WO2020136735A1 - Falling liquid film type tube ice machine - Google Patents

Falling liquid film type tube ice machine Download PDF

Info

Publication number
WO2020136735A1
WO2020136735A1 PCT/JP2018/047713 JP2018047713W WO2020136735A1 WO 2020136735 A1 WO2020136735 A1 WO 2020136735A1 JP 2018047713 W JP2018047713 W JP 2018047713W WO 2020136735 A1 WO2020136735 A1 WO 2020136735A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ice
heat transfer
tube
casing
Prior art date
Application number
PCT/JP2018/047713
Other languages
French (fr)
Japanese (ja)
Inventor
郁朗 赤田
耕作 西田
憲一 小畠
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to JP2020562001A priority Critical patent/JP6965464B2/en
Priority to PCT/JP2018/047713 priority patent/WO2020136735A1/en
Publication of WO2020136735A1 publication Critical patent/WO2020136735A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/06Producing ice by using stationary moulds open or openable at both ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant

Definitions

  • the present disclosure relates to a vertical falling liquid film tube ice maker.
  • a tube ice maker has a liquid-filled evaporator with a heat transfer tube built in and the shell side filled with refrigerant.
  • refrigerant By boiling the refrigerant at a low temperature, the water flowing in the heat transfer tube is cooled and ice is generated on the inner wall of the heat transfer tube.
  • the hot gas of the refrigerant is injected into the shell to melt the ice on the inner wall of the heat transfer tube, the ice drops to the bottom due to its own weight, and it is crushed at regular intervals to produce tube ice.
  • Patent Document 1 discloses an ice-making machine equipped with a liquid-filled heat exchanger.
  • An ice machine equipped with a liquid-filled evaporator requires a large amount of refrigerant in order to fill the casing with the refrigerant liquid, and the head of the refrigerant liquid causes a pressure distribution in the depth direction, resulting in a depth of about 2 m.
  • the evaporation temperature at the bottom is about 1° C. higher than that at the top, so there is a problem that the ice thickness becomes uneven. Further, since heat transfer on the refrigerant side is nucleate boiling heat transfer, the heat transfer rate becomes low, and it takes time to make ice.
  • An embodiment is aimed at proposing an ice-making machine capable of reducing the amount of refrigerant and increasing the efficiency of ice-making and de-icing.
  • a falling liquid film tube ice maker is A casing, A plurality of heat transfer tubes extending along the vertical direction inside the casing, A header for storing the refrigerant, which is provided in a region where the upper end of the heat transfer tube is disposed in the internal space of the casing, Equipped with The heat transfer tube is configured to receive the supply of the refrigerant from the header so that a liquid film of the refrigerant is formed on an outer surface of the heat transfer tube.
  • “extending along the vertical direction” includes extending with an inclination within an angle at which the liquid film on the surface of the heat transfer tube is secured.
  • the refrigerant liquid forms a falling liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water inside the heat transfer tube. Since the liquid film is a thin film and has no retention, the resistance to evaporation is small and the heat exchange is efficiently performed. In this way, the refrigerant liquid film and the ice-making water flowing down the inside of the heat transfer tube are heat-exchanged, so that the amount of the refrigerant can be significantly reduced as compared with the full liquid type.
  • the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed as compared with a method of spraying the refrigerant liquid on the outer surface of the heat transfer tube using a spray or the like. Further, since the evaporation heat transfer is performed by a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be greatly shortened as compared with the full liquid type. Further, since the refrigerant flows down along the outer surface of the heat transfer tube, the evaporation temperature becomes constant in the vertical direction, and the ice thickness cannot be uneven in the vertical direction.
  • the refrigerant liquid retained in the casing since the refrigerant liquid retained in the casing is small, the refrigerant liquid can reach the saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot gas for de-icing, and the hot gas is Since it condenses and flows down along the vertical direction of the outer surface of the heat transfer tube, there is no retention of the condensate, and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved, and since the amount of the refrigerant liquid stored in the casing is small, it is possible to prevent the refrigerant liquid in the casing from returning to the compressor as mist.
  • An inlet for the refrigerant is provided at a lower portion of the casing so as to communicate with the internal space, A refrigerant circulation path for returning the refrigerant liquid stored in the lower portion of the internal space to the header is provided.
  • the refrigerant inlet is provided in the lower portion of the casing, the refrigerant liquid supplied into the casing does not break the refrigerant liquid film formed on the outer surface of the heat transfer tube. It is possible to maintain a high heat transfer coefficient with the ice making water on the inner surface of the heat transfer tube.
  • An outlet for the refrigerant is provided in an upper portion of the casing so as to communicate with the internal space.
  • the refrigerant outlet is located at the upper part of the casing and is located away from the refrigerant liquid accumulated in the lower part of the internal space, only the refrigerant gas can be discharged from the refrigerant outlet. As a result, it is possible to prevent liquid backing to the compressor that constitutes the refrigerator.
  • the refrigerant having a liquid level of 1/10 or less of the height of the internal space is stored in the lower part of the internal space.
  • the configuration of (5) since the refrigerant liquid having a liquid level of 1/10 or less of the internal space height is stored in the internal space of the casing, it is possible to make ice with a small amount of the refrigerant. Become.
  • the refrigerant liquid surface can be moved away from the refrigerant outlet in the upper part of the internal space, so that the refrigerant liquid reaches the refrigerant outlet. Does not mix.
  • hot gas is supplied from the hot gas inlet to the internal space of the casing in order to de-ice the tube ice formed on the inner surface of the heat transfer tube.
  • the hot gas inlet since the hot gas inlet is formed in the lower part of the casing, the hot gas is supplied into the refrigerant liquid accumulated in the lower part of the inner space of the casing, and the refrigerant liquid is vigorously stirred.
  • the heat transfer coefficient with the tube ice can be increased and the deicing time can be shortened.
  • the outer surface of the heat transfer tube is exposed to saturated vapor of hot gas. Therefore, the outer surface of the heat transfer tube is condensed heat transfer in which hot gas flows down while condensing, and the heat transfer rate about twice that of the deicing process of the conventional full-fill type ice maker can be obtained. Can be shortened.
  • a cutter is provided below the plurality of heat transfer tubes for cutting the tube ice that slides down from the inner surface of the heat transfer tubes under its own weight during deicing.
  • the cutter since the cutter is provided, in the deicing step, the tube ice that slides off from the inner surface of the heat transfer tube by its own weight can be cut into an appropriate length and supplied to the destination.
  • a lower ice making water storage portion provided below the plurality of heat transfer tubes, A water circulation path connecting the lower ice making water storage part and the upper ice making water storage part, A water circulation pump provided in the water circulation path for circulating the ice making water accumulated in the lower ice making water storage portion to the upper ice making water storage portion, A level sensor for detecting a liquid level of the ice making water accumulated in the lower ice making water storage part; A control unit for controlling the operation of the water circulation pump based on the detection value of the level sensor; Equipped with.
  • the configuration of (8) since the liquid level of the ice making water accumulated in the lower ice making water storage portion can be controlled to a desired level in the ice making process, the ice making process can be smoothly performed.
  • a refrigerator for generating the refrigerant supplied to the header is A refrigerant circuit, A refrigeration cycle constituent device that is provided in the refrigerant circuit and includes a compressor, a condenser, a receiver, and an expansion valve, Equipped with The refrigerant is decompressed via the expansion valve and is supplied to the casing.
  • the refrigerant as the cold heat source of the ice making machine can be supplied to the ice making machine.
  • a hot gas supply path communicating with the gas phase portion of the receiver and the internal space is provided.
  • hot gas refrigerant gas having a temperature higher than 0° C.
  • the hot gas can be replenished with the newly vaporized refrigerant gas.
  • the refrigerant is a natural refrigerant, an HFC refrigerant or an HFO refrigerant.
  • NH 3 among the refrigerants has a large surface tension. Due to this surface tension, a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transferred to the ice making water can be improved.
  • the amount of refrigerant can be reduced, the cost can be reduced, and the efficiency of ice making and de-iceing can be improved, and the ice making capacity can be improved. Further, it is possible to prevent the thickness of ice from being uneven in the extending direction of the heat transfer tube, and it is possible to suppress liquid back to the compressor of the refrigerator that supplies the refrigerant.
  • expressions such as “identical”, “equal”, and “homogeneous” that indicate that they are in the same state are not limited to strict equality, but also include tolerances or differences in the degree to which the same function is obtained. It also represents the existing state.
  • the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained.
  • the shape including parts and the like is also shown.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
  • FIG. 1 is a vertical cross-sectional view of a falling liquid film tube ice maker 10 according to an embodiment.
  • the ice maker 10 includes a plurality of heat transfer tubes 14 inside the casing 12, and the heat transfer tubes 14 extend in the vertical direction.
  • a refrigerant header 16 for storing the refrigerant liquid is provided in an area of the inner space S 0 (outer space of the heat transfer tube 14) of the casing 12 where the upper end of the heat transfer tube 14 is arranged.
  • the refrigerant liquid supplied from the refrigerant header 16 forms a refrigerant liquid film on the outer surface of the heat transfer tube 14.
  • the refrigerant liquid film formed on the outer surface of the heat transfer tube 14 flows down along the outer surface of the heat transfer tube.
  • Ice-making water Wi is supplied from the upper end opening of the heat-transfer tube 14 to the inside of the heat-transfer tube 14, and the ice-making water Wi is cooled by a refrigerant liquid film formed on the outer surface of the heat-transfer tube 14 to form a cylindrical shape on the inner surface of the heat-transfer tube 14. Tube ice Ti is formed.
  • refrigerant used here means that ice-making water Wi that changes its phase and flows down the inner surface of the heat transfer tube 14 is cooled by evaporation latent heat to make ice.
  • the formation of the refrigerant liquid film on the outer surface of the heat transfer tube and the supply of the ice-making water Wi to the inner side of the heat transfer tube are continuously performed until the tube ice Ti has a predetermined thickness.
  • the ice making process is switched to the deicing process.
  • hot gas refrigerant gas exceeding 0° C.
  • the tube ice Ti is separated from the inner surface of the heat transfer tube 14 due to the heat transferred from the hot gas to the heat transfer tube 14. It slides down due to its own weight.
