JP7402608B2 - 作業車両用の衝突回避システム - Google Patents

作業車両用の衝突回避システム Download PDF

Info

Publication number
JP7402608B2
JP7402608B2 JP2018244265A JP2018244265A JP7402608B2 JP 7402608 B2 JP7402608 B2 JP 7402608B2 JP 2018244265 A JP2018244265 A JP 2018244265A JP 2018244265 A JP2018244265 A JP 2018244265A JP 7402608 B2 JP7402608 B2 JP 7402608B2
Authority
JP
Japan
Prior art keywords
obstacle
collision avoidance
value
distance
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018244265A
Other languages
English (en)
Other versions
JP2020107021A (ja
Inventor
卓也 岩瀬
和寿 横山
士郎 ▲杉▼田
慎也 西別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2018244265A priority Critical patent/JP7402608B2/ja
Priority to PCT/JP2019/042279 priority patent/WO2020137134A1/ja
Publication of JP2020107021A publication Critical patent/JP2020107021A/ja
Application granted granted Critical
Publication of JP7402608B2 publication Critical patent/JP7402608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、トラクタや乗用草刈機などの乗用作業車両、及び、無人草刈機などの無人作業車両に使用される作業車両用の衝突回避システムに関する。
作業車両用の衝突回避システムにおいては、走行の障害となる障害物を検出する障害物センサとしてレーザスキャナ(ライダー)などを採用し、障害物センサが障害物を検出した場合に、障害物検出処理部が、障害物検出情報に基づいて車体の徐行や停止などの処理内容を決定し、決定された処理内容に基づいて、作業走行制御部などが車両走行機器などに制御信号を与えて作業車両の走行などを制御するように構成されたものがある(例えば特許文献1参照)。
特開2018-113937号公報
レーザスキャナなどの障害物センサは、作業車両の自動走行による作業中に、その作業によって埃や粉塵などが浮遊物として舞い上がった場合や、センサ表面が泥などの付着によって汚れた場合などにおいては、その浮遊物や汚れなどを近距離の障害物として誤検出することがある。このような誤検出が生じると、作業車両の走行に支障を来たす障害物が存在していないにもかかわらず、近距離の障害物との衝突を回避するために、作業走行制御部が、障害物センサからの障害物検出情報に基づいて作業車両を急停止させることになる。その結果、作業車両の自動走行で作業を行う場合における作業効率の低下を招くことになる。
この実情に鑑み、本発明の主たる課題は、障害物センサの誤検出に起因した衝突回避による作業効率の低下を防止する点にある。
本発明の第1特徴構成は、作業車両用の衝突回避システムにおいて、
車体から所定の測定範囲に存在する測距点群に向けて照射した測定光と当該測定光の反射光とに基づいて、少なくとも測距点ごとの多数の距離値を測定する測定部と、
前記多数の距離値を含む前記測定部からの測定情報に基づいて障害物の存否を判定する障害物判定部と、
前記障害物判定部からの前記障害物に関する情報に基づいて前記障害物との衝突を回避する衝突回避制御部とを有し、
前記障害物判定部は、前記多数の距離値のうちの所定の無効条件に適合する距離値を無効値として前記障害物の存否判定から除外し、
前記衝突回避制御部は、前記障害物判定部にて障害物の存在が検知されているか否かを判定し、かつ、前記多数の距離値に含まれた前記障害物に関する複数の距離値において前記無効値が発生したか否かを判定し、前記障害物判定部にて前記障害物の存在が検知されている状態において前記障害物に関する複数の距離値に前記無効値が発生した場合は、前記無効値を除いた有効な障害物との距離値に基づいて前記障害物との衝突を回避する点にある。
本構成によれば、例えば、近距離に存在しながら反射強度が非常に弱いという埃や霧などの浮遊物の特徴、及び、至近距離に存在するという測定部での汚れの特徴などを考慮して、それらの特徴に応じた測定部からの距離や反射強度などを所定の無効条件として設定すれば、測定部からの多数の距離値に含まれた浮遊物や測定部の汚れなどに関する近距離や至近距離の距離値を無効値として障害物の存否判定から除外することができる。
これにより、例えば、測定部の測定範囲に浮遊物が発生した場合や測定部が汚れた場合などにおいては、その浮遊物や測定部の汚れなどが、障害物判定部にて作業車両の走行に支障を来たす障害物として誤検知される虞を回避することができる。
そして、障害物判定部にて前記障害物の存在が検知されている状態において、浮遊物や測定部の汚れなどが発生することで、障害物の一部が浮遊物や測定部の汚れなどで隠れた場合には、そのときに得られた障害物に関する複数の距離値においては、隠れた一部に対応する距離値が無効値になっていることから、衝突回避制御部は、この無効値を除いた現時点での他の距離値を有効な障害物との距離値とすることになる。又、障害物の全体が浮遊物や測定部の汚れなどで隠れた場合には、そのときに得られた障害物に関する全ての距離値が無効値になっていることから、衝突回避制御部は、無効値になる直前に得られていた過去の距離値を有効な障害物との距離値とすることになる。そして、衝突回避制御部は、それらの有効な障害物との距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
その結果、障害物判定部が誤検知した障害物に対して衝突回避制御部が衝突回避を行うことによる作業効率の低下を防止しながら、作業車両が障害物に衝突する虞を回避することができる。
本発明の第2特徴構成は、
前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値でなければ前記最短距離値に基づいて前記障害物との衝突を回避する点にある。
本構成によれば、浮遊物の発生や測定部の汚れなどに起因して、障害物に関する複数の距離値のうちの一部が無効値になったとしても、その無効値が障害物との最短距離値でなければ、衝突回避制御部は、障害物との最短距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物に関する複数の距離値のうちの一部が無効値になった場合においても、作業車両が障害物に衝突する虞を好適に回避することができる。
本発明の第3特徴構成は、
前記衝突回避制御部は、前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値であれば、前記最短距離値以外の有効な障害物との距離値から算出した最短距離値に基づいて前記障害物との衝突を回避する点にある。
本構成によれば、浮遊物の発生や測定部の汚れなどに起因して障害物との最短距離値が無効値になったとしても、衝突回避制御部は、最短距離値が無効値になる前に得られた障害物に関する最短距離値と他の距離値との関係、及び、現時点において有効な障害物との距離値に基づいて、現時点における障害物との最短距離値を算出することができる。そして、算出した最短距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物との最短距離値が無効値になったとしても、作業車両が障害物に衝突する虞を回避することができる。
本発明の第4特徴構成は、
前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記障害物に関する複数の距離値の全てが前記無効値になった場合は、その直前の有効な障害物との距離値に基づいて前記障害物との衝突を回避する点にある。
本構成によれば、浮遊物の発生や測定部の汚れなどに起因して、障害物に関する複数の距離値の全てが無効値になったとしても、衝突回避制御部は、全てが無効値になる直前に得られた有効な障害物との距離値から障害物との相対速度を算出することができ、算出した相対速度に基づいて障害物との衝突を回避することができる。
その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物に関する複数の距離値の全てが無効値になったとしても、作業車両が障害物に衝突する虞を回避することができる。
本発明の第5特徴構成は、
前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されていない状態において、前記測定範囲のうちの障害物検知対象範囲における前記無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、車速センサが検出する車速に基づいて前記障害物との衝突を回避する点にある。
本構成によれば、浮遊物の発生や測定部の汚れなどに起因して前述した制限値超過状態が一定時間以上継続される状態は、障害物判定部による障害物の存否判定が困難な状態であることから、衝突回避制御部は、車速センサが検出する車速から仮想の障害物との相対速度を算出し、算出した相対速度に基づいて障害物との衝突を回避する。
その結果、障害物判定部が浮遊物や測定部の汚れなどを障害物として誤検知する虞を回避するために、障害物判定部による障害物の存否判定が困難になったとしても、作業車両が障害物に衝突する虞を回避することができる。
作業車両用の自動走行システムの概略構成を示す図 各測定部の測定範囲などを示すトラクタの側面図 各測定部の測定範囲などを示すトラクタの平面図 自動走行用の目標経路の一例を示す図 作業車両用の自動走行システムの概略構成を示すブロック図 作業車両用の衝突回避システムの概略構成を示すブロック図 前ライダーセンサの距離画像における障害物の検知範囲と非検知範囲とを示す図 後ライダーセンサの距離画像における作業装置下降状態での障害物の検知範囲と非検知範囲とを示す図 後ライダーセンサの距離画像における作業装置上昇状態での障害物の検知範囲と非検知範囲とを示す図 障害物判定制御のフローチャート 測定部が測定した汚れや浮遊物などに関する測距点の距離値に対する無効条件の説明図 測定部が測定した微小物などに関する測距点の距離値に対する無効条件の説明図 障害物の位置特定に使用するグリッドマップGMに関する説明図 測定部が測定した測距点に障害物特定用の特徴点がある状態を示す説明図 測定部が測定した測距点に障害物特定用の特徴点がない状態を示す説明図 車体直近のグリッドに対する候補グリッド抽出処理に関する説明図 車体直近以外のグリッドに対する候補グリッド抽出処理に関する説明図 車体側の比較対象グリッドに測距点がないグリッドに対する候補グリッド抽出処理に関する説明図 障害物グリッド特定処理に関する説明図 障害物グリッド群の基準点算出処理に関する説明図 障害物グリッド群のペアリング処理に関する説明図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 障害物判定処理において障害物が存在する場合の判定例の一つを示す図 衝突回避制御のフローチャート 第1衝突回避処理のフローチャート 第2衝突回避処理のフローチャート 第3衝突回避処理のフローチャート 第4衝突回避処理のフローチャート 障害物に関する複数の距離値に無効値がない状態の距離画像を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値ではない状態の距離画像の一例を示す図 無効値が障害物との最短距離値である状態の距離画像の一例を示す図 無効値が障害物に関する複数の距離値の全てである状態の距離画像の一例を示す図 前ライダーセンサの第1検知範囲における無効値の割合が制限値を超えた状態の距離画像の一例を示す図 センサ汚れ報知画面の一例を示す図
以下、本発明を実施するための形態の一例として、本発明に係る作業車両用の衝突回避システムを、作業車両の一例であるトラクタに適用した実施形態を図面に基づいて説明する。
なお、本発明に係る作業車両用の衝突回避システムは、トラクタ以外の、例えば乗用草刈機、乗用田植機、コンバイン、運搬車、除雪車、ホイールローダ、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
図1~3に示すように、本実施形態に例示されたトラクタ1は、その後部に3点リンク機構2を介して、作業装置の一例であるロータリ耕耘装置3が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1はロータリ耕耘仕様に構成されている。トラクタ1は、作業車両用の自動走行システムを使用することにより、作業地の一例である図4に示す圃場Aなどにおいて自動走行することができる。
なお、トラクタ1の後部には、ロータリ耕耘装置3に代えて、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、散布装置、草刈装置、などの各種の作業装置を連結することができる。
図5~6に示すように、自動走行システムには、トラクタ1に搭載された自動走行ユニット4と、自動走行ユニット4と無線通信可能に通信設定された無線通信機器の一例である携帯通信端末5とが含まれている。携帯通信端末5には、自動走行に関する各種の情報表示や入力操作などを可能にするマルチタッチ式の表示デバイス(例えば液晶パネル)50などが備えられている。
なお、携帯通信端末5には、タブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。又、無線通信には、Wi-Fi(登録商標)などの無線LAN(Local Area Network)やBluetooth(登録商標)などの近距離無線通信などを採用することができる。
図1~2、図5~6に示すように、トラクタ1には、駆動可能で操舵可能な左右の前輪10、駆動可能な左右の後輪11、搭乗式の運転部12を形成するキャビン13、コモンレールシステムを有する電子制御式のディーゼルエンジン(以下、エンジンと称する)14、エンジン14などを覆うボンネット15、エンジン14からの動力を変速する変速ユニット16、左右の前輪10を操舵する全油圧式のパワーステアリングユニット17、左右の後輪11を制動するブレーキユニット18、ロータリ耕耘装置3への伝動を断続する電子油圧制御式の作業クラッチユニット19、ロータリ耕耘装置3を昇降駆動する電子油圧制御式の昇降駆動ユニット20、ロータリ耕耘装置3をロール方向に駆動する電子油圧制御式のローリングユニット21、トラクタ1における各種の設定状態や各部の動作状態などを検出する各種のセンサやスイッチなどを含む車両状態検出機器22、及び、各種の制御部を有する車載制御ユニット23、などが備えられている。
