延びており、それぞれの伸長部E1において1つの第2検出電極S2が配置されている。また、それぞれの伸長部E1において、第1方向D1に配列された複数の第1検出電極S1と、1つの第2検出電極S2とが、絶縁基板12を隔てて互いに絶縁され且つ互いに重なり合うように配置されている。
 なお、第1検出電極S1および第2検出電極S2は、ユーザの指およびスタイラスペン等によるタッチ操作を検出するための電極であり、それぞれ、後述する第1引き出し配線F1の線幅および第2引き出し配線F2の線幅よりも広い電極幅を有している。
 第1検出電極S1と第2検出電極S2は、絶縁基材12とは別の絶縁材料(ただし、空気を除く)を介して配置されていてもよい。例えば、絶縁基材12、第1検出電極S1、絶縁材料、第2検出電極S2の順に積層されることができる。ここで絶縁材料は、空気を除く材料であって、絶縁性を有する有機、無機の材料であれば特に制限はない。
 ここで、図3に示すように、電極領域R2は、主周辺配線領域R1が延びる方向すなわち第2方向D2に沿って配列され、且つ、第1検出電極S1および第2検出電極S2が配置された領域である。また、互いに隣接する電極領域R2とは、主周辺配線領域R1が延びる方向において互いに隣り合う電極領域R2のことを指すものとする。
 なお、絶縁基板12により立体形状の展開図が得られれば、絶縁基板12に2以上の電極領域R2が設定されていればよく、設定される電極領域R2の数は、特に上限が無いが、1000以下であることが好ましい。また、電極領域R2内に配置される第1検出電極S1および第2検出電極S2の数は、タッチセンサ1のサイズ、第1検出電極S1のサイズ、第2検出電極S2のサイズ等によって決定されるが、1以上であればよい。また、電極領域R1の形状は、長方形、正方形、三角形、多角形、円形、楕円形等が挙げられ、第1検出電極S1および第2検出電極S2の形状および配置等によって決まるが、長方形および正方形であることが好ましい。
 また、検出電極から引き出される引き出し配線には、絶縁基板12の第1面上に配置されている第1検出電極S1に接続された第1引き出し配線F1と、絶縁基板12の第2面上に配置されている第2検出電極S2に接続された第2引き出し配線F2とが含まれる。第1配線F1により、不連続部分R0を隔てて第2方向D2に隣接する第1検出電極S1同士が互いに接続されており、この際に、第1引き出し配線F1は、対応する電極領域R2から副周辺配線領域R3と主周辺配線領域R1と隣接する副周辺配線領域R3とを通って、第2方向D2に隣接する電極領域R2に配置されている第1検出電極S1に接続されている。同様にして、図2に示した絶縁基板12の12個の伸長部E1のすべてにおいて、第2方向D2に互いに隣接する第1検出電極S1同士が第1引き出し配線F1を介して接続されている。
 ここで、12個の伸長部E1のうち、第2方向D2のいずれか一方の端部に位置する2個の伸長部E1に限り、第1方向D1に互いに隣接する伸長部E1間で、第1検出電極S1同士が第1引き出し配線F1を介して接続されていてもよい。
 なお、12個の伸長部E1のうち、第2方向D2の両端部に位置する4つの伸長部E1のうちの少なくとも1つの伸長部E1上に配置された複数の第1検出電極S1から、それぞれ、第2方向D2に隣接する伸長部E1とは反対側に引き出された複数の第1引き出し配線F1は、副周辺配線領域R3と主周辺配線領域R1を通って、外部の図示しない回路基板等に接続される。
 また、第2検出電極S2に接続されている第2引き出し配線F2も、主周辺配線領域R1を通って外部の図示しない回路基板等に接続される。
 ここで、第1検出電極S1と第1引き出し配線F1は、互いに同じ金属細線からなることが好ましく、第2検出電極S2と第2引き出し配線F2は、互いに同じ金属細線からなることがさらに好ましい。第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2が、互いに同じ金属細線からなる場合には、第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2が製造される際に、同時に形成されることができる。
 ここで、第1検出電極S1と第2検出電極S2が絶縁基板12を介して重なり合う交差領域Gの拡大図を図4に示す。図4に示すように、第1検出電極S1は、第1金属細線M1からなり、メッシュ形状を有している。また、第2検出電極S2は、第2金属細線M2からなり、第1検出電極S1と同様に、メッシュ形状を有している。第1検出電極S1を構成する第1金属細線M1、および、第2検出電極S2を構成する第2金属細線M2でメッシュ形状をそれぞれ形成することにより、第1検出電極S1および第2検出電極S2を低抵抗化し、且つ、第1検出電極S1および第2検出電極S2の透過率を上昇させることができ、さらに、第1検出電極S1および第2検出電極S2の寄生容量を下げることができるので、高感度且つ視認性に優れたタッチセンサが実現される。
 図4においては、第1検出電極S1と第2検出電極S2は、互いに同一のひし形のメッシュ形状を有しており、第1検出電極S1のひし形メッシュの頂点が第2検出電極S2のひし形メッシュの中心に位置し、第2検出電極S2のひし形メッシュの頂点が第1検出電極S1のひし形メッシュの中心に位置している。そのため、第1検出電極S1と第2検出電極S2により、さらにメッシュピッチの小さいひし形メッシュが形成されている。
 なお、メッシュの形状としては、特に限定はなく、正方形、平行四辺形、ひし形、正五角形、正六角形、またはランダムな形状等が使用できるが、ひし形がより好ましい。この際に、ひし形の鋭角の角度は20度以上80度以下が好ましく、ひし形のメッシュピッチ(菱形の1辺の長さに相当)は、100μm以上700μm以下が好ましく、第1検出電極S1と第2検出電極S2との組合せで形成される小さいひし形メッシュのメッシュピッチは50μm以上350μm以下が好ましい。
 また、第1検出電極S1および第2検出電極S2は、上述の通り、メッシュ形状を有する金属細線からなることが好ましいが、これらに限定されることはなく、ITO、銀ナノワイヤ、導電性ポリマー、カーボンナノチューブ、カーボンナノバッド、グラフェン等の導電性素材から構成されていてもよい。
 交差領域Gに直交する平面で切断した断面図を図5に示す。図5に示すように、導電性フィルム11の絶縁基板12の第1面12A上には第1電極層13が形成され、絶縁基板12の第2面12B上には第2電極層14が形成されている。また、第1電極層13は、第1金属細線M1および保護層13Aを含んでおり、保護層13Aは、第1面12Aおよび第1金属細線M1を覆っている。また、第2電極層14は、第2金属細線M2および保護層14Aを含んでおり、保護層14Aは、第2面12Bおよび第2金属細線M2を覆っている。
 ここで、保護層13Aおよび保護層14Aとして、ゼラチン、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等の有機膜、および、二酸化シリコン等の無機膜を使用することができ、その膜厚は、10nm以上100nm以下であることが好ましい。
これらの保護層13Aおよび保護層14Aは、物理特性および光学特性等の改善を目的として、有機または無機の粒子を含有することができ、また、酸化防止剤、光安定化剤、紫外線吸収剤、界面活性剤、消泡剤、レベリング剤、架橋剤、可塑剤、帯電防止剤、染料や顔料等の着色剤(色相調節剤)等の機能性成分を含むことができる。
 なお、図示されていないが、絶縁基板12と第1金属細線M1との間、または絶縁基板12と第2金属細線M2との間には、必要に応じて、密着性を強化するための易接着層、絶縁基板12との屈折率を調整して反射を低減する屈折率調整層等の機能層を設けてもよい。易接着層および屈折率調整層の材料としては、ゼラチン、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等の有機膜を使用することができる。膜厚は10nm以上1000nm以下が好ましい。屈折率を調整する目的で、ジルコニア、チタニア等の高屈折率無機微粒子を易接着層または屈折率調整層に添加してもよい。
