WO2020136747A1 - 変倍光学系、光学機器および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2020136747A1
WO2020136747A1 PCT/JP2018/047779 JP2018047779W WO2020136747A1 WO 2020136747 A1 WO2020136747 A1 WO 2020136747A1 JP 2018047779 W JP2018047779 W JP 2018047779W WO 2020136747 A1 WO2020136747 A1 WO 2020136747A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
conditional expression
variable power
Prior art date
Application number
PCT/JP2018/047779
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020562010A priority Critical patent/JP7163974B2/ja
Priority to PCT/JP2018/047779 priority patent/WO2020136747A1/ja
Publication of WO2020136747A1 publication Critical patent/WO2020136747A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable power optical system, an optical device using the same, and a method for manufacturing the variable power optical system.
  • variable power optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc.
  • a variable power optical system it is required to suppress variation in aberration during variable power or focusing.
  • the variable power optical system includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a second lens group having a positive refractive power, which are arranged in order from the object side.
  • Third lens group, fourth lens group having positive refracting power, fifth lens group having positive refracting power, sixth lens group having positive refracting power, and seventh lens having negative refracting power The distance between adjacent lens groups changes during zooming.
  • the optical device according to the second aspect is configured by mounting the above-mentioned variable power optical system.
  • a method of manufacturing a variable power optical system is configured such that a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power, which are arranged in order from the object side. Having a third refracting power, a fourth lens group having a positive refracting power, a fifth lens group having a positive refracting power, a sixth lens group having a positive refracting power, and a negative refracting power.
  • FIG. 5B, and FIG. 5C are respectively for focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable power optical system according to the second example.
  • 9 is a diagram of various types of aberrations in FIG. 6(A), 6(B), and 6(C) respectively show a wide-angle end state, an intermediate focal length state, and a telephoto end state of the variable power optical system according to Example 2 when focusing on a short distance.
  • 9 is a diagram of various types of aberrations in FIG. It is a figure which shows the lens structure of the variable power optical system which concerns on 3rd Example.
  • FIG. 9 is a diagram of various types of aberrations in FIG. 9(A), 9(B), and 9(C) respectively show the zoom lens system according to Example 3 at the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on a short distance.
  • 9 is a diagram of various types of aberrations in FIG. It is a figure which shows the lens structure of the variable power optical system which concerns on 4th Example.
  • 11(A), 11(B), and 11(C) respectively show focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable power optical system according to the fourth example.
  • 9 is a diagram of various types of aberrations in FIG. 12(A), 12(B), and 12(C) respectively show the variable power optical system according to Example 4 at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short distance focusing.
  • 9 is a diagram of various types of aberrations in FIG. It is a figure which shows the lens structure of the variable power optical system which concerns on 5th Example.
  • FIG. 14(A), 14(B), and 14(C) show the zoom lens system according to the fifth embodiment at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • 9 is a diagram of various types of aberrations in FIG. 15(A), 15(B), and 15(C) respectively show the variable power optical system according to Example 5 at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short-distance focusing.
  • 9 is a diagram of various types of aberrations in FIG. It is a figure which shows the lens structure of the variable power optical system which concerns on 6th Example.
  • 17(A), 17(B), and 17(C) show focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable power optical system according to the sixth example, respectively.
  • 9 is a diagram of various types of aberrations in FIG. 18(A), 18(B), and 18(C) respectively show the variable power optical system according to the sixth example at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short distance focusing.
  • 9 is a diagram of various types of aberrations in FIG. It is a figure which shows the lens structure of the variable power optical system which concerns on 7th Example.
  • FIG. 21(A), 21(B), and 21(C) respectively show the zoom lens system according to Example 7 at the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity.
  • 9 is a diagram of various types of aberrations in FIG. 21(A), 21(B), and 21(C) respectively show a wide-angle end state, an intermediate focal length state, and a telephoto end state of the variable power optical system according to Example 7 when focusing on a short distance.
  • the camera 1 is a digital camera provided with a variable power optical system according to this embodiment as a taking lens 2.
  • the taking lens 2 In the camera 1, light from an object (subject) (not shown) is condensed by the taking lens 2 and reaches the image sensor 3.
  • the image sensor 3 Thus, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown).
  • this camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.
  • variable power optical system ZL(1) as an example of the variable power optical system (zoom lens) ZL according to the present embodiment has a positive refracting power arranged in order from the object side, as shown in FIG.
  • It has a fifth lens group G5, a sixth lens group G6 having a positive refractive power, and a seventh lens group G7 having a negative refractive power. Configured to change.
  • variable power optical system ZL according to this embodiment has at least five lens groups, and the distance between the lens groups changes during zooming. As a result, according to the present embodiment, it is possible to suppress variation in aberration during zooming from the wide-angle end state to the telephoto end state. Further, the variable power optical system ZL according to the present embodiment includes a fifth lens group having a positive refractive power, a sixth lens group having a positive refractive power, and a seventh lens group having a negative refractive power. Therefore, it is possible to satisfactorily suppress the fluctuation of aberration during zooming from the wide-angle end state to the telephoto end state.
  • variable power optical system ZL may be the variable power optical system ZL(2) shown in FIG. 4, the variable power optical system ZL(3) shown in FIG. 7, or the variable power optical system shown in FIG. It may be ZL(7).
  • variable power optical system ZL satisfies the following conditional expression (1).
  • f6 focal length of sixth lens group G6
  • f7 focal length of seventh lens group G7
  • Conditional expression (1) defines the ratio between the focal length of the sixth lens group G6 and the focal length of the seventh lens group G7.
  • conditional expression (1) If the corresponding value of the conditional expression (1) exceeds the upper limit value, the refracting power of the seventh lens group G7 becomes too strong, so that it becomes difficult to suppress fluctuations of various aberrations such as coma upon zooming. Become.
  • the upper limit values of conditional expression (1) are set to 5.60, 5.40, 5.20, 5.00, 4.80, 4.60, 4 It may be set to .40, 4.20, 4.00, or 3.80.
  • conditional expression (1) When the corresponding value of the conditional expression (1) is less than the lower limit value, the refracting power of the sixth lens group G6 becomes too strong, which makes it difficult to suppress variations in various aberrations such as coma upon zooming. Become.
  • the lower limit values of conditional expression (1) are set to 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1. It may be set to 0.80, 1.90, or 2.00.
  • variable power optical system ZL satisfies the following conditional expression (2).
  • f1 focal length of the first lens group G1
  • f7 focal length of the seventh lens group G7
  • Conditional expression (2) defines the ratio between the focal length of the first lens group G1 and the focal length of the seventh lens group G7.
  • conditional expression (2) When the corresponding value of the conditional expression (2) exceeds the upper limit value, the refracting power of the seventh lens group G7 becomes too strong, so that it becomes difficult to suppress fluctuations of various aberrations such as coma upon zooming. Become.
  • the upper limit values of conditional expression (2) are set to 4.60, 4.40, 4.20, 4.00, 3.80, 3.60, 3 .50, 3.40, 3.30, or even 3.20.
  • conditional expression (2) When the corresponding value of the conditional expression (2) is less than the lower limit value, the refractive power of the first lens group G1 becomes too strong, so that it becomes difficult to suppress variations in various aberrations such as coma upon zooming. Become.
  • the lower limit values of conditional expression (2) are set to 1.20, 1.50, 1.60, 1.70, 1.80, 1.90, 2 It may be set to 0.00, 2.10, 2.20, or 2.30.
  • variable power optical system ZL satisfies the following conditional expression (3).
  • f2 focal length of the second lens group G2
  • f7 focal length of the seventh lens group G7
  • Conditional expression (3) defines the ratio between the focal length of the second lens group G2 and the focal length of the seventh lens group G7.
  • conditional expression (3) When the corresponding value of the conditional expression (3) exceeds the upper limit value, the refracting power of the seventh lens group G7 becomes too strong, so that it becomes difficult to suppress fluctuations of various aberrations such as coma upon zooming. Become.
  • the upper limit values of conditional expression (3) are set to 2.50, 2.30, 2.00, 1.80, 1.50, 1.30, 1. It may be set to 0.00, 0.90, 0.80, or 0.70.
  • the refracting power of the second lens group G2 becomes too strong, which makes it difficult to suppress variations in various aberrations such as coma upon zooming. Become.
  • the lower limit values of conditional expression (3) are set to 0.20, 0.25, 0.30, 0.35, 0.40, 0.42, 0. .44, and may be set to 0.45.
  • At least one of the fifth lens group G5 and the sixth lens group G6 is preferably a focusing lens group that moves during focusing.
  • the focusing lens group can be made smaller and lighter, and the lens barrel does not become large, and the lens can be quiet at high speed. It is possible to realize highly accurate auto focus.
  • variable power optical system ZL preferably satisfies the following conditional expression (4).
  • f1 focal length of the first lens group G1
  • f2 focal length of the second lens group G2
  • Conditional expression (4) defines the ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2.
  • the refracting power of the second lens group G2 becomes too strong, so that it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the upper limit of conditional expression (4) is set to 6.60, 6.50, 6.40, 6.30, 6.20, 6.10, 6. It may be set to 0.00 and further to 5.90.
  • the refractive power of the first lens group G1 becomes too strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during zooming. Become.
  • the lower limit values of conditional expression (4) are set to 4.00, 4.20, 4.40, 4.50, 4.60, 4.80, 4 It may be set to 0.90, 5.00, 5.10, or 5.20.
  • variable power optical system ZL satisfies the following conditional expressions (5) to (6).
  • f1 focal length of the first lens group G1
  • f4 focal length of the fourth lens group G4
  • fw focal length of the zoom optical system ZL in the wide-angle end state
  • Conditional expression (5) defines the ratio between the focal length of the first lens group G1 and the focal length of the fourth lens group G4.
  • the refracting power of the fourth lens group G4 becomes too strong, which makes it difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the upper limit of conditional expression (5) is set to 4.00, 3.50, 3.00, 2.50, 2.00, 1.80, 1, .65, 1.60, and even 1.55.
  • the refractive power of the first lens group G1 becomes too strong, so that it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the lower limit values of conditional expression (5) are set to 0.84, 0.85, 0.88, 0.90, 0.92, 0.95, 0. It may be set to 0.96, 0.97, 0.98, or even 1.00.
  • Conditional expression (6) defines the ratio between the focal length of the fourth lens group G4 and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • conditional expression (6) When the corresponding value of the conditional expression (6) exceeds the upper limit value, the refractive power of the fourth lens group G4 becomes too weak, and thus it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the upper limit values of conditional expression (6) are set to 6.60, 6.50, 6.30, 6.00, 5.80, 5.50, and 5. It may be set to .30, 5.00, 4.90, or 4.80.
  • the refractive power of the fourth lens group G4 becomes too strong, so that it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the lower limit values of conditional expression (6) are set to 2.00, 2.50, 2.80, 2.90, 3.00, 3.10, and 3. .20, 3.30, 3.40, and even 3.50.
  • variable power optical system ZL satisfies the following conditional expression (7).
  • f3 focal length of the third lens group G3
  • f4 focal length of the fourth lens group G4
  • Conditional expression (7) defines the ratio between the focal length of the third lens group G3 and the focal length of the fourth lens group G4.
  • the refracting power of the fourth lens group G4 becomes too strong, and thus it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the upper limit of conditional expression (7) is set to 2.30, 2.20, 2.10, 2.00, 1.90, 1.80, 1. .50, 1.30, 1.00, or 0.90.
  • the refractive power of the third lens group G3 becomes too strong, so that it becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming. Become.
  • the lower limit of conditional expression (7) is set to 0.25, 0.28, 0.30, 0.31, 0.32, 0.33, and It may be set to 0.34.
  • At least one of the fifth lens group G5 and the sixth lens group G6 is a focusing lens group that moves during focusing, and the focusing lens group is It is desirable to have three or less single lenses. This makes it possible to reduce the size and weight of the focusing lens unit.
  • At least one of the fifth lens group G5 and the sixth lens group G6 is a focusing lens group that moves during focusing, and among the focusing lens group At least one preferably has a single lens with negative refractive power. This makes it possible to suppress variations in various aberrations such as spherical aberration when focusing from an infinitely distant object to a short-distance object.
  • At least one of the fifth lens group G5 and the sixth lens group G6 is a focusing lens group that moves during focusing, and the focusing lens group is It is desirable to be arranged on the image side of the aperture stop S. This makes it possible to reduce the size and weight of the focusing lens unit.
  • variable power optical system ZL it is desirable that at least four lens groups are arranged on the image side of the aperture stop S. This makes it possible to suppress variations in various aberrations such as spherical aberration during zooming from the wide-angle end state to the telephoto end state.
  • variable power optical system ZL In the variable power optical system ZL according to the present embodiment, at least one of the fifth lens group G5 and the sixth lens group G6 is a focusing lens group that moves during focusing, and the following conditional expression (8) ) Is desirable.
  • fF focal length of the focusing lens unit having the strongest refractive power in the focusing lens unit
