JP6965464B2 - Flowing liquid film type tube ice maker - Google Patents

Flowing liquid film type tube ice maker Download PDF

Info

Publication number
JP6965464B2
JP6965464B2 JP2020562001A JP2020562001A JP6965464B2 JP 6965464 B2 JP6965464 B2 JP 6965464B2 JP 2020562001 A JP2020562001 A JP 2020562001A JP 2020562001 A JP2020562001 A JP 2020562001A JP 6965464 B2 JP6965464 B2 JP 6965464B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
ice
casing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020562001A
Other languages
Japanese (ja)
Other versions
JPWO2020136735A1 (en
Inventor
郁朗 赤田
耕作 西田
憲一 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Publication of JPWO2020136735A1 publication Critical patent/JPWO2020136735A1/en
Application granted granted Critical
Publication of JP6965464B2 publication Critical patent/JP6965464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/06Producing ice by using stationary moulds open or openable at both ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、縦型の流下液膜式チューブアイス製氷機に関する。 The present disclosure relates to a vertical flowing liquid film tube ice maker.

従来、チューブアイス製氷機は、伝熱管を内蔵しシェル側を冷媒で満たした満液式蒸発器を備えている。冷媒を低温で沸騰させることにより、伝熱管内を流れる水を冷却し、伝熱管の内壁に氷を生成させる。ある程度氷の厚みが増加したところで、シェル内に冷媒のホットガスを注入させることにより伝熱管内壁の氷を融解させ、自重により氷を下部に落とし、一定間隔で砕氷することにより、チューブアイスを製造する。特許文献1には、満液式熱交換器を備えた製氷機が開示されている。 Conventionally, a tube ice maker is equipped with a full-liquid evaporator having a built-in heat transfer tube and filling the shell side with a refrigerant. By boiling the refrigerant at a low temperature, the water flowing in the heat transfer tube is cooled, and ice is generated on the inner wall of the heat transfer tube. When the thickness of the ice has increased to some extent, the ice on the inner wall of the heat transfer tube is melted by injecting hot gas as a refrigerant into the shell, the ice is dropped to the bottom by its own weight, and the ice is crushed at regular intervals to produce tube ice. do. Patent Document 1 discloses an ice maker including a full-liquid heat exchanger.

特開平06−147707号公報Japanese Unexamined Patent Publication No. 06-147707

満液式蒸発器を備えた製氷機は、ケーシング内に冷媒液を満たすため多量の冷媒量が必要になると共に、冷媒液のヘッドにより深さ方向に圧力分布が生じ、深さが2m程度の満液式蒸発器では、底部の蒸発温度は上部より1℃程度高くなるため、氷厚にムラができるという問題がある。また、冷媒側の熱伝達は核沸騰熱伝達であるため熱伝達率が低くなり、製氷に時間がかかる。さらに、脱氷時にシェル側にホットガスを注入して冷媒を昇温させる場合、低温で過冷却状態になっている大量の冷媒液を氷の融点以上に昇温するのに多量の熱量を必要とすると共に、ホットガスにより昇温しかつ攪拌された冷媒液との対流熱伝達となるため、伝熱管内側にできた氷との熱伝達率が低くなり、脱氷に時間がかかるという問題がある。 An ice machine equipped with a full-liquid evaporator requires a large amount of refrigerant to fill the casing with the refrigerant liquid, and the head of the refrigerant liquid creates a pressure distribution in the depth direction, so that the depth is about 2 m. In the full-liquid evaporator, the evaporation temperature at the bottom is about 1 ° C. higher than that at the top, so there is a problem that the ice thickness becomes uneven. Further, since the heat transfer on the refrigerant side is the nucleate boiling heat transfer, the heat transfer coefficient is low and it takes time to make ice. Furthermore, when hot gas is injected into the shell side to raise the temperature of the refrigerant during deicing, a large amount of heat is required to raise the temperature of a large amount of refrigerant liquid that is overcooled at a low temperature to above the melting point of ice. At the same time, since convection heat is transferred to the refrigerant liquid that has been heated and stirred by the hot gas, the heat transfer rate with the ice formed inside the heat transfer tube is low, and there is a problem that it takes time to deice. be.

一実施形態は、冷媒量を低減し、かつ製氷及び脱氷の高効率化を可能にする製氷機を提案することを目的とする。 One embodiment aims to propose an ice maker that reduces the amount of refrigerant and enables high efficiency of ice making and deicing.

(1)一実施形態に係る流下液膜式チューブアイス製氷機は、
ケーシングと、
前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、
前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、
を備え、
前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダからの前記冷媒の供給を受けるように構成される。
ここで、「鉛直方向に沿って延在する」とは、伝熱管表面の液膜が確保される角度以内の傾きをもって延在することを含むものとする。
(1) The flow-down liquid film type tube ice maker according to the embodiment is
Casing and
A plurality of heat transfer tubes extending in the vertical direction inside the casing,
A header provided in the area of the internal space of the casing where the upper end of the heat transfer tube is arranged and for storing the refrigerant, and
With
The heat transfer tube is configured to receive the supply of the refrigerant from the header so that a liquid film of the refrigerant is formed on the outer surface of the heat transfer tube.
Here, "extending along the vertical direction" includes extending with an inclination within an angle at which the liquid film on the surface of the heat transfer tube is secured.

製氷工程において、冷媒液は伝熱管外面で流下液膜を形成し、伝熱管内側の製氷用水との熱交換で蒸発する。液膜は薄膜で滞留が無いので、蒸発の抵抗が少なく効率良く熱交換が行われる。このように、冷媒液膜と伝熱管の内側を流下する製氷用水とを熱交換させるため、満液式と比べて冷媒量を大幅に低減できる。また、冷媒液膜が伝熱管外面に沿って流下するため、スプレーなどを用いて冷媒液を伝熱管の外面に吹き付ける方式などと比べて均一な液膜を形成できる。また、薄膜による蒸発熱伝達であるため、低熱流束でも高熱伝達率が得られ、満液式と比べて製氷時間を大幅に短縮できる。また、冷媒が伝熱管外面に沿って流下するため、鉛直方向で蒸発温度が一定となり、鉛直方向で氷厚にムラができない。さらに、脱氷工程においては、ケーシング内に保有する冷媒液が少ないため、脱氷用のホットガスの注入により短時間で冷媒液は氷の融点以上の飽和温度に達することができ、ホットガスが凝縮して伝熱管外面の鉛直方向に沿って流下するので凝縮液の滞留が無く、ホットガスの凝縮熱が効率良く氷側に伝わるので、脱氷時間を短縮できる。従って、製氷能力を向上できると共に、ケーシング内に貯留される冷媒液量が少ないため、ケーシング内の冷媒液がミストとして圧縮機へ戻るのを防止できる。 In the ice making process, the refrigerant liquid forms a flowing liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water inside the heat transfer tube. Since the liquid film is a thin film and does not stay, heat exchange is efficiently performed with low resistance to evaporation. In this way, since the refrigerant liquid film and the ice-making water flowing down the inside of the heat transfer tube exchange heat, the amount of refrigerant can be significantly reduced as compared with the full-liquid type. Further, since the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed as compared with a method of spraying the refrigerant liquid onto the outer surface of the heat transfer tube by using a spray or the like. Further, since the heat transfer is carried out by a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be significantly shortened as compared with the full liquid type. Further, since the refrigerant flows down along the outer surface of the heat transfer tube, the evaporation temperature becomes constant in the vertical direction, and the ice thickness does not become uneven in the vertical direction. Further, in the deicing step, since the amount of the refrigerant liquid held in the casing is small, the refrigerant liquid can reach a saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot gas for deicing, and the hot gas can be generated. Since it condenses and flows down along the vertical direction of the outer surface of the heat transfer tube, there is no retention of the condensate, and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved and the amount of the refrigerant liquid stored in the casing is small, so that the refrigerant liquid in the casing can be prevented from returning to the compressor as mist.