なお、エンジン14には、電子ガバナを有する電子制御式のガソリンエンジンなどを採用してもよい。又、パワーステアリングユニット17には、操舵用の電動モータを有する電動式を採用してもよい。
図1~2に示すように、運転部12には、手動操舵用のステアリングホイール25と、搭乗者用の座席26と、各種の情報表示や入力操作などを可能にするマルチタッチ式の液晶モニタ27とが備えられている。図示は省略するが、運転部12には、アクセルレバーや変速レバーなどの操作レバー類、及び、アクセルペダルやクラッチペダルなどの操作ペダル類、などが備えられている。
図示は省略するが、変速ユニット16には、エンジン14からの動力を変速する電子制御式の無段変速装置、及び、無段変速装置による変速後の動力を前進用と後進用とに切り換える電子油圧制御式の前後進切換装置、などが含まれている。無段変速装置には、静油圧式無段変速装置(HST:Hydro Static Transmission)よりも伝動効率が高い油圧機械式無段変速装置の一例であるI-HMT(Integrated Hydro-static Mechanical Transmission)が採用されている。前後進切換装置には、前進動力断続用の油圧クラッチと、後進動力断続用の油圧クラッチと、それらに対するオイルの流れを制御する電磁バルブとが含まれている。
なお、無段変速装置には、I-HMTの代わりに、油圧機械式無段変速装置の一例であるHMT(Hydraulic Mechanical Transmission)、静油圧式無段変速装置、又は、ベルト式無段変速装置、などを採用してもよい。又、変速ユニット16には、無段変速装置の代わりに、複数の変速用の油圧クラッチとそれらに対するオイルの流れを制御する複数の電磁バルブとを有する電子油圧制御式の有段変速装置が含まれていてもよい。
図示は省略するが、ブレーキユニット18には、左右の後輪11を個別に制動する左右のブレーキ、運転部12に備えられた左右のブレーキペダルの踏み込み操作に連動して左右のブレーキを作動させるフットブレーキ系、運転部12に備えられたパーキングレバーの操作に連動して左右のブレーキを作動させるパーキングブレーキ系、及び、左右の前輪10の設定角度以上の操舵に連動して旋回内側のブレーキを作動させる旋回ブレーキ系、などが含まれている。
車両状態検出機器22は、トラクタ1の各部に備えられた各種のセンサやスイッチなどの総称である。車両状態検出機器22には、トラクタ1の車速を検出する車速センサ28(図6参照)をはじめ、エンジン14の出力回転数を検出する回転センサ、アクセルレバーの操作位置を検出するアクセルセンサ、変速レバーの操作位置を検出する変速用の第1位置センサ、前後進切り換え用のリバーサレバーの操作位置を検出する前後進切り換え用の第2位置センサ、及び、前輪10の操舵角を検出する舵角センサ、などが含まれている。
図5~6に示すように、車載制御ユニット23には、エンジン14に関する制御を行うエンジン制御部23A、トラクタ1の車速や前後進の切り換えに関する制御を行う車速制御部23B、ステアリングに関する制御を行うステアリング制御部23C、ロータリ耕耘装置3などの作業装置に関する制御を行う作業装置制御部23D、液晶モニタ27などに対する表示や報知に関する制御を行う表示制御部23E、自動走行に関する制御を行う自動走行制御部23F、及び、圃場内に区分けされた走行領域に応じて生成された自動走行用の目標経路P(図4参照)などを記憶する不揮発性の車載記憶部23G、などが含まれている。各制御部23A~23Fは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各制御部23A~23Fは、CAN(Controller Area Network)を介して相互通信可能に接続されている。
なお、各制御部23A~23Fの相互通信には、CAN以外の通信規格や次世代通信規格である、例えば、車載EthernetやCAN-FD(CAN with FLexible Data rate)などを採用してもよい。
エンジン制御部23Aは、アクセルセンサからの検出情報と回転センサからの検出情報とに基づいて、エンジン回転数をアクセルレバーの操作位置に応じた回転数に維持するエンジン回転数維持制御、などを実行する。
車速制御部23Bは、第1位置センサからの検出情報と車速センサ28からの検出情報などに基づいて、トラクタ1の車速が変速レバーの操作位置に応じた速度に変更されるように無段変速装置の作動を制御する車速制御、及び、第2位置センサからの検出情報に基づいて前後進切換装置の伝動状態を切り換える前後進切り換え制御、などを実行する。車速制御には、変速レバーが零速位置に操作された場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる減速停止処理が含まれている。
作業装置制御部23Dには、PTOスイッチの操作などに基づいて作業クラッチユニット19の作動を制御する作業クラッチ制御、昇降スイッチの操作や高さ設定ダイヤルの設定値などに基づいて昇降駆動ユニット20の作動を制御する昇降制御、及び、ロール角設定ダイヤルの設定値などに基づいてローリングユニット21の作動を制御するローリング制御、などを実行する。PTOスイッチ、昇降スイッチ、高さ設定ダイヤル、及び、ロール角設定ダイヤルは、車両状態検出機器22に含まれている。
トラクタ1には、トラクタ1の現在位置や現在方位などを測定する測位ユニット30が備えられている。測位ユニット30は、衛星測位システム(NSS:Navigation Satellite System)の一例であるGNSS(Global Navigation Satellite System)を利用してトラクタ1の現在位置と現在方位とを測定する衛星航法装置31、及び、3軸のジャイロスコープ及び3方向の加速度センサなどを有してトラクタ1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)32、などを有している。GNSSを利用した測位方法には、DGNSS(Differential GNSS:相対測位方式)やRTK-GNSS(Real Time Kinematic GNSS:干渉測位方式)などがある。本実施形態においては、移動体の測位に適したRTK-GNSSが採用されている。そのため、図1に示すように、圃場周辺の既知位置には、RTK-GNSSによる測位を可能にする基準局6が設置されている。
図1、図5に示すように、トラクタ1と基準局6とのそれぞれには、測位衛星7(図1参照)から送信された電波を受信するGNSSアンテナ33,60、及び、トラクタ1と基準局6との間における測位情報を含む各情報の無線通信を可能にする通信モジュール34,61、などが備えられている。これにより、測位ユニット30の衛星航法装置31は、トラクタ側のGNSSアンテナ33が測位衛星7からの電波を受信して得た測位情報と、基地局側のGNSSアンテナ60が測位衛星7からの電波を受信して得た測位情報とに基づいて、トラクタ1の現在位置及び現在方位を高い精度で測定することができる。又、測位ユニット30は、衛星航法装置31と慣性計測装置32とを有することにより、トラクタ1の現在位置、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。
このトラクタ1において、測位ユニット30の慣性計測装置32、GNSSアンテナ33、及び、通信モジュール34は、図1に示すアンテナユニット35に含まれている。アンテナユニット35は、キャビン13の前面側における上部の左右中央箇所に配置されている。そして、トラクタ1におけるGNSSアンテナ33の取り付け位置が、GNSSを利用してトラクタ1の現在位置などを測定するときの測位対象位置となっている。
図5~6に示すように、携帯通信端末5には、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどを有する端末制御ユニット51、及び、トラクタ側の通信モジュール34との間における測位情報を含む各情報の無線通信を可能にする通信モジュール52、などが備えられている。端末制御ユニット51には、表示デバイス50などに対する表示や報知に関する制御を行う表示制御部51A、自動走行用の目標経路Pを生成する目標経路生成部51B、及び、目標経路生成部51Bが生成した目標経路Pなどを記憶する不揮発性の端末記憶部51C、などが含まれている。端末記憶部51Cには、目標経路Pの生成に使用する各種の情報として、トラクタ1の旋回半径や作業幅などの車体情報、及び、前述した測位情報から得られる圃場情報、などが記憶されている。圃場情報には、圃場Aの形状や大きさなどを特定する上において、トラクタ1を圃場Aの外周縁に沿って走行させたときにGNSSを利用して取得した圃場Aにおける複数の形状特定地点(形状特定座標)となる4つの角部地点Ap1~Ap4(図4参照)、及び、それらの角部地点Ap1~Ap4を繋いで圃場Aの形状や大きさなどを特定する矩形状の形状特定線AL、などが含まれている。
目標経路生成部51Bは、車体情報に含まれたトラクタ1の旋回半径や作業幅、及び、圃場情報に含まれた圃場Aの形状や大きさ、などに基づいて目標経路Pを生成する。
例えば、図4に示すように、矩形状の圃場Aにおいて、自動走行の開始地点p1と終了地点p2とが設定され、トラクタ1の作業走行方向が圃場Aの短辺に沿う方向に設定されている場合は、目標経路生成部51Bは、先ず、圃場Aを、前述した4つの角部地点Ap1~Ap4と矩形状の形状特定線ALとに基づいて、圃場Aの外周縁に隣接するマージン領域A1と、マージン領域A1の内側に位置する走行領域A2とに区分けする。
次に、目標経路生成部51Bは、トラクタ1の旋回半径や作業幅などに基づいて、走行領域A2に、圃場Aの長辺に沿う方向に作業幅に応じた一定間隔をあけて並列に配置される複数の並列経路P1を生成するとともに、走行領域A2における各長辺側の外縁部に配置されて複数の並列経路P1を走行順に接続する複数の旋回経路P2を生成する。
そして、走行領域A2を、走行領域A2における各長辺側の外縁部に設定される一対の非作業領域A2aと、一対の非作業領域A2aの間に設定される作業領域A2bとに区分けするとともに、各並列経路P1を、一対の非作業領域A2aに含まれる非作業経路P1aと、作業領域A2bに含まれる作業経路P1bとに区分けする。
これにより、目標経路生成部51Bは、図4に示す圃場Aにおいてトラクタ1を自動走行させるのに適した目標経路Pを生成することができる。
図4に示す圃場Aにおいて、マージン領域A1は、トラクタ1が走行領域A2の外周部を自動走行するときに、ロータリ耕耘装置3などが圃場Aに隣接する畦などの他物に接触することを防止するために、圃場Aの外周縁と走行領域A2との間に確保された領域である。各非作業領域A2aは、トラクタ1が圃場Aの畦際において現在の作業経路P1bから次の作業経路P1bに旋回移動するための畦際旋回領域である。
図4に示す目標経路Pにおいて、各非作業経路P1aと各旋回経路P2は、トラクタ1が耕耘作業を行わずに自動走行する経路であり、前述した各作業経路P1bは、トラクタ1が耕耘作業を行いながら自動走行する経路である。各作業経路P1bの始端地点p3は、トラクタ1が耕耘作業を開始する作業開始地点であり、各作業経路P1bの終端地点p4は、トラクタ1が耕耘作業を停止する作業停止地点である。各非作業経路P1aは、トラクタ1が旋回経路P2にて旋回走行する前の作業停止地点p4と、トラクタ1が旋回経路P2にて旋回走行した後の作業開始地点p3とを、トラクタ1の作業走行方向で揃えるための位置合せ経路である。各並列経路P1と各旋回経路P2との各接続地点p5,p6のうち、各並列経路P1における終端側の接続地点p5はトラクタ1の旋回開始地点であり、各並列経路P1における始端側の接続地点p6はトラクタ1の旋回終了地点である。
なお、図4に示す目標経路Pはあくまでも一例であり、目標経路生成部51Bは、トラクタ1の機種や作業の種類などに応じて異なる車体情報、及び、圃場Aに応じて異なる圃場Aの形状や大きさなどの圃場情報、などに基づいて、それらに適した種々の目標経路Pを生成することができる。
目標経路Pは、車体情報や圃場情報などに関連付けされた状態で端末記憶部51Cに記憶されており、携帯通信端末5の表示デバイス50にて表示することができる。目標経路Pには、各並列経路P1におけるトラクタ1の目標車速、各旋回経路P2bにおけるトラクタ1の目標車速、各並列経路P1における前輪操舵角、及び、各旋回経路P2bにおける前輪操舵角、などが含まれている。
端末制御ユニット51は、車載制御ユニット23からの送信要求指令に応じて、端末記憶部51Cに記憶されている圃場情報や目標経路Pなどを車載制御ユニット23に送信する。車載制御ユニット23は、受信した圃場情報や目標経路Pなどを車載記憶部23Gに記憶する。目標経路Pの送信に関しては、例えば、端末制御ユニット51が、トラクタ1が自動走行を開始する前の段階において、目標経路Pの全てを端末記憶部51Cから車載制御ユニット23に一挙に送信するようにしてもよい。又、端末制御ユニット51が、目標経路Pを所定距離ごとの複数の分割経路情報に分割して、トラクタ1が自動走行を開始する前の段階からトラクタ1の走行距離が所定距離に達するごとに、トラクタ1の走行順位に応じた所定数の分割経路情報を端末記憶部51Cから車載制御ユニット23に逐次送信するようにしてもよい。
車載制御ユニット23において、自動走行制御部23Fには、車両状態検出機器22に含まれた各種のセンサやスイッチなどからの検出情報が、車速制御部23Bやステアリング制御部23Cなどを介して入力されている。これにより、自動走行制御部23Fは、トラクタ1における各種の設定状態や各部の動作状態などを監視することができる。
自動走行制御部23Fは、搭乗者や管理者などのユーザにより、各種の自動走行開始条件を満たすための手動操作が行われてトラクタ1の走行モードが自動走行モードに切り換えられた状態において、携帯通信端末5の表示デバイス50が操作されて自動走行の開始が指令された場合に、測位ユニット30にてトラクタ1の現在位置や現在方位などを取得しながら目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。
自動走行制御部23Fは、自動走行制御の実行中に、例えば、ユーザにより携帯通信端末5の表示デバイス50が操作されて自動走行の終了が指令された場合や、運転部12に搭乗しているユーザによってステアリングホイール25やアクセルペダルなどの手動操作具が操作された場合は、自動走行制御を終了するとともに走行モードを自動走行モードから手動走行モードに切り換える。このように自動走行制御が終了された後に自動走行制御を再開させる場合は、先ず、ユーザが運転部12に乗り込んで、トラクタ1の走行モードを自動走行モードから手動走行モードに切り換える。次に、各種の自動走行開始条件を満たすための手動操作を行ってから、トラクタ1の走行モードを手動走行モードから自動走行モードに切り換える。そして、この状態において、携帯通信端末5の表示デバイス50を操作して自動走行の開始を指令することで、自動走行制御を再開させることができる。
