WO2020137134A1 - 作業車両用の衝突回避システム - Google Patents

作業車両用の衝突回避システム Download PDF

Info

Publication number
WO2020137134A1
WO2020137134A1 PCT/JP2019/042279 JP2019042279W WO2020137134A1 WO 2020137134 A1 WO2020137134 A1 WO 2020137134A1 JP 2019042279 W JP2019042279 W JP 2019042279W WO 2020137134 A1 WO2020137134 A1 WO 2020137134A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
collision avoidance
value
control unit
distance
Prior art date
Application number
PCT/JP2019/042279
Other languages
English (en)
French (fr)
Inventor
卓也 岩瀬
横山 和寿
士郎 ▲杉▼田
慎也 西別府
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2020137134A1 publication Critical patent/WO2020137134A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a collision avoidance system for a working vehicle such as a tractor or a riding mower, and an unmanned working vehicle such as an unmanned mower.
  • a laser scanner (rider) is used as an obstacle sensor that detects obstacles that hinder driving, and obstacle detection processing is performed when the obstacle sensor detects an obstacle.
  • Section determines processing contents such as slowing down and stopping of the vehicle body based on the obstacle detection information, and based on the determined processing contents, the work traveling control unit etc. gives a control signal to the vehicle traveling equipment etc.
  • a device configured to control the traveling of the vehicle (see Patent Document 1, for example).
  • Obstacle sensors such as laser scanners are used when dust or dust rises as a floating object due to the work while the work vehicle is automatically traveling, or when the sensor surface becomes dirty due to adhesion of mud, etc.
  • the floating substance or dirt may be erroneously detected as an obstacle in a short distance. If such an erroneous detection occurs, the work traveling control unit may prevent the collision with the obstacles in the short distance in order to avoid the collision with the obstacles even if there is no obstacle that hinders the traveling of the work vehicle.
  • the work vehicle is suddenly stopped based on the obstacle detection information from the object sensor. As a result, the work efficiency is lowered when the work vehicle is automatically driven.
  • the main problem of the present invention is to prevent the work efficiency from being lowered due to the collision avoidance caused by the erroneous detection of the obstacle sensor.
  • a first characteristic configuration of the present invention is a collision avoidance system for a work vehicle, Based on the measurement light emitted from the vehicle body toward the range-finding point group existing in a predetermined measurement range and the reflected light of the measurement light, a measuring unit that measures at least a large number of distance values for each range-finding point, An obstacle determination unit that determines the presence or absence of an obstacle based on the measurement information from the measurement unit that includes the multiple distance values, A collision avoidance control unit that avoids a collision with the obstacle based on information about the obstacle from the obstacle determination unit, The obstacle determination unit excludes from the presence/absence determination of the obstacle as an invalid value a distance value that meets a predetermined invalid condition among the plurality of distance values, The collision avoidance control unit determines whether or not the presence of an obstacle is detected by the obstacle determination unit, and the plurality of distance values related to the obstacle included in the plurality of distance values It is determined whether or not an invalid value has occurred, and when the invalid value occurs in a plurality of distance values related to the obstacle in
  • the characteristics of suspended matter such as dust and fog that are present at a short distance but the reflection intensity is very weak, and the characteristics of dirt on the measuring unit that are present at a close distance are considered.
  • the distance from the measurement unit and the reflection intensity according to those characteristics as a predetermined invalid condition, the short distance related to floating objects and dirt on the measurement unit included in many distance values from the measurement unit. It is possible to exclude the distance value of the shortest distance from the presence/absence judgment of the obstacle as an invalid value.
  • the floating matter occurs in the measuring range of the measuring section or when the measuring section becomes dirty, the floating matter or the measuring section becomes dirty when the work vehicle travels at the obstacle determining section.
  • the collision avoidance control unit determines that the invalid value is the invalid value of the distance value corresponding to the hidden part in the plurality of distance values regarding the obstacle obtained at that time. Other distance values at the present time except for will be the distance values to the effective obstacle.
  • all the distance values relating to the obstacle obtained at that time are invalid values.
  • the past distance value obtained immediately before the invalid value is set as the distance value to the valid obstacle.
  • the collision avoidance control unit can calculate the relative speed with the obstacle from the distance value with the effective obstacle, and can avoid the collision with the obstacle based on the calculated relative speed. ..
  • it is possible to prevent the work vehicle from colliding with the obstacle while preventing the work efficiency from being reduced by the collision avoidance control unit avoiding the collision with respect to the obstacle erroneously detected by the obstacle determination unit. it can.
  • the second characteristic configuration of the present invention is The collision avoidance control unit determines whether the invalid value is the shortest distance value to the obstacle, and if the invalid value is not the shortest distance value, collides with the obstacle based on the shortest distance value. There is a point to avoid.
  • the collision avoidance control unit can calculate the relative speed with the obstacle from the shortest distance value with the obstacle, and avoid the collision with the obstacle based on the calculated relative speed. You can As a result, in order to avoid the possibility that the obstacle determination unit erroneously detects a floating substance or dirt on the measurement unit as an obstacle, in the case where some of the distance values regarding the obstacle become invalid values. Also, it is possible to preferably avoid the risk that the work vehicle collides with an obstacle.
  • the third characteristic configuration of the present invention is The collision avoidance control unit determines whether or not the invalid value is the shortest distance value with the obstacle, and if the invalid value is the shortest distance value, with the effective obstacle other than the shortest distance value. The point is to avoid a collision with the obstacle based on the shortest distance value calculated from the distance value.
  • the collision avoidance control unit sets the shortest distance value to an invalid value. It is possible to calculate the shortest distance value to the obstacle at the present time based on the relationship between the shortest distance value and the other distance value relating to the obstacle obtained previously and the distance value to the obstacle currently effective. it can. Then, the relative speed with the obstacle can be calculated from the calculated shortest distance value, and the collision with the obstacle can be avoided based on the calculated relative speed.
  • the work vehicle is obstructed in order to avoid the obstacle determination unit from erroneously detecting a floating substance or dirt on the measurement unit as an obstacle. It is possible to avoid the risk of collision with an object.
  • the fourth characteristic configuration of the present invention is The collision avoidance control unit, in a state where the presence of the obstacle is detected by the obstacle determination unit, when all of the plurality of distance values regarding the obstacle become the invalid value, immediately before that The point is to avoid collision with the obstacle based on the distance value to the effective obstacle.
  • the collision avoidance control unit sets all to invalid values.
  • the relative speed to the obstacle can be calculated from the distance value to the effective obstacle obtained immediately before, and the collision with the obstacle can be avoided based on the calculated relative speed.
  • a fifth characteristic configuration of the present invention is The collision avoidance control unit, in a state where the presence of the obstacle is not detected by the obstacle determination unit, the ratio of the invalid value in the obstacle detection target range of the measurement range exceeds a limit value. When the limit value excess state continues for a certain period of time or more, the collision with the obstacle is avoided based on the vehicle speed detected by the vehicle speed sensor.
  • the collision avoidance control unit calculates the relative speed with the virtual obstacle from the vehicle speed detected by the vehicle speed sensor, and avoids the collision with the obstacle based on the calculated relative speed.
  • Side view of tractor showing measurement range of each measurement unit
  • Plan view of the tractor showing the measurement range of each measurement unit Diagram showing an example of a target route for automatic driving
  • Block diagram showing a schematic configuration of an automatic traveling system for a work vehicle
  • Block diagram showing a schematic configuration of a collision avoidance system for work vehicles
  • Flow chart of obstacle judgment control Explanatory drawing of invalid condition for distance value of distance measuring point concerning dirt and floating matter measured by measuring unit
  • the figure which shows an example of the distance image in the state where an invalid value is all the some distance value regarding an obstacle.
  • the collision avoidance system for a work vehicle according to the present invention is a work vehicle other than a tractor, such as a riding mower, a rice transplanter, a combine, a transport vehicle, a snowplow, a wheel loader, and an unmanned mower. It can be applied to unmanned work vehicles such as.
  • the tractor 1 exemplified in the present embodiment is connected to a rear part thereof via a three-point link mechanism 2 so that a rotary cultivating device 3, which is an example of a working device, can move up and down and roll. Has been done.
  • the tractor 1 has a rotary tillage specification.
  • the tractor 1 can automatically travel in the field A shown in FIG. 4, which is an example of the work site, by using the automatic travel system for the work vehicle.
  • various work devices such as a plow, a disc harrow, a cultivator, a subsoiler, a seeding device, a spraying device, and a mowing device can be connected to the rear part of the tractor 1.
  • the automatic traveling system includes an automatic traveling unit 4 mounted on the tractor 1 and a mobile communication terminal that is an example of a wireless communication device that is set to communicate with the automatic traveling unit 4 by wireless communication. 5 and are included.
  • the mobile communication terminal 5 is provided with a multi-touch display device (for example, a liquid crystal panel) 50 that enables various information displays and input operations regarding automatic driving.
  • the mobile communication terminal 5 may be a tablet-type personal computer, a smartphone, or the like.
  • wireless LAN Local Area Network
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the tractor 1 includes a cabin 13 forming left and right drivable and steerable front wheels 10, drivable left and right rear wheels 11, and a riding-type driving unit 12.
  • An electronically controlled diesel engine (hereinafter referred to as engine) 14 having a common rail system, a bonnet 15 for covering the engine 14, etc., a transmission unit 16 for changing power from the engine 14, and a fully hydraulic system for steering the left and right front wheels 10.
  • Vehicle including an elevating and lowering drive unit 20, an electrohydraulic rolling unit 21 for driving the rotary tiller 3 in a roll direction, various sensors and switches for detecting various setting states of the tractor 1 and operating states of various parts, etc.
  • the state detection device 22 and an in-vehicle control unit 23 having various control units are provided.
  • the engine 14 may be an electronically controlled gasoline engine having an electronic governor.
  • the power steering unit 17 may be an electric type having an electric motor for steering.
  • the driving unit 12 includes a steering wheel 25 for manual steering, a seat 26 for passengers, and a multi-touch liquid crystal monitor that enables various information displays and input operations. And 27 are provided. Although illustration is omitted, the operation unit 12 is provided with operation levers such as an accelerator lever and a shift lever, and operation pedals such as an accelerator pedal and a clutch pedal.
  • the transmission unit 16 includes an electronically controlled continuously variable transmission that shifts the power from the engine 14, and an electronic device that switches the power after shifting by the continuously variable transmission between forward and reverse.
  • a hydraulic control type forward/reverse switching device, etc. are included.
  • the continuously variable transmission there is an I-HMT (Integrated Hydro-static Mechanical Transmission) which is an example of a hydraulic mechanical continuously variable transmission having higher transmission efficiency than a hydrostatic continuously variable transmission (HST).
  • HST hydrostatic continuously variable transmission
  • the forward/reverse switching device includes a hydraulic clutch for disengaging the forward power, a hydraulic clutch for disengaging the reverse power, and an electromagnetic valve for controlling the flow of oil to them.
  • the continuously variable transmission is, instead of the I-HMT, an HMT (Hydraulic Mechanical Transmission), a hydrostatic continuously variable transmission, or a belt type continuously variable transmission, which is an example of a hydraulic mechanical continuously variable transmission.
  • Etc. may be adopted.
  • the transmission unit 16 includes, instead of the continuously variable transmission, an electro-hydraulic control type stepped transmission having a plurality of hydraulic clutches for shifting and a plurality of electromagnetic valves for controlling the flow of oil to them. It may be.
  • the brake unit 18 operates the left and right brakes that individually brake the left and right rear wheels 11, and operates the left and right brakes in conjunction with the depression operation of the left and right brake pedals provided in the driving unit 12.
  • the foot brake system, the parking brake system that operates the left and right brakes in conjunction with the operation of the parking lever provided in the driving unit 12, and the brakes on the inside of the turn in conjunction with the steering of the left and right front wheels 10 over the set angle It includes a swing brake system to operate, and so on.
  • the vehicle state detection device 22 is a general term for various sensors and switches provided in each part of the tractor 1.
  • the vehicle state detection device 22 includes a vehicle speed sensor 28 (see FIG. 6) that detects the vehicle speed of the tractor 1, a rotation sensor that detects the output rotation speed of the engine 14, an accelerator sensor that detects the operating position of the accelerator lever, and a gear shift.
  • a first position sensor for shifting which detects an operating position of a lever
  • a second position sensor for switching forward and backward which detects an operating position of a reverser lever for switching forward and backward
  • a steering angle which detects a steering angle of front wheels 10. Sensors, etc. are included.
  • the vehicle-mounted control unit 23 performs an engine control unit 23A that controls the engine 14, a vehicle speed control unit 23B that controls the vehicle speed of the tractor 1 and switching between forward and backward movements, and a steering control.
  • 23F and a non-volatile vehicle-mounted storage unit 23G that stores a target route P (see FIG. 4) for automatic travel generated in accordance with travel areas divided in the field, and the like.
  • Each of the control units 23A to 23F is constructed by an electronic control unit in which a microcontroller or the like is integrated and various control programs.
  • the control units 23A to 23F are connected to each other via a CAN (Controller Area Network) so that they can communicate with each other.
  • a communication standard other than CAN or a next-generation communication standard for example, vehicle-mounted Ethernet or CAN-FD (CAN with FLexible Data rate) may be adopted.
  • the engine control unit 23A executes engine rotation speed maintenance control for maintaining the engine rotation speed at the rotation speed according to the operation position of the accelerator lever based on the detection information from the accelerator sensor and the detection information from the rotation sensor. To do.
  • the vehicle speed control unit 23B continuously changes the vehicle speed of the tractor 1 based on the detection information from the first position sensor, the detection information from the vehicle speed sensor 28, and the like so as to change the vehicle speed of the tractor 1 to a speed corresponding to the operation position of the shift lever.
  • Vehicle speed control for controlling the operation of the device, forward/reverse switching control for switching the transmission state of the forward/reverse switching device based on the detection information from the second position sensor, and the like are executed.
  • the vehicle speed control includes deceleration and stop processing for stopping the traveling of the tractor 1 by controlling the speed of the continuously variable transmission to the zero speed state when the shift lever is operated to the zero speed position.
  • the work device control unit 23D includes a work clutch control for controlling the operation of the work clutch unit 19 based on the operation of the PTO switch, the operation of the elevating switch, the setting value of the height setting dial, and the like of the elevating drive unit 20.
  • the lifting control for controlling the operation, the rolling control for controlling the operation of the rolling unit 21 based on the set value of the roll angle setting dial, and the like are executed.
  • the PTO switch, the elevating switch, the height setting dial, and the roll angle setting dial are included in the vehicle state detection device 22.
  • the tractor 1 is equipped with a positioning unit 30 that measures the current position and current direction of the tractor 1.
  • the positioning unit 30 uses a GNSS (Global Navigation Satellite System) that is an example of a satellite positioning system (NSS: Navigation Satellite System), and a satellite navigation device 31 that measures the current position and the current bearing of the tractor 1, and 3 It has an inertial measurement unit (IMU: Inertial Measurement Unit) 32, which has an axis gyroscope, a three-direction acceleration sensor, and the like, and measures the posture, direction, and the like of the tractor 1.
  • Positioning methods using GNSS include DGNSS (Differential GNSS: relative positioning method) and RTK-GNSS (Real Time Kinematic GNSS: interference positioning method).
  • RTK-GNSS suitable for positioning of a moving body is adopted. Therefore, as shown in FIG. 1, a reference station 6 that enables positioning by RTK-GNSS is installed at a known position around the field.
  • each of the tractor 1 and the reference station 6 has a GNSS antenna 33, 60 that receives a radio wave transmitted from a positioning satellite 7 (see FIG. 1), and a tractor 1 and the reference station 6.
  • Communication modules 34, 61, and the like that enable wireless communication of each information including positioning information between and are provided.
  • the satellite navigation device 31 of the positioning unit 30 receives the positioning information obtained by the GNSS antenna 33 on the tractor side receiving the radio wave from the positioning satellite 7, and the GNSS antenna 60 on the reference station side receives the radio wave from the positioning satellite 7. It is possible to measure the current position and current direction of the tractor 1 with high accuracy based on the received positioning information.
  • the positioning unit 30 includes the satellite navigation device 31 and the inertial measurement device 32, so that the current position, the current azimuth, and the attitude angle (yaw angle, roll angle, pitch angle) of the tractor 1 can be measured with high accuracy. You can
  • the inertial measurement device 32 of the positioning unit 30, the GNSS antenna 33, and the communication module 34 are included in the antenna unit 35 shown in FIG.
  • the antenna unit 35 is arranged at the left and right center of the upper portion of the front side of the cabin 13.
  • the mounting position of the GNSS antenna 33 on the tractor 1 is the position to be measured when measuring the current position of the tractor 1 using the GNSS.
  • the mobile communication terminal 5 includes an electronic control unit in which a microcontroller is integrated, a terminal control unit 51 having various control programs, and a communication module 34 on the tractor side.
  • the communication module 52 which enables wireless communication of each information including the positioning information, is provided.
  • a display control unit 51A that controls display and notification on the display device 50 and the like
  • a target route generation unit 51B that generates a target route P for automatic traveling
  • a target route generation unit 51B are generated.
  • a non-volatile terminal storage unit 51C for storing the target route P and the like are included.
  • the terminal storage unit 51C stores various kinds of information used for generating the target route P, such as vehicle body information such as a turning radius of the tractor 1 and a working width, and field information obtained from the positioning information described above.
  • the field information includes a plurality of shape identification points in the field A obtained by using the GNSS when the tractor 1 is run along the outer peripheral edge of the field A in order to specify the shape and size of the field A.
  • Four corner points Ap1 to Ap4 (see FIG. 4) that are (shape-specific coordinates), and a rectangular shape specification that connects the corner points Ap1 to Ap4 to specify the shape and size of the field A, etc.
  • Line AL, etc. are included.
  • the target route generation unit 51B generates the target route P based on the turning radius and working width of the tractor 1 included in the vehicle body information, the shape and size of the field A included in the field information, and the like. For example, as shown in FIG. 4, in a rectangular field A, a start point p1 and an end point p2 of automatic traveling are set, and a work traveling direction of the tractor 1 is set along a short side of the field A. If there is, the target route generation unit 51B first sets the margin field adjacent to the outer peripheral edge of the field A on the field A based on the above-described four corner points Ap1 to Ap4 and the rectangular shape specifying line AL. It is divided into A1 and a travel area A2 located inside the margin area A1.
  • the target route generation unit 51B arranges in parallel in the traveling area A2 at a constant interval according to the work width in the direction along the long side of the field A, based on the turning radius of the tractor 1, the work width, and the like.
  • a plurality of parallel routes P1 are generated, and a plurality of turning routes P2 that are arranged at the outer edge of each long side of the traveling area A2 and that connect the plurality of parallel routes P1 in the traveling order are generated.
  • the traveling area A2 is divided into a pair of non-working areas A2a set on the outer edges of the long sides of the traveling area A2 and a working area A2b set between the pair of non-working areas A2a.
  • Each parallel path P1 is divided into a non-work path P1a included in the pair of non-work areas A2a and a work path P1b included in the work area A2b. Accordingly, the target route generation unit 51B can generate the target route P suitable for automatically traveling the tractor 1 in the field A shown in FIG.
  • each non-work area A2a is a ridge turning area for the tractor 1 to turn from the current work path P1b to the next work path P1b at the ridge of the field A.
  • each non-working route P1a and each turning route P2 are routes that the tractor 1 automatically travels without performing the cultivating work
  • the above-mentioned respective working routes P1b are the tractor 1 cultivating work. It is a route that runs automatically while performing.