(2)一実施形態では、前記(1)の構成において、
前記伝熱管の上端が固定される管板と、
前記管板の上方に形成された上部製氷用水貯留部と、
を備え、
前記ヘッダは、前記管板の下方に形成される。
上記(2)の構成によれば、上記管板を境に管板の上方に上部製氷用水貯留部を配置し、管板の下方に冷媒貯留ヘッダを配置したので、伝熱管内側への製氷用水の供給と伝熱管外面への冷媒液膜の形成のための構成をコンパクト化できる。
(2) In one embodiment, in the configuration of (1) above,
A tube plate to which the upper end of the heat transfer tube is fixed and
An upper ice-making water storage section formed above the tube plate,
With
The header is formed below the tube plate.
According to the configuration of (2) above, the upper ice-making water storage section is arranged above the tube plate and the refrigerant storage header is arranged below the tube plate, so that the ice-making water inside the heat transfer tube is arranged. The configuration for supplying the refrigerant and forming the refrigerant liquid film on the outer surface of the heat transfer tube can be made compact.

(3)一実施形態では、前記(1)又は(2)の構成において、
前記冷媒の入口が前記ケーシングの下部に前記内部空間に連通するように設けられ、
前記内部空間の下部に貯留した冷媒液を前記ヘッダに戻すための冷媒循環路を備える。
上記(3)の構成によれば、冷媒入口がケーシングの下部に設けられるため、ケーシング内に供給される冷媒液が伝熱管外面に形成された冷媒液膜を破断させないため、該冷媒液膜と伝熱管内面の製氷用水との熱伝達率を高く維持できる。
(3) In one embodiment, in the configuration of (1) or (2) above,
The inlet of the refrigerant is provided at the lower part of the casing so as to communicate with the internal space.
A refrigerant circulation path for returning the refrigerant liquid stored in the lower part of the internal space to the header is provided.
According to the configuration of (3) above, since the refrigerant inlet is provided at the lower part of the casing, the refrigerant liquid supplied into the casing does not break the refrigerant liquid film formed on the outer surface of the heat transfer tube. The heat transfer rate of the inner surface of the heat transfer tube with the ice making water can be maintained high.

(4)一実施形態では、前記(1)〜(3)の何れかの構成において、
前記冷媒の出口が前記ケーシングの上部に前記内部空間に連通するように設けられる。
上記(4)の構成によれば、冷媒出口がケーシングの上部にあり、該内部空間の下部に溜まる冷媒液から離れた位置にあるため、冷媒出口から冷媒ガスのみを排出できる。これによって、冷凍機を構成する圧縮機への液バックを防止できる。
(4) In one embodiment, in any of the configurations (1) to (3) above,
The outlet of the refrigerant is provided at the upper part of the casing so as to communicate with the internal space.
According to the configuration (4) above, since the refrigerant outlet is located at the upper part of the casing and at a position away from the refrigerant liquid accumulated in the lower part of the internal space, only the refrigerant gas can be discharged from the refrigerant outlet. As a result, it is possible to prevent the liquid from returning to the compressor constituting the refrigerator.

(5)一実施形態では、前記(1)〜(4)の何れかの構成において、
前記内部空間の下部に内部空間高さの1/10以下の液位を有する前記冷媒が貯留される。
上記(5)の構成によれば、ケーシングの内部空間に内部空間高さの1/10以下の液位を有する冷媒液が貯留されるように運転されるため、少ない冷媒量で製氷が可能になる。また、冷媒液の液位を内部空間高さの1/10以下とすることで、該内部空間の上部にある冷媒出口から冷媒液面を遠ざけることができるため、冷媒出口に至る冷媒に冷媒液が混入しない。従って、圧縮機への液バックを防止できると共に、冷媒を供給する冷凍機において、冷媒出口から圧縮機に至る間に気液を分離するアキュームレータや冷媒液をガス化するための液ガス熱交換器の配置が不要となる。
(5) In one embodiment, in any of the configurations (1) to (4) above,
The refrigerant having a liquid level of 1/10 or less of the height of the internal space is stored in the lower part of the internal space.
According to the configuration of (5) above, since the operation is performed so that the refrigerant liquid having a liquid level of 1/10 or less of the height of the internal space is stored in the internal space of the casing, ice making can be performed with a small amount of refrigerant. Become. Further, by setting the liquid level of the refrigerant liquid to 1/10 or less of the height of the internal space, the refrigerant liquid level can be kept away from the refrigerant outlet at the upper part of the internal space, so that the refrigerant liquid reaches the refrigerant outlet. Does not mix. Therefore, it is possible to prevent the liquid from returning to the compressor, and in the refrigerator that supplies the refrigerant, an accumulator that separates the gas and liquid from the refrigerant outlet to the compressor and a liquid gas heat exchanger for gasifying the refrigerant liquid. Is not required to be placed.

(6)一実施形態では、前記(1)〜(5)の何れかの構成において、
前記ケーシングの下部に前記内部空間に連通するように形成されたホットガス入口と、
前記ケーシングの上部に前記内部空間に連通するように形成されたホットガス出口と、
を備える。
脱氷工程において、伝熱管内面に形成されたチューブアイスを脱氷するためにケーシングの内部空間に上記ホットガス入口からホットガスが供給される。上記(6)の構成によれば、ホットガス入口がケーシングの下部に形成されるため、ホットガスはケーシングの内部空間の下部に溜まった冷媒液中に供給され、冷媒液を激しく攪拌する。これによって、チューブアイスとの熱伝達率を高め、脱氷時間を短縮できる。また、冷媒液面の上方の気相部では伝熱管の外面はホットガスの飽和蒸気に晒される。そのため、伝熱管の外面はホットガスが凝縮しながら流下する凝縮熱伝達となり、従来の満液式製氷機の脱氷工程の2倍程度の熱通過率が得られ、これによって、脱氷時間を短縮できる。
(6) In one embodiment, in any of the configurations (1) to (5) above,
A hot gas inlet formed at the lower part of the casing so as to communicate with the internal space,
A hot gas outlet formed on the upper part of the casing so as to communicate with the internal space,
To be equipped.
In the deicing step, hot gas is supplied from the hot gas inlet to the internal space of the casing in order to deice the tube ice formed on the inner surface of the heat transfer tube. According to the configuration (6) above, since the hot gas inlet is formed in the lower part of the casing, the hot gas is supplied into the refrigerant liquid accumulated in the lower part of the internal space of the casing, and the refrigerant liquid is vigorously agitated. As a result, the heat transfer coefficient with the tube ice can be increased and the deicing time can be shortened. Further, in the gas phase portion above the refrigerant liquid level, the outer surface of the heat transfer tube is exposed to saturated steam of hot gas. Therefore, the outer surface of the heat transfer tube becomes a condensed heat transfer in which hot gas flows down while condensing, and a heat transfer rate about twice that of the deicing process of a conventional full-liquid ice maker can be obtained, thereby shortening the deicing time. Can be shortened.

(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記複数の伝熱管の下方に設けられ、脱氷時に前記伝熱管の内面から自重で滑り落ちるチューブアイスを切断するためのカッタを備える。
上記(7)の構成によれば、上記カッタを備えるために、脱氷工程において、伝熱管の内面から自重で滑り落ちるチューブアイスを適宜長さに裁断して利用先に供給できる。
(7) In one embodiment, in any of the configurations (1) to (6) above,
A cutter provided below the plurality of heat transfer tubes is provided for cutting tube ice that slides down from the inner surface of the heat transfer tubes by its own weight at the time of deicing.
According to the configuration of the above (7), in order to provide the cutter, the tube ice that slides down from the inner surface of the heat transfer tube by its own weight can be appropriately cut to a length and supplied to the user in the deicing step.