  • the refrigerant liquid forms a falling liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water Wi inside the heat transfer tube. Since the liquid film is a thin film and has no retention, the resistance to evaporation is small and the heat exchange is efficiently performed. In this way, the refrigerant liquid film and the ice-making water Wi inside the heat transfer tube are heat-exchanged, so that the amount of the refrigerant can be significantly reduced as compared with the liquid-filled heat exchanger that stores the refrigerant liquid inside the casing 12.
  • the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed on the outer peripheral surface of the heat transfer tube 14 as compared with a method of spraying the refrigerant liquid on the heat transfer tube by using a spray or the like.
  • the heat transfer coefficient can be improved.
  • a refrigerant that changes phase since the evaporation heat transfer is a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be greatly shortened as compared with the full liquid type.
  • the refrigerant liquid retained in the casing 12 since the refrigerant liquid retained in the casing 12 is small, the refrigerant liquid can reach the saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot ice for deicing, and Is condensed and flows down along the vertical direction of the outer surface of the heat transfer tube, so that the condensate is not retained and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved, and liquid back to the compressor 64 (see FIGS. 2 and 3) that constitutes the refrigerator 60 that supplies the refrigerant to the ice making machine 10 can be suppressed, as will be described later.
  • a refrigerator 60 is provided.
  • the refrigerator 60 includes a refrigerating cycle constituent device including a compressor 64, a condenser 66, a receiver 68, and an expansion valve 70 in a refrigerant circuit 62 in which a refrigerant circulates.
  • 2 shows an ice making step
  • FIG. 3 shows a deicing step.
  • the refrigerant gas discharged from the compressor 64 is cooled by the condenser 66 and becomes a refrigerant liquid, which is sent to the receiver 68.
  • the refrigerant liquid r is stored in the receiver 68, the refrigerant liquid r is decompressed via the expansion valve 70, and is supplied to the casing 12 of the ice maker 10. According to this embodiment, by including the refrigerator 60, the refrigerant as the cold heat source of the ice making machine 10 can be supplied to the ice making machine 10.
  • a tube sheet 18 is provided on the upper part of the casing 12, and the upper end of the heat transfer tube 14 is fixed to the tube sheet 18.
  • An upper ice making water storage portion 20 is provided above the tube sheet 18, and a refrigerant header 16 is provided below the tube sheet 18.
  • the upper ice-making water storage section 20 is arranged above the tube sheet 18 with the tube sheet 18 as a boundary, and the refrigerant header 16 is arranged below the tube sheet 18.
  • the upper ice-making water storage unit 20 is formed of a hollow container capable of storing the ice-making water Wi
  • the bottom surface is formed of the tube plate 18, and the upper end of the heat transfer tube 14 is opened at the bottom surface.
  • the bottom surface of the refrigerant header 16 is composed of a bottom wall 18a arranged along the horizontal direction, and an annular gap (not shown) for allowing the refrigerant liquid film to flow down between the bottom wall 18a and the outer peripheral surface of the heat transfer tube 14. ) Is formed.
  • the upper surface of the refrigerant header 16 is composed of the tube plate 18.
  • the refrigerant inlet pipe 22 communicates with the lower interior space S 0, the refrigerant header refrigerant liquid r which stores the bottom of the inner space S 0
  • a refrigerant circulation pipe 24 for returning to 16 is provided.
  • the coolant liquid r is supplied from the coolant inlet pipe 22 to the internal space S 0 , and the coolant liquid r stored in the lower portion of the internal space S 0 is sent to the coolant header 16 by the coolant circulation pump 26 provided in the coolant circulation pipe 24. ..
  • the tube ice Ti can be formed to have a predetermined thickness.
  • the refrigerant inlet pipe 22 because it is provided in the lower portion of the internal space S 0, refrigerant liquid r supplied to the internal space S 0 is not broken refrigerant liquid film formed on the heat transfer tube outer surface. Therefore, the heat transfer coefficient between the refrigerant liquid film and the ice-making water Wi on the inner surface of the heat transfer tube can be kept high.
  • a refrigerant outlet pipe 28 is provided in the lower portion of the casing 12 so as to communicate with the internal space S 0
  • a refrigerant inlet pipe 30 is provided in the upper portion of the casing 12 so as to communicate with the refrigerant header 16.
  • the refrigerant liquid r stored in the internal space S 0 in the lower part of the casing 12 is sent from the refrigerant outlet pipe 28 to the refrigerant inlet pipe 30 to the refrigerant header 16 by the refrigerant circulation pump 26 from the refrigerant outlet pipe 28.
  • the refrigerant outlet pipe 32 from which the refrigerant gas vaporized by heat exchange with the ice-making water Wi is discharged is provided in the upper portion of the casing 12 so as to communicate with the internal space S 0 .
  • the refrigerant outlet pipe 32 is located at the top of the inner space S 0, is in a position away from the refrigerant liquid r accumulated in the lower portion of the internal space S 0, refrigerant liquid along the heat transfer tube 14 is liquid film Therefore, only the refrigerant gas can be discharged from the refrigerant outlet pipe 32. As a result, liquid back to the compressor 64 can be prevented.
  • the operation is performed such that the liquid level of the refrigerant liquid forms a liquid level (H in FIG. 1) of about 1/10 of the vertical direction (height) of the internal space S 0 .
  • H in FIG. 1 the liquid level of the refrigerant liquid forms a liquid level (H in FIG. 1) of about 1/10 of the vertical direction (height) of the internal space S 0 .
  • the accumulator that separates gas and liquid and the refrigerant liquid are gasified in the refrigerant circuit 62 that leads from the refrigerant outlet pipe 32 to the compressor 64. It is not necessary to dispose a liquid gas heat exchanger.
  • the tube plate 36 is provided in the lower portion of the casing 12, and the internal space S 0 can store the refrigerant liquid r with the tube plate 36 as the bottom surface.
  • a hot gas inlet pipe 34 formed in the lower portion of the internal space S 0, and the hot gas outlet pipe 32 formed in the upper portion of the internal space S 0, the.
  • hot gas is supplied from the refrigerator 60 to the internal space S 0 in order to deice the tube ice Ti formed on the inner surface of the heat transfer tube.
  • the hot gas inlet pipe 34 is formed in the lower portion of the internal space S 0 , the hot gas is supplied into the refrigerant liquid accumulated in the lower portion of the internal space S 0 and vigorously agitates the refrigerant liquid. ..
  • the heat transfer coefficient between the refrigerant liquid and the tube ice Ti can be increased, and the deicing time can be shortened.
  • the outer surface of the heat transfer tube 14 is exposed to saturated vapor of hot gas. Therefore, the outer surface of the heat transfer tube 14 is condensed heat transfer in which hot gas flows while condensing, and a heat passage rate that is about twice that of the deicing process of the conventional full-fill type ice maker can be obtained, so that the deicing time is shortened. it can.
  • the hot gas outlet pipe 32 is also used as the refrigerant outlet pipe.
  • a cutter 38 is provided below the plurality of heat transfer tubes 14.
  • the tube ice Ti that slides off from the inner surface of the heat transfer tube 14 by its own weight can be cut into an appropriate length and supplied to the user.
  • the cutter 38 is provided inside the lower ice making water storage portion 42 provided below the plurality of heat transfer tubes 14.
  • the lower ice making water storage part 42 is formed of a hollow container, and is capable of storing ice making water Wi therein.
  • the cutter 38 is configured to be rotatable about a rotation shaft 38a and is rotated by a driving unit (for example, a motor) 40. The length of the tube ice Ti to be cut can be adjusted by appropriately controlling the rotation speed of the cutter 38 by the drive unit 40 in accordance with the falling speed of the tube ice Ti sliding off the heat transfer tube 14 during de-icing.
  • a water circulation pipe 44 that connects the lower ice making water storage part 42 and the upper ice making water storage part 20 is provided, and the water circulation pipe 44 has the ice making water accumulated in the lower ice making water storage part 42.
  • a water circulation pump 46 for circulating the water Wi to the upper ice-making water storage portion 20 is provided.
  • a level sensor 48 for detecting the liquid surface level of the ice making water Wi accumulated in the lower ice making water storage portion 42 is provided, and the control portion 50 controls the operation of the water circulation pump 46 based on the detection value of the level sensor 48. ..
  • the ice making water Wi supplied to the inside of the heat transfer tube 14 is circulated to the heat transfer tube 14 via the water circulation tube 44, whereby the tube ice Ti can be formed to a predetermined thickness. .. Further, since the liquid surface level of the ice making water Wi accumulated in the lower ice making water storage portion 42 can be controlled to a desired level, the ice making process can be smoothly performed. In one embodiment, when the ice making water Wi in the upper ice making water storage part 20 and the lower ice making water storage part 42 becomes insufficient, makeup water can be injected into the upper ice making water storage part 20 or the lower ice making water storage part 42. .. After the tube ice Ti production is completed in the ice making step, the circulation of the ice making water Wi is stopped.
  • a bottom plate 52 having a mesh-shaped opening is provided inside the lower ice making water storage part 42.
  • the inner space of the lower ice making water storage portion 42 is partitioned by the bottom plate 52 into an upper region including an outlet opening 54 of the tube ice Ti and a lower region including an outlet opening communicating with the water circulation pipe 44.
  • the tube ice Ti cut by the cutter 38 and the water partially melted in the deicing process are separated by the bottom plate 52, and only the tube ice Ti can be discharged from the outlet opening 54 to the outside of the lower ice making water reservoir 42. ..
  • the ice-making water Wi that has flowed down to the lower region is returned to the upper ice-making water storage portion 20 via the water circulation pipe 44.
  • the hot gas supply path 72 that communicates with the gas phase portion of the receiver 68 and the internal space S 0 is provided.
  • hot gas can be supplied to the internal space S 0 in the deicing step. Since the cooling operation of the condenser 66 is not performed in this step, the receiver gas phase portion is maintained at a high temperature. Further, when hot gas is supplied from the gas phase portion of the receiver 68 via the hot gas supply path 72, the inside of the receiver 72 is decompressed as the hot gas is supplied, and the refrigerant liquid inside the receiver is decompressed as the pressure inside the receiver is reduced. Is vaporized, the hot gas can be supplemented by the vaporized refrigerant gas.
  • a natural refrigerant for example, NH 3 , CO 2 , propane, isobutane, etc.
  • an HFC refrigerant for example, R134a, R32, R404A, R410A, etc.
  • an HFO refrigerant for example, R1234yf
  • NH 3 for example, has a large surface tension. This surface tension acts so that the refrigerant liquid film wraps around the heat transfer tube 14 in the circumferential direction, so that a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transferred to the ice making water Wi can be improved.
  • a falling liquid film type ice making machine that can reduce the amount of refrigerant and can make the apparatus compact, and also can improve the efficiency of ice making and de-icing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A falling liquid film type tube ice machine according to one embodiment comprises: a casing; a plurality of heat transfer tubes that extend along the vertical direction inside the casing; and a header for storing a refrigerant, the header being provided in the region of the inner space of the casing where the upper ends of the heat transfer tubes are arranged. The heat transfer tubes are each configured so as to be supplied with the refrigerant from the header so that a liquid film of the refrigerant is formed on the outer surface of the heat transfer tube.

