WO2020137262A1 - Vibration device and optical detection device - Google Patents

Vibration device and optical detection device Download PDF

Info

Publication number
WO2020137262A1
WO2020137262A1 PCT/JP2019/045250 JP2019045250W WO2020137262A1 WO 2020137262 A1 WO2020137262 A1 WO 2020137262A1 JP 2019045250 W JP2019045250 W JP 2019045250W WO 2020137262 A1 WO2020137262 A1 WO 2020137262A1
Authority
WO
WIPO (PCT)
Prior art keywords
body cover
vibration
vibrating
translucent body
holding member
Prior art date
Application number
PCT/JP2019/045250
Other languages
French (fr)
Japanese (ja)
Inventor
仁志 坂口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020137262A1 publication Critical patent/WO2020137262A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories

Definitions

  • the present invention relates to a vibration device and an optical detection device capable of removing water drops and the like by mechanical vibration.
  • Japanese Patent Application Laid-Open No. 2004-242242 discloses a liquid droplet removing device in which a piezoelectric element is attached to a drip-proof cover arranged in front of an image sensor. By vibrating the drip-proof cover, water drops in the visual field of the image sensor are removed. The drip-proof cover is held by the support frame. The image pickup device is arranged in an internal space formed by the drip-proof cover and the support frame.
  • the piezoelectric element is directly attached to the drip-proof cover. Therefore, the part of the drip-proof cover outside the field of view of the image sensor vibrates, and the vibration efficiency may be significantly deteriorated. Further, since the portion outside the visual field of the drip-proof cover is held by the support frame, it is difficult to suppress damping of vibration.
  • An object of the present invention is to provide a vibrating device and an optical detection device that can efficiently vibrate a cover to which water drops and the like adhere.
  • the vibrating device is a translucent body cover, and a mass addition member that is directly or indirectly connected to the translucent body cover and is provided so as to form an internal space together with the translucent body cover.
  • a member and a piezoelectric element that vibrates the translucent cover are provided.
  • the optical detection device includes a vibrating device configured according to the present invention, and an optical detection element arranged so that the translucent body cover includes a detection region.
  • the present invention it is possible to provide a vibrating device and an optical detection device capable of efficiently vibrating a cover to which water droplets and the like adhere.
  • FIG. 1 is a front sectional view of a vibrating device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the vibration device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the mass ratio M2/M1 and the magnitude of displacement at the center of the translucent body cover in the first embodiment of the present invention and the comparative example.
  • FIG. 4 is a vibration displacement diagram of the vibration device of the comparative example.
  • FIG. 5 is a vibration displacement diagram of the vibration device according to the first embodiment of the present invention in which the mass ratio M2/M1 is 1.7.
  • FIG. 6 is a vibration displacement diagram of the vibration device according to the first embodiment of the present invention in which the mass ratio M2/M1 is 2.2.
  • FIG. 7 is a front sectional view of a vibrating device according to a modification of the first embodiment of the present invention.
  • FIG. 8 is a front sectional view of a vibrating device according to a second embodiment of the present invention.
  • FIG. 9 is a vibration displacement diagram of the vibrating section according to the second embodiment of the present invention.
  • FIG. 10 is a figure which shows the relationship between the position in the axial direction, and the magnitude
  • FIG. 11 is a vibration displacement diagram of the vibration device according to the second embodiment of the present invention.
  • FIG. 12 is a vibration displacement diagram of the vibrating device according to the first modification of the second embodiment of the present invention.
  • FIG. 13 is a diagram showing the relationship between the position in the axial direction and the magnitude of displacement in the holding members of the second embodiment and the first modification of the present invention.
  • FIG. 14 is a diagram showing the relationship between the position in the axial direction and the magnitude of the radial component in the displacement in the holding members of the second embodiment and the first modified example of the present invention.
  • FIG. 15 is a figure which shows the relationship between the position in the axial direction and the magnitude
  • FIG. 16 is a figure which shows the relationship between the elastic energy ratio and the displacement of the bottom part in a holding member in the holding member of the 2nd Embodiment and 1st modification of this invention.
  • FIG. 17 is a vibration displacement diagram when the vibrating device according to the second embodiment of the present invention is externally fixed at the bottom of the holding member.
  • FIG. 18 is a front sectional view of a vibrating device according to a second modification of the second embodiment of the present invention.
  • FIG. 19 is a front sectional view of a vibrating device according to a third modification of the second embodiment of the present invention.
  • 20 is a front sectional view of a vibrating device according to a fourth modification of the second embodiment of the present invention.
  • FIG. 21 is a front sectional view of a vibrating device according to a fifth modification of the second embodiment of the present invention.
  • FIG. 22 is a front sectional view of a vibrating device according to a sixth modified example of the second embodiment of the present invention.
  • FIG. 18 is a front sectional view of a vibrating device according to a second modification of the second embodiment of the present invention.
  • FIG. 19 is a front sectional view of a vibrating device according to a
  • FIG. 23 is a front sectional view of a vibrating device according to a seventh modification of the second embodiment of the present invention.
  • FIG. 24 is a perspective view of an imaging device according to the third embodiment of the present invention.
  • FIG. 25 is a front sectional view of an imaging device according to the third embodiment of the present invention.
  • FIG. 1 is a front cross-sectional view of the vibration device according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the vibration device according to the first embodiment.
  • a control circuit described later may be omitted.
  • the vibrating device 1 shown in FIG. 1 is a vibrating device that removes water droplets or foreign matter from the field of view of the image sensor by moving water droplets or foreign matter by vibration or atomizing water droplets or the like.
  • the vibrating device 1 includes a translucent body cover 2, a piezoelectric element 3, a mass addition member 6, and a control circuit 7 electrically connected to the piezoelectric element 3.
  • the translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 constitute an internal space.
  • An optical detection element such as an image pickup element is arranged in this internal space.
  • the internal space is not limited to a sealed space, and a space partially open to the outside is also an internal space.
  • the internal space of the vibration device 1 is open to the outside on the side of the mass addition member 6.
  • the translucent body cover 2 has a dome shape.
  • the shape of the translucent body cover 2 in a plan view is circular.
  • the translucent body cover 2 has a bottom surface 2b.
  • the translucent body cover 2 has a flange portion 2c provided near the bottom surface 2b.
  • the flange portion 2c has a first surface 2d and a second surface facing each other.
  • the second surface of the flange portion 2c is included in the bottom surface 2b.
  • the shape of the translucent body cover 2 is not limited to the above, and may be, for example, a flat plate shape.
  • the shape of the translucent body cover 2 in plan view may be, for example, a polygon.
  • the translucent body cover 2 does not need to have the flange portion 2c.
  • the translucent cover 2 is made of soda lime glass.
  • the material of the translucent body cover 2 is not limited to the above, and for example, translucent plastic, glass such as quartz or boroic acid, or translucent ceramic can be used.
  • the light-transmitting property in this specification refers to a light-transmitting property through which at least an energy ray having a wavelength detected by an optical detection element such as the above-described image pickup element or light is transmitted.
  • the piezoelectric element 3 is attached to the bottom surface 2b of the translucent body cover 2.
  • the piezoelectric element 3 has an annular piezoelectric body 4.
  • the piezoelectric body 4 is made of PZT. It should be noted that the material of the piezoelectric body 4 is not limited to the above, and may be made of an appropriate piezoelectric ceramic such as PT or (K,Na)NbO 3 or an appropriate piezoelectric single crystal such as LiTaO 3 or LiNbO 3. Good.
  • the shape of the piezoelectric body 4 is not limited to the above.
  • the piezoelectric element 3 has a first electrode 5a provided on one main surface of the piezoelectric body 4 and a second electrode 5b provided on the other main surface.
  • the first electrode 5a and the second electrode 5b are annular and are provided so as to face each other.
  • the first electrode 5a and the second electrode 5b are electrically connected to the control circuit 7, respectively.
  • the control circuit 7 drives the piezoelectric element 3 in a resonance state.
  • the first electrode 5a and the second electrode 5b are made of 42Ni.
  • the first electrode 5a and the second electrode 5b may be made of a metal material other than 42Ni.
  • the first electrode 5a and the second electrode 5b may be electrodes made of a metal thin film such as Ag or Au formed by a sputtering method or the like.
  • one annular piezoelectric element 3 is provided, but the present invention is not limited to this.
  • a plurality of rectangular plate-shaped piezoelectric elements may be provided along the outer peripheral edge of the translucent body cover 2 in plan view.
  • the piezoelectric element 3 is attached to the translucent body cover 2 on the side of the first electrode 5a.
  • the mass adding member 6 is attached to the second electrode 5b side of the piezoelectric element 3.
  • the mass addition member 6 is indirectly connected to the translucent body cover 2 via the piezoelectric element 3.
  • the mass addition member 6 has a cylindrical shape.
  • the mass addition member 6 has a first opening end surface 6a and a second opening end surface 6b that face each other. Of the first opening end surface 6a and the second opening end surface 6b, the first opening end surface 6a is located on the light-transmitting body cover 2 side.
  • the piezoelectric element 3 is attached to the first opening end surface 6a.
  • a direction connecting the first opening end surface 6a and the second opening end surface 6b is defined as an axial direction Z
  • a direction orthogonal to the axial direction Z is defined as a radial direction X
  • the direction X may be described as the direction X orthogonal to the axial direction Z.
  • the mass addition member 6 has an outer side surface 6c located outside in the radial direction X and an inner side surface 6d located inside in the radial direction X.
  • the mass addition member 6 is provided so as to form an internal space together with the translucent body cover 2.
  • the mass addition member 6 is indirectly connected to the translucent body cover 2 over the entire circumferential direction.
  • the shape of the mass addition member 6 is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape.
  • the mass addition member 6 is made of SUS420J2.
  • the material of the mass adding member 6 is not limited to the above, and may be a metal other than the above or an appropriate ceramic.
  • the mass addition member 6 may be used as the second electrode of the piezoelectric element 3. In this case, the second electrode 5b of the piezoelectric element 3 shown in FIGS. 1 and 2 may not be provided.
  • control circuit 7 drives the piezoelectric element 3 in the resonance state.
  • the vibration device 1 does not necessarily have to have the control circuit 7, and the piezoelectric element 3 may be driven by a signal from the outside.
  • the feature of this embodiment is that the mass addition member 6 is connected to the translucent body cover 2 so as to form an internal space together with the translucent body cover 2. As a result, it is possible to efficiently vibrate the translucent body cover 2 to which water drops and the like adhere. This will be described below by comparing the present embodiment with a comparative example.
  • the comparative example differs from the first embodiment in that the mass addition member 6 is not provided.
  • the mass of the translucent body cover 2 is M1
  • the total mass of the mass adding member 6 and the piezoelectric element 3 is M2.
  • a plurality of vibration devices 1 having the configuration of the first embodiment having different mass ratios M2/M1 were produced. Further, a vibration device of a comparative example was manufactured. In the plurality of vibration devices, the magnitude of displacement at the center of the light-transmitting body cover 2 was compared. When comparing the magnitudes of the displacements, the voltage applied to the piezoelectric element 3 was an AC voltage with an amplitude of 20 V, and the vibration frequency was around 60 kHz, which is the resonance frequency of the vibration device 1. The simulation was performed by the finite element method using a three-dimensional model.
  • FIG. 3 is a diagram showing the relationship between the mass ratio M2/M1 and the magnitude of displacement at the center of the translucent body cover 2 in the first embodiment and the comparative example.
  • the displacement ratio in FIG. 3 is a ratio based on the magnitude of displacement at the center of the translucent body cover 2 of the comparative example.
  • the black circle plots show the respective results of the first embodiment, and the white plots show the results of the comparative example.
  • the displacement ratio is larger than 1 in the first embodiment.
  • the displacement of the translucent body cover 2 in the first embodiment is larger than the displacement of the translucent body cover 2 in the comparative example.
  • the mass ratio M2/M1 is 0.9 or more and 1.9 or less
  • the displacement ratio is 1.5 or more, and it can be seen that the displacement is particularly large.
  • the translucent body cover 2 can be efficiently vibrated.
  • FIG. 4 is a vibration displacement diagram of the vibration device of the comparative example.
  • FIG. 5 is a vibration displacement diagram of the vibration device according to the first embodiment in which the mass ratio M2/M1 is 1.7.
  • FIG. 6 is a vibration displacement diagram of the vibration device according to the first embodiment in which the mass ratio M2/M1 is 2.2. 4 to 6, it is shown that the displacement is larger as the color is closer to white. The same applies to other vibration displacement diagrams.
  • the displacement on the bottom surface 2b side of the translucent body cover 2 is large, and the displacement at the center is small.
  • a portion A between the center of the translucent body cover 2 and the bottom surface 2b serves as a vibration node, and the bottom surface 2b side vibrates with the vibration node serving as a fulcrum.
  • the large displacement portions are dispersed, and the vibration efficiency of the central portion is low.
  • the mass addition member 6 is connected to the bottom surface 2b side of the translucent body cover 2. As described above, it is possible to suppress the dispersion of the portion having a large displacement, and it is possible to intensively vibrate the center of the translucent body cover 2. Therefore, the translucent body cover 2 can be efficiently vibrated.
  • the mass ratio M2/M1 is preferably 0.9 or more and 1.9 or less.
  • the center of the light-transmitting body cover 2 can be further concentrated and vibrated, and the light-transmitting body cover 2 can be vibrated more efficiently. ..
  • the arrangement of the piezoelectric element 3 is not limited between the translucent body cover 2 and the mass addition member 6.
  • the piezoelectric element 3 is provided on the flange portion 2c of the translucent body cover 2. More specifically, the piezoelectric element 3 is provided on the first surface 2d of the flange portion 2c that faces the bottom surface 2b.
  • the mass addition member 6 is directly connected to the translucent body cover 2. Also in this case, the light-transmitting body cover 2 can be efficiently vibrated as in the first embodiment.
  • FIG. 8 is a front sectional view of the vibration device according to the second embodiment.
  • the present embodiment is different from the first embodiment in that a holding member 18 that holds a vibrating portion including the translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 is provided. Except for the above points, the vibration device 11 of the present embodiment has the same configuration as the vibration device 1 of the first embodiment.
  • the holding member 18 holds the mass addition member 6.
  • the holding member 18 has a connecting portion 18a connected to the outer side surface 6c of the mass adding member 6, a spring portion 18b connected to the connecting portion 18a, and a bottom portion 18c connected to the spring portion 18b.
  • the connecting portion 18a has an annular shape.
  • the spring portion 18b and the bottom portion 18c have a cylindrical shape extending in the axial direction Z.
  • the shape of each part of the holding member 18 is not limited to the above.
  • the connecting portion 18a may have, for example, a frame shape other than the annular shape.
  • the spring portion 18b and the bottom portion 18c may have a shape such as a rectangular tube shape, for example.
  • the cross section of the holding member 18 of the vibration device 11 along the axial direction Z has a substantially L-shape. More specifically, when the thickness of each portion of the holding member 18 is set to be the thickness along the direction orthogonal to the direction in which the respective portions of the holding member 18 extend, in the holding member 18, the thickness of the bottom portion 18c. Is thicker than the wall thickness of the spring portion 18b. Thereby, the spring portion 18b is more easily deformed than the bottom portion 18c.
  • the thickness of the bottom portion 18c of the holding member 18 increases from the spring portion 18b side toward the inside in the radial direction X.