  • the start point p3 of each work path P1b is a work start point where the tractor 1 starts the tilling work
  • the end point p4 of each work path P1b is a work stop point where the tractor 1 stops the tilling work.
  • Each non-work path P1a has a work stop point p4 before the tractor 1 turns on the turning path P2 and a work start point p3 after the tractor 1 turns on the turning path P2.
  • connection point p5 and p6 of each parallel path P1 and each turning path P2 is the turning start point of the tractor 1, and the connection on the starting end side of each parallel path P1.
  • the point p6 is the turning end point of the tractor 1.
  • target route P shown in FIG. 4 is merely an example, and the target route generation unit 51B uses the vehicle body information that differs depending on the model of the tractor 1 and the type of work, and the shape of the field A that differs depending on the field A.
  • Various target routes P suitable for them can be generated based on farm field information such as size and size.
  • the target route P is stored in the terminal storage unit 51C in a state of being associated with the vehicle body information and the field information, and can be displayed on the display device 50 of the mobile communication terminal 5.
  • the target route P includes a target vehicle speed of the tractor 1 in each parallel route P1, a target vehicle speed of the tractor 1 in each turning route P2b, a front wheel steering angle in each parallel route P1, a front wheel steering angle in each turning route P2b, and the like. include.
  • the terminal control unit 51 transmits the field information, the target route P, and the like stored in the terminal storage unit 51C to the onboard control unit 23 in response to the transmission request command from the onboard control unit 23.
  • the vehicle-mounted control unit 23 stores the received field information, the target route P, and the like in the vehicle-mounted storage unit 23G.
  • the terminal control unit 51 transmits all of the target route P from the terminal storage unit 51C to the vehicle-mounted control unit 23 all at once before the tractor 1 starts the automatic traveling. You may also, the terminal control unit 51 divides the target route P into a plurality of divided route information for each predetermined distance, and each time the traveling distance of the tractor 1 reaches the predetermined distance from the stage before the tractor 1 starts the automatic traveling. Alternatively, a predetermined number of divided route information according to the traveling order of the tractor 1 may be sequentially transmitted from the terminal storage unit 51C to the vehicle-mounted control unit 23.
  • the automatic traveling control unit 23F In the on-vehicle control unit 23, detection information from various sensors and switches included in the vehicle state detection device 22 is input to the automatic traveling control unit 23F via the vehicle speed control unit 23B, the steering control unit 23C, and the like. ing. As a result, the automatic travel control unit 23F can monitor various setting states of the tractor 1 and operating states of each unit.
  • the automatic traveling control unit 23F is carried by a user such as an occupant or an administrator when the traveling mode of the tractor 1 is switched to the automatic traveling mode by performing a manual operation for satisfying various automatic traveling start conditions.
  • the positioning unit 30 automatically drives the tractor 1 according to the target route P while acquiring the current position and the current direction of the tractor 1. Start automatic cruise control.
  • the automatic travel control unit 23F is in the operation unit 12 when, for example, the user operates the display device 50 of the mobile communication terminal 5 to instruct the end of the automatic travel.
  • the automatic traveling control is ended and the traveling mode is switched from the automatic traveling mode to the manual traveling mode.
  • the automatic traveling control can be restarted by operating the display device 50 of the mobile communication terminal 5 to command the start of the automatic traveling.
  • the automatic traveling control by the automatic traveling control unit 23F includes automatic engine control processing for transmitting a control command for automatic traveling related to the engine 14 to the engine control unit 23A, control for automatic traveling related to switching of the vehicle speed of the tractor 1 and forward/backward movement.
  • a work automatic control process for transmitting a control command for use to the work device control unit 23D is included.
  • the automatic travel control unit 23F instructs the engine control unit 23A to issue an engine rotational speed change command for instructing to change the engine rotational speed based on the set rotational speed included in the target route P and the like. Send.
  • the engine control unit 23A executes engine speed change control for automatically changing the engine speed in accordance with various control commands regarding the engine 14 transmitted from the automatic travel control unit 23F.
  • the automatic travel control unit 23F includes a gear shift operation command for instructing a gear shift operation of the continuously variable transmission based on the target vehicle speed included in the target route P and the target route P included.
  • a forward/reverse switching command for instructing a forward/backward switching operation of the forward/backward switching device based on the traveling direction of the tractor 1 or the like is transmitted to the vehicle speed control unit 23B.
  • the vehicle speed control unit 23B automatically controls the operation of the continuously variable transmission according to various control commands regarding the continuously variable transmission, the forward/reverse switching device, etc. transmitted from the automatic travel control unit 23F, and , Automatic forward/reverse switching control, which automatically controls the operation of the forward/reverse switching device.
  • automatic deceleration stop processing for controlling the continuously variable transmission to decelerate to a zero speed state to stop the traveling of the tractor 1 and the like. It is included.
  • the automatic traveling control unit 23F transmits to the steering control unit 23C, a steering command for instructing the steering of the left and right front wheels 10 based on the front wheel steering angle included in the target route P and the like. ..
  • the steering control unit 23C controls the operation of the power steering unit 17 to steer the left and right front wheels 10 according to the steering command transmitted from the automatic travel control unit 23F, and the left and right front wheels 10 are set.
  • the automatic brake turning control which actuates the brake unit 18 to actuate the brake inside the turning, is executed.
  • the automatic traveling control unit 23F based on the work start point p3 included in the target route P, a work start command for instructing switching of the rotary tiller 3 to the work state, and the target route Based on the work stop point p4 included in P, a work stop command for instructing switching of the rotary tiller 3 to the non-working state, and the like are transmitted to the work device controller 23D.
  • the work device control unit 23D controls the operation of the work clutch unit 19 and the elevating and lowering drive unit 20 in accordance with various control commands regarding the rotary cultivating device 3 transmitted from the automatic traveling control unit 23F, and the rotary cultivating device 3 is operated.
  • the automatic work start control for lowering and operating the work height, the automatic work stop control for stopping the rotary tiller 3 and raising it to the non-work height, and the like are executed.
  • the tractor 1 is provided with an obstacle detection unit 80 that measures the circumference of the tractor 1 and detects obstacles existing around the tractor 1.
  • the obstacles detected by the obstacle detection unit 80 include a person such as a worker who works in the field A and other work vehicles, and existing utility poles and trees in the field A.
  • the obstacle detection unit 80 includes a first measurement range Rm1 set on the front side of the tractor 1 or a second measurement range set on the rear side of the tractor 1.
  • a unit 83 is included.
  • Each of the lidar sensors 81, 82 uses a laser beam (for example, a pulsed near-infrared laser beam) that is an example of measurement light to measure the first measurement range Rm1 or the second measurement range Rm2.
  • the sonar unit 83 has left and right ultrasonic sensors 83A and a single sonar control section 83B.
  • Each of the rider control units 81B and 82B and the sonar control unit 83B is constructed by an electronic control unit in which a microcontroller or the like is integrated and various control programs.
  • the rider control units 81B and 82B and the sonar control unit 83B are connected to the vehicle-mounted control unit 23 via the CAN so that they can communicate with each other.
  • Each of the lidar sensors 81, 82 uses a TOF (Time Of Flight) method to measure the distance to the distance measuring point based on the round-trip time required for the irradiated laser light to reach the distance measuring point and return.
  • 81A and 82A measure a straight line distance from the rider sensors 81 and 82 to each distance measuring point.
  • Each measuring unit 81A, 82A scans the laser beam at high speed vertically and horizontally over the entire first measuring range Rm1 or second measuring range Rm2, and sequentially measures the linear distance to the distance measuring point for each scanning angle. Then, the distance to each distance measuring point in the first measurement range Rm1 or the second measurement range Rm2 is measured three-dimensionally.
  • Each of the measuring units 81A and 82A has an intensity (hereinafter, referred to as a reflection intensity) of reflected light from each distance measuring point obtained when the laser light is scanned vertically and horizontally over the entire first measurement range Rm1 or the second measurement range Rm2. (Referred to as) are sequentially measured.
  • Each of the measuring units 81A and 82A repeatedly measures the linear distance to each distance measuring point in the first measurement range Rm1 or the second measurement range Rm2 and each reflection intensity in real time.
  • Each rider control unit 81B, 82B generates a distance image based on measurement information for each distance measuring point such as a straight line distance to each distance measuring point measured by each measuring unit 81A, 82A and each reflection intensity.
  • Each of the rider control units 81B and 82B has obstacle determination units 81a and 82a that execute obstacle determination control that determines the presence or absence of an obstacle based on the measurement information for each distance measuring point and the generated distance image. ing.
  • Each of the rider control units 81B and 82B executes a collision avoidance control for avoiding a collision with an obstacle when the obstacle determination unit 81a or 82a determines that an obstacle exists, 82b.
  • Each of the rider control units 81B and 82B outputs the generated distance image to the in-vehicle control unit 23.
  • the in-vehicle control unit 23 displays the distance image from each of the rider control units 81B and 82B in response to a transmission request command from the tractor side display control unit 23E or the mobile communication terminal side display control unit 51A. , 51A.
  • the distance image generated by each of the rider control units 81B and 82B can be displayed on the liquid crystal monitor 27 of the tractor 1, the display device 50 of the mobile communication terminal 5, or the like. Then, this display allows the user to visually recognize the situation on the front side or the rear side of the tractor 1.
  • the display of the distance image for example, it is possible to display the distance in the perspective direction in the distance image by color, and the visibility in the perspective direction can be improved by this color-coded display.
  • the front and rear rider sensors 81 and 82 are arranged on the left and right centerlines of the tractor 1.
  • the front rider sensor 81 is arranged at a central position on the upper side of the front side of the cabin 13 in a front-down posture in which the front side of the tractor 1 is looked down obliquely from above.
  • a predetermined range on the vehicle body front side with the center line of the tractor 1 as the axis of symmetry is set as the first measurement range Rm1 by the measurement unit 81A.
  • the rear rider sensor 82 is disposed at the upper left-right center portion on the rear end side of the cabin 13 in a rearward-down posture in which the rear side of the tractor 1 is looked down obliquely from above.
  • the predetermined range on the vehicle body rear side with the left-right center line of the tractor 1 as the axis of symmetry is set as the second measurement range Rm2 by the measurement unit 82A.
  • the front and rear rider sensors 81, 82 interlock with the switching of the front and rear rider sensors 81, 82 during forward travel of the tractor 1 in which the forward/rearward travel switching device of the transmission unit 16 has been switched to the forward transmission state, and the front rider sensor 81 is in the operating state, The rider sensor 82 is in the operation stopped state. Further, when the tractor 1 is traveling in reverse while the forward/reverse switching device of the transmission unit 16 is switched to reverse transmission, the front rider sensor 81 is deactivated and the rear rider sensor 82 is activated in association with the switching. become.
  • the sonar control unit 83B determines the presence or absence of an obstacle based on the transmission and reception of ultrasonic waves by the left and right ultrasonic sensors 83A.
  • the sonar unit 83 uses the TOF (Time Of Flight) method to measure the distance to the distance measuring point based on the round-trip time required for the transmitted ultrasonic waves to reach the distance measuring point and return. The distance from the sound wave sensor 83A to the obstacle is measured.
  • the sonar control unit 83B executes the collision avoidance control for avoiding the collision with the obstacle when it is determined that the obstacle exists.
  • the left and right ultrasonic sensors 83A are attached to the left and right stepping steps 24 disposed between the left and right front wheels 10 and the left and right rear wheels 11 in a laterally outward posture of the vehicle body.
  • the predetermined range outside the vehicle body is set as the third measurement range Rm3.
  • the rider control units 81B and 82B detect the obstacle detection range Rd1 based on the vehicle body information and the like with respect to the measurement ranges Rm1 and Rm2 of the measurement units 81A and 82A. , Rd2 is restricted and a masking process is performed.
  • each of the rider control units 81B and 82B obtains the maximum lateral width of the vehicle body including the rotary cultivating device 3 (the lateral width of the rotary cultivating device 3 in the present embodiment) by communicating with the in-vehicle control unit 23.
  • the obstacle detection target width Wd is set by multiplying the maximum lateral width of the vehicle body by a predetermined safety factor.
  • the left and right ranges that deviate from the detection target width Wd are set as the first non-detection range Rnd1 by the cutting process and excluded from the detection ranges Rd1 and Rd2.
  • the rider control units 81B and 82B allow the front end side of the tractor 1 to enter the first measurement range Rm1 and the rear end side of the rotary tiller 3 to enter the second measurement range Rm2.
  • the range is set to the second non-detection range Rnd2 by the masking process and excluded from the detection ranges Rd1 and Rd2.
  • the obstacle detection target range of each rider sensor 81, 82 is limited to the first detection range Rd1 and the second detection range Rd2. Then, due to this limitation, the respective rider sensors 81, 82 erroneously detect the front end side of the tractor 1 entering the first measurement range Rm1 or the second measurement range Rm2 or the rear end side of the rotary tiller 3 as an obstacle. The fear is avoided.
  • the second non-detection range Rnd2 shown in FIG. 7 is an example of a non-detection range suitable for the front side of the vehicle body where the left and right front wheels 10 and the hood 15 are present.
  • the second non-detection range Rnd2 shown in FIG. 9 is an example of the non-detection range suitable for the non-working state in which the rotary tiller 3 is raised to the retracted height on the rear side of the vehicle body.
  • the second non-detection range Rnd2 on the rear side of the vehicle body is appropriately switched in association with the vertical movement of the rotary tiller 3.
  • the first detection range Rd1, the second detection range Rd2, the first non-detection range Rnd1, and the second non-detection range Rnd2 is included in the distance image described above, It can be output to the vehicle-mounted control unit 23 together with the distance image described above.
  • the first detection range Rd1, the second detection range Rd2, the first non-detection range Rnd1, and the second non-detection range Rnd2 are displayed on the liquid crystal monitor 27 of the tractor 1 and the mobile communication terminal 5 together with the distance image described above. It can be displayed on the display device 50 or the like.
  • the liquid crystal monitor 27 and the display device 50 perform non-detection on their display screens when a predetermined display switching operation is performed on them so that the first non-detection range Rnd1 and the second non-detection range Rnd2 can be manually adjusted. Switch to the range adjustment screen.
  • the liquid crystal monitor 27 and the display device 50 adjust the first non-detection range Rnd1 or the second non-detection range Rnd2 according to the operation. To do. That is, the first non-detection range Rnd1 and the second non-detection range Rnd2 can be arbitrarily adjusted by a user's input operation on the liquid crystal monitor 27 or the display device 50.
  • the first detection range Rd1 or the second detection range Rd2 and the left and right first non-detection ranges Rnd1 are displayed.
  • the second non-detection range Rnd2 change according to the adjustment operation, the user can easily adjust the first non-detection range Rnd1 and the second non-detection range Rnd2.
  • the detection ranges Rd1 and Rd2 of the respective rider sensors 81 and 82 are based on the collision determination processing in which the predicted collision time reaches a set time (for example, 3 seconds). Stop control range Rsc set to a range up to the determination reference position, deceleration control range Rdc set to a range from the determination reference position to the deceleration start position, and measurement limit positions of the rider sensors 81 and 82 from the deceleration start position. Up to the notification control range Rnc set in the above range.
  • the determination reference position is set at a position separated from the front end or the rear end of the vehicle body including the rotary tilling device 3 by a constant distance L (for example, 2000 mm) in the vehicle front-rear direction.
  • the tractor 1 is provided with front and rear two cameras 85 and 86 whose imaging ranges are the front side and the rear side.
  • the front camera 85 is disposed at the upper left and right center position on the front side of the cabin 13 in a front-down posture in which the front side of the tractor 1 is looked down obliquely from above.
  • the rear camera 86 is disposed at the upper left-right center position on the rear end side of the cabin 13 in a rearward-down posture in which the rear side of the tractor 1 is viewed obliquely from above.
  • the cameras 85 and 86 are connected to the vehicle-mounted control unit 23 via a CAN so that they can communicate with each other. Thereby, the captured images of the cameras 85 and 86 can be displayed on the liquid crystal monitor 27 of the tractor 1, the display device 50 of the mobile communication terminal 5, or the like. As a result, the user can easily visually recognize the surroundings of the tractor 1.
  • the obstacle determination control by the obstacle determination units 81a and 82a of the rider control units 81B and 82B will be described based on the flowchart shown in FIG. 10 and FIGS. 11 to 28. Note that the obstacle determination control by the obstacle determination unit 81a of the front rider sensor 81 and the obstacle determination control by the obstacle determination unit 82a of the rear rider sensor 82 have the same control procedure. Only the obstacle determination control by the obstacle determination unit 81a of the front rider sensor 81 will be described.
  • the obstacle determination unit 81a performs a measurement information acquisition process of acquiring measurement information for each ranging point in the entire first measurement range Rm1 (see FIGS. 2 to 3) measured by the measurement unit 81A (step #1).
  • the measurement information acquired here includes the linear distance from the front lidar sensor 81 to the distance measuring point and the reflection intensity of the laser light.
  • this measurement information acquisition processing based on the pixel position of each measurement information obtained when the front lidar sensor 81 is activated and the scanning angle of the laser beam, each measurement information is arranged at the pixel position corresponding to the focus detection point, A point cloud information acquisition process of storing the measurement information arranged at each pixel position in the predetermined area as point cloud information for each predetermined area is included.
  • the scan corresponding to the distance measurement target location if the reflected light from the distance measurement target location is not obtained due to, for example, the distance measurement target location being wet, the scan corresponding to the distance measurement target location. This means that there was no distance measuring point at the corner (pixel position). Then, the point cloud information of the predetermined area composed of the pixel positions without such focus detection points is stored as the point cloud information without the focus detection points.
  • Each distance measuring point corresponds to each pixel of the distance image generated by the rider control unit 811.
  • the obstacle determination unit 81a performs coordinate conversion processing to acquire the coordinates of each distance measuring point based on the above-described straight line distance, pixel position, scanning angle, and attachment angle of the front rider sensor 81 (step #2). ..
  • the coordinates of each distance measuring point acquired by this coordinate conversion process include the X coordinate indicating the position of the distance measuring point in the X direction along the left-right direction of the tractor 1 and the measurement in the Y direction along the front-back direction of the tractor 1.
  • the Y coordinate indicating the position of the distance measuring point and the Z coordinate indicating the position of the distance measuring point in the Z direction along the vertical direction of the tractor 1 are included.
  • the obstacle determination unit 81a determines whether or not the distance values of the distance measuring points meet the invalid condition based on the measurement information of the distance measuring points set in the obstacle detection target information, and the invalid condition is determined.
  • An invalid value exclusion process is performed to exclude a distance value that conforms to the above as an invalid value from the existence determination of the obstacle (steps #3 to 6).
  • the obstacle determination unit 81a uses, as one of the invalid value exclusion processes, the distance measuring point at which the straight line distance from the front rider sensor 81 is equal to or less than the first set distance L1 (for example, 300 mm) (see FIG. 11).
  • a first invalidation process is performed in which the distance value of is an invalid value (step #3).
  • the feature of dirt on the sensor surface of the front rider sensor 81 that is present at a close distance from the front rider sensor 81 is used, and the distance value of the distance measuring point having the feature is set as an invalid value. There is. This prevents the distance value of the distance measuring point regarding the dirt on the sensor surface from being used for the presence/absence determination of the obstacle.
  • the obstacle determination unit 81a determines that the straight line distance from the front rider sensor 81 is between the first set distance L1 and the second set distance L2 (for example, 2000 mm) and the reflection intensity is A second invalidation process is performed in which the distance value of the focus detection point (see FIG.
  • step #4 the distance value of the distance measuring point related to the foreign object is used for determining the presence or absence of an obstacle. Is being prevented.
