WO2020137267A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2020137267A1
WO2020137267A1 PCT/JP2019/045312 JP2019045312W WO2020137267A1 WO 2020137267 A1 WO2020137267 A1 WO 2020137267A1 JP 2019045312 W JP2019045312 W JP 2019045312W WO 2020137267 A1 WO2020137267 A1 WO 2020137267A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
terminal
columnar
metal wire
wire
Prior art date
Application number
PCT/JP2019/045312
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 雅教
康仁 塩谷
人志 田谷
宗忠 佐藤
信 佐藤
佐名川 佳治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020562925A priority Critical patent/JP7016022B2/en
Publication of WO2020137267A1 publication Critical patent/WO2020137267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/10Connecting leads to windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/14Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating

Definitions

  • the present disclosure relates to terminals.
  • Patent Document 1 discloses a terminal (columnar metal terminal) connected to a coil terminal (metal wire) by winding the coil terminal (metal wire).
  • the metal wire when the metal wire is wound around the pillar-shaped metal terminal, if the adhesion between the metal wire and the pillar-shaped metal terminal is low, the bonding strength between the metal wire and the pillar-shaped metal terminal may be reduced.
  • the present disclosure improves the workability when winding a metal wire around a pillar-shaped metal terminal, thereby improving the adhesion between the metal wire and the pillar-shaped metal terminal during winding and ensuring the bonding strength between the two.
  • the purpose is to provide a terminal that can.
  • a terminal includes a columnar metal terminal and a metal wire wound around the columnar metal terminal, and the melting point of the first metal forming the metal wire is The melting point of the second metal forming the columnar metal terminal is lower than the melting point, and an intermetallic compound layer of the first metal and the second metal is provided at the interface between the metal wire and the columnar metal terminal.
  • FIG. 1 is a schematic diagram showing a terminal according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the terminal according to the embodiment.
  • FIG. 3 is an explanatory view showing a state in which a metal wire is entangled with a columnar metal terminal according to the embodiment.
  • FIG. 4 is a flow chart showing a step of tying a metal wire around a columnar metal terminal according to the embodiment.
  • FIG. 5 is a diagram showing a process of producing an assembly, thermocompression bonding, and bonding according to the embodiment.
  • FIG. 6 is a flow chart showing a process of joining a metal wire to a columnar metal terminal of an assembly according to the embodiment.
  • FIG. 7 is explanatory drawing which illustrated the conduction path at the time of resistance welding which concerns on embodiment.
  • FIG. 8 is an enlarged image showing the intermetallic compound layer of the terminal and its periphery according to the embodiment.
  • FIG. 9 is a graph showing the relationship between the ratio of the crack length to the interface length and the thickness of the intermetallic compound in the terminal according to the embodiment.
  • FIG. 10 is a sectional view showing a terminal according to the first modification. 11: is sectional drawing which shows the terminal which concerns on the modification 2.
  • FIG. 12 is a cross-sectional view showing a terminal according to Modification 3.
  • FIG. 13 is a front view showing a schematic configuration of a terminal according to Modification 4.
  • FIG. 14 is a cross-sectional view showing a terminal according to Modification 4 in which a plurality of metal wires having different wire diameters are metal-bonded to each other.
  • each diagram is a schematic diagram, and is not necessarily an exact illustration. Further, in each of the drawings, the substantially same components are designated by the same reference numerals, and overlapping description will be omitted or simplified.
  • FIG. 1 is a schematic diagram showing a terminal 1 according to the embodiment.
  • the terminal 1 is provided for a stator 100 that is a part of the motor.
  • the terminal 1 is provided on the plurality of coils 101 that form the stator 100.
  • the terminal 1 supplies power to the coil 101 from a circuit board mounted on a power supply unit that supplies power to the motor.
  • the terminal 1 includes a columnar metal terminal 10 and a metal wire 20.
  • FIG. 2 is a sectional view showing the terminal 1 according to the embodiment. Specifically, FIG. 2 is a cross-sectional view of a section including the line II-II in FIG.
  • the columnar metal terminal 10 is a columnar metal member electrically connected to the coil 101.
  • the columnar metal terminal 10 is electrically connected to the metal wire 21 which is a part of the metal wire 20. Specifically, the columnar metal terminal 10 is joined to the metal wire 21 in a state where the metal wire 21 is wound.
  • the columnar metal terminal 10 is, for example, a member in which a base material layer 11 containing iron (Fe) as a main component is coated with a plating layer 12 made of a second metal containing copper (Cu) as a main component.
  • the metal wire 21 and the columnar metal terminal 10 are joined in a state where the metal wire 21 is entwined with the columnar metal terminal 10.
  • to be entangled means that the wire is wound around the object, and the metal wires 21 are overlapped with each other (intersection 23: FIG. 3). (See) exists.
  • the metal wire 21 is wound around the pillar-shaped metal terminal 10 in a single layer except for the intersecting portion 23.
  • Metal joining is, for example, a joining method capable of forming an intermetallic compound layer formed by joining objects at the interface between joining objects.
  • Metal bonding includes thermocompression bonding, ultrasonic bonding, diffusion bonding, resistance welding and the like.
  • resistance welding is also suitable as compared with other joining methods for joining the metal wire 21 to the columnar metal terminal 10.
  • the base material layer 11 is, for example, a rectangle having a short side of about 0.4 mm and a long side of 0.6 mm as viewed in the axial direction, and the plating layer 12 has a thickness of about 25 ⁇ m. Further, in the metal wire 20, the wire diameter of the metal wire 21 is about 0.15 mm.
  • the columnar metal terminal 10 is a quadrangle when viewed in the axial direction.
  • the columnar metal terminal 10 is not limited to a quadrangle when viewed in the axial direction, and may have a polygonal shape other than a quadrangle, a circular shape, an elliptical shape, an oval shape, or the like.
  • the columnar metal terminal 10 has a rectangular cross section in a direction orthogonal to the axial direction of the columnar metal terminal 10, and has a pair of long side surfaces and a pair of short side surfaces.
  • the long side surface is a surface whose cross section constitutes the long side of a rectangle
  • the short side surface is a surface whose cross section constitutes the short side of a rectangle.
  • the long side surface of the columnar metal terminal 10 is a joining terminal surface 110 to which the metal wire 21 is joined by metal.
  • the cross section of the columnar metal terminal 10 in the direction orthogonal to the axial direction may have a shape in which long sides and short sides are not distinguished, that is, a square. In this case, the pair of side surfaces facing each other in the columnar metal terminal can be used as the bonding terminal surface.
  • the metal wire 21 constitutes a part of the metal wire 20 and is a metal wire material. Specifically, the metal wire 21 is made of a first metal whose main component is aluminum (Al). The metal wire 21 forms an intersection 23 where the metal wires 21 overlap each other in the circumferential direction of the columnar metal terminal 10. The intersecting portion 23 is formed so as to come into contact with one of the short side surfaces.
  • An intermetallic compound layer 24 formed by metal joining is formed at the interface between the joining terminal surface 110 of the columnar metal terminal 10 and the metal wire 21.
  • the intermetallic compound layer 24 is made of an alloy of a second metal forming the plated layer 12 and a first metal forming the metal wire 21. Specifically, the intermetallic compound layer 24 is formed by the first metal and the second metal being temporarily mixed by resistance welding and then re-cured.
  • the thickness (layer thickness) of the intermetallic compound layer 24 is preferably 5 ⁇ m or less.
  • the columnar metal terminal 10 is a rectangular columnar shape that is rectangular in the axial direction, and a pair of long side faces of the side faces thereof are the joint terminal faces 110. Further, on the joint terminal surface 110, the intersection 23 of the metal wire 21 is not arranged, but the intersection 23 is arranged only on the pair of short side surfaces of the columnar metal terminal 10.
  • the columnar metal terminal 10 is, for example, a member in which the base material layer 11 is covered with the plating layer 12, and the intermetallic compound layer 24 is not formed before the joining.
  • the plating layer 12 is formed of the second metal containing copper as a main component, it has a melting point according to the melting point of copper (1083° C.).
  • a resin layer 22 made of an insulating resin is coated on the metal wire 21.
  • the metal wire 20 is, for example, an enamel wire, a lead wire, or the like.
  • the metal wire 21 is made of, for example, a first metal whose main component is aluminum.
  • the resin layer 22 is made of a resin material such as urethane, polyester, polyester imide, or polyamide imide. Further, as described above, since the metal wire 21 is formed of the first metal containing aluminum as a main component, the metal wire 21 has a melting point according to the melting point of aluminum (660° C.).
  • FIG. 3 is an explanatory view showing a state in which the metal wire 20 is entangled with the columnar metal terminal 10 according to the embodiment.
  • FIG. 3A shows a state in which the metal wire 20 is entwined with the columnar metal terminal 10 as seen from a direction orthogonal to the axial direction of the columnar metal terminal 10.
  • FIG. 3B shows a state in which the metal wire 20 is entangled with the columnar metal terminal 10 as viewed in the axial direction of the columnar metal terminal 10.
  • FIG. 4 is a flow chart showing a step of entwining the metal wire 20 with the columnar metal terminal 10 according to the embodiment.
  • the columnar metal terminal 10 is fixed to a jig (not shown). As a result, the columnar metal terminal 10 is brought into a state in which the metal wire 20 can be wound (S111). Then, the metal wire 20 is wound around the columnar metal terminal 10 while receiving a constant tension.
  • the metal wire 21 of the metal wire 20 is formed of the first metal whose main component is aluminum.
  • the melting point of the first metal is lower than the melting point of the second metal forming the plating layer 12. Specifically, the melting point of the first metal is lower than the melting point of the second metal by 300° C. or more. That is, when the environment temperature is the same, the metal wire 21 is more flexible than the plating layer 12.
  • the metal wire 20 is generally softer than the plated layer 12. At the time of winding, since the relatively soft metal wire 20 is wound around the plating layer 12 having a relatively high hardness, the metal wire 20 can be easily attached to the plating layer 12.
  • the metal wire 20 is wound in the first turn and the second turn, the metal wire 20 is wound around the columnar metal terminal 10 so as to overlap the winding start point of the metal wire 20.
  • the intersection portion 23 where the metal wires 20 intersect each other is formed (S112).
  • the intersecting portion 23 is arranged so as to be in contact with any of the short side surfaces while avoiding the joining terminal surface 110 of the columnar metal terminal 10.
  • the metal wire 20 is wound around the columnar metal terminal 10 for several turns (S113).
  • the metal wire 20 is wound around the columnar metal terminal 10 so as to have a substantially coil shape except for the intersecting portion 23. After that, unnecessary parts of the metal wire 20 are cut with a nipper or the like, and the metal wire 20 is arranged, whereby the assembly 200 shown in FIG. 5 is obtained.
  • FIG. 5 is a diagram showing steps of producing the assembly 200, thermocompression bonding, and joining according to the embodiment.
  • the metal wire 20 is joined to the columnar metal terminal 10.
  • the metal wire 20 is realized by performing thermocompression bonding and resistance welding on the columnar metal terminal 10.
  • FIG. 6 is a flow chart showing a process of joining the metal wire 20 to the columnar metal terminal 10 of the assembly 200 according to the embodiment.
  • the above-described assembly 200 is arranged between the pair of welding electrodes 30 provided in the resistance welding machine (S121). Specifically, the assembly 200 is arranged between the pair of welding electrodes 30 so that the pair of joining terminal surfaces 110 a of the columnar metal terminals 10 and the pair of welding electrodes 30 face each other one-on-one.
  • the assembly is thermocompression bonded by the pair of welding electrodes 30 (S122).
  • the resistance welding machine causes a current as indicated by an arrow Y1 in FIG. 5 to flow through the pair of welding electrodes 30.
  • the resistance welding machine clamps the metal wire 21 between the pair of welding electrodes 30 and applies a load so that the metal wire 21 is crushed.
  • the pair of welding electrodes 30 generate heat to heat the metal wire 20, so that the resin layer 22 of the metal wire 20 is melted and separated from the metal wire 21 of the metal wire 20 and removed.
  • the pair of welding electrodes 30 pushes the metal wire 21 by a predetermined push amount.
  • the metal wire 21 and the columnar metal terminal 10 are pressure-bonded by the pair of welding electrodes 30, the metal wire 21 and the columnar metal terminal 10 are in contact with each other.
  • the resistance welding machine causes a current to flow through the pair of welding electrodes 30 as indicated by an arrow Y2 in FIG. 5 to cause the electric resistance between the columnar metal terminal 10 and the metal wire 21. Joule heat is generated in the columnar metal terminal 10. As a result, the metal wire 21 is melted, and the metal wire 21 is resistance-welded to the columnar metal terminal 10 (S123).
  • the resistance welding machine releases the load applied to the assembly by the pair of welding electrodes 30.
  • the terminal 1 in which the metal wire 21 is electrically connected to the columnar metal terminal 10 can be obtained.
  • the resistance welding machine pushes the metal wire 21 in a direction in which the pair of welding electrodes 30 approach each other. Specifically, the resistance welding machine pushes the metal wire 20 by applying a load to the metal wire 20 with a pair of welding electrodes 30 with a load equal to or larger than a specified load calculated using the diameter, the number of turns, and the proof stress of the metal wire 20. , Transform.
  • the height of the metal wire 20 from the columnar metal terminal 10 is the position where the pushing amount of the metal wire 20 is subtracted from the diameter of the metal wire 20.
  • a contact between the metal wire 21 and the pair of welding electrodes 30 is detected using a load cell.
  • the resistance welding machine can push in the metal wire 21 with the pushing amount from the point of contact with the metal wire 21.
  • the metal wire 21 When the metal wire 21 is pushed into the welding electrode 30 on one side by a predetermined pushing amount, it deforms according to the pushing amount. In this way, the surface of the metal wire 21 on the outer peripheral side of the terminal 1 is flattened, the metal wire 21 wound several turns and the plurality of contact surfaces of the welding electrode 30 are evenly contacted with each other, and the current is supplied through all the contact surfaces. It will be possible.
  • the parallelism between the welding electrode 30 and the assembly 200 can be secured by winding the metal wire 21 around the columnar metal terminal 10 for a plurality of turns. Further, it becomes possible to disperse the load applied to each metal wire 21. By dispersing the load applied to the metal wire 21, the deformation amount of the metal wire 21 becomes insensitive to the load. If it is insensitive to the load, it is difficult to be deformed even with a large load, so that the load during thermocompression bonding and resistance welding can be easily controlled. That is, it becomes easy to control the deformation amount of the metal wire at the time of thermocompression bonding and resistance welding by the load.