(8)一実施形態では、前記(2)の構成において、
前記複数の伝熱管の下方に設けられた下部製氷用水貯留部と、
前記下部製氷用水貯留部と前記上部製氷用水貯留部とを結ぶ水循環路と、
前記水循環路に設けられ、前記下部製氷用水貯留部に溜まった製氷用水を前記上部製氷用水貯留部に循環するための水循環ポンプと、
前記下部製氷用水貯留部に溜まった前記製氷用水の液面レベルを検出するレベルセンサと、
前記レベルセンサの検出値に基づいて前記水循環ポンプの作動を制御する制御部と、
を備える。
上記(8)の構成によれば、製氷工程において、下部製氷用水貯留部に溜まった製氷用水の液面レベルを所望のレベルに制御できるので、製氷工程を円滑に行うことができる。
(8) In one embodiment, in the configuration of (2) above,
A lower ice-making water storage unit provided below the plurality of heat transfer tubes, and
A water circulation path connecting the lower ice making water storage section and the upper ice making water storage section,
A water circulation pump provided in the water circulation passage and for circulating ice making water accumulated in the lower ice making water storage section to the upper ice making water storage section.
A level sensor that detects the liquid level of the ice-making water accumulated in the lower ice-making water storage unit, and
A control unit that controls the operation of the water circulation pump based on the detected value of the level sensor,
To be equipped.
According to the configuration of (8) above, in the ice making step, the liquid level of the ice making water accumulated in the lower ice making water storage unit can be controlled to a desired level, so that the ice making step can be smoothly performed.

(9)一実施形態では、前記(1)〜(8)の何れかの構成において、
前記ヘッダに供給される前記冷媒を生成するための冷凍機を備え、
前記冷凍機は、
冷媒回路と、
前記冷媒回路に設けられ、圧縮機、凝縮器、レシーバ及び膨張弁を含む冷凍サイクル構成機器と、
を備え、
前記膨張弁を経て減圧された前記冷媒が前記ケーシングに供給されるように構成される。
上記(9)の構成によれば、上記冷凍機を備えることで、製氷機の冷熱源としての冷媒を製氷機に供給できる。
(9) In one embodiment, in any of the configurations (1) to (8) above,
A refrigerator for producing the refrigerant supplied to the header is provided.
The refrigerator
Refrigerant circuit and
Refrigerant cycle components provided in the refrigerant circuit, including a compressor, condenser, receiver and expansion valve.
With
The refrigerant decompressed through the expansion valve is configured to be supplied to the casing.
According to the configuration of (9) above, by providing the refrigerator, it is possible to supply the refrigerant as a cold heat source of the ice maker to the ice maker.

(10)一実施形態では、前記(9)の構成において、
前記レシーバの気相部と前記内部空間とに連通するホットガス供給路を備える。
上記(10)の構成によれば、上記ホットガス供給路を備えることで、脱氷工程においてホットガス(0℃を超える温度の冷媒ガス)をケーシングの内部空間に供給できる。また、上記ホットガス供給路を介してレシーバの気相部からホットガスを供給するとき、ホットガスの供給に伴ってレシーバ内が減圧され、レシーバ内の減圧に伴ってレシーバ内の冷媒液が気化するので、新たに気化した冷媒ガスによりホットガスを補充できる。
(10) In one embodiment, in the configuration of (9) above,
A hot gas supply path communicating with the gas phase portion of the receiver and the internal space is provided.
According to the configuration of (10) above, by providing the hot gas supply path, hot gas (refrigerant gas having a temperature exceeding 0 ° C.) can be supplied to the internal space of the casing in the deicing step. Further, when hot gas is supplied from the gas phase portion of the receiver via the hot gas supply path, the inside of the receiver is depressurized by the supply of the hot gas, and the refrigerant liquid in the receiver is vaporized by the decompression in the receiver. Therefore, the hot gas can be replenished with the newly vaporized refrigerant gas.

(11)一実施形態では、前記(1)〜(10)の何れかの構成において、
前記冷媒は、自然冷媒、HFC冷媒又はHFO冷媒である。
上記(11)の構成によれば、上記冷媒のうち例えばNHは大きな表面張力を有している。この表面張力により伝熱管周方向で均一な冷媒液膜を形成できる。これによって、製氷用水との熱伝達量を向上できる。
(11) In one embodiment, in any of the configurations (1) to (10) above,
The refrigerant is a natural refrigerant, an HFC refrigerant, or an HFO refrigerant.
According to the configuration of (11) above, among the refrigerants, for example, NH 3 has a large surface tension. Due to this surface tension, a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transfer to the ice-making water can be improved.

幾つかの実施形態によれば、流下液膜式チューブアイス製氷機において、冷媒量を低減でき、低コスト化できると共に、製氷及び脱氷の高効率化が可能になり、製氷能力を向上できる。また、伝熱管の延在方向で氷厚にムラができず、かつ冷媒を供給する冷凍機の圧縮機への液バックを抑制できる。 According to some embodiments, in the flowing liquid film type tube ice ice maker, the amount of refrigerant can be reduced, the cost can be reduced, the efficiency of ice making and deicing can be improved, and the ice making capacity can be improved. In addition, the ice thickness does not become uneven in the extending direction of the heat transfer tube, and the liquid back to the compressor of the refrigerator that supplies the refrigerant can be suppressed.

一実施形態に係る製氷機の縦断面図である。It is a vertical sectional view of the ice machine which concerns on one Embodiment. 一実施形態に係る冷凍機の製氷時を示す系統図である。It is a system diagram which shows the time of making ice of the refrigerator which concerns on one Embodiment. 一実施形態に係る冷凍機の脱氷時を示す系統図である。It is a system diagram which shows the time of deicing of the refrigerator which concerns on one Embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, and are merely explanatory examples.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.

図1は、一実施形態に係る流下液膜式チューブアイス製氷機10の縦断面図である。製氷機10は、ケーシング12の内部に複数の伝熱管14を備え、伝熱管14は鉛直方向に沿って延在する。ケーシング12の内部空間S(伝熱管14の外側空間)のうち伝熱管14の上端部が配置された領域に冷媒液を貯留するための冷媒ヘッダ16が設けられる。そして、冷媒ヘッダ16から供給される冷媒液によって伝熱管14の外面に冷媒液膜が形成されるように構成されている。伝熱管14の外面に形成された冷媒液膜は、伝熱管外面を伝って下方に流下する。
伝熱管14の上端開口から伝熱管14の内側に製氷用水Wiが供給され、この製氷用水Wiは伝熱管14の外面に形成された冷媒液膜によって冷却され、伝熱管14の内面に円筒形状のチューブアイスTiを形成する。
FIG. 1 is a vertical cross-sectional view of the flow-down liquid film type tube ice maker 10 according to the embodiment. The ice maker 10 includes a plurality of heat transfer tubes 14 inside the casing 12, and the heat transfer tubes 14 extend along the vertical direction. A refrigerant header 16 for storing the refrigerant liquid is provided in a region of the internal space S 0 (outer space of the heat transfer tube 14) of the casing 12 where the upper end of the heat transfer tube 14 is arranged. Then, the refrigerant liquid supplied from the refrigerant header 16 is configured to form a refrigerant liquid film on the outer surface of the heat transfer tube 14. The refrigerant liquid film formed on the outer surface of the heat transfer tube 14 flows downward along the outer surface of the heat transfer tube.
Ice-making water Wi is supplied from the upper end opening of the heat transfer tube 14 to the inside of the heat transfer tube 14, and the ice-making water Wi is cooled by a refrigerant liquid film formed on the outer surface of the heat transfer tube 14, and has a cylindrical shape on the inner surface of the heat transfer tube 14. Form tube ice Ti.