  • the obstacle determination unit 81a determines that the straight line distance from the front rider sensor 81 is between the first set distance L1 and the second set distance L2 and the reflection intensity is less than the set value V.
  • a third invalidation process is performed in which the distance value of the focus detection point becomes as an invalid value (step #5).
  • the characteristic of a floating object such as dust or fog that is present at a short distance but has a very low reflection intensity is used, and the distance value of the distance measuring point having the characteristic is set as an invalid value. ..
  • the generation state of floating matter such as dust and fog is affected by environmental conditions such as temperature, humidity, and weather, regarding the set distances L1 and L2 for determination and the set value V used for the third invalidation process.
  • the set distances L1 and L2 for determination and the set value V used for the third invalidation process Preferably enables the setting change according to the environmental conditions.
  • the obstacle determination unit 81a performs, as one of the invalid value exclusion processing, a fourth invalid processing in which a distance value of a distance measuring point whose straight line distance is extremely short compared to a plurality of surrounding distance measuring points is an invalid value. Perform (step #6).
  • the distance measurement points Dx to be selected are compared with the respective linear distances between the adjacent distance measurement points D, and the surrounding distance measurement points D are compared. Among them, the number of distance measuring points for which the difference in the linear distance from the distance measuring point Dx to be selected falls within the set range is obtained.
  • the distance measuring point Dx to be selected is a single distance measuring point regarding a minute object, noise, etc., and the distance of this distance measuring point is determined. Set the value as an invalid value. As a result, the distance value at the distance measuring point for minute objects such as insects and raindrops, noise, etc. is prevented from being used for determining the existence of obstacles.
  • the obstacle determination unit 81a sends the collision avoidance control unit 81b invalid information that transmits information (hereinafter, referred to as invalid ranging point information) related to the ranging points whose distance values have become invalid values in the invalid value exclusion processing described above. Transmission processing is performed (step #7).
  • the obstacle determination unit 81a performs a grid map generation process (step #8) that generates a grid map GM (see FIG. 13) used to specify the position of the obstacle.
  • the grid map GM has a large number of grids G obtained by dividing a predetermined range including the first measurement range Rm1 measured by the front lidar sensor 81 with a predetermined resolution.
  • the grid map GM for example, the range is a fan shape in which the left and right angle range with respect to the left and right center line of the tractor 1 is 90 degrees, and the linear distance from the front rider sensor 81 is 15,000 mm.
  • the angular resolution in the left-right direction is set to 2 degrees and the distance resolution from the front rider sensor 81 to 250 mm after setting the range.
  • the point cloud information acquired by the above-described point cloud information acquisition process is converted into X, X, and Z for each cycle in which the front lidar sensor 81 scans the laser beam over the entire first measurement range Rm1.
  • the point cloud information registration process of registering in the corresponding grid G of the many grids G, and the Z coordinates of the plurality of distance measuring points included in the point cloud information of each grid G are used to determine the respective points.
  • a grid height registration process of identifying the highest height information in the grid G and registering the identified height information as height information for each grid G is included.
  • the range corresponding to the first measurement range Rm1 of the grid map GM is determined as the point cloud information registration range GMp.
  • the grid G in which the point cloud information having no focus detection points is registered is a grid without focus detection points.
  • the obstacle determination unit 81a performs a feature point extraction process of extracting a feature point for obstacle identification from the extraction target range corresponding to the first detection range Rd1 of the point cloud information registration range GMp (step #9). ).
  • the obstacle determination unit 81a performs the feature point extraction processing in the order of the direction away from the nearest distance measuring point with respect to the vehicle body.
  • the obstacle determination unit 81a firstly measures the reference distance measuring point D1 and two distance measuring points continuous in the direction away from the distance measuring point D1, as shown in FIGS. A total of three distance measuring points D1 to D3 including D2 and D3 are selected as feature point extraction targets.
  • the three selected distance measuring points are a first distance measuring point D1, a second distance measuring point D2, and a third distance measuring point D3 in order of being closer to the vehicle body, and the first distance measuring point D1 and the second distance measuring point D1.
  • a first angle ⁇ 1 in the height direction with respect to the point D2 and a second angle ⁇ 2 in the height direction with respect to the second distance measuring point D2 and the third distance measuring point D3 are obtained.
  • the second distance measuring point D2 and the third distance measuring point D3 are used for obstacle identification. It is stored as a feature point.
  • FIG. 15 when the average value of the first angle ⁇ 1 and the second angle ⁇ 2 is less than 45 degrees due to the second angle ⁇ 2 becoming a negative value or the like, there is no characteristic point.
  • the obstacle determination unit 81a performs a candidate grid extraction process of extracting a candidate grid in which point cloud information that may indicate an obstacle is registered from each grid G in the extraction target range (step #10).
  • the obstacle determination unit 81a performs candidate grid extraction processing in the order from the grid G closest to the left side of the vehicle body (the lower left grid G on the grid map GM) to the right.
  • the obstacle determination unit 81a as shown in FIG. 16, while the extraction target grid Gx is the closest grid G to the vehicle body, the extraction target grid Gx and adjacent grids to the left and right thereof.
  • the extraction target grid Gx is determined. Use as a candidate grid. After that, when the extraction target grid Gx becomes a grid G other than the closest one to the vehicle body, as shown in FIG. 17, the extraction target grid Gx, the grids G adjacent to the left and right of the extraction target grid Gx, and three grids adjacent to the vehicle body side.
  • the extraction target The grid Gx of is the candidate grid.
  • the comparison target grid G adjacent to the vehicle body side may be a grid without a distance measuring point (height information).
  • the height information of the grid G having the distance measuring points on the vehicle body side further than that of the comparison target grid having no distance measuring points is used as the height information of the comparison target grid, and the height information is compared. To do.
  • the ground surface obtained in advance from the mounting height position of the front rider sensor 81 is measured.
  • the height information set at a position of arbitrary height (for example, 100 mm) is used as the height information of the grid to be compared, and the height information is compared.
  • the obstacle determination unit 81a performs an obstacle grid identification process of identifying an obstacle grid Go (see FIG. 19) indicating an obstacle from each candidate grid extracted by the candidate grid extraction process (step #11). In the obstacle grid identification processing, the obstacle determination unit 81a identifies, as the obstacle grid Go, a candidate grid in which the point cloud information having the above-described feature points for obstacle identification exists, among the candidate grids.
  • the obstacle determination unit 81a groups the consecutive obstacle grid groups Og (see FIG. 19) as one obstacle among the identified plurality of obstacle grids Go, and each obstacle grid of the obstacle grid group Og.
  • a labeling process for assigning the same number to Go is performed (step #12).
  • the point cloud information of each obstacle grid Go for each group can be stored as obstacle information indicating the same obstacle, and the size and position of the obstacle can be specified from this obstacle information. it can.
  • the obstacle determination unit 81a performs a reference point calculation process for obtaining a reference point Or (see FIGS. 19 to 20) that enables determination of the time-series identity of the obstacle grid group Og (step #13).
  • the obstacle determination unit 81a obtains the center of gravity of the obstacle grid group Og used as the reference point Or of the obstacle grid group Og, as shown in FIG.
  • the obstacle determination unit 81a adds the positions from the origin 0 in the X-axis direction (the left-right direction of the tractor 1) of all the obstacle grids Go in the obstacle grid group Og, and the value obtained by this addition is the obstacle.
  • the rider controller 811 adds the positions from the origin 0 in the Y-axis direction (the front-back direction of the tractor 1) of all the obstacle grids Go in the obstacle grid group Og, and the value obtained by this addition is added to the obstacle grids. It is divided by the number of grids in the group Og, and the integer obtained by rounding off the value obtained by this division is taken as the Y position of the center of gravity in the obstacle grid group Og.
  • the obstacle determination unit 81a performs the above-described one process for each cycle in which the measurement unit 81A scans the laser beam over the entire first measurement range Rm1, and registers the information obtained by the one process.
  • a frame storage process is performed in which the grid map GM after being stripped is sequentially stored as a frame F (see FIGS. 22 to 28) (step #14).
  • the obstacle determining unit 81a associates the obstacle grid group Og detected this time with the obstacle grid group Og detected in the past so that the obstacle grid group Og can determine the time-series identity of the pair. Ring processing is performed (step #15).
  • the obstacle determination unit 81a determines that the displacement amount of the reference point Or of the obstacle grid group Og detected this time is within the set range with respect to the reference point Or of the obstacle grid group Og detected in the past. If there is, they are linked as the same obstacle grid group Og. Specifically, as shown in FIG. 21, the obstacle determination unit 81a determines that the reference point Or of the obstacle grid group Og detected immediately before this time is the reference point Or of the obstacle grid group Og detected this time.
  • those obstacle grid groups Og are linked as the same obstacle grid group Og. If the reference point Or of the obstacle grid group Og detected one time before this time is not within the first setting range R1, the reference point Or of the obstacle grid group Og detected two times before this time is detected this time. It is determined whether or not it is within a second setting range R2 (a range larger than the first setting range R1) centered on the reference point Or of the obstacle grid group Og. If it is within the second setting range R2, those obstacle grid groups Og are linked as the same obstacle grid group Og.
  • a second setting range R2 a range larger than the first setting range R1 centered on the reference point Or of the obstacle grid group Og. If it is within the second setting range R2, those obstacle grid groups Og are linked as the same obstacle grid group Og.
  • the reference point Or of the obstacle grid group Og detected two times before this time is not within the second setting range R2
  • the reference point Or of the obstacle grid group Og detected three times before this time is detected this time. It is determined whether or not it is within a third setting range R3 (a range larger than the second setting range R2) centered on the reference point Or of the obstacle grid group Og. If it is within the third setting range R3, those obstacle grid groups Og are linked as the same obstacle grid group Og. If the reference point Or of the obstacle grid group Og detected three times before this time is not within the third setting range R3, it is determined that there is no obstacle grid group Og to be linked as the same obstacle grid group Og.
  • a third setting range R3 a range larger than the second setting range R2
  • the obstacle having the reference point Or closest to the reference point Or of the obstacle grid group Og detected this time.
  • the grid group Og is linked with the obstacle grid group Og detected this time.
  • the obstacle determination unit 81a performs an obstacle determination process for determining the presence/absence of an obstacle from the plurality of frames F stored in the latest and consecutively (step #16).
  • the obstacle determination unit 81a links the obstacle grid group Og associated with a predetermined number or more of the frames F including the latest frame F among the plurality of frames F stored consecutively in the latest. If the reference point Or is present, it is determined that the presence of the obstacle is detected.
  • the obstacle determination unit 81a determines that the presence of an obstacle is detected, for example, as shown in FIGS.
  • the obstacle determination unit 81a determines that the grid G in which the reference point Or of the obstacle grid group is present in the latest previous frame F(t-1) is the latest grid G.
  • the reference point Or of the obstacle grid group is the grid G in which the reference point Or was present.
  • the obstacle determination unit 81a transmits the detection information and information about the obstacle such as a distance value for each distance measuring point to the obstacle to the collision avoidance control unit 81b. Processing is performed (step #17).
  • the collision avoidance control by the collision avoidance control units 81b and 82b of the respective rider control units 81B and 82B will be described based on the flowcharts shown in FIGS. 29 to 33 and FIGS.
  • the collision avoidance control by the collision avoidance control unit 81b of the front rider sensor 81 and the collision avoidance control by the collision avoidance control unit 82b of the rear rider sensor 82 have the same control procedure. Only the collision avoidance control by the collision avoidance controller 81b of the sensor 81 will be described.
  • the collision avoidance control unit 81b performs an information acquisition process for acquiring the invalid distance measuring point information from the obstacle determination unit 81a, the information about the obstacle, the vehicle speed detected by the vehicle speed sensor 28, and the like.
  • Step #21 the first detection determination process of determining whether or not the presence of an obstacle is detected by the obstacle determination unit 81a from the acquired information on the obstacle is performed (step #22).
  • the collision avoidance control unit 81b determines that the presence of an obstacle is detected in the first detection determination process (Yes), it determines whether the same obstacle is detected last time. If the presence of the same obstacle is detected in the second detection determination process (Yes), the second detection determination process is performed (YES in step #23). Based on the information, a first invalid value determination process is performed to determine whether or not the invalid value includes the shortest distance value to the obstacle (step #24), and the invalid value is determined by the first invalid value determination process. When it is determined that the shortest distance value is included (in the case of Yes), the second invalid value determination processing is performed to determine whether all of the plurality of distance values regarding the obstacle have become invalid values (step #25).
  • the collision avoidance control unit 81b determines that the presence of the same obstacle is not detected in the second detection determination process (in the case of No), and the invalid value is the shortest distance in the first invalid value determination process. When it is determined that the value is not the value (in the case of No), the process moves to the first collision avoidance processing for avoiding the collision with the obstacle based on the relative speed with the obstacle calculated from the shortest distance value (step #26). ..
  • the collision avoidance control unit 81b determines that the valid distances other than the shortest distance value are valid. Based on the relative speed with the obstacle calculated from the distance value to the obstacle, a transition is made to the second collision avoidance processing for avoiding the collision with the obstacle (step #27). Further, when it is determined in the second invalid value determination processing that all of the plurality of distance values regarding the obstacle have become invalid values (in the case of Yes), the valid obstacles immediately before all the distance values become invalid values. Based on the relative speed with the obstacle calculated from the distance value between and, a transition is made to the third collision avoidance processing for avoiding a collision with the obstacle (step #28).
  • any collision avoidance process (including a fourth collision avoidance process described later) is included. ) Is being executed (step #29), and when it is determined to be being executed (Yes), a collision avoidance ending process for ending the ongoing collision avoiding process is executed ( Step #30), and then the process proceeds to step #21.
  • the ratio of the invalid value in the first detection range Rd1 (obstacle detection target range) of the first measurement range Rm1 by the front rider sensor 81 is the limit value. (For example, 50% of the first detection range Rd1) is exceeded, and a third invalid value determination process is performed to determine whether or not this limit value excess state has continued for a fixed time (for example, 0.5 seconds) or more (step # 31).
  • the collision avoidance control unit 81b determines in the third invalid value determination process that the limit value excess state has continued for a certain time or longer (in the case of Yes)
  • the collision avoidance control unit 81b determines whether an obstacle is present based on the vehicle speed detected by the vehicle speed sensor 28. If it is determined that the fourth collision avoidance process for avoiding a collision has not been continued (step #32), or if the limit value excess state has not continued for a certain period of time (No), the process proceeds to step #21.
  • the state in which the invalid value is not the shortest distance value means that, for example, as shown in FIG. 34, the sensor surface of the front rider sensor 81 is free from dirt, and dust or fog in the first detection range Rd1.
  • a part of the obstacle O becomes dirty or floating due to a state in which no floating object is generated or as shown in FIGS. 35 to 37 due to dirt on the sensor surface or generation of a floating object 90 in the first detection range Rd1.
  • Measurement of the closest distance measuring point Op by the front rider sensor 81 such as a state in which the closest distance measuring point Op is closest to the front rider sensor 81 in the obstacle O, but is hidden by the object 90 or the like. Is possible.
  • a state in which the invalid value is the shortest distance value means that the closest distance measuring point Op of the obstacle O is contaminated due to dirt on the sensor surface or generation of floating matter in the first detection range Rd1, as shown in FIG. Since the front rider sensor 81 cannot measure the closest distance measuring point Op because it is hidden by a floating object or a floating object, it is possible to measure another distance measuring point on the obstacle O. As shown in FIG. 39, the state in which all of the plurality of distance values related to the obstacle are invalid values indicates that the entire obstacle O is caused by dirt on the sensor surface or generation of floating matter in the first detection range Rd1. Since the front lidar sensor 81 cannot cover all the distance measuring points of the obstacle O because it is hidden by dirt or floating matter. As shown in FIG. 40, the limit value excess state means that the front rider sensor 81 detects an obstacle O in the first detection range Rd1 due to dirt on the sensor surface or generation of floating matter in the first detection range Rd1. Is in a difficult state.
  • the collision avoidance control unit 81b performs the first collision determination process based on the relative speed of the obstacle calculated from the shortest distance value to the obstacle (step # 41), the first position determination process of determining the existing position of the obstacle in the first detection range Rd1 based on the determination result of the first collision determination process (step #42).
  • the collision avoidance control unit 81b determines in the first position determination process that an obstacle exists in the notification control range Rnc of the first detection range Rd1, the collision avoidance control unit 81b notifies the existence of the obstacle in the notification control range Rnc.
  • First notification start command processing is performed to instruct the display control unit 23E of the vehicle-mounted control unit 23 and the display control unit 51A of the terminal control unit 51 to execute the notification control (step #43), and then the process proceeds to step #21. ..
  • the first notification control can be executed in each of the display control units 23E and 51A.
  • the display screens of the liquid crystal monitor 27 of the tractor 1 and the display device 50 of the mobile communication terminal 5 become the first notification screen for notifying the presence of the obstacle in the notification control range Rnc.
  • the alarms such as a buzzer and a notification lamp provided in the driving unit 12 and the mobile communication terminal 5 operate in the first notification state in which the existence of an obstacle in the notification control range Rnc is notified.
  • the presence of an obstacle in the notification control range Rnc of the first detection range Rd1 for the tractor 1 can be notified to a user such as a passenger of the driving unit 12 or an administrator outside the vehicle.
  • Second notification start command processing is executed to command the display control units 23E and 51A to execute the notification control (step #44). Further, a target vehicle speed calculation process for obtaining a target vehicle speed for collision avoidance for maintaining the collision prediction time obtained in the first collision determination process at a set time (for example, 3 seconds) is performed (step #45), and the obtained collision avoidance process is performed.
  • a deceleration command process for instructing the vehicle speed control unit 23B to execute the automatic deceleration control based on the target vehicle speed for use is performed (step #46), and then the process proceeds to step #21.
  • the second notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the second notification screen for notifying the existence of the obstacle in the deceleration control range Rdc.
  • the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the second notification state informing of the existence of the obstacle in the deceleration control range Rdc.
  • the vehicle speed control unit 23B can execute automatic deceleration control.
  • the automatic deceleration control is executed, the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the target vehicle speed for collision avoidance is performed, and the predicted collision time is maintained at the set time.
  • the vehicle speed of the tractor 1 can be reduced as the relative distance to the obstacle becomes shorter, and collision of the tractor 1 with the obstacle can be avoided.
  • the collision avoidance control unit 81b determines in the first position determination process that an obstacle exists in the stop control range Rsc of the first detection range Rd1, the collision avoidance control unit 81b notifies the existence of the obstacle in the stop control range Rsc.
  • Third notification start command processing for commanding the display control units 23E and 51A to execute the notification control is performed (step #47).
  • a stop command process for instructing the vehicle speed control unit 23B to execute the automatic stop control is performed (step #48), and then the process proceeds to step #21. Accordingly, the third notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the third notification screen for notifying the existence of the obstacle in the stop control range Rsc.