  • step S123 of FIG. 6 Next, the joining in step S123 of FIG. 6 will be specifically described.
  • the resistance welding machine controls the current flowing through the pair of welding electrodes 30 so that the metal wire 21 does not suffer from a defect such as disconnection or melting.
  • FIG. 7 is explanatory drawing which illustrated the conduction path at the time of resistance welding which concerns on embodiment.
  • FIG. 7 is an axial view of the assembly 200.
  • a path through which a current flows linearly from one welding electrode 30 to the other welding electrode 30 through the assembly 200 is defined as a conduction path D1, and from one welding electrode 30 to the other welding electrode 30.
  • the paths of the current flowing around the columnar metal terminal 10 and flowing through the metal wire 21 are referred to as conduction paths D2 and D3.
  • the plating layer 12 and the metal wire 21 of the columnar metal terminal 10 are locally melted at the contact surface between the metal wire 21 and the columnar metal terminal 10.
  • aluminum, which is the main component of the metal wire 21, and copper, which is the main component of the plating layer 12 are mixed.
  • an intermetallic compound layer 24 of aluminum and copper is formed at the interface between the metal wire 21 and the columnar metal terminal 10 (see FIG. 2).
  • the terminal 1 includes the columnar metal terminal 10 and the metal wire 20 wound around the columnar metal terminal 10, and the melting point of the first metal forming the metal wire 20 is The melting point of the second metal forming the columnar metal terminal 10 is lower than the melting point of the second metal, and an intermetallic compound layer 24 of the first metal and the second metal is provided at the interface between the metal wire 20 and the columnar metal terminal 10. ..
  • the metal wire 20 is formed into the columnar metal under the same environmental temperature. It is more flexible than the terminal 10.
  • the relatively soft metal wire 20 is wound around the columnar metal terminal 10 having a relatively high hardness, workability when winding the metal wire 20 around the columnar metal terminal 10 can be improved. it can.
  • the metal wire 20 can be easily attached to the columnar metal terminal 10. If the adhesion between the metal wire 20 and the columnar metal terminal 10 is high, thermocompression bonding and resistance welding can be stably performed, and as a result, the bonding strength between the metal wire 20 and the columnar metal terminal 10 should be ensured. You can
  • the melting point of the first metal is lower than the melting point of the second metal by 300 degrees or more.
  • the metal wire 20 is more flexible than the columnar metal terminal 10 under the same environmental temperature. Can be Therefore, workability at the time of winding can be further improved.
  • the main component of the first metal is aluminum and the main component of the second metal is copper.
  • aluminum and copper are generally metals with low electric resistance.
  • Metals having low electric resistance are insensitive to current during resistance welding and can be said to be metals that are difficult to weld. Since a metal having a high electric resistance is sensitive to the current during resistance welding, it melts instantly when a constant current is applied. On the other hand, if the current is insensitive to resistance welding, even a large current is less likely to melt, so that the current value during resistance welding can be easily controlled. That is, it becomes easy to control the molten state of the first metal and the second metal during resistance welding by the current value.
  • the columnar metal terminal 10 and the metal wire 20 can be formed with relatively inexpensive aluminum and copper. Therefore, the manufacturing cost can be suppressed.
  • the thickness of the intermetallic compound layer 24 is 5 ⁇ m or less.
  • FIG. 8 is an enlarged image showing the intermetallic compound layer 24 of the terminal 1 and its periphery according to the embodiment. Specifically, FIG. 8 shows a region surrounded by a broken line L1 in FIG. In FIG. 8, the base material layer 11, the plating layer 12, the intermetallic compound layer 24, and the metal wire 21 of the columnar metal terminal 10 are arranged in this order from the bottom. As shown in FIG. 8, a crack C may occur in the intermetallic compound layer 24. The crack C extends in the intermetallic compound layer 24 along the axial direction of the columnar metal terminal 10.
  • the length of the intermetallic compound layer 24 in the axial direction of the columnar metal terminal 10 is the interface length, and the length of the crack C in the same direction is the crack length.
  • the length of the intermetallic compound layer 24 in the direction orthogonal to the axial direction of the columnar metal terminal 10 is defined as the thickness (layer thickness).
  • FIG. 9 is a graph showing the relationship between the ratio of the crack length to the interface length and the thickness of the intermetallic compound layer 24 in the terminal 1 according to the embodiment.
  • FIG. 9 it can be seen that when the thickness of the intermetallic compound layer 24 is larger than 5 ⁇ m, cracks C having a ratio of the crack length to the interface length of 100% are generated.
  • the thickness of the intermetallic compound layer 24 is 5 ⁇ m or less, it is found that the crack C in which the ratio of the crack length to the interface length is 100% is not generated. That is, when the thickness of the intermetallic compound layer 24 is 5 ⁇ m or less, it is possible to prevent the crack C from growing to the same extent as the interface length.
  • the columnar metal terminal 10 has a polygonal columnar shape
  • the metal wire 20 has at least one intersecting portion 23 connected to the columnar metal terminal
  • the intersecting portion 23 is the intermetallic compound layer 24 in the columnar metal terminal 10. It is arranged on the side surface where no is formed.
  • intersection 23 of the metal wire 20 When the intersection 23 of the metal wire 20 is provided on the joining terminal surface 110 of the columnar metal terminal 10, the intersection 23 is sandwiched between the pair of welding electrodes 30 during thermocompression bonding and resistance welding. Since the intersecting portion 23 is thicker than the other portions of the metal wire 20, there is a portion that does not contact the pair of welding electrodes 30 in the other portion. As a result, there is a possibility that thermocompression bonding and resistance welding cannot be reliably performed in the portion of the metal wire 20 other than the intersecting portion 23.
  • the crossing portion 23 of the metal wire 20 is provided on the side surface of the columnar metal terminal 10 other than the joining terminal surface 110, that is, the side surface on which the intermetallic compound layer 24 is not formed, the crossing portion 23 has a pair of crossing portions 23.
  • the welding electrode 30 is arranged at a position where it is not sandwiched. Therefore, since only the single-wound portion of the metal wire 20 is arranged on the joining terminal surface 110 of the columnar metal terminal 10, the pair of welding electrodes 30 can be reliably brought into contact with these portions. .. Therefore, the reliability of thermocompression bonding and resistance welding can be improved.
  • the base material layer 11 of the columnar metal terminal 10 is formed of a metal having iron as a main component, which has a relatively high electric resistance, Joule heat is efficiently generated during resistance welding. be able to.
  • the plated layer 12 is formed of the second metal whose main component is copper, which has a relatively low electric resistance, a current easily flows in the surface layer of the columnar metal terminal 10 during resistance welding, and the metal wire 20 is It is possible to prevent electricity from flowing concentrated on the metal wire 21. Therefore, melting of the metal wire 21 can be suppressed.
  • FIG. 10 is a sectional view showing a terminal 1A according to the first modification. Specifically, FIG. 10 is a diagram corresponding to FIG. 2. As shown in FIG. 10, the columnar metal terminal 10a included in the terminal 1A is entirely formed of a second metal containing copper as a main component, and a plating layer is not formed on the surface thereof. That is, before winding the metal wire 20, the second metal is exposed as a whole on the surface of the columnar metal terminal 10a.
  • the metal wire 20 of the metal wire 20 is wound around the columnar metal terminal 10a and subjected to thermocompression bonding and resistance welding, so that the metal wire 21 of the metal wire 20 is on the bonding terminal surface 110a of the columnar metal terminal 10a.
  • the metal and the intermetallic compound layer 24a are formed and metal-bonded.
  • the intermetallic compound layer 24a is made of aluminum, which is the main component of the first metal forming the metal wire 21, and copper, which is the main component of the second metal forming the columnar metal terminal 10a.
  • FIG. 11 is a sectional view showing a terminal 1B according to Modification 2. Specifically, FIG. 11 is a diagram corresponding to FIG. 2. As shown in FIG. 11, in the columnar metal terminal 10b included in the terminal 1B, the base material layer 11 is coated with the plating layer 12b formed of the second metal containing nickel as a main component.
  • a metal wire 20 is wound around the columnar metal terminal 10b, and thermocompression bonding and resistance welding are performed, so that the metal wire 21 of the metal wire 20 forms the plating layer 12b on the joint terminal surface 110b of the columnar metal terminal 10b. And an intermetallic compound layer 24b is formed and metal bonding is performed.
  • the intermetallic compound layer 24b is made of aluminum, which is the main component of the first metal forming the metal wire 21, and nickel, which is the main component of the second metal forming the columnar metal terminal 10a. Since the plating layer 12b is formed of the second metal containing nickel as a main component, the plating layer 12b has a melting point according to the melting point of nickel (1455° C.). That is, also in this case, the melting point of the first metal containing aluminum as the main component is lower than the melting point of the second metal by 300 degrees or more.
  • FIG. 12 is a cross-sectional view showing a terminal 1C according to Modification 3. Specifically, FIG. 12 is a diagram corresponding to FIG. As shown in FIG. 12, in the columnar metal terminal 10c included in the terminal 1C, the surface layer of the plating layer 12 is coated with a plating layer 12c made of a third metal containing tin (Sn) as a main component. The plated layer 12 c is laminated on the entire surface of the plated layer 12 before winding the metal wire 20.
  • the plating layer 12c is formed of the third metal containing tin as a main component, it has a melting point according to the melting point of tin (232° C.).
  • the columnar metal terminal 10c and the metal wire 20 are higher than the melting point of the third metal and lower than the melting point of the first metal. Heated at temperature. As a result, the plating layer 12c receives pressure from the pair of welding electrodes 30 in a melted state, so that the plating layer 12c is pushed outward from the interface between the metal wire 20 and the plating layer 12.
  • the metal wire 21 of the metal wire 20 is metal-bonded by forming the plating layer 12 and the intermetallic compound layer 24c on the bonding terminal surface 110c of the columnar metal terminal 10c.
  • the intermetallic compound layer 24c is made of aluminum, which is the main component of the first metal forming the metal wire 21, and copper, which is the main component of the second metal forming the columnar metal terminal 10c.
  • the plating layer 12c covers the surface of the plating layer 12 outside the metal wire 21 and the intermetallic compound layer 24.
  • the plating layer 12c fills the gap between the metal wire 21 and the columnar metal terminal 10c when melted during thermocompression bonding. By filling this gap, heat conduction during resistance welding is enhanced.
  • Modification 4 In the above-mentioned embodiment, the case where one metal wire 20 is wound around the columnar metal terminal 10 and metal-bonded to each other has been illustrated. However, a plurality of metal wires may be wound around the columnar metal terminal. In Modification 4, as an example, a case where two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d is illustrated.
  • FIG. 13 is a front view showing a schematic configuration of a terminal 1D according to Modification 4.
  • two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d of the terminal 1D.
  • the two metal wires 20d1 and 20d2 have intersecting portions 23d1 and 23d2, respectively, and these intersecting portions 23d1 and 23d2 are arranged at positions that do not overlap each other.
  • the two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d in a double spiral shape so as not to overlap each other, and metal-bonded to the columnar metal terminal 10d.
  • a plurality of metal wires 20d1 and 20d2 are provided, and each of them is wound around the columnar metal terminal 10d.
  • the columnar metal terminal 10d can be shared.
  • the wire diameters of the plurality of metal wires 20d1 and 20d2 may be the same or different.
  • the wire diameters of the metal wires provided in each of the plurality of metal wires 20d1 and 20d2 may be the same or different.
  • FIG. 14 is a cross-sectional view showing a terminal 1D according to Modification 4, in which a plurality of metal wires 20d1 and 20d2 having different wire diameters are metal-bonded to each other. In FIG. 14, only the metal wires 21d1 and 21d2 from which the resin layer has been removed are shown.
  • the metal wires 21d1 and 21d2 are metal-bonded to the plating layer 12 at the bonding terminal surface 110d of the columnar metal terminal 10. Therefore, intermetallic compound layers 24d1 and 24d2 are formed at the boundaries between the metal wires 21d1 and 21d2 and the columnar metal terminals 10.
  • the wire diameters of the metal wires 21d1 and 21d2 in the metal-bonded state are the lengths z1 and z2 of the metal wires 21d1 and 21d2 along the axial direction of the columnar metal terminal 10.
  • the thicknesses h1 and h2 of the metal wires 21d1 and 21d2 along the direction orthogonal to the axial direction of the columnar metal terminal 10 are equal.
  • the metal wires 21d1 and 21d2 were circular cross-sections having different wire diameters (virtual lines L11 and L12 in FIG. 14).
  • the metal wires 21d1 and 21d2 having different wire diameters are first pressed against the columnar metal terminal 10 so as to have a uniform thickness in the thermocompression bonding process and to be in close contact with the plating layer 12. Further, by being pressed in the resistance welding process, the metal wires 21d1 and 21d2 are made uniform in thickness h1 and h2 and metal-bonded to the columnar metal terminal 10. The quality of the resistance welding process is stabilized by making the thicknesses of the metal wires 21d1 and 21d2 uniform in the thermocompression bonding process. Since the melting points of the metal wires 21d1 and 21d2 are lower than that of the columnar metal terminal 10d, the thickness of the metal wires 21d1 and 21d2 having different wire diameters can be easily made uniform in the thermocompression bonding process.
  • the intermetallic compound layers 24d1 and 24d2 can be reliably formed.
  • the metal wire in a state in which the metal wire is not entangled with the columnar metal terminal, that is, in a state where the metal wire has no intersection and is simply wound around the columnar metal terminal, And may be metal-bonded.
  • the case where the intermetallic compound layer 24 is formed of the first metal containing aluminum as the main component and the second metal containing copper as the main component is illustrated.
  • the case where the intermetallic compound layer 24b is formed of the first metal containing aluminum as the main component and the second metal containing nickel as the main component is illustrated.
  • the main component of the first metal and the main component of the second metal are not limited to the above examples. .. The difference may be less than 300 degrees as long as the melting point of the first metal is lower than the melting point of the second metal.