  • the outer diameters of the spring portion 18b and the bottom portion 18c are the same, and the inner diameter of the bottom portion 18c is smaller than the inner diameter of the spring portion 18b.
  • the vibration device 11 can be downsized.
  • the bottom portion 18c may be thicker in the radial direction X from the spring portion 18b side.
  • the holding member 18 is made of SUS420J2.
  • the material of the holding member 18 is not limited to the above, and may be a metal other than the above or an appropriate ceramic.
  • the holding member 18 may be integrally formed, or each part may be separately formed.
  • the rigidity of the material of the bottom portion 18c is higher than the rigidity of the material of the spring portion 18b, so that the spring portion 18b may be more easily deformed than the bottom portion 18c.
  • the holding member 18 is connected to a portion other than the vibration node of the vibrating portion. This is shown with reference to FIGS. 9 and 10 below.
  • simulation was performed using a two-dimensional axisymmetric model. In the simulation, the voltage applied to the piezoelectric element 3 was 20 V, and the frequency of vibration was set to about 60 kHz which is the resonance frequency of the vibration device 11.
  • FIG. 9 is a vibration displacement diagram of the vibrating section in the second embodiment.
  • FIG. 10 is a diagram showing the relationship between the axial position and the magnitude of displacement in the mass adding member of the vibrating unit according to the second embodiment.
  • FIG. 9 shows a portion corresponding to half of the cross section shown in FIG.
  • Each vibration displacement diagram other than FIG. 9 below may show a portion corresponding to half of the cross section along the axial direction of the vibration device.
  • Position B in FIGS. 9 and 10 indicates the axial position of the first opening end face of the mass addition member, and position C indicates the axial position of the second opening end face.
  • the position B is 0 mm and the position C is 4 mm.
  • the solid line in FIG. 10 indicates the magnitude of the displacement
  • the broken line indicates the magnitude of the radial component X in the displacement
  • the alternate long and short dash line indicates the axial component in the displacement.
  • the mass addition member 6 is displaced by 0.7 ⁇ m to 2 ⁇ m. This displacement is about 4% to 12% of the maximum value of the displacement of the translucent body cover 2. It can be seen that in the mass addition member 6, there is no vibration node having a displacement magnitude of 0.
  • the holding member 18 is connected to the position shown by the chain double-dashed line in FIG. More specifically, the holding member 18 is connected to a portion where the position of the mass adding member 6 in the axial direction is 1 mm or more and 1.5 mm or less. In this way, the holding member 18 is connected to a portion other than the vibration node of the mass adding member 6 in the vibrating portion. However, when the mass adding member 6 of the vibrating portion has a vibration node, the holding member 18 may be connected to the vibration node portion.
  • the vibrating section in the present embodiment is indirectly fixed to the outside or the like via the holding member 18.
  • the vibration device 11 has the mass addition member 6 connected to the translucent body cover 2 as in the first embodiment.
  • damping can be effectively suppressed when the vibrating portion is fixed to the outside or the like. Therefore, it is possible to more efficiently vibrate the translucent body cover 2 to which water drops and the like adhere.
  • the details will be described below.
  • the effect of suppressing damping in the vibration device according to the first modification of the second embodiment is also shown.
  • the vibrating device of the first modified example is configured similarly to the vibrating device 11 of the second embodiment except that the spring portion and the bottom portion of the holding member have the same thickness.
  • FIG. 11 is a vibration displacement diagram of the vibration device according to the second embodiment.
  • FIG. 12 is a vibration displacement diagram of the vibrating device according to the first modification of the second embodiment.
  • Position D in FIGS. 11 and 12 indicates the axial position of the connecting portion of the holding member, and position E indicates the axial position of the second opening end face. The same applies to drawings other than FIGS. 11 and 12.
  • the bottom portion 18c of the holding member 18 is not substantially displaced. As shown in FIG. 12, the displacement is also suppressed in the bottom portion 28c of the holding member 28A in the first modified example.
  • FIG. 13 is a diagram showing the relationship between the position in the axial direction and the magnitude of displacement in the holding members of the second embodiment and the first modification.
  • FIG. 14 is a diagram showing the relationship between the position in the axial direction and the magnitude of the radial component in the displacement in the holding members of the second embodiment and the first modified example.
  • FIG. 15 is a diagram showing the relationship between the position in the axial direction and the magnitude of the axial component in the displacement in the holding members of the second embodiment and the first modified example.
  • the position D is 0 mm and the position E is 8 mm.
  • a portion having a position of 5 mm or more in the axial direction corresponds to the bottom portion. 13 to 15, the solid line shows the result of the second embodiment, and the broken line shows the result of the first modification.
  • the displacement of the connecting portion 18a of the holding member 28A indicated by the position D is about 1.6 ⁇ m.
  • the displacement becomes smaller as it gets closer to the bottom portion 28c from the connection portion 18a.
  • the displacement is about 0.4 ⁇ m or less at the bottom portion 28c where the position in the axial direction Z is 5 mm or more.
  • the displacement at the bottom portion 28c can be reduced by about 75% as compared with the displacement at the connection portion 18a.
  • the radial component of the vibration is absorbed by the spring property of the spring portion 18b, and the vibrating component near the position of 6.5 mm in the axial direction X. It can be seen that is 0 ⁇ m.
  • the component of the displacement in the axial direction Z is about 0.3 ⁇ m.
  • the above-mentioned absorption of vibration by the spring portion 18b means that most of the vibration propagated from the mass adding member 6 via the connecting portion 18a can be the vibration in the spring portion 18b. Thereby, it is possible to make it difficult for the vibration to leak to the bottom portion 28c.
  • the displacement can be suppressed to 0.03 ⁇ m at the bottom portion 18c whose position in the axial direction Z is 5 mm or more.
  • the vibration propagated from the mass adding member 6 via the connecting portion 18a can be reduced by about 98%.
  • both the X-direction component and the Z-direction component of the displacement can be suppressed to 0.02 ⁇ m.
  • vibration can be absorbed by the elasticity of the spring portion 18b as in the first modification, and the bottom portion 18c itself is less likely to be deformed.
  • the holding member 18 of the vibration device 11 has a spring portion 18b having a small elastic constant and easily deformed, and a bottom portion 18c having a large elastic constant and hard to deform. Thereby, most of the strain energy applied to the holding member 18 from the side of the mass addition member 6 can be converted into elastic energy in the spring portion 18b, and the bottom portion 18c can be made difficult to displace as described above. ..
  • damping can be effectively suppressed by providing a difference in elastic constant between the spring portion 18b and the bottom portion 18c of the holding member 18.
  • E1 be the elastic energy of the spring portion 18b and E2 be the elastic energy of the bottom portion 18c when an external force is applied to the holding member 18.
  • the elastic energy ratio E1/E2 of the holding member 18 was set to 46.
  • the displacement of the bottom portion 18c is changed. It was measured.
  • FIG. 16 is a diagram showing the relationship between the elastic energy ratio and the displacement of the bottom of the holding member in the holding members of the second embodiment and the first modification. Note that the displacement ratio in FIG. 16 is a ratio based on the displacement in the first modified example in which the spring portion and the bottom portion are uniformly configured.
  • the black circle plot shows the result of the second embodiment, and the white plot shows the result of the first modification.
  • the elastic energy ratio E1/E2 is 2 or more.
  • the displacement ratio based on the first modification is less than 1, and the displacement at the bottom portion 18c can be further suppressed.
  • the elastic energy ratio E1/E2 is preferably 2 or more.
  • the elastic energy ratio E1/E2 is more preferably 6 or more.
  • the displacement ratio can be about 0.5 or less. Therefore, the displacement of the bottom portion 18c can be suppressed more effectively, and the occurrence of vibration damping can be suppressed even more effectively when the bottom portion 18c is fixed to the outside or the like.
  • FIG. 17 is a vibration displacement diagram when the vibration device according to the second embodiment is externally fixed at the bottom of the holding member.
  • the bottom of the holding member was fixed to a member made of PPS-FG40 (polyphenylene sulfide-glass 40%) having a machine Q of 10.
  • the member is shown as the outer side F.
  • the vibration state is almost the same when the vibration device 11 is not fixed to the external F and when it is fixed to the external F at the bottom portion 18c of the holding member 18. You can see that it does not change. More specifically, when the vibration device 11 is not fixed to the outside F, the displacement of the center of the translucent body cover 2 was 18.6 ⁇ m. As shown in FIG. 17, when the vibrating device 11 was fixed to the outside F at the bottom portion 18c, the center displacement of the translucent body cover 2 was 18.6 ⁇ m. As described above, in the second embodiment, since damping can be effectively suppressed, it is understood that the vibration of the translucent body cover 2 is less likely to be attenuated due to being fixed to the outside. Therefore, the translucent body cover 2 can be vibrated more efficiently.
  • second to seventh modified examples of the second embodiment will be shown in which only the configuration of the holding member is different from that of the second embodiment. Also in the second to seventh modifications, damping can be suppressed as in the second embodiment, and the translucent body cover 2 can be vibrated more efficiently.
  • 18 to 23 described below are axially symmetric two-dimensional cross-sectional views along the axial direction Z of the vibration device.
  • the holding member 28B is connected to the translucent body cover 2. More specifically, the cross section of the connecting portion 28a of the holding member 28B along the axial direction Z has a substantially U-shape.
  • the connection portion 28a has a first connection surface 28d and a second connection surface 28e that face each other.
  • the connection portion 28a is provided so as to sandwich the flange portion 2c of the translucent body cover 2 between the first connection surface 28d and the second connection surface 28e.
  • the first connection surface 28d is connected to the first surface 2d of the flange portion 2c.
  • the second connection surface 28e is connected to the bottom surface 2b of the translucent body cover 2.
  • the thickness of the bottom portion 18c of the holding member 28C increases from the spring portion 18b side toward the outside in the radial direction X.
  • the inner diameters of the spring portion 18b and the bottom portion 18c are the same, and the outer diameter of the bottom portion 18c is larger than the outer diameter of the spring portion 18b.
  • the connecting portion 18a of the holding member 28D is connected to the inner side surface 6d of the mass adding member 6.
  • the wall thickness of the bottom portion 18c increases from the spring portion 18b side toward the outside in the radial direction X, similarly to the third modification.
  • the cross section of the spring portion 28b of the holding member 28E along the axial direction Z has a meandering shape.
  • the spring property of the spring portion 28b can further absorb the vibration, and the vibration from the side of the mass addition member 6 is less likely to leak to the bottom portion 18c.
  • the holding member 28F extends in the radial direction X.
  • the connecting portion 18a is located on the innermost side in the radial direction X of the holding member 28F, and the bottom portion 18c is located on the outermost side in the radial direction X.
  • the spring portion 28b is located between the connecting portion 18a and the bottom portion 18c.
  • the shape of the cross section of the spring portion 28b along the axial direction Z is a meandering shape, as in the fifth modification.
  • the holding member 28F is located inside the mass addition member 6 in the axial direction Z. As a result, the size of the vibration device along the axial direction Z can be reduced.
  • the material of the connecting portion 18a and the spring portion 18b of the holding member 28G and the material of the bottom portion 18c are different. More specifically, the spring constant of the material of the bottom portion 18c is higher than the spring constant of the material of the spring portion 18b.
  • FIG. 24 is a perspective view of an imaging device according to the third embodiment.
  • FIG. 25 is a front sectional view of the imaging device according to the third embodiment.
  • the imaging device 30 as an optical detection device includes a vibrating device 31 and an image pickup element 30A arranged in the internal space of the vibrating device 31.
  • the vibrating device 31 according to the present embodiment differs from the vibrating device 11 according to the second embodiment in that the vibrating device 31 includes the case member 32. Except for the points described above, the vibration device 31 of the present embodiment has the same configuration as the vibration device 11 of the second embodiment.
  • the case member 32 includes a first case part 33 having a substantially cylindrical shape, a second case part 34 having a substantially rectangular tube shape connected to the first case part 33, and a second case part 34. And a plate-shaped third case portion 35 connected to the case portion 34.
  • An external connection member 36 is connected to the third case portion 35 of the case member 32.
  • the second case portion 34 is located near the portion connected to the first case portion 33 and extends inward in the direction X orthogonal to the axial direction Z. Have.
  • the bottom portion 18c of the holding member 18 of the vibration device 31 is fixed to the fixing portion 34a.
  • the case member 32 indirectly holds the vibrating portion including the translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 via the holding member 18.
  • the case member 32 may directly hold the vibrating portion.
  • the first case portion 33 has a top plate portion 33a including an opening 33c.
  • the top plate portion 33a is arranged so as to face the flange portion 2c of the translucent body cover 2.
  • the top plate portion 33a and the flange portion 2c overlap each other.
  • the top plate portion 33a and the flange portion 2c are not in contact with each other.
  • the vibration of the translucent body cover 2 is unlikely to be disturbed.
  • a part of the dome-shaped portion of the translucent body cover 2 projects outward from the opening 33c of the first case portion 33.
  • the third case portion 35 is arranged so as to seal the opening of the second case portion 34.
  • the case member 32 is made of resin.
  • the configuration and material of the case member 32 are not limited to the above, and may be any as long as they can form an internal space together with other portions of the vibrating device 31 and can arrange the image pickup device 30A in the internal space.
  • the first circuit board 37a and the second circuit board 37b facing each other are arranged in the internal space of the case member 32.
  • the first circuit board 37a and the second circuit board 37b are connected by a connection wiring 37c.
  • the first circuit board 37a is connected to the image sensor 30A.
  • the first circuit board 37a or the second circuit board 37b includes a circuit that drives the imaging element 30A.
  • the first circuit board 37a or the second circuit board 37b may include a control circuit 7 that drives the piezoelectric element 3 in a resonance state.
  • the wiring 38 extends from the external connection member 36 into the internal space of the case member 32.
  • the wiring 38 penetrates through the third case portion 35 and the second circuit board 37b.
  • the wiring 38 is electrically connected to the second circuit board 37b.
  • the image pickup device 30A, the first circuit board 37a, and the second circuit board 37b are electrically connected to the outside.
  • the image pickup device 30A can be, for example, a CMOS, a CCD, a bolometer, a thermopile, or the like that receives light of any wavelength in the visible region to the far infrared region.
  • Examples of the imaging device 30 include a camera, a Radar device, a LIDAR device, and the like.
  • an optical detection element that optically detects energy rays other than the image pickup element 30A may be arranged in the internal space of the vibration device 31.
  • the energy rays to be detected may be active energy rays such as electromagnetic waves and infrared rays.
  • the detection region of the optical detection element is included in the translucent body cover 2.
  • the light-transmitting body cover 2 includes the field of view of the image sensor 30A as a detection region.
  • the vibration device 31 of the present embodiment has the same vibrating section and holding member 18 as in the second embodiment. Further, as in the case shown in FIG. 17, the bottom portion 18c of the holding member 18 is fixed to the fixing portion 34a of the case member 32, and vibration damping is unlikely to occur. Since the imaging device 30 includes the vibrating device 31, it is possible to efficiently vibrate the translucent body cover 2 to which water droplets and the like adhere.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Provided is a vibration device which can effectively vibrate a cover having water droplets, etc., deposited thereon. A vibration device 1 according to the present invention comprises: a light transmissive body cover 2; a mass additive member 6 which is directly or indirectly linked to the light transmissive body cover 2, and is provided so as to form an inner space together with the light transmissive body cover 2; and a piezoelectric element 3 which vibrates the light transmissive body cover 2.