  • the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the third notification state in which the presence of an obstacle in the stop control range Rsc is notified.
  • the vehicle speed control unit 23B can execute automatic stop control.
  • the automatic stop control is executed, the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the zero speed is performed.
  • the tractor 1 can be stopped at the stage where the obstacle exists in the stop control range Rsc, and the collision of the tractor 1 with the obstacle can be reliably avoided. Then, the stopped state of the tractor 1 is maintained by the automatic stop control until it is determined in step #22 that the presence of the obstacle is not detected in the first detection determination process.
  • the first collision avoidance process based on the shortest distance value to the obstacle suitably avoids the possibility that the tractor 1 in the automatic traveling by the automatic traveling control collides with the obstacle, while the obstacle is controlled in the stop control range Rsc. It is possible to continue the work by automatic traveling until the presence is detected. If it is determined in step #22 that the presence of an obstacle is not detected in the first detection determination process, the restart button displayed on each display screen of the liquid crystal monitor 27 and the display device 50 is operated. Thus, the automatic traveling of the tractor 1 by the automatic traveling control can be promptly restarted.
  • the collision avoidance control unit 81b in the second collision avoidance processing, based on the distance value to the effective obstacle other than the shortest distance value, the previous value of this distance value and the previous shortest distance value.
  • a shortest distance value calculation process for calculating the shortest distance value with the obstacle at the current time is performed from the difference with the distance value (step #51), and the first value based on the relative speed with the obstacle obtained from the calculated shortest distance value is calculated.
  • the second collision determination process is performed (step #52), and the second position determination process is performed to determine the existing position of the obstacle in the first detection range Rd1 based on the determination result of the second collision determination process (step #53).
  • the collision avoidance control unit 81b determines in the second position determination process that an obstacle exists in the notification control range Rnc of the first detection range Rd1
  • the collision avoidance control unit 81b performs the above-described first notification start command process (step #54). , And then transitions to step #21.
  • the first notification control can be executed in each of the display control units 23E and 51A.
  • the display screens of the liquid crystal monitor 27 and the display device 50 are switched to the first notification screen, and the alarms of the driving unit 12 and the mobile communication terminal 5 are changed to the first notification screen. 1 Operates in the notification state.
  • the presence of an obstacle in the notification control range Rnc of the first detection range Rd1 for the tractor 1 can be notified to a user such as a passenger of the driving unit 12 or an administrator outside the vehicle.
  • the collision avoidance control unit 81b determines in the second position determination process that an obstacle is present in the deceleration control range Rdc of the first detection range Rd1, the collision avoidance control unit 81b performs the second notification start command process described above (step #55). .. Further, a target vehicle speed calculation process for obtaining a target vehicle speed for collision avoidance for maintaining the collision prediction time obtained in the second collision determination process at a set time (for example, 3 seconds) is performed (step #56), and the obtained collision avoidance process is performed.
  • the deceleration command process is executed to instruct the vehicle speed control unit 23B to execute the automatic deceleration control based on the target vehicle speed for use (step #57), and then the process proceeds to step #21.
  • the second notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the second notification screen as described above, and the alarms of the driving unit 12 and the mobile communication terminal 5 are changed to the first notification screen. 2 Operates in the notification state.
  • the vehicle speed control unit 23B can execute automatic deceleration control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the target vehicle speed for collision avoidance is performed, and the collision prediction time is reduced. It is maintained at the set time.
  • the vehicle speed of the tractor 1 can be reduced as the relative distance to the obstacle becomes shorter, and collision of the tractor 1 with the obstacle can be avoided.
  • the collision avoidance control unit 81b determines in the second position determination process that an obstacle exists in the stop control range Rsc of the first detection range Rd1, the collision avoidance control unit 81b performs the above-described third notification start command process and stop command process. (Steps #58 and 59), and then the process transits to Step #21. Accordingly, the third notification control can be executed in each of the display control units 23E and 51A. When the third notification control is executed, each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the third notification screen as described above, and the driving unit 12 and the notification devices of the mobile communication terminal 5 are set to the first notification screen. 3 Operates in the notification state.
  • the vehicle speed control unit 23B can execute automatic stop control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to zero speed is performed.
  • the tractor 1 can be stopped at the stage where the obstacle exists in the stop control range Rsc, and the collision of the tractor 1 with the obstacle can be reliably avoided.
  • the stop state of the tractor 1 is maintained by the automatic stop control until it is determined in step #22 that the presence of the obstacle is not detected in the first detection determination process.
  • the operation by the automatic traveling can be continued until the presence of the obstacle is detected in the stop control range Rsc. .. If it is determined in step #22 that the presence of the obstacle is not detected in the first detection determination process, the automatic restart of the tractor 1 by the automatic travel control is promptly performed by operating the restart button described above. It can be restarted.
  • the collision avoidance control unit 81b performs a relative speed acquisition process that acquires the relative speed of the obstacle immediately before all the distance values regarding the obstacle become invalid values. Performing (step #61), performing the third collision determination process based on the obtained relative speed with the obstacle (step #62), based on the determination result of the third collision determination process, the obstacle in the first detection range Rd1. A third position determination process for determining the existing position is performed (step #63).
  • the collision avoidance control unit 81b determines in the third position determination process that an obstacle exists in the notification control range Rnc of the first detection range Rd1
  • the collision avoidance control unit 81b performs the above-described first notification start command process (step #64). , And then transitions to step #21.
  • the first notification control can be executed in each of the display control units 23E and 51A.
  • the display screens of the liquid crystal monitor 27 and the display device 50 are switched to the first notification screen, and the alarms of the driving unit 12 and the mobile communication terminal 5 are changed to the first notification screen. 1 Operates in the notification state.
  • the presence of an obstacle in the notification control range Rnc of the first detection range Rd1 for the tractor 1 can be notified to a user such as a passenger of the driving unit 12 or an administrator outside the vehicle.
  • the collision avoidance control unit 81b determines in the third position determination process that an obstacle exists in the deceleration control range Rdc of the first detection range Rd1
  • the collision avoidance control unit 81b performs the above-described second notification start command process (step #65). ..
  • a target vehicle speed calculation process is performed to obtain a target vehicle speed for collision avoidance in order to maintain the collision prediction time obtained in the third collision determination process at a set time (for example, 3 seconds) (step #66), and the obtained collision avoidance is performed.
  • a deceleration command process for instructing the vehicle speed control unit 23B to execute the automatic deceleration control based on the target vehicle speed for use is performed (step #67), and then the process proceeds to step #21.
  • the second notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the second notification screen as described above, and the alarms of the driving unit 12 and the mobile communication terminal 5 are changed to the first notification screen. 2 Operates in the notification state.
  • the vehicle speed control unit 23B can execute automatic deceleration control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the target vehicle speed for collision avoidance is performed, and the collision prediction time is reduced. It is maintained at the set time.
  • the vehicle speed of the tractor 1 can be reduced as the relative distance to the obstacle becomes shorter, and collision of the tractor 1 with the obstacle can be avoided.
  • the collision avoidance control unit 81b determines in the third position determination process that an obstacle is present in the stop control range Rsc of the first detection range Rd1, the collision avoidance control unit 81b performs the above-described third notification start command process and stop command process. (Steps #68 and 69), and then the process transits to Step #21. Accordingly, the third notification control can be executed in each of the display control units 23E and 51A. When the third notification control is executed, each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the third notification screen as described above, and the driving unit 12 and the notification devices of the mobile communication terminal 5 are set to the first notification screen. 3 Operates in the notification state.
  • the vehicle speed control unit 23B can execute automatic stop control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to zero speed is performed.
  • the tractor 1 can be stopped at the stage where the obstacle exists in the stop control range Rsc, and the collision of the tractor 1 with the obstacle can be reliably avoided.
  • the stop state of the tractor 1 is maintained by the automatic stop control until it is determined in step #22 that the presence of the obstacle is not detected in the first detection determination process.
  • the third collision avoidance process avoids the possibility that the tractor 1 that is automatically traveling by the automatic traveling control collides with an obstacle, and works by the automatic traveling until the presence of the obstacle is detected in the stop control range Rsc. Can continue. If it is determined in step #22 that the presence of the obstacle is not detected in the first detection determination process, the automatic restart of the tractor 1 by the automatic travel control is promptly performed by operating the restart button described above. It can be restarted.
  • the collision avoidance control unit 81b terminates the first notification end command process and the second notification control for instructing the respective display control units 23E and 51A to end the first notification control.
  • the fourth notification end command process for instructing the display control units 23E, 51A, the fifth notification end command process for instructing each display control unit 23E, 51A to end the fifth notification control described later, and the automatic deceleration control are completed.
  • Vehicle speed return command processing for instructing the vehicle speed control unit 23B to execute vehicle speed return control for returning the vehicle speed to the target vehicle speed included in the target route P.
  • the user can be notified that the obstacle is no longer present in the first detection range Rd1 for the tractor 1.
  • the tractor 1 is automatically stopped without being automatically stopped. The automatic traveling of the tractor 1 under the control can be continued.
  • the collision avoidance control unit 81b performs a virtual fourth collision determination process based on the vehicle speed detected by the vehicle speed sensor 28 (step #71), and the fourth collision.
  • the collision avoidance control unit 81b determines in the fourth position determination process that a virtual obstacle exists in the notification control range Rnc of the first detection range Rd1, the front surface of the front rider sensor 81 is dirty and the first detection is performed. Informs that it is difficult for the front rider sensor 81 to detect obstacles in the first detection range Rd1 due to the generation of floating matter in the range Rd1 or the sticking of foreign matter such as a vinyl bag on the sensor surface.
  • the fourth notification start command process for instructing the display control units 23E and 51A to execute the fourth notification control is performed (step #73), and then the process proceeds to step #21. As a result, the fourth notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the fourth notification screen for notifying that the obstacle detection accuracy of the front rider sensor 81 is deteriorated. Further, the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the fourth notification state in which the deterioration of the obstacle detection accuracy of the front rider sensor 81 is notified. As a result, it is possible to notify a user such as a passenger of the driving unit 12 or an administrator outside the vehicle that the obstacle detection accuracy of the front rider sensor 81 has deteriorated.
  • the collision avoidance control unit 81b determines in the fourth position determination process that a virtual obstacle exists in the deceleration control range Rdc of the first detection range Rd1, the collision detection accuracy of the front rider sensor 81 is reduced.
  • Fifth notification start command processing for instructing the respective display control units 23E and 51A to execute the fifth notification control that notifies execution of the automatic deceleration control is performed (step #74).
  • a target vehicle speed calculation process is performed to obtain a target vehicle speed for collision avoidance for maintaining the collision prediction time obtained in the fourth collision determination process at a set time (for example, 3 seconds) (step #75), and the obtained collision avoidance is performed.
  • a deceleration command process for instructing the vehicle speed control unit 23B to execute the automatic deceleration control based on the target vehicle speed for use is performed (step #76), and then the process proceeds to step #21.
  • the fifth notification control can be executed in each of the display control units 23E and 51A.
  • the display screens of the liquid crystal monitor 27 and the display device 50 are switched to the fifth notification screen for notifying the execution of the automatic deceleration control for the reason described above.
  • the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the fifth notification state that notifies the execution of the automatic deceleration control for the reason described above.
  • the automatic deceleration control is executed due to the decrease in the obstacle detection accuracy of the front rider sensor 81 caused by the dirt on the sensor surface of the front rider sensor 81, the generation of floating matter in the first detection range Rd1, and the like. Can inform the user.
  • the vehicle speed control unit 23B can execute automatic deceleration control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the target vehicle speed for collision avoidance is performed, and the collision prediction time is reduced. It is maintained at the set time. As a result, the vehicle speed of the tractor 1 can be reduced as the relative distance to the virtual obstacle becomes shorter, and the collision of the tractor 1 with an obstacle that may actually exist can be avoided.
  • the collision detection control unit 81b determines in the fourth position determination process that a virtual obstacle exists in the stop control range Rsc of the first detection range Rd1, the collision detection control unit 81b decreases the obstacle detection accuracy of the front rider sensor 81.
  • a sixth notification start command process for instructing the respective display control units 23E and 51A to execute the sixth notification control for notifying the execution of the automatic stop control is performed (step #77).
  • stop command processing for instructing the vehicle speed control unit 23B to execute the automatic stop control is performed (step #78). Accordingly, the sixth notification control can be executed in each of the display control units 23E and 51A.
  • the respective display screens of the liquid crystal monitor 27 and the display device 50 are switched to the sixth notification screen for notifying the execution of the automatic stop control for the reason described above.
  • the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the sixth notification state for notifying the execution of the automatic stop control for the reason described above.
  • the automatic stop control may be executed due to a decrease in the obstacle detection accuracy of the front rider sensor 81 caused by dirt on the sensor surface of the front rider sensor 81 or the generation of floating matter in the first detection range Rd1. Can inform the user.
  • the vehicle speed control unit 23B can execute automatic stop control, whereby the deceleration operation of the continuously variable transmission for reducing the vehicle speed to zero speed is performed. As a result, the tractor 1 can be stopped at the stage when the virtual obstacle exists in the stop control range Rsc.
  • the collision avoidance control unit 81b determines that the sensor surface of the front rider sensor 81 is dirty at the stage when the stop command process is performed, and notifies the sensor surface of the sensor stain notification control.
  • the dirt notification start command processing is executed to instruct the display control units 23E and 51A to execute (step #79).
  • the automatic traveling end command processing for instructing the automatic traveling control unit 23F to end the automatic traveling control is performed (step #80), and then the collision avoidance control is terminated.
  • the sensor stain notification control can be executed in each of the display control units 23E and 51A.
  • the display screens of the liquid crystal monitor 27 and the display device 50 are dirty on the sensor surface, such as "The sensor surface of the front rider sensor is dirty." The screen switches to the sensor dirt notification screen that informs you.
  • the automatic traveling control unit 23F ends the automatic traveling control, whereby the traveling mode is switched from the automatic traveling mode to the manual traveling mode.
  • the virtual fourth speed based on the vehicle speed.
  • the presence of a virtual obstacle in the stop control range Rsc is detected while avoiding the possibility that the tractor 1 that is automatically traveling by the automatic traveling control collides with an obstacle that may actually exist. During this time, the work by automatic driving can be continued. Further, it is possible to notify the user that the sensor surface of the front rider sensor 81 is dirty or that a foreign object is attached to the sensor surface, and it is possible to prompt the removal of dirt or attached matter.
  • collision avoidance control by the sonar control unit 83B of the sonar unit 83 will be described.
  • the collision avoidance control based on the left ultrasonic sensor 83A and the collision avoidance control based on the right ultrasonic sensor 83A have the same control procedure. Therefore, the collision avoidance control based on the left ultrasonic sensor 83A will be described below. Only the collision avoidance control will be described.
  • the sonar control unit 83B determines that an obstacle exists in the third measurement range Rm3 on the left side
  • the sonar control unit 83B displays execution of seventh notification control for notifying the presence of the obstacle in the third measurement range Rm3 on the left side.
  • the seventh notification start command process for instructing the control units 23E and 51A and the stop command process for instructing the vehicle speed control unit 23B to execute the above-described automatic stop control are performed. Accordingly, the seventh notification control can be executed in each of the display control units 23E and 51A.
  • each display screen of the liquid crystal monitor 27 and the display device 50 is switched to the seventh notification screen for notifying the existence of the obstacle in the third measurement range Rm3 on the left side.
  • the alarms of the driving unit 12 and the mobile communication terminal 5 operate in the seventh notification state for notifying the existence of the obstacle in the third measurement range Rm3 on the left side. As a result, it is possible to inform the user that an obstacle exists in the third measurement range Rm3 on the left side of the tractor 1.
  • the vehicle speed control unit 23B can execute automatic stop control. When the automatic stop control is executed, the deceleration operation of the continuously variable transmission for reducing the vehicle speed to the zero speed is performed. As a result, the tractor 1 can be stopped at the stage when the obstacle exists in the third measurement range Rm3 on the left side, and the collision of the tractor 1 with the obstacle can be reliably avoided.
  • the sonar control unit 83B determines that there is no obstacle in the third measurement range Rm3 on the left side after performing the seventh notification start command processing and the stop command processing, the sonar control unit 83B ends the seventh notification control.
  • a seventh notification end command process for commanding the display control units 23E and 51A is performed.
  • the seventh notification control can be ended in each of the display control units 23E and 51A, and the user can be notified that the obstacle no longer exists in the third measurement range Rm3 on the left side of the tractor 1.
  • the restart button is operated, the automatic traveling of the tractor 1 by the automatic traveling control can be promptly restarted. it can.
  • the configuration of the work vehicle can be variously changed.
  • the work vehicle may be configured as a semi-crawler specification including left and right crawlers instead of the left and right rear wheels 11.
  • the work vehicle may be configured as a full crawler specification including left and right crawlers instead of the left and right front wheels 10 and the left and right rear wheels 11.
  • the work vehicle may have a rear wheel steering specification in which the left and right rear wheels 11 function as steering wheels.
  • the work vehicle may be configured to have an electric specification including an electric motor instead of the engine 14.
  • the work vehicle may have a hybrid specification including the engine 14 and an electric motor for traveling.
  • the collision avoidance control units 81b and 82b may be included in the vehicle-mounted control unit 23.
  • the obstacle determination units 81a and 82a may be provided in the vehicle-mounted control unit 23 together with the collision avoidance control units 81b and 82b. Further, the obstacle determination units 81a and 82a may be configured to have a function as the collision avoidance control units 81b and 82b.
  • the collision avoidance system for a work vehicle is, for example, a passenger work vehicle such as a tractor, a riding mower, a rice transplanter, a combine, a truck, a snowplow, a wheel loader, and an unmanned mower. It can be applied to work vehicles.
  • a passenger work vehicle such as a tractor, a riding mower, a rice transplanter, a combine, a truck, a snowplow, a wheel loader, and an unmanned mower. It can be applied to work vehicles.
  • Vehicle speed sensor 81A Measuring unit (front rider sensor) 82A measurement unit (rear rider sensor) 81a Obstacle determination unit (front rider sensor) 82a Obstacle determination unit (rear rider sensor) 81b Collision avoidance control unit (front rider sensor) 82b Collision avoidance control unit (rear rider sensor) Rm1 first measurement range Rm2 second measurement range