Description

流下液膜式チューブアイス製氷機Flowing liquid film tube ice machine
 本開示は、縦型の流下液膜式チューブアイス製氷機に関する。 The present disclosure relates to a vertical falling liquid film tube ice maker.
 従来、チューブアイス製氷機は、伝熱管を内蔵しシェル側を冷媒で満たした満液式蒸発器を備えている。冷媒を低温で沸騰させることにより、伝熱管内を流れる水を冷却し、伝熱管の内壁に氷を生成させる。ある程度氷の厚みが増加したところで、シェル内に冷媒のホットガスを注入させることにより伝熱管内壁の氷を融解させ、自重により氷を下部に落とし、一定間隔で砕氷することにより、チューブアイスを製造する。特許文献1には、満液式熱交換器を備えた製氷機が開示されている。 Conventionally, a tube ice maker has a liquid-filled evaporator with a heat transfer tube built in and the shell side filled with refrigerant. By boiling the refrigerant at a low temperature, the water flowing in the heat transfer tube is cooled and ice is generated on the inner wall of the heat transfer tube. When the thickness of the ice has increased to some extent, the hot gas of the refrigerant is injected into the shell to melt the ice on the inner wall of the heat transfer tube, the ice drops to the bottom due to its own weight, and it is crushed at regular intervals to produce tube ice. To do. Patent Document 1 discloses an ice-making machine equipped with a liquid-filled heat exchanger.
特開平06-147707号公報Japanese Patent Laid-Open No. 06-147707
 満液式蒸発器を備えた製氷機は、ケーシング内に冷媒液を満たすため多量の冷媒量が必要になると共に、冷媒液のヘッドにより深さ方向に圧力分布が生じ、深さが2m程度の満液式蒸発器では、底部の蒸発温度は上部より1℃程度高くなるため、氷厚にムラができるという問題がある。また、冷媒側の熱伝達は核沸騰熱伝達であるため熱伝達率が低くなり、製氷に時間がかかる。さらに、脱氷時にシェル側にホットガスを注入して冷媒を昇温させる場合、低温で過冷却状態になっている大量の冷媒液を氷の融点以上に昇温するのに多量の熱量を必要とすると共に、ホットガスにより昇温しかつ攪拌された冷媒液との対流熱伝達となるため、伝熱管内側にできた氷との熱伝達率が低くなり、脱氷に時間がかかるという問題がある。 An ice machine equipped with a liquid-filled evaporator requires a large amount of refrigerant in order to fill the casing with the refrigerant liquid, and the head of the refrigerant liquid causes a pressure distribution in the depth direction, resulting in a depth of about 2 m. In a full-fill type evaporator, the evaporation temperature at the bottom is about 1° C. higher than that at the top, so there is a problem that the ice thickness becomes uneven. Further, since heat transfer on the refrigerant side is nucleate boiling heat transfer, the heat transfer rate becomes low, and it takes time to make ice. Furthermore, when hot gas is injected into the shell side to raise the temperature of the refrigerant during de-icing, a large amount of heat is required to raise the temperature of a large amount of refrigerant liquid that is supercooled at a low temperature above the melting point of ice. At the same time, the convective heat transfer with the refrigerant liquid heated and stirred by the hot gas reduces the heat transfer coefficient with the ice formed inside the heat transfer tube, and there is a problem that it takes time to remove the ice. is there.
 一実施形態は、冷媒量を低減し、かつ製氷及び脱氷の高効率化を可能にする製氷機を提案することを目的とする。 An embodiment is aimed at proposing an ice-making machine capable of reducing the amount of refrigerant and increasing the efficiency of ice-making and de-icing.
 (1)一実施形態に係る流下液膜式チューブアイス製氷機は、
 ケーシングと、
 前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、
 前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、
を備え、
 前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダからの前記冷媒の供給を受けるように構成される。
 ここで、「鉛直方向に沿って延在する」とは、伝熱管表面の液膜が確保される角度以内の傾きをもって延在することを含むものとする。
(1) A falling liquid film tube ice maker according to one embodiment is
A casing,
A plurality of heat transfer tubes extending along the vertical direction inside the casing,
A header for storing the refrigerant, which is provided in a region where the upper end of the heat transfer tube is disposed in the internal space of the casing,
Equipped with
The heat transfer tube is configured to receive the supply of the refrigerant from the header so that a liquid film of the refrigerant is formed on an outer surface of the heat transfer tube.
Here, “extending along the vertical direction” includes extending with an inclination within an angle at which the liquid film on the surface of the heat transfer tube is secured.
 製氷工程において、冷媒液は伝熱管外面で流下液膜を形成し、伝熱管内側の製氷用水との熱交換で蒸発する。液膜は薄膜で滞留が無いので、蒸発の抵抗が少なく効率良く熱交換が行われる。このように、冷媒液膜と伝熱管の内側を流下する製氷用水とを熱交換させるため、満液式と比べて冷媒量を大幅に低減できる。また、冷媒液膜が伝熱管外面に沿って流下するため、スプレーなどを用いて冷媒液を伝熱管の外面に吹き付ける方式などと比べて均一な液膜を形成できる。また、薄膜による蒸発熱伝達であるため、低熱流束でも高熱伝達率が得られ、満液式と比べて製氷時間を大幅に短縮できる。また、冷媒が伝熱管外面に沿って流下するため、鉛直方向で蒸発温度が一定となり、鉛直方向で氷厚にムラができない。さらに、脱氷工程においては、ケーシング内に保有する冷媒液が少ないため、脱氷用のホットガスの注入により短時間で冷媒液は氷の融点以上の飽和温度に達することができ、ホットガスが凝縮して伝熱管外面の鉛直方向に沿って流下するので凝縮液の滞留が無く、ホットガスの凝縮熱が効率良く氷側に伝わるので、脱氷時間を短縮できる。従って、製氷能力を向上できると共に、ケーシング内に貯留される冷媒液量が少ないため、ケーシング内の冷媒液がミストとして圧縮機へ戻るのを防止できる。 In the ice making process, the refrigerant liquid forms a falling liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water inside the heat transfer tube. Since the liquid film is a thin film and has no retention, the resistance to evaporation is small and the heat exchange is efficiently performed. In this way, the refrigerant liquid film and the ice-making water flowing down the inside of the heat transfer tube are heat-exchanged, so that the amount of the refrigerant can be significantly reduced as compared with the full liquid type. Further, since the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed as compared with a method of spraying the refrigerant liquid on the outer surface of the heat transfer tube using a spray or the like. Further, since the evaporation heat transfer is performed by a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be greatly shortened as compared with the full liquid type. Further, since the refrigerant flows down along the outer surface of the heat transfer tube, the evaporation temperature becomes constant in the vertical direction, and the ice thickness cannot be uneven in the vertical direction. Further, in the de-icing step, since the refrigerant liquid retained in the casing is small, the refrigerant liquid can reach the saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot gas for de-icing, and the hot gas is Since it condenses and flows down along the vertical direction of the outer surface of the heat transfer tube, there is no retention of the condensate, and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved, and since the amount of the refrigerant liquid stored in the casing is small, it is possible to prevent the refrigerant liquid in the casing from returning to the compressor as mist.
 (2)一実施形態では、前記(1)の構成において、
 前記伝熱管の上端が固定される管板と、
 前記管板の上方に形成された上部製氷用水貯留部と、
 を備え、
 前記ヘッダは、前記管板の下方に形成される。
 上記(2)の構成によれば、上記管板を境に管板の上方に上部製氷用水貯留部を配置し、管板の下方に冷媒貯留ヘッダを配置したので、伝熱管内側への製氷用水の供給と伝熱管外面への冷媒液膜の形成のための構成をコンパクト化できる。
(2) In one embodiment, in the configuration of (1) above,
A tube plate to which the upper end of the heat transfer tube is fixed;
An upper ice-making water storage portion formed above the tube sheet,
Equipped with
The header is formed below the tube sheet.
According to the configuration of (2) above, the upper ice making water storage part is arranged above the tube sheet and the refrigerant storage header is arranged below the tube sheet with the tube sheet as a boundary, so that the ice making water inside the heat transfer tube is arranged. It is possible to make the structure for supplying the refrigerant and forming the refrigerant liquid film on the outer surface of the heat transfer tube compact.
 (3)一実施形態では、前記(1)又は(2)の構成において、
 前記冷媒の入口が前記ケーシングの下部に前記内部空間に連通するように設けられ、
 前記内部空間の下部に貯留した冷媒液を前記ヘッダに戻すための冷媒循環路を備える。
 上記(3)の構成によれば、冷媒入口がケーシングの下部に設けられるため、ケーシング内に供給される冷媒液が伝熱管外面に形成された冷媒液膜を破断させないため、該冷媒液膜と伝熱管内面の製氷用水との熱伝達率を高く維持できる。
(3) In one embodiment, in the configuration of (1) or (2) above,
An inlet for the refrigerant is provided at a lower portion of the casing so as to communicate with the internal space,
A refrigerant circulation path for returning the refrigerant liquid stored in the lower portion of the internal space to the header is provided.
According to the above configuration (3), since the refrigerant inlet is provided in the lower portion of the casing, the refrigerant liquid supplied into the casing does not break the refrigerant liquid film formed on the outer surface of the heat transfer tube. It is possible to maintain a high heat transfer coefficient with the ice making water on the inner surface of the heat transfer tube.
 (4)一実施形態では、前記(1)~(3)の何れかの構成において、
 前記冷媒の出口が前記ケーシングの上部に前記内部空間に連通するように設けられる。
 上記(4)の構成によれば、冷媒出口がケーシングの上部にあり、該内部空間の下部に溜まる冷媒液から離れた位置にあるため、冷媒出口から冷媒ガスのみを排出できる。これによって、冷凍機を構成する圧縮機への液バックを防止できる。
(4) In one embodiment, in any one of the configurations (1) to (3) above,
An outlet for the refrigerant is provided in an upper portion of the casing so as to communicate with the internal space.
According to the above configuration (4), since the refrigerant outlet is located at the upper part of the casing and is located away from the refrigerant liquid accumulated in the lower part of the internal space, only the refrigerant gas can be discharged from the refrigerant outlet. As a result, it is possible to prevent liquid backing to the compressor that constitutes the refrigerator.
 (5)一実施形態では、前記(1)~(4)の何れかの構成において、
 前記内部空間の下部に内部空間高さの1/10以下の液位を有する前記冷媒が貯留される。
 上記(5)の構成によれば、ケーシングの内部空間に内部空間高さの1/10以下の液位を有する冷媒液が貯留されるように運転されるため、少ない冷媒量で製氷が可能になる。また、冷媒液の液位を内部空間高さの1/10以下とすることで、該内部空間の上部にある冷媒出口から冷媒液面を遠ざけることができるため、冷媒出口に至る冷媒に冷媒液が混入しない。従って、圧縮機への液バックを防止できると共に、冷媒を供給する冷凍機において、冷媒出口から圧縮機に至る間に気液を分離するアキュームレータや冷媒液をガス化するための液ガス熱交換器の配置が不要となる。
(5) In one embodiment, in any one of the configurations (1) to (4) above,
The refrigerant having a liquid level of 1/10 or less of the height of the internal space is stored in the lower part of the internal space.
According to the configuration of (5), since the refrigerant liquid having a liquid level of 1/10 or less of the internal space height is stored in the internal space of the casing, it is possible to make ice with a small amount of the refrigerant. Become. In addition, by setting the liquid level of the refrigerant liquid to 1/10 or less of the height of the internal space, the refrigerant liquid surface can be moved away from the refrigerant outlet in the upper part of the internal space, so that the refrigerant liquid reaches the refrigerant outlet. Does not mix. Therefore, in addition to being able to prevent liquid back to the compressor, in a refrigerator that supplies a refrigerant, an accumulator that separates gas-liquid from the refrigerant outlet to the compressor, and a liquid-gas heat exchanger for gasifying the refrigerant liquid. Is unnecessary.