  • ft focal length of the variable power optical system ZL in the telephoto end state
  • Conditional expression (8) defines the ratio between the focal length of the focusing lens unit having the strongest refractive power among the focusing lens units and the focal length of the variable magnification optical system ZL in the telephoto end state.
  • the upper limit of conditional expression (8) is set to 3.60, 3.40, 3.20, 3.00, 2.80, 2.60, 2. .40, 2.20, or even 2.00.
  • the corresponding value of the conditional expression (8) When the corresponding value of the conditional expression (8) is less than the lower limit value, the refractive power of the focusing lens unit becomes too strong, and it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing. ..
  • the lower limit of conditional expression (8) By setting the lower limit of conditional expression (8) to 0.23, the effect of this embodiment can be made more reliable. In order to further secure the effect of this embodiment, even if the lower limit value of the conditional expression (8) is set to 0.25, 0.28, 0.30, 0.33, and 0.35. Good.
  • the fourth lens group G4 has a cemented lens of a negative lens and a positive lens. This makes it possible to suppress variations in various aberrations such as spherical aberration during zooming from the wide-angle end state to the telephoto end state.
  • the fourth lens group G4 has a cemented lens of a negative lens and a positive lens, and satisfies the following conditional expression (9).
  • nN refractive index of negative lens in cemented lens
  • nP refractive index of positive lens in cemented lens
  • conditional expression (9) defines the ratio between the refractive index of the negative lens and the refractive index of the positive lens in the cemented lens in the fourth lens group G4.
  • the negative lens in the cemented lens has too strong refracting power, so that the spherical aberration is excessively corrected in the telephoto end state and the wide-angle end state changes to the telephoto end state. It becomes difficult to suppress variations in various aberrations such as spherical aberration at the time of zooming.
  • the upper limit of conditional expression (9) is set to 1.30, 1.29, 1.28, 1.27, 1.26, and 1.25. You may set it.
  • the corresponding value of the conditional expression (9) is less than the lower limit value, the refractive power of the negative lens in the cemented lens becomes too weak, so that the spherical aberration in the telephoto end state is insufficiently corrected, and the wide-angle end state changes to the telephoto end state. It becomes difficult to suppress variations in various aberrations such as spherical aberration during zooming.
  • the lower limit values of the conditional expression (9) are set to 1.05, 1.08, 1.10, 1.11, 1.12, 1.13, 1, .14, 1.15 may be set.
  • the fourth lens group G4 has a cemented lens of a negative lens and a positive lens, and satisfies the following conditional expression (10).
  • Conditional expression (10) defines the ratio between the Abbe number of the negative lens and the Abbe number of the positive lens in the cemented lens in the fourth lens group G4. By satisfying conditional expression (10), it is possible to excellently correct chromatic aberration.
  • the upper limit of conditional expression (10) is set to 0.80, 0.78, 0.75, 0.73, 0.70, 0.68, 0. .65, 0.63, 0.60, 0.58, 0.55, 0.53, and even 0.50.
  • conditional expression (10) If the corresponding value of the conditional expression (10) is below the lower limit value, the Abbe number of the negative lens in the cemented lens becomes small, and thus the correction of chromatic aberration becomes excessive.
  • the lower limit of conditional expression (10) is set to 0.24, 0.25, 0.26, 0.27, 0.28, and 0.29. You may set it.
  • variable power optical system ZL satisfies the following conditional expression (11).
  • f1 focal length of the first lens group G1
  • fRw composite focal length of the lens groups arranged on the image side of the fourth lens group G4 in the wide-angle end state
  • conditional expression (11) defines the ratio between the focal length of the first lens group G1 and the combined focal length of the lens groups arranged on the image side of the fourth lens group G4 in the wide-angle end state.
  • the upper limit values of the conditional expression (11) are set to 4.60, 4.40, 4.20, 4.00, 3.80, 3.50, 3 and 3. It may be set to 0.00, 2.80, 2.50, 2.30, 2.00, 1.80, or 1.50.
  • variable power optical system ZL satisfies the following conditional expression (12).
  • Conditional expression (12) defines the half angle of view of the variable power optical system ZL in the wide-angle end state.
  • the conditional expression (12) By satisfying the conditional expression (12), it is possible to suppress the fluctuation of the aberration at the time of zooming from the wide-angle end state to the telephoto end state while having a wide angle of view.
  • the lower limit value of the conditional expression (12) may be set to 77°, 78°, 79°, 80°, 81°, and further 82°.
  • variable power optical system ZL preferably satisfies the following conditional expression (13).
  • BFw Back focus of the zoom optical system ZL in the wide-angle end state
  • fw Focal length of the zoom optical system ZL in the wide-angle end state
  • Conditional expression (13) defines the ratio between the back focus of the variable power optical system ZL in the wide-angle end state and the focal length of the variable power optical system ZL in the wide-angle end state.
  • the corresponding value of the conditional expression (13) exceeds the upper limit value, the back focus becomes too large with respect to the focal length of the variable power optical system ZL in the wide-angle end state, so that various aberrations including coma aberration in the wide-angle end state. Is difficult to correct.
  • the upper limit of conditional expression (13) is set to 0.90, 0.85, 0.80, 0.78, 0.75, 0.73, 0. It may be set to 0.70, 0.68, or 0.65.
  • conditional expression (13) If the corresponding value of the conditional expression (13) is less than the lower limit value, the back focus becomes too small with respect to the focal length of the variable power optical system ZL in the wide-angle end state, so that various aberrations including coma aberration in the wide-angle end state. Is difficult to correct. Further, it becomes difficult to arrange the mechanical member of the lens barrel.
  • the lower limit values of conditional expression (13) are set to 0.20, 0.25, 0.30, 0.35, 0.37, 0.38, 0. .40, 0.42, 0.44, and even 0.45.
  • variable power optical system ZL In the variable power optical system ZL according to the present embodiment, at least one of the fifth lens group G5 and the sixth lens group G6 is a focusing lens group that moves during focusing, and the following conditional expression (14 ) Is desirable.
  • rR1 radius of curvature of the object-side lens surface of the lens arranged closest to the image side of the variable power optical system ZL
  • rR2 of the image side lens surface of the lens arranged closest to the image side of the variable power optical system ZL curvature radius
  • Conditional expression (14) defines the shape factor of the lens arranged closest to the image side in the variable power optical system ZL. By satisfying the conditional expression (14), it is possible to suppress variations in various aberrations such as spherical aberration during zooming from the wide-angle end state to the telephoto end state.
  • the coma aberration correction power of the lens arranged closest to the image side in the variable power optical system ZL becomes insufficient, so that fluctuations of various aberrations during zooming may occur. It becomes difficult to hold down.
  • the upper limit values of the conditional expression (14) are set to 7.00, 6.80, 6.50, 6.30, 6.00, 5.80, 5 It may be set to .50, 5.30, or 5.00.
  • conditional expression (14) If the corresponding value of the conditional expression (14) is less than the lower limit value, the coma aberration correction power of the lens arranged closest to the image side of the variable power optical system ZL is insufficient, so that fluctuations of various aberrations at the time of variable power are suppressed. It becomes difficult to hold down.
  • the lower limit values of conditional expression (14) are set to 0.50, 0.80, 1.00, 1.20, 1.50, 1.80, 2 It may be set to 0.00, 2.20, or 2.50.
  • the manufacturing method of the variable power optical system ZL according to the present embodiment will be outlined with reference to FIG.
  • a fifth lens group G5 having a positive refractive power, a sixth lens group G6 having a positive refractive power, and a seventh lens group G7 having a negative refractive power (Step ST1).
  • each lens is arranged in the lens barrel so that the interval between adjacent lens groups changes (step ST2).
  • variable power optical system ZL according to each embodiment will be described below with reference to the drawings. 1, FIG. 4, FIG. 7, FIG. 10, FIG. 13, FIG. 16, and FIG. 19 show the configurations of variable power optical systems ZL ⁇ ZL(1) to ZL(7) ⁇ according to the first to seventh examples. It is sectional drawing which shows refractive power distribution.
  • the first to third examples and the seventh example are examples corresponding to the present embodiment, and the fourth to sixth examples are reference examples.
  • the moving direction along the optical axis of each lens group when zooming from the wide-angle end state (W) to the telephoto end state (T) is indicated by an arrow.
  • the moving direction when the focusing lens group focuses on an object at a short distance from infinity is indicated by an arrow together with the character "focus".
  • each lens group is represented by a combination of reference numeral G and a numeral
  • each lens is represented by a combination of reference numeral L and a numeral.
  • the lens groups and the like are represented independently by using combinations of symbols and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the embodiments, it does not mean that they have the same configuration.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degrees)
  • is the half angle of view
  • Ymax is the maximum image height.
  • TL represents the distance from the lens front surface to the final lens surface on the optical axis when focused on infinity, plus BF.
  • BF is the image from the final lens surface on the optical axis when focused on infinity.
  • the air-converted distance (back focus) to the surface I is shown. Note that these values are shown for each of the wide-angle end (W), the intermediate focal length (M), and the telephoto end (T) in each variable power state.
  • fRw represents the combined focal length of the lens unit arranged on the image side of the fourth lens unit in the wide-angle end state.
  • the surface number indicates the order of the optical surface from the object side along the traveling direction of the light beam, and R represents the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side).
  • D is a surface distance that is a distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is a refractive index of the material of the optical member with respect to d-line
  • ⁇ d is an optical value.
  • the Abbe numbers of the material of the member with respect to the d-line are shown respectively.
  • the radius of curvature “ ⁇ ” indicates a plane or an aperture, and (stop S) indicates an aperture stop.
  • X(y) is the distance (zag amount) along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y
  • R is the radius of curvature of the reference spherical surface (paraxial radius of curvature).
  • is a conic constant
  • Ai is an i-th order aspherical coefficient.
  • the quadratic aspherical coefficient A2 is 0, and the description thereof is omitted.
  • the [Lens group data] table shows the starting surface (the surface closest to the object) and the focal length of each lens group.
  • the table of [Variable spacing data] shows the surface spacing at the surface number where the surface spacing is “variable” in the table showing [lens specifications].
  • W wide-angle end
  • M intermediate focal length
  • T telephoto end
  • the table of [Values corresponding to conditional expressions] shows the values corresponding to each conditional expression.
  • the focal length f, radius of curvature R, surface distance D, and other lengths listed are generally “mm” unless otherwise specified, but the optical system is enlarged proportionally. Alternatively, the same optical performance can be obtained even if the proportion is reduced, and the present invention is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration of a variable power optical system according to the first example.
  • the variable power optical system ZL(1) according to the first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture arranged in order from the object side.
  • each lens group G6 is composed of a sixth lens group G6 and a seventh lens group G7 having a negative refractive power.
  • the first to seventh lens groups G1 to G7 move in the directions shown by the arrows in FIG. Change.
  • the symbol (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same in all the examples below.
  • the first lens group G1 includes, in order from the object side, a positive lens cemented with a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is composed of a cemented positive lens including a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side and a biconvex positive lens L52 arranged in order from the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the image-side lens surface of the positive meniscus lens L61 is aspheric.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side, a biconcave negative lens L72, and a negative meniscus lens L73 having a concave surface facing the object side, which are arranged in order from the object side. To be done.
  • the negative lens L72 has an aspherical lens surface on the object side.
  • the image plane I is disposed on the image side of the seventh lens group G7.
  • the fifth lens group G5 and the sixth lens group G6 are independently moved to the object side, thereby focusing from a long-distance object to a short-distance object (infinite object to finite object). Done. That is, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 1 below lists values of specifications of the variable power optical system according to the first example.
  • FIG. 3(A), 3(B), and 3(C) show focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable power optical system according to Example 1, respectively.
  • 9 is a diagram of various types of aberrations in FIG. 3(A), 3(B), and 3(C) are respectively for the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable power optical system according to the first example, when focusing on a short distance.
  • 9 is a diagram of various types of aberrations in FIG.
  • FNO indicates the F number
  • Y indicates the image height
  • the spherical aberration diagram shows the F number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the lateral aberration diagram shows the image height value.
  • NA represents the numerical aperture
  • Y represents the image height
  • the spherical aberration diagram shows the numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the lateral aberration diagram shows the image height value.
  • the solid line shows the sagittal image plane
  • the broken line shows the meridional image plane.
  • variable power optical system according to the first example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 4 is a diagram showing a lens configuration of a variable power optical system according to the second example.
  • the variable power optical system ZL(2) according to the second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture arranged in order from the object side.