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

障害物センサの誤検出に起因した衝突回避による作業効率の低下を防止する。作業車両用の衝突回避システムにおいて、測定範囲に存在する測距点ごとの距離値を測定する測定部(81A,82A)からの測定情報に基づいて障害物の存否を判定する障害物判定部(81a,82a)が、無効条件に適合する距離値を無効値として障害物の存否判定から除外し、障害物判定部(81a,82a)からの障害物情報に基づいて障害物との衝突を回避する衝突回避制御部(81b、82b)が、障害物判定部(81a,82a)にて障害物の存在が検知されているか否かを判定し、かつ、障害物に関する複数の距離値において無効値が発生したか否かを判定し、障害物判定部(81a,82a)にて障害物の存在が検知され、かつ、障害物に関する複数の距離値に無効値が発生した場合に、無効値を除いた有効な障害物との距離値に基づいて障害物との衝突を回避する。

Description

作業車両用の衝突回避システム
 本発明は、トラクタや乗用草刈機などの乗用作業車両、及び、無人草刈機などの無人作業車両に使用される作業車両用の衝突回避システムに関する。
 作業車両用の衝突回避システムにおいては、走行の障害となる障害物を検出する障害物センサとしてレーザスキャナ(ライダー)などを採用し、障害物センサが障害物を検出した場合に、障害物検出処理部が、障害物検出情報に基づいて車体の徐行や停止などの処理内容を決定し、決定された処理内容に基づいて、作業走行制御部などが車両走行機器などに制御信号を与えて作業車両の走行などを制御するように構成されたものがある(例えば特許文献1参照)。
特開2018-113937号公報
 レーザスキャナなどの障害物センサは、作業車両の自動走行による作業中に、その作業によって埃や粉塵などが浮遊物として舞い上がった場合や、センサ表面が泥などの付着によって汚れた場合などにおいては、その浮遊物や汚れなどを近距離の障害物として誤検出することがある。このような誤検出が生じると、作業車両の走行に支障を来たす障害物が存在していないにもかかわらず、近距離の障害物との衝突を回避するために、作業走行制御部が、障害物センサからの障害物検出情報に基づいて作業車両を急停止させることになる。その結果、作業車両の自動走行で作業を行う場合における作業効率の低下を招くことになる。
 この実情に鑑み、本発明の主たる課題は、障害物センサの誤検出に起因した衝突回避による作業効率の低下を防止する点にある。
 本発明の第1特徴構成は、作業車両用の衝突回避システムにおいて、
 車体から所定の測定範囲に存在する測距点群に向けて照射した測定光と当該測定光の反射光とに基づいて、少なくとも測距点ごとの多数の距離値を測定する測定部と、
 前記多数の距離値を含む前記測定部からの測定情報に基づいて障害物の存否を判定する障害物判定部と、
 前記障害物判定部からの前記障害物に関する情報に基づいて前記障害物との衝突を回避する衝突回避制御部とを有し、
 前記障害物判定部は、前記多数の距離値のうちの所定の無効条件に適合する距離値を無効値として前記障害物の存否判定から除外し、
 前記衝突回避制御部は、前記障害物判定部にて障害物の存在が検知されているか否かを判定し、かつ、前記多数の距離値に含まれた前記障害物に関する複数の距離値において前記無効値が発生したか否かを判定し、前記障害物判定部にて前記障害物の存在が検知されている状態において前記障害物に関する複数の距離値に前記無効値が発生した場合は、前記無効値を除いた有効な障害物との距離値に基づいて前記障害物との衝突を回避する点にある。
 本構成によれば、例えば、近距離に存在しながら反射強度が非常に弱いという埃や霧などの浮遊物の特徴、及び、至近距離に存在するという測定部での汚れの特徴などを考慮して、それらの特徴に応じた測定部からの距離や反射強度などを所定の無効条件として設定すれば、測定部からの多数の距離値に含まれた浮遊物や測定部の汚れなどに関する近距離や至近距離の距離値を無効値として障害物の存否判定から除外することができる。
 これにより、例えば、測定部の測定範囲に浮遊物が発生した場合や測定部が汚れた場合などにおいては、その浮遊物や測定部の汚れなどが、障害物判定部にて作業車両の走行に支障を来たす障害物として誤検知される虞を回避することができる。
 そして、障害物判定部にて前記障害物の存在が検知されている状態において、浮遊物や測定部の汚れなどが発生することで、障害物の一部が浮遊物や測定部の汚れなどで隠れた場合には、そのときに得られた障害物に関する複数の距離値においては、隠れた一部に対応する距離値が無効値になっていることから、衝突回避制御部は、この無効値を除いた現時点での他の距離値を有効な障害物との距離値とすることになる。又、障害物の全体が浮遊物や測定部の汚れなどで隠れた場合には、そのときに得られた障害物に関する全ての距離値が無効値になっていることから、衝突回避制御部は、無効値になる直前に得られていた過去の距離値を有効な障害物との距離値とすることになる。そして、衝突回避制御部は、それらの有効な障害物との距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
 その結果、障害物判定部が誤検知した障害物に対して衝突回避制御部が衝突回避を行うことによる作業効率の低下を防止しながら、作業車両が障害物に衝突する虞を回避することができる。
 本発明の第2特徴構成は、
 前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値でなければ前記最短距離値に基づいて前記障害物との衝突を回避する点にある。
 本構成によれば、浮遊物の発生や測定部の汚れなどに起因して、障害物に関する複数の距離値のうちの一部が無効値になったとしても、その無効値が障害物との最短距離値でなければ、衝突回避制御部は、障害物との最短距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
 その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物に関する複数の距離値のうちの一部が無効値になった場合においても、作業車両が障害物に衝突する虞を好適に回避することができる。
 本発明の第3特徴構成は、
 前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値であれば、前記最短距離値以外の有効な障害物との距離値から算出した最短距離値に基づいて前記障害物との衝突を回避する点にある。
 本構成によれば、浮遊物の発生や測定部の汚れなどに起因して障害物との最短距離値が無効値になったとしても、衝突回避制御部は、最短距離値が無効値になる前に得られた障害物に関する最短距離値と他の距離値との関係、及び、現時点において有効な障害物との距離値に基づいて、現時点における障害物との最短距離値を算出することができる。そして、算出した最短距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
 その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物との最短距離値が無効値になったとしても、作業車両が障害物に衝突する虞を回避することができる。
 本発明の第4特徴構成は、
 前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記障害物に関する複数の距離値の全てが前記無効値になった場合は、その直前の有効な障害物との距離値に基づいて前記障害物との衝突を回避する点にある。
 本構成によれば、浮遊物の発生や測定部の汚れなどに起因して、障害物に関する複数の距離値の全てが無効値になったとしても、衝突回避制御部は、全てが無効値になる直前に得られた有効な障害物との距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
 その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物に関する複数の距離値の全てが無効値になったとしても、作業車両が障害物に衝突する虞を回避することができる。
 本発明の第5特徴構成は、
 前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されていない状態において、前記測定範囲のうちの障害物検知対象範囲における前記無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、車速センサが検出する車速に基づいて前記障害物との衝突を回避する点にある。
 本構成によれば、浮遊物の発生や測定部の汚れなどに起因して前述した制限値超過状態が一定時間以上継続される状態は、障害物判定部による障害物の存否判定が困難な状態であることから、衝突回避制御部は、車速センサが検出する車速から仮想の障害物との相対速度を算出し、算出した相対速度に基づいて障害物との衝突を回避する。
 その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物判定部による障害物の存否判定が困難になったとしても、作業車両が障害物に衝突する虞を回避することができる。
作業車両用の自動走行システムの概略構成を示す図 各測定部の測定範囲などを示すトラクタの側面図 各測定部の測定範囲などを示すトラクタの平面図 自動走行用の目標経路の一例を示す図 作業車両用の自動走行システムの概略構成を示すブロック図 作業車両用の衝突回避システムの概略構成を示すブロック図 前ライダーセンサの距離画像における障害物の検知範囲と非検知範囲とを示す図 後ライダーセンサの距離画像における作業装置下降状態での障害物の検知範囲と非検知範囲とを示す図 後ライダーセンサの距離画像における作業装置上昇状態での障害物の検知範囲と非検知範囲とを示す図 障害物判定制御のフローチャート 測定部が測定した汚れや浮遊物などに関する測距点の距離値に対する無効条件の説明図 測定部が測定した微小物などに関する測距点の距離値に対する無効条件の説明図 障害物の位置特定に使用するグリッドマップGMに関する説明図 測定部が測定した測距点に障害物特定用の特徴点がある状態を示す説明図 測定部が測定した測距点に障害物特定用の特徴点がない状態を示す説明図 車体直近のグリッドに対する候補グリッド抽出処理に関する説明図 車体直近以外のグリッドに対する候補グリッド抽出処理に関する説明図 車体側の比較対象グリッドに測距点がないグリッドに対する候補グリッド抽出処理に関する説明図 障害物グリッド特定処理に関する説明図 障害物グリッド群の基準点算出処理に関する説明図 障害物グリッド群のペアリング処理に関する説明図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 衝突回避制御のフローチャート 第1衝突回避処理のフローチャート 第2衝突回避処理のフローチャート 第3衝突回避処理のフローチャート 第4衝突回避処理のフローチャート 障害物に関する複数の距離値に無効値がない状態の距離画像を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値である状態の距離画像の一例を示す図 無効値が障害物に関する複数の距離値の全てである状態の距離画像の一例を示す図 前ライダーセンサの第1検知範囲における無効値の割合が制限値を超えた状態の距離画像の一例を示す図 センサ汚れ報知画面の一例を示す図
 以下、本発明を実施するための形態の一例として、本発明に係る作業車両用の衝突回避システムを、作業車両の一例であるトラクタに適用した実施形態を図面に基づいて説明する。
 なお、本発明に係る作業車両用の衝突回避システムは、トラクタ以外の、例えば乗用草刈機、乗用田植機、コンバイン、運搬車、除雪車、ホイールローダ、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
 図1~3に示すように、本実施形態に例示されたトラクタ1は、その後部に3点リンク機構2を介して、作業装置の一例であるロータリ耕耘装置3が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1はロータリ耕耘仕様に構成されている。トラクタ1は、作業車両用の自動走行システムを使用することにより、作業地の一例である図4に示す圃場Aなどにおいて自動走行することができる。
 なお、トラクタ1の後部には、ロータリ耕耘装置3に代えて、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、散布装置、草刈装置、などの各種の作業装置を連結することができる。
 図5~6に示すように、自動走行システムには、トラクタ1に搭載された自動走行ユニット4と、自動走行ユニット4と無線通信可能に通信設定された無線通信機器の一例である携帯通信端末5とが含まれている。携帯通信端末5には、自動走行に関する各種の情報表示や入力操作などを可能にするマルチタッチ式の表示デバイス(例えば液晶パネル)50などが備えられている。
 なお、携帯通信端末5には、タブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。又、無線通信には、Wi-Fi(登録商標)などの無線LAN(Local Area Network)やBluetooth(登録商標)などの近距離無線通信などを採用することができる。
 図1~2、図5~6に示すように、トラクタ1には、駆動可能で操舵可能な左右の前輪10、駆動可能な左右の後輪11、搭乗式の運転部12を形成するキャビン13、コモンレールシステムを有する電子制御式のディーゼルエンジン(以下、エンジンと称する)14、エンジン14などを覆うボンネット15、エンジン14からの動力を変速する変速ユニット16、左右の前輪10を操舵する全油圧式のパワーステアリングユニット17、左右の後輪11を制動するブレーキユニット18、ロータリ耕耘装置3への伝動を断続する電子油圧制御式の作業クラッチユニット19、ロータリ耕耘装置3を昇降駆動する電子油圧制御式の昇降駆動ユニット20、ロータリ耕耘装置3をロール方向に駆動する電子油圧制御式のローリングユニット21、トラクタ1における各種の設定状態や各部の動作状態などを検出する各種のセンサやスイッチなどを含む車両状態検出機器22、及び、各種の制御部を有する車載制御ユニット23、などが備えられている。
 なお、エンジン14には、電子ガバナを有する電子制御式のガソリンエンジンなどを採用してもよい。又、パワーステアリングユニット17には、操舵用の電動モータを有する電動式を採用してもよい。
 図1~2に示すように、運転部12には、手動操舵用のステアリングホイール25と、搭乗者用の座席26と、各種の情報表示や入力操作などを可能にするマルチタッチ式の液晶モニタ27とが備えられている。図示は省略するが、運転部12には、アクセルレバーや変速レバーなどの操作レバー類、及び、アクセルペダルやクラッチペダルなどの操作ペダル類、などが備えられている。
 図示は省略するが、変速ユニット16には、エンジン14からの動力を変速する電子制御式の無段変速装置、及び、無段変速装置による変速後の動力を前進用と後進用とに切り換える電子油圧制御式の前後進切換装置、などが含まれている。無段変速装置には、静油圧式無段変速装置(HST:Hydro Static Transmission)よりも伝動効率が高い油圧機械式無段変速装置の一例であるI-HMT(Integrated Hydro-static Mechanical Transmission)が採用されている。前後進切換装置には、前進動力断続用の油圧クラッチと、後進動力断続用の油圧クラッチと、それらに対するオイルの流れを制御する電磁バルブとが含まれている。
 なお、無段変速装置には、I-HMTの代わりに、油圧機械式無段変速装置の一例であるHMT(Hydraulic Mechanical Transmission)、静油圧式無段変速装置、又は、ベルト式無段変速装置、などを採用してもよい。又、変速ユニット16には、無段変速装置の代わりに、複数の変速用の油圧クラッチとそれらに対するオイルの流れを制御する複数の電磁バルブとを有する電子油圧制御式の有段変速装置が含まれていてもよい。
 図示は省略するが、ブレーキユニット18には、左右の後輪11を個別に制動する左右のブレーキ、運転部12に備えられた左右のブレーキペダルの踏み込み操作に連動して左右のブレーキを作動させるフットブレーキ系、運転部12に備えられたパーキングレバーの操作に連動して左右のブレーキを作動させるパーキングブレーキ系、及び、左右の前輪10の設定角度以上の操舵に連動して旋回内側のブレーキを作動させる旋回ブレーキ系、などが含まれている。
 車両状態検出機器22は、トラクタ1の各部に備えられた各種のセンサやスイッチなどの総称である。車両状態検出機器22には、トラクタ1の車速を検出する車速センサ28(図6参照)をはじめ、エンジン14の出力回転数を検出する回転センサ、アクセルレバーの操作位置を検出するアクセルセンサ、変速レバーの操作位置を検出する変速用の第1位置センサ、前後進切り換え用のリバーサレバーの操作位置を検出する前後進切り換え用の第2位置センサ、及び、前輪10の操舵角を検出する舵角センサ、などが含まれている。
 図5~6に示すように、車載制御ユニット23には、エンジン14に関する制御を行うエンジン制御部23A、トラクタ1の車速や前後進の切り換えに関する制御を行う車速制御部23B、ステアリングに関する制御を行うステアリング制御部23C、ロータリ耕耘装置3などの作業装置に関する制御を行う作業装置制御部23D、液晶モニタ27などに対する表示や報知に関する制御を行う表示制御部23E、自動走行に関する制御を行う自動走行制御部23F、及び、圃場内に区分けされた走行領域に応じて生成された自動走行用の目標経路P(図4参照)などを記憶する不揮発性の車載記憶部23G、などが含まれている。各制御部23A~23Fは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各制御部23A~23Fは、CAN(Controller Area Network)を介して相互通信可能に接続されている。
 なお、各制御部23A~23Fの相互通信には、CAN以外の通信規格や次世代通信規格である、例えば、車載EthernetやCAN-FD(CAN with FLexible Data rate)などを採用してもよい。
 エンジン制御部23Aは、アクセルセンサからの検出情報と回転センサからの検出情報とに基づいて、エンジン回転数をアクセルレバーの操作位置に応じた回転数に維持するエンジン回転数維持制御、などを実行する。
 車速制御部23Bは、第1位置センサからの検出情報と車速センサ28からの検出情報などに基づいて、トラクタ1の車速が変速レバーの操作位置に応じた速度に変更されるように無段変速装置の作動を制御する車速制御、及び、第2位置センサからの検出情報に基づいて前後進切換装置の伝動状態を切り換える前後進切り換え制御、などを実行する。車速制御には、変速レバーが零速位置に操作された場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる減速停止処理が含まれている。
 作業装置制御部23Dには、PTOスイッチの操作などに基づいて作業クラッチユニット19の作動を制御する作業クラッチ制御、昇降スイッチの操作や高さ設定ダイヤルの設定値などに基づいて昇降駆動ユニット20の作動を制御する昇降制御、及び、ロール角設定ダイヤルの設定値などに基づいてローリングユニット21の作動を制御するローリング制御、などを実行する。PTOスイッチ、昇降スイッチ、高さ設定ダイヤル、及び、ロール角設定ダイヤルは、車両状態検出機器22に含まれている。
 トラクタ1には、トラクタ1の現在位置や現在方位などを測定する測位ユニット30が備えられている。測位ユニット30は、衛星測位システム(NSS:Navigation Satellite System)の一例であるGNSS(Global Navigation Satellite System)を利用してトラクタ1の現在位置と現在方位とを測定する衛星航法装置31、及び、3軸のジャイロスコープ及び3方向の加速度センサなどを有してトラクタ1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)32、などを有している。GNSSを利用した測位方法には、DGNSS(Differential GNSS:相対測位方式)やRTK-GNSS(Real Time Kinematic GNSS:干渉測位方式)などがある。本実施形態においては、移動体の測位に適したRTK-GNSSが採用されている。そのため、図1に示すように、圃場周辺の既知位置には、RTK-GNSSによる測位を可能にする基準局6が設置されている。
 図1、図5に示すように、トラクタ1と基準局6とのそれぞれには、測位衛星7(図1参照)から送信された電波を受信するGNSSアンテナ33,60、及び、トラクタ1と基準局6との間における測位情報を含む各情報の無線通信を可能にする通信モジュール34,61、などが備えられている。これにより、測位ユニット30の衛星航法装置31は、トラクタ側のGNSSアンテナ33が測位衛星7からの電波を受信して得た測位情報と、基準局側のGNSSアンテナ60が測位衛星7からの電波を受信して得た測位情報とに基づいて、トラクタ1の現在位置及び現在方位を高い精度で測定することができる。又、測位ユニット30は、衛星航法装置31と慣性計測装置32とを有することにより、トラクタ1の現在位置、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。
 このトラクタ1において、測位ユニット30の慣性計測装置32、GNSSアンテナ33、及び、通信モジュール34は、図1に示すアンテナユニット35に含まれている。アンテナユニット35は、キャビン13の前面側における上部の左右中央箇所に配置されている。そして、トラクタ1におけるGNSSアンテナ33の取り付け位置が、GNSSを利用してトラクタ1の現在位置などを測定するときの測位対象位置となっている。
 図5~6に示すように、携帯通信端末5には、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどを有する端末制御ユニット51、及び、トラクタ側の通信モジュール34との間における測位情報を含む各情報の無線通信を可能にする通信モジュール52、などが備えられている。端末制御ユニット51には、表示デバイス50などに対する表示や報知に関する制御を行う表示制御部51A、自動走行用の目標経路Pを生成する目標経路生成部51B、及び、目標経路生成部51Bが生成した目標経路Pなどを記憶する不揮発性の端末記憶部51C、などが含まれている。端末記憶部51Cには、目標経路Pの生成に使用する各種の情報として、トラクタ1の旋回半径や作業幅などの車体情報、及び、前述した測位情報から得られる圃場情報、などが記憶されている。圃場情報には、圃場Aの形状や大きさなどを特定する上において、トラクタ1を圃場Aの外周縁に沿って走行させたときにGNSSを利用して取得した圃場Aにおける複数の形状特定地点(形状特定座標)となる4つの角部地点Ap1~Ap4(図4参照)、及び、それらの角部地点Ap1~Ap4を繋いで圃場Aの形状や大きさなどを特定する矩形状の形状特定線AL、などが含まれている。
 目標経路生成部51Bは、車体情報に含まれたトラクタ1の旋回半径や作業幅、及び、圃場情報に含まれた圃場Aの形状や大きさ、などに基づいて目標経路Pを生成する。
 例えば、図4に示すように、矩形状の圃場Aにおいて、自動走行の開始地点p1と終了地点p2とが設定され、トラクタ1の作業走行方向が圃場Aの短辺に沿う方向に設定されている場合は、目標経路生成部51Bは、先ず、圃場Aを、前述した4つの角部地点Ap1~Ap4と矩形状の形状特定線ALとに基づいて、圃場Aの外周縁に隣接するマージン領域A1と、マージン領域A1の内側に位置する走行領域A2とに区分けする。
 次に、目標経路生成部51Bは、トラクタ1の旋回半径や作業幅などに基づいて、走行領域A2に、圃場Aの長辺に沿う方向に作業幅に応じた一定間隔をあけて並列に配置される複数の並列経路P1を生成するとともに、走行領域A2における各長辺側の外縁部に配置されて複数の並列経路P1を走行順に接続する複数の旋回経路P2を生成する。
 そして、走行領域A2を、走行領域A2における各長辺側の外縁部に設定される一対の非作業領域A2aと、一対の非作業領域A2aの間に設定される作業領域A2bとに区分けするとともに、各並列経路P1を、一対の非作業領域A2aに含まれる非作業経路P1aと、作業領域A2bに含まれる作業経路P1bとに区分けする。
 これにより、目標経路生成部51Bは、図4に示す圃場Aにおいてトラクタ1を自動走行させるのに適した目標経路Pを生成することができる。
 図4に示す圃場Aにおいて、マージン領域A1は、トラクタ1が走行領域A2の外周部を自動走行するときに、ロータリ耕耘装置3などが圃場Aに隣接する畦などの他物に接触することを防止するために、圃場Aの外周縁と走行領域A2との間に確保された領域である。各非作業領域A2aは、トラクタ1が圃場Aの畦際において現在の作業経路P1bから次の作業経路P1bに旋回移動するための畦際旋回領域である。
 図4に示す目標経路Pにおいて、各非作業経路P1aと各旋回経路P2は、トラクタ1が耕耘作業を行わずに自動走行する経路であり、前述した各作業経路P1bは、トラクタ1が耕耘作業を行いながら自動走行する経路である。各作業経路P1bの始端地点p3は、トラクタ1が耕耘作業を開始する作業開始地点であり、各作業経路P1bの終端地点p4は、トラクタ1が耕耘作業を停止する作業停止地点である。各非作業経路P1aは、トラクタ1が旋回経路P2にて旋回走行する前の作業停止地点p4と、トラクタ1が旋回経路P2にて旋回走行した後の作業開始地点p3とを、トラクタ1の作業走行方向で揃えるための位置合せ経路である。各並列経路P1と各旋回経路P2との各接続地点p5,p6のうち、各並列経路P1における終端側の接続地点p5はトラクタ1の旋回開始地点であり、各並列経路P1における始端側の接続地点p6はトラクタ1の旋回終了地点である。
 なお、図4に示す目標経路Pはあくまでも一例であり、目標経路生成部51Bは、トラクタ1の機種や作業の種類などに応じて異なる車体情報、及び、圃場Aに応じて異なる圃場Aの形状や大きさなどの圃場情報、などに基づいて、それらに適した種々の目標経路Pを生成することができる。
 目標経路Pは、車体情報や圃場情報などに関連付けされた状態で端末記憶部51Cに記憶されており、携帯通信端末5の表示デバイス50にて表示することができる。目標経路Pには、各並列経路P1におけるトラクタ1の目標車速、各旋回経路P2bにおけるトラクタ1の目標車速、各並列経路P1における前輪操舵角、及び、各旋回経路P2bにおける前輪操舵角、などが含まれている。
 端末制御ユニット51は、車載制御ユニット23からの送信要求指令に応じて、端末記憶部51Cに記憶されている圃場情報や目標経路Pなどを車載制御ユニット23に送信する。車載制御ユニット23は、受信した圃場情報や目標経路Pなどを車載記憶部23Gに記憶する。目標経路Pの送信に関しては、例えば、端末制御ユニット51が、トラクタ1が自動走行を開始する前の段階において、目標経路Pの全てを端末記憶部51Cから車載制御ユニット23に一挙に送信するようにしてもよい。又、端末制御ユニット51が、目標経路Pを所定距離ごとの複数の分割経路情報に分割して、トラクタ1が自動走行を開始する前の段階からトラクタ1の走行距離が所定距離に達するごとに、トラクタ1の走行順位に応じた所定数の分割経路情報を端末記憶部51Cから車載制御ユニット23に逐次送信するようにしてもよい。
 車載制御ユニット23において、自動走行制御部23Fには、車両状態検出機器22に含まれた各種のセンサやスイッチなどからの検出情報が、車速制御部23Bやステアリング制御部23Cなどを介して入力されている。これにより、自動走行制御部23Fは、トラクタ1における各種の設定状態や各部の動作状態などを監視することができる。
 自動走行制御部23Fは、搭乗者や管理者などのユーザにより、各種の自動走行開始条件を満たすための手動操作が行われてトラクタ1の走行モードが自動走行モードに切り換えられた状態において、携帯通信端末5の表示デバイス50が操作されて自動走行の開始が指令された場合に、測位ユニット30にてトラクタ1の現在位置や現在方位などを取得しながら目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。
 自動走行制御部23Fは、自動走行制御の実行中に、例えば、ユーザにより携帯通信端末5の表示デバイス50が操作されて自動走行の終了が指令された場合や、運転部12に搭乗しているユーザによってステアリングホイール25やアクセルペダルなどの手動操作具が操作された場合は、自動走行制御を終了するとともに走行モードを自動走行モードから手動走行モードに切り換える。このように自動走行制御が終了された後に自動走行制御を再開させる場合は、先ず、ユーザが運転部12に乗り込んで、トラクタ1の走行モードを自動走行モードから手動走行モードに切り換える。次に、各種の自動走行開始条件を満たすための手動操作を行ってから、トラクタ1の走行モードを手動走行モードから自動走行モードに切り換える。そして、この状態において、携帯通信端末5の表示デバイス50を操作して自動走行の開始を指令することで、自動走行制御を再開させることができる。