 (6)一実施形態では、前記(1)~(5)の何れかの構成において、
 前記ケーシングの下部に前記内部空間に連通するように形成されたホットガス入口と、
 前記ケーシングの上部に前記内部空間に連通するように形成されたホットガス出口と、
を備える。
 脱氷工程において、伝熱管内面に形成されたチューブアイスを脱氷するためにケーシングの内部空間に上記ホットガス入口からホットガスが供給される。上記(6)の構成によれば、ホットガス入口がケーシングの下部に形成されるため、ホットガスはケーシングの内部空間の下部に溜まった冷媒液中に供給され、冷媒液を激しく攪拌する。これによって、チューブアイスとの熱伝達率を高め、脱氷時間を短縮できる。また、冷媒液面の上方の気相部では伝熱管の外面はホットガスの飽和蒸気に晒される。そのため、伝熱管の外面はホットガスが凝縮しながら流下する凝縮熱伝達となり、従来の満液式製氷機の脱氷工程の2倍程度の熱通過率が得られ、これによって、脱氷時間を短縮できる。
(6) In one embodiment, in any of the configurations (1) to (5) above,
A hot gas inlet formed in the lower portion of the casing to communicate with the internal space;
A hot gas outlet formed so as to communicate with the internal space in the upper portion of the casing;
Equipped with.
In the de-icing step, hot gas is supplied from the hot gas inlet to the internal space of the casing in order to de-ice the tube ice formed on the inner surface of the heat transfer tube. According to the above configuration (6), since the hot gas inlet is formed in the lower part of the casing, the hot gas is supplied into the refrigerant liquid accumulated in the lower part of the inner space of the casing, and the refrigerant liquid is vigorously stirred. As a result, the heat transfer coefficient with the tube ice can be increased and the deicing time can be shortened. Further, in the vapor phase portion above the liquid surface of the refrigerant, the outer surface of the heat transfer tube is exposed to saturated vapor of hot gas. Therefore, the outer surface of the heat transfer tube is condensed heat transfer in which hot gas flows down while condensing, and the heat transfer rate about twice that of the deicing process of the conventional full-fill type ice maker can be obtained. Can be shortened.
 (7)一実施形態では、前記(1)~(6)の何れかの構成において、
 前記複数の伝熱管の下方に設けられ、脱氷時に前記伝熱管の内面から自重で滑り落ちるチューブアイスを切断するためのカッタを備える。
 上記(7)の構成によれば、上記カッタを備えるために、脱氷工程において、伝熱管の内面から自重で滑り落ちるチューブアイスを適宜長さに裁断して利用先に供給できる。
(7) In one embodiment, in any one of the configurations (1) to (6) above,
A cutter is provided below the plurality of heat transfer tubes for cutting the tube ice that slides down from the inner surface of the heat transfer tubes under its own weight during deicing.
According to the configuration of (7), since the cutter is provided, in the deicing step, the tube ice that slides off from the inner surface of the heat transfer tube by its own weight can be cut into an appropriate length and supplied to the destination.
 (8)一実施形態では、前記(2)の構成において、
 前記複数の伝熱管の下方に設けられた下部製氷用水貯留部と、
 前記下部製氷用水貯留部と前記上部製氷用水貯留部とを結ぶ水循環路と、
 前記水循環路に設けられ、前記下部製氷用水貯留部に溜まった製氷用水を前記上部製氷用水貯留部に循環するための水循環ポンプと、
 前記下部製氷用水貯留部に溜まった前記製氷用水の液面レベルを検出するレベルセンサと、
 前記レベルセンサの検出値に基づいて前記水循環ポンプの作動を制御する制御部と、
を備える。
 上記(8)の構成によれば、製氷工程において、下部製氷用水貯留部に溜まった製氷用水の液面レベルを所望のレベルに制御できるので、製氷工程を円滑に行うことができる。
(8) In one embodiment, in the configuration of (2) above,
A lower ice making water storage portion provided below the plurality of heat transfer tubes,
A water circulation path connecting the lower ice making water storage part and the upper ice making water storage part,
A water circulation pump provided in the water circulation path for circulating the ice making water accumulated in the lower ice making water storage portion to the upper ice making water storage portion,
A level sensor for detecting a liquid level of the ice making water accumulated in the lower ice making water storage part;
A control unit for controlling the operation of the water circulation pump based on the detection value of the level sensor;
Equipped with.
According to the configuration of (8), since the liquid level of the ice making water accumulated in the lower ice making water storage portion can be controlled to a desired level in the ice making process, the ice making process can be smoothly performed.
 (9)一実施形態では、前記(1)~(8)の何れかの構成において、
 前記ヘッダに供給される前記冷媒を生成するための冷凍機を備え、
 前記冷凍機は、
 冷媒回路と、
 前記冷媒回路に設けられ、圧縮機、凝縮器、レシーバ及び膨張弁を含む冷凍サイクル構成機器と、
を備え、
 前記膨張弁を経て減圧された前記冷媒が前記ケーシングに供給されるように構成される。
 上記(9)の構成によれば、上記冷凍機を備えることで、製氷機の冷熱源としての冷媒を製氷機に供給できる。
(9) In one embodiment, in any one of the configurations (1) to (8) above,
A refrigerator for generating the refrigerant supplied to the header,
The refrigerator is
A refrigerant circuit,
A refrigeration cycle constituent device that is provided in the refrigerant circuit and includes a compressor, a condenser, a receiver, and an expansion valve,
Equipped with
The refrigerant is decompressed via the expansion valve and is supplied to the casing.
According to the configuration of (9) above, by including the refrigerator, the refrigerant as the cold heat source of the ice making machine can be supplied to the ice making machine.
 (10)一実施形態では、前記(9)の構成において、
 前記レシーバの気相部と前記内部空間とに連通するホットガス供給路を備える。
 上記(10)の構成によれば、上記ホットガス供給路を備えることで、脱氷工程においてホットガス(0℃を超える温度の冷媒ガス)をケーシングの内部空間に供給できる。また、上記ホットガス供給路を介してレシーバの気相部からホットガスを供給するとき、ホットガスの供給に伴ってレシーバ内が減圧され、レシーバ内の減圧に伴ってレシーバ内の冷媒液が気化するので、新たに気化した冷媒ガスによりホットガスを補充できる。
(10) In one embodiment, in the configuration of (9) above,
A hot gas supply path communicating with the gas phase portion of the receiver and the internal space is provided.
According to the configuration of (10) above, by providing the hot gas supply passage, hot gas (refrigerant gas having a temperature higher than 0° C.) can be supplied to the internal space of the casing in the deicing process. Further, when hot gas is supplied from the vapor phase part of the receiver through the hot gas supply passage, the inside of the receiver is decompressed due to the supply of hot gas, and the refrigerant liquid inside the receiver is vaporized due to the decompression inside the receiver. Therefore, the hot gas can be replenished with the newly vaporized refrigerant gas.
 (11)一実施形態では、前記(1)~(10)の何れかの構成において、
 前記冷媒は、自然冷媒、HFC冷媒又はHFO冷媒である。
 上記(11)の構成によれば、上記冷媒のうち例えばNHは大きな表面張力を有している。この表面張力により伝熱管周方向で均一な冷媒液膜を形成できる。これによって、製氷用水との熱伝達量を向上できる。
(11) In one embodiment, in any one of the configurations (1) to (10) above,
The refrigerant is a natural refrigerant, an HFC refrigerant or an HFO refrigerant.
According to the above configuration (11), for example, NH 3 among the refrigerants has a large surface tension. Due to this surface tension, a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transferred to the ice making water can be improved.
 幾つかの実施形態によれば、流下液膜式チューブアイス製氷機において、冷媒量を低減でき、低コスト化できると共に、製氷及び脱氷の高効率化が可能になり、製氷能力を向上できる。また、伝熱管の延在方向で氷厚にムラができず、かつ冷媒を供給する冷凍機の圧縮機への液バックを抑制できる。 According to some embodiments, in the falling film tube ice maker, the amount of refrigerant can be reduced, the cost can be reduced, and the efficiency of ice making and de-iceing can be improved, and the ice making capacity can be improved. Further, it is possible to prevent the thickness of ice from being uneven in the extending direction of the heat transfer tube, and it is possible to suppress liquid back to the compressor of the refrigerator that supplies the refrigerant.
一実施形態に係る製氷機の縦断面図である。It is a longitudinal cross-sectional view of the ice maker according to an embodiment. 一実施形態に係る冷凍機の製氷時を示す系統図である。It is a system diagram which shows the time of ice making of the refrigerator which concerns on one Embodiment. 一実施形態に係る冷凍機の脱氷時を示す系統図である。It is a system diagram which shows the time of de-icing of the refrigerator which concerns on one Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.
For example, the expression "relative or absolute" such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" is strict. In addition to representing such an arrangement, it also represents a state of relative displacement or a relative displacement with an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous" that indicate that they are in the same state are not limited to strict equality, but also include tolerances or differences in the degree to which the same function is obtained. It also represents the existing state.
For example, the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained. The shape including parts and the like is also shown.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
 図1は、一実施形態に係る流下液膜式チューブアイス製氷機10の縦断面図である。製氷機10は、ケーシング12の内部に複数の伝熱管14を備え、伝熱管14は鉛直方向に沿って延在する。ケーシング12の内部空間S(伝熱管14の外側空間)のうち伝熱管14の上端部が配置された領域に冷媒液を貯留するための冷媒ヘッダ16が設けられる。そして、冷媒ヘッダ16から供給される冷媒液によって伝熱管14の外面に冷媒液膜が形成されるように構成されている。伝熱管14の外面に形成された冷媒液膜は、伝熱管外面を伝って下方に流下する。
 伝熱管14の上端開口から伝熱管14の内側に製氷用水Wiが供給され、この製氷用水Wiは伝熱管14の外面に形成された冷媒液膜によって冷却され、伝熱管14の内面に円筒形状のチューブアイスTiを形成する。
FIG. 1 is a vertical cross-sectional view of a falling liquid film tube ice maker 10 according to an embodiment. The ice maker 10 includes a plurality of heat transfer tubes 14 inside the casing 12, and the heat transfer tubes 14 extend in the vertical direction. A refrigerant header 16 for storing the refrigerant liquid is provided in an area of the inner space S 0 (outer space of the heat transfer tube 14) of the casing 12 where the upper end of the heat transfer tube 14 is arranged. The refrigerant liquid supplied from the refrigerant header 16 forms a refrigerant liquid film on the outer surface of the heat transfer tube 14. The refrigerant liquid film formed on the outer surface of the heat transfer tube 14 flows down along the outer surface of the heat transfer tube.
Ice-making water Wi is supplied from the upper end opening of the heat-transfer tube 14 to the inside of the heat-transfer tube 14, and the ice-making water Wi is cooled by a refrigerant liquid film formed on the outer surface of the heat-transfer tube 14 to form a cylindrical shape on the inner surface of the heat-transfer tube 14. Tube ice Ti is formed.
 なお、ここで言う「冷媒」とは、相変化して伝熱管14の内面を伝って流下する製氷用水Wiを蒸発潜熱により冷却し、製氷するものである。 The term "refrigerant" used here means that ice-making water Wi that changes its phase and flows down the inner surface of the heat transfer tube 14 is cooled by evaporation latent heat to make ice.