 ここで、本発明の実施の形態1のタッチセンサ1は、図6に示す立体形状の支持体21を有している。支持体21は、例えば図6に示すように、第1支持体部品21Aと第2支持体部品21Bにより構成される。図6に示す例では、第1支持体部品21Aと第2支持体部品21Bの形状は、概ね球体形状のタッチセンサ1を、中心Qを通り且つ軸Aに直交する平面で2分割した形状に相当している。
 第1支持体部品21Aは、タッチセンサ1の12個の曲面C1に対応する12個の曲面C2が外側表面に形成されている。また、第1支持体部品21Aの内部が軸Aを中心軸とする半球形状にくり抜かれており、第1極B1とは反対側に開口部K1が形成されている。また、第2支持体部品21Bも、第1支持体部品21Aと同様に、12個の曲面C3が外側表面に形成されている。また、第2支持体部品21Bの内部が半球形状にくり抜かれ、開口部K2が形成されている。第1支持体部品21Aの12個の曲面C2と第2支持体部品21Bの12個の曲面C3の位置を合わせて第1支持体部品21Aと第2支持体部品21Bとを連結することにより、タッチセンサ1の立体形状を有する支持体21が構成される。
 ここで、第1支持体部品21Aおよび第2支持体部品21Bは、いずれも半球形状にくり抜かれているため、支持体21の内部には空洞部分が形成されている。また、第1支持体部品21Aの12個の曲面C2と第2支持体部品21Bの12個の曲面C3とにより、タッチセンサ1の12個の曲面C1に相当する12個の曲面が形成されている。
 支持体21の外側表面の12個すべての曲面にわたって導電性フィルム11を隙間なく配置することにより、図1に示すタッチセンサ1が構成される。支持体21の外側表面上に導電性フィルム11を固定させる方法としては、例えば、透明な接着剤等を用いて、導電性フィルム11を支持体21の外側表面に貼り付けることが挙げられる。
 導電性フィルム11の絶縁基板12は第2方向D2に互いに隣接する電極領域R2間に不連続部分を有しているため、導電性フィルム11を支持体21に貼り付ける際に、絶縁基板12にシワを寄せることなく、すなわち、絶縁基板12上に配置された第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2等に歪みを生じさせることなく、絶縁基板12の複数の伸長部E1をそれぞれ支持体21の円筒面の一部を形成する曲面C2およびC3に沿って湾曲させるだけで、導電性フィルム11を支持体21の外側表面に貼り付けることが可能である。このように、本発明の実施の形態1に係る導電性フィルム11によれば、立体形状に容易に対応することができる。
 また、タッチセンサ1においては、導電性フィルム11が支持体21の12個すべての曲面にわたって配置されているため、絶縁基板12も、支持体21のすべての曲面にわたって配置されており、第1検出電極S1と第2検出電極S2とを含む検出電極も、支持体21のすべての曲面にわたって配置されている。そのため、本発明の実施の形態1のタッチセンサ1は、例えば、タッチセンサ1を囲むすべての方向からユーザの指およびスタイラスペン等によるタッチ操作を検出することができる。例えば、支持体21を光透過性を有する透明なものとして形成し、透明な支持体21の空洞部分に、蛍光灯、白熱灯、LED(Light Emitting Diode:発光ダイオード)等の光源を配置した照明または発光体を構成し、タッチセンサ1の全面にわたるタッチ操作により、光源の発光強度を調整する等の制御を行うことができる。
 また、導電性フィルム11の第1検出電極S1が第1金属細線M1により構成され、第2検出電極S2が第2金属細線M2により構成されているため、第1検出電極S1および第2検出電極S2を、例えばITO薄膜等の透明導電材料により構成し、第1引き出し配線F1と第2引き出し配線F2とを金属細線で構成する場合と比較して、第1検出電極S1および第2検出電極S2の電気抵抗値を大幅に減少させて、タッチ操作に対するタッチセンサ1の感度を向上させることができ、かつ第1引き出し配線と第2引き出し配線とが目立つことがなく視認性を向上させることができる。
 以上のように、実施の形態1のタッチセンサ1によれば、立体形状を有しながらも、操作性、感度およびに視認性を向上させることができる。
 また、絶縁基板12上に配置された第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2等に歪みを生じさせることなく、導電性フィルム11を支持体21の外側表面に沿って貼り付けることが可能であるため、立体形状を有しながらも、均一なタッチ感度を有するタッチセンサ1を実現することができる。
 また、導電性フィルム11は、連続した1枚の絶縁基板12を有しているため、導電性フィルム11を支持体21上に配置するだけで、概ね球体形状のタッチセンサ1を容易に製造することができる。また、第1引き出し配線および第2引き出し配線と接続される外部回路も1つに集約できるので、概ね球体形状のタッチセンサ1を容易に製造することができる。さらに、絶縁基板12上の定められた位置に検出電極が配置されており、タッチセンサ1を製造する際に、検出電極の配置位置のずれを抑制し、タッチセンサ1の検出位置精度を向上させることができる。
 なお、支持体21の空洞部分に光源を配置することが例示されているが、支持体21の空洞部分に配置されるものは光源に限定されず、表示装置等を配置することもできる。
 また、図6に示す例において、支持体21は、第1支持体部品21Aと第2支持体部品21Bの2つの部品に分割されているが、3つ以上の部品に分割されていてもよく、あるいは、複数の部品に分割されることなく1つの部品から形成されていてもよい。
 また、支持体21の内部には、空洞部分が形成されていなくてもよい。
 ここで、それぞれの電極領域R2において、第1方向D1に配列されている複数の第1検出電極S1は、図示しない外部の回路基板等に、直接、接続されるのではなく、複数の第1引き出し配線F1を介して、第2方向D2に隣接する電極領域R2に配置されている第1検出電極S1に接続されている。このため、タッチセンサ1における複数の第1引き出し配線F1の取り回しが単純化され、複数の引き出し配線F1を配置するための大きな配置スペースを確保することなく、それぞれの伸長部E1上に複数の第1検出電極S1と複数の第1引き出し配線F1を容易に配置することができる。このように、本発明の実施の形態1に係る導電性フィルム11によれば、立体形状のタッチセンサ1を容易に実現することが可能となる。
 また、複数の第1検出電極S1と絶縁基板12を介して重なり合う複数の第2検出電極S2は、それぞれ、第2引き出し配線F2を介して外部の回路基板等に接続されるため、隣接する電極領域R2間の第1検出電極S1が互いに接続していても、タッチセンサ1により、ユーザの指およびスタイラスペン等によりタッチ位置を正確に検出することができる。
 なお、絶縁基板12の12個の伸長部E1のすべてにおいて、第2方向D2に隣接する第1検出電極S1同士が第1引き出し配線F1を介して互いに接続されているが、12個の伸長部E1のうちの一部の伸長部E1のみにおいて、第2方向D2に隣接する第1検出電極S1同士が第1引き出し配線F1を介して互いに接続されていてもよい。この場合にも、タッチセンサ1における複数の第1引き出し配線F1の取り回しが単純化されるため、立体形状のタッチセンサ1を容易に実現することができる。
 また、絶縁基板12は、主周辺配線領域R1の第1方向D1の両側に複数の電極領域R2を有しているが、複数の第1検出電極S1が、少なくとも1つの隣接する電極領域R2に配置された第1検出電極S1に接続されていれば、主周辺配線領域R1の第1方向D1の片側のみに複数の電極領域R2を有していてもよい。