なお、ここで言う「冷媒」とは、相変化して伝熱管14の内面を伝って流下する製氷用水Wiを蒸発潜熱により冷却し、製氷するものである。 The term "refrigerant" as used herein means that the ice-making water Wi, which undergoes a phase change and flows down along the inner surface of the heat transfer tube 14, is cooled by latent heat of vaporization to produce ice.

チューブアイスTiが所定の厚さになるまで、伝熱管外面への冷媒液膜の形成及び伝熱管内側への製氷用水Wiの供給は連続して行われる。チューブアイスTiが所定の厚さになったとき、製氷工程から脱氷工程に切り替わる。脱氷工程では、ホットガス(0℃を超える冷媒ガス)がケーシング12の内部空間Sに供給され、ホットガスから伝熱管14に伝わる熱によりチューブアイスTiは伝熱管14の内面から剥離し、自重によって下方へ滑り落ちる。The formation of the refrigerant liquid film on the outer surface of the heat transfer tube and the supply of the ice-making water Wi to the inside of the heat transfer tube are continuously performed until the tube ice Ti reaches a predetermined thickness. When the tube ice Ti reaches a predetermined thickness, the ice making process is switched to the deicing process. The de-ice process, the hot gas (refrigerant gas exceeding 0 ° C.) is supplied to the internal space S 0 of the casing 12, the tube Ice Ti is peeled off from the inner surface of the heat transfer tube 14 by heat transmitted from the hot gas to the heat transfer tube 14, It slides down due to its own weight.

上記構成によれば、製氷工程において、冷媒液は伝熱管外面で流下液膜を形成し、伝熱管内側の製氷用水Wiとの熱交換で蒸発する。液膜は薄膜で滞留が無いので、蒸発の抵抗が少なく効率良く熱交換が行われる。このように、冷媒液膜と伝熱管内側の製氷用水Wiとを熱交換させるため、ケーシング12の内部に冷媒液を貯留する満液式熱交換器と比べて、冷媒量を大幅に低減できる。また、冷媒液膜が伝熱管外面に沿って流下するため、スプレーなどを用いて冷媒液を伝熱管に吹き付ける方式と比べて伝熱管14の外周面に均一な液膜を形成でき、これによって、熱伝達率を向上できる。また、相変化する冷媒の場合には薄膜による蒸発熱伝達であるため、低熱流束でも高熱伝達率が得られ、満液式と比べて製氷時間を大幅に短縮できる。また、冷媒が伝熱管外面に沿って流下するため、鉛直方向で蒸発温度が一定となり、従って、鉛直方向で氷厚にムラができない。さらに、脱氷工程において、ケーシング12内に保有する冷媒液が少ないため、脱氷用のホットガスの注入により短時間で冷媒液は氷の融点以上の飽和温度に達することができ、かつホットガスが凝縮して伝熱管外面の鉛直方向に沿って流下するので凝縮液の滞留が無く、ホットガスの凝縮熱が効率良く氷側に伝わるので、脱氷時間を短縮できる。従って、製氷能力を向上できると共に、後述するように、製氷機10に冷媒を供給する冷凍機60を構成する圧縮機64(図2及び図3参照)への液バックを抑制できる。 According to the above configuration, in the ice making step, the refrigerant liquid forms a flowing liquid film on the outer surface of the heat transfer tube and evaporates by heat exchange with the ice making water Wi inside the heat transfer tube. Since the liquid film is a thin film and does not stay, heat exchange is efficiently performed with low resistance to evaporation. In this way, since the refrigerant liquid film and the ice-making water Wi inside the heat transfer tube exchange heat with each other, the amount of refrigerant can be significantly reduced as compared with the full-liquid heat exchanger in which the refrigerant liquid is stored inside the casing 12. Further, since the refrigerant liquid film flows down along the outer surface of the heat transfer tube, a uniform liquid film can be formed on the outer peripheral surface of the heat transfer tube 14 as compared with the method of spraying the refrigerant liquid onto the heat transfer tube by using a spray or the like. The heat transfer coefficient can be improved. Further, in the case of a phase-changing refrigerant, since evaporation heat transfer is performed by a thin film, a high heat transfer coefficient can be obtained even with a low heat flux, and the ice making time can be significantly shortened as compared with the full-liquid type. Further, since the refrigerant flows down along the outer surface of the heat transfer tube, the evaporation temperature becomes constant in the vertical direction, and therefore, the ice thickness cannot be uneven in the vertical direction. Further, in the deicing step, since the amount of the refrigerant liquid held in the casing 12 is small, the refrigerant liquid can reach a saturation temperature equal to or higher than the melting point of ice in a short time by injecting the hot gas for deicing, and the hot gas. Condenses and flows down along the vertical direction of the outer surface of the heat transfer tube, so that the condensate does not stay and the heat of condensation of the hot gas is efficiently transferred to the ice side, so that the deicing time can be shortened. Therefore, the ice making capacity can be improved, and as will be described later, liquid backing to the compressor 64 (see FIGS. 2 and 3) constituting the refrigerator 60 that supplies the refrigerant to the ice making machine 10 can be suppressed.

一実施形態では、図2及び図3に示すように、冷凍機60を備える。冷凍機60は、冷媒が循環する冷媒回路62に圧縮機64、凝縮器66、レシーバ68及び膨張弁70を含む冷凍サイクル構成機器を備える。
図2は製氷工程を示し、図3は脱氷工程を示す。製氷工程において、圧縮機64から吐出された冷媒ガスは、凝縮器66で冷却されて冷媒液となり、レシーバ68に送られる。この冷媒液rはレシーバ68に貯留され、冷媒液rは膨張弁70を経て減圧され、製氷機10のケーシング12に供給される。
この実施形態によれば、冷凍機60を備えることで、製氷機10の冷熱源としての冷媒を製氷機10に供給できる。
In one embodiment, as shown in FIGS. 2 and 3, a refrigerator 60 is provided. The refrigerator 60 includes refrigerating cycle components including a compressor 64, a condenser 66, a receiver 68, and an expansion valve 70 in a refrigerant circuit 62 in which a refrigerant circulates.
FIG. 2 shows an ice making process, and FIG. 3 shows an ice removing process. In the ice making process, the refrigerant gas discharged from the compressor 64 is cooled by the condenser 66 to become a refrigerant liquid, which is sent to the receiver 68. The refrigerant liquid r is stored in the receiver 68, the refrigerant liquid r is depressurized via the expansion valve 70, and is supplied to the casing 12 of the ice maker 10.
According to this embodiment, by providing the refrigerator 60, a refrigerant as a cold heat source of the ice maker 10 can be supplied to the ice maker 10.

一実施形態では、図1に示すように、ケーシング12の上部に管板18が設けられ、管板18に伝熱管14の上端が固定される。管板18の上方には上部製氷用水貯留部20が設けられ、管板18の下方に冷媒ヘッダ16が設けられる。このように、管板18を境に管板18の上方に上部製氷用水貯留部20を配置し、管板18の下方に冷媒ヘッダ16を配置する。
一実施形態では、上部製氷用水貯留部20は内部に製氷用水Wiを貯留可能な中空容器で構成され、底面は管板18によって構成され、該底面に伝熱管14の上端が開口している。また、冷媒ヘッダ16の底面は水平方向に沿って配置された底壁18aで構成され、底壁18aと伝熱管14の外周面との間に冷媒液膜を流下させるための環状隙間(不図示)が形成される。また、冷媒ヘッダ16の上面は管板18で構成される。
In one embodiment, as shown in FIG. 1, a tube plate 18 is provided on the upper portion of the casing 12, and the upper end of the heat transfer tube 14 is fixed to the tube plate 18. An upper ice making water storage portion 20 is provided above the pipe plate 18, and a refrigerant header 16 is provided below the pipe plate 18. In this way, the upper ice making water storage unit 20 is arranged above the pipe plate 18 with the pipe plate 18 as a boundary, and the refrigerant header 16 is arranged below the pipe plate 18.
In one embodiment, the upper ice-making water storage unit 20 is composed of a hollow container capable of storing ice-making water Wi inside, the bottom surface is composed of a tube plate 18, and the upper end of the heat transfer tube 14 is open to the bottom surface. Further, the bottom surface of the refrigerant header 16 is composed of a bottom wall 18a arranged along the horizontal direction, and an annular gap (not shown) for allowing the refrigerant liquid film to flow down between the bottom wall 18a and the outer peripheral surface of the heat transfer tube 14. ) Is formed. Further, the upper surface of the refrigerant header 16 is composed of a pipe plate 18.