 チューブアイスTiが所定の厚さになるまで、伝熱管外面への冷媒液膜の形成及び伝熱管内側への製氷用水Wiの供給は連続して行われる。チューブアイスTiが所定の厚さになったとき、製氷工程から脱氷工程に切り替わる。脱氷工程では、ホットガス(0℃を超える冷媒ガス)がケーシング12の内部空間Sに供給され、ホットガスから伝熱管14に伝わる熱によりチューブアイスTiは伝熱管14の内面から剥離し、自重によって下方へ滑り落ちる。 The formation of the refrigerant liquid film on the outer surface of the heat transfer tube and the supply of the ice-making water Wi to the inner side of the heat transfer tube are continuously performed until the tube ice Ti has a predetermined thickness. When the tube ice Ti reaches a predetermined thickness, the ice making process is switched to the deicing process. In the de-icing step, hot gas (refrigerant gas exceeding 0° C.) is supplied to the internal space S 0 of the casing 12, and the tube ice Ti is separated from the inner surface of the heat transfer tube 14 due to the heat transferred from the hot gas to the heat transfer tube 14. It slides down due to its own weight.
 上記構成によれば、製氷工程において、冷媒液は伝熱管外面で流下液膜を形成し、伝熱管内側の製氷用水Wiとの熱交換で蒸発する。液膜は薄膜で滞留が無いので、蒸発の抵抗が少なく効率良く熱交換が行われる。このように、冷媒液膜と伝熱管内側の製氷用水Wiとを熱交換させるため、ケーシング12の内部に冷媒液を貯留する満液式熱交換器と比べて、冷媒量を大幅に低減できる。また、冷媒液膜が伝熱管外面に沿って流下するため、スプレーなどを用いて冷媒液を伝熱管に吹き付ける方式と比べて伝熱管14の外周面に均一な液膜を形成でき、これによって、熱伝達率を向上できる。また、相変化する冷媒の場合には薄膜による蒸発熱伝達であるため、低熱流束でも高熱伝達率が得られ、満液式と比べて製氷時間を大幅に短縮できる。また、冷媒が伝熱管外面に沿って流下するため、鉛直方向で蒸発温度が一定となり、従って、鉛直方向で氷厚にムラができない。さらに、脱氷工程において、ケーシング12内に保有する冷媒液が少ないため、脱氷用のホットガスの注入により短時間で冷媒液は氷の融点以上の飽和温度に達することができ、かつホットガスが凝縮して伝熱管外面の鉛直方向に沿って流下するので凝縮液の滞留が無く、ホットガスの凝縮熱が効率良く氷側に伝わるので、脱氷時間を短縮できる。従って、製氷能力を向上できると共に、後述するように、製氷機10に冷媒を供給する冷凍機60を構成する圧縮機64(図2及び図3参照)への液バックを抑制できる。 According to the above configuration, in the ice making process, the refrigerant liquid forms a falling liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water Wi inside the heat transfer tube. Since the liquid film is a thin film and has no retention, the resistance to evaporation is small and the heat exchange is efficiently performed. In this way, the refrigerant liquid film and the ice-making water Wi inside the heat transfer tube are heat-exchanged, so that the amount of the refrigerant can be significantly reduced as compared with the liquid-filled heat exchanger that stores the refrigerant liquid inside the casing 12. Further, since the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed on the outer peripheral surface of the heat transfer tube 14 as compared with a method of spraying the refrigerant liquid on the heat transfer tube by using a spray or the like. The heat transfer coefficient can be improved. Further, in the case of a refrigerant that changes phase, since the evaporation heat transfer is a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be greatly shortened as compared with the full liquid type. Further, since the refrigerant flows down along the outer surface of the heat transfer tube, the evaporation temperature becomes constant in the vertical direction, so that the ice thickness cannot be uneven in the vertical direction. Further, in the deicing step, since the refrigerant liquid retained in the casing 12 is small, the refrigerant liquid can reach the saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot ice for deicing, and Is condensed and flows down along the vertical direction of the outer surface of the heat transfer tube, so that the condensate is not retained and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved, and liquid back to the compressor 64 (see FIGS. 2 and 3) that constitutes the refrigerator 60 that supplies the refrigerant to the ice making machine 10 can be suppressed, as will be described later.
 一実施形態では、図2及び図3に示すように、冷凍機60を備える。冷凍機60は、冷媒が循環する冷媒回路62に圧縮機64、凝縮器66、レシーバ68及び膨張弁70を含む冷凍サイクル構成機器を備える。
 図2は製氷工程を示し、図3は脱氷工程を示す。製氷工程において、圧縮機64から吐出された冷媒ガスは、凝縮器66で冷却されて冷媒液となり、レシーバ68に送られる。この冷媒液rはレシーバ68に貯留され、冷媒液rは膨張弁70を経て減圧され、製氷機10のケーシング12に供給される。
 この実施形態によれば、冷凍機60を備えることで、製氷機10の冷熱源としての冷媒を製氷機10に供給できる。
In one embodiment, as shown in FIGS. 2 and 3, a refrigerator 60 is provided. The refrigerator 60 includes a refrigerating cycle constituent device including a compressor 64, a condenser 66, a receiver 68, and an expansion valve 70 in a refrigerant circuit 62 in which a refrigerant circulates.
2 shows an ice making step, and FIG. 3 shows a deicing step. In the ice making process, the refrigerant gas discharged from the compressor 64 is cooled by the condenser 66 and becomes a refrigerant liquid, which is sent to the receiver 68. The refrigerant liquid r is stored in the receiver 68, the refrigerant liquid r is decompressed via the expansion valve 70, and is supplied to the casing 12 of the ice maker 10.
According to this embodiment, by including the refrigerator 60, the refrigerant as the cold heat source of the ice making machine 10 can be supplied to the ice making machine 10.
 一実施形態では、図1に示すように、ケーシング12の上部に管板18が設けられ、管板18に伝熱管14の上端が固定される。管板18の上方には上部製氷用水貯留部20が設けられ、管板18の下方に冷媒ヘッダ16が設けられる。このように、管板18を境に管板18の上方に上部製氷用水貯留部20を配置し、管板18の下方に冷媒ヘッダ16を配置する。
 一実施形態では、上部製氷用水貯留部20は内部に製氷用水Wiを貯留可能な中空容器で構成され、底面は管板18によって構成され、該底面に伝熱管14の上端が開口している。また、冷媒ヘッダ16の底面は水平方向に沿って配置された底壁18aで構成され、底壁18aと伝熱管14の外周面との間に冷媒液膜を流下させるための環状隙間(不図示)が形成される。また、冷媒ヘッダ16の上面は管板18で構成される。
In one embodiment, as shown in FIG. 1, a tube sheet 18 is provided on the upper part of the casing 12, and the upper end of the heat transfer tube 14 is fixed to the tube sheet 18. An upper ice making water storage portion 20 is provided above the tube sheet 18, and a refrigerant header 16 is provided below the tube sheet 18. Thus, the upper ice-making water storage section 20 is arranged above the tube sheet 18 with the tube sheet 18 as a boundary, and the refrigerant header 16 is arranged below the tube sheet 18.
In one embodiment, the upper ice-making water storage unit 20 is formed of a hollow container capable of storing the ice-making water Wi, the bottom surface is formed of the tube plate 18, and the upper end of the heat transfer tube 14 is opened at the bottom surface. Further, the bottom surface of the refrigerant header 16 is composed of a bottom wall 18a arranged along the horizontal direction, and an annular gap (not shown) for allowing the refrigerant liquid film to flow down between the bottom wall 18a and the outer peripheral surface of the heat transfer tube 14. ) Is formed. Further, the upper surface of the refrigerant header 16 is composed of the tube plate 18.
 一実施形態では、図1に示すように、冷媒入口管22が下部内部空間Sに連通するようにケーシング12の下部に設けられ、内部空間Sの下部に貯留した冷媒液rを冷媒ヘッダ16に戻すための冷媒循環管24を備える。冷媒液rが冷媒入口管22から内部空間Sに供給され、内部空間Sの下部に貯留した冷媒液rは、冷媒循環管24に設けられた冷媒循環ポンプ26によって冷媒ヘッダ16に送られる。このように、冷媒循環管24を通して冷媒を循環させることで、チューブアイスTiを所定の厚さに形成できる。
 この実施形態によれば、冷媒入口管22が内部空間Sの下部に設けられるため、内部空間Sに供給される冷媒液rが伝熱管外面に形成された冷媒液膜を破断させない。従って、該冷媒液膜と伝熱管内面の製氷用水Wiとの熱伝達率を高く維持できる。
In one embodiment, as shown in FIG. 1, is provided in the lower portion of the casing 12 as the refrigerant inlet pipe 22 communicates with the lower interior space S 0, the refrigerant header refrigerant liquid r which stores the bottom of the inner space S 0 A refrigerant circulation pipe 24 for returning to 16 is provided. The coolant liquid r is supplied from the coolant inlet pipe 22 to the internal space S 0 , and the coolant liquid r stored in the lower portion of the internal space S 0 is sent to the coolant header 16 by the coolant circulation pump 26 provided in the coolant circulation pipe 24. .. In this way, by circulating the refrigerant through the refrigerant circulation pipe 24, the tube ice Ti can be formed to have a predetermined thickness.
According to this embodiment, the refrigerant inlet pipe 22 because it is provided in the lower portion of the internal space S 0, refrigerant liquid r supplied to the internal space S 0 is not broken refrigerant liquid film formed on the heat transfer tube outer surface. Therefore, the heat transfer coefficient between the refrigerant liquid film and the ice-making water Wi on the inner surface of the heat transfer tube can be kept high.
 一実施形態では、ケーシング12の下部に内部空間Sに連通するように冷媒出口管28が設けられ、ケーシング12の上部には冷媒ヘッダ16に連通するように冷媒入口管30が設けられる。ケーシング12の下部で内部空間Sに貯留した冷媒液rは、冷媒循環ポンプ26によって冷媒出口管28から冷媒循環管24を介し冷媒入口管30から冷媒ヘッダ16に送られる。 In one embodiment, a refrigerant outlet pipe 28 is provided in the lower portion of the casing 12 so as to communicate with the internal space S 0 , and a refrigerant inlet pipe 30 is provided in the upper portion of the casing 12 so as to communicate with the refrigerant header 16. The refrigerant liquid r stored in the internal space S 0 in the lower part of the casing 12 is sent from the refrigerant outlet pipe 28 to the refrigerant inlet pipe 30 to the refrigerant header 16 by the refrigerant circulation pump 26 from the refrigerant outlet pipe 28.
 一実施形態では、製氷用水Wiとの熱交換で気化した冷媒ガスが排出される冷媒出口管32がケーシング12の上部に内部空間Sに連通するように設けられる。この実施形態によれば、冷媒出口管32が内部空間Sの上部にあり、内部空間Sの下部に溜まる冷媒液rから離れた位置にあり、伝熱管14に沿って冷媒液は液膜を形成するため、冷媒出口管32から冷媒ガスのみを排出できる。これによって、圧縮機64への液バックを防止できる。 In one embodiment, the refrigerant outlet pipe 32 from which the refrigerant gas vaporized by heat exchange with the ice-making water Wi is discharged is provided in the upper portion of the casing 12 so as to communicate with the internal space S 0 . According to this embodiment, the refrigerant outlet pipe 32 is located at the top of the inner space S 0, is in a position away from the refrigerant liquid r accumulated in the lower portion of the internal space S 0, refrigerant liquid along the heat transfer tube 14 is liquid film Therefore, only the refrigerant gas can be discharged from the refrigerant outlet pipe 32. As a result, liquid back to the compressor 64 can be prevented.
 一実施形態では、製氷工程において、冷媒液の液位が内部空間Sの垂直方向(高さ)の1/10程度の液位(図1中のH)を形成するように運転する。これによって、少ない冷媒量で製氷が可能になる。また、冷媒液の液位Hを垂直方向(高さ)の1/10程度とすることで、内部空間Sの上部にある冷媒入口管22から冷媒液面を遠ざけることができるため、冷媒入口管22から排出される冷媒に冷媒液が混入しない。従って、圧縮機64への液バックを防止できると共に、冷媒を供給する冷凍機60において、冷媒出口管32から圧縮機64に至る冷媒回路62に、気液を分離するアキュームレータや冷媒液をガス化させる液ガス熱交換器の配置が不要となる。
 一実施形態では、ケーシング12の下部に管板36が設けられ、内部空間Sは、管板36を底面として、冷媒液rを貯留可能になっている。
In one embodiment, in the ice making step, the operation is performed such that the liquid level of the refrigerant liquid forms a liquid level (H in FIG. 1) of about 1/10 of the vertical direction (height) of the internal space S 0 . This enables ice making with a small amount of refrigerant. Further, by setting the liquid level H of the refrigerant liquid to about 1/10 of the vertical direction (height), the refrigerant liquid surface can be kept away from the refrigerant inlet pipe 22 in the upper part of the internal space S 0 , so that the refrigerant inlet The refrigerant liquid does not mix with the refrigerant discharged from the pipe 22. Therefore, liquid back to the compressor 64 can be prevented, and in the refrigerator 60 that supplies the refrigerant, the accumulator that separates gas and liquid and the refrigerant liquid are gasified in the refrigerant circuit 62 that leads from the refrigerant outlet pipe 32 to the compressor 64. It is not necessary to dispose a liquid gas heat exchanger.