 また、図6に示す例において、支持体21の第1支持体部品21Aと第2支持体部品21Bは、いずれも半球形状にくり抜かれているため、支持体21の内部には、球体形状の空洞部分が形成されている。例えば、支持体21を、光透過性を有する透明なものとして形成し、透明な支持体21の空洞部分に、蛍光灯、白熱灯、LED(Light Emitting Diode:発光ダイオード)等の光源を配置した照明または発光体を構成し、導電性フィルム11の第1検出電極S1および第2検出電極S2を介してユーザの指等によるタッチ操作を検出することで、光源の発光強度を調整する等の制御を行うことができる。また、支持体21の表面または内部に、透光性着色層、光散乱層、偏光層、光学干渉層等を配置し、光源からの光の特性を調整することもできる。
 また、支持体21の空洞部分に配置されるものは、光源に限定されず、表示装置、音響装置、振動発生装置、加速度センサ、ジャイロセンサ、地磁気センサ(電子コンパス)、磁気センサ、温湿度センサ、圧力センサ(気圧センサ)、受光装置、電磁波送受信装置(アンテナ)、GPS受信装置、マイク、カメラ、電源装置、記憶装置、演算装置等を配置することもできる。例えば、これらの装置あるいはセンサを第1検出電極S1および第2検出電極S2を介したタッチ操作に基づいて制御することができる。また、例えば、これらのセンサを支持体21の空洞内に配置して、配置されたセンサを用いて、タッチセンサ1の向き、傾き、位置などの座標情報や運動状態、あるいは外部環境に関する情報を取得し、その情報に応じて空洞内に配置した上記の装置を制御することもできる。また、例えば、タッチセンサ1を別途準備した外部の担持手段に担持させ、担持手段に対するタッチセンサ1の向きや傾き等の座標情報を、支持体21の空洞内に配置したセンサあるいは第1検出電極S1および第2検出電極S2を用いて検出し、支持体21の空洞内あるいは外部に配置した各種装置を制御することもできる。
 また、第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2は、絶縁基板12上に形成されているが、絶縁基板12中に形成されることもできる。
 また、図7に示すように、複数の第1引き出し配線F1の近傍に接地線F3を配置することができる。この際に、接地線F3は、電極領域R2を囲むように、主周辺配線領域R1と副周辺配線領域R3において、複数の第1引き出し配線F1の外側に配置される。接地線F3は、外部の図示しない回路基板においていわゆる基準電位(アース電位)を有する接地パターンに接続されることにより、基準電位(アース電位)となる。そのため、接地線F3により、複数の第1引き出し配線F1が例えば外部からの電波等を受信して、第1検出電極S1がユーザの指およびスタイラスペン等によるタッチ操作を検出した検出信号にノイズが含まれてしまうことを防止することができる。
 また、第1引き出し配線F1の近傍に配置された接地線F3と同様にして、第2引き出し配線F2の近傍に接地線F4を配置することもできる。この場合には、第2引き出し配線F2が例えば外部からの電波等を受信して、第2検出電極S2の検出信号にノイズが含まれてしまうことを防止することができる。
 また、図3および図7に示す例では、それぞれの伸長部E1において、第2方向D2に延び且つ第1方向D1に配列された複数の第1検出電極S1と、第1方向D1に延びる1つの第2検出電極S2とが互いに重なり合うように配置されているが、それぞれの伸長部E1において、第1方向D1に延びる複数の第2検出電極S2が配置されていてもよい。例えば、図8に示すように、それぞれの伸長部E1において、第1方向D1に沿って配列された複数の第1検出電極S1に対して第2方向D2に配列された3つの第2検出電極S2が重なり合うように配置されていてもよい。このように、第2方向D2における第2検出電極S2の数を増加させることにより、ユーザの指およびスタイラスペン等によるタッチ操作位置の検出感度を向上させることができる。
 また、第1検出電極S1および第2検出電極S2の形状は、図3および図7に示す例では、長方形で示されているが、これに限定されず、台形、矢羽根型のほか、曲線もしくは直線で表わされる輪郭からなるあらゆる形状を有することができる。また、複数の第1検出電極S1間および複数の第2電極間の形状および面積は同じであっても異なっていてもよい。第1検出電極S1および第2検出電極S2のD2方向の幅を周辺配線領域に近づくほど広く設定することが、タッチセンサ1の不感領域の面積を低減することができるため、好ましい。
 また、図5では、絶縁基板12の第1面12A上に第1検出電極S1が配置され、絶縁基板12の第2面12B上に第2検出電極S2が配置されているが、絶縁基板12の第1面12A側および第2面12B側のいずれか一方に、第1検出電極S1と第2検出電極S2の双方を配置することもできる。この場合には、例えば、第1検出電極S1を含む第1電極層13と、第2検出電極S2を含む第2電極層14とを、図示しない絶縁層を介して積層することができる。これらのいずれの場合においても、絶縁基板12の第1面12A上に第1検出電極S1が配置され且つ絶縁基板12の第2面12B上に第2検出電極S2を配置する場合と同様に、立体形状のタッチセンサを容易に実現することができる。
 また、タッチセンサは、いわゆるマルチタッチの際の位置検出精度の観点から、相互容量式の投影型静電容量式のタッチセンサとして構成されることが好ましい。相互容量式の投影型静電容量式タッチセンサにおいては、第1検出電極S1は送信電極として、また第2検出電極S2は受信電極として使用される。実施の形態1では、絶縁基板12の第1面12A側に配置されている検出電極を第1検出電極S1と呼び、絶縁基板12の第2面12B側に配置されている検出電極を第2検出電極S2と呼んでいるが、絶縁基板12の第1面12A側に配置されている検出電極を第2検出電極と呼び、絶縁基板12の第2面12B側に配置されている検出電極を第1検出電極と呼んでもよい。その場合には、実施の形態1における第1引き出し配線F1を第2引き出し配線と呼び、第2引き出し配線F2を第1引き出し配線と呼ぶ。
 また、複数の電極領域R2のそれぞれにおいて、複数の第1検出電極S1の配列方向と主周辺配線領域R1が延びる方向とは、互いに直交しているが、これに限定されず、互いに交差していればよい。また、第1検出電極S1が延びる方向と電極領域R2が延びる方向とは、互いに直交しているが、これに限定されず、互いに交差していればよい。さらに、第2検出電極S2が延びる方向と主周辺配線領域R1が延びる方向は、互いに直交しているが、これに限定されず、互いに交差していればよい。
 また、絶縁基板12は、主周辺配線領域R1の第1方向D1の両側に複数の電極領域R2を有しているが、互いに隣接する伸長部E1の間に不連続部分R0が形成されていれば、主周辺配線領域R1の第1方向D1の片側のみに複数の電極領域R2を有していてもよい。
 また、図1では、タッチセンサ1が12個の曲面C1で囲まれる概ね球体形状を有する例が示されているが、タッチセンサ1の形状はこれに限定されない。例えば、タッチセンサ1は、12個よりも多い数の曲面で囲まれる概ね球体形状を有することができる。また、タッチセンサ1は、12個よりも少ない数の曲面で囲まれる概ね球体形状を有することもできる。
 また、タッチセンサ1の形状は、例えば図9に示すような球体形状であってもよい。図9に示すタッチセンサ1Aは、球体形状の支持体と、支持体の外側表面に隙間なく配置された導電性フィルム11Aを有している。
導電性フィルム11Aは、支持体の外側表面すなわち球面に沿って湾曲していることを除いて、図1に示す導電性フィルム11と同一の構成を有しており、図9のタッチセンサ1Aは、球体形状の支持体を有することが、図1のタッチセンサ1と異なる。