一実施形態では、図1に示すように、冷媒入口管22が下部内部空間Sに連通するようにケーシング12の下部に設けられ、内部空間Sの下部に貯留した冷媒液rを冷媒ヘッダ16に戻すための冷媒循環管24を備える。冷媒液rが冷媒入口管22から内部空間Sに供給され、内部空間Sの下部に貯留した冷媒液rは、冷媒循環管24に設けられた冷媒循環ポンプ26によって冷媒ヘッダ16に送られる。このように、冷媒循環管24を通して冷媒を循環させることで、チューブアイスTiを所定の厚さに形成できる。
この実施形態によれば、冷媒入口管22が内部空間Sの下部に設けられるため、内部空間Sに供給される冷媒液rが伝熱管外面に形成された冷媒液膜を破断させない。従って、該冷媒液膜と伝熱管内面の製氷用水Wiとの熱伝達率を高く維持できる。
In one embodiment, as shown in FIG. 1, is provided in the lower portion of the casing 12 as the refrigerant inlet pipe 22 communicates with the lower interior space S 0, the refrigerant header refrigerant liquid r which stores the bottom of the inner space S 0 A refrigerant circulation pipe 24 for returning to 16 is provided. The refrigerant liquid r is supplied from the refrigerant inlet pipe 22 to the internal space S 0 , and the refrigerant liquid r stored in the lower part of the internal space S 0 is sent to the refrigerant header 16 by the refrigerant circulation pump 26 provided in the refrigerant circulation pipe 24. .. By circulating the refrigerant through the refrigerant circulation pipe 24 in this way, the tube ice Ti can be formed to a predetermined thickness.
According to this embodiment, the refrigerant inlet pipe 22 because it is provided in the lower portion of the internal space S 0, refrigerant liquid r supplied to the internal space S 0 is not broken refrigerant liquid film formed on the heat transfer tube outer surface. Therefore, the heat transfer coefficient between the refrigerant liquid film and the ice-making water Wi on the inner surface of the heat transfer tube can be maintained high.

一実施形態では、ケーシング12の下部に内部空間Sに連通するように冷媒出口管28が設けられ、ケーシング12の上部には冷媒ヘッダ16に連通するように冷媒入口管30が設けられる。ケーシング12の下部で内部空間Sに貯留した冷媒液rは、冷媒循環ポンプ26によって冷媒出口管28から冷媒循環管24を介し冷媒入口管30から冷媒ヘッダ16に送られる。In one embodiment, the refrigerant outlet pipe 28 is provided so as to communicate with the internal space S 0 at the bottom of the casing 12, the upper portion of the casing 12 the refrigerant inlet pipe 30 is provided so as to communicate with the refrigerant headers 16. Refrigerant liquid r which stores in the internal space S 0 at the bottom of the casing 12 is fed from the refrigerant inlet pipe 30 via the refrigerant circulation pipe 24 from the refrigerant outlet pipe 28 by the refrigerant circulating pump 26 to coolant headers 16.

一実施形態では、製氷用水Wiとの熱交換で気化した冷媒ガスが排出される冷媒出口管32がケーシング12の上部に内部空間Sに連通するように設けられる。この実施形態によれば、冷媒出口管32が内部空間Sの上部にあり、内部空間Sの下部に溜まる冷媒液rから離れた位置にあり、伝熱管14に沿って冷媒液は液膜を形成するため、冷媒出口管32から冷媒ガスのみを排出できる。これによって、圧縮機64への液バックを防止できる。In one embodiment, provided as a refrigerant outlet pipe 32 to the refrigerant gas vaporized in heat exchange with the ice making water Wi is discharged communicates with the internal space S 0 at the top of the casing 12. According to this embodiment, the refrigerant outlet pipe 32 is located at the top of the inner space S 0, is in a position away from the refrigerant liquid r accumulated in the lower portion of the internal space S 0, refrigerant liquid along the heat transfer tube 14 is liquid film Therefore, only the refrigerant gas can be discharged from the refrigerant outlet pipe 32. This makes it possible to prevent the liquid from returning to the compressor 64.

一実施形態では、製氷工程において、冷媒液の液位が内部空間Sの垂直方向(高さ)の1/10程度の液位(図1中のH)を形成するように運転する。これによって、少ない冷媒量で製氷が可能になる。また、冷媒液の液位Hを垂直方向(高さ)の1/10程度とすることで、内部空間Sの上部にある冷媒入口管22から冷媒液面を遠ざけることができるため、冷媒入口管22から排出される冷媒に冷媒液が混入しない。従って、圧縮機64への液バックを防止できると共に、冷媒を供給する冷凍機60において、冷媒出口管32から圧縮機64に至る冷媒回路62に、気液を分離するアキュームレータや冷媒液をガス化させる液ガス熱交換器の配置が不要となる。
一実施形態では、ケーシング12の下部に管板36が設けられ、内部空間Sは、管板36を底面として、冷媒液rを貯留可能になっている。
In one embodiment, the ice making process, operating as the liquid level of the refrigerant liquid to form about 1/10 of the liquid level in the vertical direction (height) of the internal space S 0 to (H in FIG. 1). This makes it possible to make ice with a small amount of refrigerant. Further, by setting the liquid level H of the refrigerant liquid to about 1/10 of the vertical direction (height), the refrigerant liquid level can be kept away from the refrigerant inlet pipe 22 above the internal space S 0 , so that the refrigerant liquid level can be kept away from the refrigerant inlet. The refrigerant liquid does not mix with the refrigerant discharged from the pipe 22. Therefore, it is possible to prevent the liquid from returning to the compressor 64, and in the refrigerator 60 that supplies the refrigerant, the accumulator for separating the gas and the liquid and the refrigerant liquid are gasified in the refrigerant circuit 62 from the refrigerant outlet pipe 32 to the compressor 64. There is no need to arrange a liquid gas heat exchanger.
In one embodiment, the tube sheet 36 is provided at a lower portion of the casing 12, the internal space S 0 is a tube sheet 36 as the bottom surface, and is capable of storing liquid refrigerant r.

一実施形態では、内部空間Sの下部に形成されたホットガス入口管34と、内部空間Sの上部に形成されたホットガス出口管32と、を備える。脱氷工程において、伝熱管内面に形成されたチューブアイスTiを脱氷するために、冷凍機60から内部空間Sにホットガスが供給される。
この実施形態によれば、ホットガス入口管34が内部空間Sの下部に形成されるため、ホットガスは内部空間Sの下部に溜まった冷媒液中に供給され、冷媒液を激しく攪拌する。これによって、該冷媒液とチューブアイスTiとの熱伝達率を高め、脱氷時間を短縮できる。また、冷媒液面の上方の気相部では、伝熱管14の外面はホットガスの飽和蒸気に晒される。そのため、伝熱管14の外面はホットガスが凝縮しながら流下する凝縮熱伝達となり、従来の満液式製氷機の脱氷工程の2倍程度の熱通過率が得られるため、脱氷時間を短縮できる。
図1に示す実施形態では、ホットガス出口管32は冷媒出口管と兼用される。
In one embodiment is provided with a hot gas inlet pipe 34 formed in the lower portion of the internal space S 0, and the hot gas outlet pipe 32 formed in the upper portion of the internal space S 0, the. In the de ice process, in order to de-ice the tube ice Ti formed on the heat transfer tube inner surface, the hot gas is supplied to the internal space S 0 from the refrigerator 60.
According to this embodiment, the hot gas inlet tube 34 is to be formed in the lower part of the internal space S 0, the hot gas is supplied to the refrigerant liquid accumulated in the bottom of the inner space S 0, vigorously stirring the refrigerant liquid .. As a result, the heat transfer coefficient between the refrigerant liquid and the tube ice Ti can be increased, and the deicing time can be shortened. Further, in the gas phase portion above the refrigerant liquid surface, the outer surface of the heat transfer tube 14 is exposed to saturated vapor of hot gas. Therefore, the outer surface of the heat transfer tube 14 is condensed heat transfer in which hot gas flows down while condensing, and a heat transfer rate about twice that of the deicing process of a conventional full-liquid ice maker can be obtained, so that the deicing time is shortened. can.
In the embodiment shown in FIG. 1, the hot gas outlet pipe 32 is also used as the refrigerant outlet pipe.