  • the first lens group G1 includes, in order from the object side, a positive lens cemented with a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31 and a biconvex positive lens L32, which are arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the lens surface of the positive lens L31 on the object side is an aspherical surface.
  • the fourth lens group G4 is composed of a cemented positive lens including a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side and a biconvex positive lens L52 arranged in order from the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the image-side lens surface of the positive meniscus lens L61 is aspheric.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side, a biconcave negative lens L72, and a negative meniscus lens L73 having a concave surface facing the object side, which are arranged in order from the object side. To be done.
  • the negative lens L72 has an aspherical lens surface on the object side.
  • the image plane I is disposed on the image side of the seventh lens group G7.
  • the fifth lens group G5 and the sixth lens group G6 are independently moved to the object side, thereby focusing from a long-distance object to a short-distance object (infinite object to finite object). Done. That is, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 2 below lists values of specifications of the variable power optical system according to the second example.
  • FIG. 5A, FIG. 5B, and FIG. 5C are respectively for focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable power optical system according to the second example.
  • 9 is a diagram of various types of aberrations in FIG. 6(A), 6(B), and 6(C) respectively show a wide-angle end state, an intermediate focal length state, and a telephoto end state of the variable power optical system according to Example 2 when focusing on a short distance.
  • 9 is a diagram of various types of aberrations in FIG.
  • variable power optical system according to the second example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 7 is a diagram showing a lens configuration of a variable power optical system according to the third example.
  • the variable power optical system ZL(3) according to the third example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens having a convex surface facing the object side. And L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is composed of a cemented positive lens including a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side and a biconvex positive lens L52 arranged in order from the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the image-side lens surface of the positive meniscus lens L61 is aspheric.
  • the seventh lens group G7 includes, in order from the object side, a negative meniscus lens L71 having a convex surface directed toward the object side, a positive meniscus lens L72 having a concave surface directed toward the object side, and a negative meniscus lens having a concave surface directed toward the object side. And L73.
  • the negative meniscus lens L73 has an aspherical lens surface on the object side.
  • the image plane I is disposed on the image side of the seventh lens group G7.
  • the fifth lens group G5 and the sixth lens group G6 are independently moved to the object side, thereby focusing from a long-distance object to a short-distance object (infinite object to finite object). Done. That is, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 3 lists values of specifications of the variable power optical system according to the third example.
  • FIG. 9 is a diagram of various types of aberrations in FIG. 9(A), 9(B), and 9(C) respectively show the zoom lens system according to Example 3 at the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on a short distance.
  • 9 is a diagram of various types of aberrations in FIG. From each aberration diagram, the variable power optical system according to Example 3 has excellent imaging performance by excellently correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 10 is a diagram showing a lens configuration of a variable power optical system according to the fourth example.
  • the variable power optical system ZL(4) according to the fourth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture arranged in order from the object side.
  • 6 lens group G6 When zooming from the wide-angle end state (W) to the telephoto end state (T), the first to sixth lens groups G1 to G6 respectively move in the directions shown by the arrows in FIG. Change.
  • the first lens group G1 includes, in order from the object side, a positive lens cemented with a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is composed of a cemented positive lens including a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a concave surface facing the object side, a biconvex positive lens L52, and a positive meniscus lens L53 having a concave surface facing the object side. To be done.
  • the positive meniscus lens L53 has an aspherical lens surface on the image side.
  • the sixth lens group G6 includes, in order from the object side, a positive meniscus lens L61 having a concave surface facing the object side, a biconcave negative lens L62, and a negative meniscus lens L63 having a concave surface facing the object side. To be done.
  • the negative lens L62 has an aspherical lens surface on the object side.
  • the image plane I is disposed on the image side of the sixth lens group G6.
  • the fifth lens group G5 by moving the fifth lens group G5 toward the object side, focusing from a long-distance object to a short-distance object (from an infinite object to a finite object) is performed. That is, the fifth lens group G5 corresponds to the focusing lens group.
  • Table 4 below shows values of specifications of the variable power optical system according to the fourth example.
  • 11(A), 11(B), and 11(C) respectively show focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable power optical system according to the fourth example.
  • 9 is a diagram of various types of aberrations in FIG. 12(A), 12(B), and 12(C) respectively show the variable power optical system according to Example 4 at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short distance focusing.
  • 9 is a diagram of various types of aberrations in FIG. From the various aberration diagrams, the variable power optical system according to the fourth example has excellent imaging performance by excellently correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 13 is a diagram showing a lens configuration of a variable power optical system according to the fifth example.
  • the variable power optical system ZL(5) according to the fifth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture, which are arranged in order from the object side.
  • 6 lens group G6 When zooming from the wide-angle end state (W) to the telephoto end state (T), the first to sixth lens groups G1 to G6 respectively move in the directions shown by the arrows in FIG. Change.
  • the first lens group G1 includes, in order from the object side, a cemented negative lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens having a convex surface directed toward the object side. And L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a positive meniscus lens L23 having a convex surface facing the object side, and an object. And a negative meniscus lens L24 having a concave surface directed to the side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a negative lens cemented with a biconcave negative lens L42 and a biconvex positive lens L43, and a biconvex positive lens. It is composed of a lens L44.
  • the lens surface of the positive lens L41 on the object side is an aspherical surface.
  • the image-side lens surface of the positive lens L44 is an aspherical surface.
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface facing the object side, a biconcave negative lens L52, and a biconcave negative lens L53.
  • the negative lens L53 has an aspherical lens surface on the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the image plane I is disposed on the image side of the sixth lens group G6.
  • the fifth lens group G5 by moving the fifth lens group G5 to the image plane I side, focusing from a long-distance object to a short-distance object (from an infinite object to a finite object) is performed. That is, the fifth lens group G5 corresponds to the focusing lens group.
  • Table 5 lists values of specifications of the variable power optical system according to the fifth example.
  • FIG. 14(A), 14(B), and 14(C) show the zoom lens system according to the fifth embodiment at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • 9 is a diagram of various types of aberrations in FIG. 15(A), 15(B), and 15(C) respectively show the variable power optical system according to Example 5 at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short-distance focusing.
  • 9 is a diagram of various types of aberrations in FIG. From the various aberration diagrams, the variable power optical system according to Example 5 has excellent imaging performance by excellently correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 16 is a diagram showing a lens configuration of a variable power optical system according to the sixth example.
  • the variable power optical system ZL(6) according to Example 6 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture, which are arranged in order from the object side.
  • the first to seventh lens groups G1 to G7 respectively move in the directions shown by the arrows in FIG. 16, and the distance between adjacent lens groups increases. Change.
  • the first lens group G1 includes, in order from the object side, a negative lens cemented with a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a positive meniscus lens L23 having a convex surface facing the object side, and an object. And a negative meniscus lens L24 having a concave surface directed to the side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a negative lens cemented with a biconcave negative lens L42 and a biconvex positive lens L43, and a biconvex positive lens. It is composed of a lens L44.
  • the lens surface of the positive lens L41 on the object side is an aspherical surface.
  • the image-side lens surface of the positive lens L44 is an aspherical surface.
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface facing the object side, a biconcave negative lens L52, and a biconcave negative lens L53.
  • the negative lens L53 has an aspherical lens surface on the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a convex surface directed toward the object side.
  • the seventh lens group G7 is composed of a biconvex positive lens L71.
  • the image plane I is disposed on the image side of the seventh lens group G7.
  • the fifth lens group G5 by moving the fifth lens group G5 to the image plane I side, focusing from a long-distance object to a short-distance object (from an infinite object to a finite object) is performed. That is, the fifth lens group G5 corresponds to the focusing lens group.
  • Table 6 below lists values of specifications of the variable power optical system according to the sixth example.
  • FIG. 8 is a diagram showing various types of aberration.
  • 18(A), 18(B), and 18(C) respectively show the variable power optical system according to the sixth example at the wide-angle end state, the intermediate focal length state, and the telephoto end state at the short distance focusing.
  • 9 is a diagram of various types of aberrations in FIG.
  • variable power optical system according to the sixth example has excellent imaging performance by excellently correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • FIG. 19 is a diagram showing a lens configuration of a variable power optical system according to the seventh example.
  • the variable power optical system ZL(7) according to Example 7 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture, which are arranged in order from the object side.
  • the first lens group G1 includes, in order from the object side, a positive lens cemented with a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 arranged in order from the object side.
  • the aperture stop S is provided near the object side of the third lens group G3, and moves together with the third lens group G3 during zooming.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is composed of a cemented positive lens including a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side and a biconvex positive lens L52 arranged in order from the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the image-side lens surface of the positive meniscus lens L61 is aspheric.
  • the seventh lens group G7 is composed of, in order from the object side, a positive meniscus lens L71 having a concave surface facing the object side, a biconcave negative lens L72, and a negative meniscus lens L73 having a concave surface facing the object side. It The image plane I is disposed on the image side of the seventh lens group G7.
  • the negative lens L72 has an aspherical lens surface on the object side.
  • the fifth lens group G5 and the sixth lens group G6 are independently moved to the object side, thereby focusing from a long-distance object to a short-distance object (infinite object to finite object). Done. That is, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 7 below lists values of specifications of the variable power optical system according to the seventh example.
  • FIG. 8 is a diagram showing various types of aberration. 21(A), 21(C), and 21(C) are respectively for the short-distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable power optical system according to the seventh example.
  • FIG. 8 is a diagram showing various types of aberration. From the various aberration diagrams, the variable power optical system according to Example 7 has excellent imaging performance by excellently correcting various aberrations from the wide-angle end state to the telephoto end state, and further when focusing on a short distance. It can be seen that also has excellent imaging performance.
  • each of the embodiments it is possible to realize high-speed and quiet autofocus without increasing the size of the lens barrel, fluctuation of aberration during zooming from the wide-angle end state to the telephoto end state, and infinity. It is possible to realize a variable power optical system that suppresses variation in aberration when focusing from an object to a short distance object.
  • variable power optical system As the numerical examples of the variable power optical system, the six-group configuration and the seven-group configuration are shown, but the present application is not limited to this, and a variable-power optical system of other group configurations (for example, eight groups) is configured. You can also do it. Specifically, a configuration may be adopted in which a lens or a lens group is added on the most object side or the most image plane side of the variable power optical system.
  • the lens group refers to a portion having at least one lens, which is separated by an air gap that changes during zooming.
  • the lens surface may be a spherical surface, a flat surface, or an aspherical surface.
  • lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to an error in processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is deviated, the drawing performance is less deteriorated, which is preferable.
  • the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by molding glass into an aspherical shape, or a composite type aspherical surface formed by resin forming an aspherical surface on the glass surface. Either is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop is preferably arranged between the second lens group and the third lens group, but the role of the lens frame may be substituted instead of providing a member as the aperture stop.
  • each lens surface may be coated with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghosts and achieve high-contrast optical performance. Thereby, flare and ghost can be reduced and high optical performance with high contrast can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