Description

振動装置及び光学検出装置Vibration device and optical detection device
 本発明は、機械的振動によって水滴などを除去することが可能な振動装置及び光学検出装置に関する。 The present invention relates to a vibration device and an optical detection device capable of removing water drops and the like by mechanical vibration.
 従来、監視装置として用いられるカメラなどのイメージングデバイスにおいては、その視野を常に明瞭にすることが求められている。特に、車載用途などの屋外で使用されるカメラにおいては、雨滴などの水滴を除去するための機構が種々提案されている。下記の特許文献1には、撮像素子の前方に配置される防滴カバーに、圧電素子が貼り付けられた液滴排除装置が開示されている。防滴カバーを振動させることにより、撮像素子の視野内の水滴を除去する。防滴カバーは支持枠に保持されている。防滴カバー及び支持枠により構成される内部空間内に、撮像素子が配置される。 Conventionally, in imaging devices such as cameras used as monitoring devices, it is required that the field of view is always clear. In particular, for cameras used outdoors such as in-vehicle applications, various mechanisms have been proposed for removing water droplets such as raindrops. Japanese Patent Application Laid-Open No. 2004-242242 discloses a liquid droplet removing device in which a piezoelectric element is attached to a drip-proof cover arranged in front of an image sensor. By vibrating the drip-proof cover, water drops in the visual field of the image sensor are removed. The drip-proof cover is held by the support frame. The image pickup device is arranged in an internal space formed by the drip-proof cover and the support frame.
特開2017-170303号公報JP, 2017-170303, A
 特許文献1に記載された液滴排除装置では、防滴カバーに圧電素子が直接的に貼り付けられている。そのため、防滴カバーにおける、撮像素子の視野外の部分までが振動することとなり、振動効率が大きく劣化するおそれがある。さらに、防滴カバーの上記視野外の部分が支持枠に保持されているため、振動のダンピングを抑制することは困難となる。 In the droplet removing device described in Patent Document 1, the piezoelectric element is directly attached to the drip-proof cover. Therefore, the part of the drip-proof cover outside the field of view of the image sensor vibrates, and the vibration efficiency may be significantly deteriorated. Further, since the portion outside the visual field of the drip-proof cover is held by the support frame, it is difficult to suppress damping of vibration.
 本発明の目的は、水滴などが付着するカバーを効率的に振動させることができる、振動装置及び光学検出装置を提供することにある。 An object of the present invention is to provide a vibrating device and an optical detection device that can efficiently vibrate a cover to which water drops and the like adhere.
 本発明に係る振動装置は、透光体カバーと、前記透光体カバーに直接的または間接的に連結されており、前記透光体カバーと共に内部空間を構成するように設けられている質量付加部材と、前記透光体カバーを振動させる圧電素子とを備える。 The vibrating device according to the present invention is a translucent body cover, and a mass addition member that is directly or indirectly connected to the translucent body cover and is provided so as to form an internal space together with the translucent body cover. A member and a piezoelectric element that vibrates the translucent cover are provided.
 本発明に係る光学検出装置は、本発明に従い構成された振動装置と、前記透光体カバーに検出領域が含まれるように配置されている光学検出素子とを備える。 The optical detection device according to the present invention includes a vibrating device configured according to the present invention, and an optical detection element arranged so that the translucent body cover includes a detection region.
 本発明によれば、水滴などが付着するカバーを効率的に振動させることができる、振動装置及び光学検出装置を提供することができる。 According to the present invention, it is possible to provide a vibrating device and an optical detection device capable of efficiently vibrating a cover to which water droplets and the like adhere.
図1は、本発明の第1の実施形態に係る振動装置の正面断面図である。FIG. 1 is a front sectional view of a vibrating device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る振動装置の分解斜視図である。FIG. 2 is an exploded perspective view of the vibration device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態及び比較例においての、質量比M2/M1と、透光体カバーの中央における変位の大きさとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the mass ratio M2/M1 and the magnitude of displacement at the center of the translucent body cover in the first embodiment of the present invention and the comparative example. 図4は、比較例の振動装置の振動変位図である。FIG. 4 is a vibration displacement diagram of the vibration device of the comparative example. 図5は、質量比M2/M1を1.7とした、本発明の第1の実施形態に係る振動装置の振動変位図である。FIG. 5 is a vibration displacement diagram of the vibration device according to the first embodiment of the present invention in which the mass ratio M2/M1 is 1.7. 図6は、質量比M2/M1を2.2とした、本発明の第1の実施形態に係る振動装置の振動変位図である。FIG. 6 is a vibration displacement diagram of the vibration device according to the first embodiment of the present invention in which the mass ratio M2/M1 is 2.2. 図7は、本発明の第1の実施形態の変形例に係る振動装置の正面断面図である。FIG. 7 is a front sectional view of a vibrating device according to a modification of the first embodiment of the present invention. 図8は、本発明の第2の実施形態に係る振動装置の正面断面図である。FIG. 8 is a front sectional view of a vibrating device according to a second embodiment of the present invention. 図9は、本発明の第2の実施形態における振動部の振動変位図である。FIG. 9 is a vibration displacement diagram of the vibrating section according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態における振動部の質量付加部材においての、軸方向における位置と変位の大きさとの関係を示す図である。FIG. 10: is a figure which shows the relationship between the position in the axial direction, and the magnitude|size of a displacement in the mass addition member of the vibration part in the 2nd Embodiment of this invention. 図11は、本発明の第2の実施形態に係る振動装置の振動変位図である。FIG. 11 is a vibration displacement diagram of the vibration device according to the second embodiment of the present invention. 図12は、本発明の第2の実施形態の第1の変形例に係る振動装置の振動変位図である。FIG. 12 is a vibration displacement diagram of the vibrating device according to the first modification of the second embodiment of the present invention. 図13は、本発明の第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位の大きさとの関係を示す図である。FIG. 13 is a diagram showing the relationship between the position in the axial direction and the magnitude of displacement in the holding members of the second embodiment and the first modification of the present invention. 図14は、本発明の第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位における径方向の成分の大きさとの関係を示す図である。FIG. 14 is a diagram showing the relationship between the position in the axial direction and the magnitude of the radial component in the displacement in the holding members of the second embodiment and the first modified example of the present invention. 図15は、本発明の第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位における軸方向の成分の大きさとの関係を示す図である。FIG. 15: is a figure which shows the relationship between the position in the axial direction and the magnitude|size of the axial component in a displacement in the holding member of the 2nd Embodiment and 1st modification of this invention. 図16は、本発明の第2の実施形態及び第1の変形例の保持部材においての、弾性エネルギー比と保持部材における底部の変位との関係を示す図である。FIG. 16: is a figure which shows the relationship between the elastic energy ratio and the displacement of the bottom part in a holding member in the holding member of the 2nd Embodiment and 1st modification of this invention. 図17は、本発明の第2の実施形態に係る振動装置を、保持部材の底部において外部に固定したときの振動変位図である。FIG. 17 is a vibration displacement diagram when the vibrating device according to the second embodiment of the present invention is externally fixed at the bottom of the holding member. 図18は、本発明の第2の実施形態の第2の変形例に係る振動装置の正面断面図である。FIG. 18 is a front sectional view of a vibrating device according to a second modification of the second embodiment of the present invention. 図19は、本発明の第2の実施形態の第3の変形例に係る振動装置の正面断面図である。FIG. 19 is a front sectional view of a vibrating device according to a third modification of the second embodiment of the present invention. 図20は、本発明の第2の実施形態の第4の変形例に係る振動装置の正面断面図である。20 is a front sectional view of a vibrating device according to a fourth modification of the second embodiment of the present invention. 図21は、本発明の第2の実施形態の第5の変形例に係る振動装置の正面断面図である。FIG. 21 is a front sectional view of a vibrating device according to a fifth modification of the second embodiment of the present invention. 図22は、本発明の第2の実施形態の第6の変形例に係る振動装置の正面断面図である。FIG. 22 is a front sectional view of a vibrating device according to a sixth modified example of the second embodiment of the present invention. 図23は、本発明の第2の実施形態の第7の変形例に係る振動装置の正面断面図である。FIG. 23 is a front sectional view of a vibrating device according to a seventh modification of the second embodiment of the present invention. 図24は、本発明の第3の実施形態に係るイメージングデバイスの斜視図である。FIG. 24 is a perspective view of an imaging device according to the third embodiment of the present invention. 図25は、本発明の第3の実施形態に係るイメージングデバイスの正面断面図である。FIG. 25 is a front sectional view of an imaging device according to the third embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in the present specification is an exemplification, and a partial replacement or combination of the configurations is possible between different embodiments.
 図1は、第1の実施形態に係る振動装置の正面断面図である。図2は、第1の実施形態に係る振動装置の分解斜視図である。なお、図1以外の図面においては、後述する制御回路を省略することがある。 FIG. 1 is a front cross-sectional view of the vibration device according to the first embodiment. FIG. 2 is an exploded perspective view of the vibration device according to the first embodiment. In addition, in drawings other than FIG. 1, a control circuit described later may be omitted.
 図1に示す振動装置1は、振動により水滴や異物を移動させ、または水滴などを霧化させることにより、撮像素子の視野内から水滴や異物を除去する振動装置である。振動装置1は、透光体カバー2と、圧電素子3と、質量付加部材6と、圧電素子3に電気的に接続されている制御回路7とを有する。透光体カバー2、圧電素子3及び質量付加部材6により内部空間が構成されている。この内部空間内に、撮像素子などの光学検出素子が配置される。なお、本明細書において、内部空間は密閉された空間には限られず、一部が外部に開いた空間も内部空間とする。振動装置1における内部空間は、質量付加部材6側においては外部に開いている。 The vibrating device 1 shown in FIG. 1 is a vibrating device that removes water droplets or foreign matter from the field of view of the image sensor by moving water droplets or foreign matter by vibration or atomizing water droplets or the like. The vibrating device 1 includes a translucent body cover 2, a piezoelectric element 3, a mass addition member 6, and a control circuit 7 electrically connected to the piezoelectric element 3. The translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 constitute an internal space. An optical detection element such as an image pickup element is arranged in this internal space. In addition, in the present specification, the internal space is not limited to a sealed space, and a space partially open to the outside is also an internal space. The internal space of the vibration device 1 is open to the outside on the side of the mass addition member 6.
 透光体カバー2はドーム状の形状を有する。透光体カバー2の平面視における形状は円形である。透光体カバー2は底面2bを有する。透光体カバー2は、底面2b近傍に設けられたフランジ部2cを有する。フランジ部2cは対向し合う第1の面2d及び第2の面を有する。本実施形態においては、フランジ部2cの第2の面は底面2bに含まれる。なお、透光体カバー2の形状は上記に限定されず、例えば、平板状であってもよい。透光体カバー2の平面視における形状は、例えば、多角形であってもよい。透光体カバー2はフランジ部2cを有していなくともよい。 The translucent body cover 2 has a dome shape. The shape of the translucent body cover 2 in a plan view is circular. The translucent body cover 2 has a bottom surface 2b. The translucent body cover 2 has a flange portion 2c provided near the bottom surface 2b. The flange portion 2c has a first surface 2d and a second surface facing each other. In the present embodiment, the second surface of the flange portion 2c is included in the bottom surface 2b. The shape of the translucent body cover 2 is not limited to the above, and may be, for example, a flat plate shape. The shape of the translucent body cover 2 in plan view may be, for example, a polygon. The translucent body cover 2 does not need to have the flange portion 2c.
 透光体カバー2はソーダライムガラスからなる。なお、透光体カバー2の材料は上記に限定されず、例えば、透光性のプラスチック、石英やホウ桂酸などのガラスまたは透光性のセラミックなどを用いることができる。本明細書における透光性とは、少なくとも上記撮像素子などの光学検出素子が検出する波長のエネルギー線や光が透過する透光性をいう。 The translucent cover 2 is made of soda lime glass. The material of the translucent body cover 2 is not limited to the above, and for example, translucent plastic, glass such as quartz or boroic acid, or translucent ceramic can be used. The light-transmitting property in this specification refers to a light-transmitting property through which at least an energy ray having a wavelength detected by an optical detection element such as the above-described image pickup element or light is transmitted.
 透光体カバー2の底面2bに圧電素子3が貼り付けられている。圧電素子3は、円環状の圧電体4を有する。圧電体4はPZTからなる。なお、圧電体4の材料は上記に限定されず、例えば、PTや(K,Na)NbOなどの適宜の圧電セラミックスまたはLiTaOやLiNbOなどの適宜の圧電単結晶などからなっていてもよい。圧電体4の形状は上記に限定されない。 The piezoelectric element 3 is attached to the bottom surface 2b of the translucent body cover 2. The piezoelectric element 3 has an annular piezoelectric body 4. The piezoelectric body 4 is made of PZT. It should be noted that the material of the piezoelectric body 4 is not limited to the above, and may be made of an appropriate piezoelectric ceramic such as PT or (K,Na)NbO 3 or an appropriate piezoelectric single crystal such as LiTaO 3 or LiNbO 3. Good. The shape of the piezoelectric body 4 is not limited to the above.
 圧電素子3は、圧電体4の一方主面上に設けられている第1の電極5a及び他方主面上に設けられている第2の電極5bを有する。第1の電極5a及び第2の電極5bは円環状であり、互いに対向するように設けられている。第1の電極5a及び第2の電極5bは、それぞれ上記制御回路7に電気的に接続されている。制御回路7は、圧電素子3を共振状態において駆動する。第1の電極5a及び第2の電極5bは、42Niからなる。なお、第1の電極5a及び第2の電極5bは、42Ni以外の金属材料からなっていてもよい。例えば、第1の電極5a及び第2の電極5bは、スパッタリング法などにより形成される、AgやAuなどの金属薄膜からなる電極でもよい。 The piezoelectric element 3 has a first electrode 5a provided on one main surface of the piezoelectric body 4 and a second electrode 5b provided on the other main surface. The first electrode 5a and the second electrode 5b are annular and are provided so as to face each other. The first electrode 5a and the second electrode 5b are electrically connected to the control circuit 7, respectively. The control circuit 7 drives the piezoelectric element 3 in a resonance state. The first electrode 5a and the second electrode 5b are made of 42Ni. The first electrode 5a and the second electrode 5b may be made of a metal material other than 42Ni. For example, the first electrode 5a and the second electrode 5b may be electrodes made of a metal thin film such as Ag or Au formed by a sputtering method or the like.
 なお、本実施形態では円環状の1つの圧電素子3が設けられているが、これに限定されない。例えば、複数の矩形板状の圧電素子が、平面視における透光体カバー2の外周縁に沿って設けられていてもよい。 In the present embodiment, one annular piezoelectric element 3 is provided, but the present invention is not limited to this. For example, a plurality of rectangular plate-shaped piezoelectric elements may be provided along the outer peripheral edge of the translucent body cover 2 in plan view.