 自動走行制御部23Fによる自動走行制御には、エンジン14に関する自動走行用の制御指令をエンジン制御部23Aに送信するエンジン用自動制御処理、トラクタ1の車速や前後進の切り換えに関する自動走行用の制御指令を車速制御部23Bに送信する車速用自動制御処理、ステアリングに関する自動走行用の制御指令をステアリング制御部23Cに送信するステアリング用自動制御処理、及び、ロータリ耕耘装置3などの作業装置に関する自動走行用の制御指令を作業装置制御部23Dに送信する作業用自動制御処理、などが含まれている。
 自動走行制御部23Fは、エンジン用自動制御処理においては、目標経路Pに含まれた設定回転数などに基づいてエンジン回転数の変更を指示するエンジン回転数変更指令、などをエンジン制御部23Aに送信する。エンジン制御部23Aは、自動走行制御部23Fから送信されたエンジン14に関する各種の制御指令に応じてエンジン回転数を自動で変更するエンジン回転数変更制御、などを実行する。
 自動走行制御部23Fは、車速用自動制御処理においては、目標経路Pに含まれた目標車速に基づいて無段変速装置の変速操作を指示する変速操作指令、及び、目標経路Pに含まれたトラクタ1の進行方向などに基づいて前後進切換装置の前後進切り換え操作を指示する前後進切り換え指令、などを車速制御部23Bに送信する。車速制御部23Bは、自動走行制御部23Fから送信された無段変速装置や前後進切換装置などに関する各種の制御指令に応じて、無段変速装置の作動を自動で制御する自動車速制御、及び、前後進切換装置の作動を自動で制御する自動前後進切り換え制御、などを実行する。自動車速制御には、例えば、目標経路Pに含まれた目標車速が零速である場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる自動減速停止処理などが含まれている。
 自動走行制御部23Fは、ステアリング用自動制御処理においては、目標経路Pに含まれた前輪操舵角などに基づいて左右の前輪10の操舵を指示する操舵指令、などをステアリング制御部23Cに送信する。ステアリング制御部23Cは、自動走行制御部23Fから送信された操舵指令に応じて、パワーステアリングユニット17の作動を制御して左右の前輪10を操舵する自動操舵制御、及び、左右の前輪10が設定角度以上に操舵された場合に、ブレーキユニット18を作動させて旋回内側のブレーキを作動させる自動ブレーキ旋回制御、などを実行する。
 自動走行制御部23Fは、作業用自動制御処理においては、目標経路Pに含まれた作業開始地点p3に基づいてロータリ耕耘装置3の作業状態への切り換えを指示する作業開始指令、及び、目標経路Pに含まれた作業停止地点p4に基づいてロータリ耕耘装置3の非作業状態への切り換えを指示する作業停止指令、などを作業装置制御部23Dに送信する。作業装置制御部23Dは、自動走行制御部23Fから送信されたロータリ耕耘装置3に関する各種の制御指令に応じて、作業クラッチユニット19と昇降駆動ユニット20の作動を制御して、ロータリ耕耘装置3を作業高さまで下降させて作動させる自動作業開始制御、及び、ロータリ耕耘装置3を停止させて非作業高さまで上昇させる自動作業停止制御、などを実行する。
 つまり、前述した自動走行ユニット4には、パワーステアリングユニット17、ブレーキユニット18、作業クラッチユニット19、昇降駆動ユニット20、ローリングユニット21、車両状態検出機器22、車載制御ユニット23、測位ユニット30、及び、通信モジュール34、などが含まれている。そして、これらが適正に作動することにより、トラクタ1を目標経路Pに従って精度よく自動走行させることができるとともに、ロータリ耕耘装置3による耕耘を適正に行うことができる。
 図5~6に示すように、トラクタ1には、トラクタ1の周囲を測定して、その周囲に存在する障害物を検知する障害物検知ユニット80が備えられている。障害物検知ユニット80が検知する障害物には、圃場Aにて作業する作業者などの人物や他の作業車両、及び、圃場Aに既存の電柱や樹木などが含まれている。
 図1~3、図5~6に示すように、障害物検知ユニット80には、トラクタ1の前方側に設定された第1測定範囲Rm1又はトラクタ1の後方側に設定された第2測定範囲Rm2を測定対象とする前後2台のライダーセンサ(LiDAR Sensor:Light Detection and Ranging Sensor)81,82と、トラクタ1の左右両外側に設定された左右の第3測定範囲Rm3を測定対象とするソナーユニット83とが含まれている。各ライダーセンサ81,82は、測定光の一例であるレーザ光(例えば、パルス状の近赤外レーザ光)を使用して第1測定範囲Rm1又は第2測定範囲Rm2を測定する測定部81A,82Aと、測定部81A,82Aからの測定情報に基づいて障害物の存否判定などを行うライダー用制御部81B,82Bとを有している。ソナーユニット83は、左右の超音波センサ83Aと単一のソナー用制御部83Bとを有している。各ライダー用制御部81B,82B及びソナー用制御部83Bは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各ライダー用制御部81B,82B及びソナー用制御部83Bは、車載制御ユニット23にCANを介して相互通信可能に接続されている。
 各ライダーセンサ81,82においては、照射したレーザ光が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、各測定部81A,82Aが、ライダーセンサ81,82から各測距点までの直線距離を測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2の全体にわたって、レーザ光を高速で縦横に走査して、走査角ごとの測距点までの直線距離を順次測定することで、第1測定範囲Rm1又は第2測定範囲Rm2における各測距点までの距離を3次元で測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2の全体にわたってレーザ光を高速で縦横に走査したときに得られる各測距点からの反射光の強度(以下、反射強度と称する)を順次測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2における各測距点までの直線距離や各反射強度などをリアルタイムで繰り返し測定する。各ライダー用制御部81B,82Bは、各測定部81A,82Aが測定した各測距点までの直線距離や各反射強度などの測距点ごとの測定情報に基づいて距離画像を生成する。各ライダー用制御部81B,82Bは、測距点ごとの測定情報や生成した距離画像に基づいて、障害物の存否を判定する障害物判定制御を実行する障害物判定部81a,82aを有している。各ライダー用制御部81B,82Bは、障害物判定部81a,82aにて障害物が存在すると判定された場合に、障害物との衝突を回避する衝突回避制御を実行する衝突回避制御部81b,82bを有している。
 各ライダー用制御部81B,82Bは、生成した距離画像を車載制御ユニット23に出力する。車載制御ユニット23は、トラクタ側の表示制御部23Eや携帯通信端末側の表示制御部51Aからの送信要求指令に応じて、各ライダー用制御部81B,82Bからの距離画像を各表示制御部23E,51Aに送信する。これにより、各ライダー用制御部81B,82Bが生成した距離画像を、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示することができる。そして、この表示により、トラクタ1の前方側や後方側の状況をユーザに視認させることができる。
 なお、距離画像の表示に関しては、例えば、距離画像における遠近方向の距離を色分けして表示することが可能であり、この色分け表示によって遠近方向の視認性を高めることができる。
 図1~3に示すように、前後のライダーセンサ81,82は、トラクタ1の左右中心線上に配置されている。前後のライダーセンサ81,82のうち、前ライダーセンサ81は、キャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前ライダーセンサ81は、トラクタ1の左右中心線を対称軸とする車体前方側の所定範囲が測定部81Aによる第1測定範囲Rm1に設定されている。後ライダーセンサ82は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後ライダーセンサ82は、トラクタ1の左右中心線を対称軸とする車体後方側の所定範囲が測定部82Aによる第2測定範囲Rm2に設定されている。
 前後のライダーセンサ81,82は、変速ユニット16の前後進切換装置が前進伝動状態に切り換えられたトラクタ1の前進走行時には、その切り換えに連動して、前ライダーセンサ81が作動状態になり、後ライダーセンサ82が作動停止状態になる。又、変速ユニット16の前後進切換装置が後進伝動状態に切り換えられたトラクタ1の後進走行時には、その切り換えに連動して、前ライダーセンサ81が作動停止状態になり、後ライダーセンサ82が作動状態になる。
 図1~3、図5~6に示すように、ソナーユニット83は、左右の超音波センサ83Aによる超音波の送受信に基づいてソナー用制御部83Bが障害物の存否を判定する。ソナーユニット83は、発信した超音波が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、ソナー用制御部83Bが超音波センサ83Aから障害物までの距離を測定する。ソナー用制御部83Bは、障害物が存在すると判定した場合に障害物との衝突を回避する衝突回避制御を実行する。
 左右の超音波センサ83Aは、左右の前輪10と左右の後輪11との間に配置された左右の乗降ステップ24に車体横外向き姿勢で取り付けられている。これにより、左右の超音波センサ83Aは、車体横外側の所定範囲が第3測定範囲Rm3に設定されている。
 図3、図7~9に示すように、各ライダー用制御部81B,82Bは、各測定部81A,82Aの測定範囲Rm1,Rm2に対して、車体情報などに基づいて障害物の検知範囲Rd1,Rd2を制限するカット処理とマスキング処理とを施している。各ライダー用制御部81B,82Bは、カット処理においては、車載制御ユニット23との通信によってロータリ耕耘装置3を含む車体の最大左右幅(本実施形態ではロータリ耕耘装置3の左右幅)を取得し、この車体の最大左右幅に所定の安全率を乗じて障害物の検知対象幅Wdを設定する。そして、第1測定範囲Rm1及び第2測定範囲Rm2において、検知対象幅Wdから外れる左右の範囲をカット処理による第1非検知範囲Rnd1に設定して検知範囲Rd1,Rd2から除外する。各ライダー用制御部81B,82Bは、マスキング処理においては、第1測定範囲Rm1に対してトラクタ1の前端側が入り込む範囲、及び、第2測定範囲Rm2に対してロータリ耕耘装置3の後端側が入り込む範囲をマスキング処理による第2非検知範囲Rnd2に設定して検知範囲Rd1,Rd2から除外する。これにより、各ライダーセンサ81,82の障害物検知対象範囲が第1検知範囲Rd1と第2検知範囲Rd2とに制限されている。そして、この制限により、各ライダーセンサ81,82が、第1測定範囲Rm1又は第2測定範囲Rm2に入り込んでいるトラクタ1の前端側やロータリ耕耘装置3の後端側を障害物として誤検知する虞を回避している。
 なお、図7に示す第2非検知範囲Rnd2は、左右の前輪10やボンネット15が存在する車体の前部側に適した非検知範囲の一例である。図8に示す第2非検知範囲Rnd2は、車体の後部側においてロータリ耕耘装置3を作業高さまで下降させた作業状態に適した非検知範囲の一例である。図9に示す第2非検知範囲Rnd2は、車体の後部側においてロータリ耕耘装置3を退避高さまで上昇させた非作業状態に適した非検知範囲の一例である。車体後部側の第2非検知範囲Rnd2は、ロータリ耕耘装置3の昇降に連動して適正に切り換わる。
 図7~9に示すように、第1検知範囲Rd1、第2検知範囲Rd2、第1非検知範囲Rnd1、及び、第2非検知範囲Rnd2に関する情報は、前述した距離画像に含まれており、前述した距離画像とともに車載制御ユニット23に出力することができる。これにより、第1検知範囲Rd1、第2検知範囲Rd2、第1非検知範囲Rnd1、及び、第2非検知範囲Rnd2は、前述した距離画像とともに、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示することができる。液晶モニタ27及び表示デバイス50は、それらに対する所定の表示切り換え操作が行われた場合に、それらの表示画面を、第1非検知範囲Rnd1及び第2非検知範囲Rnd2の手動調整を可能する非検知範囲調整画面に切り換える。液晶モニタ27及び表示デバイス50は、その非検知範囲調整画面に対して調整用の入力操作が行われた場合に、その操作に応じて第1非検知範囲Rnd1又は第2非検知範囲Rnd2を調整する。つまり、第1非検知範囲Rnd1及び第2非検知範囲Rnd2は、液晶モニタ27又は表示デバイス50に対するユーザの入力操作によって任意に調整することができる。そして、このような調整操作が行われると、液晶モニタ27及び表示デバイス50に表示される距離画像においては、第1検知範囲Rd1又は第2検知範囲Rd2と、左右の第1非検知範囲Rnd1と、第2非検知範囲Rnd2とが、調整操作に応じて変化することから、ユーザによる第1非検知範囲Rnd1及び第2非検知範囲Rnd2の調整が行い易くなる。
 図3に示すように、各ライダーセンサ81,82の検知範囲Rd1,Rd2は、衝突予測時間が設定時間(例えば3秒)になる衝突判定処理に基づいて、ライダーセンサ81,82から衝突判定処理の判定基準位置までの範囲に設定される停止制御範囲Rscと、判定基準位置から減速開始位置までの範囲に設定される減速制御範囲Rdcと、減速開始位置からライダーセンサ81,82の測定限界位置までの範囲に設定される報知制御範囲Rncとに区画される。判定基準位置は、ロータリ耕耘装置3を含む車体の前端又は後端から車体前後方向に一定距離L(例えば2000mm)離れた位置に設定されている。
 図1、図5~6に示すように、トラクタ1には、その前方側と後方側とを撮像範囲とする前後2台のカメラ85,86が備えられている。前カメラ85は、前ライダーセンサ81と同様に、キャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。後カメラ86は、後ライダーセンサ82と同様に、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。各カメラ85,86は、車載制御ユニット23にCANを介して相互通信可能に接続されている。これにより、各カメラ85,86の撮像画像を、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示させることができる。その結果、ユーザなどにトラクタ1の周囲の状況を容易に視認させることができる。
 以下、図10に示すフローチャート、及び、図11~28に基づいて、各ライダー用制御部81B,82Bの障害物判定部81a,82aによる障害物判定制御について説明する。
 なお、前ライダーセンサ81の障害物判定部81aによる障害物判定制御と、後ライダーセンサ82の障害物判定部82aによる障害物判定制御とは、制御手順が同じであることから、以下には、前ライダーセンサ81の障害物判定部81aによる障害物判定制御についてのみ説明する。
 障害物判定部81aは、測定部81Aが測定する第1測定範囲Rm1(図2~3参照)の全体における測距点ごとの測定情報を取得する測定情報取得処理を行う(ステップ#1)。
 ここで取得する測定情報には、前ライダーセンサ81から測距点までの直線距離とレーザ光の反射強度とが含まれている。この測定情報取得処理には、前ライダーセンサ81の起動時に得られる各測定情報の画素位置とレーザ光の走査角とに基づいて、各測定情報を測距点に対応する画素位置に配置し、所定区域内の各画素位置に配置した測定情報を所定区域ごとの点群情報として格納する点群情報取得処理が含まれている。
 なお、測定情報取得処理において、例えば、測距対象箇所が濡れていることなどに起因して、測距対象箇所からの反射光が得られなかった場合は、その測距対象箇所に対応する走査角(画素位置)には測距点がなかったことになる。そして、このような測距点のない画素位置からなる所定区域の点群情報は、測距点なしの点群情報として格納される。各測距点は、ライダー制御部811が生成する距離画像の各画素に対応している。
 障害物判定部81aは、前述した直線距離と画素位置と走査角、及び、前ライダーセンサ81の取り付け角度に基づいて、各測距点の座標を取得する座標変換処理を行う(ステップ#2)。
 この座標変換処理で取得する各測距点の座標には、トラクタ1の左右方向に沿うX方向での測距点の位置を示すX座標と、トラクタ1の前後方向に沿うY方向での測距点の位置を示すY座標と、トラクタ1の上下方向に沿うZ方向での測距点の位置を示すZ座標とが含まれている。この座標変換処理には、前述したカット処理とマスキング処理とに基づいて、左右の第1非検知範囲Rnd1に属する各測距点の測定情報と、第2非検知範囲Rnd2に属する各測距点の測定情報とを、障害物の検知に使用する障害物検知対象情報から除外する非検知範囲情報除外処理が含まれている。
 障害物判定部81aは、障害物検知対象情報に設定された各測距点の測定情報に基づいて、それらの測距点の距離値が無効条件に適合するか否かを判定し、無効条件に適合する距離値を無効値として障害物の存否判定から除外する無効値除外処理を行う(ステップ#3~6)。
 具体的には、障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1(例えば300mm)以下になる測距点(図11参照)の距離値を無効値とする第1無効処理を行う(ステップ#3)。
 この第1無効処理においては、前ライダーセンサ81からの至近距離に存在するという前ライダーセンサ81におけるセンサ表面の汚れの特徴を利用して、その特徴を有する測距点の距離値を無効値としている。これにより、センサ表面の汚れに関する測距点の距離値が障害物の存否判定に使用されることを防止している。
 障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1から第2設定距離L2(例えば2000mm)の間であり、かつ、反射強度が設定値V以上になる測距点(図11参照)の距離値を無効値とする第2無効処理を行う(ステップ#4)。
 これにより、例えば、ビニール袋などの反射強度が高くなる異物によって前ライダーセンサ81のセンサ表面が覆われた場合に、その異物に関する測距点の距離値が障害物の存否判定に使用されることを防止している。
 障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1から第2設定距離L2の間であり、かつ、反射強度が設定値V未満になる測距点の距離値を無効値とする第3無効処理を行う(ステップ#5)。
 この第3無効処理においては、近距離に存在しながら反射強度が非常に弱いという埃や霧などの浮遊物の特徴を利用して、その特徴を有する測距点の距離値を無効値としている。これにより、浮遊物に関する測距点の距離値が障害物の存否判定に使用されることを防止している。
 なお、埃や霧などの浮遊物の発生状態は、気温、湿度、天候などの環境条件に影響されることから、第3無効処理に使用する判定用の設定距離L1,L2や設定値Vに関しては、環境条件に応じた設定変更を可能にすることが好ましい。
 障害物判定部81aは、無効値除外処理の一つとして、周囲の複数の測距点と比較して直線距離が極端に短くなる測距点の距離値を無効値とする第4無効処理を行う(ステップ#6)。
 この第4無効処理においては、図12に示すように、選別対象の測距点Dxとその周囲の隣接する各測距点Dとのそれぞれの直線距離を比較し、周囲の各測距点Dのうち、選別対象の測距点Dxとの直線距離の差分が設定範囲内となる測距点の数量を求める。そして、その数量が設定数(例えば2つ)未満である場合に、選別対象の測距点Dxが微小物やノイズなどに関する単独の測距点であると判定して、この測距点の距離値を無効値とする。これにより、虫や雨滴などの微小物やノイズなどに関する測距点の距離値が障害物の存否判定に使用されることを防止している。
 障害物判定部81aは、上記の無効値除外処理にて距離値が無効値となった測距点に関する情報(以下、無効測距点情報と称する)を衝突回避制御部81bに送信する無効情報送信処理を行う(ステップ#7)。
 障害物判定部81aは、障害物の位置を特定するのに使用するグリッドマップGM(図13参照)を生成するグリッドマップ生成処理(ステップ#8)を行う。
 図13に示すように、グリッドマップGMは、前ライダーセンサ81が測定する第1測定範囲Rm1を含む所定範囲を所定の分解能で分割することで得られた多数のグリッドGを有している。グリッドマップGMの具体例としては、例えば、その範囲を、トラクタ1の左右中心線を基準にした左右の角度範囲が90度で、かつ、前ライダーセンサ81からの直線距離が15000mmとなる扇状の範囲とした上で、左右方向の角度分解能を2度とし、前ライダーセンサ81からの距離分解能を250mmとすることなどが考えられる。
 グリッドマップ生成処理には、前ライダーセンサ81が第1測定範囲Rm1の全域にわたってレーザ光を走査させる1周期ごとに、前述した点群情報取得処理で取得した各点群情報を、それらのX,Y座標に基づいて、多数のグリッドGのうちの対応するグリッドGに登録する点群情報登録処理と、各グリッドGの点群情報に含まれた複数の測距点のZ座標から、それぞれのグリッドGにおいて最も高い高さ情報を特定し、特定したそれぞれの高さ情報をグリッドGごとの高さ情報として登録するグリッド高さ登録処理とが含まれている。点群情報登録処理が終了すると、グリッドマップGMのうちの第1測定範囲Rm1に対応する範囲が点群情報登録範囲GMpとして確定される。
 なお、点群情報登録処理において、測距点のない点群情報が登録されたグリッドGは測距点なしのグリッドとなる。
 障害物判定部81aは、点群情報登録範囲GMpのうちの第1検知範囲Rd1に対応する抽出対象範囲に対して障害物特定用の特徴点を抽出する特徴点抽出処理を行う(ステップ#9)。
 障害物判定部81aは、車体に対する直近の測距点から離れる方向の順に特徴点抽出処理を行う。障害物判定部81aは、特徴点抽出処理においては、図14~15に示すように、先ず、基準となる測距点D1と、この測距点D1から離れる方向に連続する2つの測距点D2,D3との合計3つの測距点D1~D3を特徴点抽出対象として選択する。次に、選択した3つの測距点を、車体から近い順に、第1測距点D1、第2測距点D2、第3測距点D3とし、第1測距点D1と第2測距点D2との高さ方向での第1角度θ1と、第2測距点D2と第3測距点D3との高さ方向での第2角度θ2とを求める。そして、図14に示すように、第1角度θ1と第2角度θ2との平均値が45度以上になる場合に第2測距点D2と第3測距点D3とを障害物特定用の特徴点として格納する。又、図15に示すように、第2角度θ2がマイナス値になることなどにより、第1角度θ1と第2角度θ2との平均値が45度未満になる場合は特徴点なしとする。
 障害物判定部81aは、抽出対象範囲の各グリッドGから障害物を示す可能性がある点群情報が登録された候補グリッドを抽出する候補グリッド抽出処理を行う(ステップ#10)。
 障害物判定部81aは、車体に対する左側直近のグリッドG(グリッドマップGM上の左下のグリッドG)から右の順に候補グリッド抽出処理を行う。
 障害物判定部81aは、候補グリッド抽出処理においては、抽出対象のグリッドGxが車体に対する直近のグリッドGである間は、図16に示すように、抽出対象のグリッドGxとその左右に隣接するグリッドGとの合計3つの高さ情報を比較し、抽出対象のグリッドGxの高さ情報よりも設定値(例えば100mm)以上低い高さ情報を有するグリッドが複数ある場合に、抽出対象のグリッドGxを候補グリッドとする。その後、抽出対象のグリッドGxが車体に対する直近以外のグリッドGになると、図17に示すように、抽出対象のグリッドGxと、その左右に隣接するグリッドGと、それらの車体側に隣接する3つのグリッドGとの合計6つグリッドGの高さ情報を比較し、抽出対象のグリッドGxの高さ情報よりも所定値以上(例えば100mm)低い高さ情報を有するグリッドが複数ある場合に、抽出対象のグリッドGxを候補グリッドとする。
 なお、図18に示すように、抽出対象のグリッドGxによっては、その車体側に隣接する比較対象のグリッドGが測距点(高さ情報)のないグリッドである場合があり、このような場合には、その測距点のない比較対象のグリッドよりも更に車体側で測距点を有するグリッドGの高さ情報を、比較対象のグリッドの高さ情報とした上で高さ情報の比較を行う。又、測距点のない比較対象のグリッドよりも更に車体側の全てのグリッドGが測距点のないグリッドである場合は、予め、前ライダーセンサ81の取り付け高さ位置から求めた、地表面から任意高さ(例えば100mm)の位置に設定した高さ位置を、比較対象のグリッドの高さ情報とした上で高さ情報の比較を行う。
 障害物判定部81aは、候補グリッド抽出処理にて抽出した各候補グリッドから障害物を示す障害物グリッドGo(図19参照)を特定する障害物グリッド特定処理を行う(ステップ#11)。
 障害物判定部81aは、障害物グリッド特定処理においては、各候補グリッドのうち、前述した障害物特定用の特徴点を有する点群情報が存在する候補グリッドを障害物グリッドGoとして特定する。
 障害物判定部81aは、特定した複数の障害物グリッドGoのうち、連続する障害物グリッド群Og(図19参照)を一つの障害物としてグループ化して当該障害物グリッド群Ogの各障害物グリッドGoに同じ番号を付けるラベリング処理を行う(ステップ#12)。
 これにより、グループごとの各障害物グリッドGoが有する点群情報を同一の障害物を示す障害物情報として格納することができ、この障害物情報から障害物の大きさや位置などを特定することができる。
 障害物判定部81aは、障害物グリッド群Ogの時系列での同一性の判定を可能にする基準点Or(図19~20参照)を求める基準点算出処理を行う(ステップ#13)。
 障害物判定部81aは、基準点算出処理においては、図20に示すように、障害物グリッド群Ogの基準点Orに使用する障害物グリッド群Ogの重心を求める。障害物判定部81aは、障害物グリッド群Ogにおける全ての障害物グリッドGoのX軸方向(トラクタ1の左右方向)での原点0からの位置を加算し、この加算で得た値を障害物グリッド群Ogのグリッド数で除算し、この除算で得た値の四捨五入後の整数を障害物グリッド群Ogにおける重心のX位置とする。ライダー制御部811は、障害物グリッド群Ogにおける全ての障害物グリッドGoのY軸方向(トラクタ1の前後方向)での原点0からの位置を加算し、この加算で得た値を障害物グリッド群Ogのグリッド数で除算し、この除算で得た値の四捨五入後の整数を障害物グリッド群Ogにおける重心のY位置とする。
 障害物判定部81aは、測定部81Aが第1測定範囲Rm1の全域にわたってレーザ光を走査させる1周期ごとに前述した一通りの処理を行い、一通りの処理で得た情報の登録などが行われた後のグリッドマップGMをフレームF(図22~28参照)として順次格納するフレーム格納処理を行う(ステップ#14)。
 障害物判定部81aは、今回検知した障害物グリッド群Ogと過去に検知した障害物グリッド群Ogとを紐付けて、障害物グリッド群Ogの時系列での同一性の判定を可能にするペアリング処理を行う(ステップ#15)。
 障害物判定部81aは、ペアリング処理においては、過去に検知した障害物グリッド群Ogの基準点Orに対して、今回検知した障害物グリッド群Ogの基準点Orの変位量が設定範囲内であれば、同一の障害物グリッド群Ogとして紐付けする。
 具体的には、障害物判定部81aは、図21に示すように、今回の1つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第1設定範囲R1内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の1つ前に検知した障害物グリッド群Ogの基準点Orが第1設定範囲R1内になければ、今回の2つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第2設定範囲R2(第1設定範囲R1よりも大きい範囲)内にあるか否かを判定する。第2設定範囲R2内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の2つ前に検知した障害物グリッド群Ogの基準点Orが第2設定範囲R2内になければ、今回の3つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第3設定範囲R3(第2設定範囲R2よりも大きい範囲)内にあるか否かを判定する。第3設定範囲R3内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の3つ前に検知した障害物グリッド群Ogの基準点Orが第3設定範囲R3内になければ、同一の障害物グリッド群Ogとして紐付けする障害物グリッド群Ogがないと判定する。
 なお、前述した設定範囲R1~R3内に複数の障害物グリッド群Ogの基準点Orが存在する場合は、今回検知した障害物グリッド群Ogの基準点Orに最も近い基準点Orを有する障害物グリッド群Ogを今回検知した障害物グリッド群Ogと紐付けする。
 障害物判定部81aは、直近に連続して格納した複数のフレームFから障害物の存否を判定する障害物判定処理を行う(ステップ#16)。