変倍光学系(ZL)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群(G1)と、負の屈折力を有する第2レンズ群(G2)と、正の屈折力を有する第3レンズ群(G3)と、正の屈折力を有する第4レンズ群(G4)と、正の屈折力を有する第5レンズ群(G5)と、正の屈折力を有する第6レンズ群(G6)と、負の屈折力を有する第7レンズ群(G7)とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化する。

Description

変倍光学系、光学機器および変倍光学系の製造方法
 本発明は、変倍光学系、これを用いた光学機器およびこの変倍光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。変倍光学系においては、変倍または合焦の際の収差の変動を抑えることが求められている。
特開2013-160944号公報
 第1の態様に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群と、負の屈折力を有する第7レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化する。
 第2の態様に係る光学機器は、上記変倍光学系を搭載して構成される。
 第3の態様に係る変倍光学系の製造方法は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群と、負の屈折力を有する第7レンズ群とを有した変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化するように、レンズ鏡筒内に各レンズを配置する。
第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(A)、図2(B)、および図2(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図3(A)、図3(B)、および図3(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す図である。 図5(A)、図5(B)、および図5(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図6(A)、図6(B)、および図6(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す図である。 図8(A)、図8(B)、および図8(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図9(A)、図9(B)、および図9(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第4実施例に係る変倍光学系のレンズ構成を示す図である。 図11(A)、図11(B)、および図11(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図12(A)、図12(B)、および図12(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第5実施例に係る変倍光学系のレンズ構成を示す図である。 図14(A)、図14(B)、および図14(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図15(A)、図15(B)、および図15(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第6実施例に係る変倍光学系のレンズ構成を示す図である。 図17(A)、図17(B)、および図17(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図18(A)、図18(B)、および図18(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 第7実施例に係る変倍光学系のレンズ構成を示す図である。 図20(A)、図20(B)、および図20(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図21(A)、図21(B)、および図21(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 本実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本実施形態に係る変倍光学系および光学機器について図を参照して説明する。まず、本実施形態に係る変倍光学系を備えたカメラ(光学機器)を図22に基づいて説明する。このカメラ1は、図22に示すように撮影レンズ2として本実施形態に係る変倍光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 次に、本実施形態に係る変倍光学系(撮影レンズ)について説明する。本実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成される。
 本実施形態に係る変倍光学系ZLは、少なくとも5つのレンズ群を有し、変倍の際に各レンズ群の間隔が変化する。これにより、本実施形態によれば、広角端状態から望遠端状態への変倍の際の収差の変動を抑えることが可能になる。また、本実施形態に係る変倍光学系ZLは、正屈折力を有する第5レンズ群と、正屈折力を有する第6レンズ群と、負屈折力を有する第7レンズ群とを有しているため、広角端状態から望遠端状態への変倍の際の収差の変動を良好に抑えることができる。
 本実施形態に係る変倍光学系ZLは、図4に示す変倍光学系ZL(2)でもよく、図7に示す変倍光学系ZL(3)でもよく、図19に示す変倍光学系ZL(7)でもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(1)を満足することが望ましい。
 1.00<f6/(-f7)<6.00 ・・・(1)
 但し、f6:第6レンズ群G6の焦点距離
    f7:第7レンズ群G7の焦点距離
 条件式(1)は、第6レンズ群G6の焦点距離と第7レンズ群G7の焦点距離との比を規定するものである。条件式(1)を満足することで、広角端状態から望遠端状態への変倍の際のコマ収差をはじめとする諸収差の変動を抑えることができる。
 条件式(1)の対応値が上限値を上回ると、第7レンズ群G7の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(1)の上限値を5.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の上限値を、5.60、5.40、5.20、5.00、4.80、4.60、4.40、4.20、4.00、さらに3.80に設定してもよい。
 条件式(1)の対応値が下限値を下回ると、第6レンズ群G6の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(1)の下限値を1.10に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の下限値を、1.20、1.30、1.40、1.50、1.60、1.70、1.80、1.90、さらに2.00に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(2)を満足することが望ましい。
 0.80<f1/(-f7)<5.00 ・・・(2)
 但し、f1:第1レンズ群G1の焦点距離
    f7:第7レンズ群G7の焦点距離
 条件式(2)は、第1レンズ群G1の焦点距離と第7レンズ群G7の焦点距離との比を規定するものである。条件式(2)を満足することで、広角端状態から望遠端状態への変倍の際のコマ収差をはじめとする諸収差の変動を抑えることができる。
 条件式(2)の対応値が上限値を上回ると、第7レンズ群G7の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(2)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の上限値を、4.60、4.40、4.20、4.00、3.80、3.60、3.50、3.40、3.30、さらに3.20に設定してもよい。
 条件式(2)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(2)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の下限値を、1.20、1.50、1.60、1.70、1.80、1.90、2.00、2.10、2.20、さらに2.30に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(3)を満足することが望ましい。
 0.10<f2/f7<3.00 ・・・(3)
 但し、f2:第2レンズ群G2の焦点距離
    f7:第7レンズ群G7の焦点距離
 条件式(3)は、第2レンズ群G2の焦点距離と第7レンズ群G7の焦点距離との比を規定するものである。条件式(3)を満足することで、広角端状態から望遠端状態への変倍の際のコマ収差をはじめとする諸収差の変動を抑えることができる。
 条件式(3)の対応値が上限値を上回ると、第7レンズ群G7の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(3)の上限値を2.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3)の上限値を、2.50、2.30、2.00、1.80、1.50、1.30、1.00、0.90、0.80、さらに0.70に設定してもよい。
 条件式(3)の対応値が下限値を下回ると、第2レンズ群G2の屈折力が強くなりすぎるため、変倍の際のコマ収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(3)の下限値を0.15に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3)の下限値を、0.20、0.25、0.30、0.35、0.40、0.42、0.44、さらに0.45に設定してもよい。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であることが望ましい。このように、第5レンズ群G5または第6レンズ群G6を合焦レンズ群にすることで、合焦レンズ群を小型軽量化することができ、鏡筒が大型化することなく、高速で静粛性の高いオートフォーカスを実現することが可能になる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。
 3.40<f1/(-f2)<7.00 ・・・(4)
 但し、f1:第1レンズ群G1の焦点距離
    f2:第2レンズ群G2の焦点距離
 条件式(4)は、第1レンズ群G1の焦点距離と第2レンズ群G2の焦点距離との比を規定するものである。条件式(4)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(4)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(4)の上限値を6.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の上限値を、6.60、6.50、6.40、6.30、6.20、6.10、6.00、さらに5.90に設定してもよい。
 条件式(4)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(4)の下限値を3.70に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の下限値を、4.00、4.20、4.40、4.50、4.60、4.80、4.90、5.00、5.10、さらに5.20に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(5)~(6)を満足することが望ましい。
 0.80<f1/f4<5.10 ・・・(5)
 1.20<f4/fw<6.80 ・・・(6)
 但し、f1:第1レンズ群G1の焦点距離
    f4:第4レンズ群G4の焦点距離
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(5)は、第1レンズ群G1の焦点距離と第4レンズ群G4の焦点距離との比を規定するものである。条件式(5)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(5)の対応値が上限値を上回ると、第4レンズ群G4の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(5)の上限値を4.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の上限値を、4.00、3.50、3.00、2.50、2.00、1.80、1.65、1.60、さらに1.55に設定してもよい。
 条件式(5)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(5)の下限値を0.82に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の下限値を、0.84、0.85、0.88、0.90、0.92、0.95、0.96、0.97、0.98、さらに1.00に設定してもよい。
 条件式(6)は、第4レンズ群G4の焦点距離と広角端状態における変倍光学系ZLの焦点距離との比を規定するものである。条件式(6)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(6)の対応値が上限値を上回ると、第4レンズ群G4の屈折力が弱くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(6)の上限値を6.70に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の上限値を、6.60、6.50、6.30、6.00、5.80、5.50、5.30、5.00、4.90、さらに4.80に設定してもよい。
 条件式(6)の対応値が下限値を下回ると、第4レンズ群G4の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(6)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の下限値を、2.00、2.50、2.80、2.90、3.00、3.10、3.20、3.30、3.40、さらに3.50に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(7)を満足することが望ましい。
 0.20<f3/f4<2.50 ・・・(7)
 但し、f3:第3レンズ群G3の焦点距離
    f4:第4レンズ群G4の焦点距離
 条件式(7)は、第3レンズ群G3の焦点距離と第4レンズ群G4の焦点距離との比を規定するものである。条件式(7)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(7)の対応値が上限値を上回ると、第4レンズ群G4の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(7)の上限値を2.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(7)の上限値を、2.30、2.20、2.10、2.00、1.90、1.80、1.50、1.30、1.00、さらに0.90に設定してもよい。
 条件式(7)の対応値が下限値を下回ると、第3レンズ群G3の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(7)の下限値を0.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(7)の下限値を、0.25、0.28、0.30、0.31、0.32、0.33、さらに0.34に設定してもよい。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、合焦レンズ群は、3つ以下の単レンズからなることが望ましい。これにより、合焦レンズ群を小型軽量化することができる。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、合焦レンズ群のうち少なくとも1つは、負の屈折力を有する単レンズを有することが望ましい。これにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、合焦レンズ群は、開口絞りSよりも像側に配置されることが望ましい。これにより、合焦レンズ群を小型軽量化することができる。
 本実施形態に係る変倍光学系ZLにおいて、開口絞りSよりも像側に少なくとも4つのレンズ群が配置されることが望ましい。これにより、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが可能になる。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、以下の条件式(8)を満足することが望ましい。
 0.20<|fF|/ft<4.00 ・・・(8)
 但し、fF:合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
    ft:望遠端状態における変倍光学系ZLの焦点距離
 条件式(8)は、合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離と、望遠端状態における変倍光学系ZLの焦点距離との比を規定するものである。条件式(8)を満足することで、鏡筒が大型化することなく、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(8)の対応値が上限値を上回ると、合焦レンズ群の屈折力が弱くなりすぎるため、合焦の際の合焦レンズ群の移動量が大きくなり、鏡筒が大型化する。条件式(8)の上限値を3.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(8)の上限値を、3.60、3.40、3.20、3.00、2.80、2.60、2.40、2.20、さらに2.00に設定してもよい。
 条件式(8)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなりすぎるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(8)の下限値を0.23に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(8)の下限値を、0.25、0.28、0.30、0.33、さらに0.35に設定してもよい。
 本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、負レンズと正レンズとの接合レンズを有することが望ましい。これにより、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、負レンズと正レンズとの接合レンズを有し、以下の条件式(9)を満足することが望ましい。
 1.00<nN/nP<1.35 ・・・(9)
 但し、nN:接合レンズにおける負レンズの屈折率
    nP:接合レンズにおける正レンズの屈折率
 条件式(9)は、第4レンズ群G4内の接合レンズにおける負レンズの屈折率と正レンズの屈折率との比を規定するものである。条件式(9)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(9)の対応値が上限値を上回ると、接合レンズにおける負レンズの屈折力が強くなりすぎるため、望遠端状態における球面収差の補正が過剰になり、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(9)の上限値を1.33に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(9)の上限値を、1.30、1.29、1.28、1.27、1.26、さらに1.25に設定してもよい。
 条件式(9)の対応値が下限値を下回ると、接合レンズにおける負レンズの屈折力が弱くなりすぎるため、望遠端状態における球面収差の補正が不足し、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(9)の下限値を1.02に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(9)の下限値を、1.05、1.08、1.10、1.11、1.12、1.13、1.14、1.15に設定してもよい。
 本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、負レンズと正レンズとの接合レンズを有し、以下の条件式(10)を満足することが望ましい。
 0.20<νN/νP<0.85 ・・・(10)
 但し、νN:接合レンズにおける負レンズのアッベ数
    νP:接合レンズにおける正レンズのアッベ数
 条件式(10)は、第4レンズ群G4内の接合レンズにおける負レンズのアッベ数と正レンズのアッベ数との比を規定するものである。条件式(10)を満足することで、色収差を良好に補正することができる。