 圧電素子3は、第1の電極5a側において透光体カバー2に貼り付けられている。一方で、圧電素子3の第2の電極5b側には、上記質量付加部材6が貼り付けられている。本実施形態では、質量付加部材6は、透光体カバー2に圧電素子3を介して間接的に連結されている。質量付加部材6は円筒状である。質量付加部材6は、対向し合う第1の開口端面6a及び第2の開口端面6bを有する。第1の開口端面6a及び第2の開口端面6bのうち第1の開口端面6aが透光体カバー2側に位置する。第1の開口端面6aに上記圧電素子3が貼り付けられている。 The piezoelectric element 3 is attached to the translucent body cover 2 on the side of the first electrode 5a. On the other hand, the mass adding member 6 is attached to the second electrode 5b side of the piezoelectric element 3. In the present embodiment, the mass addition member 6 is indirectly connected to the translucent body cover 2 via the piezoelectric element 3. The mass addition member 6 has a cylindrical shape. The mass addition member 6 has a first opening end surface 6a and a second opening end surface 6b that face each other. Of the first opening end surface 6a and the second opening end surface 6b, the first opening end surface 6a is located on the light-transmitting body cover 2 side. The piezoelectric element 3 is attached to the first opening end surface 6a.
 ここで、第1の開口端面6a及び第2の開口端面6bを結ぶ方向を軸方向Zとし、軸方向Zに直交する方向を径方向Xとする。なお、本明細書においては、方向Xを軸方向Zに直交する方向Xとして記載することがある。質量付加部材6は、径方向X外側に位置する外側面6cと、径方向X内側に位置する内側面6dとを有する。 Here, a direction connecting the first opening end surface 6a and the second opening end surface 6b is defined as an axial direction Z, and a direction orthogonal to the axial direction Z is defined as a radial direction X. In addition, in this specification, the direction X may be described as the direction X orthogonal to the axial direction Z. The mass addition member 6 has an outer side surface 6c located outside in the radial direction X and an inner side surface 6d located inside in the radial direction X.
 質量付加部材6は、透光体カバー2と共に内部空間を構成するように設けられている。平面視における、透光体カバー2の外周縁に沿う方向を周回方向としたときに、質量付加部材6は、周回方向の全体にわたり、透光体カバー2に間接的に連結されている。なお、質量付加部材6の形状は円筒状には限定されず、例えば、角筒状などであってもよい。 The mass addition member 6 is provided so as to form an internal space together with the translucent body cover 2. When the direction along the outer peripheral edge of the translucent body cover 2 in the plan view is defined as the circumferential direction, the mass addition member 6 is indirectly connected to the translucent body cover 2 over the entire circumferential direction. The shape of the mass addition member 6 is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape.
 質量付加部材6はSUS420J2からなる。なお、質量付加部材6の材料は上記に限定されず、上記以外の金属または適宜のセラミックなどであってもよい。本実施形態のように、質量付加部材6が金属からなる場合には、質量付加部材6を圧電素子3の第2の電極として用いてもよい。この場合には、図1及び図2に示す、圧電素子3の第2の電極5bは設けられていなくともよい。 The mass addition member 6 is made of SUS420J2. The material of the mass adding member 6 is not limited to the above, and may be a metal other than the above or an appropriate ceramic. When the mass addition member 6 is made of metal as in the present embodiment, the mass addition member 6 may be used as the second electrode of the piezoelectric element 3. In this case, the second electrode 5b of the piezoelectric element 3 shown in FIGS. 1 and 2 may not be provided.
 上述したように、制御回路7は圧電素子3を共振状態において駆動する。なお、振動装置1は必ずしも制御回路7を有していなくともよく、外部からの信号により圧電素子3が駆動されるものであってもよい。 As described above, the control circuit 7 drives the piezoelectric element 3 in the resonance state. The vibration device 1 does not necessarily have to have the control circuit 7, and the piezoelectric element 3 may be driven by a signal from the outside.
 本実施形態の特徴は、質量付加部材6が、透光体カバー2と共に内部空間を構成するように、透光体カバー2に連結されていることにある。それによって、水滴などが付着する透光体カバー2を効率的に振動させることができる。これを、本実施形態と比較例とを比較することにより、以下において説明する。 The feature of this embodiment is that the mass addition member 6 is connected to the translucent body cover 2 so as to form an internal space together with the translucent body cover 2. As a result, it is possible to efficiently vibrate the translucent body cover 2 to which water drops and the like adhere. This will be described below by comparing the present embodiment with a comparative example.
 比較例は、質量付加部材6を有しない点において第1の実施形態と異なる。ここで、透光体カバー2の質量をM1とし、質量付加部材6及び圧電素子3の質量の合計をM2とする。質量比M2/M1がそれぞれ異なる、第1の実施形態の構成を有する複数の振動装置1を作製した。さらに、比較例の振動装置を作製した。上記複数の振動装置において、透光体カバー2の中央における変位の大きさを比較した。なお、変位の大きさの比較に際し、圧電素子3に印加する電圧を20Vの振幅の交流電圧とし、振動の周波数を振動装置1の共振周波数である60kHz付近とした。シミュレーションは、3次元モデルにて、有限要素法で実施した。 The comparative example differs from the first embodiment in that the mass addition member 6 is not provided. Here, the mass of the translucent body cover 2 is M1, and the total mass of the mass adding member 6 and the piezoelectric element 3 is M2. A plurality of vibration devices 1 having the configuration of the first embodiment having different mass ratios M2/M1 were produced. Further, a vibration device of a comparative example was manufactured. In the plurality of vibration devices, the magnitude of displacement at the center of the light-transmitting body cover 2 was compared. When comparing the magnitudes of the displacements, the voltage applied to the piezoelectric element 3 was an AC voltage with an amplitude of 20 V, and the vibration frequency was around 60 kHz, which is the resonance frequency of the vibration device 1. The simulation was performed by the finite element method using a three-dimensional model.
 図3は、第1の実施形態及び比較例においての、質量比M2/M1と、透光体カバー2の中央における変位の大きさとの関係を示す図である。なお、図3における変位比とは、比較例の透光体カバー2の中央における変位の大きさを基準とする比である。黒色の円形のプロットは第1の実施形態のそれぞれの結果を示し、白色のプロットは比較例の結果を示す。 FIG. 3 is a diagram showing the relationship between the mass ratio M2/M1 and the magnitude of displacement at the center of the translucent body cover 2 in the first embodiment and the comparative example. The displacement ratio in FIG. 3 is a ratio based on the magnitude of displacement at the center of the translucent body cover 2 of the comparative example. The black circle plots show the respective results of the first embodiment, and the white plots show the results of the comparative example.
 図3に示すように、第1の実施形態においては変位比が1よりも大きい。このように、第1の実施形態における透光体カバー2の変位が、比較例における透光体カバー2の変位よりも大きいことがわかる。さらに、第1の実施形態において、質量比M2/M1が0.9以上、1.9以下の場合には変位比が1.5以上となっており、変位が特に大きいことがわかる。このように、第1の実施形態においては、透光体カバー2を効率的に振動させることができる。 As shown in FIG. 3, the displacement ratio is larger than 1 in the first embodiment. Thus, it can be seen that the displacement of the translucent body cover 2 in the first embodiment is larger than the displacement of the translucent body cover 2 in the comparative example. Further, in the first embodiment, when the mass ratio M2/M1 is 0.9 or more and 1.9 or less, the displacement ratio is 1.5 or more, and it can be seen that the displacement is particularly large. As described above, in the first embodiment, the translucent body cover 2 can be efficiently vibrated.
 図4は、比較例の振動装置の振動変位図である。図5は、質量比M2/M1を1.7とした、第1の実施形態に係る振動装置の振動変位図である。図6は、質量比M2/M1を2.2とした、第1の実施形態に係る振動装置の振動変位図である。図4~図6においては、白色に近い程変位が大きいことを示す。他の振動変位図においても同様である。 FIG. 4 is a vibration displacement diagram of the vibration device of the comparative example. FIG. 5 is a vibration displacement diagram of the vibration device according to the first embodiment in which the mass ratio M2/M1 is 1.7. FIG. 6 is a vibration displacement diagram of the vibration device according to the first embodiment in which the mass ratio M2/M1 is 2.2. 4 to 6, it is shown that the displacement is larger as the color is closer to white. The same applies to other vibration displacement diagrams.
 図4に示すように、比較例においては透光体カバー2の底面2b側の変位が大きくなっており、中央における変位は小さくなっている。透光体カバー2の中央と底面2bとの間の部分Aが振動の節となっており、この振動の節を支点として底面2b側が振動している。このように、透光体カバー2において変位が大きい部分が分散されており、中央部の振動の効率が低くなっている。 As shown in FIG. 4, in the comparative example, the displacement on the bottom surface 2b side of the translucent body cover 2 is large, and the displacement at the center is small. A portion A between the center of the translucent body cover 2 and the bottom surface 2b serves as a vibration node, and the bottom surface 2b side vibrates with the vibration node serving as a fulcrum. As described above, in the light-transmitting body cover 2, the large displacement portions are dispersed, and the vibration efficiency of the central portion is low.
 これに対して、図5及び図6に示すように、第1の実施形態においては、透光体カバー2の底面2b側の振動が抑制されており、中央の変位が大きいことがわかる。第1の実施形態では、透光体カバー2の底面2b側に質量付加部材6が連結されている。このように、変位が大きい部分が分散することを抑制することができ、透光体カバー2の中央を集中的に振動させることができる。従って、透光体カバー2を効率的に振動させることができる。 On the other hand, as shown in FIGS. 5 and 6, in the first embodiment, it can be seen that the vibration on the bottom surface 2b side of the translucent body cover 2 is suppressed and the central displacement is large. In the first embodiment, the mass addition member 6 is connected to the bottom surface 2b side of the translucent body cover 2. As described above, it is possible to suppress the dispersion of the portion having a large displacement, and it is possible to intensively vibrate the center of the translucent body cover 2. Therefore, the translucent body cover 2 can be efficiently vibrated.
 なお、図6に示すように、質量付加部材6の質量が大きく、質量比M2/M1が2.2の場合には、振動装置1の振動の形態は、質量付加部材6がわずかに変位するものとなっている。これに対して、図5に示すように、質量比M2/M1が1.7の場合には、質量付加部材6の変位は非常に小さい。よって、透光体カバー2の中央をより一層集中して振動させることができる。 As shown in FIG. 6, when the mass of the mass addition member 6 is large and the mass ratio M2/M1 is 2.2, the vibration mode of the vibration device 1 is such that the mass addition member 6 is slightly displaced. It has become a thing. On the other hand, as shown in FIG. 5, when the mass ratio M2/M1 is 1.7, the displacement of the mass addition member 6 is very small. Therefore, the center of the translucent body cover 2 can be further concentrated and vibrated.
 質量比M2/M1は、0.9以上、1.9以下であることが好ましい。この場合には、図5に示した場合と同様に、透光体カバー2の中央をより一層集中して振動させることができ、透光体カバー2をより一層効率的に振動させることができる。 The mass ratio M2/M1 is preferably 0.9 or more and 1.9 or less. In this case, similarly to the case shown in FIG. 5, the center of the light-transmitting body cover 2 can be further concentrated and vibrated, and the light-transmitting body cover 2 can be vibrated more efficiently. ..
 ところで、圧電素子3の配置は、透光体カバー2と質量付加部材6との間には限定されない。図7に示す第1の実施形態の変形例においては、圧電素子3は透光体カバー2のフランジ部2c上に設けられている。より具体的には、底面2bに対向するフランジ部2cの第1の面2d上に圧電素子3が設けられている。なお、質量付加部材6は、透光体カバー2に直接的に連結されている。この場合においても、第1の実施形態と同様に、透光体カバー2を効率的に振動させることができる。 By the way, the arrangement of the piezoelectric element 3 is not limited between the translucent body cover 2 and the mass addition member 6. In the modification of the first embodiment shown in FIG. 7, the piezoelectric element 3 is provided on the flange portion 2c of the translucent body cover 2. More specifically, the piezoelectric element 3 is provided on the first surface 2d of the flange portion 2c that faces the bottom surface 2b. The mass addition member 6 is directly connected to the translucent body cover 2. Also in this case, the light-transmitting body cover 2 can be efficiently vibrated as in the first embodiment.
 図8は、第2の実施形態に係る振動装置の正面断面図である。 FIG. 8 is a front sectional view of the vibration device according to the second embodiment.
 本実施形態は、透光体カバー2、圧電素子3及び質量付加部材6を含む振動部を保持している保持部材18が設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の振動装置11は第1の実施形態の振動装置1と同様の構成を有する。 The present embodiment is different from the first embodiment in that a holding member 18 that holds a vibrating portion including the translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 is provided. Except for the above points, the vibration device 11 of the present embodiment has the same configuration as the vibration device 1 of the first embodiment.
 より具体的には、保持部材18は質量付加部材6を保持している。保持部材18は、質量付加部材6の外側面6cに接続されている接続部18aと、接続部18aに連ねられているバネ部18bと、バネ部18bに連ねられている底部18cとを有する。接続部18aは円環状である。バネ部18b及び底部18cは、軸方向Zに延びる円筒状の形状を有する。なお、保持部材18のそれぞれの部分の形状は上記に限定されない。接続部18aは、例えば、円環状以外の枠状の形状を有していてもよい。バネ部18b及び底部18cは、例えば、角筒状などの形状を有していてもよい。 More specifically, the holding member 18 holds the mass addition member 6. The holding member 18 has a connecting portion 18a connected to the outer side surface 6c of the mass adding member 6, a spring portion 18b connected to the connecting portion 18a, and a bottom portion 18c connected to the spring portion 18b. The connecting portion 18a has an annular shape. The spring portion 18b and the bottom portion 18c have a cylindrical shape extending in the axial direction Z. The shape of each part of the holding member 18 is not limited to the above. The connecting portion 18a may have, for example, a frame shape other than the annular shape. The spring portion 18b and the bottom portion 18c may have a shape such as a rectangular tube shape, for example.
 図8に示すように、振動装置11の保持部材18の軸方向Zに沿う断面は略L字形の形状を有する。より具体的には、保持部材18のそれぞれの部分が延びる方向に直交する方向に沿う厚みを保持部材18のそれぞれの部分の肉厚としたときに、保持部材18においては、底部18cの肉厚がバネ部18bの肉厚よりも厚い。それによって、バネ部18bは底部18cよりも変形し易い。 As shown in FIG. 8, the cross section of the holding member 18 of the vibration device 11 along the axial direction Z has a substantially L-shape. More specifically, when the thickness of each portion of the holding member 18 is set to be the thickness along the direction orthogonal to the direction in which the respective portions of the holding member 18 extend, in the holding member 18, the thickness of the bottom portion 18c. Is thicker than the wall thickness of the spring portion 18b. Thereby, the spring portion 18b is more easily deformed than the bottom portion 18c.
 なお、保持部材18の底部18cの肉厚は、バネ部18b側から径方向X内側に向かい厚くなっている。バネ部18b及び底部18cの外径は同じであり、バネ部18bの内径よりも底部18cの内径は小さい。それによって、振動装置11を小型にすることができる。もっとも、底部18cは、バネ部18b側から径方向X外側に向かい肉厚が厚くなっていてもよい。 Note that the thickness of the bottom portion 18c of the holding member 18 increases from the spring portion 18b side toward the inside in the radial direction X. The outer diameters of the spring portion 18b and the bottom portion 18c are the same, and the inner diameter of the bottom portion 18c is smaller than the inner diameter of the spring portion 18b. Thereby, the vibration device 11 can be downsized. However, the bottom portion 18c may be thicker in the radial direction X from the spring portion 18b side.
 本実施形態では、保持部材18はSUS420J2からなる。なお、保持部材18の材料は上記に限定されず、上記以外の金属または適宜のセラミックなどであってもよい。保持部材18は一体として形成されていてもよく、あるいは、それぞれの部分が別体として形成されていてもよい。例えば、底部18cの材料の剛性がバネ部18bの材料の剛性よりも高いことにより、バネ部18bが底部18cよりも変形し易くなっていてもよい。 In this embodiment, the holding member 18 is made of SUS420J2. The material of the holding member 18 is not limited to the above, and may be a metal other than the above or an appropriate ceramic. The holding member 18 may be integrally formed, or each part may be separately formed. For example, the rigidity of the material of the bottom portion 18c is higher than the rigidity of the material of the spring portion 18b, so that the spring portion 18b may be more easily deformed than the bottom portion 18c.
 ところで、本実施形態においては、保持部材18は、上記振動部の振動の節以外の部分に接続されている。これを、下記の図9及び図10を参照して示す。なお、図9及び図10に示す変位分布を求めるに際し、2次元の軸対称モデルによるシミュレーションを行った。該シミュレーションにおいて、圧電素子3に印加した電圧は20Vであり、振動の周波数を振動装置11の共振周波数である60kHz付近とした。 By the way, in the present embodiment, the holding member 18 is connected to a portion other than the vibration node of the vibrating portion. This is shown with reference to FIGS. 9 and 10 below. When obtaining the displacement distributions shown in FIGS. 9 and 10, simulation was performed using a two-dimensional axisymmetric model. In the simulation, the voltage applied to the piezoelectric element 3 was 20 V, and the frequency of vibration was set to about 60 kHz which is the resonance frequency of the vibration device 11.