 障害物判定部81aは、障害物判定処理においては、直近に連続して格納した複数のフレームFのうち、最新のフレームFを含む所定数以上のフレームFにおいて紐付けされた障害物グリッド群Ogの基準点Orが存在している場合に、障害物の存在を検知したと判定する。
 ちなみに、障害物判定部81aが障害物の存在を検知したと判定する場合の具体例としては、例えば、図22~24に示すように、直近に連続して格納した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を含む3つ以上のフレームFにおいて同一のグリッドGに障害物グリッド群の基準点Orが存在している場合、図25~27に示すように、前述した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を含む3つ以上のフレームFにおいて連続する位置関係のグリッドGに障害物グリッド群の基準点Orが存在している場合、及び、図28に示すように、前述した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を除いた4つのフレームF(t-4)~フレームF(t-1)において障害物グリッド群の基準点Orが存在していた場合、などを挙げることができる。
 なお、障害物判定部81aは、図28に例示した場合においては、最新の1つ前のフレームF(t-1)において障害物グリッド群の基準点Orが存在していたグリッドGを、最新のフレームF(t)において障害物グリッド群の基準点Orが存在していたグリッドGとする。
 障害物判定部81aは、障害物の存在を検知した場合に、その検知情報や障害物に対する測距点ごとの距離値などの障害物に関する情報を衝突回避制御部81bに送信する障害物情報送信処理を行う(ステップ#17)。
 次に、図29~33に示すフローチャート、及び、図34~41に基づいて、各ライダー用制御部81B,82Bの衝突回避制御部81b,82bによる衝突回避制御について説明する。
 なお、前ライダーセンサ81の衝突回避制御部81bによる衝突回避制御と、後ライダーセンサ82の衝突回避制御部82bによる衝突回避制御とは、制御手順が同じであることから、以下には、前ライダーセンサ81の衝突回避制御部81bによる衝突回避制御についてのみ説明する。
 図29に示すように、衝突回避制御部81bは、障害物判定部81aからの無効測距点情報や障害物に関する情報、及び、車速センサ28が検出する車速などを取得する情報取得処理を行い(ステップ#21)、取得した障害物に関する情報から障害物判定部81aにて障害物の存在が検知されているか否かを判定する第1検知判定処理を行う(ステップ#22)。
 衝突回避制御部81bは、第1検知判定処理にて障害物の存在が検知されていると判定した場合(Yesの場合)は、前回に同一の障害物の存在が検知されているか否かを判定する第2検知判定処理を行い(ステップ#23)、第2検知判定処理にて同一の障害物の存在が検知されていると判定した場合(Yesの場合)は、取得した無効測距点情報に基づいて、前述した無効値が障害物との最短距離値を含むか否かを判定する第1無効値判定処理を行い(ステップ#24)、第1無効値判定処理にて無効値が最短距離値を含むと判定した場合(Yesの場合)は、障害物に関する複数の距離値の全てが無効値になったか否かを判定する第2無効値判定処理を行う(ステップ#25)。
 衝突回避制御部81bは、第2検知判定処理にて同一の障害物の存在が検知されていないと判定した場合(Noの場合)、及び、第1無効値判定処理にて無効値が最短距離値ではないと判定した場合(Noの場合)は、最短距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第1衝突回避処理に遷移する(ステップ#26)。
 衝突回避制御部81bは、第2無効値判定処理にて障害物に関する複数の距離値の全てが無効値になったのではないと判定した場合(Noの場合)は、最短距離値以外の有効な障害物との距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第2衝突回避処理に遷移する(ステップ#27)。又、第2無効値判定処理にて障害物に関する複数の距離値の全てが無効値になったと判定した場合(Yesの場合)は、全ての距離値が無効値になる直前の有効な障害物との距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第3衝突回避処理に遷移する(ステップ#28)。
 衝突回避制御部81bは、第1検知判定処理にて障害物の存在が検知されていないと判定した場合(Noの場合)は、いずれかの衝突回避処理(後述する第4衝突回避処理を含む)が実行中か否かを判定する実行判定処理を行い(ステップ#29)、実行中と判定した場合(Yesの場合)は、実行中の衝突回避処理を終了させる衝突回避終了処理を行い(ステップ#30)、その後、ステップ#21に遷移する。一方、実行中ではないと判定した場合(Noの場合)は、前ライダーセンサ81による第1測定範囲Rm1のうちの第1検知範囲Rd1(障害物検知対象範囲)における無効値の割合が制限値(例えば第1検知範囲Rd1の50%)を超えて、この制限値超過状態が一定時間(例えば0.5秒)以上継続されたか否かを判定する第3無効値判定処理を行う(ステップ#31)。
 衝突回避制御部81bは、第3無効値判定処理にて制限値超過状態が一定時間以上継続されたと判定した場合(Yesの場合)は、車速センサ28が検出する車速に基づいて障害物との衝突を回避する第4衝突回避処理に遷移し(ステップ#32)、又、制限値超過状態が一定時間以上継続されなかったと判定した場合(Noの場合)は、ステップ#21に遷移する。
 ちなみに、無効値が最短距離値ではない状態とは、例えば、図34に示すように、前ライダーセンサ81のセンサ表面に汚れなどが無く、かつ、第1検知範囲Rd1にて埃や霧などの浮遊物が発生していない状態、及び、図35~37に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物90の発生などにより、障害物Oの一部が汚れや浮遊物90などによって隠れているが、障害物Oにおいて前ライダーセンサ81から最も近い最接近測距点Opが隠れていない状態、などのように、前ライダーセンサ81による最接近測距点Opの測定が可能な状態である。
 無効値が最短距離値である状態とは、図38に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物Oの最接近測距点Opが汚れや浮遊物などによって隠れていて、前ライダーセンサ81による最接近測距点Opの測定が不可能であるが、障害物Oにおける他の測距点の測定が可能な状態である。
 障害物に関する複数の距離値の全てが無効値である状態とは、図39に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物Oの全体が汚れや浮遊物などによって隠れていることで、前ライダーセンサ81による障害物Oの全ての測距点の測定が不可能な状態である。
 制限値超過状態とは、図40に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、前ライダーセンサ81による第1検知範囲Rd1での障害物Oの検知が困難な状態である。
 図30に示すように、衝突回避制御部81bは、第1衝突回避処理においては、障害物との最短距離値から算出した障害物との相対速度に基づく第1衝突判定処理を行い(ステップ#41)、第1衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第1位置判定処理を行う(ステップ#42)。
 衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、報知制御範囲Rncでの障害物の存在を報知する第1報知制御の実行を車載制御ユニット23の表示制御部23Eと端末制御ユニット51の表示制御部51Aとに指令する第1報知開始指令処理を行い(ステップ#43)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、トラクタ1の液晶モニタ27と携帯通信端末5の表示デバイス50との各表示画面が、報知制御範囲Rncでの障害物の存在を報知する第1報知画面に切り換わる。又、運転部12及び携帯通信端末5に備えられたブザーや報知ランプなどの報知器が、報知制御範囲Rncでの障害物の存在を報知する第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
 衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、減速制御範囲Rdcでの障害物の存在を報知する第2報知制御の実行を各表示制御部23E,51Aに指令する第2報知開始指令処理を行う(ステップ#44)。又、第1衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#45)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#46)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、減速制御範囲Rdcでの障害物の存在を報知する第2報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、減速制御範囲Rdcでの障害物の存在を報知する第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動減速制御を実行させることができる。自動減速制御が実行されると、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
 衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、停止制御範囲Rscでの障害物の存在を報知する第3報知制御の実行を各表示制御部23E,51Aに指令する第3報知開始指令処理を行う(ステップ#47)。又、自動停止制御の実行を車速制御部23Bに指令する停止指令処理を行い(ステップ#48)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、停止制御範囲Rscでの障害物の存在を報知する第3報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、停止制御範囲Rscでの障害物の存在を報知する第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動停止制御を実行させることができる。自動停止制御が実行されると、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
 そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
 つまり、障害物との最短距離値に基づく第1衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を好適に回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
 又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、液晶モニタ27と表示デバイス50の各表示画面に表示されている再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
 図31に示すように、衝突回避制御部81bは、第2衝突回避処理においては、最短距離値以外の有効な障害物との距離値に基づいて、この距離値の前回の値と前回の最短距離値との差から、現時点での障害物との最短距離値を算出する最短距離値算出処理を行い(ステップ#51)、算出した最短距離値から求められる障害物との相対速度に基づく第2衝突判定処理を行い(ステップ#52)、第2衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第2位置判定処理を行う(ステップ#53)。
 衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、前述した第1報知開始指令処理を行い(ステップ#54)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第1報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
 衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、前述した第2報知開始指令処理を行う(ステップ#55)。又、第2衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#56)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#57)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第2報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
 衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、前述した第3報知開始指令処理と停止指令処理とを行い(ステップ#58,59)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第3報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
 そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
 つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物との最短距離値が無効値になったとしても、算出した最短距離値に基づく第2衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
 又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、前述した再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
 図32に示すように、衝突回避制御部81bは、第3衝突回避処理においては、障害物に関する全ての距離値が無効値になる直前の障害物との相対速度を取得する相対速度取得処理を行い(ステップ#61)、取得した障害物との相対速度に基づく第3衝突判定処理を行い(ステップ#62)、第3衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第3位置判定処理を行う(ステップ#63)。
 衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、前述した第1報知開始指令処理を行い(ステップ#64)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第1報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
 衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、前述した第2報知開始指令処理を行う(ステップ#65)。又、第3衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#66)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#67)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第2報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
 衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、前述した第3報知開始指令処理と停止指令処理とを行い(ステップ#68,69)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第3報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
 そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
 つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物に関する全ての距離値が無効値になったとしても、その直前に取得した障害物との相対速度に基づく第3衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
 又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、前述した再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
 衝突回避制御部81bは、ステップ#30の衝突回避終了処理においては、第1報知制御の終了を各表示制御部23E,51Aに指令する第1報知終了指令処理、第2報知制御の終了を各表示制御部23E,51Aに指令する第2報知終了指令処理、第3報知制御の終了を各表示制御部23E,51Aに指令する第3報知終了指令処理、後述する第4報知制御の終了を各表示制御部23E,51Aに指令する第4報知終了指令処理、後述する第5報知制御の終了を各表示制御部23E,51Aに指令する第5報知終了指令処理、及び、自動減速制御を終了して車速を目標経路Pに含まれた目標車速まで復帰させる自動車速復帰制御の実行を車速制御部23Bに指令する車速復帰指令処理を行う。
 これにより、トラクタ1に対する第1検知範囲Rd1に障害物が存在しなくなったことをユーザに知らせることができる。
 又、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間において、第1検知範囲Rd1において障害物の存在が検知されなくなった場合には、トラクタ1を自動停止させることなく、自動走行制御によるトラクタ1の自動走行を継続することができる。
 図33に示すように、衝突回避制御部81bは、第4衝突回避処理においては、車速センサ28が検出する車速に基づいて仮想の第4衝突判定処理を行い(ステップ#71)、第4衝突判定処理の判定結果に基づいて第1検知範囲Rd1における仮想の障害物の存在位置を判定する第4位置判定処理を行う(ステップ#72)。
 衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生、あるいは、センサ表面へのビニール袋などの異物の張り付きなどにより、前ライダーセンサ81による第1検知範囲Rd1での障害物の検知が困難な状態であることを報知する第4報知制御の実行を各表示制御部23E,51Aに指令する第4報知開始指令処理を行い(ステップ#73)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいて第4報知制御を実行させることができる。第4報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前ライダーセンサ81での障害物検知精度の低下を報知する第4報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前ライダーセンサ81での障害物検知精度の低下を報知する第4報知状態で作動する。その結果、前ライダーセンサ81での障害物検知精度の低下を運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
 衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81での障害物検知精度の低下による自動減速制御の実行を報知する第5報知制御の実行を各表示制御部23E,51Aに指令する第5報知開始指令処理を行う(ステップ#74)。又、第4衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#75)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#76)、その後、ステップ#21に遷移する。
 これにより、各表示制御部23E,51Aにおいては第5報知制御を実行させることができる。第5報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前述した理由による自動減速制御の実行を報知する第5報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前述した理由による自動減速制御の実行を報知する第5報知状態で作動する。その結果、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などに起因した前ライダーセンサ81での障害物検知精度の低下によって自動減速制御が実行されることをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、仮想の障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、実在する可能性のある障害物に対するトラクタ1の衝突回避を可能にすることができる。
 衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81での障害物検知精度の低下による自動停止制御の実行を報知する第6報知制御の実行を各表示制御部23E,51Aに指令する第6報知開始指令処理を行う(ステップ#77)。又、自動停止制御の実行を車速制御部23Bに指令する停止指令処理を行う(ステップ#78)。
 これにより、各表示制御部23E,51Aにおいては第6報知制御を実行させることができる。第6報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前述した理由による自動停止制御の実行を報知する第6報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前述した理由による自動停止制御の実行を報知する第6報知状態で作動する。その結果、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などに起因した前ライダーセンサ81での障害物検知精度の低下によって自動停止制御が実行されることをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに仮想の障害物が存在する段階においてトラクタ1を停止させることができる。
 衝突回避制御部81bは、第4衝突回避処理においては、停止指令処理を行った段階で前ライダーセンサ81のセンサ表面が汚れていると判定して、センサ表面の汚れを報知するセンサ汚れ報知制御の実行を各表示制御部23E,51Aに指令する汚れ報知開始指令処理を行う(ステップ#79)。又、自動走行制御の終了を自動走行制御部23Fに指令する自動走行終了指令処理を行い(ステップ#80)、その後、衝突回避制御を終了する。
 これにより、各表示制御部23E,51Aにおいてはセンサ汚れ報知制御を実行させることができる。センサ汚れ報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、例えば、図41に示すような「前ライダーセンサのセンサ表面が汚れています。」などのセンサ表面の汚れなどを知らせるセンサ汚れ報知画面に切り換わる。
 又、自動走行制御部23Fが自動走行制御を終了し、これにより、走行モードが自動走行モードから手動走行モードに切り換わる。
 つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、前ライダーセンサ81による第1検知範囲Rd1での障害物検知精度が低下しても、車速に基づく仮想の第4衝突判定処理により、自動走行制御による自動走行中のトラクタ1が実在する可能性のある障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて仮想の障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
 又、前ライダーセンサ81のセンサ表面が汚れていることやセンサ表面に異物が付着していることなどをユーザに知らせることができ、汚れや付着物の除去を促すことができる。そして、前ライダーセンサ81におけるセンサ表面の汚れや異物の付着などに起因して前ライダーセンサ81の測定精度が低下した状態において、自動走行制御によるトラクタ1の自動走行が継続される、又は再開されることを防止することができる。
 次に、ソナーユニット83のソナー用制御部83Bによる衝突回避制御について説明する。
 なお、左側の超音波センサ83Aに基づく衝突回避制御と、右側の超音波センサ83Aに基づく衝突回避制御とは、制御手順が同じであることから、以下には、左側の超音波センサ83Aに基づく突回避制御についてのみ説明する。
 ソナー用制御部83Bは、左側の第3測定範囲Rm3に障害物が存在すると判定した場合は、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知制御の実行を各表示制御部23E,51Aに指令する第7報知開始指令処理と、前述した自動停止制御の実行を車速制御部23Bに指令する停止指令処理とを行う。
 これにより、各表示制御部23E,51Aにおいては第7報知制御を実行させることができる。第7報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知状態で作動する。その結果、トラクタ1に対する左側の第3測定範囲Rm3に障害物が存在することをユーザに知らせることができる。
 又、車速制御部23Bにおいては自動停止制御を実行させることができる。自動停止制御が実行されると、車速を零速まで低下させるための無段変速装置の減速操作が行われる。これにより、左側の第3測定範囲Rm3に障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
 ソナー用制御部83Bは、第7報知開始指令処理と停止指令処理とを行った後に、左側の第3測定範囲Rm3に障害物が存在しないと判定した場合は、第7報知制御の終了を各表示制御部23E,51Aに指令する第7報知終了指令処理を行う。
 これにより、各表示制御部23E,51Aにおいて第7報知制御を終了させることができ、トラクタ1に対する左側の第3測定範囲Rm3に障害物が存在しなくなったことをユーザに知らせることができる。
 そして、左側の第3測定範囲Rm3に障害物が存在しないと判定した後に、前述した再スタートボタンの操作が行われた場合は、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
〔別実施形態〕
 本発明の別実施形態について説明する。
 なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
(1)作業車両の構成は種々の変更が可能である。
 例えば、作業車両は、左右の後輪11に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
 例えば、作業車両は、左右の前輪10及び左右の後輪11に代えて左右のクローラを備えるフルクローラ仕様に構成されていてもよい。
 例えば、作業車両は、左右の後輪11が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。
 例えば、作業車両は、エンジン14の代わりに電動モータを備える電動仕様に構成されていてもよい。
 例えば、作業車両は、エンジン14と走行用の電動モータとを備えるハイブリッド仕様に構成されていてもよい。
(2)衝突回避制御部81b,82bは、車載制御ユニット23に備えられていてもよい。
(3)障害物判定部81a,82aは、衝突回避制御部81b,82bとともに車載制御ユニット23に備えられていてもよい。
 又、障害物判定部81a,82aは、衝突回避制御部81b,82bとしての機能を有するように構成されていてもよい
(4)衝突回避制御部81b,82bは、障害物判定部81a,82aにて障害物の存在が検知されていない状態において、測定範囲Rm1,Rm2のうちの障害物検知対象範囲Rd1,Rd2における無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、目標経路Pに含まれた目標車速に基づいて障害物との衝突を回避するように構成されていてもよい。
 本発明に係る作業車両用の衝突回避システムは、例えば、トラクタ、乗用草刈機、乗用田植機、コンバイン、運搬車、除雪車、ホイールローダ、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
28  車速センサ
81A 測定部(前ライダーセンサ)
82A 測定部(後ライダーセンサ)
81a 障害物判定部(前ライダーセンサ)
82a 障害物判定部(後ライダーセンサ)
81b 衝突回避制御部(前ライダーセンサ)
82b 衝突回避制御部(後ライダーセンサ)
Rm1 第1測定範囲
Rm2 第2測定範囲

Claims (5)

  1.  車体から所定の測定範囲に存在する測距点群に向けて照射した測定光と当該測定光の反射光とに基づいて、少なくとも測距点ごとの多数の距離値を測定する測定部と、
     前記多数の距離値を含む前記測定部からの測定情報に基づいて障害物の存否を判定する障害物判定部と、
     前記障害物判定部からの前記障害物に関する情報に基づいて前記障害物との衝突を回避する衝突回避制御部とを有し、
     前記障害物判定部は、前記多数の距離値のうちの所定の無効条件に適合する距離値を無効値として前記障害物の存否判定から除外し、
     前記衝突回避制御部は、前記障害物判定部にて障害物の存在が検知されているか否かを判定し、かつ、前記多数の距離値に含まれた前記障害物に関する複数の距離値において前記無効値が発生したか否かを判定し、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記障害物に関する複数の距離値に前記無効値が発生した場合は、前記無効値を除いた有効な障害物との距離値に基づいて前記障害物との衝突を回避する作業車両用の衝突回避システム。
  2.  前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値でなければ前記最短距離値に基づいて前記障害物との衝突を回避する請求項1に記載の作業車両用の衝突回避システム。
  3.  前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値であれば、前記最短距離値以外の有効な障害物との距離値から算出した最短距離値に基づいて前記障害物との衝突を回避する請求項1又は2に記載の作業車両用の衝突回避システム。
  4.  前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記障害物に関する複数の距離値の全てが前記無効値になった場合は、その直前の有効な障害物との距離値に基づいて前記障害物との衝突を回避する請求項1~3のいずれか一項に記載の作業車両用の衝突回避システム。
  5.  前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されていない状態において、前記測定範囲のうちの障害物検知対象範囲における前記無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、車速センサが検出する車速に基づいて前記障害物との衝突を回避する請求項1~4のいずれか一項に記載の作業車両用の衝突回避システム。
PCT/JP2019/042279 2018-12-27 2019-10-29 作業車両用の衝突回避システム WO2020137134A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244265A JP7402608B2 (ja) 2018-12-27 2018-12-27 作業車両用の衝突回避システム
JP2018-244265 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137134A1 true WO2020137134A1 (ja) 2020-07-02

Family

ID=71126060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042279 WO2020137134A1 (ja) 2018-12-27 2019-10-29 作業車両用の衝突回避システム

Country Status (2)

Country Link
JP (1) JP7402608B2 (ja)
WO (1) WO2020137134A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185340A (zh) * 2021-11-15 2022-03-15 广州文远知行科技有限公司 一种障碍物位置异常检测方法及装置
CN114384492A (zh) * 2022-03-24 2022-04-22 北京一径科技有限公司 用于激光雷达的点云处理方法及装置、存储介质
CN115443795A (zh) * 2022-09-29 2022-12-09 宁波东贝智能科技有限公司 一种割草机碰撞检测方法、系统、存储介质及智能终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179116B2 (ja) * 2021-04-14 2022-11-28 日立建機株式会社 運搬車両及び運搬システム
CN116679315A (zh) * 2022-02-23 2023-09-01 北京百度网讯科技有限公司 作业地形检测方法、装置及用于检测作业地形的工程设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122437A (ja) * 1994-08-30 1996-05-17 Nippondenso Co Ltd 距離測定装置
JPH10142335A (ja) * 1996-11-07 1998-05-29 Omron Corp 物体情報検知装置
JPH10153661A (ja) * 1996-11-26 1998-06-09 Omron Corp 測距装置
JP2009503457A (ja) * 2005-07-29 2009-01-29 セデス アーゲー センサ装置
JP2011013135A (ja) * 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The 光測距装置
JP2012126570A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 倒れ検知装置及び乗客コンベア
JP2016070796A (ja) * 2014-09-30 2016-05-09 シャープ株式会社 障害物判定装置および障害物判定方法
WO2017072980A1 (ja) * 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122437A (ja) * 1994-08-30 1996-05-17 Nippondenso Co Ltd 距離測定装置
JPH10142335A (ja) * 1996-11-07 1998-05-29 Omron Corp 物体情報検知装置
JPH10153661A (ja) * 1996-11-26 1998-06-09 Omron Corp 測距装置
JP2009503457A (ja) * 2005-07-29 2009-01-29 セデス アーゲー センサ装置
JP2011013135A (ja) * 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The 光測距装置
JP2012126570A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 倒れ検知装置及び乗客コンベア
JP2016070796A (ja) * 2014-09-30 2016-05-09 シャープ株式会社 障害物判定装置および障害物判定方法
WO2017072980A1 (ja) * 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185340A (zh) * 2021-11-15 2022-03-15 广州文远知行科技有限公司 一种障碍物位置异常检测方法及装置
CN114185340B (zh) * 2021-11-15 2024-04-23 广州文远知行科技有限公司 一种障碍物位置异常检测方法及装置
CN114384492A (zh) * 2022-03-24 2022-04-22 北京一径科技有限公司 用于激光雷达的点云处理方法及装置、存储介质
CN115443795A (zh) * 2022-09-29 2022-12-09 宁波东贝智能科技有限公司 一种割草机碰撞检测方法、系统、存储介质及智能终端
CN115443795B (zh) * 2022-09-29 2024-01-30 宁波东贝智能科技有限公司 一种割草机碰撞检测方法、系统、存储介质及智能终端

Also Published As

Publication number Publication date
JP2020107021A (ja) 2020-07-09
JP7402608B2 (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2020137134A1 (ja) 作業車両用の衝突回避システム
JP7044694B2 (ja) 作業車両用の障害物検知システム
JP7349277B2 (ja) 作業車両用の自動走行システム
JP6837449B2 (ja) 作業車両用の自動走行システム
JP7470843B2 (ja) 自動走行システム及び自動走行方法
US20220381920A1 (en) Obstacle Detection System
WO2020044802A1 (ja) 障害物検知システム
JP2019170228A (ja) 作業車両の自動走行装置
US20230320246A1 (en) Automatic Traveling System, Automatic Traveling Method, And Automatic Traveling Program
JP2019175059A (ja) 作業車両の走行制御システム
JP2019168888A (ja) 障害物検知システム
WO2019187938A1 (ja) 作業車両の走行制御システム
JP2022188155A (ja) 作業車両用の自動走行システム
JP2019169058A (ja) 作業車両の走行制御システム
JP2019175050A (ja) 協調作業システム
JP7059221B2 (ja) 作業車両用の制御システム
JP7317165B2 (ja) 作業車両用の障害物検知システム
JP7399680B2 (ja) 作業支援システム
JP2019175318A (ja) 作業車両の走行制御システム
JP7247240B2 (ja) 作業車両用の自動走行システム
JP7458143B2 (ja) 障害物検知システム
JP2022028333A (ja) 作業車両用の自動走行ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904641

Country of ref document: EP

Kind code of ref document: A1