 条件式(10)の対応値が上限値を上回ると、接合レンズにおける正レンズのアッベ数が小さくなるため、色収差が過大に発生し、色収差を補正することが困難になる。条件式(10)の上限値を0.83に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(10)の上限値を、0.80、0.78、0.75、0.73、0.70、0.68、0.65、0.63、0.60、0.58、0.55、0.53、さらに0.50に設定してもよい。
 条件式(10)の対応値が下限値を下回ると、接合レンズにおける負レンズのアッベ数が小さくなるため、色収差の補正が過剰になる。条件式(10)の下限値を0.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(10)の下限値を、0.24、0.25、0.26、0.27、0.28、さらに0.29に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足することが望ましい。
 f1/|fRw|<5.00 ・・・(11)
 但し、f1:第1レンズ群G1の焦点距離
    fRw:広角端状態における第4レンズ群G4よりも像側に配置されたレンズ群の合成焦点距離
 条件式(11)は、第1レンズ群G1の焦点距離と、広角端状態における第4レンズ群G4よりも像側に配置されたレンズ群の合成焦点距離との比を規定するものである。条件式(11)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(11)の対応値が上限値を上回ると、第4レンズ群G4よりも像側に配置されたレンズ群の合成の屈折力が強くなりすぎるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(11)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(11)の上限値を、4.60、4.40、4.20、4.00、3.80、3.50、3.00、2.80、2.50、2.30、2.00、1.80、さらに1.50に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。
 2ωw>75° ・・・(12)
 但し、ωw:広角端状態における変倍光学系ZLの半画角
 条件式(12)は、広角端状態における変倍光学系ZLの半画角を規定するものである。条件式(12)を満足することで、広い画角を有しながら、広角端状態から望遠端状態への変倍の際の収差の変動を抑えることができる。条件式(12)の下限値を76°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(12)の下限値を、77°、78°、79°、80°、81°、さらに82°に設定してもよい。
 本実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。
 0.10<BFw/fw<1.00 ・・・(13)
 但し、BFw:広角端状態における変倍光学系ZLのバックフォーカス
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(13)は、広角端状態における変倍光学系ZLのバックフォーカスと、広角端状態における変倍光学系ZLの焦点距離との比を規定するものである。条件式(13)を満足することで、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(13)の対応値が上限値を上回ると、広角端状態における変倍光学系ZLの焦点距離に対してバックフォーカスが大きくなりすぎるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(13)の上限値を0.95に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13)の上限値を、0.90、0.85、0.80、0.78、0.75、0.73、0.70、0.68、さらに0.65に設定してもよい。
 条件式(13)の対応値が下限値を下回ると、広角端状態における変倍光学系ZLの焦点距離に対してバックフォーカスが小さくなりすぎるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。また、鏡筒のメカ部材を配置することが困難になる。条件式(13)の下限値を0.15に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13)の下限値を、0.20、0.25、0.30、0.35、0.37、0.38、0.40、0.42、0.44、さらに0.45に設定してもよい。
 本実施形態に係る変倍光学系ZLにおいて、第5レンズ群G5および第6レンズ群G6のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、以下の条件式(14)を満足することが望ましい。
 0.00<(rR2+rR1)/(rR2-rR1)<8.00 ・・・(14)
 但し、rR1:変倍光学系ZLの最も像側に配置されたレンズにおける物体側のレンズ面の曲率半径
    rR2:変倍光学系ZLの最も像側に配置されたレンズにおける像側のレンズ面の曲率半径
 条件式(14)は、変倍光学系ZLの最も像側に配置されたレンズのシェイプファクターを規定するものである。条件式(14)を満足することで、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(14)の対応値が上限値を上回ると、変倍光学系ZLの最も像側に配置されたレンズのコマ収差の補正力が不足するため、変倍の際の諸収差の変動を抑えることが困難になる。条件式(14)の上限値を7.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14)の上限値を、7.00、6.80、6.50、6.30、6.00、5.80、5.50、5.30、さらに5.00に設定してもよい。
 条件式(14)の対応値が下限値を下回ると、変倍光学系ZLの最も像側に配置されたレンズのコマ収差の補正力が不足するため、変倍の際の諸収差の変動を抑えることが困難になる。条件式(14)の下限値を0.10に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14)の下限値を、0.50、0.80、1.00、1.20、1.50、1.80、2.00、2.20、さらに2.50に設定してもよい。
 続いて、図23を参照しながら、本実施形態に係る変倍光学系ZLの製造方法について概説する。まず、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを配置する(ステップST1)。そして、変倍の際に、隣り合う各レンズ群の間隔が変化するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、鏡筒が大型化することなく、高速で静粛性の高いオートフォーカスを実現可能で、広角端状態から望遠端状態への変倍の際の収差の変動および、無限遠物体から近距離物体への合焦の際の収差の変動を抑えた変倍光学系を製造することが可能になる。
 以下、各実施例に係る変倍光学系ZLを図面に基づいて説明する。図1、図4、図7、図10、図13、図16、図19は、第1~第7実施例に係る変倍光学系ZL{ZL(1)~ZL(7)}の構成及び屈折力配分を示す断面図である。なお、第1~第3実施例および第7実施例は本実施形態に対応する実施例であり、第4~第6実施例は参考例である。各断面図には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。さらに、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。
 これらの図(図1、図4、図7、図10、図13、図16、図19)において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの空気換算距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。また、[全体諸元]の表において、fRwは、広角端状態における第4レンズ群よりも像側に配置されたレンズ群の合成焦点距離を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数を、それぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りを、それぞれ示す。空気の屈折率nd=1.00000の記載は省略している。レンズ面が非球面である場合には面番号に*印を付して曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 ・・・(A)
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [可変間隔データ]の表には、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号での面間隔を示す。ここでは無限遠および近距離に合焦させたときのそれぞれについて、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態における面間隔を示す。
 [条件式対応値]の表には、各条件式に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図3および表1を用いて説明する。図1は、第1実施例に係る変倍光学系のレンズ構成を示す図である。第1実施例に係る変倍光学系ZL(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7がそれぞれ図1の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、像側のレンズ面が非球面である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL71と、両凹形状の負レンズL72と、物体側に凹面を向けた負メニスカスレンズL73とから構成される。負レンズL72は、物体側のレンズ面が非球面である。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5と第6レンズ群G6とをそれぞれ独立に物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、第1の合焦レンズ群に該当し、第6レンズ群G6は、第2の合焦レンズ群に該当する。
 以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。
(表1)
[全体諸元]
 変倍比 2.74
 fRw=-4993.677
        W      M      T
  f     24.8     50.0     67.9
FNO     2.92     2.92     2.92
 2ω     85.10     45.26     33.84
Ymax    21.60     21.60     21.60
 TL    139.35    158.45    169.16
 BF     11.93     23.42     28.62
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    234.3873   2.500   1.84666   23.80
  2    109.5180   5.200   1.75500   52.34
  3    389.6852   0.200
  4     59.0627   5.700   1.77250   49.62
  5    135.3649   D5(可変)
  6*    218.4420   2.000   1.74389   49.53
  7     18.6957   9.658
  8    -59.6856   1.300   1.77250   49.62
  9     59.6856   0.442
  10    39.2099   6.400   1.72825   28.38
  11    -48.6731   1.933
  12    -26.4065   1.300   1.61800   63.34
  13    -71.7612   D13(可変)
  14     ∞     1.712             (絞りS)
  15*    71.8876   2.500   1.69370   53.32
  16    127.6411   0.716
  17    38.7492   5.900   1.59319   67.90
  18   -105.4274   D18(可変)
  19    67.0276   1.300   1.73800   32.33
  20    19.5126   9.700   1.49782   82.57
  21    -50.5609   D21(可変)
  22    -23.9237   1.200   1.72047   34.71
  23    -56.2081   0.200
  24    103.1749   5.900   1.59349   67.00
  25    -33.0197   D25(可変)
  26    -70.6288   3.500   1.79189   45.04
  27*   -38.2153   D27(可変)
  28    -43.9824   3.000   1.94595   17.98
  29    -32.4253   0.200
  30*   -100.5837   1.500   1.85207   40.15
  31    88.1634   7.847
  32    -25.2838   1.400   1.58913   61.22
  33    -45.3661   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=5.27866E-06,A6=-5.41835E-09
 A8=1.33113E-11,A10=-2.04736E-14,A12=2.05090E-17
 第15面
 κ=1.0000,A4=-4.55747E-06,A6=-1.40092E-10
 A8=-8.81384E-13,A10=-8.42653E-15,A12=0.00000E+00
 第27面
 κ=1.0000,A4=1.09543E-05,A6=-2.36281E-08
 A8=1.42728E-10,A10=-5.02724E-13,A12=7.51800E-16
 第30面
 κ=1.0000,A4=-2.18913E-06,A6=-2.29301E-08
 A8=3.94582E-11,A10=-9.84200E-14,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    119.124
 G2    6    -22.126
 G3    14    40.880
 G4    19    115.687
 G5    22    124.717
 G6    26    100.365
 G7    28    -47.354
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     1.780  21.220  30.246   1.780  21.220  30.246
 D13    19.285   6.132   2.013  19.285   6.132   2.013
 D18    9.167   3.866   1.493   9.167   3.866   1.493
 D21    5.179  14.279  19.018   4.137  12.991  17.666
 D25    2.679   3.515   2.616   3.249   4.079   3.027
 D27    6.128   2.807   1.953   6.600   3.530   2.893
[条件式対応値]
 条件式(1) f6/(-f7)=2.119
 条件式(2) f1/(-f7)=2.516
 条件式(3) f2/f7=0.467
 条件式(4) f1/(-f2)=5.384
 条件式(5) f1/f4=1.030
 条件式(6) f4/fw=4.674
 条件式(7) f3/f4=0.353
 条件式(8) |fF|/ft=1.837
 条件式(9) nN/nP=1.160
条件式(10) νN/νP=0.392
条件式(11) f1/|fRw|=0.024
条件式(12) 2ωw=85.10
条件式(13) BFw/fw=0.482
条件式(14) (rR2+rR1)/(rR2-rR1)=3.518
 図2(A)、図2(B)、および図2(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図3(A)、図3(B)、および図3(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 図2(A)~図2(C)の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、横収差図では各像高の値を示す。図3(A)~図3(C)の各収差図において、NAは開口数、Yは像高をそれぞれ示す。球面収差図では最大口径に対応する開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、横収差図では各像高の値を示す。また、各収差図において、dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図4~図6および表2を用いて説明する。図4は、第2実施例に係る変倍光学系のレンズ構成を示す図である。第2実施例に係る変倍光学系ZL(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7がそれぞれ図4の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正レンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、像側のレンズ面が非球面である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL71と、両凹形状の負レンズL72と、物体側に凹面を向けた負メニスカスレンズL73とから構成される。負レンズL72は、物体側のレンズ面が非球面である。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5と第6レンズ群G6とをそれぞれ独立に物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、第1の合焦レンズ群に該当し、第6レンズ群G6は、第2の合焦レンズ群に該当する。
 以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。
(表2)
[全体諸元]
 変倍比 2.74
 fRw=-346.533
        W      M      T
  f     24.8     50.0     67.9
FNO     2.92     2.92     2.92
 2ω     85.08     45.32     33.84
Ymax    21.60     21.60     21.60
 TL    139.96    156.15    168.00
 BF     11.76     26.07     29.33
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    282.3733   2.500   1.84666   23.80
  2    123.2365   5.647   1.77250   49.62
  3    1180.1775   0.200
  4     59.2907   4.310   1.81600   46.59
  5     98.9987   D5(可変)
  6*    205.3191   2.000   1.74389   49.53
  7     19.2200   9.185
  8    -74.7032   1.300   1.83481   42.73
  9     64.3697   0.324
  10    41.9771   5.683   1.78472   25.64
  11    -72.0408   4.071
  12    -26.6709   1.300   1.60300   65.44
  13    -52.5345   D13(可変)
  14     ∞     1.500             (絞りS)
  15*    84.6431   3.039   1.58913   61.15
  16   -4073.6051   0.200
  17    42.4140   5.438   1.59319   67.90
  18   -143.7473   D18(可変)
  19    74.9775   1.300   1.73800   32.33
  20    20.9860   9.090   1.49782   82.57
  21    -48.9247   D21(可変)
  22    -23.9603   1.200   1.73800   32.33
  23    -52.8529   0.955
  24    113.2572   5.800   1.59349   66.99
  25    -32.1120   D25(可変)
  26   -120.6162   3.500   1.74389   49.53
  27*   -50.8923   D27(可変)
  28    -61.4253   3.215   1.94595   17.98
  29    -34.3446   0.200