 図9は、第2の実施形態における振動部の振動変位図である。図10は、第2の実施形態における振動部の質量付加部材においての、軸方向における位置と変位の大きさとの関係を示す図である。図9は、図8に示す断面の半分に相当する部分を示す。下記の図9以外の各振動変位図も、振動装置の軸方向に沿う断面の半分に相当する部分を示すことがある。図9及び図10中の位置Bは、質量付加部材の第1の開口端面の軸方向における位置を示し、位置Cは、第2の開口端面の軸方向における位置を示す。なお、位置Bは0mmであり、位置Cは4mmである。図10中の実線は変位の大きさを示し、破線は変位における径方向Xの成分の大きさを示し、一点鎖線は変位における軸方向の成分を示す。 FIG. 9 is a vibration displacement diagram of the vibrating section in the second embodiment. FIG. 10 is a diagram showing the relationship between the axial position and the magnitude of displacement in the mass adding member of the vibrating unit according to the second embodiment. FIG. 9 shows a portion corresponding to half of the cross section shown in FIG. Each vibration displacement diagram other than FIG. 9 below may show a portion corresponding to half of the cross section along the axial direction of the vibration device. Position B in FIGS. 9 and 10 indicates the axial position of the first opening end face of the mass addition member, and position C indicates the axial position of the second opening end face. The position B is 0 mm and the position C is 4 mm. The solid line in FIG. 10 indicates the magnitude of the displacement, the broken line indicates the magnitude of the radial component X in the displacement, and the alternate long and short dash line indicates the axial component in the displacement.
 図9及び図10に示すように、質量付加部材6においては、0.7μm~2μmの変位が生じている。なお、この変位は、透光体カバー2の変位の最大値の4%~12%程度である。質量付加部材6においては、変位の大きさが0である振動の節は存在しないことがわかる。本実施形態においては、図10中の二点鎖線で示す位置に保持部材18が接続されている。より具体的には、質量付加部材6の軸方向における位置が1mm以上、1.5mm以下の範囲内の部分に、保持部材18が接続されている。このように、保持部材18は、振動部における質量付加部材6の振動の節以外の部分に接続されている。もっとも、振動部の質量付加部材6などが振動の節を有する場合には、振動の節の部分に保持部材18が接続されていてもよい。本実施形態における振動部は、保持部材18を介して間接的に外部などに固定される。 As shown in FIGS. 9 and 10, the mass addition member 6 is displaced by 0.7 μm to 2 μm. This displacement is about 4% to 12% of the maximum value of the displacement of the translucent body cover 2. It can be seen that in the mass addition member 6, there is no vibration node having a displacement magnitude of 0. In the present embodiment, the holding member 18 is connected to the position shown by the chain double-dashed line in FIG. More specifically, the holding member 18 is connected to a portion where the position of the mass adding member 6 in the axial direction is 1 mm or more and 1.5 mm or less. In this way, the holding member 18 is connected to a portion other than the vibration node of the mass adding member 6 in the vibrating portion. However, when the mass adding member 6 of the vibrating portion has a vibration node, the holding member 18 may be connected to the vibration node portion. The vibrating section in the present embodiment is indirectly fixed to the outside or the like via the holding member 18.
 振動装置11は、第1の実施形態と同様に、透光体カバー2に連結された質量付加部材6を有する。加えて、振動部が外部などに固定された場合において、ダンピングを効果的に抑制することができる。従って、水滴などが付着する透光体カバー2をより一層効率的に振動させることができる。この詳細を以下において説明する。なお、第2の実施形態の第1の変形例に係る振動装置におけるダンピングの抑制の効果も併せて示す。第1の変形例の振動装置は、保持部材のバネ部及び底部の肉厚が同じである点以外においては、第2の実施形態の振動装置11と同様に構成されている。 The vibration device 11 has the mass addition member 6 connected to the translucent body cover 2 as in the first embodiment. In addition, damping can be effectively suppressed when the vibrating portion is fixed to the outside or the like. Therefore, it is possible to more efficiently vibrate the translucent body cover 2 to which water drops and the like adhere. The details will be described below. The effect of suppressing damping in the vibration device according to the first modification of the second embodiment is also shown. The vibrating device of the first modified example is configured similarly to the vibrating device 11 of the second embodiment except that the spring portion and the bottom portion of the holding member have the same thickness.
 下記の図11~図15に示す変位を求めるに際し、第2の実施形態及び第1の変形例の振動装置においては、質量付加部材の第1の開口端面から第2の開口端面側に1.25mm離れた部分に保持部材を接続した。 When obtaining the displacements shown in FIGS. 11 to 15 below, in the vibrating device of the second embodiment and the first modified example, 1. From the first opening end face of the mass adding member to the second opening end face side. The holding member was connected to the part 25 mm apart.
 図11は、第2の実施形態に係る振動装置の振動変位図である。図12は、第2の実施形態の第1の変形例に係る振動装置の振動変位図である。図11及び図12中の位置Dは、保持部材の接続部の軸方向における位置を示し、位置Eは、第2の開口端面の軸方向における位置を示す。図11及び図12以外の図面においても同様である。 FIG. 11 is a vibration displacement diagram of the vibration device according to the second embodiment. FIG. 12 is a vibration displacement diagram of the vibrating device according to the first modification of the second embodiment. Position D in FIGS. 11 and 12 indicates the axial position of the connecting portion of the holding member, and position E indicates the axial position of the second opening end face. The same applies to drawings other than FIGS. 11 and 12.
 図11に示すように、第2の実施形態では、保持部材18の底部18cにおいてはほぼ変位していないことがわかる。図12に示すように、第1の変形例における保持部材28Aの底部28cにおいても、変位が抑制されている。 As shown in FIG. 11, it can be seen that in the second embodiment, the bottom portion 18c of the holding member 18 is not substantially displaced. As shown in FIG. 12, the displacement is also suppressed in the bottom portion 28c of the holding member 28A in the first modified example.
 図13は、第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位の大きさとの関係を示す図である。図14は、第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位における径方向の成分の大きさとの関係を示す図である。図15は、第2の実施形態及び第1の変形例の保持部材においての、軸方向における位置と、変位における軸方向の成分の大きさとの関係を示す図である。なお、位置Dは0mmであり、位置Eは8mmである。軸方向における位置が5mm以上の部分が底部に相当する。図13~図15中の実線は第2の実施形態の結果を示し、破線は第1の変形例の結果を示す。 FIG. 13 is a diagram showing the relationship between the position in the axial direction and the magnitude of displacement in the holding members of the second embodiment and the first modification. FIG. 14 is a diagram showing the relationship between the position in the axial direction and the magnitude of the radial component in the displacement in the holding members of the second embodiment and the first modified example. FIG. 15 is a diagram showing the relationship between the position in the axial direction and the magnitude of the axial component in the displacement in the holding members of the second embodiment and the first modified example. The position D is 0 mm and the position E is 8 mm. A portion having a position of 5 mm or more in the axial direction corresponds to the bottom portion. 13 to 15, the solid line shows the result of the second embodiment, and the broken line shows the result of the first modification.
 図13に示すように、第2の実施形態及び第1の変形例において、位置Dが示す保持部材28Aの接続部18aの変位は1.6μm程度である。第1の変形例においては、接続部18aから底部28cに近づくほど、変位が小さくなっていることがわかる。軸方向Zにおける位置が5mm以上の部分である底部28cにおいては、変位は0.4μm以下程度となっている。このように、バネ部18bのバネ性により振動を吸収することによって、底部28cにおける変位を低減することができている。より具体的には、底部28cにおける変位を、接続部18aにおける変位と比較して75%程度低減することができている。 As shown in FIG. 13, in the second embodiment and the first modification, the displacement of the connecting portion 18a of the holding member 28A indicated by the position D is about 1.6 μm. In the first modified example, it can be seen that the displacement becomes smaller as it gets closer to the bottom portion 28c from the connection portion 18a. The displacement is about 0.4 μm or less at the bottom portion 28c where the position in the axial direction Z is 5 mm or more. In this way, by absorbing the vibration due to the elasticity of the spring portion 18b, the displacement of the bottom portion 28c can be reduced. More specifically, the displacement at the bottom portion 28c can be reduced by about 75% as compared with the displacement at the connection portion 18a.
 より詳細には、図14に示すように、第1の変形例においては、振動の径方向Xの成分は、バネ部18bのバネ性により吸収され、軸方向Xにおける6.5mmの位置付近においては0μmとなっていることがわかる。図15に示すように、第1の変形例においては、軸方向Zにおける位置が5mm以上である底部28cにおいては、変位の軸方向Zの成分は0.3μm程度となっている。 More specifically, as shown in FIG. 14, in the first modification, the radial component of the vibration is absorbed by the spring property of the spring portion 18b, and the vibrating component near the position of 6.5 mm in the axial direction X. It can be seen that is 0 μm. As shown in FIG. 15, in the first modified example, in the bottom portion 28c whose position in the axial direction Z is 5 mm or more, the component of the displacement in the axial direction Z is about 0.3 μm.
 なお、上記のバネ部18bによる振動の吸収とは、質量付加部材6から接続部18aを経て伝搬した振動の大部分をバネ部18bにおける振動とすることができることをいう。これにより、振動を底部28cまで漏洩し難くすることができる。 Note that the above-mentioned absorption of vibration by the spring portion 18b means that most of the vibration propagated from the mass adding member 6 via the connecting portion 18a can be the vibration in the spring portion 18b. Thereby, it is possible to make it difficult for the vibration to leak to the bottom portion 28c.
 一方で、第2の実施形態においては、図13に示すように、軸方向Zにおける位置が5mm以上である底部18cにおいて、変位は0.03μmまで抑制することができている。このように、質量付加部材6から接続部18aを経て伝搬した振動を98%程度低減することができている。より詳細には、図14及び図15に示すように、変位のX方向の成分及びZ方向の成分を両方とも0.02μmまで抑制することができている。第2の実施形態においては、第1の変形例と同様にバネ部18bのバネ性により振動を吸収することができ、さらに、底部18c自体が変形し難い。よって、保持部材18が振動の節以外の部分に接続されていても、保持部材18の底部18cへの振動漏洩を効果的に抑制することができる。従って、底部18cが外部などに固定された場合において、振動ダンピングの発生を抑制できる。 On the other hand, in the second embodiment, as shown in FIG. 13, the displacement can be suppressed to 0.03 μm at the bottom portion 18c whose position in the axial direction Z is 5 mm or more. In this way, the vibration propagated from the mass adding member 6 via the connecting portion 18a can be reduced by about 98%. More specifically, as shown in FIGS. 14 and 15, both the X-direction component and the Z-direction component of the displacement can be suppressed to 0.02 μm. In the second embodiment, vibration can be absorbed by the elasticity of the spring portion 18b as in the first modification, and the bottom portion 18c itself is less likely to be deformed. Therefore, even if the holding member 18 is connected to a portion other than the node of vibration, vibration leakage to the bottom portion 18c of the holding member 18 can be effectively suppressed. Therefore, when the bottom portion 18c is fixed to the outside or the like, it is possible to suppress the occurrence of vibration damping.
 振動装置11の保持部材18は、弾性定数が小さく変形し易いバネ部18bと、弾性定数が大きく変形し難い底部18cとを有する。それによって、保持部材18に質量付加部材6側から加えられたひずみエネルギーの大部分を、バネ部18bにおける弾性エネルギーに変換することができ、上記のように底部18cを変位し難くすることができる。以下において、保持部材18のバネ部18bと底部18cとにおいて弾性定数に差が設けられていることにより、ダンピングを効果的に抑制できることを、より詳細に説明する。 The holding member 18 of the vibration device 11 has a spring portion 18b having a small elastic constant and easily deformed, and a bottom portion 18c having a large elastic constant and hard to deform. Thereby, most of the strain energy applied to the holding member 18 from the side of the mass addition member 6 can be converted into elastic energy in the spring portion 18b, and the bottom portion 18c can be made difficult to displace as described above. .. Hereinafter, it will be described in more detail that damping can be effectively suppressed by providing a difference in elastic constant between the spring portion 18b and the bottom portion 18c of the holding member 18.
 保持部材18に外力が加えられたときの、バネ部18bの弾性エネルギーをE1とし、底部18cの弾性エネルギーをE2とする。弾性エネルギーE1は、バネ部18bの弾性定数をK、変位をxとしたときに、E1=(1/2)×K×x により表される。弾性エネルギーE2は、底部18cの弾性定数をK、変位をxとしたときに、E2=(1/2)×K×x により表される。図13~図15に示す変位を求めるに際し、保持部材18における弾性エネルギー比E1/E2は46としていた。 Let E1 be the elastic energy of the spring portion 18b and E2 be the elastic energy of the bottom portion 18c when an external force is applied to the holding member 18. Elastic energy E1 is the elastic constant K 1 of the spring portion 18b, the displacement when the x 1, represented by E1 = (1/2) × K 1 × x 1 2. Elastic energy E2 is the elastic constant of the bottom 18c K 2, a displacement when a x 2, represented by E2 = (1/2) × K 2 × x 2 2. When obtaining the displacements shown in FIGS. 13 to 15, the elastic energy ratio E1/E2 of the holding member 18 was set to 46.
 さらに、保持部材18の底部18cにおける弾性定数Kを変化させることによって弾性エネルギー比E1/E2を変化させた、第2の実施形態の構成を有する複数の振動装置11において、底部18cの変位を測定した。 Further, in the plurality of vibration devices 11 having the configuration of the second embodiment in which the elastic energy ratio E1/E2 is changed by changing the elastic constant K 2 at the bottom portion 18c of the holding member 18, the displacement of the bottom portion 18c is changed. It was measured.
 図16は、第2の実施形態及び第1の変形例の保持部材においての、弾性エネルギー比と保持部材における底部の変位との関係を示す図である。なお、図16における変位比とは、バネ部及び底部が一様に構成された上記第1の変形例における変位を基準とする比である。黒色の円形のプロットは第2の実施形態の結果を示し、白色のプロットは第1の変形例の結果を示す。 FIG. 16 is a diagram showing the relationship between the elastic energy ratio and the displacement of the bottom of the holding member in the holding members of the second embodiment and the first modification. Note that the displacement ratio in FIG. 16 is a ratio based on the displacement in the first modified example in which the spring portion and the bottom portion are uniformly configured. The black circle plot shows the result of the second embodiment, and the white plot shows the result of the first modification.
 図16に示すように、弾性エネルギー比E1/E2が2以上の場合には、第1の変形例を基準とした変位比が1未満となっており、底部18cにおける変位をより一層抑制できることがわかる。このように、弾性エネルギー比E1/E2は2以上であることが好ましい。それによって、底部18cが外部などに固定された場合において、振動のダンピングをより一層抑制することができる。弾性エネルギー比E1/E2は6以上であることがより好ましい。この場合には、変位比を約0.5以下とすることができる。よって、底部18cにおける変位をより一層効果的に抑制することができ、底部18cが外部などに固定された場合において、振動ダンピングの発生をより一層効果的に抑制することができる。 As shown in FIG. 16, when the elastic energy ratio E1/E2 is 2 or more, the displacement ratio based on the first modification is less than 1, and the displacement at the bottom portion 18c can be further suppressed. Recognize. Thus, the elastic energy ratio E1/E2 is preferably 2 or more. Thereby, when the bottom portion 18c is fixed to the outside or the like, vibration damping can be further suppressed. The elastic energy ratio E1/E2 is more preferably 6 or more. In this case, the displacement ratio can be about 0.5 or less. Therefore, the displacement of the bottom portion 18c can be suppressed more effectively, and the occurrence of vibration damping can be suppressed even more effectively when the bottom portion 18c is fixed to the outside or the like.