一実施形態では、図1に示すように、複数の伝熱管14の下方にカッタ38を備える。脱氷工程において、伝熱管14の内面から自重で滑り落ちるチューブアイスTiを適宜長さに裁断して利用先に供給できる。
一実施形態では、カッタ38は複数の伝熱管14の下方に設けられた下部製氷用水貯留部42の内部に設けられる。下部製氷用水貯留部42は中空容器で構成され、内部に製氷用水Wiを貯留可能になっている。
一実施形態では、カッタ38は回転軸38aを中心に回転可能に構成され、駆動部(例えばモータ)40によって回転される。脱氷時に伝熱管14から滑り落ちるチューブアイスTiの落下速度に合わせて、駆動部40によるカッタ38の回転速度を適宜制御することで、裁断されるチューブアイスTiの長さを調整できる。
In one embodiment, as shown in FIG. 1, a cutter 38 is provided below the plurality of heat transfer tubes 14. In the deicing step, the tube ice Ti that slides down from the inner surface of the heat transfer tube 14 by its own weight can be appropriately cut to a length and supplied to the user.
In one embodiment, the cutter 38 is provided inside a lower ice making water reservoir 42 provided below the plurality of heat transfer tubes 14. The lower ice making water storage unit 42 is composed of a hollow container, and can store the ice making water Wi inside.
In one embodiment, the cutter 38 is rotatably configured about a rotation shaft 38a and is rotated by a drive unit (eg, a motor) 40. The length of the tube ice Ti to be cut can be adjusted by appropriately controlling the rotation speed of the cutter 38 by the drive unit 40 according to the falling speed of the tube ice Ti that slides down from the heat transfer tube 14 at the time of deicing.

一実施形態では、図1に示すように、下部製氷用水貯留部42と上部製氷用水貯留部20とを結ぶ水循環管44を備え、水循環管44には、下部製氷用水貯留部42に溜まった製氷用水Wiを上部製氷用水貯留部20に循環するための水循環ポンプ46が設けられている。また、下部製氷用水貯留部42に溜まった製氷用水Wiの液面レベルを検出するレベルセンサ48が設けられ、制御部50は、レベルセンサ48の検出値に基づいて水循環ポンプ46の作動を制御する。
この実施形態によれば、製氷工程において、伝熱管14の内部に供給される製氷用水Wiを水循環管44を介して伝熱管14に循環させることで、チューブアイスTiを所定の厚さに形成できる。また、下部製氷用水貯留部42に溜まった製氷用水Wiの液面レベルを所望のレベルに制御できるので、製氷工程を円滑に行うことができる。
一実施形態では、上部製氷用水貯留部20及び下部製氷用水貯留部42の製氷用水Wiが不足してきたら、上部製氷用水貯留部20又は下部製氷用水貯留部42に補給水を注入可能な構成とする。製氷工程でチューブアイスTi製造が完了した後に、製氷用水Wiの循環を停止する。
In one embodiment, as shown in FIG. 1, a water circulation pipe 44 connecting the lower ice making water storage unit 42 and the upper ice making water storage unit 20 is provided, and the water circulation pipe 44 is provided with ice making accumulated in the lower ice making water storage unit 42. A water circulation pump 46 for circulating the irrigation water Wi to the upper ice making water storage unit 20 is provided. Further, a level sensor 48 for detecting the liquid level of the ice making water Wi accumulated in the lower ice making water storage unit 42 is provided, and the control unit 50 controls the operation of the water circulation pump 46 based on the detected value of the level sensor 48. ..
According to this embodiment, in the ice making step, the tube ice Ti can be formed to a predetermined thickness by circulating the ice making water Wi supplied to the inside of the heat transfer tube 14 to the heat transfer tube 14 via the water circulation tube 44. .. Further, since the liquid level of the ice-making water Wi accumulated in the lower ice-making water storage unit 42 can be controlled to a desired level, the ice-making process can be smoothly performed.
In one embodiment, when the ice-making water Wi of the upper ice-making water storage unit 20 and the lower ice-making water storage unit 42 becomes insufficient, make-up water can be injected into the upper ice-making water storage unit 20 or the lower ice-making water storage unit 42. .. After the tube ice Ti production is completed in the ice making process, the circulation of the ice making water Wi is stopped.

一実施形態では、下部製氷用水貯留部42の内部にメッシュ状の開口を有する底板52を備える。下部製氷用水貯留部42の内部空間は、底板52によって、チューブアイスTiの出口開口54を含む上部領域と、水循環管44と連通する出口開口を含む下部領域とに仕切られる。これによって、カッタ38で切断されたチューブアイスTiと、脱氷工程で一部融解した水分とは底板52で分離され、チューブアイスTiのみ出口開口54から下部製氷用水貯留部42の外側へ排出できる。上記下部領域に流下した製氷用水Wiは、水循環管44を介して上部製氷用水貯留部20に戻される。 In one embodiment, a bottom plate 52 having a mesh-like opening is provided inside the lower ice making water storage portion 42. The internal space of the lower ice making water storage portion 42 is partitioned by the bottom plate 52 into an upper region including an outlet opening 54 of the tube ice Ti and a lower region including an outlet opening communicating with the water circulation pipe 44. As a result, the tube ice Ti cut by the cutter 38 and the water partially melted in the deicing step are separated by the bottom plate 52, and only the tube ice Ti can be discharged from the outlet opening 54 to the outside of the lower ice making water storage portion 42. .. The ice-making water Wi that has flowed down to the lower region is returned to the upper ice-making water storage unit 20 via the water circulation pipe 44.

一実施形態では、レシーバ68の気相部と内部空間Sとに連通するホットガス供給路72を備える。この実施形態によれば、ホットガス供給路72を備えることで、脱氷工程においてホットガスを内部空間Sに供給できる。この工程では凝縮器66の冷却運転は行わないため、レシーバ気相部は高温に維持されている。また、ホットガス供給路72を介してレシーバ68の気相部からホットガスを供給するとき、ホットガスの供給に伴ってレシーバ72内が減圧され、レシーバ内の減圧に伴ってレシーバ内の冷媒液が気化するので、気化した冷媒ガスによりホットガスを補充できる。In one embodiment, a hot gas supply path 72 communicating with the gas phase portion of the receiver 68 and the internal space S 0 is provided. According to this embodiment, by providing the hot gas supply passage 72 can supply hot gas to the internal space S 0 in the de ice process. Since the condenser 66 is not cooled in this step, the receiver gas phase portion is maintained at a high temperature. Further, when hot gas is supplied from the gas phase portion of the receiver 68 via the hot gas supply path 72, the inside of the receiver 72 is depressurized by the supply of the hot gas, and the refrigerant liquid in the receiver is depressurized by the decompression in the receiver. Is vaporized, so hot gas can be replenished with the vaporized refrigerant gas.