Abstract

A terminal (1) comprises: a columnar metal terminal (10); and a metal wire (20) which is wound around the columnar metal terminal (10). The melting point of a first metal constituting the metal wire (20) is lower than the melting point of a second metal constituting the columnar metal terminal (10). An intermetallic compound layer (24) of the first metal and the second metal is provided at the interface between the metal wire (20) and the columnar metal terminal (10).

Description

端子Terminal
 本開示は、端子に関する。 The present disclosure relates to terminals.
 従来、コイル端末(金属ワイヤ)が巻きつけられることで当該コイル端末に接続された端子(柱状金属端子)が特許文献1に開示されている。 Conventionally, Patent Document 1 discloses a terminal (columnar metal terminal) connected to a coil terminal (metal wire) by winding the coil terminal (metal wire).
特開平11-186023号公報JP-A-11-186023
 ところで、金属ワイヤを柱状金属端子に巻き付ける際に、金属ワイヤと柱状金属端子との密着性が低いと、金属ワイヤと柱状金属端子との接合強度が低下してしまうおそれがある。 By the way, when the metal wire is wound around the pillar-shaped metal terminal, if the adhesion between the metal wire and the pillar-shaped metal terminal is low, the bonding strength between the metal wire and the pillar-shaped metal terminal may be reduced.
 そこで本開示は、柱状金属端子に対して金属ワイヤを巻き付ける際の作業性を高めることで、巻き付け時における金属ワイヤと柱状金属端子との密着性を高めて、両者の接合強度を確保することができる端子を提供することを目的とする。 Therefore, the present disclosure improves the workability when winding a metal wire around a pillar-shaped metal terminal, thereby improving the adhesion between the metal wire and the pillar-shaped metal terminal during winding and ensuring the bonding strength between the two. The purpose is to provide a terminal that can.
 上記目的を達成するために、本開示の一形態に係る端子は、柱状金属端子と、柱状金属端子に対して巻きつけられた金属ワイヤとを備え、金属ワイヤをなす第一金属の融点は、柱状金属端子をなす第二金属の融点よりも低く、金属ワイヤと柱状金属端子との界面には、第一金属と、第二金属との金属間化合物層が設けられている。 To achieve the above object, a terminal according to one embodiment of the present disclosure includes a columnar metal terminal and a metal wire wound around the columnar metal terminal, and the melting point of the first metal forming the metal wire is The melting point of the second metal forming the columnar metal terminal is lower than the melting point, and an intermetallic compound layer of the first metal and the second metal is provided at the interface between the metal wire and the columnar metal terminal.
 本開示によれば、柱状金属端子に対して金属ワイヤを巻き付ける際の作業性を高めることができ、結果的に金属ワイヤと柱状金属端子との接合強度を確保することができる。 According to the present disclosure, workability in winding a metal wire around a columnar metal terminal can be improved, and as a result, bonding strength between the metal wire and the columnar metal terminal can be secured.
図1は、実施の形態に係る端子を示す概略図である。FIG. 1 is a schematic diagram showing a terminal according to an embodiment. 図2は、実施の形態に係る端子を示す断面図である。FIG. 2 is a cross-sectional view showing the terminal according to the embodiment. 図3は、実施の形態に係り、柱状金属端子に金属ワイヤを絡げた状態を示す説明図である。FIG. 3 is an explanatory view showing a state in which a metal wire is entangled with a columnar metal terminal according to the embodiment. 図4は、実施の形態に係り、柱状金属端子に金属ワイヤを絡げる工程を示すフロー図である。FIG. 4 is a flow chart showing a step of tying a metal wire around a columnar metal terminal according to the embodiment. 図5は、実施の形態に係り、組立品の作成、熱圧着及び接合の工程を示す図である。FIG. 5 is a diagram showing a process of producing an assembly, thermocompression bonding, and bonding according to the embodiment. 図6は、実施の形態に係り、組立品の柱状金属端子に対して金属ワイヤを接合する工程を示すフロー図である。FIG. 6 is a flow chart showing a process of joining a metal wire to a columnar metal terminal of an assembly according to the embodiment. 図7は、実施の形態に係る抵抗溶接時における導通経路を例示した説明図である。FIG. 7: is explanatory drawing which illustrated the conduction path at the time of resistance welding which concerns on embodiment. 図8は、実施の形態に係る端子の金属間化合物層及びその周辺を拡大して示す画像である。FIG. 8 is an enlarged image showing the intermetallic compound layer of the terminal and its periphery according to the embodiment. 図9は、実施の形態に係る端子であって、界面長さに対するクラック長さの比率と、金属間化合物の厚さとの関係を示すグラフである。FIG. 9 is a graph showing the relationship between the ratio of the crack length to the interface length and the thickness of the intermetallic compound in the terminal according to the embodiment. 図10は、変形例1に係る端子を示す断面図である。FIG. 10 is a sectional view showing a terminal according to the first modification. 図11は、変形例2に係る端子を示す断面図である。11: is sectional drawing which shows the terminal which concerns on the modification 2. FIG. 図12は、変形例3に係る端子を示す断面図である。FIG. 12 is a cross-sectional view showing a terminal according to Modification 3. 図13は、変形例4に係る端子の概略構成を示す正面図である。FIG. 13 is a front view showing a schematic configuration of a terminal according to Modification 4. 図14は、変形例4に係る端子であって、線径の異なる複数の金属ワイヤが金属接合された状態を示す断面図である。FIG. 14 is a cross-sectional view showing a terminal according to Modification 4 in which a plurality of metal wires having different wire diameters are metal-bonded to each other.
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claim indicating the highest concept are described as arbitrary constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Note that each diagram is a schematic diagram, and is not necessarily an exact illustration. Further, in each of the drawings, the substantially same components are designated by the same reference numerals, and overlapping description will be omitted or simplified.
 以下、本開示の実施の形態に係る端子及び端子の接合方法について説明する。 Hereinafter, a terminal and a method of joining the terminal according to the embodiment of the present disclosure will be described.
 [構成]
 図1は、実施の形態に係る端子1を示す概略図である。図1に示すように、端子1は、モータの一部であるステータ100に対して設けられている。具体的には、端子1は、ステータ100を構成する複数のコイル101に設けられている。端子1は、モータに対して電力を供給する電源部に搭載された回路基板からコイル101に電力供給を行う。端子1は、柱状金属端子10と、金属ワイヤ20とを備えている。
[Constitution]
FIG. 1 is a schematic diagram showing a terminal 1 according to the embodiment. As shown in FIG. 1, the terminal 1 is provided for a stator 100 that is a part of the motor. Specifically, the terminal 1 is provided on the plurality of coils 101 that form the stator 100. The terminal 1 supplies power to the coil 101 from a circuit board mounted on a power supply unit that supplies power to the motor. The terminal 1 includes a columnar metal terminal 10 and a metal wire 20.
 図2は、実施の形態に係る端子1を示す断面図である。具体的には、図2は、図1におけるII-II線を含む切断面を見た断面図である。 FIG. 2 is a sectional view showing the terminal 1 according to the embodiment. Specifically, FIG. 2 is a cross-sectional view of a section including the line II-II in FIG.
 図2に示すように、柱状金属端子10は、コイル101と電気的に接続された柱状の金属部材である。柱状金属端子10は、金属ワイヤ20の一部である金属線21と電気的に接続されている。具体的には、柱状金属端子10は、金属線21が巻き付けられた状態で金属線21に対して接合されている。柱状金属端子10は、例えば、鉄(Fe)を主成分とする母材層11の周囲を、銅(Cu)を主成分とする第二金属からなるメッキ層12で被覆した部材である。本実施の形態では、金属線21が柱状金属端子10に絡げられた状態で、金属線21と柱状金属端子10とが接合されている。ここで「絡げる」とは、対象物に対して線材が巻き付けられた状態で結ばれていることをいい、結わえられたことで金属線21同士が重なった部分(交差部23:図3参照)が存在していることをいう。金属線21は、交差部23を除き、柱状金属端子10に対して一重で巻き付けられている。 As shown in FIG. 2, the columnar metal terminal 10 is a columnar metal member electrically connected to the coil 101. The columnar metal terminal 10 is electrically connected to the metal wire 21 which is a part of the metal wire 20. Specifically, the columnar metal terminal 10 is joined to the metal wire 21 in a state where the metal wire 21 is wound. The columnar metal terminal 10 is, for example, a member in which a base material layer 11 containing iron (Fe) as a main component is coated with a plating layer 12 made of a second metal containing copper (Cu) as a main component. In the present embodiment, the metal wire 21 and the columnar metal terminal 10 are joined in a state where the metal wire 21 is entwined with the columnar metal terminal 10. Here, "to be entangled" means that the wire is wound around the object, and the metal wires 21 are overlapped with each other (intersection 23: FIG. 3). (See) exists. The metal wire 21 is wound around the pillar-shaped metal terminal 10 in a single layer except for the intersecting portion 23.
 金属接合は、例えば、接合対象同士によって構成される金属間化合物層を、接合対象同士の界面に形成可能な接合方法のことである。金属接合には、熱圧着、超音波接合、拡散接合及び抵抗溶接などが含まれる。本実施の形態では、金属接合の一例である抵抗溶接によって、金属線21を柱状金属端子10に溶接する場合について説明する。抵抗溶接は、柱状金属端子10に金属線21を金属接合することに関して、他の接合方法と比べても好適である。 Metal joining is, for example, a joining method capable of forming an intermetallic compound layer formed by joining objects at the interface between joining objects. Metal bonding includes thermocompression bonding, ultrasonic bonding, diffusion bonding, resistance welding and the like. In the present embodiment, a case will be described in which the metal wire 21 is welded to the columnar metal terminal 10 by resistance welding, which is an example of metal joining. Resistance welding is also suitable as compared with other joining methods for joining the metal wire 21 to the columnar metal terminal 10.
 母材層11は、例えば、軸方向視において短辺が約0.4mm、長辺が0.6mmの長方形であり、メッキ層12の厚みは約25μmとなっている。また、金属ワイヤ20では、金属線21の線径は約0.15mmである。 The base material layer 11 is, for example, a rectangle having a short side of about 0.4 mm and a long side of 0.6 mm as viewed in the axial direction, and the plating layer 12 has a thickness of about 25 μm. Further, in the metal wire 20, the wire diameter of the metal wire 21 is about 0.15 mm.
 柱状金属端子10は、軸方向視において四角形である。なお、柱状金属端子10は、軸方向視において四角形であることに限定されず、例えば、四角形以外の多角形状、円形状、楕円形状、長円形状などであってもよい。 The columnar metal terminal 10 is a quadrangle when viewed in the axial direction. The columnar metal terminal 10 is not limited to a quadrangle when viewed in the axial direction, and may have a polygonal shape other than a quadrangle, a circular shape, an elliptical shape, an oval shape, or the like.
 この柱状金属端子10は、柱状金属端子10の軸方向と直交する方向の断面が長方形であり、一対の長辺面と、一対の短辺面とを有する。長辺面は、断面が長方形の長辺側を構成する面であり、短辺面は、断面が長方形の短辺側を構成する面である。柱状金属端子10の長辺面は、金属線21が金属接合される接合端子面110である。なお、柱状金属端子10の軸方向と直交する方向の断面は、長辺と短辺の区別がない形状、つまり正方形であってもよい。この場合、柱状金属端子における対向する一対の側面を、接合端子面とすることができる。 The columnar metal terminal 10 has a rectangular cross section in a direction orthogonal to the axial direction of the columnar metal terminal 10, and has a pair of long side surfaces and a pair of short side surfaces. The long side surface is a surface whose cross section constitutes the long side of a rectangle, and the short side surface is a surface whose cross section constitutes the short side of a rectangle. The long side surface of the columnar metal terminal 10 is a joining terminal surface 110 to which the metal wire 21 is joined by metal. The cross section of the columnar metal terminal 10 in the direction orthogonal to the axial direction may have a shape in which long sides and short sides are not distinguished, that is, a square. In this case, the pair of side surfaces facing each other in the columnar metal terminal can be used as the bonding terminal surface.
 金属線21は、金属ワイヤ20の一部を構成し、金属製の線材である。具体的には、金属線21は、アルミニウム(Al)を主成分とする第一金属から形成されている。金属線21は、当該金属線21同士が柱状金属端子10の周方向に重なりあう交差部23を形成している。交差部23は、いずれかの短辺面と接触するように形成されている。 The metal wire 21 constitutes a part of the metal wire 20 and is a metal wire material. Specifically, the metal wire 21 is made of a first metal whose main component is aluminum (Al). The metal wire 21 forms an intersection 23 where the metal wires 21 overlap each other in the circumferential direction of the columnar metal terminal 10. The intersecting portion 23 is formed so as to come into contact with one of the short side surfaces.
 柱状金属端子10の接合端子面110と、金属線21との界面には、金属接合により形成された金属間化合物層24が形成されている。金属間化合物層24は、メッキ層12を形成する第二金属と、金属線21を形成する第一金属との合金からなる。具体的には、金属間化合物層24は、第一金属と第二金属とが、抵抗溶接によって一時的に混ざり合った後に再硬化することで形成されている。金属間化合物層24の厚み(層厚)は、5μm以下であるとよい。 An intermetallic compound layer 24 formed by metal joining is formed at the interface between the joining terminal surface 110 of the columnar metal terminal 10 and the metal wire 21. The intermetallic compound layer 24 is made of an alloy of a second metal forming the plated layer 12 and a first metal forming the metal wire 21. Specifically, the intermetallic compound layer 24 is formed by the first metal and the second metal being temporarily mixed by resistance welding and then re-cured. The thickness (layer thickness) of the intermetallic compound layer 24 is preferably 5 μm or less.
 [端子の接合方法]
 柱状金属端子10への金属ワイヤ20の接合方法について説明する。
[Terminal joining method]
A method of joining the metal wire 20 to the columnar metal terminal 10 will be described.
 まず、接合前の、柱状金属端子10と金属ワイヤ20とについて説明をする。 First, the columnar metal terminal 10 and the metal wire 20 before joining will be described.
 柱状金属端子10は、軸方向視長方形状の四角柱状であり、その側面のうち、一対の長辺面が接合端子面110である。また、この接合端子面110には、金属線21の交差部23は配置されず、柱状金属端子10の一対の短辺面に対してのみ交差部23が配置される。柱状金属端子10は、例えば、母材層11の周囲をメッキ層12で被覆した部材であり、接合前の時点では金属間化合物層24は形成されていない。上述したように、メッキ層12は、銅を主成分とする第二金属から形成されているために、銅の融点(1083℃)に準じた融点となっている。 The columnar metal terminal 10 is a rectangular columnar shape that is rectangular in the axial direction, and a pair of long side faces of the side faces thereof are the joint terminal faces 110. Further, on the joint terminal surface 110, the intersection 23 of the metal wire 21 is not arranged, but the intersection 23 is arranged only on the pair of short side surfaces of the columnar metal terminal 10. The columnar metal terminal 10 is, for example, a member in which the base material layer 11 is covered with the plating layer 12, and the intermetallic compound layer 24 is not formed before the joining. As described above, since the plating layer 12 is formed of the second metal containing copper as a main component, it has a melting point according to the melting point of copper (1083° C.).