In one embodiment, the tube plate 36 is provided in the lower portion of the casing 12, and the internal space S 0 can store the refrigerant liquid r with the tube plate 36 as the bottom surface.
 一実施形態では、内部空間Sの下部に形成されたホットガス入口管34と、内部空間Sの上部に形成されたホットガス出口管32と、を備える。脱氷工程において、伝熱管内面に形成されたチューブアイスTiを脱氷するために、冷凍機60から内部空間Sにホットガスが供給される。
 この実施形態によれば、ホットガス入口管34が内部空間Sの下部に形成されるため、ホットガスは内部空間Sの下部に溜まった冷媒液中に供給され、冷媒液を激しく攪拌する。これによって、該冷媒液とチューブアイスTiとの熱伝達率を高め、脱氷時間を短縮できる。また、冷媒液面の上方の気相部では、伝熱管14の外面はホットガスの飽和蒸気に晒される。そのため、伝熱管14の外面はホットガスが凝縮しながら流下する凝縮熱伝達となり、従来の満液式製氷機の脱氷工程の2倍程度の熱通過率が得られるため、脱氷時間を短縮できる。
 図1に示す実施形態では、ホットガス出口管32は冷媒出口管と兼用される。
In one embodiment is provided with a hot gas inlet pipe 34 formed in the lower portion of the internal space S 0, and the hot gas outlet pipe 32 formed in the upper portion of the internal space S 0, the. In the deicing step, hot gas is supplied from the refrigerator 60 to the internal space S 0 in order to deice the tube ice Ti formed on the inner surface of the heat transfer tube.
According to this embodiment, since the hot gas inlet pipe 34 is formed in the lower portion of the internal space S 0 , the hot gas is supplied into the refrigerant liquid accumulated in the lower portion of the internal space S 0 and vigorously agitates the refrigerant liquid. .. As a result, the heat transfer coefficient between the refrigerant liquid and the tube ice Ti can be increased, and the deicing time can be shortened. Further, in the vapor phase portion above the liquid surface of the refrigerant, the outer surface of the heat transfer tube 14 is exposed to saturated vapor of hot gas. Therefore, the outer surface of the heat transfer tube 14 is condensed heat transfer in which hot gas flows while condensing, and a heat passage rate that is about twice that of the deicing process of the conventional full-fill type ice maker can be obtained, so that the deicing time is shortened. it can.
In the embodiment shown in FIG. 1, the hot gas outlet pipe 32 is also used as the refrigerant outlet pipe.
 一実施形態では、図1に示すように、複数の伝熱管14の下方にカッタ38を備える。脱氷工程において、伝熱管14の内面から自重で滑り落ちるチューブアイスTiを適宜長さに裁断して利用先に供給できる。
 一実施形態では、カッタ38は複数の伝熱管14の下方に設けられた下部製氷用水貯留部42の内部に設けられる。下部製氷用水貯留部42は中空容器で構成され、内部に製氷用水Wiを貯留可能になっている。
 一実施形態では、カッタ38は回転軸38aを中心に回転可能に構成され、駆動部(例えばモータ)40によって回転される。脱氷時に伝熱管14から滑り落ちるチューブアイスTiの落下速度に合わせて、駆動部40によるカッタ38の回転速度を適宜制御することで、裁断されるチューブアイスTiの長さを調整できる。
In one embodiment, as shown in FIG. 1, a cutter 38 is provided below the plurality of heat transfer tubes 14. In the de-icing step, the tube ice Ti that slides off from the inner surface of the heat transfer tube 14 by its own weight can be cut into an appropriate length and supplied to the user.
In one embodiment, the cutter 38 is provided inside the lower ice making water storage portion 42 provided below the plurality of heat transfer tubes 14. The lower ice making water storage part 42 is formed of a hollow container, and is capable of storing ice making water Wi therein.
In one embodiment, the cutter 38 is configured to be rotatable about a rotation shaft 38a and is rotated by a driving unit (for example, a motor) 40. The length of the tube ice Ti to be cut can be adjusted by appropriately controlling the rotation speed of the cutter 38 by the drive unit 40 in accordance with the falling speed of the tube ice Ti sliding off the heat transfer tube 14 during de-icing.
 一実施形態では、図1に示すように、下部製氷用水貯留部42と上部製氷用水貯留部20とを結ぶ水循環管44を備え、水循環管44には、下部製氷用水貯留部42に溜まった製氷用水Wiを上部製氷用水貯留部20に循環するための水循環ポンプ46が設けられている。また、下部製氷用水貯留部42に溜まった製氷用水Wiの液面レベルを検出するレベルセンサ48が設けられ、制御部50は、レベルセンサ48の検出値に基づいて水循環ポンプ46の作動を制御する。
 この実施形態によれば、製氷工程において、伝熱管14の内部に供給される製氷用水Wiを水循環管44を介して伝熱管14に循環させることで、チューブアイスTiを所定の厚さに形成できる。また、下部製氷用水貯留部42に溜まった製氷用水Wiの液面レベルを所望のレベルに制御できるので、製氷工程を円滑に行うことができる。
 一実施形態では、上部製氷用水貯留部20及び下部製氷用水貯留部42の製氷用水Wiが不足してきたら、上部製氷用水貯留部20又は下部製氷用水貯留部42に補給水を注入可能な構成とする。製氷工程でチューブアイスTi製造が完了した後に、製氷用水Wiの循環を停止する。
In one embodiment, as shown in FIG. 1, a water circulation pipe 44 that connects the lower ice making water storage part 42 and the upper ice making water storage part 20 is provided, and the water circulation pipe 44 has the ice making water accumulated in the lower ice making water storage part 42. A water circulation pump 46 for circulating the water Wi to the upper ice-making water storage portion 20 is provided. Further, a level sensor 48 for detecting the liquid surface level of the ice making water Wi accumulated in the lower ice making water storage portion 42 is provided, and the control portion 50 controls the operation of the water circulation pump 46 based on the detection value of the level sensor 48. ..
According to this embodiment, in the ice making step, the ice making water Wi supplied to the inside of the heat transfer tube 14 is circulated to the heat transfer tube 14 via the water circulation tube 44, whereby the tube ice Ti can be formed to a predetermined thickness. .. Further, since the liquid surface level of the ice making water Wi accumulated in the lower ice making water storage portion 42 can be controlled to a desired level, the ice making process can be smoothly performed.
In one embodiment, when the ice making water Wi in the upper ice making water storage part 20 and the lower ice making water storage part 42 becomes insufficient, makeup water can be injected into the upper ice making water storage part 20 or the lower ice making water storage part 42. .. After the tube ice Ti production is completed in the ice making step, the circulation of the ice making water Wi is stopped.
 一実施形態では、下部製氷用水貯留部42の内部にメッシュ状の開口を有する底板52を備える。下部製氷用水貯留部42の内部空間は、底板52によって、チューブアイスTiの出口開口54を含む上部領域と、水循環管44と連通する出口開口を含む下部領域とに仕切られる。これによって、カッタ38で切断されたチューブアイスTiと、脱氷工程で一部融解した水分とは底板52で分離され、チューブアイスTiのみ出口開口54から下部製氷用水貯留部42の外側へ排出できる。上記下部領域に流下した製氷用水Wiは、水循環管44を介して上部製氷用水貯留部20に戻される。 In one embodiment, a bottom plate 52 having a mesh-shaped opening is provided inside the lower ice making water storage part 42. The inner space of the lower ice making water storage portion 42 is partitioned by the bottom plate 52 into an upper region including an outlet opening 54 of the tube ice Ti and a lower region including an outlet opening communicating with the water circulation pipe 44. As a result, the tube ice Ti cut by the cutter 38 and the water partially melted in the deicing process are separated by the bottom plate 52, and only the tube ice Ti can be discharged from the outlet opening 54 to the outside of the lower ice making water reservoir 42. .. The ice-making water Wi that has flowed down to the lower region is returned to the upper ice-making water storage portion 20 via the water circulation pipe 44.
 一実施形態では、レシーバ68の気相部と内部空間Sとに連通するホットガス供給路72を備える。この実施形態によれば、ホットガス供給路72を備えることで、脱氷工程においてホットガスを内部空間Sに供給できる。この工程では凝縮器66の冷却運転は行わないため、レシーバ気相部は高温に維持されている。また、ホットガス供給路72を介してレシーバ68の気相部からホットガスを供給するとき、ホットガスの供給に伴ってレシーバ72内が減圧され、レシーバ内の減圧に伴ってレシーバ内の冷媒液が気化するので、気化した冷媒ガスによりホットガスを補充できる。 In one embodiment, the hot gas supply path 72 that communicates with the gas phase portion of the receiver 68 and the internal space S 0 is provided. According to this embodiment, by providing the hot gas supply path 72, hot gas can be supplied to the internal space S 0 in the deicing step. Since the cooling operation of the condenser 66 is not performed in this step, the receiver gas phase portion is maintained at a high temperature. Further, when hot gas is supplied from the gas phase portion of the receiver 68 via the hot gas supply path 72, the inside of the receiver 72 is decompressed as the hot gas is supplied, and the refrigerant liquid inside the receiver is decompressed as the pressure inside the receiver is reduced. Is vaporized, the hot gas can be supplemented by the vaporized refrigerant gas.
 一実施形態では、冷媒として自然冷媒(例えば、NH、CO、プロパン、イソブタン等)、HFC冷媒(例えば、R134a、R32、R404A、R410A等)、又はHFO冷媒(例えば、R1234yfなど)が用いられる。
 この実施形態によれば、上記冷媒のうち例えばNHは大きな表面張力を有する。この表面張力は冷媒液膜が伝熱管14の周方向へ回り込むように作用するので、伝熱管周方向で均一な冷媒液膜を形成できる。これによって、製氷用水Wiとの熱伝達量を向上できる。
In one embodiment, a natural refrigerant (for example, NH 3 , CO 2 , propane, isobutane, etc.), an HFC refrigerant (for example, R134a, R32, R404A, R410A, etc.), or an HFO refrigerant (for example, R1234yf) is used as the refrigerant. To be
According to this embodiment, of the refrigerants, NH 3, for example, has a large surface tension. This surface tension acts so that the refrigerant liquid film wraps around the heat transfer tube 14 in the circumferential direction, so that a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transferred to the ice making water Wi can be improved.
 幾つかの実施形態によれば、冷媒量を低減して装置をコンパクト化でき、かつ製氷及び脱氷の高効率化を可能にする流下液膜式製氷機を実現できる。 According to some embodiments, it is possible to realize a falling liquid film type ice making machine that can reduce the amount of refrigerant and can make the apparatus compact, and also can improve the efficiency of ice making and de-icing.
 10  製氷機
 12  ケーシング
 14  伝熱管
 16  冷媒ヘッダ
 18、36  管板
 20  上部製氷用水貯留部
 22、30  冷媒入口管
 24  冷媒循環管
 26  冷媒循環ポンプ
 28  冷媒出口管
 32  冷媒出口管兼ホットガス出口管
 34  ホットガス入口管
 38  カッタ
  38a  回転軸
 40  駆動部
 42  下部製氷用水貯留部
 44  水循環管
 46  水循環ポンプ
 48  レベルセンサ
 50  制御部
 52  底板
 54  出口開口
 60  冷凍機
 62  冷媒回路
 64  圧縮機
 66  凝縮器
 68  レシーバ
 70  膨張弁
 72  ホットガス供給路
 H   冷媒液位
 S   内部空間
 Ti  チューブアイス
 Wi  製氷用水
 r   冷媒液
10 Ice Maker 12 Casing 14 Heat Transfer Pipe 16 Refrigerant Header 18, 36 Tube Plate 20 Upper Ice Making Water Storage 22, 30 Refrigerant Inlet Pipe 24 Refrigerant Circulation Pipe 26 Refrigerant Circulation Pump 28 Refrigerant Outlet Pipe 32 Refrigerant Outlet Pipe/Hot Gas Outlet Pipe 34 Hot gas inlet pipe 38 Cutter 38a Rotating shaft 40 Drive part 42 Lower ice making water storage part 44 Water circulation pipe 46 Water circulation pump 48 Level sensor 50 Control part 52 Bottom plate 54 Outlet opening 60 Refrigerator 62 Refrigerant circuit 64 Compressor 66 Condenser 68 Receiver 70 Expansion valve 72 Hot gas supply path H Refrigerant liquid level S 0 Internal space Ti tube Ice Wi Ice making water r Refrigerant liquid