自動走行制御部23Fによる自動走行制御には、エンジン14に関する自動走行用の制御指令をエンジン制御部23Aに送信するエンジン用自動制御処理、トラクタ1の車速や前後進の切り換えに関する自動走行用の制御指令を車速制御部23Bに送信する車速用自動制御処理、ステアリングに関する自動走行用の制御指令をステアリング制御部23Cに送信するステアリング用自動制御処理、及び、ロータリ耕耘装置3などの作業装置に関する自動走行用の制御指令を作業装置制御部23Dに送信する作業用自動制御処理、などが含まれている。
自動走行制御部23Fは、エンジン用自動制御処理においては、目標経路Pに含まれた設定回転数などに基づいてエンジン回転数の変更を指示するエンジン回転数変更指令、などをエンジン制御部23Aに送信する。エンジン制御部23Aは、自動走行制御部23Fから送信されたエンジン14に関する各種の制御指令に応じてエンジン回転数を自動で変更するエンジン回転数変更制御、などを実行する。
自動走行制御部23Fは、車速用自動制御処理においては、目標経路Pに含まれた目標車速に基づいて無段変速装置の変速操作を指示する変速操作指令、及び、目標経路Pに含まれたトラクタ1の進行方向などに基づいて前後進切換装置の前後進切り換え操作を指示する前後進切り換え指令、などを車速制御部23Bに送信する。車速制御部23Bは、自動走行制御部23Fから送信された無段変速装置や前後進切換装置などに関する各種の制御指令に応じて、無段変速装置の作動を自動で制御する自動車速制御、及び、前後進切換装置の作動を自動で制御する自動前後進切り換え制御、などを実行する。自動車速制御には、例えば、目標経路Pに含まれた目標車速が零速である場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる自動減速停止処理などが含まれている。
自動走行制御部23Fは、ステアリング用自動制御処理においては、目標経路Pに含まれた前輪操舵角などに基づいて左右の前輪10の操舵を指示する操舵指令、などをステアリング制御部23Cに送信する。ステアリング制御部23Cは、自動走行制御部23Fから送信された操舵指令に応じて、パワーステアリングユニット17の作動を制御して左右の前輪10を操舵する自動操舵制御、及び、左右の前輪10が設定角度以上に操舵された場合に、ブレーキユニット18を作動させて旋回内側のブレーキを作動させる自動ブレーキ旋回制御、などを実行する。
自動走行制御部23Fは、作業用自動制御処理においては、目標経路Pに含まれた作業開始地点p3に基づいてロータリ耕耘装置3の作業状態への切り換えを指示する作業開始指令、及び、目標経路Pに含まれた作業停止地点p4に基づいてロータリ耕耘装置3の非作業状態への切り換えを指示する作業停止指令、などを作業装置制御部23Dに送信する。作業装置制御部23Dは、自動走行制御部23Fから送信されたロータリ耕耘装置3に関する各種の制御指令に応じて、作業クラッチユニット19と昇降駆動ユニット20の作動を制御して、ロータリ耕耘装置3を作業高さまで下降させて作動させる自動作業開始制御、及び、ロータリ耕耘装置3を停止させて非作業高さまで上昇させる自動作業停止制御、などを実行する。
つまり、前述した自動走行ユニット4には、パワーステアリングユニット17、ブレーキユニット18、作業クラッチユニット19、昇降駆動ユニット20、ローリングユニット21、車両状態検出機器22、車載制御ユニット23、測位ユニット30、及び、通信モジュール34、などが含まれている。そして、これらが適正に作動することにより、トラクタ1を目標経路Pに従って精度よく自動走行させることができるとともに、ロータリ耕耘装置3による耕耘を適正に行うことができる。
図5~6に示すように、トラクタ1には、トラクタ1の周囲を測定して、その周囲に存在する障害物を検知する障害物検知ユニット80が備えられている。障害物検知ユニット80が検知する障害物には、圃場Aにて作業する作業者などの人物や他の作業車両、及び、圃場Aに既存の電柱や樹木などが含まれている。
図1~3、図5~6に示すように、障害物検知ユニット80には、トラクタ1の前方側に設定された第1測定範囲Rm1又はトラクタ1の後方側に設定された第2測定範囲Rm2を測定対象とする前後2台のライダーセンサ(LiDAR Sensor:Light Detection and Ranging Sensor)81,82と、トラクタ1の左右両外側に設定された左右の第3測定範囲Rm3を測定対象とするソナーユニット83とが含まれている。各ライダーセンサ81,82は、測定光の一例であるレーザ光(例えば、パルス状の近赤外レーザ光)を使用して第1測定範囲Rm1又は第2測定範囲Rm2を測定する測定部81A,82Aと、測定部81A,82Aからの測定情報に基づいて障害物の存否判定などを行うライダー用制御部81B,82Bとを有している。ソナーユニット83は、左右の超音波センサ83Aと単一のソナー用制御部83Bとを有している。各ライダー用制御部81B,82B及びソナー用制御部83Bは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各ライダー用制御部81B,82B及びソナー用制御部83Bは、車載制御ユニット23にCANを介して相互通信可能に接続されている。
各ライダーセンサ81,82においては、照射したレーザ光が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、各測定部81A,82Aが、ライダーセンサ81,82から各測距点までの直線距離を測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2の全体にわたって、レーザ光を高速で縦横に走査して、走査角ごとの測距点までの直線距離を順次測定することで、第1測定範囲Rm1又は第2測定範囲Rm2における各測距点までの距離を3次元で測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2の全体にわたってレーザ光を高速で縦横に走査したときに得られる各測距点からの反射光の強度(以下、反射強度と称する)を順次測定する。各測定部81A,82Aは、第1測定範囲Rm1又は第2測定範囲Rm2における各測距点までの直線距離や各反射強度などをリアルタイムで繰り返し測定する。各ライダー用制御部81B,82Bは、各測定部81A,82Aが測定した各測距点までの直線距離や各反射強度などの測距点ごとの測定情報に基づいて距離画像を生成する。各ライダー用制御部81B,82Bは、測距点ごとの測定情報や生成した距離画像に基づいて、障害物の存否を判定する障害物判定制御を実行する障害物判定部81a,82aを有している。各ライダー用制御部81B,82Bは、障害物判定部81a,82aにて障害物が存在すると判定された場合に、障害物との衝突を回避する衝突回避制御を実行する衝突回避制御部81b,82bを有している。
各ライダー用制御部81B,82Bは、生成した距離画像を車載制御ユニット23に出力する。車載制御ユニット23は、トラクタ側の表示制御部23Eや携帯通信端末側の表示制御部51Aからの送信要求指令に応じて、各ライダー用制御部81B,82Bからの距離画像を各表示制御部23E,51Aに送信する。これにより、各ライダー用制御部81B,82Bが生成した距離画像を、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示することができる。そして、この表示により、トラクタ1の前方側や後方側の状況をユーザに視認させることができる。
なお、距離画像の表示に関しては、例えば、距離画像における遠近方向の距離を色分けして表示することが可能であり、この色分け表示によって遠近方向の視認性を高めることができる。
図1~3に示すように、前後のライダーセンサ81,82は、トラクタ1の左右中心線上に配置されている。前後のライダーセンサ81,82のうち、前ライダーセンサ81は、キャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前ライダーセンサ81は、トラクタ1の左右中心線を対称軸とする車体前方側の所定範囲が測定部81Aによる第1測定範囲Rm1に設定されている。後ライダーセンサ82は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後ライダーセンサ82は、トラクタ1の左右中心線を対称軸とする車体後方側の所定範囲が測定部82Aによる第2測定範囲Rm2に設定されている。
前後のライダーセンサ81,82は、変速ユニット16の前後進切換装置が前進伝動状態に切り換えられたトラクタ1の前進走行時には、その切り換えに連動して、前ライダーセンサ81が作動状態になり、後ライダーセンサ82が作動停止状態になる。又、変速ユニット16の前後進切換装置が後進伝動状態に切り換えられたトラクタ1の後進走行時には、その切り換えに連動して、前ライダーセンサ81が作動停止状態になり、後ライダーセンサ82が作動状態になる。
図1~3、図5~6に示すように、ソナーユニット83は、左右の超音波センサ83Aによる超音波の送受信に基づいてソナー用制御部83Bが障害物の存否を判定する。ソナーユニット83は、発信した超音波が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、ソナー用制御部83Bが超音波センサ83Aから障害物までの距離を測定する。ソナー用制御部83Bは、障害物が存在すると判定した場合に障害物との衝突を回避する衝突回避制御を実行する。
左右の超音波センサ83Aは、左右の前輪10と左右の後輪11との間に配置された左右の乗降ステップ24に車体横外向き姿勢で取り付けられている。これにより、左右の超音波センサ83Aは、車体横外側の所定範囲が第3測定範囲Rm3に設定されている。
図3、図7~9に示すように、各ライダー用制御部81B,82Bは、各測定部81A,82Aの測定範囲Rm1,Rm2に対して、車体情報などに基づいて障害物の検知範囲Rd1,Rd2を制限するカット処理とマスキング処理とを施している。各ライダー用制御部81B,82Bは、カット処理においては、車載制御ユニット23との通信によってロータリ耕耘装置3を含む車体の最大左右幅(本実施形態ではロータリ耕耘装置3の左右幅)を取得し、この車体の最大左右幅に所定の安全率を乗じて障害物の検知対象幅Wdを設定する。そして、第1測定範囲Rm1及び第2測定範囲Rm2において、検知対象幅Wdから外れる左右の範囲をカット処理による第1非検知範囲Rnd1に設定して検知範囲Rd1,Rd2から除外する。各ライダー用制御部81B,82Bは、マスキング処理においては、第1測定範囲Rm1に対してトラクタ1の前端側が入り込む範囲、及び、第2測定範囲Rm2に対してロータリ耕耘装置3の後端側が入り込む範囲をマスキング処理による第2非検知範囲Rnd2に設定して検知範囲Rd1,Rd2から除外する。これにより、各ライダーセンサ81,82の障害物検知対象範囲が第1検知範囲Rd1と第2検知範囲Rd2とに制限されている。そして、この制限により、各ライダーセンサ81,82が、第1測定範囲Rm1又は第2測定範囲Rm2に入り込んでいるトラクタ1の前端側やロータリ耕耘装置3の後端側を障害物として誤検知する虞を回避している。
なお、図7に示す第2非検知範囲Rnd2は、左右の前輪10やボンネット15が存在する車体の前部側に適した非検知範囲の一例である。図8に示す第2非検知範囲Rnd2は、車体の後部側においてロータリ耕耘装置3を作業高さまで下降させた作業状態に適した非検知範囲の一例である。図9に示す第2非検知範囲Rnd2は、車体の後部側においてロータリ耕耘装置3を退避高さまで上昇させた非作業状態に適した非検知範囲の一例である。車体後部側の第2非検知範囲Rnd2は、ロータリ耕耘装置3の昇降に連動して適正に切り換わる。
図7~9に示すように、第1検知範囲Rd1、第2検知範囲Rd2、第1非検知範囲Rnd1、及び、第2非検知範囲Rnd2に関する情報は、前述した距離画像に含まれており、前述した距離画像とともに車載制御ユニット23に出力することができる。これにより、第1検知範囲Rd1、第2検知範囲Rd2、第1非検知範囲Rnd1、及び、第2非検知範囲Rnd2は、前述した距離画像とともに、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示することができる。液晶モニタ27及び表示デバイス50は、それらに対する所定の表示切り換え操作が行われた場合に、それらの表示画面を、第1非検知範囲Rnd1及び第2非検知範囲Rnd2の手動調整を可能する非検知範囲調整画面に切り換える。液晶モニタ27及び表示デバイス50は、その非検知範囲調整画面に対して調整用の入力操作が行われた場合に、その操作に応じて第1非検知範囲Rnd1又は第2非検知範囲Rnd2を調整する。つまり、第1非検知範囲Rnd1及び第2非検知範囲Rnd2は、液晶モニタ27又は表示デバイス50に対するユーザの入力操作によって任意に調整することができる。そして、このような調整操作が行われると、液晶モニタ27及び表示デバイス50に表示される距離画像においては、第1検知範囲Rd1又は第2検知範囲Rd2と、左右の第1非検知範囲Rnd1と、第2非検知範囲Rnd2とが、調整操作に応じて変化することから、ユーザによる第1非検知範囲Rnd1及び第2非検知範囲Rnd2の調整が行い易くなる。
図3に示すように、各ライダーセンサ81,82の検知範囲Rd1,Rd2は、衝突予測時間が設定時間(例えば3秒)になる衝突判定処理に基づいて、ライダーセンサ81,82から衝突判定処理の判定基準位置までの範囲に設定される停止制御範囲Rscと、判定基準位置から減速開始位置までの範囲に設定される減速制御範囲Rdcと、減速開始位置からライダーセンサ81,82の測定限界位置までの範囲に設定される報知制御範囲Rncとに区画される。判定基準位置は、ロータリ耕耘装置3を含む車体の前端又は後端から車体前後方向に一定距離L(例えば2000mm)離れた位置に設定されている。
図1、図5~6に示すように、トラクタ1には、その前方側と後方側とを撮像範囲とする前後2台のカメラ85,86が備えられている。前カメラ85は、前ライダーセンサ81と同様に、キャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。後カメラ86は、後ライダーセンサ82と同様に、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。各カメラ85,86は、車載制御ユニット23にCANを介して相互通信可能に接続されている。これにより、各カメラ85,86の撮像画像を、トラクタ1の液晶モニタ27や携帯通信端末5の表示デバイス50などにおいて表示させることができる。その結果、ユーザなどにトラクタ1の周囲の状況を容易に視認させることができる。