一実施形態では、冷媒として自然冷媒(例えば、NH、CO、プロパン、イソブタン等)、HFC冷媒(例えば、R134a、R32、R404A、R410A等)、又はHFO冷媒(例えば、R1234yfなど)が用いられる。
この実施形態によれば、上記冷媒のうち例えばNHは大きな表面張力を有する。この表面張力は冷媒液膜が伝熱管14の周方向へ回り込むように作用するので、伝熱管周方向で均一な冷媒液膜を形成できる。これによって、製氷用水Wiとの熱伝達量を向上できる。
In one embodiment, a natural refrigerant (eg, NH 3 , CO 2 , propane, isobutane, etc.), an HFC refrigerant (eg, R134a, R32, R404A, R410A, etc.), or an HFO refrigerant (eg, R1234yf, etc.) is used as the refrigerant. Be done.
According to this embodiment, among the above-mentioned refrigerants, for example, NH 3 has a large surface tension. Since this surface tension acts so that the refrigerant liquid film wraps around the heat transfer tube 14 in the circumferential direction, a uniform refrigerant liquid film can be formed in the circumferential direction of the heat transfer tube. As a result, the amount of heat transfer to the ice-making water Wi can be improved.

幾つかの実施形態によれば、冷媒量を低減して装置をコンパクト化でき、かつ製氷及び脱氷の高効率化を可能にする流下液膜式製氷機を実現できる。 According to some embodiments, it is possible to realize a flow-down liquid film type ice maker capable of reducing the amount of refrigerant, making the device compact, and increasing the efficiency of ice making and deicing.

10 製氷機
12 ケーシング
14 伝熱管
16 冷媒ヘッダ
18、36 管板
20 上部製氷用水貯留部
22、30 冷媒入口管
24 冷媒循環管
26 冷媒循環ポンプ
28 冷媒出口管
32 冷媒出口管兼ホットガス出口管
34 ホットガス入口管
38 カッタ
38a 回転軸
40 駆動部
42 下部製氷用水貯留部
44 水循環管
46 水循環ポンプ
48 レベルセンサ
50 制御部
52 底板
54 出口開口
60 冷凍機
62 冷媒回路
64 圧縮機
66 凝縮器
68 レシーバ
70 膨張弁
72 ホットガス供給路
H 冷媒液位
内部空間
Ti チューブアイス
Wi 製氷用水
r 冷媒液
10 Ice maker 12 Casing 14 Heat transfer tube 16 Refrigerant header 18, 36 Tube plate 20 Upper ice making water storage section 22, 30 Refrigerant inlet pipe 24 Refrigerant circulation pipe 26 Refrigerant circulation pump 28 Refrigerant outlet pipe 32 Refrigerant outlet pipe and hot gas outlet pipe 34 Hot gas inlet pipe 38 Cutter 38a Rotating shaft 40 Drive unit 42 Lower ice making water storage unit 44 Water circulation pipe 46 Water circulation pump 48 Level sensor 50 Control unit 52 Bottom plate 54 Outlet opening 60 Refrigerant 62 Refrigerant circuit 64 Compressor 66 Condenser 68 Receiver 70 Expansion valve 72 Hot gas supply path H Refrigerant liquid level S 0 Internal space Ti Tube ice Wi Ice making water r Refrigerant liquid

Claims (12)