Claims (11)

  1.  ケーシングと、
     前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、
     前記伝熱管の外面側で前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、
    を備え、
     前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダから前記冷媒の供給を受けるように構成されたことを特徴とする流下液膜式チューブアイス製氷機。
    A casing,
    A plurality of heat transfer tubes extending along the vertical direction inside the casing,
    A header for storing the refrigerant, which is provided in a region where the upper end of the heat transfer tube is provided in the inner space of the casing on the outer surface side of the heat transfer tube,
    Equipped with
    A falling liquid film tube ice maker, wherein the heat transfer tube is configured to receive the supply of the refrigerant from the header so that a liquid film of the refrigerant is formed on an outer surface of the heat transfer tube.
  2.  前記伝熱管の上端が固定される管板と、
     前記管板の上方に形成された上部製氷用水貯留部と、
     を備え、
     前記ヘッダは、前記管板の下方に形成されたことを特徴とする請求項1に記載の流下液膜式チューブアイス製氷機。
    A tube plate to which the upper end of the heat transfer tube is fixed;
    An upper ice-making water storage portion formed above the tube sheet,
    Equipped with
    The falling water film tube ice maker according to claim 1, wherein the header is formed below the tube sheet.
  3.  前記冷媒の入口が前記ケーシングの下部に前記内部空間に連通するように設けられ、
     前記内部空間の下部に貯留した冷媒液を前記ヘッダに戻すための冷媒循環路を備えることを特徴とする請求項1又は2に記載の流下液膜式チューブアイス製氷機。
    An inlet for the refrigerant is provided at a lower portion of the casing so as to communicate with the internal space,
    The falling film ice-making machine according to claim 1 or 2, further comprising a refrigerant circulation path for returning the refrigerant liquid stored in the lower portion of the internal space to the header.
  4.  前記冷媒の出口が前記ケーシングの上部に前記内部空間に連通するように設けられることを特徴とする請求項1乃至3の何れか一項に記載の流下液膜式チューブアイス製氷機。 The falling film ice-making machine according to any one of claims 1 to 3, wherein an outlet of the refrigerant is provided in an upper portion of the casing so as to communicate with the internal space.
  5.  前記内部空間の下部に内部空間高さの1/10以下の液位を有する前記冷媒が貯留されることを特徴とする請求項1乃至4の何れか一項に記載の流下液膜式チューブアイス製氷機。 The falling liquid film tube ice according to any one of claims 1 to 4, wherein the refrigerant having a liquid level equal to or lower than 1/10 of a height of the internal space is stored in a lower portion of the internal space. Ice machine.
  6.  前記ケーシングの下部に前記内部空間に連通するように形成されたホットガス入口と、
     前記ケーシングの上部に前記内部空間に連通するように形成されたホットガス出口と、
    を備えることを特徴とする請求項1乃至5の何れか一項に記載の流下液膜式チューブアイス製氷機。
    A hot gas inlet formed in the lower portion of the casing to communicate with the internal space;
    A hot gas outlet formed so as to communicate with the internal space in the upper portion of the casing;
    The falling liquid film tube ice maker according to any one of claims 1 to 5, further comprising:
  7.  前記複数の伝熱管の下方に設けられ、脱氷時に前記伝熱管の内面から自重で滑り落ちるチューブアイスを切断するためのカッタを備えることを特徴とする請求項1乃至6の何れか一項に記載の流下液膜式チューブアイス製氷機。 7. A cutter provided below the plurality of heat transfer tubes for cutting tube ice that slides down from the inner surface of the heat transfer tubes by its own weight during de-icing, and the cutter is provided. Falling film tube ice machine.
  8.  前記複数の伝熱管の下方に設けられた下部製氷用水貯留部と、
     前記下部製氷用水貯留部と前記上部製氷用水貯留部とを結ぶ水循環路と、
     前記水循環路に設けられ、前記下部製氷用水貯留部に溜まった製氷用水を前記上部製氷用水貯留部に循環するための水循環ポンプと、
     前記下部製氷用水貯留部に溜まった前記製氷用水の液面レベルを検出するレベルセンサと、
     前記レベルセンサの検出値に基づいて前記水循環ポンプの作動を制御する制御部と、
    を備えることを特徴とする請求項2に記載の流下液膜式チューブアイス製氷機。
    A lower ice making water storage portion provided below the plurality of heat transfer tubes,
    A water circulation path connecting the lower ice making water storage part and the upper ice making water storage part,
    A water circulation pump provided in the water circulation path for circulating the ice making water accumulated in the lower ice making water storage portion to the upper ice making water storage portion,
    A level sensor for detecting a liquid level of the ice making water accumulated in the lower ice making water storage part;
    A control unit for controlling the operation of the water circulation pump based on the detection value of the level sensor;
    The falling liquid film tube ice maker according to claim 2, further comprising:
  9.  前記ヘッダに供給される前記冷媒を生成するための冷凍機を備え、
     前記冷凍機は、
     冷媒回路と、
     前記冷媒回路に設けられ、圧縮機、凝縮器、レシーバ及び膨張弁を含む冷凍サイクル構成機器と、
    を備え、
     前記膨張弁を経て減圧された前記冷媒が前記ケーシングに供給されるように構成されることを特徴とする請求項1乃至8の何れか一項に記載の流下液膜式チューブアイス製氷機。
    A refrigerator for generating the refrigerant supplied to the header,
    The refrigerator is
    A refrigerant circuit,
    A refrigeration cycle constituent device that is provided in the refrigerant circuit and includes a compressor, a condenser, a receiver, and an expansion valve,
    Equipped with
    The falling film ice maker according to any one of claims 1 to 8, wherein the refrigerant whose pressure has been reduced via the expansion valve is supplied to the casing.
  10.  前記レシーバの気相部と前記内部空間とに連通するホットガス供給路を備えることを特徴とする請求項9に記載の流下液膜式チューブアイス製氷機。 The falling film ice maker according to claim 9, further comprising a hot gas supply passage communicating with a gas phase portion of the receiver and the internal space.
  11.  前記冷媒は、自然冷媒、HFC冷媒又はHFO冷媒であることを特徴とする請求項1乃至10の何れか一項に記載の流下液膜式チューブアイス製氷機。
     