  30*   -69.3409   1.500   1.85108   40.12
  31    72.0715   6.683
  32    -23.1150   1.400   1.69680   55.52
  33    -36.7553   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=4.34838E-06,A6=-2.30274E-09
 A8=1.34342E-12,A10=2.08876E-15,A12=0.00000E+00
 第15面
 κ=1.0000,A4=-4.08736E-06,A6=2.82731E-09
 A8=-1.71368E-11,A10=2.81580E-14,A12=0.00000E+00
 第27面
 κ=1.0000,A4=9.77330E-06,A6=-1.31611E-08
 A8=7.02329E-11,A10=-1.28887E-13,A12=0.00000E+00
 第30面
 κ=1.0000,A4=-3.68898E-06,A6=-1.92901E-08
 A8=3.36794E-11,A10=-8.19805E-14,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    133.226
 G2    6    -23.579
 G3    14    40.561
 G4    19    115.254
 G5    22    113.536
 G6    26    115.868
 G7    28    -42.726
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     2.000  18.194  30.046   2.000  18.194  30.046
 D13    21.479   6.645   2.000  21.479   6.645   2.000
 D18    9.801   4.462   1.500   9.801   4.462   1.500
 D21    5.195  13.414  18.760   4.220  12.328  17.590
 D25    2.295   3.824   2.737   2.742   4.222   2.950
 D27    5.890   2.000   2.087   6.417   2.689   3.043
[条件式対応値]
 条件式(1) f6/(-f7)=2.712
 条件式(2) f1/(-f7)=3.118
 条件式(3) f2/f7=0.552
 条件式(4) f1/(-f2)=5.650
 条件式(5) f1/f4=1.156
 条件式(6) f4/fw=4.657
 条件式(7) f3/f4=0.352
 条件式(8) |fF|/ft=1.706
 条件式(9) nN/nP=1.160
条件式(10) νN/νP=0.392
条件式(11) f1/|fRw|=0.384
条件式(12) 2ωw=85.08
条件式(13) BFw/fw=0.475
条件式(14) (rR2+rR1)/(rR2-rR1)=4.389
 図5(A)、図5(B)、および図5(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図6(A)、図6(B)、および図6(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図7~図9および表3を用いて説明する。図7は、第3実施例に係る変倍光学系のレンズ構成を示す図である。第3実施例に係る変倍光学系ZL(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7がそれぞれ図7の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、像側のレンズ面が非球面である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL71と、物体側に凹面を向けた正メニスカスレンズL72と、物体側に凹面を向けた負メニスカスレンズL73とから構成される。負メニスカスレンズL73は、物体側のレンズ面が非球面である。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5と第6レンズ群G6とをそれぞれ独立に物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、第1の合焦レンズ群に該当し、第6レンズ群G6は、第2の合焦レンズ群に該当する。
 以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。
(表3)
[全体諸元]
 変倍比 3.33
 fRw=-219.096
        W      M      T
  f     24.8     50.0     82.5
FNO     2.92     2.92     2.92
 2ω     85.12     45.44     28.34
Ymax    21.60     21.60     21.60
 TL    150.97    164.85    185.45
 BF     11.75     21.93     30.78
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    454.1335   2.500   1.94594   17.98
  2    158.8346   5.629   1.81600   46.59
  3   -1850.8518   0.200
  4     62.5732   5.149   1.81600   46.59
  5    111.4228   D5(可変)
  6*    143.7538   2.000   1.81600   46.59
  7     20.1321   9.695
  8    -48.3009   2.346   1.88300   40.66
  9    156.4679   0.200
  10    65.6396   6.565   1.80518   25.45
  11    -42.2522   2.354
  12    -26.3896   1.200   1.69680   55.52
  13    -61.8795   D13(可変)
  14     ∞     1.500             (絞りS)
  15*    46.9137   2.985   1.81600   46.59
  16    79.9069   0.200
  17    56.4482   6.543   1.49782   82.57
  18    -69.0474   D18(可変)
  19    78.4165   1.300   1.90366   31.27
  20    26.6178   9.263   1.59319   67.90
  21    -58.5857   D21(可変)
  22    -29.0948   1.200   1.80100   34.92
  23    -53.3089   2.957
  24    64.8393   6.500   1.48749   70.32
  25    -36.2810   D25(可変)
  26   -486.6338   2.667   1.58887   61.13
  27*   -77.9833   D27(可変)
  28    208.9420   1.200   1.90366   31.27
  29    40.1016   3.903
  30   -103.6980   6.199   1.84666   23.80
  31    -35.7067   3.104
  32*   -19.6292   1.500   1.81600   46.59
  33    -40.5502   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=4.25283E-06,A6=-2.28156E-09
 A8=-7.12258E-14,A10=7.16065E-15,A12=0.00000E+00
 第15面
 κ=1.0000,A4=-3.75837E-06,A6=9.56813E-10
 A8=-1.31531E-12,A10=1.97978E-16,A12=0.00000E+00
 第27面
 κ=1.0000,A4=1.09037E-05,A6=-5.09501E-11
 A8=-1.76649E-12,A10=1.58609E-14,A12=0.00000E+00
 第32面
 κ=1.0000,A4=1.01091E-05,A6=1.61408E-08
 A8=3.76726E-12,A10=1.25182E-13,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    130.092
 G2    6    -23.049
 G3    14    44.414
 G4    19    100.000
 G5    22    98.812
 G6    26    157.320
 G7    28    -42.703
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     2.000  21.323  36.906   2.000  21.323  36.906
 D13    25.662   7.746   2.000  25.662   7.746   2.000
 D18    9.597   5.312   1.500   9.597   5.312   1.500
 D21    6.192  11.864  21.415   5.303  10.833  20.070
 D25    2.000   3.105   2.000   2.411   3.415   2.346
 D27    4.901   4.716   2.000   5.379   5.438   2.999
[条件式対応値]
 条件式(1) f6/(-f7)=3.684
 条件式(2) f1/(-f7)=3.046
 条件式(3) f2/f7=0.540
 条件式(4) f1/(-f2)=5.644
 条件式(5) f1/f4=1.301
 条件式(6) f4/fw=4.040
 条件式(7) f3/f4=0.444
 条件式(8) |fF|/ft=1.907
 条件式(9) nN/nP=1.195
条件式(10) νN/νP=0.461
条件式(11) f1/|fRw|=0.594
条件式(12) 2ωw=85.12
条件式(13) BFw/fw=0.475
条件式(14) (rR2+rR1)/(rR2-rR1)=2.877
 図8(A)、図8(A)、および図8(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図9(A)、図9(B)、および図9(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図10~図12および表4を用いて説明する。図10は、第4実施例に係る変倍光学系のレンズ構成を示す図である。第4実施例に係る変倍光学系ZL(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第6レンズ群G1~G6がそれぞれ図10の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、物体側に凹面を向けた正メニスカスレンズL53とから構成される。正メニスカスレンズL53は、像側のレンズ面が非球面である。
 第6レンズ群G6は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL61と、両凹形状の負レンズL62と、物体側に凹面を向けた負メニスカスレンズL63とから構成される。負レンズL62は、物体側のレンズ面が非球面である。第6レンズ群G6の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、合焦レンズ群に該当する。
 以下の表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。
(表4)
[全体諸元]
 変倍比 2.75
 fRw=-356.649
        W      M      T
  f     24.7     50.0     67.9
FNO     2.92     2.92     2.92
 2ω     85.08     45.26     33.84
Ymax    21.60     21.60     21.60
 TL    139.95    154.92    168.36
 BF     11.75     26.42     30.21
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    500.0000   2.500   1.84666   23.80
  2    128.5654   5.629   1.77250   49.62
  3    1528.3565   0.200
  4     51.0685   4.893   1.81600   46.59
  5     84.5957   D5(可変)
  6*    150.2756   2.000   1.74389   49.53
  7     19.5218   9.332
  8    -70.5990   1.300   1.83481   42.73
  9     68.8663   0.377
  10    44.7171   5.665   1.78472   25.64
  11    -66.3119   4.463
  12    -25.4625   1.300   1.60300   65.44
  13    -54.4747   D13(可変)
  14     ∞     1.500             (絞りS)
  15*    93.5557   2.758   1.58913   61.15
  16    731.3943   0.200
  17    45.8800   5.212   1.59319   67.90
  18   -126.9127   D18(可変)
  19    57.2400   1.300   1.73800   32.33
  20    21.3782   8.742   1.49782   82.57
  21    -52.7685   D21(可変)
  22    -23.6692   1.200   1.73800   32.33
  23    -59.4644   0.200
  24    110.3346   5.800   1.59349   67.00
  25    -32.1046   4.444
  26   -114.5585   3.326   1.74389   49.53
  27*   -41.8456   D27(可変)
  28    -51.0521   2.929   1.94594   17.98
  29    -33.3238   0.200
  30*   -98.8101   1.500   1.85108   40.12
  31    58.4711   6.329
  32    -25.4692   1.400   1.69680   55.52
  33    -42.7921   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=4.65692E-06,A6=-1.64542E-09
 A8=3.72186E-13,A10=4.82369E-15,A12=0.00000E+00
 第15面
 κ=1.0000,A4=-3.70657E-06,A6=3.18672E-09
 A8=-1.82835E-11,A10=3.59863E-14,A12=0.00000E+00
 第27面
 κ=1.0000,A4=1.13375E-05,A6=-1.49475E-08
 A8=6.38011E-11,A10=-1.10074E-13,A12=0.00000E+00
 第30面
 κ=1.0000,A4=-5.84233E-06,A6=-2.49185E-08
 A8=2.26680E-11,A10=-7.54165E-14,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    136.259
 G2    6    -23.493
 G3    14    44.223
 G4    19    90.807
 G5    22    53.777
 G6    28    -40.364
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     2.000  16.966  30.403   2.000  16.966  30.403
 D13    20.342   6.266   2.000  20.342   6.266   2.000
 D18    10.475   3.778   2.048  10.475   3.778   2.048
 D21    4.711  14.758  17.000   4.046  13.957  16.055
 D27    5.973   2.030   2.000   6.639   2.831   2.945
[条件式対応値]
 条件式(4) f1/(-f2)=5.800
 条件式(5) f1/f4=1.501
 条件式(6) f4/fw=3.669
 条件式(7) f3/f4=0.487
 条件式(8) |fF|/ft=0.792
 条件式(9) nN/nP=1.160
条件式(10) νN/νP=0.392
条件式(11) f1/|fRw|=0.382
条件式(12) 2ωw=85.08
条件式(13) BFw/fw=0.475
条件式(14) (rR2+rR1)/(rR2-rR1)=3.941
 図11(A)、図11(B)、および図11(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図12(A)、図12(B)、および図12(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第4実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図13~図15および表5を用いて説明する。図13は、第5実施例に係る変倍光学系のレンズ構成を示す図である。第5実施例に係る変倍光学系ZL(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第6レンズ群G1~G6がそれぞれ図13の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズと、両凸形状の正レンズL44とから構成される。正レンズL41は、物体側のレンズ面が非球面である。正レンズL44は、像側のレンズ面が非球面である。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52と、両凹形状の負レンズL53とから構成される。負レンズL53は、物体側のレンズ面が非球面である。
 第6レンズ群G6は、両凸形状の正レンズL61から構成される。第6レンズ群G6の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5を像面I側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、合焦レンズ群に該当する。
 以下の表5に、第5実施例に係る変倍光学系の諸元の値を掲げる。
(表5)
[全体諸元]
 変倍比 2.75
 fRw=-45.339
        W      M      T
  f     24.7     50.0     67.9
FNO     2.92     2.92     2.92
 2ω     85.16     45.24     34.12
Ymax    21.60     21.60     21.60
 TL    134.73    154.61    169.45
 BF     13.56     26.94     34.84
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1   10957.4900   2.500   1.84666   23.80
  2    273.2507   3.923   1.59319   67.90
  3   -4164.8091   0.200
  4     97.8909   5.850   1.81600   46.59
  5    1686.5488   D5(可変)
  6*    500.0000   2.000   1.67798   54.89
  7     19.6217   7.571
  8    -119.4257   1.200   1.59319   67.90
  9     74.2767   0.211
  10    36.8572   5.028   1.85000   27.03
  11    146.1931   4.217
  12    -25.9063   1.200   1.60300   65.44
  13    -48.3220   D13(可変)
  14     ∞     1.500             (絞りS)
  15*    31.8609   3.346   1.79504   28.69
  16    60.3817   1.288