 図17は、第2の実施形態に係る振動装置を、保持部材の底部において外部に固定したときの振動変位図である。なお、図17に示す変位を求めるに際し、保持部材の底部を、機械Qが10であるPPS-FG40(ポリフェニレンサルファイド-ガラス40%)からなる部材に固定した。図17においては、該部材を外部Fとして示している。 FIG. 17 is a vibration displacement diagram when the vibration device according to the second embodiment is externally fixed at the bottom of the holding member. When obtaining the displacement shown in FIG. 17, the bottom of the holding member was fixed to a member made of PPS-FG40 (polyphenylene sulfide-glass 40%) having a machine Q of 10. In FIG. 17, the member is shown as the outer side F.
 図11及び図17を比較してわかるように、振動装置11が外部Fに固定されていない場合と、保持部材18の底部18cにおいて外部Fに固定されている場合とにおいて、振動の状態はほぼ変わらないことがわかる。より具体的には、振動装置11が外部Fに固定されていない場合においては、透光体カバー2の中央の変位は18.6μmであった。図17に示すように、振動装置11が外部Fに、底部18cにおいて固定されている状態においては、透光体カバー2の中央の変位は18.6μmであった。このように、第2の実施形態においては、ダンピングを効果的に抑制することができるため、外部に固定されたことによる透光体カバー2の振動の減衰が生じ難いことがわかる。従って、透光体カバー2をより一層効率的に振動させることができる。 As can be seen by comparing FIGS. 11 and 17, the vibration state is almost the same when the vibration device 11 is not fixed to the external F and when it is fixed to the external F at the bottom portion 18c of the holding member 18. You can see that it does not change. More specifically, when the vibration device 11 is not fixed to the outside F, the displacement of the center of the translucent body cover 2 was 18.6 μm. As shown in FIG. 17, when the vibrating device 11 was fixed to the outside F at the bottom portion 18c, the center displacement of the translucent body cover 2 was 18.6 μm. As described above, in the second embodiment, since damping can be effectively suppressed, it is understood that the vibration of the translucent body cover 2 is less likely to be attenuated due to being fixed to the outside. Therefore, the translucent body cover 2 can be vibrated more efficiently.
 以下において、保持部材の構成のみが第2の実施形態と異なる、第2の実施形態の第2~第7の変形例を示す。第2~第7の変形例においても、第2の実施形態と同様にダンピングを抑制することができ、透光体カバー2をより一層効率的に振動させることができる。なお、下記の図18~図23は、振動装置の軸方向Zに沿う軸対称の2次元断面図である。 In the following, second to seventh modified examples of the second embodiment will be shown in which only the configuration of the holding member is different from that of the second embodiment. Also in the second to seventh modifications, damping can be suppressed as in the second embodiment, and the translucent body cover 2 can be vibrated more efficiently. 18 to 23 described below are axially symmetric two-dimensional cross-sectional views along the axial direction Z of the vibration device.
 図18に示す第2の変形例においては、保持部材28Bは透光体カバー2に接続されている。より具体的には、保持部材28Bの接続部28aの軸方向Zに沿う断面は、略コの字形の形状を有する。接続部28aは、対向し合う第1の接続面28d及び第2の接続面28eを有する。接続部28aは、透光体カバー2のフランジ部2cを、第1の接続面28d及び第2の接続面28eにより挟むように設けられている。第1の接続面28dはフランジ部2cの第1の面2dに接続されている。第2の接続面28eは透光体カバー2の底面2bに接続されている。 In the second modification shown in FIG. 18, the holding member 28B is connected to the translucent body cover 2. More specifically, the cross section of the connecting portion 28a of the holding member 28B along the axial direction Z has a substantially U-shape. The connection portion 28a has a first connection surface 28d and a second connection surface 28e that face each other. The connection portion 28a is provided so as to sandwich the flange portion 2c of the translucent body cover 2 between the first connection surface 28d and the second connection surface 28e. The first connection surface 28d is connected to the first surface 2d of the flange portion 2c. The second connection surface 28e is connected to the bottom surface 2b of the translucent body cover 2.
 図19に示す第3の変形例においては、保持部材28Cの底部18cの肉厚は、バネ部18b側から径方向X外側に向かい厚くなっている。バネ部18b及び底部18cの内径は同じであり、バネ部18bの外径よりも底部18cの外径は大きい。 In the third modification shown in FIG. 19, the thickness of the bottom portion 18c of the holding member 28C increases from the spring portion 18b side toward the outside in the radial direction X. The inner diameters of the spring portion 18b and the bottom portion 18c are the same, and the outer diameter of the bottom portion 18c is larger than the outer diameter of the spring portion 18b.
 図20に示す第4の変形例においては、保持部材28Dの接続部18aは質量付加部材6の内側面6dに接続されている。なお、底部18cの肉厚は、第3の変形例と同様に、バネ部18b側から径方向X外側に向かい厚くなっている。 In the fourth modification shown in FIG. 20, the connecting portion 18a of the holding member 28D is connected to the inner side surface 6d of the mass adding member 6. The wall thickness of the bottom portion 18c increases from the spring portion 18b side toward the outside in the radial direction X, similarly to the third modification.
 図21に示す第5の変形例においては、保持部材28Eのバネ部28bの軸方向Zに沿う断面の形状はメアンダ状である。この場合には、バネ部28bのバネ性によってより一層振動を吸収することができ、質量付加部材6側からの振動が底部18cまでより一層漏洩し難い。 In the fifth modification shown in FIG. 21, the cross section of the spring portion 28b of the holding member 28E along the axial direction Z has a meandering shape. In this case, the spring property of the spring portion 28b can further absorb the vibration, and the vibration from the side of the mass addition member 6 is less likely to leak to the bottom portion 18c.
 図22に示す第6の変形例においては、保持部材28Fは径方向Xに延びている。保持部材28Fにおける径方向Xの最も内側に接続部18aが位置し、径方向Xの最も外側に底部18cが位置する。接続部18aと底部18cとの間にバネ部28bが位置する。バネ部28bの軸方向Zに沿う断面の形状は、第5の変形例と同様に、メアンダ状である。保持部材28Fは、軸方向Zにおいて、質量付加部材6の内側に位置する。それによって、振動装置の軸方向Zに沿う寸法を小さくすることができる。 In the sixth modification shown in FIG. 22, the holding member 28F extends in the radial direction X. The connecting portion 18a is located on the innermost side in the radial direction X of the holding member 28F, and the bottom portion 18c is located on the outermost side in the radial direction X. The spring portion 28b is located between the connecting portion 18a and the bottom portion 18c. The shape of the cross section of the spring portion 28b along the axial direction Z is a meandering shape, as in the fifth modification. The holding member 28F is located inside the mass addition member 6 in the axial direction Z. As a result, the size of the vibration device along the axial direction Z can be reduced.
 図23に示す第7の変形例においては、保持部材28Gにおける接続部18a及びバネ部18bの材料と、底部18cの材料とが異なる。より具体的には、底部18cの材料のバネ定数がバネ部18bの材料のバネ定数よりも高い。 In the seventh modification shown in FIG. 23, the material of the connecting portion 18a and the spring portion 18b of the holding member 28G and the material of the bottom portion 18c are different. More specifically, the spring constant of the material of the bottom portion 18c is higher than the spring constant of the material of the spring portion 18b.
 図24は、第3の実施形態に係るイメージングデバイスの斜視図である。図25は、第3の実施形態に係るイメージングデバイスの正面断面図である。 FIG. 24 is a perspective view of an imaging device according to the third embodiment. FIG. 25 is a front sectional view of the imaging device according to the third embodiment.
 図25に示すように、光学検出装置としてのイメージングデバイス30は、振動装置31と、振動装置31の内部空間内に配置された撮像素子30Aとを有する。なお、本実施形態における振動装置31は、ケース部材32を有する点において第2の実施形態の振動装置11と異なる。上記の点以外においては、本実施形態の振動装置31は第2の実施形態の振動装置11と同様の構成を有する。 As shown in FIG. 25, the imaging device 30 as an optical detection device includes a vibrating device 31 and an image pickup element 30A arranged in the internal space of the vibrating device 31. The vibrating device 31 according to the present embodiment differs from the vibrating device 11 according to the second embodiment in that the vibrating device 31 includes the case member 32. Except for the points described above, the vibration device 31 of the present embodiment has the same configuration as the vibration device 11 of the second embodiment.
 図24に示すように、ケース部材32は、略円筒状の第1のケース部33と、第1のケース部33に接続されている略角筒状の第2のケース部34と、第2のケース部34に接続されている板状の第3のケース部35とを有する。ケース部材32の第3のケース部35には、外部接続部材36が接続されている。 As shown in FIG. 24, the case member 32 includes a first case part 33 having a substantially cylindrical shape, a second case part 34 having a substantially rectangular tube shape connected to the first case part 33, and a second case part 34. And a plate-shaped third case portion 35 connected to the case portion 34. An external connection member 36 is connected to the third case portion 35 of the case member 32.
 図25に示すように、第2のケース部34は、第1のケース部33に接続されている部分付近に位置しており、軸方向Zに直行する方向X内側に延びている固定部34aを有する。固定部34aに振動装置31の保持部材18の底部18cが固定されている。本実施形態においては、ケース部材32は、透光体カバー2、圧電素子3及び質量付加部材6を含む振動部を、保持部材18を介して間接的に保持している。なお、振動装置31が保持部材18を有しない場合などにおいて、ケース部材32が振動部を直接的に保持する構成であってもよい。 As shown in FIG. 25, the second case portion 34 is located near the portion connected to the first case portion 33 and extends inward in the direction X orthogonal to the axial direction Z. Have. The bottom portion 18c of the holding member 18 of the vibration device 31 is fixed to the fixing portion 34a. In the present embodiment, the case member 32 indirectly holds the vibrating portion including the translucent body cover 2, the piezoelectric element 3, and the mass addition member 6 via the holding member 18. When the vibrating device 31 does not have the holding member 18, the case member 32 may directly hold the vibrating portion.
 第1のケース部33は、開口部33cを含む天板部33aを有する。天板部33aは、透光体カバー2のフランジ部2cに対向するように配置されている。軸方向Z側から見て、天板部33aとフランジ部2cとは重なっている。それによって、水滴などが内部に侵入し難い。なお、天板部33aとフランジ部2cとは接していない。これにより、透光体カバー2の振動が阻害され難い。第1のケース部33の開口部33cから、透光体カバー2におけるドーム状の部分の一部が外側に突出している。 The first case portion 33 has a top plate portion 33a including an opening 33c. The top plate portion 33a is arranged so as to face the flange portion 2c of the translucent body cover 2. When viewed from the axial Z side, the top plate portion 33a and the flange portion 2c overlap each other. As a result, it is difficult for water drops to enter the inside. The top plate portion 33a and the flange portion 2c are not in contact with each other. As a result, the vibration of the translucent body cover 2 is unlikely to be disturbed. A part of the dome-shaped portion of the translucent body cover 2 projects outward from the opening 33c of the first case portion 33.
 第3のケース部35は、第2のケース部34の開口部を封止するように配置されている。ケース部材32は樹脂からなる。なお、ケース部材32の構成及び材料は上記に限定されず、振動装置31における他の部分と共に内部空間を構成し、該内部空間内に撮像素子30Aを配置することができるものであればよい。 The third case portion 35 is arranged so as to seal the opening of the second case portion 34. The case member 32 is made of resin. The configuration and material of the case member 32 are not limited to the above, and may be any as long as they can form an internal space together with other portions of the vibrating device 31 and can arrange the image pickup device 30A in the internal space.
 ケース部材32の内部空間内には、対向し合う第1の回路基板37a及び第2の回路基板37bが配置されている。第1の回路基板37a及び第2の回路基板37bは接続配線37cにより接続されている。第1の回路基板37aは、撮像素子30Aに接続されている。第1の回路基板37aまたは第2の回路基板37bは、撮像素子30Aを駆動する回路を含む。第1の回路基板37aまたは第2の回路基板37bは、圧電素子3を共振状態において駆動する制御回路7を含んでいてもよい。 The first circuit board 37a and the second circuit board 37b facing each other are arranged in the internal space of the case member 32. The first circuit board 37a and the second circuit board 37b are connected by a connection wiring 37c. The first circuit board 37a is connected to the image sensor 30A. The first circuit board 37a or the second circuit board 37b includes a circuit that drives the imaging element 30A. The first circuit board 37a or the second circuit board 37b may include a control circuit 7 that drives the piezoelectric element 3 in a resonance state.
 外部接続部材36から、ケース部材32の内部空間内に配線38が延びている。配線38は、第3のケース部35及び第2の回路基板37bを貫通している。なお、配線38は、第2の回路基板37bに電気的に接続されている。これにより、撮像素子30A、第1の回路基板37a及び第2の回路基板37bは外部に電気的に接続される。 The wiring 38 extends from the external connection member 36 into the internal space of the case member 32. The wiring 38 penetrates through the third case portion 35 and the second circuit board 37b. The wiring 38 is electrically connected to the second circuit board 37b. As a result, the image pickup device 30A, the first circuit board 37a, and the second circuit board 37b are electrically connected to the outside.
 撮像素子30Aとしては、例えば、可視領域から遠赤外領域のいずれかの波長の光を受光する、CMOS、CCD、ボロメーターやサーモパイルなどを挙げることができる。イメージングデバイス30としては、例えば、カメラ、RadarやLIDARデバイスなどを挙げることができる。 The image pickup device 30A can be, for example, a CMOS, a CCD, a bolometer, a thermopile, or the like that receives light of any wavelength in the visible region to the far infrared region. Examples of the imaging device 30 include a camera, a Radar device, a LIDAR device, and the like.
 なお、振動装置31の内部空間内には、撮像素子30A以外の、エネルギー線を光学的に検出する光学検出素子が配置されていてもよい。検出するエネルギー線としては、例えば、電磁波や赤外線などの活性エネルギー線であってもよい。光学検出素子の検出領域は、透光体カバー2に含まれる。図24及び図25に示すイメージングデバイス30においては、検出領域としての、撮像素子30Aの視野が透光体カバー2に含まれる。 Note that an optical detection element that optically detects energy rays other than the image pickup element 30A may be arranged in the internal space of the vibration device 31. The energy rays to be detected may be active energy rays such as electromagnetic waves and infrared rays. The detection region of the optical detection element is included in the translucent body cover 2. In the imaging device 30 shown in FIGS. 24 and 25, the light-transmitting body cover 2 includes the field of view of the image sensor 30A as a detection region.
 本実施形態の振動装置31は、第2の実施形態と同様の振動部及び保持部材18を有する。さらに、図17に示した場合と同様に、保持部材18の底部18cがケース部材32の固定部34aに固定されており、振動のダンピングが生じ難い。イメージングデバイス30は、この振動装置31を有するため、水滴などが付着する透光体カバー2を効率的に振動させることができる。 The vibration device 31 of the present embodiment has the same vibrating section and holding member 18 as in the second embodiment. Further, as in the case shown in FIG. 17, the bottom portion 18c of the holding member 18 is fixed to the fixing portion 34a of the case member 32, and vibration damping is unlikely to occur. Since the imaging device 30 includes the vibrating device 31, it is possible to efficiently vibrate the translucent body cover 2 to which water droplets and the like adhere.
1…振動装置
2…透光体カバー
2b…底面
2c…フランジ部
2d…第1の面
3…圧電素子
4…圧電体
5a,5b…第1,第2の電極
6…質量付加部材
6a,6b…第1,第2の開口端面
6c…外側面
6d…内側面
7…制御回路
11…振動装置
18…保持部材
18a…接続部
18b…バネ部
18c…底部
28A~28G…保持部材
28a…接続部
28b…バネ部
28c…底部
28d,28e…第1,第2の接続面
30…イメージングデバイス
30A…撮像素子
31…振動装置
32…ケース部材
33…第1のケース部
33a…天板部
33c…開口部
34…第2のケース部
34a…固定部
35…第3のケース部
36…外部接続部材
37a,37b…第1,第2の回路基板
37c…接続配線
38…配線
DESCRIPTION OF SYMBOLS 1... Vibration device 2... Translucent body cover 2b... Bottom surface 2c... Flange part 2d... 1st surface 3... Piezoelectric element 4... Piezoelectric bodies 5a, 5b... 1st, 2nd electrode 6... Mass addition members 6a, 6b ...First and second opening end surfaces 6c...outer surface 6d...inner surface 7...control circuit 11...vibration device 18...holding member 18a...connecting portion 18b...spring portion 18c...bottom portions 28A to 28G...holding member 28a...connecting portion 28b... Spring part 28c... Bottom parts 28d, 28e... First and second connection surfaces 30... Imaging device 30A... Imaging element 31... Vibration device 32... Case member 33... First case part 33a... Top plate part 33c... Opening Part 34... Second case part 34a... Fixing part 35... Third case part 36... External connection members 37a, 37b... First and second circuit boards 37c... Connection wiring 38... Wiring