以下、図10に示すフローチャート、及び、図11~28に基づいて、各ライダー用制御部81B,82Bの障害物判定部81a,82aによる障害物判定制御について説明する。
なお、前ライダーセンサ81の障害物判定部81aによる障害物判定制御と、後ライダーセンサ82の障害物判定部82aによる障害物判定制御とは、制御手順が同じであることから、以下には、前ライダーセンサ81の障害物判定部81aによる障害物判定制御についてのみ説明する。
障害物判定部81aは、測定部81Aが測定する第1測定範囲Rm1(図2~3参照)の全体における測距点ごとの測定情報を取得する測定情報取得処理を行う(ステップ#1)。
ここで取得する測定情報には、前ライダーセンサ81から測距点までの直線距離とレーザ光の反射強度とが含まれている。この測定情報取得処理には、前ライダーセンサ81の起動時に得られる各測定情報の画素位置とレーザ光の走査角とに基づいて、各測定情報を測距点に対応する画素位置に配置し、所定区域内の各画素位置に配置した測定情報を所定区域ごとの点群情報として格納する点群情報取得処理が含まれている。
なお、測定情報取得処理において、例えば、測距対象箇所が濡れていることなどに起因して、測距対象箇所からの反射光が得られなかった場合は、その測距対象箇所に対応する走査角(画素位置)には測距点がなかったことになる。そして、このような測距点のない画素位置からなる所定区域の点群情報は、測距点なしの点群情報として格納される。各測距点は、ライダー制御部811が生成する距離画像の各画素に対応している。
障害物判定部81aは、前述した直線距離と画素位置と走査角、及び、前ライダーセンサ81の取り付け角度に基づいて、各測距点の座標を取得する座標変換処理を行う(ステップ#2)。
この座標変換処理で取得する各測距点の座標には、トラクタ1の左右方向に沿うX方向での測距点の位置を示すX座標と、トラクタ1の前後方向に沿うY方向での測距点の位置を示すY座標と、トラクタ1の上下方向に沿うZ方向での測距点の位置を示すZ座標とが含まれている。この座標変換処理には、前述したカット処理とマスキング処理とに基づいて、左右の第1非検知範囲Rnd1に属する各測距点の測定情報と、第2非検知範囲Rnd2に属する各測距点の測定情報とを、障害物の検知に使用する障害物検知対象情報から除外する非検知範囲情報除外処理が含まれている。
障害物判定部81aは、障害物検知対象情報に設定された各測距点の測定情報に基づいて、それらの測距点の距離値が無効条件に適合するか否かを判定し、無効条件に適合する距離値を無効値として障害物の存否判定から除外する無効値除外処理を行う(ステップ#3~6)。
具体的には、障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1(例えば300mm)以下になる測距点(図11参照)の距離値を無効値とする第1無効処理を行う(ステップ#3)。
この第1無効処理においては、前ライダーセンサ81からの至近距離に存在するという前ライダーセンサ81におけるセンサ表面の汚れの特徴を利用して、その特徴を有する測距点の距離値を無効値としている。これにより、センサ表面の汚れに関する測距点の距離値が障害物の存否判定に使用されることを防止している。
障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1から第2設定距離L2(例えば2000mm)の間であり、かつ、反射強度が設定値V以上になる測距点(図11参照)の距離値を無効値とする第2無効処理を行う(ステップ#4)。
これにより、例えば、ビニール袋などの反射強度が高くなる異物によって前ライダーセンサ81のセンサ表面が覆われた場合に、その異物に関する測距点の距離値が障害物の存否判定に使用されることを防止している。
障害物判定部81aは、無効値除外処理の一つとして、前ライダーセンサ81からの直線距離が第1設定距離L1から第2設定距離L2の間であり、かつ、反射強度が設定値V未満になる測距点の距離値を無効値とする第3無効処理を行う(ステップ#5)。
この第3無効処理においては、近距離に存在しながら反射強度が非常に弱いという埃や霧などの浮遊物の特徴を利用して、その特徴を有する測距点の距離値を無効値としている。これにより、浮遊物に関する測距点の距離値が障害物の存否判定に使用されることを防止している。
なお、埃や霧などの浮遊物の発生状態は、気温、湿度、天候などの環境条件に影響されることから、第3無効処理に使用する判定用の設定距離L1,L2や設定値Vに関しては、環境条件に応じた設定変更を可能にすることが好ましい。
障害物判定部81aは、無効値除外処理の一つとして、周囲の複数の測距点と比較して直線距離が極端に短くなる測距点の距離値を無効値とする第4無効処理を行う(ステップ#6)。
この第4無効処理においては、図12に示すように、選別対象の測距点Dxとその周囲の隣接する各測距点Dとのそれぞれの直線距離を比較し、周囲の各測距点Dのうち、選別対象の測距点Dxとの直線距離の差分が設定範囲内となる測距点の数量を求める。そして、その数量が設定数(例えば2つ)未満である場合に、選別対象の測距点Dxが微小物やノイズなどに関する単独の測距点であると判定して、この測距点の距離値を無効値とする。これにより、虫や雨滴などの微小物やノイズなどに関する測距点の距離値が障害物の存否判定に使用されることを防止している。
障害物判定部81aは、上記の無効値除外処理にて距離値が無効値となった測距点に関する情報(以下、無効測距点情報と称する)を衝突回避制御部81bに送信する無効情報送信処理を行う(ステップ#7)。
障害物判定部81aは、障害物の位置を特定するのに使用するグリッドマップGM(図13参照)を生成するグリッドマップ生成処理(ステップ#8)を行う。
図13に示すように、グリッドマップGMは、前ライダーセンサ81が測定する第1測定範囲Rm1を含む所定範囲を所定の分解能で分割することで得られた多数のグリッドGを有している。グリッドマップGMの具体例としては、例えば、その範囲を、トラクタ1の左右中心線を基準にした左右の角度範囲が90度で、かつ、前ライダーセンサ81からの直線距離が15000mmとなる扇状の範囲とした上で、左右方向の角度分解能を2度とし、前ライダーセンサ81からの距離分解能を250mmとすることなどが考えられる。
グリッドマップ生成処理には、前ライダーセンサ81が第1測定範囲Rm1の全域にわたってレーザ光を走査させる1周期ごとに、前述した点群情報取得処理で取得した各点群情報を、それらのX,Y座標に基づいて、多数のグリッドGのうちの対応するグリッドGに登録する点群情報登録処理と、各グリッドGの点群情報に含まれた複数の測距点のZ座標から、それぞれのグリッドGにおいて最も高い高さ情報を特定し、特定したそれぞれの高さ情報をグリッドGごとの高さ情報として登録するグリッド高さ登録処理とが含まれている。点群情報登録処理が終了すると、グリッドマップGMのうちの第1測定範囲Rm1に対応する範囲が点群情報登録範囲GMpとして確定される。
なお、点群情報登録処理において、測距点のない点群情報が登録されたグリッドGは測距点なしのグリッドとなる。
障害物判定部81aは、点群情報登録範囲GMpのうちの第1検知範囲Rd1に対応する抽出対象範囲に対して障害物特定用の特徴点を抽出する特徴点抽出処理を行う(ステップ#9)。
障害物判定部81aは、車体に対する直近の測距点から離れる方向の順に特徴点抽出処理を行う。障害物判定部81aは、特徴点抽出処理においては、図14~15に示すように、先ず、基準となる測距点D1と、この測距点D1から離れる方向に連続する2つの測距点D2,D3との合計3つの測距点D1~D3を特徴点抽出対象として選択する。次に、選択した3つの測距点を、車体から近い順に、第1測距点D1、第2測距点D2、第3測距点D3とし、第1測距点D1と第2測距点D2との高さ方向での第1角度θ1と、第2測距点D2と第3測距点D3との高さ方向での第2角度θ2とを求める。そして、図14に示すように、第1角度θ1と第2角度θ2との平均値が45度以上になる場合に第2測距点D2と第3測距点D3とを障害物特定用の特徴点として格納する。又、図15に示すように、第2角度θ2がマイナス値になることなどにより、第1角度θ1と第2角度θ2との平均値が45度未満になる場合は特徴点なしとする。
障害物判定部81aは、抽出対象範囲の各グリッドGから障害物を示す可能性がある点群情報が登録された候補グリッドを抽出する候補グリッド抽出処理を行う(ステップ#10)。
障害物判定部81aは、車体に対する左側直近のグリッドG(グリッドマップGM上の左下のグリッドG)から右の順に候補グリッド抽出処理を行う。
障害物判定部81aは、候補グリッド抽出処理においては、抽出対象のグリッドGxが車体に対する直近のグリッドGである間は、図16に示すように、抽出対象のグリッドGxとその左右に隣接するグリッドGとの合計3つの高さ情報を比較し、抽出対象のグリッドGxの高さ情報よりも設定値(例えば100mm)以上低い高さ情報を有するグリッドが複数ある場合に、抽出対象のグリッドGxを候補グリッドとする。その後、抽出対象のグリッドGxが車体に対する直近以外のグリッドGになると、図17に示すように、抽出対象のグリッドGxと、その左右に隣接するグリッドGと、それらの車体側に隣接する3つのグリッドGとの合計6つグリッドGの高さ情報を比較し、抽出対象のグリッドGxの高さ情報よりも所定値以上(例えば100mm)低い高さ情報を有するグリッドが複数ある場合に、抽出対象のグリッドGxを候補グリッドとする。
なお、図18に示すように、抽出対象のグリッドGxによっては、その車体側に隣接する比較対象のグリッドGが測距点(高さ情報)のないグリッドである場合があり、このような場合には、その測距点のない比較対象のグリッドよりも更に車体側で測距点を有するグリッドGの高さ情報を、比較対象のグリッドの高さ情報とした上で高さ情報の比較を行う。又、測距点のない比較対象のグリッドよりも更に車体側の全てのグリッドGが測距点のないグリッドである場合は、予め、前ライダーセンサ81の取り付け高さ位置から求めた、地表面から任意高さ(例えば100mm)の位置に設定した高さ位置を、比較対象のグリッドの高さ情報とした上で高さ情報の比較を行う。
障害物判定部81aは、候補グリッド抽出処理にて抽出した各候補グリッドから障害物を示す障害物グリッドGo(図19参照)を特定する障害物グリッド特定処理を行う(ステップ#11)。
障害物判定部81aは、障害物グリッド特定処理においては、各候補グリッドのうち、前述した障害物特定用の特徴点を有する点群情報が存在する候補グリッドを障害物グリッドGoとして特定する。
障害物判定部81aは、特定した複数の障害物グリッドGoのうち、連続する障害物グリッド群Og(図19参照)を一つの障害物としてグループ化して当該障害物グリッド群Ogの各障害物グリッドGoに同じ番号を付けるラベリング処理を行う(ステップ#12)。
これにより、グループごとの各障害物グリッドGoが有する点群情報を同一の障害物を示す障害物情報として格納することができ、この障害物情報から障害物の大きさや位置などを特定することができる。
障害物判定部81aは、障害物グリッド群Ogの時系列での同一性の判定を可能にする基準点Or(図19~20参照)を求める基準点算出処理を行う(ステップ#13)。
障害物判定部81aは、基準点算出処理においては、図20に示すように、障害物グリッド群Ogの基準点Orに使用する障害物グリッド群Ogの重心を求める。障害物判定部81aは、障害物グリッド群Ogにおける全ての障害物グリッドGoのX軸方向(トラクタ1の左右方向)での原点0からの位置を加算し、この加算で得た値を障害物グリッド群Ogのグリッド数で除算し、この除算で得た値の四捨五入後の整数を障害物グリッド群Ogにおける重心のX位置とする。ライダー制御部811は、障害物グリッド群Ogにおける全ての障害物グリッドGoのY軸方向(トラクタ1の前後方向)での原点0からの位置を加算し、この加算で得た値を障害物グリッド群Ogのグリッド数で除算し、この除算で得た値の四捨五入後の整数を障害物グリッド群Ogにおける重心のY位置とする。
障害物判定部81aは、測定部81Aが第1測定範囲Rm1の全域にわたってレーザ光を走査させる1周期ごとに前述した一通りの処理を行い、一通りの処理で得た情報の登録などが行われた後のグリッドマップGMをフレームF(図22~28参照)として順次格納するフレーム格納処理を行う(ステップ#14)。
障害物判定部81aは、今回検知した障害物グリッド群Ogと過去に検知した障害物グリッド群Ogとを紐付けて、障害物グリッド群Ogの時系列での同一性の判定を可能にするペアリング処理を行う(ステップ#15)。
障害物判定部81aは、ペアリング処理においては、過去に検知した障害物グリッド群Ogの基準点Orに対して、今回検知した障害物グリッド群Ogの基準点Orの変位量が設定範囲内であれば、同一の障害物グリッド群Ogとして紐付けする。
具体的には、障害物判定部81aは、図21に示すように、今回の1つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第1設定範囲R1内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の1つ前に検知した障害物グリッド群Ogの基準点Orが第1設定範囲R1内になければ、今回の2つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第2設定範囲R2(第1設定範囲R1よりも大きい範囲)内にあるか否かを判定する。第2設定範囲R2内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の2つ前に検知した障害物グリッド群Ogの基準点Orが第2設定範囲R2内になければ、今回の3つ前に検知した障害物グリッド群Ogの基準点Orが、今回検知した障害物グリッド群Ogの基準点Orを中心にした第3設定範囲R3(第2設定範囲R2よりも大きい範囲)内にあるか否かを判定する。第3設定範囲R3内にあれば、それらの障害物グリッド群Ogを同一の障害物グリッド群Ogとして紐付けする。今回の3つ前に検知した障害物グリッド群Ogの基準点Orが第3設定範囲R3内になければ、同一の障害物グリッド群Ogとして紐付けする障害物グリッド群Ogがないと判定する。
なお、前述した設定範囲R1~R3内に複数の障害物グリッド群Ogの基準点Orが存在する場合は、今回検知した障害物グリッド群Ogの基準点Orに最も近い基準点Orを有する障害物グリッド群Ogを今回検知した障害物グリッド群Ogと紐付けする。
障害物判定部81aは、直近に連続して格納した複数のフレームFから障害物の存否を判定する障害物判定処理を行う(ステップ#16)。
障害物判定部81aは、障害物判定処理においては、直近に連続して格納した複数のフレームFのうち、最新のフレームFを含む所定数以上のフレームFにおいて紐付けされた障害物グリッド群Ogの基準点Orが存在している場合に、障害物の存在を検知したと判定する。