  17    65.3208   3.503   1.49782   82.57
  18  -22831.8850   D18(可変)
  19*    52.1943   4.361   1.82098   42.50
  20    -99.8775   0.663
  21   -484.1811   1.200   1.85478   24.80
  22    19.0497   8.079   1.49782   82.57
  23    -86.9834   3.675
  24    61.0249   5.155   1.80604   40.74
  25*   -60.8291   D25(可変)
  26   -310.5249   2.912   1.94594   17.98
  27    -59.5174   0.200
  28   -155.6589   1.200   1.77250   49.62
  29    30.4299   6.880
  30*   -54.7368   1.300   1.95150   29.83
  31    317.1233   D31(可変)
  32    72.1520   4.819   1.83481   42.73
  33   -315.4491   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4= 5.57412E-06,A6=-5.71627E-09
 A8=9.08385E-12,A10=-4.74214E-15,A12=0.00000E+00
 第15面
 κ=1.0000,A4=-5.90450E-06,A6=3.98445E-09
 A8=-4.29920E-11,A10=9.10161E-14,A12=0.00000E+00
 第19面
 κ=1.0000,A4=-5.71112E-06,A6=-6.16170E-10
 A8=2.42198E-11,A10=-5.71940E-14,A12=0.00000E+00
 第25面
 κ=1.0000,A4=2.37352E-06,A6=-6.63258E-09
 A8=-2.39696E-11,A10=1.99908E-14,A12=0.00000E+00
 第30面
 κ=1.0000,A4=-6.17314E-06,A6=-3.26346E-08
 A8=1.32620E-10,A10=-6.33629E-13,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    139.410
 G2    6    -23.353
 G3    14    51.116
 G4    19    31.271
 G5    26    -24.892
 G6    32    70.741
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     2.000  21.443  31.758   2.000  21.443  31.758
 D13    19.908   6.376   2.000  19.908   6.376   2.000
 D18    9.100   3.184   2.000   9.100   3.184   2.000
 D25    3.162   2.189   2.000   3.569   2.602   2.454
 D31    3.023  10.499  12.881   2.616  10.087  12.426
[条件式対応値]
 条件式(4) f1/(-f2)=5.970
 条件式(5) f1/f4=4.458
 条件式(6) f4/fw=1.263
 条件式(7) f3/f4=1.635
 条件式(8) |fF|/ft=0.367
 条件式(9) nN/nP=1.238
条件式(10) νN/νP=0.300
条件式(11) f1/|fRw|=3.075
条件式(12) 2ωw=85.16
条件式(13) BFw/fw=0.548
 図14(A)、図14(B)、および図14(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図15(A)、図15(B)、および図15(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第5実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図16~図18および表6を用いて説明する。図16は、第6実施例に係る変倍光学系のレンズ構成を示す図である。第6実施例に係る変倍光学系ZL(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7がそれぞれ図16の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズと、両凸形状の正レンズL44とから構成される。正レンズL41は、物体側のレンズ面が非球面である。正レンズL44は、像側のレンズ面が非球面である。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52と、両凹形状の負レンズL53とから構成される。負レンズL53は、物体側のレンズ面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた正メニスカスレンズL61から構成される。
 第7レンズ群G7は、両凸形状の正レンズL71から構成される。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第5レンズ群G5を像面I側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、合焦レンズ群に該当する。
 以下の表6に、第6実施例に係る変倍光学系の諸元の値を掲げる。
(表6)
[全体諸元]
 変倍比 2.74
 fRw=-40.687
        W      M      T
  f     24.8     50.0     67.9
FNO     2.96     2.98     2.99
 2ω     85.16     45.20     34.12
Ymax    21.60     21.60     21.60
 TL    138.57    158.72    174.45
 BF     13.13     25.93     34.76
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    800.0000   2.500   1.84666   23.80
  2    214.4014   3.846   1.59319   67.90
  3    1317.1215   0.200
  4    112.4262   5.452   1.81600   46.59
  5    6769.9563   D5(可変)
  6*    500.0000   2.000   1.67798   54.89
  7     20.1483   7.488
  8    -122.7141   1.200   1.59319   67.90
  9     65.7886   0.272
  10    36.9186   6.199   1.85000   27.03
  11    167.8314   4.151
  12    -26.0907   1.200   1.60300   65.44
  13    -47.5468   D13(可変)
  14     ∞     1.500             (絞りS)
  15*    34.4078   3.172   1.79504   28.69
  16    61.0992   1.040
  17    57.2334   3.808   1.49782   82.57
  18   -5887.8063   D18(可変)
  19*    56.4489   4.200   1.82098   42.50
  20   -110.1792   0.505
  21   -291.5983   1.200   1.85478   24.80
  22    21.3003   9.632   1.49782   82.57
  23    -65.8810   3.027
  24    55.5374   5.156   1.80604   40.74
  25*   -64.8934   D25(可変)
  26   -368.5041   2.887   1.94594   17.98
  27    -62.4504   0.200
  28   -158.4306   1.200   1.77250   49.62
  29    31.1763   6.060
  30*   -91.4544   1.300   1.95150   29.83
  31    81.4249   D31(可変)
  32    57.0897   2.149   1.80518   25.45
  33    69.0085   D33(可変)
  34    73.7084   4.702   1.64000   60.19
  35   -314.5384   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=4.89442E-06,A6=-5.03173E-09
 A8=9.04508E-12,A10=-5.83062E-15,A12=0.00000E+00
 第15面
 κ=1.0000,A4=-5.12384E-06,A6=3.61548E-09
 A8=-3.66003E-11,A10=7.76731E-14,A12=0.00000E+00
 第19面
 κ=1.0000,A4=-5.21485E-06,A6=-8.93869E-10
 A8=2.28848E-11,A10=-5.34780E-14,A12=0.00000E+00
 第25面
 κ=1.0000,A4=3.45860E-06,A6=-6.25344E-09
 A8=-1.37950E-11,A10=2.51017E-14,A12=0.00000E+00
 第30面
 κ=1.0000,A4=-6.74203E-06,A6=-2.42770E-08
 A8= 5.92492E-11,A10=-3.49332E-13,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    152.425
 G2    6    -24.007
 G3    14    52.775
 G4    19    30.001
 G5    26    -24.147
 G6    32    379.967
 G7    34    93.748
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     2.000  22.083  33.118   2.000  22.083  33.118
 D13    20.464   6.484   2.000  20.464   6.484   2.000
 D18    9.842   3.320   2.000   9.842   3.320   2.000
 D25    2.978   2.225   2.053   3.339   2.586   2.447
 D31    2.915  10.198  13.200   2.555   9.837  12.806
 D33    1.000   2.234   1.084   1.000   2.234   1.084
[条件式対応値]
 条件式(4) f1/(-f2)=6.349
 条件式(5) f1/f4=5.081
 条件式(6) f4/fw=1.212
 条件式(7) f3/f4=1.759
 条件式(8) |fF|/ft=0.356
 条件式(9) nN/nP=1.238
条件式(10) νN/νP=0.300
条件式(11) f1/|fRw|=3.746
条件式(12) 2ωw=85.16
条件式(13) BFw/fw=0.530
 図17(A)、図17(B)、および図17(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図18(A)、図18(B)、および図18(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第6実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図19~図21および表7を用いて説明する。図19は、第7実施例に係る変倍光学系のレンズ構成を示す図である。第7実施例に係る変倍光学系ZL(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7がそれぞれ図19の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とから構成される。開口絞りSは、第3レンズ群G3の物体側近傍に設けられ、変倍の際、第3レンズ群G3とともに移動する。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、像側のレンズ面が非球面である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL71と、両凹形状の負レンズL72と、物体側に凹面を向けた負メニスカスレンズL73から構成される。第7レンズ群G7の像側に、像面Iが配置される。負レンズL72は、物体側のレンズ面が非球面である。
 本実施例では、第5レンズ群G5と第6レンズ群G6とをそれぞれ独立に物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、第1の合焦レンズ群に該当し、第6レンズ群G6は、第2の合焦レンズ群に該当する。
 以下の表7に、第7実施例に係る変倍光学系の諸元の値を掲げる。
(表7)
[全体諸元]
 変倍比 2.74
 fRw=4055.914
        W      M      T
  f     24.8     50.0     67.9
FNO     2.92     2.92     2.92
 2ω     85.10     45.24     33.84
Ymax    21.60     21.60     21.60
 TL    139.31    158.27    168.76
 BF     11.75     23.48     28.76
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    189.0188   2.500   1.84666   23.80
  2     98.2637   5.200   1.75500   52.33
  3    281.1360   0.200
  4     58.7593   5.700   1.77250   49.62
  5    135.0000   D5(可変)
  6*    221.1138   2.000   1.74389   49.53
  7     18.6091   9.662
  8    -58.7660   1.300   1.77250   49.62
  9     58.7660   0.506
  10    39.8268   6.400   1.72825   28.38
  11    -48.5880   1.773
  12    -26.6513   1.300   1.61800   63.34
  13    -70.7180   D13(可変)
  14     ∞     1.702             (絞りS)
  15*    71.3000   2.500   1.69370   53.32
  16    121.5261   0.202
  17    38.6117   5.900   1.59319   67.90
  18   -111.3842   D18(可変)
  19    66.4297   1.300   1.73800   32.33
  20    19.7070   9.700   1.49782   82.57
  21    -49.1811   D21(可変)
  22    -23.7160   1.200   1.72047   34.71
  23    -55.5303   0.200
  24    103.5406   5.980   1.59349   67.00
  25    -32.7186   D25(可変)
  26    -75.1626   3.736   1.79189   45.04
  27*   -39.1303   D27(可変)
  28    -44.6016   3.000   1.94594   17.98
  29    -32.9994   0.201
  30*   -101.4301   1.500   1.85207   40.15
  31    85.4850   7.927
  32    -25.8904   1.400   1.58913   61.22
  33    -45.0397   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=5.47971E-06,A6=-6.22095E-09
 A8=1.44104E-11,A10=-2.08855E-14,A12=2.01910E-17
 第15面
 κ=1.0000,A4=-4.50985E-06,A6=2.81159E-10
 A8=-2.63745E-12,A10=-4.80538E-15,A12=0.00000E+00
 第27面
 κ=1.0000,A4=1.09182E-05,A6=-2.25976E-08
 A8=1.43325E-10,A10=-4.96895E-13,A12=6.77820E-16
 第30面
 κ=1.0000,A4=-2.19229E-06,A6=-2.44256E-08
 A8=6.38954E-11,A10=-1.65927E-13,A12=0.00000E+00
[レンズ群データ]
 群   始面   焦点距離
 G1    1    118.121
 G2    6    -21.898
 G3    14    41.497
 G4    19    109.585
 G5    22    123.527
 G6    26    98.560
 G7    28    -47.807
[可変間隔データ]
       W    M    T    W    M    T
      無限遠  無限遠  無限遠  近距離  近距離  近距離
 D5     1.800  21.061  29.930   1.800  21.061  29.930
 D13    19.119   6.127   2.000  19.119   6.127   2.000
 D18    9.354   3.967   1.500   9.354   3.967   1.500
 D21    5.286  14.229  18.845   4.337  12.953  17.517
 D25    2.861   3.580   2.713   3.291   4.145   3.115
 D27    6.143   2.841   2.028   6.662   3.552   2.955
[条件式対応値]
 条件式(1) f6/(-f7)=2.062
 条件式(2) f1/(-f7)=2.471
 条件式(3) f2/f7=0.458
 条件式(4) f1/(-f2)=5.394
 条件式(5) f1/f4=1.078
 条件式(6) f4/fw=4.428
 条件式(7) f3/f4=0.379
 条件式(8) |fF|/ft=1.819
 条件式(9) nN/nP=1.160
条件式(10) νN/νP=0.392
条件式(11) f1/|fRw|=0.029
条件式(12) 2ωw=85.10
条件式(13) BFw/fw=0.475
条件式(14) (rR2+rR1)/(rR2-rR1)=3.704
 図20(A)、図20(B)、および図20(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図21(A)、図21(C)、および図21(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第7実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 各実施例によれば、鏡筒が大型化することなく、高速で静粛性の高いオートフォーカスを実現可能で、広角端状態から望遠端状態への変倍の際の収差の変動および、無限遠物体から近距離物体への合焦の際の収差の変動を抑えた変倍光学系を実現することができる。
 ここで、上述の第1~第3実施例および第7実施例は本実施形態の一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。
 なお、以下の内容は、本実施形態に係る変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 変倍光学系の数値実施例として6群構成のものと7群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、8群等)の変倍光学系を構成することもできる。具体的には、変倍光学系の最も物体側や最も像面側に、レンズまたはレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、第2レンズ群と第3レンズ群との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
 G7 第7レンズ群
  I 像面               S 開口絞り