    The falling film ice maker according to any one of claims 1 to 10, wherein the refrigerant is a natural refrigerant, an HFC refrigerant, or an HFO refrigerant.
PCT/JP2018/047713 2018-12-26 2018-12-26 Falling liquid film type tube ice machine WO2020136735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562001A JP6965464B2 (en) 2018-12-26 2018-12-26 Flowing liquid film type tube ice maker
PCT/JP2018/047713 WO2020136735A1 (en) 2018-12-26 2018-12-26 Falling liquid film type tube ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047713 WO2020136735A1 (en) 2018-12-26 2018-12-26 Falling liquid film type tube ice machine

Publications (1)

Publication Number Publication Date
WO2020136735A1 true WO2020136735A1 (en) 2020-07-02

Family

ID=71129280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047713 WO2020136735A1 (en) 2018-12-26 2018-12-26 Falling liquid film type tube ice machine

Country Status (2)

Country Link
JP (1) JP6965464B2 (en)
WO (1) WO2020136735A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452302A (en) * 1981-05-11 1984-06-05 Chicago Bridge & Iron Company Heat exchanger with polymeric-covered cooling surfaces and crystallization method
US4704877A (en) * 1986-10-02 1987-11-10 Cbi Industries, Inc. Apparatus and method of freezing a feed liquid
JPH07247864A (en) * 1994-03-04 1995-09-26 Toshiba Corp Gas turbine intake air cooling device
JPH11201601A (en) * 1998-01-07 1999-07-30 Hitachi Ltd Thermal storage system
JP2001004255A (en) * 1999-06-21 2001-01-12 Hoshizaki Electric Co Ltd Automatic ice maker and operating method thereof
JP2003042621A (en) * 2001-07-31 2003-02-13 Fukushima Industries Corp Ice making machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452302A (en) * 1981-05-11 1984-06-05 Chicago Bridge & Iron Company Heat exchanger with polymeric-covered cooling surfaces and crystallization method
US4704877A (en) * 1986-10-02 1987-11-10 Cbi Industries, Inc. Apparatus and method of freezing a feed liquid
JPH07247864A (en) * 1994-03-04 1995-09-26 Toshiba Corp Gas turbine intake air cooling device
JPH11201601A (en) * 1998-01-07 1999-07-30 Hitachi Ltd Thermal storage system
JP2001004255A (en) * 1999-06-21 2001-01-12 Hoshizaki Electric Co Ltd Automatic ice maker and operating method thereof
JP2003042621A (en) * 2001-07-31 2003-02-13 Fukushima Industries Corp Ice making machine

Also Published As

Publication number Publication date
JP6965464B2 (en) 2021-11-10
JPWO2020136735A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
CN104160225B (en) Electric refrigerator and method of work thereof
CN103890526B (en) Ice thermal storage tank and water cooler having the same
KR101312742B1 (en) A beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage
CN101568779B (en) Refrigeration device
JP2016533470A (en) freezer
CN101166424A (en) Refrigeration system and method for beverage dispenser
CN106257216A (en) Refrigerator and the method supplying water in refrigerator
JP2008500511A (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
WO2020136735A1 (en) Falling liquid film type tube ice machine
EP3193108B1 (en) Refrigerator
CN106257172A (en) Ice pan Apparatus and method for
JP5194742B2 (en) vending machine
KR101651328B1 (en) Refrigerator and control method the same
JPH05296503A (en) Ice heat storage device
JP7350561B2 (en) Falling film heat exchanger and falling film tube ice maker
KR200489423Y1 (en) Liquid Phase Beverage Supercooling Device
KR20120076327A (en) Ice making apparatus for manufacturing different shape ices
JP2007303790A (en) Beer dispenser
KR101659965B1 (en) Cold water supply apparatus using an ice maker
US10132544B2 (en) Ice-making device for refrigerator
KR20170034997A (en) Refrigerator
KR20200001489U (en) Liquid Phase Beverage Supercooling Device
JP2001153511A (en) Cooling device for ice making and method of operating form the device
JP2020106212A (en) Method for controlling operation of ice making machine
KR102000498B1 (en) Water purifier having ice-maker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944680

Country of ref document: EP

Kind code of ref document: A1