 また、図10に示すように、球体形状の支持体31は、半球の外形を有する第1支持体部品31Aと、半球の外形を有する第2支持体部品31Bにより構成されることができる。第1支持体部品31Aおよび第2支持体部品31Bは、いずれも半球形状にくり抜かれており、それぞれ、開口部K3、K4が形成されている。これにより、支持体31の内部には、球体形状の空洞部分が形成されるが、この空洞部分に、光源等を配置し、照明または発光体を構成することができる。
 例えば、支持体31を、光透過性を有する透明なものとして形成し、透明な支持体21の空洞部分に、蛍光灯、白熱灯、LED(Light Emitting Diode:発光ダイオード)等の光源を配置した照明または発光体を構成し、導電性フィルム11の第1検出電極S1および第2検出電極S2を介してユーザの指等によるタッチ操作を検出することで、光源の発光強度を調整する等の制御を行うことができる。また、支持体21の表面または内部に、透光性着色層、光散乱層、偏光層、光学干渉層等を配置し、光源からの光の特性を調整することもできる。
 また、支持体31の空洞部分に配置されるものは、光源に限定されず、表示装置、音響装置、振動発生装置、加速度センサ、ジャイロセンサ、地磁気センサ(電子コンパス)、磁気センサ、温湿度センサ、圧力センサ(気圧センサ)、受光装置、電磁波送受信装置(アンテナ)、GPS受信装置、マイク、カメラ、電源装置、記憶装置、演算装置等を配置することもできる。これらの装置あるいはセンサを第1検出電極S1および第2検出電極S2を介したタッチ操作に基づいて制御することもできるし、また、空洞内に配置したこれらのセンサを用いて、タッチセンサ1の向き、傾き、位置などの座標情報や運動状態、あるいは外部環境に関する情報を取得し、その情報に応じて空洞内に配置したこれらの装置を制御することもできる。また、タッチセンサ1を別途準備した外部の担持手段に担持させ、担持手段に対するタッチセンサ1の向きや傾きなどの座標情報を内部のセンサあるいは第1検出電極S1および第2検出電極S2を用いて検出し、空洞内あるいは外部に配置した各種装置を制御することもできる。
 また、タッチセンサ1をユーザが視認した際に、第1金属細線M1および第2金属細線M2の表面における反射を低減して、第1金属細線M1および第2金属細線M2の存在を目立ちにくくするために、視認側、すなわち、概ね球体形状のタッチセンサ1の外方を向いた第1金属細線M1、第2金属細線M2の表面に、例えば酸化処理等の表面処理を施して、黒化層が形成されていることが好ましい。特に、第1検出電極S1を形成する第1金属細線M1、第2検出電極S2を形成する第2金属細線M2、第1引き出し配線F1、第2引き出し配線F2のそれぞれに同じ材料の黒化層を形成することが、引き出し配線が視認され難く、視認性の観点から好ましい。ここで、黒化層は、第1金属細線M1、第2金属細線M2、第1引き出し配線F1、第2引き出し配線F2内にそれぞれ含まれる。
 図9に示した球体形状のタッチセンサ1Aに対しても、視認側を向いた第1金属細線M1、第2金属細線M2の表面に黒化層を形成することができる。黒化層の材料としては、例えば、酸化銅、酸化モリブデン、カーボン、酸化銀等を使用することができる。また、黒化層は、第1金属細線M1、第2金属細線M2の絶縁基板12側にさらに設けられていてもよい。金属と黒化層とを有する金属細線の多層構造としては、例えば、酸化モリブデン/アルミニウム/酸化モリブデン、酸化モリブデン/銅/酸化モリブデン、酸化銅/銅/酸化銅とが順次積層された構造とすることができる。黒化層の厚みは、0.01~0.5μmが好ましい。
 また、第1金属細線M1および第2金属細線M2に黒化層を形成する代わりに、第1金属細線M1および第2金属細線M2に黒色金属層を形成することもできる。同様に、検出電極と引き出し配線とを形成する金属細線の両方に同じ材料の黒色金属層を形成することが、引き出し配線が視認され難く、視認性の観点から好ましい。黒色金属層の材料としては、例えば、クロム、モリブデン、現像銀等を使用することができる。
実施の形態2
 実施の形態1のタッチセンサ1は、曲面により囲まれた概ね球体形状を有しているが、本発明のタッチセンサの形状は、曲面を有するものに限定されない。図11に、実施の形態2に係るタッチセンサ40を示す。タッチセンサ40は、同一の長さの辺を有する、12個の正五角形と20個の正六角形とが組み合わされて構成された32面体の形状を有している。また、タッチセンサ40は、32面体の形状を有する図示しない支持体と、支持体上のすべての面にわたって隙間なく配置された導電性フィルム41を有している。
 図12に、平面上に展開された導電性フィルム41の展開図を示す。導電性フィルム41は、屈曲性を有する柔らかい樹脂素材等からなる透明な絶縁基板42を備えている。絶縁基板42は、タッチセンサ40の立体形状の展開図に相当する形状を有しており、第1方向D1に沿って延びる伸長部E2、E3、E4、E5からなる。ここで、伸長部E2、E3、E4、E5は、正五角形の平面部と、正五角形の平面部に対して同一の一辺の長さを有する正六角形の平面部とを構成単位として、互いの構成単位の一辺を接するように第1方向D1に連結されて構成されている。伸長部E2は、正五角形の平面部、2つの正六角形の平面部、正五角形の平面部の順に4つの平面部が第1方向D1に連結されたものであり、伸長部E3は、正五角形の平面部、2つの正六角形の平面部の順に3つの平面部が第1方向D1に連結されたものであり、伸長部E4は、伸長部E3を第1方向D1に反転させた形状を有し、伸長部E5は、伸長部E2と同一の形状を有している。
 これらの伸長部E2、E3、E4、E5は、第2方向D2に沿って、伸長部E2と伸長部E5の間に、4つの伸長部E3と4つの伸長部E4が交互に配列されるように連結されている。また、この際に、伸長部E2、E3、E4、E5の第1方向D1における中間部分に位置する、合計で10個の正六角形の平面部が互いに連結されており、これらの連結部分の第1方向D1における両端側に、絶縁基板42の不連続部分R0が形成されている。
 また、絶縁基板42は、互いに連結する10個の六角形の平面部上で且つ第2方向D2に沿って帯状に延びる1つの主周辺配線領域R1と、伸長部E2、E3、E4、E5のそれぞれにおいて主周辺配線領域R1の第1方向D1の両側に配置された電極領域R2と、電極領域R2の第2方向D2の両側に配置された副配線領域R3とを有している。複数の電極領域R2には、それぞれ、検出電極が配置され、それぞれの検出電極から、副周辺配線領域R3を介して主配線領域R1に、または、直接、主配線領域R1に引き出し配線が引き出される。
 また、絶縁基板12は、主周辺配線領域R1の第1方向D1の両側において、互いに隣接する電極領域R2間に不連続部分R0を有している。
 図13は、導電性フィルム41の部分拡大図である。絶縁基板42は、絶縁基板42の表裏を形成する第1面と第2面を有しており、絶縁基板42の電極領域R2に配置されている検出電極には、絶縁基板42の第1面上に配置される複数の第1検出電極S1と、絶縁基板42の第2面上に配置される複数の第2検出電極S2とが含まれる。第1検出電極S1と第2検出電極S2とは、絶縁基板42を介して、互いに対向して配置されている。第1検出電極S1は、第2方向D2に沿って延びており、それぞれの伸長部E2、E3、E4において複数の第1検出電極S1が第1方向D1に配列している。また、第2検出電極S2は、第1方向D1に沿って延びており、それぞれの伸長部E2、E3、E4において、3つの第2検出電極S2が第2方向D2に配列している。また、それぞれの伸長部E2、E3、E4において、第1方向D1に配列された複数の第1検出電極S1と、第2方向D2に配列された3つの第2検出電極S2とが、絶縁基板42を隔てて互いに絶縁され且つ互いに重なり合うように配置されている。