Claims (22)

  1.  物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群と、負の屈折力を有する第7レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化する変倍光学系。
  2.  以下の条件式を満足する請求項1に記載の変倍光学系。
     1.00<f6/(-f7)<6.00
     但し、f6:前記第6レンズ群の焦点距離
        f7:前記第7レンズ群の焦点距離
  3.  以下の条件式を満足する請求項1または2に記載の変倍光学系。
     0.80<f1/(-f7)<5.00
     但し、f1:前記第1レンズ群の焦点距離
        f7:前記第7レンズ群の焦点距離
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の変倍光学系。
     0.10<f2/f7<3.00
     但し、f2:前記第2レンズ群の焦点距離
        f7:前記第7レンズ群の焦点距離
  5.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群である請求項1~4のいずれか一項に記載の変倍光学系。
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
     3.40<f1/(-f2)<7.00
     但し、f1:前記第1レンズ群の焦点距離
        f2:前記第2レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の変倍光学系。
     0.80<f1/f4<5.10
     1.20<f4/fw<6.80
     但し、f1:前記第1レンズ群の焦点距離
        f4:前記第4レンズ群の焦点距離
        fw:広角端状態における前記変倍光学系の焦点距離
  8.  以下の条件式を満足する請求項1~7のいずれか一項に記載の変倍光学系。
     0.20<f3/f4<2.50
     但し、f3:前記第3レンズ群の焦点距離
        f4:前記第4レンズ群の焦点距離
  9.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、
     前記合焦レンズ群は、3つ以下の単レンズからなる請求項1~8のいずれか一項に記載の変倍光学系。
  10.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、
     前記合焦レンズ群のうち少なくとも1つは、負の屈折力を有する単レンズを有する請求項1~9のいずれか一項に記載の変倍光学系。
  11.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、
     前記合焦レンズ群は、開口絞りよりも像側に配置される請求項1~10のいずれか一項に記載の変倍光学系。
  12.  開口絞りよりも像側に少なくとも4つのレンズ群が配置される請求項1~11のいずれか一項に記載の変倍光学系。
  13.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、
     以下の条件式を満足する請求項1~12のいずれか一項に記載の変倍光学系。
     0.20<|fF|/ft<4.00
     但し、fF:前記合焦レンズ群のうち最も屈折力が強い前記合焦レンズ群の焦点距離
        ft:望遠端状態における前記変倍光学系の焦点距離
  14.  前記第4レンズ群は、負レンズと正レンズとの接合レンズを有する請求項1~13のいずれか一項に記載の変倍光学系。
  15.  前記第4レンズ群は、負レンズと正レンズとの接合レンズを有し、
     以下の条件式を満足する請求項1~14のいずれか一項に記載の変倍光学系。
     1.00<nN/nP<1.35
     但し、nN:前記接合レンズにおける前記負レンズの屈折率
        nP:前記接合レンズにおける前記正レンズの屈折率
  16.  前記第4レンズ群は、負レンズと正レンズとの接合レンズを有し、
     以下の条件式を満足する請求項1~15のいずれか一項に記載の変倍光学系。
     0.20<νN/νP<0.85
     但し、νN:前記接合レンズにおける前記負レンズのアッベ数
        νP:前記接合レンズにおける前記正レンズのアッベ数
  17.  以下の条件式を満足する請求項1~16のいずれか一項に記載の変倍光学系。
     f1/|fRw|<5.00
     但し、f1:前記第1レンズ群の焦点距離
        fRw:広角端状態における前記第4レンズ群よりも像側に配置されたレンズ群の合成焦点距離
  18.  以下の条件式を満足する請求項1~17のいずれか一項に記載の変倍光学系。
     2ωw>75°
     但し、ωw:広角端状態における前記変倍光学系の半画角
  19.  以下の条件式を満足する請求項1~18のいずれか一項に記載の変倍光学系。
     0.10<BFw/fw<1.00
     但し、BFw:広角端状態における前記変倍光学系のバックフォーカス
        fw:広角端状態における前記変倍光学系の焦点距離
  20.  前記第5レンズ群および前記第6レンズ群のうち少なくとも1つは、合焦の際に移動する合焦レンズ群であり、
     以下の条件式を満足する請求項1~19のいずれか一項に記載の変倍光学系。
     0.00<(rR2+rR1)/(rR2-rR1)<8.00
     但し、rR1:前記変倍光学系の最も像側に配置されたレンズにおける物体側のレンズ面の曲率半径
        rR2:前記変倍光学系の最も像側に配置されたレンズにおける像側のレンズ面の曲率半径
  21.  請求項1~20のいずれかに記載の変倍光学系を搭載して構成される光学機器。
  22.  物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群と、負の屈折力を有する第7レンズ群とを有した変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化するように、
     レンズ鏡筒内に各レンズを配置する変倍光学系の製造方法。
PCT/JP2018/047779 2018-12-26 2018-12-26 変倍光学系、光学機器および変倍光学系の製造方法 WO2020136747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562010A JP7163974B2 (ja) 2018-12-26 2018-12-26 変倍光学系および光学機器
PCT/JP2018/047779 WO2020136747A1 (ja) 2018-12-26 2018-12-26 変倍光学系、光学機器および変倍光学系の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047779 WO2020136747A1 (ja) 2018-12-26 2018-12-26 変倍光学系、光学機器および変倍光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2020136747A1 true WO2020136747A1 (ja) 2020-07-02

Family

ID=71126965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047779 WO2020136747A1 (ja) 2018-12-26 2018-12-26 変倍光学系、光学機器および変倍光学系の製造方法

Country Status (2)

Country Link
JP (1) JP7163974B2 (ja)
WO (1) WO2020136747A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045435A (ja) * 2014-08-26 2016-04-04 株式会社シグマ 防振機能を有する望遠ズームレンズ
JP2016224157A (ja) * 2015-05-28 2016-12-28 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
JP2017129668A (ja) * 2016-01-19 2017-07-27 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2018169563A (ja) * 2017-03-30 2018-11-01 株式会社タムロン ズームレンズ及び撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957181B2 (ja) * 2017-03-31 2021-11-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045435A (ja) * 2014-08-26 2016-04-04 株式会社シグマ 防振機能を有する望遠ズームレンズ
JP2016224157A (ja) * 2015-05-28 2016-12-28 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
JP2017129668A (ja) * 2016-01-19 2017-07-27 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2018169563A (ja) * 2017-03-30 2018-11-01 株式会社タムロン ズームレンズ及び撮像装置

Also Published As

Publication number Publication date
JPWO2020136747A1 (ja) 2021-09-27
JP7163974B2 (ja) 2022-11-01

Similar Documents

Publication Publication Date Title
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2023083601A (ja) 変倍光学系、光学機器および変倍光学系の製造方法
WO2020105103A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP2017107065A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP7081689B2 (ja) 変倍光学系および光学機器
JP6281200B2 (ja) 変倍光学系及び光学装置
JP7420200B2 (ja) 変倍光学系および光学機器
JP7196937B2 (ja) 変倍光学系および光学機器
JP7491415B2 (ja) 変倍光学系および光学機器
JP7163974B2 (ja) 変倍光学系および光学機器
JP7218761B2 (ja) 変倍光学系および光学機器
JP7131633B2 (ja) 変倍光学系および光学機器
WO2016194811A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP6265022B2 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP6446821B2 (ja) 変倍光学系及び光学機器
JP6281199B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP7259956B2 (ja) 変倍光学系および光学機器
JP6119953B2 (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP5338865B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6251947B2 (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP6260074B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学装置
JP6256732B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学装置
JPWO2019220629A1 (ja) ズームレンズ及び光学機器
JP2016224224A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944375

Country of ref document: EP

Kind code of ref document: A1