 また、金属ワイヤ20は、金属線21に絶縁性の樹脂からなる樹脂層22が被膜されている。金属ワイヤ20は、例えば、エナメル線、リード線等である。金属線21は、例えば、アルミニウムを主成分とする第一金属で構成されている。樹脂層22は、例えばウレタン、ポリエステル、ポリエステルイミド、ポリアミドイミド等の樹脂材料で構成されている。また、上述したように、金属線21は、アルミニウムを主成分とする第一金属から形成されているために、アルミニウムの融点(660℃)に準じた融点となっている。 Further, in the metal wire 20, a resin layer 22 made of an insulating resin is coated on the metal wire 21. The metal wire 20 is, for example, an enamel wire, a lead wire, or the like. The metal wire 21 is made of, for example, a first metal whose main component is aluminum. The resin layer 22 is made of a resin material such as urethane, polyester, polyester imide, or polyamide imide. Further, as described above, since the metal wire 21 is formed of the first metal containing aluminum as a main component, the metal wire 21 has a melting point according to the melting point of aluminum (660° C.).
 図3は、実施の形態に係り、柱状金属端子10に金属ワイヤ20を絡げた状態を示す説明図である。図3の(a)は、柱状金属端子10の軸方向と直交する方向から見た、柱状金属端子10に金属ワイヤ20を絡げた状態を示す。図3の(b)は、柱状金属端子10の軸方向から見た、柱状金属端子10に金属ワイヤ20を絡げた状態を示す。また、図4は、実施の形態に係り、柱状金属端子10に金属ワイヤ20を絡げる工程を示すフロー図である。 FIG. 3 is an explanatory view showing a state in which the metal wire 20 is entangled with the columnar metal terminal 10 according to the embodiment. FIG. 3A shows a state in which the metal wire 20 is entwined with the columnar metal terminal 10 as seen from a direction orthogonal to the axial direction of the columnar metal terminal 10. FIG. 3B shows a state in which the metal wire 20 is entangled with the columnar metal terminal 10 as viewed in the axial direction of the columnar metal terminal 10. Further, FIG. 4 is a flow chart showing a step of entwining the metal wire 20 with the columnar metal terminal 10 according to the embodiment.
 図3及び図4に示すように、まず、柱状金属端子10は、図示しない治具に対して固定される。これにより、柱状金属端子10は、金属ワイヤ20を巻き付けることが可能な状態となる(S111)。その後、金属ワイヤ20は、一定の張力を受けながら、柱状金属端子10の周囲に対して巻き付けられる。上述したように、金属ワイヤ20の金属線21は、アルミニウムを主成分とする第一金属で形成されている。第一金属の融点は、メッキ層12をなす第二金属の融点よりも低い。具体的には、第一金属の融点は、第二金属の融点よりも300℃以上も低い。つまり、同じ環境温度下にある場合には、金属線21は、メッキ層12よりも柔軟な状態である。金属線21を被覆する樹脂層22も、金属よりも柔軟であるため、金属ワイヤ20は全体的にメッキ層12よりも柔軟である。巻き付け時においては、比較的柔軟な金属ワイヤ20を、比較的高硬度なメッキ層12に巻き付けることとなるため、簡単に金属ワイヤ20をメッキ層12に密着させることが可能である。 As shown in FIGS. 3 and 4, first, the columnar metal terminal 10 is fixed to a jig (not shown). As a result, the columnar metal terminal 10 is brought into a state in which the metal wire 20 can be wound (S111). Then, the metal wire 20 is wound around the columnar metal terminal 10 while receiving a constant tension. As described above, the metal wire 21 of the metal wire 20 is formed of the first metal whose main component is aluminum. The melting point of the first metal is lower than the melting point of the second metal forming the plating layer 12. Specifically, the melting point of the first metal is lower than the melting point of the second metal by 300° C. or more. That is, when the environment temperature is the same, the metal wire 21 is more flexible than the plating layer 12. Since the resin layer 22 that covers the metal wire 21 is also softer than metal, the metal wire 20 is generally softer than the plated layer 12. At the time of winding, since the relatively soft metal wire 20 is wound around the plating layer 12 having a relatively high hardness, the metal wire 20 can be easily attached to the plating layer 12.
 また、金属ワイヤ20は、1ターン目、2ターン目と巻き付けられる際には、金属ワイヤ20における巻き始め箇所に重なるように柱状金属端子10に巻き付けられる。これにより、金属ワイヤ20同士が交差した交差部23が形成される(S112)。交差部23は、柱状金属端子10の接合端子面110を避けて、いずれかの短辺面と接触するように配置されている。 Further, when the metal wire 20 is wound in the first turn and the second turn, the metal wire 20 is wound around the columnar metal terminal 10 so as to overlap the winding start point of the metal wire 20. As a result, the intersection portion 23 where the metal wires 20 intersect each other is formed (S112). The intersecting portion 23 is arranged so as to be in contact with any of the short side surfaces while avoiding the joining terminal surface 110 of the columnar metal terminal 10.
 さらに、金属ワイヤ20は柱状金属端子10に対して数ターン巻き付けられる(S113)。金属ワイヤ20は、交差部23を除けば概ねコイル状となるように、柱状金属端子10に巻きつけられることとなる。その後、金属ワイヤ20の不要な箇所がニッパ等で切断されて、金属ワイヤ20が整えられることで、図5に示す組立品200が得られる。図5は、実施の形態に係り、組立品200の作成、熱圧着及び接合の工程を示す図である。 Further, the metal wire 20 is wound around the columnar metal terminal 10 for several turns (S113). The metal wire 20 is wound around the columnar metal terminal 10 so as to have a substantially coil shape except for the intersecting portion 23. After that, unnecessary parts of the metal wire 20 are cut with a nipper or the like, and the metal wire 20 is arranged, whereby the assembly 200 shown in FIG. 5 is obtained. FIG. 5 is a diagram showing steps of producing the assembly 200, thermocompression bonding, and joining according to the embodiment.
 次に、金属ワイヤ20は、柱状金属端子10に対して接合される。本実施の形態では、金属ワイヤ20を柱状金属端子10に対して熱圧着及び抵抗溶接を行うことで実現している。 Next, the metal wire 20 is joined to the columnar metal terminal 10. In the present embodiment, the metal wire 20 is realized by performing thermocompression bonding and resistance welding on the columnar metal terminal 10.
 図6は、実施の形態に係り、組立品200の柱状金属端子10に対して金属ワイヤ20を接合する工程を示すフロー図である。図5及び図6に示すように、まず、上述の組立品200は、抵抗溶接機に備わる一対の溶接電極30の間に配置される(S121)。具体的には、柱状金属端子10の一対の接合端子面110aと一対の溶接電極30とが一対一で対向するように、組立品200が一対の溶接電極30の間に配置される。 FIG. 6 is a flow chart showing a process of joining the metal wire 20 to the columnar metal terminal 10 of the assembly 200 according to the embodiment. As shown in FIGS. 5 and 6, first, the above-described assembly 200 is arranged between the pair of welding electrodes 30 provided in the resistance welding machine (S121). Specifically, the assembly 200 is arranged between the pair of welding electrodes 30 so that the pair of joining terminal surfaces 110 a of the columnar metal terminals 10 and the pair of welding electrodes 30 face each other one-on-one.
 次に、組立品は、一対の溶接電極30によって熱圧着される(S122)。この際に、抵抗溶接機は、一対の溶接電極30に対して、図5の矢印Y1で示すような電流を流す。同時に、抵抗溶接機は、金属線21が潰れるように、一対の溶接電極30で金属線21を挟持し荷重をかける。これにより、一対の溶接電極30が発熱して金属ワイヤ20を加熱するので、金属ワイヤ20の樹脂層22は溶融し、金属ワイヤ20の金属線21から剥離し除去される。一対の溶接電極30は、所定の押込み量だけ、金属線21を押込む。また、一対の溶接電極30により金属線21と柱状金属端子10とが圧着されているため、金属線21と柱状金属端子10とが接触する。 Next, the assembly is thermocompression bonded by the pair of welding electrodes 30 (S122). At this time, the resistance welding machine causes a current as indicated by an arrow Y1 in FIG. 5 to flow through the pair of welding electrodes 30. At the same time, the resistance welding machine clamps the metal wire 21 between the pair of welding electrodes 30 and applies a load so that the metal wire 21 is crushed. As a result, the pair of welding electrodes 30 generate heat to heat the metal wire 20, so that the resin layer 22 of the metal wire 20 is melted and separated from the metal wire 21 of the metal wire 20 and removed. The pair of welding electrodes 30 pushes the metal wire 21 by a predetermined push amount. Moreover, since the metal wire 21 and the columnar metal terminal 10 are pressure-bonded by the pair of welding electrodes 30, the metal wire 21 and the columnar metal terminal 10 are in contact with each other.
 次に、抵抗溶接機は、一対の溶接電極30に図5の矢印Y2で示すように電流を流すことで、柱状金属端子10と金属線21との電気抵抗に起因して、金属線21及び柱状金属端子10にジュール熱が生じる。これにより、金属線21が溶融することで、金属線21が柱状金属端子10に抵抗溶接される(S123)。 Next, the resistance welding machine causes a current to flow through the pair of welding electrodes 30 as indicated by an arrow Y2 in FIG. 5 to cause the electric resistance between the columnar metal terminal 10 and the metal wire 21. Joule heat is generated in the columnar metal terminal 10. As a result, the metal wire 21 is melted, and the metal wire 21 is resistance-welded to the columnar metal terminal 10 (S123).
 そして、抵抗溶接機は、一対の溶接電極30が組立品にかけていた荷重を解除する。こうして、金属線21が柱状金属端子10と電気的に接続された端子1を得ることができる。 Then, the resistance welding machine releases the load applied to the assembly by the pair of welding electrodes 30. In this way, the terminal 1 in which the metal wire 21 is electrically connected to the columnar metal terminal 10 can be obtained.
 次に、図6のステップS122で行われる熱圧着の際の押込み量について、具体的に説明する。抵抗溶接機は、一対の溶接電極30が互いに近づく方向に、金属線21を押込む。具体的には、抵抗溶接機は、金属ワイヤ20の径、ターン数、耐力を用いて算出される規定の荷重以上で、一対の溶接電極30によって金属ワイヤ20に荷重をかけ金属ワイヤ20を押込み、変形させる。金属ワイヤ20の径から金属ワイヤ20が押込まれた押込み量を差し引いた位置が、柱状金属端子10からの金属ワイヤ20の高さとなる。 Next, the pressing amount during the thermocompression bonding performed in step S122 of FIG. 6 will be specifically described. The resistance welding machine pushes the metal wire 21 in a direction in which the pair of welding electrodes 30 approach each other. Specifically, the resistance welding machine pushes the metal wire 20 by applying a load to the metal wire 20 with a pair of welding electrodes 30 with a load equal to or larger than a specified load calculated using the diameter, the number of turns, and the proof stress of the metal wire 20. , Transform. The height of the metal wire 20 from the columnar metal terminal 10 is the position where the pushing amount of the metal wire 20 is subtracted from the diameter of the metal wire 20.
 また、一対の溶接電極30により金属ワイヤ20を適切に熱圧着するために、ロードセルを用いて、金属線21と一対の溶接電極30とが接触したことを検知する。これにより、抵抗溶接機は、金属線21と接触した地点からの押込み量で金属線21を押込むことができる。 Further, in order to appropriately thermocompress the metal wire 20 with the pair of welding electrodes 30, a contact between the metal wire 21 and the pair of welding electrodes 30 is detected using a load cell. Thereby, the resistance welding machine can push in the metal wire 21 with the pushing amount from the point of contact with the metal wire 21.
 金属線21は、一方側の溶接電極30に所定の押込み量だけ押込まれると、押込み量の分に応じて変形する。こうして、端子1の外周側の金属線21の表面が平坦化され、数ターン巻き付けられた金属線21と溶接電極30の複数の接触面が均等に接触し、全ての接触面を介して通電が可能となる。 When the metal wire 21 is pushed into the welding electrode 30 on one side by a predetermined pushing amount, it deforms according to the pushing amount. In this way, the surface of the metal wire 21 on the outer peripheral side of the terminal 1 is flattened, the metal wire 21 wound several turns and the plurality of contact surfaces of the welding electrode 30 are evenly contacted with each other, and the current is supplied through all the contact surfaces. It will be possible.
 柱状金属端子10に金属線21を複数ターン巻き付けることで溶接電極30と組立品200の平行度を確保することが可能となる。さらに、個々の金属線21にかかる荷重を分散させることが可能となる。金属線21にかかる荷重を分散させることにより金属線21の変形量が荷重に対して鈍感になる。荷重に対して鈍感であれば、大荷重でも変形しにくいので、熱圧着及び抵抗溶接時の荷重が制御しやすくなる。つまり、熱圧着及び抵抗溶接時における金属線の変形量を荷重で制御することが容易となる。 The parallelism between the welding electrode 30 and the assembly 200 can be secured by winding the metal wire 21 around the columnar metal terminal 10 for a plurality of turns. Further, it becomes possible to disperse the load applied to each metal wire 21. By dispersing the load applied to the metal wire 21, the deformation amount of the metal wire 21 becomes insensitive to the load. If it is insensitive to the load, it is difficult to be deformed even with a large load, so that the load during thermocompression bonding and resistance welding can be easily controlled. That is, it becomes easy to control the deformation amount of the metal wire at the time of thermocompression bonding and resistance welding by the load.
 次に、図6のステップS123での接合について、具体的に説明する。 Next, the joining in step S123 of FIG. 6 will be specifically described.
 まず、金属ワイヤ20を柱状金属端子10に抵抗溶接する際に、金属線21の温度が上がり過ぎると、金属線21が潰れることで、断線したり溶断したりすることがある。このため、抵抗溶接機は、断線または溶断などの不具合が金属線21に発生しないように、一対の溶接電極30に流す電流を制御する。 First, when resistance-welding the metal wire 20 to the columnar metal terminal 10, if the temperature of the metal wire 21 rises excessively, the metal wire 21 may be crushed, which may result in disconnection or fusing. Therefore, the resistance welding machine controls the current flowing through the pair of welding electrodes 30 so that the metal wire 21 does not suffer from a defect such as disconnection or melting.
 一対の溶接電極30の間に配置した組立品200を図7に示す。図7は、実施の形態に係る抵抗溶接時における導通経路を例示した説明図である。図7は、組立品200を軸方向視で見た図である。 The assembly 200 arranged between the pair of welding electrodes 30 is shown in FIG. FIG. 7: is explanatory drawing which illustrated the conduction path at the time of resistance welding which concerns on embodiment. FIG. 7 is an axial view of the assembly 200.
 図7に示すように、一方の溶接電極30から組立品200を介して他方の溶接電極30まで直線的に電流が流れる経路を導通経路D1とし、一方の溶接電極30から他方の溶接電極30まで柱状金属端子10を迂回して金属線21を流れる電流の経路を導通経路D2、D3とする。 As shown in FIG. 7, a path through which a current flows linearly from one welding electrode 30 to the other welding electrode 30 through the assembly 200 is defined as a conduction path D1, and from one welding electrode 30 to the other welding electrode 30. The paths of the current flowing around the columnar metal terminal 10 and flowing through the metal wire 21 are referred to as conduction paths D2 and D3.
 ここで、一方の溶接電極30から他方の溶接電極30に電流を流すと、一方側の金属ワイヤ20の金属線21と柱状金属端子10との間の電気抵抗値と、他方側の金属ワイヤ20の金属線21と柱状金属端子10との間の電気抵抗値とにより、金属線21及び柱状金属端子10にジュール熱が生じる。加えて、金属線21及び柱状金属端子10を構成する各要素の電気抵抗値に起因するジュール熱が生じる。そして次第に、柱状金属端子10の母材層11に生じたジュール熱が柱状金属端子10のメッキ層12及び金属線21に伝播していく。これにより、金属線21と柱状金属端子10との接触面で、柱状金属端子10のメッキ層12及び金属線21が局所的に溶融する。これにより、金属線21の主成分であるアルミニウムと、メッキ層12の主成分である銅とが混ざり合う。その後、電流の供給が停止されると、金属線21と柱状金属端子10との界面には、アルミニウムと銅との金属間化合物層24が形成される(図2参照)。 Here, when a current is passed from one welding electrode 30 to the other welding electrode 30, the electric resistance value between the metal wire 21 of the metal wire 20 on one side and the columnar metal terminal 10 and the metal wire 20 on the other side. Due to the electric resistance value between the metal wire 21 and the columnar metal terminal 10, Joule heat is generated in the metal wire 21 and the columnar metal terminal 10. In addition, Joule heat is generated due to the electric resistance value of each element forming the metal wire 21 and the columnar metal terminal 10. Then, the Joule heat generated in the base material layer 11 of the columnar metal terminal 10 gradually propagates to the plating layer 12 and the metal wire 21 of the columnar metal terminal 10. As a result, the plating layer 12 and the metal wire 21 of the columnar metal terminal 10 are locally melted at the contact surface between the metal wire 21 and the columnar metal terminal 10. As a result, aluminum, which is the main component of the metal wire 21, and copper, which is the main component of the plating layer 12, are mixed. Then, when the supply of current is stopped, an intermetallic compound layer 24 of aluminum and copper is formed at the interface between the metal wire 21 and the columnar metal terminal 10 (see FIG. 2).