ケーシングと、
前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、
前記伝熱管の外面側で前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、
を備え、
前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダから前記冷媒の供給を受けるように構成され
前記冷媒の入口が前記ケーシングの下部に前記内部空間に連通するように設けられ、
前記内部空間の下部に貯留した冷媒液を前記ヘッダに戻すための冷媒循環路を備える
ことを特徴とする流下液膜式チューブアイス製氷機。
Casing and
A plurality of heat transfer tubes extending in the vertical direction inside the casing,
A header provided on the outer surface side of the heat transfer tube in the area of the internal space of the casing where the upper end of the heat transfer tube is arranged to store the refrigerant, and
With
The heat transfer tube is configured to receive the refrigerant from the header so that a liquid film of the refrigerant is formed on the outer surface of the heat transfer tube .
The inlet of the refrigerant is provided at the lower part of the casing so as to communicate with the internal space.
A flow-down liquid film type tube ice maker comprising a refrigerant circulation path for returning the refrigerant liquid stored in the lower part of the internal space to the header.
前記伝熱管の上端が固定される管板と、
前記管板の上方に形成された上部製氷用水貯留部と、
を備え、
前記ヘッダは、前記管板の下方に形成されたことを特徴とする請求項1に記載の流下液膜式チューブアイス製氷機。
A tube plate to which the upper end of the heat transfer tube is fixed and
An upper ice-making water storage section formed above the tube plate,
With
The flow-down liquid film type tube ice maker according to claim 1, wherein the header is formed below the tube plate.
前記冷媒の出口が前記ケーシングの上部に前記内部空間に連通するように設けられることを特徴とする請求項1又は2に記載の流下液膜式チューブアイス製氷機。 The flow-down liquid film type tube ice maker according to claim 1 or 2 , wherein the outlet of the refrigerant is provided at the upper part of the casing so as to communicate with the internal space. 前記内部空間の下部に内部空間高さの1/10以下の液位を有する前記冷媒が貯留されることを特徴とする請求項1乃至の何れか一項に記載の流下液膜式チューブアイス製氷機。 The flow-down liquid film type tube ice according to any one of claims 1 to 3 , wherein the refrigerant having a liquid level of 1/10 or less of the height of the internal space is stored in the lower part of the internal space. Ice machine. ケーシングと、
前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、
前記伝熱管の外面側で前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、
を備え、
前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダから前記冷媒の供給を受けるように構成され、
前記ケーシングの下部に前記内部空間に連通するように形成されたホットガス入口と、
前記ケーシングの上部に前記内部空間に連通するように形成されたホットガス出口と、
を備えることを特徴とする流下液膜式チューブアイス製氷機。
Casing and
A plurality of heat transfer tubes extending in the vertical direction inside the casing,
A header provided on the outer surface side of the heat transfer tube in the area of the internal space of the casing where the upper end of the heat transfer tube is arranged to store the refrigerant, and
With
The heat transfer tube is configured to receive the refrigerant from the header so that a liquid film of the refrigerant is formed on the outer surface of the heat transfer tube.
A hot gas inlet formed at the lower part of the casing so as to communicate with the internal space,
A hot gas outlet formed on the upper part of the casing so as to communicate with the internal space,
Downstream further comprising a liquid-film tube ice ice machine.
前記複数の伝熱管の下方に設けられ、脱氷時に前記伝熱管の内面から自重で滑り落ちるチューブアイスを切断するためのカッタを備えることを特徴とする請求項1乃至の何れか一項に記載の流下液膜式チューブアイス製氷機。 It provided under the plurality of heat transfer tubes, according to any one of claims 1 to 5, characterized in that it comprises a cutter for cutting the tube ice slide down by its own weight from the inner surface of the heat exchanger tube during removal of ice Flowing liquid film type tube ice maker. 前記複数の伝熱管の下方に設けられた下部製氷用水貯留部と、
前記下部製氷用水貯留部と前記上部製氷用水貯留部とを結ぶ水循環路と、
前記水循環路に設けられ、前記下部製氷用水貯留部に溜まった製氷用水を前記上部製氷用水貯留部に循環するための水循環ポンプと、
前記下部製氷用水貯留部に溜まった前記製氷用水の液面レベルを検出するレベルセンサと、
前記レベルセンサの検出値に基づいて前記水循環ポンプの作動を制御する制御部と、
を備えることを特徴とする請求項2に記載の流下液膜式チューブアイス製氷機。
A lower ice-making water storage unit provided below the plurality of heat transfer tubes, and
A water circulation path connecting the lower ice making water storage section and the upper ice making water storage section,
A water circulation pump provided in the water circulation passage and for circulating ice making water accumulated in the lower ice making water storage section to the upper ice making water storage section.
A level sensor that detects the liquid level of the ice-making water accumulated in the lower ice-making water storage unit, and
A control unit that controls the operation of the water circulation pump based on the detected value of the level sensor,
The flow-down liquid film type tube ice maker according to claim 2, further comprising.
前記ヘッダに供給される前記冷媒を生成するための冷凍機を備え、
前記冷凍機は、
冷媒回路と、
前記冷媒回路に設けられ、圧縮機、凝縮器、レシーバ及び膨張弁を含む冷凍サイクル構成機器と、
を備え、
前記膨張弁を経て減圧された前記冷媒が前記ケーシングに供給されるように構成されることを特徴とする請求項1乃至の何れか一項に記載の流下液膜式チューブアイス製氷機。
A refrigerator for producing the refrigerant supplied to the header is provided.
The refrigerator
Refrigerant circuit and
Refrigerant cycle components provided in the refrigerant circuit, including a compressor, condenser, receiver and expansion valve.
With
The flow-down liquid film type tube ice maker according to any one of claims 1 to 7 , wherein the refrigerant decompressed through the expansion valve is supplied to the casing.
前記レシーバの気相部と前記内部空間とに連通するホットガス供給路を備えることを特徴とする請求項に記載の流下液膜式チューブアイス製氷機。 The flow-down liquid film type tube ice maker according to claim 8 , further comprising a hot gas supply path communicating the gas phase portion of the receiver and the internal space. 前記ケーシングの前記内部空間の下方領域に連通するように前記ケーシングの下部に設けられた冷媒入口管をさらに備え、
前記膨張弁を経て減圧された前記冷媒は、前記冷媒入口管を介して前記内部空間に供給されるように構成された
請求項8又は9に記載の流下液膜式チューブアイス製氷機。
A refrigerant inlet pipe provided at the bottom of the casing is further provided so as to communicate with the lower region of the internal space of the casing.
The flow-down liquid film type tube ice maker according to claim 8 or 9 , wherein the refrigerant decompressed through the expansion valve is supplied to the internal space via the refrigerant inlet pipe.
ケーシングと、Casing and
前記ケーシングの内部に鉛直方向に沿って延在する複数の伝熱管と、A plurality of heat transfer tubes extending in the vertical direction inside the casing,
前記伝熱管の外面側で前記ケーシングの内部空間のうち前記伝熱管の上端部が配置された領域に設けられ、冷媒を貯留するためのヘッダと、A header provided on the outer surface side of the heat transfer tube in the area of the internal space of the casing where the upper end of the heat transfer tube is arranged to store the refrigerant, and
を備える流下液膜式チューブアイス製氷機であって、It is a flowing liquid film type tube ice maker equipped with
前記伝熱管は、該伝熱管の外面に前記冷媒の液膜が形成されるよう前記ヘッダから前記冷媒の供給を受けるように構成され、The heat transfer tube is configured to receive the refrigerant from the header so that a liquid film of the refrigerant is formed on the outer surface of the heat transfer tube.
前記ヘッダに供給される前記冷媒を生成するための冷凍機を備え、A refrigerator for producing the refrigerant supplied to the header is provided.
前記冷凍機は、The refrigerator
冷媒回路と、Refrigerant circuit and
前記冷媒回路に設けられ、圧縮機、凝縮器、レシーバ及び膨張弁を含む冷凍サイクル構成機器と、Refrigerant cycle components provided in the refrigerant circuit, including a compressor, condenser, receiver and expansion valve.
を備え、With
前記膨張弁を経て減圧された前記冷媒が前記ケーシングに供給されるように構成され、The refrigerant decompressed through the expansion valve is configured to be supplied to the casing.
前記ケーシングの前記内部空間の下方領域に連通するように前記ケーシングの下部に設けられた冷媒入口管をさらに備え、A refrigerant inlet pipe provided at the bottom of the casing is further provided so as to communicate with the lower region of the internal space of the casing.
前記膨張弁を経て減圧された前記冷媒は、前記冷媒入口管を介して前記内部空間に供給されるように構成された流下液膜式チューブアイス製氷機。A flow-down liquid film type tube ice maker configured so that the refrigerant decompressed through the expansion valve is supplied to the internal space via the refrigerant inlet pipe.
前記冷媒は、自然冷媒、HFC冷媒又はHFO冷媒であることを特徴とする請求項1乃至11の何れか一項に記載の流下液膜式チューブアイス製氷機。 The flow-down liquid film type tube ice maker according to any one of claims 1 to 11, wherein the refrigerant is a natural refrigerant, an HFC refrigerant, or an HFO refrigerant.
JP2020562001A 2018-12-26 2018-12-26 Flowing liquid film type tube ice maker Active JP6965464B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047713 WO2020136735A1 (en) 2018-12-26 2018-12-26 Falling liquid film type tube ice machine

Publications (2)

Publication Number Publication Date
JPWO2020136735A1 JPWO2020136735A1 (en) 2021-09-09
JP6965464B2 true JP6965464B2 (en) 2021-11-10

Family

ID=71129280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562001A Active JP6965464B2 (en) 2018-12-26 2018-12-26 Flowing liquid film type tube ice maker

Country Status (2)

Country Link
JP (1) JP6965464B2 (en)
WO (1) WO2020136735A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452302A (en) * 1981-05-11 1984-06-05 Chicago Bridge & Iron Company Heat exchanger with polymeric-covered cooling surfaces and crystallization method
US4704877A (en) * 1986-10-02 1987-11-10 Cbi Industries, Inc. Apparatus and method of freezing a feed liquid
JP3464267B2 (en) * 1994-03-04 2003-11-05 株式会社東芝 Gas turbine intake cooling system
JPH11201601A (en) * 1998-01-07 1999-07-30 Hitachi Ltd Thermal storage system
JP2001004255A (en) * 1999-06-21 2001-01-12 Hoshizaki Electric Co Ltd Automatic ice maker and operating method thereof
JP2003042621A (en) * 2001-07-31 2003-02-13 Fukushima Industries Corp Ice making machine

Also Published As

Publication number Publication date
WO2020136735A1 (en) 2020-07-02
JPWO2020136735A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
RU2330221C2 (en) Refrigirator with dosing unit for over cooled drink and method of its control (versions)
CN104160225B (en) Electric refrigerator and method of work thereof
US10508852B2 (en) Refrigerator and method of supplying water in refrigerator
CN103890526B (en) Ice thermal storage tank and water cooler having the same
JP2016533470A (en) freezer
CN105020978A (en) A beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage
CN101166424A (en) Refrigeration system and method for beverage dispenser
JP5962054B2 (en) Auger ice machine and cooling system
CN105387653A (en) Evaporator and water chilling unit having same
CN106257213A (en) Refrigerator and the method manufacturing the ice machine for refrigerator
JP6965464B2 (en) Flowing liquid film type tube ice maker
CN106257172B (en) Ice pan device and method
JP7350561B2 (en) Falling film heat exchanger and falling film tube ice maker
KR200489423Y1 (en) Liquid Phase Beverage Supercooling Device
KR20120076327A (en) Ice making apparatus for manufacturing different shape ices
US9772133B2 (en) Ice making device
KR101939048B1 (en) Double Tube Type Sea Water Sherbet Ice Generator
KR101659965B1 (en) Cold water supply apparatus using an ice maker
CN107270602A (en) Ice maker for refrigerator
JP6792655B2 (en) Cooling system for ice machines
KR101948001B1 (en) Water purifier having ice-maker
KR101888397B1 (en) Sea Water Sherbet type Ice Generator With Scraper Forming Water Path
JP5719996B2 (en) Auger ice machine
KR102603491B1 (en) Cooling apparatus for ice maker and ice maker having the same
KR20060110549A (en) Structure of accelerating ice manufacture for refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6965464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150