 また、検出電極から引き出される引き出し配線には、絶縁基板42の第1面上に配置されている第1検出電極S1に接続された第1引き出し配線F1と、絶縁基板42の第2面上に配置されている第2検出電極S2に接続された第2引き出し配線F2とが含まれる。第1引き出し配線F1は、主周辺配線領域R1および副周辺配線領域R3を通るように配置されており、第1引き出し配線F1により、不連続部分R0を隔てて第2方向D2に隣接し且つ同一の第1方向D1位置に位置する第1検出電極S1同士が互いに接続されている。
 また、第2検出電極S2が形成されている絶縁基板42の第2面において、第2検出電極S2に接続されている第2引き出し配線F2は、主周辺配線領域R1に配置されている。
 なお、図示しないが、伸長部E5上においても、伸長部E2、E3、E4と同様に、第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2が配置されている。
 以上から、導電性フィルム41の複数の第1検出電極S1は、第2方向D2に隣接する電極領域R2に配置された第1検出電極S1と第1引き出し配線F1を介して互いに接続されているため、実施の形態1の導電性フィルム11と同様に、タッチセンサ40における複数の引き出し配線F1の取り回しが単純化され、伸長部E2、E3、E4、E5上に複数の第1検出電極S1と複数の第1引き出し配線F1を容易に配置することができる。このように、実施の形態2に係る導電性フィルム41によれば、実施の形態1の導電性フィルム11と同様に、立体形状のタッチセンサ40を容易に実現することができる。
 さらに、導電性フィルム41の絶縁基板42は、タッチセンサ40の立体形状の展開図に相当する形状を有し、第2方向D2に互いに隣接する電極領域R2間に不連続部分R0を有しているため、実施の形態1の導電性フィルム11と同様に、導電性フィルム41を支持体上に配置する際に、絶縁基板42にシワを寄せることなく、すなわち、絶縁基板42上に配置された第1検出電極S1、第2検出電極S2、第1引き出し配線F1、第2引き出し配線F2等に歪みを生じさせることなく、立体形状に容易に対応することができる。
 このような導電性フィルム41を、32面体形状の図示しない支持体のすべての面にわたって隙間なく配置することにより、タッチセンサ40が構成される。この際に、導電性フィルム41の絶縁基板42も、支持体のすべての面にわたって配置されており、複数の第1検出電極S1と複数の第2検出電極S2とを含む検出電極も、支持体のすべての面にわたって配置されている。そのため、実施の形態2のタッチセンサ40によれば、実施の形態1のタッチセンサ1と同様に、立体形状を有しながらも、操作性および感度を向上させることができる。
 なお、実施の形態2のタッチセンサ40は、32面体の形状を有しているが、タッチセンサ40の形状は特に限定されるものではなく、任意の多面体等の形状を有していてもよい。このように、本発明のタッチセンサは、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面で囲まれた立体形状を有することができる。
 以下、実施の形態1および実施の形態2に係る導電性フィルム11、11A、41およびタッチセンサ1、1A、40を構成する各部材について説明する。
<絶縁基板>
 絶縁基板12、42は、透明で電気絶縁性を有し且つ可撓性あるいは伸縮性を有するものであれば特に限定されるものではないが、絶縁基板12、42を構成する材料として、例えば、ガラス、強化ガラス、無アルカリガラス、ポリエチレンテレフタレート(PET:Polyethylene Terephthalate)、ポリエチレンナフタレート(PEN:Polyethylene Naphthalate)、シクロオレフィンポリマー(COP:Cyclo-Olefin Polymer)、環状オレフィン・コポリマー(COC:Cyclic Olefin Copolymer)、ポリカーボネート(PC:Polycarbonate)、アクリル樹脂、ポリエチレン(PE:Polyethylene)、ポリプロピレン(PP:Polypropylene)、ポリスチレン(PS:Polystylene)、ポリ塩化ビニル(PVC:Polyvinyl Chloride)、ポリ塩化ビニリデン(PVDC:Polyvinylidene Chloride)、ポリフッ化ビニリデン(PVDF:PolyVinylidene DiFluoride)、トリアセチルセルロース(TAC:Cellulose Triacetate)、ポリアミド、ポリイミド(PI:Polyimide)、ポリアリレート(PAR:Polyarylate)、ポリエーテルエーテルケトン(PEEK:Polyetherketoneketone)、ポリサルホン(PSF)、ポリエーテルサルホン(PES:Polyethersulfone)等を使用することができる。
 また、絶縁基板12、42の厚みは、例えば、5μm~200μmであり、特に10μm~100μmが好ましい。特に10μm~100μmが好ましい。絶縁基板12の全光線透過率に制限は無いが、40%~100%であることが好ましく、80%~100%であることがより好ましい。
 絶縁基板12は、単層で用いることもできるが、2層以上を組み合わせた積層体として用いることもできる。また、必要に応じてコロナ処理、グロー処理、プラズマ処理、大気圧プラズマ処理などの表面処理を行うことが好ましく、また図示しないが、易接着層を表面に有することもできる。
<金属細線>
 第1検出電極S1を形成する第1金属細線M1、第2検出電極S2を形成する第2金属細線M2は、線幅1.0μm~50μmの金属細線であることがタッチセンサの感度、視認性の観点から好ましい。第1検出電極S1を形成する第1金属細線M1と第2検出電極S2を形成構成する第2金属細線M2のさらに好ましい線幅は、1.0μm~5.0μmである。第1金属細線M1、第2金属細線M2、第1引き出し配線F1、第2引き出し配線F2を上記の範囲とすることにより、検出電極および引き出し配線を低抵抗化し、さらに、引き出し配線が視認され難くなる。
 第1検出電極S1を形成する第1金属細線M1、第2検出電極S2を形成する第2金属細線M2の線幅と第1引き出し配線F1と第2引き出し配線F2の線幅との差は30μm以下であることが、第1引き出し配線F1と第2引き出し配線F2がさらに視認され難く、さらに好ましい。
 さらに、第1検出電極S1を形成する第1金属細線M1、第2検出電極S2を形成する第2金属細線M2と、第1引き出し配線F1、第2引き出し配線F2の材料は、同じであっても異なっても良いが、同一材料で形成されていることが、視認性およびフレキシブル性・曲面対応性に優れており、好ましい。第1金属細線M1、第2金属細線M2の好ましい材料としては、銀、銅、アルミニウム、金、モリブデン、クロム等があり、それらの合金、酸化物またはそれらの積層体、ならびにこれら素材からなる微粒子とバインダ等との混合物で使用できる。特に電気抵抗値の観点から銀または銅が好ましく、例えば、モリブデン/アルミニウム/モリブデン、モリブデン/銅/モリブデン、酸化銅/銅/酸化銅等の積層構成の金属細線が使用できる。
 第1金属細線M1と第2金属細線M2のさらに好ましい材料としては、金属粒子とバインダからなるものが、フレキシブル性、曲面対応性に優れており、好ましい。金属粒子としては、銀または銅の粒子が好ましく、バインダとしては、ゼラチン、アクリル樹脂、ウレタン樹脂等が好ましい。他にも、特開2014-209332号公報、WO2017/033666、WO2016/157585、特開2012-6377号公報等に記載のハロゲン化銀乳剤層を露光、現像して得られる現像銀を用いることができる。
 第1検出電極S1を形成する第1金属細線M1と第2検出電極S2を形成する第2金属細線M2の膜厚は0.05μm~10μmが好ましく、0.1μm~2μmがより好ましい。