Claims (16)

  1.  透光体カバーと、
     前記透光体カバーに直接的または間接的に連結されており、前記透光体カバーと共に内部空間を構成するように設けられている質量付加部材と、
     前記透光体カバーを振動させる圧電素子と、
    を備える、振動装置。
    A translucent cover,
    A mass addition member that is directly or indirectly connected to the translucent body cover and that is provided so as to form an internal space together with the translucent body cover;
    A piezoelectric element for vibrating the light-transmitting body cover;
    A vibrating device.
  2.  前記質量付加部材が筒状の形状を有し、
     平面視における、前記透光体カバーの外周縁に沿う方向の全体にわたり、前記透光体カバーに直接的または間接的に前記質量付加部材が連結されている、請求項1に記載の振動装置。
    The mass addition member has a cylindrical shape,
    The vibrating device according to claim 1, wherein the mass addition member is directly or indirectly coupled to the translucent body cover over the entire direction along the outer peripheral edge of the translucent body cover in a plan view.
  3.  前記透光体カバーが底面を有し、前記透光体カバーの前記底面側に前記圧電素子及び前記質量付加部材が配置されており、
     前記透光体カバーの質量をM1とし、前記質量付加部材及び前記圧電素子の質量の合計をM2としたときに、質量比M2/M1が0.9以上、1.9以下である、請求項1または2に記載の振動装置。
    The translucent body cover has a bottom surface, the piezoelectric element and the mass addition member is disposed on the bottom surface side of the translucent body cover,
    The mass ratio M2/M1 is 0.9 or more and 1.9 or less, where M1 is the mass of the translucent body cover and M2 is the total mass of the mass adding member and the piezoelectric element. The vibrating device according to 1 or 2.
  4.  前記透光体カバーの形状がドーム状である、請求項1~3のいずれか1項に記載の振動装置。 The vibrating device according to any one of claims 1 to 3, wherein the translucent body cover has a dome shape.
  5.  前記透光体カバーがフランジ部を有する、請求項1~4のいずれか1項に記載の振動装置。 The vibration device according to any one of claims 1 to 4, wherein the translucent body cover has a flange portion.
  6.  前記圧電素子が前記透光体カバーと前記質量付加部材との間に設けられている、請求項1~5のいずれか1項に記載の振動装置。 The vibration device according to any one of claims 1 to 5, wherein the piezoelectric element is provided between the translucent body cover and the mass addition member.
  7.  前記透光体カバー、前記圧電素子及び前記質量付加部材を含む振動部を保持している保持部材をさらに備え、
     前記保持部材が、前記振動部に接続されている接続部と、底部と、前記接続部及び前記底部の間に位置しているバネ部と、を有する、請求項1~6のいずれか1項に記載の振動装置。
    Further comprising a holding member holding a vibrating portion including the light-transmitting body cover, the piezoelectric element, and the mass addition member,
    7. The holding member includes a connecting portion connected to the vibrating portion, a bottom portion, and a spring portion located between the connecting portion and the bottom portion. The vibration device according to.
  8.  前記保持部材において、前記バネ部が前記底部よりも変形し易い、請求項7に記載の振動装置。 The vibration device according to claim 7, wherein in the holding member, the spring portion is more easily deformed than the bottom portion.
  9.  前記保持部材が、前記振動部の振動の節以外の部分に接続されている、請求項7または8に記載の振動装置。 The vibrating device according to claim 7 or 8, wherein the holding member is connected to a portion other than a vibration node of the vibrating portion.
  10.  前記保持部材に外力が加えられたときの、前記バネ部の弾性エネルギーをE1とし、前記底部の弾性エネルギーをE2としたときに、弾性エネルギー比E1/E2が2以上である、請求項8または9に記載の振動装置。 The elastic energy ratio E1/E2 is 2 or more, where E1 is the elastic energy of the spring portion and E2 is the elastic energy of the bottom portion when an external force is applied to the holding member. 9. The vibration device according to item 9.
  11.  前記保持部材のそれぞれの部分が延びる方向に直交する方向に沿う厚みを前記保持部材のそれぞれの部分の肉厚としたときに、前記保持部材において、前記底部の肉厚が前記バネ部の肉厚よりも厚い、請求項8~10のいずれか1項に記載の振動装置。 When the thickness along the direction orthogonal to the direction in which each of the holding members extends is the wall thickness of each of the holding members, in the holding member, the thickness of the bottom portion is the thickness of the spring portion. The vibrating device according to any one of claims 8 to 10, which is thicker than the vibrating device.
  12.  前記透光体カバー、前記圧電素子及び前記質量付加部材を含む振動部を、直接的にまたは間接的に保持しているケース部材をさらに備える、請求項1~11のいずれか1項に記載の振動装置。 12. The case member according to claim 1, further comprising a case member that directly or indirectly holds a vibrating portion including the light-transmitting body cover, the piezoelectric element, and the mass addition member. Vibration device.
  13.  前記振動部を、前記保持部材を介して間接的に保持しているケース部材をさらに備える、請求項7~11のいずれか1項に記載の振動装置。 The vibrating device according to any one of claims 7 to 11, further comprising a case member that indirectly holds the vibrating portion via the holding member.
  14.  前記圧電素子を共振状態において駆動する制御回路が、前記圧電素子に電気的に接続されている、請求項1~13のいずれか1項に記載の振動装置。 The vibration device according to any one of claims 1 to 13, wherein a control circuit that drives the piezoelectric element in a resonance state is electrically connected to the piezoelectric element.
  15.  請求項1~14のいずれか1項に記載の振動装置と、
     前記透光体カバーに検出領域が含まれるように配置されている光学検出素子と、
    を備える、光学検出装置。
    A vibration device according to any one of claims 1 to 14,
    An optical detection element arranged so that the translucent body cover includes a detection region,
    An optical detection device comprising:
  16.  前記光学検出素子が撮像素子であり、前記検出領域が視野である、請求項15に記載の光学検出装置。 The optical detection device according to claim 15, wherein the optical detection element is an imaging element, and the detection region is a visual field.
PCT/JP2019/045250 2018-12-28 2019-11-19 Vibration device and optical detection device WO2020137262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-246749 2018-12-28
JP2018246749 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137262A1 true WO2020137262A1 (en) 2020-07-02