ちなみに、障害物判定部81aが障害物の存在を検知したと判定する場合の具体例としては、例えば、図22~24に示すように、直近に連続して格納した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を含む3つ以上のフレームFにおいて同一のグリッドGに障害物グリッド群の基準点Orが存在している場合、図25~27に示すように、前述した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を含む3つ以上のフレームFにおいて連続する位置関係のグリッドGに障害物グリッド群の基準点Orが存在している場合、及び、図28に示すように、前述した5つのフレームF(t-4)~フレームF(t)のうちの最新のフレームF(t)を除いた4つのフレームF(t-4)~フレームF(t-1)において障害物グリッド群の基準点Orが存在していた場合、などを挙げることができる。
なお、障害物判定部81aは、図28に例示した場合においては、最新の1つ前のフレームF(t-1)において障害物グリッド群の基準点Orが存在していたグリッドGを、最新のフレームF(t)において障害物グリッド群の基準点Orが存在していたグリッドGとする。
障害物判定部81aは、障害物の存在を検知した場合に、その検知情報や障害物に対する測距点ごとの距離値などの障害物に関する情報を衝突回避制御部81bに送信する障害物情報送信処理を行う(ステップ#17)。
次に、図29~33に示すフローチャート、及び、図34~41に基づいて、各ライダー用制御部81B,82Bの衝突回避制御部81b,82bによる衝突回避制御について説明する。
なお、前ライダーセンサ81の衝突回避制御部81bによる衝突回避制御と、後ライダーセンサ82の衝突回避制御部82bによる衝突回避制御とは、制御手順が同じであることから、以下には、前ライダーセンサ81の衝突回避制御部81bによる衝突回避制御についてのみ説明する。
図29に示すように、衝突回避制御部81bは、障害物判定部81aからの無効測距点情報や障害物に関する情報、及び、車速センサ28が検出する車速などを取得する情報取得処理を行い(ステップ#21)、取得した障害物に関する情報から障害物判定部81aにて障害物の存在が検知されているか否かを判定する第1検知判定処理を行う(ステップ#22)。
衝突回避制御部81bは、第1検知判定処理にて障害物の存在が検知されていると判定した場合(Yesの場合)は、前回に同一の障害物の存在が検知されているか否かを判定する第2検知判定処理を行い(ステップ#23)、第2検知判定処理にて同一の障害物の存在が検知されていると判定した場合(Yesの場合)は、取得した無効測距点情報に基づいて、前述した無効値が障害物との最短距離値を含むか否かを判定する第1無効値判定処理を行い(ステップ#24)、第1無効値判定処理にて無効値が最短距離値を含むと判定した場合(Yesの場合)は、障害物に関する複数の距離値の全てが無効値になったか否かを判定する第2無効値判定処理を行う(ステップ#25)。
衝突回避制御部81bは、第2検知判定処理にて同一の障害物の存在が検知されていないと判定した場合(Noの場合)、及び、第1無効値判定処理にて無効値が最短距離値ではないと判定した場合(Noの場合)は、最短距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第1衝突回避処理に遷移する(ステップ#26)。
衝突回避制御部81bは、第2無効値判定処理にて障害物に関する複数の距離値の全てが無効値になったのではないと判定した場合(Noの場合)は、最短距離値以外の有効な障害物との距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第2衝突回避処理に遷移する(ステップ#27)。又、第2無効値判定処理にて障害物に関する複数の距離値の全てが無効値になったと判定した場合(Yesの場合)は、全ての距離値が無効値になる直前の有効な障害物との距離値から算出した障害物との相対速度に基づいて障害物との衝突を回避する第3衝突回避処理に遷移する(ステップ#28)。
衝突回避制御部81bは、第1検知判定処理にて障害物の存在が検知されていないと判定した場合(Noの場合)は、いずれかの衝突回避処理(後述する第4衝突回避処理を含む)が実行中か否かを判定する実行判定処理を行い(ステップ#29)、実行中と判定した場合(Yesの場合)は、実行中の衝突回避処理を終了させる衝突回避終了処理を行い(ステップ#30)、その後、ステップ#21に遷移する。一方、実行中ではないと判定した場合(Noの場合)は、前ライダーセンサ81による第1測定範囲Rm1のうちの第1検知範囲Rd1(障害物検知対象範囲)における無効値の割合が制限値(例えば第1検知範囲Rd1の50%)を超えて、この制限値超過状態が一定時間(例えば0.5秒)以上継続されたか否かを判定する第3無効値判定処理を行う(ステップ#31)。
衝突回避制御部81bは、第3無効値判定処理にて制限値超過状態が一定時間以上継続されたと判定した場合(Yesの場合)は、車速センサ28が検出する車速に基づいて障害物との衝突を回避する第4衝突回避処理に遷移し(ステップ#32)、又、制限値超過状態が一定時間以上継続されなかったと判定した場合(Noの場合)は、ステップ#21に遷移する。
ちなみに、無効値が最短距離値ではない状態とは、例えば、図34に示すように、前ライダーセンサ81のセンサ表面に汚れなどが無く、かつ、第1検知範囲Rd1にて埃や霧などの浮遊物が発生していない状態、及び、図35~37に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物90の発生などにより、障害物Oの一部が汚れや浮遊物90などによって隠れているが、障害物Oにおいて前ライダーセンサ81から最も近い最接近測距点Opが隠れていない状態、などのように、前ライダーセンサ81による最接近測距点Opの測定が可能な状態である。
無効値が最短距離値である状態とは、図38に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物Oの最接近測距点Opが汚れや浮遊物などによって隠れていて、前ライダーセンサ81による最接近測距点Opの測定が不可能であるが、障害物Oにおける他の測距点の測定が可能な状態である。
障害物に関する複数の距離値の全てが無効値である状態とは、図39に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物Oの全体が汚れや浮遊物などによって隠れていることで、前ライダーセンサ81による障害物Oの全ての測距点の測定が不可能な状態である。
制限値超過状態とは、図40に示すように、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、前ライダーセンサ81による第1検知範囲Rd1での障害物Oの検知が困難な状態である。
図30に示すように、衝突回避制御部81bは、第1衝突回避処理においては、障害物との最短距離値から算出した障害物との相対速度に基づく第1衝突判定処理を行い(ステップ#41)、第1衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第1位置判定処理を行う(ステップ#42)。
衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、報知制御範囲Rncでの障害物の存在を報知する第1報知制御の実行を車載制御ユニット23の表示制御部23Eと端末制御ユニット51の表示制御部51Aとに指令する第1報知開始指令処理を行い(ステップ#43)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、トラクタ1の液晶モニタ27と携帯通信端末5の表示デバイス50との各表示画面が、報知制御範囲Rncでの障害物の存在を報知する第1報知画面に切り換わる。又、運転部12及び携帯通信端末5に備えられたブザーや報知ランプなどの報知器が、報知制御範囲Rncでの障害物の存在を報知する第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、減速制御範囲Rdcでの障害物の存在を報知する第2報知制御の実行を各表示制御部23E,51Aに指令する第2報知開始指令処理を行う(ステップ#44)。又、第1衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#45)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#46)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、減速制御範囲Rdcでの障害物の存在を報知する第2報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、減速制御範囲Rdcでの障害物の存在を報知する第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動減速制御を実行させることができる。自動減速制御が実行されると、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
衝突回避制御部81bは、第1位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、停止制御範囲Rscでの障害物の存在を報知する第3報知制御の実行を各表示制御部23E,51Aに指令する第3報知開始指令処理を行う(ステップ#47)。又、自動停止制御の実行を車速制御部23Bに指令する停止指令処理を行い(ステップ#48)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、停止制御範囲Rscでの障害物の存在を報知する第3報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、停止制御範囲Rscでの障害物の存在を報知する第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動停止制御を実行させることができる。自動停止制御が実行されると、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
つまり、障害物との最短距離値に基づく第1衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を好適に回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、液晶モニタ27と表示デバイス50の各表示画面に表示されている再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
図31に示すように、衝突回避制御部81bは、第2衝突回避処理においては、最短距離値以外の有効な障害物との距離値に基づいて、この距離値の前回の値と前回の最短距離値との差から、現時点での障害物との最短距離値を算出する最短距離値算出処理を行い(ステップ#51)、算出した最短距離値から求められる障害物との相対速度に基づく第2衝突判定処理を行い(ステップ#52)、第2衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第2位置判定処理を行う(ステップ#53)。
衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、前述した第1報知開始指令処理を行い(ステップ#54)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第1報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、前述した第2報知開始指令処理を行う(ステップ#55)。又、第2衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#56)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#57)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第2報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
衝突回避制御部81bは、第2位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、前述した第3報知開始指令処理と停止指令処理とを行い(ステップ#58,59)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第3報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物との最短距離値が無効値になったとしても、算出した最短距離値に基づく第2衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、前述した再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
図32に示すように、衝突回避制御部81bは、第3衝突回避処理においては、障害物に関する全ての距離値が無効値になる直前の障害物との相対速度を取得する相対速度取得処理を行い(ステップ#61)、取得した障害物との相対速度に基づく第3衝突判定処理を行い(ステップ#62)、第3衝突判定処理の判定結果に基づいて第1検知範囲Rd1における障害物の存在位置を判定する第3位置判定処理を行う(ステップ#63)。
衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに障害物が存在すると判定した場合は、前述した第1報知開始指令処理を行い(ステップ#64)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいて第1報知制御を実行させることができる。第1報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第1報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第1報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の報知制御範囲Rncに障害物が存在することを、運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在すると判定した場合は、前述した第2報知開始指令処理を行う(ステップ#65)。又、第3衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#66)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#67)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第2報知制御を実行させることができる。第2報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第2報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第2報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の減速制御範囲Rdcに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、障害物に対するトラクタ1の衝突回避を可能にすることができる。
衝突回避制御部81bは、第3位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに障害物が存在すると判定した場合は、前述した第3報知開始指令処理と停止指令処理とを行い(ステップ#68,69)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第3報知制御を実行させることができる。第3報知制御が実行されると、前述したように、液晶モニタ27と表示デバイス50の各表示画面が第3報知画面に切り換わり、又、運転部12及び携帯通信端末5の報知器が第3報知状態で作動する。その結果、トラクタ1に対する第1検知範囲Rd1の停止制御範囲Rscに障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
そして、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定されるまで、自動停止制御によるトラクタ1の停止状態が維持される。
つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、障害物に関する全ての距離値が無効値になったとしても、その直前に取得した障害物との相対速度に基づく第3衝突回避処理により、自動走行制御による自動走行中のトラクタ1が障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
又、ステップ#22の第1検知判定処理にて障害物の存在が検知されていないと判定された場合は、前述した再スタートボタンの操作により、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
衝突回避制御部81bは、ステップ#30の衝突回避終了処理においては、第1報知制御の終了を各表示制御部23E,51Aに指令する第1報知終了指令処理、第2報知制御の終了を各表示制御部23E,51Aに指令する第2報知終了指令処理、第3報知制御の終了を各表示制御部23E,51Aに指令する第3報知終了指令処理、後述する第4報知制御の終了を各表示制御部23E,51Aに指令する第4報知終了指令処理、後述する第5報知制御の終了を各表示制御部23E,51Aに指令する第5報知終了指令処理、及び、自動減速制御を終了して車速を目標経路Pに含まれた目標車速まで復帰させる自動車速復帰制御の実行を車速制御部23Bに指令する車速復帰指令処理を行う。
これにより、トラクタ1に対する第1検知範囲Rd1に障害物が存在しなくなったことをユーザに知らせることができる。
又、停止制御範囲Rscにおいて障害物の存在が検知されるまでの間において、第1検知範囲Rd1において障害物の存在が検知されなくなった場合には、トラクタ1を自動停止させることなく、自動走行制御によるトラクタ1の自動走行を継続することができる。
図33に示すように、衝突回避制御部81bは、第4衝突回避処理においては、車速センサ28が検出する車速に基づいて仮想の第4衝突判定処理を行い(ステップ#71)、第4衝突判定処理の判定結果に基づいて第1検知範囲Rd1における仮想の障害物の存在位置を判定する第4位置判定処理を行う(ステップ#72)。
衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の報知制御範囲Rncに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生、あるいは、センサ表面へのビニール袋などの異物の張り付きなどにより、前ライダーセンサ81による第1検知範囲Rd1での障害物の検知が困難な状態であることを報知する第4報知制御の実行を各表示制御部23E,51Aに指令する第4報知開始指令処理を行い(ステップ#73)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいて第4報知制御を実行させることができる。第4報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前ライダーセンサ81での障害物検知精度の低下を報知する第4報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前ライダーセンサ81での障害物検知精度の低下を報知する第4報知状態で作動する。その結果、前ライダーセンサ81での障害物検知精度の低下を運転部12の搭乗者や車外の管理者などのユーザに知らせることができる。
衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の減速制御範囲Rdcに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81での障害物検知精度の低下による自動減速制御の実行を報知する第5報知制御の実行を各表示制御部23E,51Aに指令する第5報知開始指令処理を行う(ステップ#74)。又、第4衝突判定処理で得られる衝突予測時間を設定時間(例えば3秒)に維持するための衝突回避用の目標車速を求める目標車速算出処理を行い(ステップ#75)、求めた衝突回避用の目標車速に基づく自動減速制御の実行を車速制御部23Bに指令する減速指令処理を行い(ステップ#76)、その後、ステップ#21に遷移する。
これにより、各表示制御部23E,51Aにおいては第5報知制御を実行させることができる。第5報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前述した理由による自動減速制御の実行を報知する第5報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前述した理由による自動減速制御の実行を報知する第5報知状態で作動する。その結果、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などに起因した前ライダーセンサ81での障害物検知精度の低下によって自動減速制御が実行されることをユーザに知らせることができる。
又、車速制御部23Bにおいては自動減速制御を実行させることができ、これにより、車速を衝突回避用の目標車速まで低下させるための無段変速装置の減速操作が行われて、衝突予測時間が設定時間に維持される。その結果、仮想の障害物との相対距離が短くなるに連れてトラクタ1の車速を低下させることができ、実在する可能性のある障害物に対するトラクタ1の衝突回避を可能にすることができる。
衝突回避制御部81bは、第4位置判定処理にて第1検知範囲Rd1の停止制御範囲Rscに仮想の障害物が存在すると判定した場合は、前ライダーセンサ81での障害物検知精度の低下による自動停止制御の実行を報知する第6報知制御の実行を各表示制御部23E,51Aに指令する第6報知開始指令処理を行う(ステップ#77)。又、自動停止制御の実行を車速制御部23Bに指令する停止指令処理を行う(ステップ#78)。
これにより、各表示制御部23E,51Aにおいては第6報知制御を実行させることができる。第6報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、前述した理由による自動停止制御の実行を報知する第6報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、前述した理由による自動停止制御の実行を報知する第6報知状態で作動する。その結果、前ライダーセンサ81におけるセンサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などに起因した前ライダーセンサ81での障害物検知精度の低下によって自動停止制御が実行されることをユーザに知らせることができる。
又、車速制御部23Bにおいては自動停止制御を実行させることができ、これにより、車速を零速まで低下させるための無段変速装置の減速操作が行われる。その結果、停止制御範囲Rscに仮想の障害物が存在する段階においてトラクタ1を停止させることができる。
衝突回避制御部81bは、第4衝突回避処理においては、停止指令処理を行った段階で前ライダーセンサ81のセンサ表面が汚れていると判定して、センサ表面の汚れを報知するセンサ汚れ報知制御の実行を各表示制御部23E,51Aに指令する汚れ報知開始指令処理を行う(ステップ#79)。又、自動走行制御の終了を自動走行制御部23Fに指令する自動走行終了指令処理を行い(ステップ#80)、その後、衝突回避制御を終了する。
これにより、各表示制御部23E,51Aにおいてはセンサ汚れ報知制御を実行させることができる。センサ汚れ報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、例えば、図41に示すような「前ライダーセンサのセンサ表面が汚れています。」などのセンサ表面の汚れなどを知らせるセンサ汚れ報知画面に切り換わる。
又、自動走行制御部23Fが自動走行制御を終了し、これにより、走行モードが自動走行モードから手動走行モードに切り換わる。
つまり、センサ表面の汚れや第1検知範囲Rd1での浮遊物の発生などにより、前ライダーセンサ81による第1検知範囲Rd1での障害物検知精度が低下しても、車速に基づく仮想の第4衝突判定処理により、自動走行制御による自動走行中のトラクタ1が実在する可能性のある障害物に衝突する虞を回避しながら、停止制御範囲Rscにおいて仮想の障害物の存在が検知されるまでの間、自動走行による作業を継続することができる。
又、前ライダーセンサ81のセンサ表面が汚れていることやセンサ表面に異物が付着していることなどをユーザに知らせることができ、汚れや付着物の除去を促すことができる。そして、前ライダーセンサ81におけるセンサ表面の汚れや異物の付着などに起因して前ライダーセンサ81の測定精度が低下した状態において、自動走行制御によるトラクタ1の自動走行が継続される、又は再開されることを防止することができる。
次に、ソナーユニット83のソナー用制御部83Bによる衝突回避制御について説明する。
なお、左側の超音波センサ83Aに基づく衝突回避制御と、右側の超音波センサ83Aに基づく衝突回避制御とは、制御手順が同じであることから、以下には、左側の超音波センサ83Aに基づく突回避制御についてのみ説明する。
ソナー用制御部83Bは、左側の第3測定範囲Rm3に障害物が存在すると判定した場合は、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知制御の実行を各表示制御部23E,51Aに指令する第7報知開始指令処理と、前述した自動停止制御の実行を車速制御部23Bに指令する停止指令処理とを行う。
これにより、各表示制御部23E,51Aにおいては第7報知制御を実行させることができる。第7報知制御が実行されると、液晶モニタ27と表示デバイス50の各表示画面が、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知画面に切り換わる。又、運転部12及び携帯通信端末5の報知器が、左側の第3測定範囲Rm3での障害物の存在を報知する第7報知状態で作動する。その結果、トラクタ1に対する左側の第3測定範囲Rm3に障害物が存在することをユーザに知らせることができる。
又、車速制御部23Bにおいては自動停止制御を実行させることができる。自動停止制御が実行されると、車速を零速まで低下させるための無段変速装置の減速操作が行われる。これにより、左側の第3測定範囲Rm3に障害物が存在する段階においてトラクタ1を停止させることができ、障害物に対するトラクタ1の衝突回避を確実に行うことができる。
ソナー用制御部83Bは、第7報知開始指令処理と停止指令処理とを行った後に、左側の第3測定範囲Rm3に障害物が存在しないと判定した場合は、第7報知制御の終了を各表示制御部23E,51Aに指令する第7報知終了指令処理を行う。
これにより、各表示制御部23E,51Aにおいて第7報知制御を終了させることができ、トラクタ1に対する左側の第3測定範囲Rm3に障害物が存在しなくなったことをユーザに知らせることができる。
そして、左側の第3測定範囲Rm3に障害物が存在しないと判定した後に、前述した再スタートボタンの操作が行われた場合は、自動走行制御によるトラクタ1の自動走行を速やかに再開させることができる。
〔別実施形態〕
本発明の別実施形態について説明する。
なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
(1)作業車両の構成は種々の変更が可能である。
例えば、作業車両は、左右の後輪11に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
例えば、作業車両は、左右の前輪10及び左右の後輪11に代えて左右のクローラを備えるフルクローラ仕様に構成されていてもよい。
例えば、作業車両は、左右の後輪11が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。
例えば、作業車両は、エンジン14の代わりに電動モータを備える電動仕様に構成されていてもよい。
例えば、作業車両は、エンジン14と走行用の電動モータとを備えるハイブリッド仕様に構成されていてもよい。
(2)衝突回避制御部81b,82bは、車載制御ユニット23に備えられていてもよい。
(3)障害物判定部81a,82aは、衝突回避制御部81b,82bとともに車載制御ユニット23に備えられていてもよい。
又、障害物判定部81a,82aは、衝突回避制御部81b,82bとしての機能を有するように構成されていてもよい
(4)衝突回避制御部81b,82bは、障害物判定部81a,82aにて障害物の存在が検知されていない状態において、測定範囲Rm1,Rm2のうちの障害物検知対象範囲Rd1,Rd2における無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、目標経路Pに含まれた目標車速に基づいて障害物との衝突を回避するように構成されていてもよい。
28 車速センサ
81A 測定部(前ライダーセンサ)
82A 測定部(後ライダーセンサ)
81a 障害物判定部(前ライダーセンサ)
82a 障害物判定部(後ライダーセンサ)
81b 衝突回避制御部(前ライダーセンサ)
82b 衝突回避制御部(後ライダーセンサ)
Rm1 第1測定範囲
Rm2 第2測定範囲

Claims (5)

  1. 車体から所定の測定範囲に存在する測距点群に向けて照射した測定光と当該測定光の反射光とに基づいて、少なくとも測距点ごとの多数の距離値を測定する測定部と、
    前記多数の距離値を含む前記測定部からの測定情報に基づいて障害物の存否を判定する障害物判定部と、
    前記障害物判定部からの前記障害物に関する情報に基づいて前記障害物との衝突を回避する衝突回避制御部とを有し、
    記障害物判定部にて障害物の存在が検知されているか否かを判定し、かつ、前記多数の距離値のうちの所定の無効条件に適合する距離値を無効値として前記多数の距離値に含まれた前記障害物に関する複数の距離値において前記無効値が発生したか否かを判定し、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記障害物に関する複数の距離値に前記無効値が発生した場合は、前記衝突回避制御部は、当該無効値と前記障害物との関係について更に無効値判定処理を行い、当該無効値を除いた有効な障害物との距離値に基づいて前記障害物との衝突を回避する作業車両用の衝突回避システム。
  2. 前記衝突回避制御部は、前記無効値判定処理として前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値でなければ前記最短距離値に基づいて前記障害物との衝突を回避する請求項1に記載の作業車両用の衝突回避システム。
  3. 前記衝突回避制御部は、前記無効値判定処理として前記無効値が前記障害物との最短距離値か否かを判定し、前記無効値が前記最短距離値であれば、前記最短距離値以外の有効な障害物との距離値から算出した最短距離値に基づいて前記障害物との衝突を回避する請求項1又は2に記載の作業車両用の衝突回避システム。
  4. 前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されている状態において、前記無効値判定処理として前記障害物に関する複数の距離値の全てが前記無効値になった場合は、その直前の有効な障害物との距離値に基づいて前記障害物との衝突を回避する請求項1~3のいずれか一項に記載の作業車両用の衝突回避システム。
  5. 前記衝突回避制御部は、前記障害物判定部にて前記障害物の存在が検知されていない状態において、前記測定範囲のうちの障害物検知対象範囲における前記無効値の割合が制限値を超えて、この制限値超過状態が一定時間以上継続された場合は、車速センサが検出する車速に基づいて前記障害物との衝突を回避する請求項1~4のいずれか一項に記載の作業車両用の衝突回避システム。
JP2018244265A 2018-12-27 2018-12-27 作業車両用の衝突回避システム Active JP7402608B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018244265A JP7402608B2 (ja) 2018-12-27 2018-12-27 作業車両用の衝突回避システム
PCT/JP2019/042279 WO2020137134A1 (ja) 2018-12-27 2019-10-29 作業車両用の衝突回避システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018244265A JP7402608B2 (ja) 2018-12-27 2018-12-27 作業車両用の衝突回避システム

Publications (2)

Publication Number Publication Date
JP2020107021A JP2020107021A (ja) 2020-07-09
JP7402608B2 true JP7402608B2 (ja) 2023-12-21

Family

ID=71126060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018244265A Active JP7402608B2 (ja) 2018-12-27 2018-12-27 作業車両用の衝突回避システム

Country Status (2)

Country Link
JP (1) JP7402608B2 (ja)
WO (1) WO2020137134A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179116B2 (ja) * 2021-04-14 2022-11-28 日立建機株式会社 運搬車両及び運搬システム
CN114185340B (zh) * 2021-11-15 2024-04-23 广州文远知行科技有限公司 一种障碍物位置异常检测方法及装置
CN116679315A (zh) * 2022-02-23 2023-09-01 北京百度网讯科技有限公司 作业地形检测方法、装置及用于检测作业地形的工程设备
CN114384492B (zh) * 2022-03-24 2022-06-24 北京一径科技有限公司 用于激光雷达的点云处理方法及装置、存储介质
CN115443795B (zh) * 2022-09-29 2024-01-30 宁波东贝智能科技有限公司 一种割草机碰撞检测方法、系统、存储介质及智能终端

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072980A1 (ja) 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564800B2 (ja) * 1994-08-30 2004-09-15 株式会社デンソー 距離測定装置
JP3244438B2 (ja) * 1996-11-07 2002-01-07 オムロン株式会社 物体情報検知装置
JPH10153661A (ja) * 1996-11-26 1998-06-09 Omron Corp 測距装置
DE102005045484A1 (de) * 2005-07-29 2007-02-01 Cedes Ag Sensorvorrichtung
JP5710108B2 (ja) * 2009-07-03 2015-04-30 日本信号株式会社 光測距装置
JP5776289B2 (ja) * 2010-11-26 2015-09-09 三菱電機株式会社 倒れ検知装置及び乗客コンベア
JP2016070796A (ja) * 2014-09-30 2016-05-09 シャープ株式会社 障害物判定装置および障害物判定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072980A1 (ja) 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法

Also Published As

Publication number Publication date
WO2020137134A1 (ja) 2020-07-02
JP2020107021A (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7402608B2 (ja) 作業車両用の衝突回避システム
JP7044694B2 (ja) 作業車両用の障害物検知システム
JP7349277B2 (ja) 作業車両用の自動走行システム
JP7356829B2 (ja) 自動走行システム
US20230031053A1 (en) Automatic Travel System For Work Vehicle
US20220381920A1 (en) Obstacle Detection System
WO2019187883A1 (ja) 作業車両用の障害物検知システム
JP7470843B2 (ja) 自動走行システム及び自動走行方法
JP2019175059A (ja) 作業車両の走行制御システム
JP7544778B2 (ja) 作業車両用の自動走行システム
WO2019187938A1 (ja) 作業車両の走行制御システム
JP7399680B2 (ja) 作業支援システム
JP7317165B2 (ja) 作業車両用の障害物検知システム
JP2023126466A (ja) 自動走行方法及び自動走行システム
JP2020034354A (ja) 障害物検知システム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220816

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7402608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150