 柱状金属端子10に金属線21を複数ターン巻き付けることで個々の金属線21に流れる電流を分散させることが可能となる。金属線21に流れる電流を分散させることにより金属線21の発熱量が電流値に対して鈍感になる。抵抗溶接時の電流に対して鈍感であれば、大きな電流でも溶けにくいので、抵抗溶接時の電流値を制御しやすくすることができる。つまり、抵抗溶接時における第一金属及び第二金属の溶融状態を電流値で制御することが容易となる。 By winding a plurality of turns of the metal wire 21 around the columnar metal terminal 10, it becomes possible to disperse the current flowing through each metal wire 21. Dispersing the current flowing through the metal wire 21 makes the heat generation amount of the metal wire 21 insensitive to the current value. If it is insensitive to the current during resistance welding, it is difficult to melt even a large current, so that the current value during resistance welding can be easily controlled. That is, it becomes easy to control the molten state of the first metal and the second metal during resistance welding by the current value.
 [効果など]
 以上のように、本実施の形態に係る端子1は、柱状金属端子10と、柱状金属端子10に対して巻きつけられた金属ワイヤ20とを備え、金属ワイヤ20をなす第一金属の融点は、柱状金属端子10をなす第二金属の融点よりも低く、金属ワイヤ20と柱状金属端子10との界面には、第一金属と、第二金属との金属間化合物層24が設けられている。
[Effects]
As described above, the terminal 1 according to the present embodiment includes the columnar metal terminal 10 and the metal wire 20 wound around the columnar metal terminal 10, and the melting point of the first metal forming the metal wire 20 is The melting point of the second metal forming the columnar metal terminal 10 is lower than the melting point of the second metal, and an intermetallic compound layer 24 of the first metal and the second metal is provided at the interface between the metal wire 20 and the columnar metal terminal 10. ..
 これによれば、金属ワイヤ20をなす第一金属の融点が、柱状金属端子10をなす第二金属の融点よりも低いので、同じ環境温度下にある場合には、金属ワイヤ20は、柱状金属端子10よりも柔軟な状態である。巻き付け時においては、比較的柔軟な金属ワイヤ20を、比較的高硬度な柱状金属端子10に巻き付けることとなるため、柱状金属端子10に対して金属ワイヤ20を巻き付ける際の作業性を高めることができる。 According to this, since the melting point of the first metal forming the metal wire 20 is lower than the melting point of the second metal forming the columnar metal terminal 10, the metal wire 20 is formed into the columnar metal under the same environmental temperature. It is more flexible than the terminal 10. At the time of winding, since the relatively soft metal wire 20 is wound around the columnar metal terminal 10 having a relatively high hardness, workability when winding the metal wire 20 around the columnar metal terminal 10 can be improved. it can.
 また、比較的柔軟な金属ワイヤ20を、比較的高硬度な柱状金属端子10に巻き付けることにより、簡単に金属ワイヤ20を柱状金属端子10に密着させることが可能である。金属ワイヤ20と柱状金属端子10との密着性が高ければ、熱圧着及び抵抗溶接を安定して行うことができるので、結果的に金属ワイヤ20と柱状金属端子10との接合強度を確保することができる。 Further, by winding the relatively flexible metal wire 20 around the columnar metal terminal 10 having a relatively high hardness, the metal wire 20 can be easily attached to the columnar metal terminal 10. If the adhesion between the metal wire 20 and the columnar metal terminal 10 is high, thermocompression bonding and resistance welding can be stably performed, and as a result, the bonding strength between the metal wire 20 and the columnar metal terminal 10 should be ensured. You can
 また、第一金属の融点は、第二金属の融点よりも300度以上低い。 Also, the melting point of the first metal is lower than the melting point of the second metal by 300 degrees or more.
 これによれば、第一金属の融点が、第二金属の融点よりも300度以上低いので、同じ環境温度下にある場合には、金属ワイヤ20を、柱状金属端子10よりも一層柔軟な状態とすることができる。したがって、巻き付け時における作業性をより高めることができる。 According to this, since the melting point of the first metal is lower than the melting point of the second metal by 300 degrees or more, the metal wire 20 is more flexible than the columnar metal terminal 10 under the same environmental temperature. Can be Therefore, workability at the time of winding can be further improved.
 また、第一金属の主成分はアルミニウムであり、第二金属の主成分は銅である。 Also, the main component of the first metal is aluminum and the main component of the second metal is copper.
 これによれば、アルミニウム及び銅は、一般的に電気抵抗が低い金属である。電気抵抗が低い金属は、抵抗溶接時の電流に対して鈍感であり、溶接しにくい金属とも言える。電気抵抗が高い金属であると、抵抗溶接時の電流に敏感であるので、一定の電流が付加されれば瞬時に溶けてしまう。一方、抵抗溶接時の電流に対して鈍感であれば、大きな電流でも溶けにくいので、抵抗溶接時の電流値を制御しやすくすることができる。つまり、抵抗溶接時における第一金属及び第二金属の溶融状態を電流値で制御することが容易となる。 According to this, aluminum and copper are generally metals with low electric resistance. Metals having low electric resistance are insensitive to current during resistance welding and can be said to be metals that are difficult to weld. Since a metal having a high electric resistance is sensitive to the current during resistance welding, it melts instantly when a constant current is applied. On the other hand, if the current is insensitive to resistance welding, even a large current is less likely to melt, so that the current value during resistance welding can be easily controlled. That is, it becomes easy to control the molten state of the first metal and the second metal during resistance welding by the current value.
 また、第一金属の主成分がアルミニウムであり、第二金属の主成分が銅であるので、比較的廉価なアルミニウム及び銅によって柱状金属端子10及び金属ワイヤ20を形成することができる。したがって、製造コストを抑制することができる。 Further, since the main component of the first metal is aluminum and the main component of the second metal is copper, the columnar metal terminal 10 and the metal wire 20 can be formed with relatively inexpensive aluminum and copper. Therefore, the manufacturing cost can be suppressed.
 また、金属間化合物層24の厚みは、5μm以下である。 The thickness of the intermetallic compound layer 24 is 5 μm or less.
 図8は、実施の形態に係る端子1の金属間化合物層24及びその周辺を拡大して示す画像である。具体的には、図8では、図2における破線L1に囲まれた領域を示している。図8では、下から順に、柱状金属端子10の母材層11、メッキ層12、金属間化合物層24及び金属線21という順で並んでいる。図8に示すように、金属間化合物層24には、クラックCが発生する場合がある。クラックCは、金属間化合物層24内で柱状金属端子10の軸方向に沿って延びている。ここで、柱状金属端子10の軸方向での金属間化合物層24の長さを界面長さとし、同方向におけるクラックCの長さをクラック長さとする。また、柱状金属端子10の軸方向に直交する方向での金属間化合物層24の長さを、厚さ(層厚)とする。 FIG. 8 is an enlarged image showing the intermetallic compound layer 24 of the terminal 1 and its periphery according to the embodiment. Specifically, FIG. 8 shows a region surrounded by a broken line L1 in FIG. In FIG. 8, the base material layer 11, the plating layer 12, the intermetallic compound layer 24, and the metal wire 21 of the columnar metal terminal 10 are arranged in this order from the bottom. As shown in FIG. 8, a crack C may occur in the intermetallic compound layer 24. The crack C extends in the intermetallic compound layer 24 along the axial direction of the columnar metal terminal 10. Here, the length of the intermetallic compound layer 24 in the axial direction of the columnar metal terminal 10 is the interface length, and the length of the crack C in the same direction is the crack length. In addition, the length of the intermetallic compound layer 24 in the direction orthogonal to the axial direction of the columnar metal terminal 10 is defined as the thickness (layer thickness).
 図9は、実施の形態に係る端子1であって、界面長さに対するクラック長さの比率と、金属間化合物層24の厚さとの関係を示すグラフである。図9に示すように、金属間化合物層24の厚さが5μmより大きいと、界面長さに対するクラック長さの比率が100%となるクラックCが発生していることが分かる。一方、金属間化合物層24の厚さが5μm以下であれば、界面長さに対するクラック長さの比率が100%となるクラックCが発生していないことが分かる。つまり、金属間化合物層24の厚さが5μm以下であれば、クラックCが、界面長さと同程度まで成長してしまうことを抑制することができる。 FIG. 9 is a graph showing the relationship between the ratio of the crack length to the interface length and the thickness of the intermetallic compound layer 24 in the terminal 1 according to the embodiment. As shown in FIG. 9, it can be seen that when the thickness of the intermetallic compound layer 24 is larger than 5 μm, cracks C having a ratio of the crack length to the interface length of 100% are generated. On the other hand, when the thickness of the intermetallic compound layer 24 is 5 μm or less, it is found that the crack C in which the ratio of the crack length to the interface length is 100% is not generated. That is, when the thickness of the intermetallic compound layer 24 is 5 μm or less, it is possible to prevent the crack C from growing to the same extent as the interface length.
 また、柱状金属端子10は、多角柱状であり、金属ワイヤ20は、柱状金属端子に結ばれた少なくとも一つの交差部23を有し、交差部23は、柱状金属端子10における金属間化合物層24が形成されていない側面に配置されている。 Further, the columnar metal terminal 10 has a polygonal columnar shape, the metal wire 20 has at least one intersecting portion 23 connected to the columnar metal terminal, and the intersecting portion 23 is the intermetallic compound layer 24 in the columnar metal terminal 10. It is arranged on the side surface where no is formed.
 柱状金属端子10の接合端子面110に対して、金属ワイヤ20の交差部23が設けられる場合、熱圧着及び抵抗溶接時に交差部23が一対の溶接電極30に挟まれてしまう。交差部23は、金属ワイヤ20の他の部分よりも厚いので、当該他の部分では一対の溶接電極30に接触しない箇所も発生する。これにより、金属ワイヤ20における交差部23以外の部分においては、熱圧着及び抵抗溶接が確実に行えないおそれがある。 When the intersection 23 of the metal wire 20 is provided on the joining terminal surface 110 of the columnar metal terminal 10, the intersection 23 is sandwiched between the pair of welding electrodes 30 during thermocompression bonding and resistance welding. Since the intersecting portion 23 is thicker than the other portions of the metal wire 20, there is a portion that does not contact the pair of welding electrodes 30 in the other portion. As a result, there is a possibility that thermocompression bonding and resistance welding cannot be reliably performed in the portion of the metal wire 20 other than the intersecting portion 23.
 一方、柱状金属端子10の接合端子面110以外の側面、つまり、金属間化合物層24が形成されていない側面に、金属ワイヤ20の交差部23が設けられる場合には、交差部23が一対の溶接電極30により挟まれない箇所に配置される。したがって、柱状金属端子10の接合端子面110には、金属ワイヤ20における一重に巻かれた部分のみが配置されるので、これらの部分に対して一対の溶接電極30を確実に接触させることができる。したがって、熱圧着及び抵抗溶接の確実性を高めることができる。 On the other hand, when the crossing portion 23 of the metal wire 20 is provided on the side surface of the columnar metal terminal 10 other than the joining terminal surface 110, that is, the side surface on which the intermetallic compound layer 24 is not formed, the crossing portion 23 has a pair of crossing portions 23. The welding electrode 30 is arranged at a position where it is not sandwiched. Therefore, since only the single-wound portion of the metal wire 20 is arranged on the joining terminal surface 110 of the columnar metal terminal 10, the pair of welding electrodes 30 can be reliably brought into contact with these portions. .. Therefore, the reliability of thermocompression bonding and resistance welding can be improved.
 また、上記実施の形態では、柱状金属端子10の母材層11が、比較的電気抵抗の高い鉄を主成分とした金属で形成されているので、抵抗溶接時にジュール熱を効率的に発生させることができる。一方、メッキ層12は、比較的電気抵抗の低い銅を主成分とした第二金属で形成されているので、抵抗溶接時に、柱状金属端子10の表層で電流が流れやすくなり、金属ワイヤ20の金属線21に集中して電気が流れることを抑制することができる。したがって、金属線21の溶断を抑制できる。 Further, in the above-described embodiment, since the base material layer 11 of the columnar metal terminal 10 is formed of a metal having iron as a main component, which has a relatively high electric resistance, Joule heat is efficiently generated during resistance welding. be able to. On the other hand, since the plated layer 12 is formed of the second metal whose main component is copper, which has a relatively low electric resistance, a current easily flows in the surface layer of the columnar metal terminal 10 during resistance welding, and the metal wire 20 is It is possible to prevent electricity from flowing concentrated on the metal wire 21. Therefore, melting of the metal wire 21 can be suppressed.
 [変形例1]
 上記実施の形態では、メッキ層12を有する柱状金属端子10に対して金属ワイヤ20が巻きつけられて金属接合された端子1を例示した。この変形例1では、メッキ層を有さない柱状金属端子10aに対して金属ワイヤ20が巻き付けられて金属接合された端子1Aについて説明する。なお、以降の説明において、上記実施の形態と同一の部分については、同一の符号を付してその説明を省略する場合がある。
[Modification 1]
In the above-described embodiment, the terminal 1 in which the metal wire 20 is wound around and metal-bonded to the columnar metal terminal 10 having the plated layer 12 is illustrated. In this modified example 1, a terminal 1A in which a metal wire 20 is wound around and metal-bonded to a columnar metal terminal 10a having no plating layer will be described. In the following description, the same parts as those in the above-described embodiment may be assigned the same reference numerals and the description thereof may be omitted.
 図10は、変形例1に係る端子1Aを示す断面図である。具体的には、図10は、図2に対応する図である。図10に示すように、端子1Aに備わる柱状金属端子10aは、銅を主成分とする第二金属から全体的に形成されており、その表面にはメッキ層が形成されていない。つまり、金属ワイヤ20の巻き付け前においては、柱状金属端子10aの表面は、全体として第二金属が露出した状態である。 FIG. 10 is a sectional view showing a terminal 1A according to the first modification. Specifically, FIG. 10 is a diagram corresponding to FIG. 2. As shown in FIG. 10, the columnar metal terminal 10a included in the terminal 1A is entirely formed of a second metal containing copper as a main component, and a plating layer is not formed on the surface thereof. That is, before winding the metal wire 20, the second metal is exposed as a whole on the surface of the columnar metal terminal 10a.
 このような柱状金属端子10aに対して、金属ワイヤ20を巻き付けて、熱圧着、抵抗溶接を施すことで、金属ワイヤ20の金属線21が、柱状金属端子10aの接合端子面110aにある第二金属と金属間化合物層24aを形成し金属接合される。金属間化合物層24aは、金属線21をなす第一金属の主成分であるアルミニウムと、柱状金属端子10aをなす第二金属の主成分である銅からなる。 The metal wire 20 of the metal wire 20 is wound around the columnar metal terminal 10a and subjected to thermocompression bonding and resistance welding, so that the metal wire 21 of the metal wire 20 is on the bonding terminal surface 110a of the columnar metal terminal 10a. The metal and the intermetallic compound layer 24a are formed and metal-bonded. The intermetallic compound layer 24a is made of aluminum, which is the main component of the first metal forming the metal wire 21, and copper, which is the main component of the second metal forming the columnar metal terminal 10a.
 [変形例2]
 上記実施の形態では、銅を主成分とする第二金属によってメッキ層12が形成された柱状金属端子10を例示した。この変形例2では、ニッケル(Ni)を主成分とする第二金属によってメッキ層12bが形成された柱状金属端子10bについて説明する。
[Modification 2]
In the above-mentioned embodiment, the columnar metal terminal 10 in which the plating layer 12 is formed of the second metal containing copper as a main component is illustrated. In the second modification, the columnar metal terminal 10b in which the plating layer 12b is formed of the second metal containing nickel (Ni) as a main component will be described.
 図11は、変形例2に係る端子1Bを示す断面図である。具体的には、図11は、図2に対応する図である。図11に示すように、端子1Bに備わる柱状金属端子10bは、ニッケルを主成分とする第二金属から形成されたメッキ層12bが、母材層11に対して被膜されている。 FIG. 11 is a sectional view showing a terminal 1B according to Modification 2. Specifically, FIG. 11 is a diagram corresponding to FIG. 2. As shown in FIG. 11, in the columnar metal terminal 10b included in the terminal 1B, the base material layer 11 is coated with the plating layer 12b formed of the second metal containing nickel as a main component.
 このような柱状金属端子10bに対して、金属ワイヤ20を巻き付けて、熱圧着、抵抗溶接を施すことで、金属ワイヤ20の金属線21が、柱状金属端子10bの接合端子面110bにおけるメッキ層12bと金属間化合物層24bを形成し金属接合される。金属間化合物層24bは、金属線21をなす第一金属の主成分であるアルミニウムと、柱状金属端子10aをなす第二金属の主成分であるニッケルからなる。メッキ層12bは、ニッケルを主成分とする第二金属から形成されているために、ニッケルの融点(1455℃)に準じた融点となっている。つまり、この場合においても、アルミニウムを主成分とする第一金属の融点は、第二金属の融点よりも300度以上低くなる。 A metal wire 20 is wound around the columnar metal terminal 10b, and thermocompression bonding and resistance welding are performed, so that the metal wire 21 of the metal wire 20 forms the plating layer 12b on the joint terminal surface 110b of the columnar metal terminal 10b. And an intermetallic compound layer 24b is formed and metal bonding is performed. The intermetallic compound layer 24b is made of aluminum, which is the main component of the first metal forming the metal wire 21, and nickel, which is the main component of the second metal forming the columnar metal terminal 10a. Since the plating layer 12b is formed of the second metal containing nickel as a main component, the plating layer 12b has a melting point according to the melting point of nickel (1455° C.). That is, also in this case, the melting point of the first metal containing aluminum as the main component is lower than the melting point of the second metal by 300 degrees or more.
 [変形例3]
 上記実施の形態では、メッキ層12を有する柱状金属端子10に対して金属ワイヤ20が巻きつけられて金属接合された端子1を例示した。この変形例3では、二重のメッキ層12、12cを有する柱状金属端子10cに対して金属ワイヤ20が巻き付けられて金属接合された端子1Cについて説明する。
[Modification 3]
In the above-described embodiment, the terminal 1 in which the metal wire 20 is wound around and metal-bonded to the columnar metal terminal 10 having the plated layer 12 is illustrated. In this modification 3, a terminal 1C in which a metal wire 20 is wound around and metal-bonded to a columnar metal terminal 10c having double plated layers 12 and 12c will be described.
 図12は、変形例3に係る端子1Cを示す断面図である。具体的には、図12は、図2に対応する図である。図12に示すように、端子1Cに備わる柱状金属端子10cでは、メッキ層12の表層に、錫(Sn)を主成分とする第三金属からなるメッキ層12cが被膜されている。メッキ層12cは、金属ワイヤ20の巻き付け前においては、メッキ層12の全表面に対して積層されている。ここで、メッキ層12cは、錫を主成分とする第三金属から形成されているために、錫の融点(232℃)に準じた融点となっている。 FIG. 12 is a cross-sectional view showing a terminal 1C according to Modification 3. Specifically, FIG. 12 is a diagram corresponding to FIG. As shown in FIG. 12, in the columnar metal terminal 10c included in the terminal 1C, the surface layer of the plating layer 12 is coated with a plating layer 12c made of a third metal containing tin (Sn) as a main component. The plated layer 12 c is laminated on the entire surface of the plated layer 12 before winding the metal wire 20. Here, since the plating layer 12c is formed of the third metal containing tin as a main component, it has a melting point according to the melting point of tin (232° C.).
 このような柱状金属端子10cに対して金属ワイヤ20を巻き付けて熱圧着する際には、柱状金属端子10c及び金属ワイヤ20が、第三金属の融点よりも高く、第一金属の融点よりも低い温度で加熱される。これにより、メッキ層12cが溶けた状態で一対の溶接電極30からの圧力を受けるために、メッキ層12cは、金属ワイヤ20とメッキ層12との界面からその外方へと押し出される。 When the metal wire 20 is wound around the columnar metal terminal 10c and thermocompression bonded thereto, the columnar metal terminal 10c and the metal wire 20 are higher than the melting point of the third metal and lower than the melting point of the first metal. Heated at temperature. As a result, the plating layer 12c receives pressure from the pair of welding electrodes 30 in a melted state, so that the plating layer 12c is pushed outward from the interface between the metal wire 20 and the plating layer 12.
 その後、抵抗溶接を施すことで、金属ワイヤ20の金属線21が、柱状金属端子10cの接合端子面110cにあるメッキ層12と金属間化合物層24cを形成し金属接合される。金属間化合物層24cは、金属線21をなす第一金属の主成分であるアルミニウムと、柱状金属端子10cをなす第二金属の主成分である銅からなる。メッキ層12cは、金属線21及び金属間化合物層24の外方で、メッキ層12の表面を覆っている。 After that, by performing resistance welding, the metal wire 21 of the metal wire 20 is metal-bonded by forming the plating layer 12 and the intermetallic compound layer 24c on the bonding terminal surface 110c of the columnar metal terminal 10c. The intermetallic compound layer 24c is made of aluminum, which is the main component of the first metal forming the metal wire 21, and copper, which is the main component of the second metal forming the columnar metal terminal 10c. The plating layer 12c covers the surface of the plating layer 12 outside the metal wire 21 and the intermetallic compound layer 24.
 このように、錫を主成分とする第三金属からなるメッキ層12cが柱状金属端子10cに備えられていれば、銅を主成分とする第二金属からなるメッキ層12の酸化を抑えることができる。また、メッキ層12cは、熱圧着時に溶けた際に、金属線21と柱状金属端子10cとの隙間を埋めることとなる。この隙間が埋められることで、抵抗溶接時の熱伝導が高められる。 As described above, when the columnar metal terminal 10c is provided with the plating layer 12c made of a third metal containing tin as a main component, the oxidation of the plating layer 12 made of a second metal containing copper as a main component can be suppressed. it can. Further, the plating layer 12c fills the gap between the metal wire 21 and the columnar metal terminal 10c when melted during thermocompression bonding. By filling this gap, heat conduction during resistance welding is enhanced.
 [変形例4]
 上記実施の形態では、一本の金属ワイヤ20が柱状金属端子10に巻きつけられて金属接合されている場合を例示した。しかしながら、柱状金属端子に対して複数の金属ワイヤが巻き付けられていてもよい。この変形例4では、一例として二本の金属ワイヤ20d1、20d2が柱状金属端子10dに巻きつけられている場合を例示する。
[Modification 4]
In the above-mentioned embodiment, the case where one metal wire 20 is wound around the columnar metal terminal 10 and metal-bonded to each other has been illustrated. However, a plurality of metal wires may be wound around the columnar metal terminal. In Modification 4, as an example, a case where two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d is illustrated.
 図13は、変形例4に係る端子1Dの概略構成を示す正面図である。図13に示すように、端子1Dの柱状金属端子10dには、二本の金属ワイヤ20d1、20d2が巻きつけられている。具体的には、二本の金属ワイヤ20d1、20d2は、それぞれ交差部23d1、23d2を有しており、これらの交差部23d1、23d2は互いに重ならない位置に配置されている。また、二本の金属ワイヤ20d1、20d2は、互いに重ならないように、二重の螺旋状に柱状金属端子10dに巻きつけられて、柱状金属端子10dに対して金属接合されている。 FIG. 13 is a front view showing a schematic configuration of a terminal 1D according to Modification 4. As shown in FIG. 13, two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d of the terminal 1D. Specifically, the two metal wires 20d1 and 20d2 have intersecting portions 23d1 and 23d2, respectively, and these intersecting portions 23d1 and 23d2 are arranged at positions that do not overlap each other. Further, the two metal wires 20d1 and 20d2 are wound around the columnar metal terminal 10d in a double spiral shape so as not to overlap each other, and metal-bonded to the columnar metal terminal 10d.
 このように、金属ワイヤ20d1、20d2は、複数本設けられており、それぞれが柱状金属端子10dに対して巻きつけられている。 As described above, a plurality of metal wires 20d1 and 20d2 are provided, and each of them is wound around the columnar metal terminal 10d.
 これにより、複数の金属ワイヤ20d1、20d2を一つの柱状金属端子10dに巻き付けることで、柱状金属端子10dを共通化することができる。 With this, by winding the plurality of metal wires 20d1 and 20d2 around one columnar metal terminal 10d, the columnar metal terminal 10d can be shared.
 ここで、複数の金属ワイヤ20d1、20d2の線径は、同じであっても異なっていてもよい。具体的には、複数の金属ワイヤ20d1、20d2のそれぞれに備わる金属線の線径は、同じであっても異なっていてもよい。 Here, the wire diameters of the plurality of metal wires 20d1 and 20d2 may be the same or different. Specifically, the wire diameters of the metal wires provided in each of the plurality of metal wires 20d1 and 20d2 may be the same or different.
 図14は、変形例4に係る端子1Dであって、線径の異なる複数の金属ワイヤ20d1、20d2が金属接合された状態を示す断面図である。図14では、樹脂層が除去された金属線21d1、21d2のみを図示している。 FIG. 14 is a cross-sectional view showing a terminal 1D according to Modification 4, in which a plurality of metal wires 20d1 and 20d2 having different wire diameters are metal-bonded to each other. In FIG. 14, only the metal wires 21d1 and 21d2 from which the resin layer has been removed are shown.
 図14に示すように、線径の異なる複数の金属ワイヤ20d1、20d2では、金属線21d1、21d2が柱状金属端子10の接合端子面110dでメッキ層12と金属接合されている。このため、各金属線21d1、21d2と柱状金属端子10との境界には、金属間化合物層24d1、24d2が形成されている。ここで、金属接合された状態での金属線21d1、21d2の線径は、金属線21d1、21d2における柱状金属端子10の軸方向に沿う長さz1、z2である。ここでは、金属線21d1の線径が、金属線21d2よりも大きい場合を例示している。また、金属線21d1、21d2における柱状金属端子10の軸方向に直交する方向に沿う厚みh1、h2は同等となっている。 As shown in FIG. 14, in the plurality of metal wires 20d1 and 20d2 having different wire diameters, the metal wires 21d1 and 21d2 are metal-bonded to the plating layer 12 at the bonding terminal surface 110d of the columnar metal terminal 10. Therefore, intermetallic compound layers 24d1 and 24d2 are formed at the boundaries between the metal wires 21d1 and 21d2 and the columnar metal terminals 10. Here, the wire diameters of the metal wires 21d1 and 21d2 in the metal-bonded state are the lengths z1 and z2 of the metal wires 21d1 and 21d2 along the axial direction of the columnar metal terminal 10. Here, the case where the wire diameter of the metal wire 21d1 is larger than that of the metal wire 21d2 is illustrated. Further, the thicknesses h1 and h2 of the metal wires 21d1 and 21d2 along the direction orthogonal to the axial direction of the columnar metal terminal 10 are equal.
 金属接合前では、金属線21d1、21d2は、互いに線径の異なる円形状断面(図14における仮想線L11、L12)であった。端子1Dの製造時、線径の異なる金属線21d1、21d2は、まず熱圧着工程において厚みが均一化されメッキ層12に対して密着するように柱状金属端子10に対して押圧される。さらに抵抗溶接工程において押圧されることで、金属線21d1、21d2は厚みh1、h2に均一化されて柱状金属端子10と金属接合する。熱圧着工程において金属線21d1、21d2の厚みを均一化することにより抵抗溶接工程の品質が安定する。柱状金属端子10dに対し金属線21d1、21d2の融点が低いため、熱圧着工程において線径の異なる金属線21d1、21d2の厚みを容易に均一化することが可能となる。 Before metal joining, the metal wires 21d1 and 21d2 were circular cross-sections having different wire diameters (virtual lines L11 and L12 in FIG. 14). When manufacturing the terminal 1D, the metal wires 21d1 and 21d2 having different wire diameters are first pressed against the columnar metal terminal 10 so as to have a uniform thickness in the thermocompression bonding process and to be in close contact with the plating layer 12. Further, by being pressed in the resistance welding process, the metal wires 21d1 and 21d2 are made uniform in thickness h1 and h2 and metal-bonded to the columnar metal terminal 10. The quality of the resistance welding process is stabilized by making the thicknesses of the metal wires 21d1 and 21d2 uniform in the thermocompression bonding process. Since the melting points of the metal wires 21d1 and 21d2 are lower than that of the columnar metal terminal 10d, the thickness of the metal wires 21d1 and 21d2 having different wire diameters can be easily made uniform in the thermocompression bonding process.
 このように、複数の金属ワイヤ20d1、20d2の線径が異なっていても、金属間化合物層24d1、24d2を確実に形成することが可能である。 Thus, even if the wire diameters of the plurality of metal wires 20d1 and 20d2 are different, the intermetallic compound layers 24d1 and 24d2 can be reliably formed.
 [その他]
 以上、本発明について、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
[Other]
Although the present invention has been described above based on the embodiment, the present invention is not limited to the above embodiment.
 例えば、柱状金属端子に対して金属線が絡げられていない状態、つまり、金属線が交差部を有さず、単に1重で柱状金属端子に巻き付けられた状態で、柱状金属端子と金属線とが金属接合されてもよい。 For example, in a state in which the metal wire is not entangled with the columnar metal terminal, that is, in a state where the metal wire has no intersection and is simply wound around the columnar metal terminal, And may be metal-bonded.
 また、上記実施の形態では、金属間化合物層24が、アルミニウムを主成分とする第一金属と、銅を主成分とする第二金属とから形成されている場合を例示した。また、変形例2では、金属間化合物層24bが、アルミニウムを主成分とする第一金属と、ニッケルを主成分とする第二金属とから形成されている場合を例示した。しかしながら、金属ワイヤをなす第一金属の融点が、柱状金属端子をなす第二金属の融点よりも低いのであれば、第一金属の主成分及び第二金属の主成分は上記した例に限定されない。また、第一金属の融点が、第二金属の融点よりも低いのであれば、300度未満の差であってもよい。 Further, in the above embodiment, the case where the intermetallic compound layer 24 is formed of the first metal containing aluminum as the main component and the second metal containing copper as the main component is illustrated. Further, in the second modification, the case where the intermetallic compound layer 24b is formed of the first metal containing aluminum as the main component and the second metal containing nickel as the main component is illustrated. However, as long as the melting point of the first metal forming the metal wire is lower than the melting point of the second metal forming the columnar metal terminal, the main component of the first metal and the main component of the second metal are not limited to the above examples. .. The difference may be less than 300 degrees as long as the melting point of the first metal is lower than the melting point of the second metal.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, a mode obtained by making various modifications that those skilled in the art can think of with respect to the embodiment, and a mode realized by arbitrarily combining the constituent elements and functions in the embodiment without departing from the spirit of the present invention Included in the present invention.
1、1A、1B、1C、1D 端子
10、10a、10b、10c、10d 柱状金属端子
20、20d1、20d2 金属ワイヤ
23、23d1、23d2 交差部
24、24a、24b、24c、24d1、24d2 金属間化合物層
1, 1A, 1B, 1C, 1D Terminal 10, 10a, 10b, 10c, 10d Columnar metal terminal 20, 20d1, 20d2 Metal wire 23, 23d1, 23d2 Intersection 24, 24a, 24b, 24c, 24d1, 24d2 Intermetallic compound layer

Claims (7)

  1.  柱状金属端子と、
     前記柱状金属端子に対して巻きつけられた金属ワイヤとを備え、
     前記金属ワイヤをなす第一金属の融点は、前記柱状金属端子をなす第二金属の融点よりも低く、
     前記金属ワイヤと前記柱状金属端子との界面には、前記第一金属と、前記第二金属との金属間化合物層が設けられている
     端子。
    Columnar metal terminals,
    A metal wire wound around the columnar metal terminal,
    The melting point of the first metal forming the metal wire is lower than the melting point of the second metal forming the columnar metal terminal,
    A terminal in which an intermetallic compound layer of the first metal and the second metal is provided at an interface between the metal wire and the columnar metal terminal.
  2.  前記第一金属の融点は、前記第二金属の融点よりも300度以上低い
     請求項1に記載の端子。
    The terminal according to claim 1, wherein the melting point of the first metal is lower than the melting point of the second metal by 300 degrees or more.
  3.  前記第一金属の主成分は、アルミニウムであり、
     前記第二金属の主成分は、銅である
     請求項2に記載の端子。
    The main component of the first metal is aluminum,
    The terminal according to claim 2, wherein a main component of the second metal is copper.
  4.  前記金属間化合物層の厚みは、5μm以下である
     請求項1~3のいずれか一項に記載の端子。
    The terminal according to any one of claims 1 to 3, wherein the thickness of the intermetallic compound layer is 5 µm or less.
  5.  前記柱状金属端子は、多角柱状であり、
     前記金属ワイヤは、前記柱状金属端子に結ばれた少なくとも一つの交差部を有し、
     前記交差部は、前記柱状金属端子における前記金属間化合物が形成されていない側面に配置されている
     請求項1~4のいずれか一項に記載の端子。
    The columnar metal terminal is a polygonal column,
    The metal wire has at least one intersection connected to the columnar metal terminal,
    The terminal according to any one of claims 1 to 4, wherein the intersecting portion is arranged on a side surface of the columnar metal terminal where the intermetallic compound is not formed.
  6.  前記金属ワイヤは、複数本設けられており、それぞれが前記柱状金属端子に対して巻きつけられている
     請求項1~5のいずれか一項に記載の端子。
    The terminal according to claim 1, wherein a plurality of the metal wires are provided, and each of the metal wires is wound around the columnar metal terminal.
  7.  複数本の前記金属ワイヤは、線径が異なっている
     請求項6に記載の端子。
    The terminal according to claim 6, wherein the plurality of metal wires have different wire diameters.
PCT/JP2019/045312 2018-12-27 2019-11-19 Terminal WO2020137267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562925A JP7016022B2 (en) 2018-12-27 2019-11-19 Terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245498 2018-12-27
JP2018-245498 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137267A1 true WO2020137267A1 (en) 2020-07-02

Family

ID=71126408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045312 WO2020137267A1 (en) 2018-12-27 2019-11-19 Terminal

Country Status (2)

Country Link
JP (1) JP7016022B2 (en)
WO (1) WO2020137267A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134282U (en) * 1973-03-20 1974-11-19
JPS571213A (en) * 1980-06-03 1982-01-06 Omron Tateisi Electronics Co Treating method for terminal of coil
JPS59170973U (en) * 1983-04-30 1984-11-15 富士通株式会社 Wrap terminal adapter
JP2013027079A (en) * 2011-07-19 2013-02-04 Panasonic Corp Electric motor using aluminum wire
JP2015076208A (en) * 2013-10-07 2015-04-20 矢崎総業株式会社 Terminal joint structure for wire, electrode for resistance welding and method of joining terminal of wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134282U (en) * 1973-03-20 1974-11-19
JPS571213A (en) * 1980-06-03 1982-01-06 Omron Tateisi Electronics Co Treating method for terminal of coil
JPS59170973U (en) * 1983-04-30 1984-11-15 富士通株式会社 Wrap terminal adapter
JP2013027079A (en) * 2011-07-19 2013-02-04 Panasonic Corp Electric motor using aluminum wire
JP2015076208A (en) * 2013-10-07 2015-04-20 矢崎総業株式会社 Terminal joint structure for wire, electrode for resistance welding and method of joining terminal of wire

Also Published As

Publication number Publication date
JPWO2020137267A1 (en) 2021-09-09
JP7016022B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6544323B2 (en) Coil parts
TWI699073B (en) Stator, rotating electrical machine, and method for manufacturing stator
WO2006062203A1 (en) Wiring material, method for manufacturing such wiring material and resistance welding machine used in such manufacturing method
JP2010123449A (en) Electric wire with terminal fitting and method of manufacturing the same
JP3908588B2 (en) Small motor rotor and method of manufacturing the same
JP6636719B2 (en) Wire connection terminal and method of joining wire to wire
JP2010110790A (en) Fusing method
WO2020137267A1 (en) Terminal
JP3454055B2 (en) Connection structure and connection method of insulated wire
JP2011181189A (en) Connection terminal, and manufacturing method thereof
JP6990858B2 (en) Terminal and terminal joining method
JP7016065B2 (en) Terminal
JP2019009285A (en) Coil component and manufacturing method thereof
JP2018137146A (en) Conductive wire having terminal
JP7065666B2 (en) Joined body, rotary electric machine, and manufacturing method of rotary electric machine
JP5216119B2 (en) Terminal connection structure
JP4584064B2 (en) Wire connection method
JP6612098B2 (en) Metal bonding wire manufacturing method and die
JP2001071150A (en) Resistance welding method and structure of resistance welded part, and production of electronic parts and electronic parts
JP3943838B2 (en) Metal-to-metal joining method
JP7063671B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2013175398A (en) Terminal metal fitting and motor having the same
JP2019118183A (en) Conductive terminal, manufacturing method for conductive terminal, and rotary electric machine with conductive terminal
JP2000190068A (en) Electronic parts jointing method
JP2004063204A (en) Joining structure of conductor wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904945

Country of ref document: EP

Kind code of ref document: A1