 第1金属細線M1、第2金属細線M2の視認性を改善する目的で、第1金属細線M1、第2金属細線M2の視認性を改善する目的で、第1金属細線M1および第2金属細線M2の表面に黒化層を設けることができる。黒化層としては、酸化銅、酸化モリブデン、カーボン、酸化銀等を使用できる。また、黒化層は、第1金属細線M1、第2金属細線M2の絶縁基板側、すなわち、絶縁基板12、42と第1金属細線M1との間、絶縁基板12、42と第2金属細線M2との間にさらに設けられていてもよい。
金属と黒化層とを有する金属細線の多層構造としては、例えば、酸化モリブデン/アルミニウム/酸化モリブデン、酸化モリブデン/銅/酸化モリブデン、酸化銅/銅/酸化銅とが順次積層された構造とすることができる。黒化層の厚みは、0.01~0.5μmが好ましい。
 また、第1金属細線M1および第2金属細線M2表面に黒化層を形成する代わりに、第1金属細線M1および第2金属細線M2に黒色金属層を形成することもできる。検出電極を形成する金属細線と引き出し配線の両方に同じ材料の黒色金属層を形成することは、引き出し配線が視認され難いので、視認性の観点から好ましい。黒色金属層の材料としては、例えば、クロム、モリブデン、現像銀等を使用することができる。
 また、本発明の形態としては、図示しないが、第1検出電極S1と第1検出電極S1との間、第2検出電極S2と第2検出電極S2との間に、第1検出電極S1および第2検出電極S2と絶縁されたダミー電極を設けても良い。ダミー電極は、第1検出電極S1および第2検出電極S2と同様に金属細線で構成され、第1検出電極S1および第2検出電極S2と同様のメッシュ形状を有することが好ましい。
<引き出し配線および接地線>
 第1引き出し配線F1、および第2引き出し配線F2、接地線F3、および接地線F4の材料としては、導電性を有するものであれば制限は無く、金属、金属酸化物、ITO、導電性ポリマー、カーボンナノチューブ、グラフェン等の導電性材料を単独あるいは組み合わせて用いることができる。金属としては、銀、銅、アルミニウム、金、モリブデン、クロム等があり、それらの合金、酸化物またはそれらの積層体で使用できる。特に電気抵抗値の観点から銀、銅またはアルミニウムが好ましく、例えば、酸化モリブデン/アルミニウム/酸化モリブデン、酸化モリブデン/銅/酸化モリブデン、酸化銅/銅/酸化銅等の積層構成の金属細線が使用できる。また、これらの導電性材料とバインダとを組み合わせて用いても良く、導電性材料からなる微粒子、特に金属微粒子とバインダからなる混合物から第1引き出し配線F1および第2引き出し配線F2、および接地線が形成されていることが、フレキシブル性、曲面対応性に優れており、好ましい。バインダとしては、ゼラチン、アクリル樹脂、ウレタン樹脂等が好ましい。他にも、特開2014-209332号公報、WO2017/033666、WO2016/157585、特開2012-6377号公報等に記載のハロゲン化銀乳剤層を露光・現像して得られる現像銀を用いることができる。
 第1引き出し配線F1と第2引き出し配線F2、および接地線の材料は、前述の第1金属細線M1および第2金属細線M2と同じであっても異なっても良いが、同一材料で形成されていることが、導電性、視認性、フレキシブル性および曲面対応性に優れており、好ましい。
 第1引き出し配線F1と第2引き出し配線F2の線幅は10μm以上50μm以下であることが、第1引き出し配線F1および第2引き出し配線F2を低抵抗化し、さらに、第1引き出し配線F1および第2引き出し配線F2が視認され難くなり、好ましい。また、第1検出電極S1と第2検出電極S2を構成する第1金属細線M1、第2金属細線M2の線幅と、第1引き出し配線F1、第2引き出し配線F2の線幅との差は30μm以下であることが、第1引き出し配線F1と第2引き出し配線F2がさらに視認され難く、さらに好ましい。また、第1引き出し配線F1と第2引き出し配線F2は、前述の第1金属細線M1および第2金属細線と同様に、金属細線からなるメッシュ形状とすることで、視認性、フレキシブル性および曲面対応性が改善でき、好ましい。
 第1引き出し配線F1と第2引き出し配線F2の膜厚は0.05μm~10μmが好ましく、0.1μm~5μmがより好ましい。
 以下、導電性フィルム11、11A、41に積層可能な周辺部材について説明する。
 <透明コート層>
 必要に応じて、保護層13Aおよび14A上に透明コート層を形成してもよい。透明コート層としては、アクリル樹脂、ウレタン樹脂等の有機膜が使用され、膜厚は1μm以上100μm以下が好ましい。
 透明コート層は、物理特性および光学特性等の改善を目的として、有機または無機の粒子を含有することができ、また酸化防止剤、光安定化剤、紫外線吸収剤、界面活性剤、消泡剤、レベリング剤、架橋剤、可塑剤、帯電防止剤、染料や顔料等の着色剤(色相調節剤)等の機能性成分を含むことができる。
 <粘着層>
 粘着層は、第1電極層13上に配置され、後述するカバー部材と導電性フィルム11とを接着するために配置される層である。粘着層の構成成分に制限はなく、アクリル系、シリコン系、ウレタン系、ゴム系、ポリエーテル系およびこれらのハイブリット系などの粘着成分を有する樹脂からなる公知の粘着剤を用いることができる。
 導電性フィルム11、11A、41上への粘着層の積層方法は特に制限されず、光硬化性樹脂および重合開始剤を含む液体状の粘着剤を塗設した後に紫外線等で露光して硬化させる方法、熱硬化性の液体状の粘着剤を塗設した後に加熱する方法、シランカップリング剤等の湿気硬化性成分を含む液体状の粘着剤を塗設した後に硬化する方法、あるいは予めシート状に形成された粘着剤を貼合する方法、ホットメルト系粘着剤を重ね合わせた後に加熱して貼合する方法、半硬化状のシート状粘着剤を貼合した後に紫外線や熱などの刺激を与えて追加硬化させる方法を、単独あるいは組み合わせて好ましく用いる事ができる。
 粘着層は樹脂成分の他、酸化防止剤、光安定化剤、紫外線吸収剤、界面活性剤、消泡剤、レベリング剤、架橋剤、可塑剤、帯電防止剤、染料や顔料等の着色剤(色相調節剤)等の機能性成分を必要に応じて好ましく含有できる。
 <カバー部材>
 カバー部材は、粘着層上に配置される絶縁性シート状基板であり、球体または多面体形状を取ることもできる。カバー部材は、タッチを検出する検出面として使用され、外部環境から導電性フィルム11、11A、41を保護する役割も果たす。カバー部材としては可撓性あるいは伸縮性を有する樹脂基板が好ましく、上述した絶縁基板12、42で例示した材料を好ましく用いることができる。カバー部材の厚みはそれぞれの用途に応じて適宜選択することが望ましい。カバー部材の形成方法は特に制限されず、粘着層上にカバー部材を貼合する方法が挙げられる。また、カバー部材の表面または内部に、加飾層、反射防止層、防眩層、防汚層、指紋付着防止層、耐傷性層、透光性着色層、光散乱層、偏光層、光学干渉層などが形成もしくは積層されていてもよい。ここで加飾層は導電性フィルム11、11A、41の第1引き出し配線F1上に配置されることが好ましい。
 また、透光性着色層、光散乱層、偏光層、光学干渉層等を設けることは、支持体の内部の空洞部分に光源を配置した際に、デザイン性、視認性の向上ができ、好ましい。
 また、カバー部材として、絶縁性のシート状基板を用いる代わりに、硬化性樹脂等からなる素材を導電性フィルム上に直接積層することにより、カバー部材を構成してもよい。硬化性樹脂としては、エポキシ系、アクリル系、ウレタン系、シラノール系などの素材を用い、硬化方法としては、光硬化、電子線硬化、熱硬化、湿気硬化などの方法を単独または組み合わせて用いることができる。
 また、カバー部材として、ゴムなどの弾性を有する柔軟な素材を用いることは、例えばタッチセンサ1を球技や遊戯に用いた際、タッチセンサ1の故障や使用者の怪我、または周囲の物体の破損などの発生を低減でき、好ましい。
 本発明のタッチセンサは、従来の検出電極がITO等の透明導電材料で形成され、引き出し配線が金属細線で形成されたタッチセンサと比べ、検出電極と引き出し配線が互いに同じ金属細線で形成されているので、タッチセンサの外面に設置された引き出し配線が視認され難い。また、本発明のタッチセンサにおいては、検出電極と引き出し配線の抵抗値も低く、寄生容量値も低くできるので、タッチセンサを高感度化することができる。したがって、本発明によれば、視認性に優れた感度の高く操作性に優れた球体または多面の立体タッチセンサを提供できる。
 なお、本発明の形態としては、図示していないが、第1検出電極S1と第1検出電極S1との間、第2検出電極S2と第2検出電極S2との間に、第1検出電極S1および第2検出電極S2と絶縁されたダミー電極を設けてもよい。ダミー電極は、第1検出電極S1および第2検出電極S2と同様に、金属細線で構成され、第1検出電極S1および第2検出電極S2と同様のメッシュ形状を有することが好ましい。
 また電極領域R2と同一の透過率になるように主周辺配線領域R1と副周辺配線領域R3に、第1引き出し配線F1および第2引き出し配線F2と絶縁されたダミー金属細線を配置してもよい。また、第1引き出し配線F1および第2引き出し配線F2の一部を、第1検出電極S1および第2検出電極S2と同様に、金属細線からなるメッシュ形状としてもよい。これらの形態を採用することにより、より視認性が向上する。
1,1A,40 タッチセンサ
11,11A,41 導電性フィルム
12 絶縁基板
12A 第1面
12B 第2面
13 第1電極層
13A,14A 保護層
14 第2電極層
21,31 支持体
21A,31A 第1支持体部品
21B,31B 第2支持体部品
A 軸
B1 第1極
B2 第2極
C1,C2,C3 曲面
D1 第1方向
D2 第2方向
E1,E2,E3,E4,E5 伸長部
F1 第1引き出し配線
F2 第2引き出し配線
F3,F4 接地線
G 交差領域
K1,K2,K3,K4 開口部
M1 第1金属細線
M2 第2金属細線
Q 中心
R0 不連続部分
R1 主周辺配線領域
R2 電極領域
R3 副周辺配線領域
S1 第1検出電極
S2 第2検出電極

Claims (20)

  1.  少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体のすべての面にわたって配置された検出電極と、
     前記検出電極に接続された引き出し配線と
     を備え、
     前記検出電極および前記引き出し配線は、金属細線により構成されているタッチセンサ。
  2.  前記立体のすべての面にわたって配置された絶縁基板を備え、
     前記検出電極および前記引き出し配線は、前記絶縁基板上および前記絶縁基板中のいずれかに形成されている請求項1に記載のタッチセンサ。
  3.  前記検出電極は、
     複数の第1検出電極と、
     前記第1検出電極から絶縁され、前記第1検出電極に重なる位置に配置された複数の第2検出電極とを含み、
     前記第1検出電極と前記第2検出電極とは、絶縁材料を介して絶縁材料の両面に対向して配置され、
     前記引き出し配線は、
     前記複数の第1検出電極に接続された複数の第1引き出し配線と、
     前記複数の第2検出電極に接続された複数の第2引き出し配線と
     を含み、
     前記複数の第1検出電極と前記複数の第1引き出し配線は、前記絶縁基板の一方の面上に形成され、
     前記複数の第2検出電極と前記複数の第2引き出し配線は、前記絶縁基板の他方の面上に形成されている請求項2に記載のタッチセンサ。
  4.  前記検出電極は、メッシュ形状を有し、かつ1μm~50μmの線幅を有する請求項1~3のいずれか一項に記載のタッチセンサ。
  5.  前記金属細線は、黒化層または黒色金属層を含む請求項1~4のいずれか一項に記載のタッチセンサ。
  6.  前記立体は、球体または多面体である請求項1~5のいずれか一項に記載のタッチセンサ。
  7.  絶縁基板を備え、且つ、前記絶縁基板の一方の面上において、複数の第1検出電極と、前記複数の第1検出電極に接続された複数の第1引き出し配線とを備えるタッチセンサ用
    導電性フィルムであって、
     それぞれ前記複数の第1検出電極が配置された複数の電極領域を有し、
     前記複数の電極領域間において、前記第1引き出し配線により、前記複数の電極領域にそれぞれ配置された前記第1検出電極が電気的に接続されているタッチセンサ用導電性フィルム。
  8.  前記複数の第1検出電極が形成された前記絶縁基板の面と同じ面上または前記絶縁基板の他方の面上において前記第1検出電極から絶縁されながら前記第1検出電極に重なる位置に配置された複数の第2検出電極と、
     前記複数の第2検出電極が形成された前記絶縁基板の面と同じ面上に配置され且つ前記複数の第2検出電極に接続された複数の第2引き出し配線と
     を備え、
     前記複数の電極領域には、それぞれ、前記複数の第1検出電極と少なくとも1つの前記第2検出電極とが配置される請求項7に記載のタッチセンサ用導電性フィルム。
  9.  前記第2検出電極は、隣接する前記電極領域に配置されている前記第2検出電極から絶縁されている請求項8に記載のタッチセンサ用導電性フィルム。
  10.  前記複数の電極領域は、それぞれ、定められた第1の方向に延び、且つ、互いに平行に配置され、
     前記複数の第1検出電極は、前記複数の電極領域のそれぞれにおいて、前記第1の方向に配列されている請求項8または9に記載のタッチセンサ用導電性フィルム。
  11.  前記複数の第1検出電極が形成された前記絶縁基板の面と同じ面上で且つ前記複数の第1引き出し配線の近傍に配置された接地線を有する請求項7~10のいずれか一項に記載のタッチセンサ用導電性フィルム。
  12.  絶縁基板と、
     前記絶縁基板の一方の面上に形成された複数の第1検出電極と、
     前記複数の第1検出電極が形成された前記絶縁基板の面と同じ面上に配置され且つ前記複数の第1検出電極に接続された複数の第1引き出し配線と
     を備え、
     前記絶縁基板は、帯状に延びる周辺配線領域と、前記周辺配線領域の片側または両側に配置され且つ前記周辺配線領域が延びる方向に沿って配列された複数の電極領域とを有し、
     前記絶縁基板は、前記複数の電極領域における互いに隣接する電極領域間にそれぞれ不連続部分を有し、
     前記複数の第1検出電極は、前記複数の電極領域に配置され、
     前記複数の第1引き出し配線は、それぞれ、少なくとも一部が前記周辺配線領域に配置されるタッチセンサ用導電性フィルム。
  13.  前記複数の第1検出電極は、前記複数の電極領域のそれぞれにおいて、前記周辺配線領域が延びる方向と交差する方向に配列され、
     前記複数の第1引き出し配線は、前記周辺配線領域と前記複数の電極領域とに配置される請求項12に記載のタッチセンサ用導電性フィルム。
  14.  前記複数の第1検出電極が形成された前記絶縁基板の面と同じ面上または前記絶縁基板の他方の面上において前記第1検出電極から絶縁されながら前記第1検出電極に重なる位置に配置された複数の第2検出電極と、
     前記複数の第2検出電極が形成された前記絶縁基板の面と同じ面上に配置され且つ前記複数の第2検出電極に接続された複数の第2引き出し配線と
     を備え、
     前記複数の電極領域には、それぞれ、前記複数の第1検出電極と少なくとも1つの前記第2検出電極とが配置される請求項13に記載のタッチセンサ用導電性フィルム。
  15.  前記複数の第1引き出し配線は、それぞれ、対応する前記電極領域から前記周辺配線領域を通って隣接する前記電極領域まで延び、隣接する前記電極領域に配置されている前記複数の第1検出電極に接続されている請求項14に記載のタッチセンサ用導電性フィルム。
  16.  前記複数の第1検出電極が形成された前記絶縁基板の面と同じ面上で且つ前記複数の第1引き出し配線の近傍に配置された接地線を有する請求項12~15のいずれか一項に記載のタッチセンサ用導電性フィルム。
  17.  前記複数の第1検出電極は、それぞれ、前記周辺配線領域が延びる方向と交差する方向に延び、
     前記複数の第1引き出し配線は、前記周辺配線領域のみに配置される請求項12に記載のタッチセンサ用導電性フィルム。
  18.  前記複数の電極領域は、前記周辺配線領域の両側において、それぞれ、前記周辺配線領域に対して直交する方向に延び、且つ、互いに平行に配置される請求項12~17のいずれか一項に記載のタッチセンサ用導電性フィルム。
  19.  前記絶縁基板は、少なくとも1つの曲面、複数の平面、または、少なくとも1つの曲面および少なくとも1つの平面により囲まれた立体を展開した形状を有している請求項7~18のいずれか一項に記載のタッチセンサ用導電性フィルム。
  20.  前記複数の第1検出電極は、それぞれ、金属細線からなり且つメッシュ形状を有し、
     前記複数の第1引き出し配線は、それぞれ、金属細線からなる請求項12~19のいずれか一項に記載のタッチセンサ用導電性フィルム。
PCT/JP2019/047373 2018-12-28 2019-12-04 タッチセンサおよびタッチセンサ用導電性フィルム WO2020137395A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562989A JP7090179B2 (ja) 2018-12-28 2019-12-04 タッチセンサおよびタッチセンサ用導電性フィルム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018247392 2018-12-28
JP2018-247418 2018-12-28
JP2018-247392 2018-12-28
JP2018247418 2018-12-28
JP2018-247200 2018-12-28
JP2018247200 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137395A1 true WO2020137395A1 (ja) 2020-07-02

Family

ID=71127958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047373 WO2020137395A1 (ja) 2018-12-28 2019-12-04 タッチセンサおよびタッチセンサ用導電性フィルム

Country Status (2)

Country Link
JP (1) JP7090179B2 (ja)
WO (1) WO2020137395A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267607A (ja) * 2009-04-15 2010-11-25 Shin Etsu Polymer Co Ltd 静電容量センサ及びその製造方法
US20150077350A1 (en) * 2013-09-19 2015-03-19 Nigel Hinson Curved Surface Sensor Pattern
WO2015125338A1 (ja) * 2014-02-19 2015-08-27 富士フイルム株式会社 電子機器、積層フィルム、タッチパネル及び積層フィルムの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314550A1 (en) 2008-06-18 2009-12-24 Layton Michael D Touchpad designed in a planar configuration that can be molded to conform to a non-planar object
US20190302918A1 (en) 2018-03-28 2019-10-03 Sharp Kabushiki Kaisha Curved sensor device and method of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267607A (ja) * 2009-04-15 2010-11-25 Shin Etsu Polymer Co Ltd 静電容量センサ及びその製造方法
US20150077350A1 (en) * 2013-09-19 2015-03-19 Nigel Hinson Curved Surface Sensor Pattern
WO2015125338A1 (ja) * 2014-02-19 2015-08-27 富士フイルム株式会社 電子機器、積層フィルム、タッチパネル及び積層フィルムの製造方法

Also Published As

Publication number Publication date
JP7090179B2 (ja) 2022-06-23
JPWO2020137395A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
US11709573B2 (en) Touch input device
US11182000B2 (en) Smartphone
US10162445B2 (en) Electrode sheet for pressure detection and pressure detecting module including the same
TWI633477B (zh) 觸控視窗及包括該觸控視窗之觸控式裝置
US9804703B2 (en) Touch input device which detects a magnitude of a touch pressure
US10216349B2 (en) Touch panel, conductive sheet for touch panel, and touch sensor
JP6622917B2 (ja) 温度補償が適用された圧力を検出できる電極シート及びタッチ入力装置
TWI461984B (zh) 可撓式觸控顯示面板
JP6861468B2 (ja) タッチセンサ
KR20180017388A (ko) 압력 센서를 구비한 전자 장치
JP5645511B2 (ja) タッチパネル及びこのタッチパネルを用いる電子装置
TW201610783A (zh) 層疊構造體、觸摸面板、帶觸摸面板的顯示裝置及其製造方法
KR20170047426A (ko) 터치 표시 장치 및 이의 제조 방법
WO2020137395A1 (ja) タッチセンサおよびタッチセンサ用導電性フィルム
KR20160076033A (ko) 터치 패널 및 이를 포함하는 표시 장치
US20220291716A1 (en) Electronic products
TWI722113B (zh) 可折疊之觸控感測器及其製造方法
US11836324B2 (en) Electronic device and driving method thereof
TW202011168A (zh) 曲面觸控裝置
KR20160073278A (ko) 터치 센서 장치 및 이를 포함하는 표시 장치
KR20140040431A (ko) 터치 패널 및 그 제조 방법
WO2017104809A1 (ja) 入力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904954

Country of ref document: EP

Kind code of ref document: A1