Family

ID=71126568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045250 WO2020137262A1 (en) 2018-12-28 2019-11-19 Vibration device and optical detection device

Country Status (1)

Country Link
WO (1) WO2020137262A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140967A1 (en) * 2011-04-11 2012-10-18 株式会社村田製作所 Actuator-support structure and pump device
WO2017110563A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Vibration device, method for driving same, and camera
WO2017149933A1 (en) * 2016-03-03 2017-09-08 株式会社村田製作所 Vibrating device, method for driving same, and camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140967A1 (en) * 2011-04-11 2012-10-18 株式会社村田製作所 Actuator-support structure and pump device
WO2017110563A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Vibration device, method for driving same, and camera
WO2017149933A1 (en) * 2016-03-03 2017-09-08 株式会社村田製作所 Vibrating device, method for driving same, and camera

Similar Documents

Publication Publication Date Title
CN111512623B (en) Vibration device and optical detection device
US11511323B2 (en) Vibration device and optical detection device
CN108474998B (en) Vibration device, driving method thereof, and camera
CN109076152B (en) Vibration device and imaging device
WO2021038942A1 (en) Vibration device and optical detection device
WO2021100227A1 (en) Vibration device, and imaging unit provided with vibration device
WO2020003573A1 (en) Vibration device and optical detection device
WO2018198417A1 (en) Vibration device
CN112004614B (en) Vibration device
JP7111258B2 (en) Vibration device and vibration control method
CN112004613B (en) Vibration device and optical detection device
CN111819833B (en) Vibration device and driving device
JP2010122412A (en) Optical reflection element unit
JP7099633B2 (en) Vibration device
WO2020137262A1 (en) Vibration device and optical detection device
CN112703063B (en) Vibration device and optical detection device
WO2019225042A1 (en) Oscillation device and optical detection device
WO2023100399A1 (en) Optical module and optical device
WO2023127197A1 (en) Vibration device and image capturing device
WO2024084728A1 (en) Optical device and imaging unit provided with optical device
WO2023021812A1 (en) Housing and sensor device
WO2023100397A1 (en) Optical module and optical device
CN118339514A (en) Optical module and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP