WO2020135784A1 - 一种医疗辅助机器人 - Google Patents

一种医疗辅助机器人 Download PDF

Info

Publication number
WO2020135784A1
WO2020135784A1 PCT/CN2019/129468 CN2019129468W WO2020135784A1 WO 2020135784 A1 WO2020135784 A1 WO 2020135784A1 CN 2019129468 W CN2019129468 W CN 2019129468W WO 2020135784 A1 WO2020135784 A1 WO 2020135784A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical
robot according
arm
positioning
marker
Prior art date
Application number
PCT/CN2019/129468
Other languages
English (en)
French (fr)
Inventor
刘文博
楚晨龙
韩萌
张东东
金宝峰
Original Assignee
华科精准(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70192821&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020135784(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 华科精准(北京)医疗科技有限公司 filed Critical 华科精准(北京)医疗科技有限公司
Priority to AU2019415870A priority Critical patent/AU2019415870B2/en
Priority to CN201990001269.8U priority patent/CN215778612U/zh
Publication of WO2020135784A1 publication Critical patent/WO2020135784A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the invention relates to the technical field of medical equipment, in particular to a medical assistant robot.
  • Puncture surgery is one of the common types of surgery in clinical surgery. Specific applications include but are not limited to hematoma aspiration, cyst aspiration, tissue biopsy, and medication.
  • the location of the puncture needle is generally confirmed based on the CT image of the patient, and then the doctor will roughly determine the puncture path and puncture according to the location of the lesion. For safety, usually 1-2 cm per needle is done.
  • the design of the puncture path in this method relies heavily on the judgment of the doctor's experience. There is also a risk of bleeding due to puncture of the blood vessel. For small and deep lesions, there is a large error and the risk of not reaching the lesion.
  • Stereotactic methods include stereotactic frames and stereotactic surgical robots. In both methods, the head CT is scanned in advance, and the spatial coordinates of each position of the head are obtained through three-dimensional reconstruction. The doctor designs the approach under this coordinate system, and then also implements accurate puncture path guidance according to the coordinates during the operation.
  • Stereotactic technology has obvious advantages over traditional surgical methods: it is accurate, it can avoid important tissues in advance, and ensure the safety and effectiveness of surgery.
  • the existing technology has a problem of long preparation time.
  • the use of stereotactic technology will greatly increase the preparation time of the operation, which is not suitable for emergency surgery in hemorrhagic stroke.
  • it is necessary to carry out Marked scanning CT increases the patient's radiation exposure; additional trauma can be caused during the installation of the head frame.
  • stereotactic surgical robots are expensive and difficult to promote in general hospitals, which cannot benefit the majority of patients.
  • the inventor proposes a medical assistant robot with small size and flexible installation.
  • the medical assistant robot has fast response speed, accurate puncture positioning, small trauma, small size and light weight. , Low price, easy to use in combination with existing technology.
  • the invention provides a medical assistant robot, including:
  • the position adjustment device includes a base, a power structure, and at least two sets of moving components.
  • Each set of moving components contains two components that can move relatively, and the power structure can promote the relative motion of the two components;
  • Control device used to adjust the power structure and communicate with the outside;
  • the guide device is used to define the movement path of the surgical instrument
  • the position adjusting device is connected to the end of the fixed connecting device, and the guiding device is hinged with the moving component of the position adjusting device through a connecting piece, so that the guiding device changes the spatial position according to the movement of the moving component, thereby realizing the guiding device Positioning in three dimensions.
  • the position adjustment device of the medical assistant robot of the present invention includes two sets of moving components, each set of moving components includes two planes that are arranged in parallel and relatively movable, and the power structure can cause the two planes of each moving component to Relative movement in mutually perpendicular directions.
  • the guide device of the medical assistant robot of the present invention may have any suitable shape, as long as it has a through hole, an elongated instrument can be passed through the through hole and positioned, and the through hole is preferably cylindrical or conical, and most preferably cylindrical ; Through holes can have different inner diameters to meet different sizes of medical devices.
  • a part of the medical assistant robot of the present invention can be detected in medical imaging, such as a base, a connector, a guide, a part of the base, a part of the connector, a part of the guide, etc.
  • the guidance device of the medical assistant robot of the present invention includes a part capable of detecting its position in medical imaging, that is, the guidance device or a part thereof is capable of being imaged in medicine, such as magnetic resonance imaging (MRI), X-ray computer Tomographic imaging (CT), or X-ray imaging and other existing medical imaging technologies are made of materials that have detected positions, so that the spatial position of the guide device can be determined in medical imaging, and then can be adjusted so that the guide device reaches the specified position.
  • MRI magnetic resonance imaging
  • CT X-ray computer Tomographic imaging
  • X-ray imaging and other existing medical imaging technologies are made of materials that have detected positions, so that the spatial position of the guide device can be determined in medical imaging, and then can be adjusted so that the guide device reaches the specified position.
  • the part of the guide device that can be monitored in medical imaging has a special structure, which can be detected in medical imaging and then calculate the spatial position of the through hole of the guide device, for example, setting two at different heights Parallel semi-arc structures of different lengths, based on medical images, identify the position of two parallel semi-arc structures, and then calculate the spatial position of the central through hole of the guide; but the design of special structures is not limited to this, as long as it can be determined by calculation The spatial position of the center through hole of the guide device is sufficient.
  • the medical assistant robot of the present invention may further include positioning markers, which can be fixedly installed; they can also be detachable; and can also be installed or constitute independent positioning accessories through a pre-designed connection structure.
  • positioning markers include but are not limited to: markers, optical markers, magnetic positioning markers, etc. whose positions can be detected in medical imaging (for example, MRI, CT, X-ray and other existing medical imaging technologies); optical markers can It is an active optical marker that actively emits light, or a passive optical marker that passively reflects light. Different positioning markers need to be used with different systems.
  • the entire puncture auxiliary robot needs to be compatible with the corresponding medical imaging device.
  • the robot of the present invention is compatible with magnetic resonance, mainly assembled with non-magnetic components, and obtains images and positions of the surgical site of interest and the robot of the present invention in magnetic resonance imaging.
  • the positioning marker may be provided at any suitable part of the robot of the present invention except for the fixed connection device.
  • the positioning marker is provided on the base of the position adjustment device, and a position feedback device is added to reduce the error of the power structure during use, to prevent the conduction error when calculating the position of the guide device based on the position of the base.
  • the positioning marker is provided on the guide device.
  • the medically-assisted robot of the present invention uses a positioning marker whose position can be detected by CT, a marker having any suitable material and shape can be used; preferably, the positioning marker is made of a high-density material, and it has Clearer contours and regular geometric shapes; more preferably metal spheres; in one embodiment, at least three metal spheres are placed on the base, the position of the base is determined by the position of the metal spheres in CT, in order to reduce An error occurs during the calculation of the position of the guide device based on the base, and a position feedback device is added to ensure the position accuracy of the guide device.
  • the positioning marker is made of a high-density material, and it has Clearer contours and regular geometric shapes; more preferably metal spheres; in one embodiment, at least three metal spheres are placed on the base, the position of the base is determined by the position of the metal spheres in CT, in order to reduce An error occurs during the calculation of the position of the guide device based on the base, and a position
  • At least three metal spheres are provided on the guide device, and the spatial position of the guide device can be determined by the volume of the metal spheres and the installation position in the CT.
  • the positioning markers are used to mark the spatial positions of the first connector and the second connector, respectively, and then the spatial position of the guide device can be calculated.
  • the aforementioned metal ball can be made of metal compatible with magnetic resonance, so that the medical assistant robot of the present invention can be compatible with both T and MRI methods.
  • the CT equipment may be any suitable equipment, including but not limited to O-arm CT, C-arm CT, and the like.
  • the distribution and setting of the marker can refer to the description of the aforementioned CT imaging, and the spatial position of the calibrated structure can be obtained through the relevant positioning marker. Those skilled in the art are known and will not repeat them.
  • the optical markers can be active optical markers that can emit light or passive optical markers that can reflect light; optical markers are in the field Those skilled in the art are familiar with various shapes and features, such as ball-shaped markers, patterns with corners, and so on.
  • a binocular camera is used to monitor the light emitted by the actively illuminated spherical marker or the light reflected by the passively reflected spherical marker (reflective ball) to determine the spatial position of the spherical marker and the guide;
  • a light emitting unit is also required. The light emitting unit emits light to the reflective ball, and the camera monitors the light reflected by the reflective ball to calculate the position of the reflective ball.
  • the medical assistant robot of the present invention uses a matching electromagnetic sensing device to monitor the spatial position of the magnetic positioning device, thereby obtaining the spatial position of a component (such as a guide) marked by the magnetic positioning marker .
  • Magnetic positioning markers can be used to track different parts of the medical assistant robot of the present invention, such as bases, connectors, guides, and the like.
  • the fixed connection device of the medical assistant robot of the present invention is various structures that can fix the position adjustment device in a proper position relative to the patient, such as a gimbal arm, a bracket, an arc frame, or a multi-degree-of-freedom mechanical connection structure.
  • the fixed connection device is an arc-shaped frame that can slide along the guide rail on the hospital bed, and the position adjustment device is connected to the arc-shaped frame, and can slide and lock on the arc-shaped frame at any position.
  • the fixed connection device is a rectangular frame that can slide along the guide rail on the hospital bed, and the position adjustment device is connected to the beam of the rectangular frame, and can slide and lock on the beam at any position.
  • the fixed connection device is a universal arm containing at least one joint, preferably, the universal arm contains three joints, including a fastening structure, a support arm, a first joint, a first adjusting arm, a second The joint, the second adjusting arm, the third joint and the connecting arm; the fastening structure connects the fixture and the supporting arm, the first joint connects the supporting arm and the first adjusting arm; the second joint connects the first adjusting arm and the second adjusting arm, The third joint connects the second adjusting arm and the connecting arm.
  • the fixed connection device is a multi-section drawing extension device that can be pulled to the desired length.
  • the power structure of the puncture assisting robot according to the present invention may be various solutions for realizing that the two parts of the two sets of moving components in the position adjustment device move as needed, for example, a motor, a wire driving structure, a torque transmission structure, and the like.
  • the power structure of the puncture assisting robot of the present invention is a motor.
  • four stepping motors are used.
  • the stepping motor is connected to the plane through the motion pair, and the stepping motor pushes the movement of a plane through the motion pair.
  • the two stepping motors realize the relative movement of the two planes of a set of moving components.
  • the two planes can each move in directions perpendicular to each other, so that the connected connector can move in two dimensions.
  • the motion pair can be a screw and thread structure.
  • the stepper motor drives the screw movement, which in turn drives the plane movement.
  • the movement of the two sets of moving components drives the movement and positioning of the guide device in the three-dimensional space.
  • the motor can be a non-magnetic motor, that is, the motor is compatible with magnetic resonance.
  • the puncture assistant robot of the present invention includes a control device, which is used to regulate and control the power structure and communicate with the outside.
  • the control device has the capability of data processing, receiving and sending, receiving commands from the user or the matching navigation system, and issuing commands to the power structure, so as to adjust the position of the guiding device so that it reaches the desired spatial position.
  • the control device may exist in various ways, for example, as a separate entity, or it may be incorporated into the control center of the commonly used navigation system, or it may be integrated with the structure of the position adjustment device.
  • the control device can perform wired control, or can access the network through a wireless device for control.
  • the control device can interact with data and commands of the mobile smart device of the hospital, such as a tablet computer, etc. through wireless connection, thereby facilitating the user to control the medical assistant robot.
  • FIG. 1 is a schematic structural diagram of a medical assistance robot according to the present invention.
  • FIG. 2 is a schematic structural diagram showing an embodiment of the fixed connection structure 100 of the medical assistance robot of FIG. 1;
  • FIG. 3 is a schematic view of an embodiment of parts 200 and 400 in FIG. 1;
  • Figure 4 shows the internal structure of part 200 in Figure 3;
  • FIG. 5 is a schematic diagram of a positioning accessory 500 according to an embodiment of the present invention.
  • FIG. 6 is a schematic view of a state in which the positioning accessory 500 is used in combination with other parts during use of the medical assistance robot according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a medical assistance robot according to another embodiment of the present invention, in which the control device 300 exists alone, and the position adjustment device 200 is controlled through a wired connection;
  • FIG. 8 is a structural diagram of a medical assistance robot according to an embodiment of the present invention.
  • FIG. 9 shows a structure of a guide device according to an embodiment of the present invention.
  • FIG. 10 shows a design of a positioning marker according to an embodiment of the present invention, and the positioning marker is assembled on a guide device.
  • FIG. 11 shows a design of a positioning marker according to another embodiment of the present invention, and the positioning marker is assembled on a base.
  • FIG. 12 shows a design of a positioning marker according to yet another embodiment of the present invention, and the positioning marker is assembled on a connector.
  • the medical assistant robot includes: a fixed connection device 100, the proximal end of which is connected to a fixed object, such as a wall, a bed, a ceiling, a floor, a head frame, etc., and the end is connected to the base 201 of the position adjustment device 200 to adjust the position
  • the device 200 is fixed at a desired position;
  • the position adjustment device 200 includes a base, a power structure, and at least two sets of moving components, which can realize relative movement between the components, and can drive the guide device 400 to a desired position;
  • a control device 300 to control the movement of the position adjustment device 200, and to achieve communication with other systems;
  • the guide device 400 which limits the medical device to a specified spatial position and direction, which usually contains a through hole, which is suitable for defining an elongated medical device, For example, drill bit, electrode, puncture needle, etc.;
  • the fixed connection device 100 connects a fixed object and a position adjustment device 200.
  • the fixed object 000 may be a wall, a stage, a ceiling, a hospital bed, or a head A frame or the like, preferably a hospital bed, to keep the position adjustment device 200 closer to the patient and relatively fixed in position;
  • the fastening structure 101 connects the fixture 000 with the support arm 102, and the first joint 103 connects the support arm 102 and the first adjustment arm 104, preferably universal adjustment;
  • the second joint 105 connects the first adjustment arm 104 and the second adjustment arm 106, the third joint 107 connects the second adjustment arm 106 and the connection arm 108;
  • the fastening device 101 can be various clamps Tight structures, such as spring clips.
  • the support arm 102, the first adjusting arm 104, the second adjusting arm 106, and the connecting arm 108 are long rigid structures, such as a cylinder, a rectangular parallelepiped, and the like. 8, a specific exemplary structure is shown, wherein the fastening device 101 is not shown, the support arm 102 is shown, the first joint 103 connects the support arm 102 and the first adjustment arm 104, the first joint 103 may Realize 360 degree rotation and can be tightened and fixed; the second joint 105 connects the first adjusting arm 104 and the second adjusting arm 106, the third joint 107 connects the second adjusting arm 106 and the connecting arm 108; the connecting arm 108 connects the position adjusting device 200.
  • the position adjusting device 200 is hinged to the guide device 400.
  • the position adjustment device includes a housing 2001, a base 201, a power structure, a first moving assembly, and a second moving Components.
  • the first moving component includes a first plane 211, a second plane 212, and the corresponding power components are a first motor 213 and a second motor 214;
  • the second moving component includes a third plane 221 and a fourth plane 222 (not shown here) ), the corresponding power structure is the third motor 223, the fourth motor 224;
  • the first motor 213 controls the movement of the first plane 211 through the motion pair, the second motor 214 controls the movement of the second plane 212 through the motion pair, the second plane
  • the movement directions of 212 and the first plane 211 are perpendicular to each other, so as to drive the first connecting piece 215 connected to the first plane 211 to move in two dimensions;
  • the third motor 223 controls the movement of the third plane 221 through the motion pair.
  • the four motors 224 control the movement of the fourth plane 222 through the motion pair, and the movement directions of the fourth plane 222 and the third plane 221 are perpendicular to each other, thereby driving the movement of the second connecting member 225 connected to the third plane 221 in two dimensions ; Through the movement of the first connector 215 and the second connector 225, the controlled positioning of the guide catheter 401 in three-dimensional space is achieved.
  • the guide device 400 may include only the guide catheter 401, or may have special structures 402 and 403, or be equipped with positioning accessories.
  • the position adjustment device 200 and the guide device 400 are made of suitable materials (such as engineering plastics, etc.).
  • the motors (first motor 213, second motor 214, third motor 223, and fourth motor 224) are The non-magnetic motor, the fixed connection device 100, other parts of the position adjustment device 200, and the guide device 400 are made of magnetic resonance compatible materials, such as engineering plastics and rubber.
  • the puncture assisting robot of the present invention can be used under magnetic resonance conditions.
  • the control device 300 is used to control the movement of the position adjusting device 200.
  • the control device may be a separate module or an integrated device. In the case of separate existence, it can effectively control the stepper motor through a wired or wireless connection, in a specific example, the first motor 213, the second motor 214, the third motor 223, and the fourth motor 224.
  • FIG. 1 shows an example in which the control device is integrated into the position adjustment device 200.
  • Fig. 7 shows another embodiment in which the control device exists alone, and the position adjustment device 200 is controlled through an effective communication connection.
  • the control device can be integrated into other commonly used instruments, or directly accept commands from other instruments.
  • the control center of the surgical navigator can be used to control After the device 300 relays, it controls the puncture assisting robot of the present invention.
  • the guiding device 400 is a structure containing a through hole, which can allow various elongated medical instruments to pass through and determine the direction, and the shape of the guiding device 400 is not limited.
  • the through hole has a cylindrical shape, and may have different aperture specifications to suit different medical devices.
  • the guide device 400 further includes positioning markers.
  • the positioning markers may be integrated on the guide catheter 401 or may be detachable independent components. There are many options for positioning markers. Choose the most appropriate solution according to your needs. For example, positioning markers are components that can monitor the position in medical imaging (MRI, CT, X-ray), or can detect the position through electromagnetic navigation. Magnetic positioning markers, or optical markers.
  • three or more positioning markers constitute an independent accessory, such as positioning accessory 500, which has a special geometric structure and is equipped with four spherical optical markers (first spherical optical marker 511 , The second ball-shaped optical marker 512, the third ball-shaped optical marker 513, the fourth ball-shaped optical marker 514), as shown in FIG.
  • the positioning accessory 500 After inserting the through hole of the guide catheter 401, the light emitted by the optical marker is captured by the camera, and then the position of the positioning accessory 500 can be determined through calculation, thereby determining the spatial location of the guide catheter 401 and the spatial location of the through hole.
  • the positioning accessory 500 is a special geometric structure equipped with four spherical optical markers, namely a first spherical optical marker 511, a second spherical optical marker 512, and a third spherical optical marker Marker 513 and fourth spherical optical marker 514, as shown in FIG.
  • optical marker can reflect light
  • the light emitted by the light emitting unit is reflected by the passive optical marker, received by the camera, and then determined by calculation
  • the spatial position of the duct 401 and the spatial position of its through hole are not limited to spherical optical markers, but also include existing techniques known to those skilled in the art, such as corner points, as long as optical tracking can be achieved.
  • the positioning accessory 500 is detachable, and includes a body 501 and a tapered portion 502.
  • the body 501 is equipped with four spherical optical markers (the first spherical optical marker 511) , The second spherical optical marker 512, the third spherical optical marker 513, the fourth spherical optical marker 514).
  • insert the tapered portion 502 of the positioning accessory 500 into the through hole of the guide catheter 401 calibrate the position of the guide catheter 401 through the body 501, and display the position of the catheter in the virtual three-dimensional model of the software.
  • Preoperative planning is carried out, the guide catheter 401 is adjusted to a desired position, and then surgical instruments such as electric drills, guide wires, electrodes and the like can be passed through the through hole of the guide catheter 401 to perform stereotactic surgery.
  • a part of the medical assistant robot of the present invention can be detected in medical imaging, such as a base, a connector, a guide, a part of the base, a part of the connector, a part of the guide, etc.
  • the guide device 400 of the medical assistant robot of the present invention or a part thereof is configured to be directly positionable in medical imaging.
  • the guide catheter 401 can be made of a specific material, so that it can display its structure in medical imaging (for example, MRI, CT, X-ray and other existing medical imaging technologies), which can be determined by calculation The center position and direction of its through hole.
  • medical imaging for example, MRI, CT, X-ray and other existing medical imaging technologies
  • a part 402 and 403 of the guide catheter 401 are composed of a substance that can display its outline and position in medical imaging, and 402 and 403 are a part of the wall of the guide catheter 401, and the appearance is presented It is two parallel arc-shaped structures with different lengths, so that the central position and direction of the through hole of the guide catheter 401 can be calculated.
  • the structural design of this embodiment is merely exemplary, and any structure that can determine the center position and direction of the through hole through calculation is included in the scope of the present invention.
  • the medical assistant robot of the present invention contains a marker capable of displaying the position in medical imaging, so that the guide device 400 can be positioned in medical imaging.
  • the medical assistant robot of the present invention is inlaid with three positioning markers 601, 602, and 603 on the guide catheter 401, the size and position of the marker are known, and the size of the guide catheter 401 It is known that in medical imaging, the orientation and position of the guide catheter 401 can be calculated from the positions of the three positioning markers.
  • the number of markers can be more than three, or it can be detachable, that is, it can be installed in place before use.
  • the medical assistant robot of the present invention is equipped with positioning markers on the base 201 or a fixed position relative to the base 201.
  • three positioning markers 601, 602 are shown And 603 since the installation position is known, the position of the base 201 can be determined by positioning the markers 601, 602, and 603 in medical imaging, and the orientation of the guide catheter 401 can be calculated based on the movement of the motor and the base 201 by the control device 300 And location.
  • a position feedback device is added to this solution to confirm that the movement distance recorded based on the motor rotation is completely correct.
  • the number of positioning markers can exceed 3
  • the shape can be other shapes that can calculate the geometric center, and the positioning markers can also be detachable.
  • the medical assistant robot of the present invention is equipped with positioning markers on a connection piece or a plane with a fixed positional relationship with the connection piece.
  • FIG. 12 an example is shown, including two sets of positioning markers .
  • the first group of markers 601, 602 and 603 can determine the spatial position of the first connector 215, the second group of markers 604, 605 and 606 can determine the spatial position of the second connector 225, so that the guide catheter 401 can be calculated Direction and location.
  • the number of positioning markers in each group can exceed 3, and the shape can be other shapes that can calculate the geometric center, or it can be detachable.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • connection should be understood in specific situations.

Abstract

一种医疗辅助机器人,包括:固定连接装置(100),用于固定其末端所连接的结构;位置调整装置(200),包含基座、动力结构、以及至少两套移动组件,每套移动组件含有可相对移动的两个部件,动力结构能够促使两个部件进行相对运动;控制装置,用于调控动力结构以及与外部进行通讯连接;导向装置(400),用于限定手术器械的运动路径;位置调整装置(200)与固定连接装置(100)的末端相连接,导向装置(400)通过连接件与位置调整装置(200)的两套移动组件铰接,使得导向装置(400)根据两套移动组件的移动而变换空间位置,从而实现导向装置(400)在三维空间中的定位。该机器人体积小、结构灵活、适合与现有的导航系统、超声系统等联合使用。

Description

一种医疗辅助机器人
本申请要求2018年12月29日提交的发明名称为“一种医疗辅助机器人”的中国专利申请号201811644911.2的优先权,其内容出于所有目的通过引用整体并入本文。
技术领域
本发明涉及医疗设备技术领域,尤其是一种医疗辅助机器人。
背景技术
穿刺手术是临床外科常见的手术类型之一,具体应用包括但不限于血肿抽吸,囊肿抽吸,组织活检、给药等。
传统穿刺手术中,对于穿刺针的定位一般根据病人的CT影像对病灶位置进行确认,然后医生会根据病灶位置大致确定穿刺路径并进行穿刺,为了安全起见,通常每进针1-2厘米,做一次CT扫描,以便对穿刺针的行进方向修正,因此,整个手术过程中,患者需接受多次CT扫描,接受辐射较大。这种方法中穿刺路径的设计非常依靠医生的经验判断,还存在扎破血管导致出血,对于小和深的病灶还存在误差较大,不能到达病灶等风险。
近年来,立体定向技术的出现帮助医生能够使用更加科学的手段定位手术入路,在深部脑刺激、癫痫病灶定位的立体定向脑电电极植入等手术中有了广泛应用。立体定向的方法包括立体定向框架和立体定向手术机器人。这两种方法均通过预先扫描头部CT,通过三维重建获取头部各个位置的空间坐标,医生在该坐标系下设计入路,然后术中也根据坐标实现精确的穿刺路径导引。
立体定向技术相对于传统手术方式有明显优点:精确,能够预先规避重要组织,保证手术安全性和有效性。但现有技术存在准备时间较长的问 题,对于抽吸和活检这类手术,使用立体定向技术会大大增加手术准备时间,不适合出血性脑卒中等急诊手术,此外准备手术过程中需要进行带标记扫描CT,增加病人的辐射暴露;头架安装过程中会导致额外的创伤。另外,立体定向手术机器人价格高昂,难以在普通医院推广使用,无法惠及广大病患。
发明内容
有鉴于此,为了解决现有技术中存在的问题,发明人提出了一种体积小、安装灵活的医疗辅助机器人,该医疗辅助机器人响应速度快,穿刺定位精准,创伤小,体积小、重量轻、价格低廉,易于与现有技术联合使用。
本发明提供了一种医疗辅助机器人,包括:
固定连接装置,用于固定其末端所连接的结构;
位置调整装置,包含基座、动力结构、以及至少两套移动组件,每套移动组件含有可相对移动的两个部件,动力结构能够促使两个部件进行相对运动;
控制装置,用于调控动力结构以及与外部进行通讯连接;
导向装置,用于限定手术器械的运动路径;
其中,位置调整装置与固定连接装置的末端相连接,导向装置通过连接件与位置调整装置的移动组件铰接,使得所述导向装置根据移动组件的移动而变换空间位置,从而实现所述导向装置在三维空间中的定位。
在一个实施方案中,本发明医疗辅助机器人的位置调整装置包含两套移动组件,每套移动组件含有平行设置且可相对移动的两个平面,动力结构能够促使每套移动组件的两个平面在相互垂直的方向上进行相对运动。
本发明医疗辅助机器人的导向装置可以具有任何合适的外形,只要其具有通孔,可以让细长型器械穿过通孔并定位即可,通孔优选为圆柱形或圆锥形,最优选圆柱形;通孔可具有不同的内径,以满足不同尺寸的医疗器械。
本发明医疗辅助机器人的一部分能够在医学成像中被检测到位置,例如基座、连接件、导向装置、基座的一部分、连接件的一部分、导向装置的一部分等。在一个实施方案中,本发明医疗辅助机器人的导向装置包含能够在医学成像中检测到其位置的部分,即导向装置或其一部分由能够在 医学成像,例如磁共振成像(MRI)、X射线计算机断层扫描成像(CT)、或X射线成像等现有医学成像技术中被检测到位置的材料制成,从而可以在医学成像中确定导向装置的空间位置,进而可进行调整,使得导向装置到达指定位置。在一个优选实例中,导向装置上能够在医学成像中被监测到位置的部分具有特殊结构,可以在医学成像中检测到继而计算出导向装置通孔的空间位置,例如在不同的高度设置两个不同的长度的平行半弧结构,根据医学图像,识别出两个平行半弧结构的位置,然后计算出导向装置中心通孔的空间位置;但特殊结构的设计不限于此,只要能通过运算确定导向装置中心通孔的空间位置即可。
本发明医疗辅助机器人还可包含定位标志物,定位标志物可以固定安装的;也可以是可拆卸的;还可以通过预先设计的连接结构安装或者组成独立的定位配件。定位标志物可以有多种选择,只要能够通过医学成像或者与其他定位系统配合确定导向装置的空间位置即可。定位标志物包括但不限于:可在医学成像(例如MRI、CT、X光等现有医学成像技术)中检测到其位置的标志物、光学标志物、磁定位标志物等;光学标志物可以是主动发光的主动光学标志物,也可以是被动反射光的被动光学标志物。不同的定位标志物需要与不同的系统配套使用。
本发明的医疗辅助机器人使用医学成像可检测到的标志物的情况下,需要整个穿刺辅助机器人是对应医学成像设备兼容的。在使用磁共振可监测到标志物时,本发明的机器人是磁共振兼容的,主要采用无磁性构件组装,在磁共振成像中获得所关注的手术部位和本发明机器人的图像以及位置。可以将定位标志物设置在本发明机器人的除固定连接装置之外的任意合适部分。在一个实施方案中,将定位标志物设置在位置调整装置的基座,为减少动力结构在使用过程中产生误差加装位置反馈装置,防止基于基座位置计算导向装置位置时的传导误差。在另一个实施方案中,将定位标志物设置在导向装置上。
本发明的医疗辅助机器人使用CT可检测到其位置的定位标志物时,可以使用具有任何合适的材料和形状的标志物;优选地定位标志物由高密度材料制成,并且其在CT中具有比较清晰的轮廓和规则几何形状;更优选地使用金属球体;在一个实施方案中,将至少三个金属球体设置在基座上,通过CT中金属球体的位置,确定基座的位置,为了减少基于基座计算导向 装置之位置的过程中产生误差,加装位置反馈装置以确保导向装置的位置精度。在另一个实施方案中,将至少三个金属球体设置在导向装置上,通过CT中金属球体的体积和安装的位置,可以确定导向装置的空间位置。在又一个实施方案中,使用定位标志物分别标定第一连接件、第二连接件的空间位置,继而可以计算出导向装置的空间位置。前述的金属球可以由磁共振兼容的金属制成,从而使得本发明的医疗辅助机器人可以同时兼容在T和MRI两种方法。CT设备可以是任何适宜的设备,包括但不限于O型臂CT,C型臂CT等。
本发明的医疗辅助机器人使用X射线成像可检测到其位置的标志物时,标志物的分布与设置可参考前述CT成像的描述,通过相关的定位标志物得到所标定的结构的空间位置是本领域技术人员已知的,不再赘述。
本发明的医疗辅助机器人使用光学标志物的情况下,可使用摄像头监控,光学标志物可以为能够发光的主动光学标志物,也可以是能够反射光的被动光学标志物;光学标志物为本领域技术人员所熟知,可以具有各种的外形和特征,例如球型标志物、含角点的图案等。一个实例中使用双目摄像头监控由主动发光的球型标志物发射的光或者被动反射光的球型标志物(反光球)反射的光,从而确定球型标志物和导向装置的空间位置;在使用反光球型标志物时,还需要光发射单元,光发射单元发射光线到反光球,摄像头监控反光球反射的光,从而计算反光球的位置。
本发明的医疗辅助机器人在使用磁定位标志物的情况下,使用配套的电磁感测装置来监控磁定位装置的空间位置,从而获得磁定位标志物所标记的部件(例如导向装置)的空间位置。磁定位标志物可用于追踪本发明的医疗辅助机器人的不同部分,例如基座、连接件、导向装置等。
本发明医疗辅助机器人的固定连接装置为能够实现将位置调整装置相对于患者固定在合适位置的各种结构,例如万向臂、支架、弧形架、或多自由度机械连接结构等。在一个实施方案中,固定连接装置是一个可以在病床上沿导轨滑动的弧形架,位置调整装置连接在弧形架上,可以在弧形架上滑动和锁紧在任意位置。在另一个实施方案中,固定连接装置是一个可以在病床上沿导轨滑动的矩形架,位置调整装置连接在矩形架的横梁上,并可以在横梁上滑动和锁紧在任意位置。在又一个实施方案中,固定连接装置是包含至少一个关节的万向臂, 优选地,万向臂包含三个关节,包括紧固结构、支撑臂、第一关节、第一调节臂、第二关节、第二调节臂,第三关节和连接臂;紧固结构连接固定物与支撑臂,第一关节连接支撑臂和第一调节臂;第二关节连接第一调节臂和第二调节臂,第三关节连接第二调节臂和连接臂。在一个实施方案中,固定连接装置是多节的抽拉延伸装置,可通过拉动达到需要的长度。
本发明所述穿刺辅助机器人的动力结构可以为实现位置调整装置中两套移动组件的两个部件按照需要运动的各种方案,例如,电机、丝驱动结构、扭矩传动结构等。
在一个实施方案中,本发明所述穿刺辅助机器人的动力结构为电机,例如,采用四个步进电机,步进电机通过运动副与平面连接,步进电机通过运动副推动一个平面的运动,两个步进电机实现一套移动组件的两个平面进行相对运动,两个平面各自可以在相互垂直的方向上运动,从而使得所连接的连接件可以在两个维度上运动。运动副可以是螺杆和螺纹的结构,步进电机带动螺杆运动,继而带动平面运动。两套移动组件的运动,带动导向装置在三维空间的运动和定位。
电机可以采用无磁电机,即电机是磁共振兼容的。
本发明的穿刺辅助机器人包括控制装置,控制装置用于调控动力结构以及与外部进行通讯连接。控制装置具有数据处理与接收发送的能力,接收来自使用者或者与之配套的导航系统等的命令,对动力结构发出命令,从而实现对导向装置的位置调整,使得其到达期望的空间位置。控制装置可以有多种方式存在,例如以单独的实体存在,也可以并入共同使用的导航系统的控制中心,也可以与位置调整装置的结构整合在一起。控制装置可以进行有线控制,也可以通过无线装置,接入网络,从而进行操控。在一些实施方案中,控制装置可通过无线连接,与医院的移动智能设备,例如平板电脑等进行数据和命令的交互,从而方便使用者对医疗辅助机器人进行控制。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明的医疗辅助机器人的结构示意图;
图2为图1的医疗辅助机器人示出了固定连接结构100的一个实施方案的结构示意图;
图3为图1中200部分和400部分的一个实施例的外观示意图;
图4示出了图3中200部分的内部结构;
图5为根据本发明一个实施例的定位配件500的示意图;
图6为根据本发明的一个实施例的医疗辅助机器人在使用过程中定位配件500与其他部分结合使用的状态示意图;
图7为根据本发明的另一个实施例的医疗辅助机器人的示意图,其中控制装置300单独存在,通过有线连接控制位置调整装置200;
图8为根据本发明的一个实施例的医疗辅助机器人的结构图;
图9示出了根据本发明的一个实施例的导向装置的结构;
图10示出了根据本发明的一个实施例的定位标志物设计,定位标志物装配在导向装置上。
图11示出了根据本发明的另一个实施例的定位标志物设计,定位标志物装配在基座上。
图12示出了根据本发明的又一个实施例的定位标志物设计,定位标志物装配在连接件上。
图标:
000-固定物;100-固定连接装置;200-位置调整装置;300-控制装置;400-导向装置;101-紧固结构,102-支撑臂,103-第一关节,104-第一调节臂,105-第二关节,106-第二调节臂,107第三关节,108-连接臂; 2001-外壳、201-基座、211-第一平面,212-第二平面,213-第一电机,214-第二电机,221-第三平面,222-第四平面,223-第三电机,224-第四电机;215-第一连接件,225-第二连接件,401-导向导管,402-长弧结构,403-短弧结构;500-定位配件,511-第一球型光学标志物、512-第二球型光学标志物、513-第三球型光学标志物、514-第四球型光学标志物;601-定位标志物、602-定位标志物、603-定位标志物、604-定位标志物、605-定位标志物、606-定位标志物。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照附图1,医疗辅助机器人包括:固定连接装置100,其近端连接固定物,例如墙壁、病床、天花板、地板、头架等,末端连接位置调整装置200的基座201,以将位置调整装置200固定在所需的位置;位置调整装置200,其包含基座、动力结构、以及至少两套移动组件,组件之间可以实现相对移动,能够带动导向装置400移动到需要的位置;控制装置300,控制位置调整装置200的运动,以及实现与其他系统的通讯连接;导向装置400,将医疗器械限定在指定的空间位置和方向,其通常含有通孔,适于限定细长型医疗器械,例如钻头、电极、穿刺针等;
附图2示出了本发明医疗辅助机器人的固定连接装置100的一个实施方案,固定连接装置100连接固定物与位置调整装置200,固定物000可以是墙壁、载物台、天花板、病床、头架等,优选病床,以保持位置调整装置200相对于患者的距离较近且位置相对固定;紧固结构101连接固定物000与支撑臂102,第一关节103连接支撑臂102和第一调节臂104,优选可以进行万向调节;第二关节105连接第一调节臂104和第二调节臂106,第三关节107连接第二调节臂106和连接臂108;紧固装置101可以为各种夹紧结构,例如弹簧夹。支撑臂102、第一调节臂104、第二调节臂 106和连接臂108为长型的刚性结构,例如圆柱体、长方体等。参照图8,示出了一个具体的示例性结构,其中紧固装置101未示出,示出了支撑臂102,第一关节103连接支撑臂102和第一调节臂104,第一关节103可以实现360度的旋转并可以实现拧紧固定;第二关节105连接第一调节臂104和第二调节臂106,第三关节107连接第二调节臂106和连接臂108;连接臂108连接位置调整装置200,位置调整装置200铰接导向装置400。
参照附图3和4,示出了一个实施方案的位置调整装置200和导向装置400的外形以及内部结构,位置调整装置包括外壳2001、基座201、动力结构、第一移动组件和第二移动组件。第一移动组件包括第一平面211,第二平面212、对应的动力组件为第一电机213,第二电机214;第二移动组件包括第三平面221,第四平面222(此处未示出),对应的动力结构为第三电机223,第四电机224;第一电机213通过运动副控制第一平面211的运动,第二电机214通过运动副控制第二平面212的运动,第二平面212和第一平面211的运动方向相互垂直,从而带动第一平面211所连接的第一连接件215在两个维度上进行运动;第三电机223通过运动副控制第三平面221的运动,第四电机224通过运动副控制第四平面222的运动,第四平面222和第三平面221的运动方向相互垂直,从而带动第三平面221所连接的第二连接件225在两个维度上的运动;通过第一连接件215和第二连接件225的运动,实现了导向导管401在三维空间中的受控定位。导向装置400可以仅包含导向导管401,也可以带有特殊结构402和403,或者装配有定位配件。
位置调整装置200和导向装置400使用合适的材料制成(例如工程塑料等),在一个实施例中,电机(第一电机213、第二电机214、第三电机223和第四电机224)为无磁电机,固定连接装置100、位置调整装置200的其他部分和导向装置400由磁共振兼容材料制成,例如工程塑料和橡胶。使得本发明的穿刺辅助机器人可以在磁共振条件下使用。
控制装置300,用于控制位置调整装置200的运动,控制装置可以是单独的模块,也可以是集成的。在单独存在的情况下,其可以通过有线或无线连接来有效控制步进电机,在一个具体实例中控制第一电机213、第二电机214、第三电机223和第四电机224。图1中示出了控制装置集成到位置调整装置200上的一个实例。图7示出了另一个实施例,控制装置单独 存在,通过有效的通信连接控制位置调整装置200。在另一种情况下,控制装置可以集成到其他共同使用的仪器中,或直接接受其他仪器的命令,例如在和手术导航仪联用的情况下,可以使用手术导航仪的控制中心,经控制装置300中继后,对本发明的穿刺辅助机器人进行操控。
导向装置400为含有通孔的结构,通孔可以让各种细长型医疗器械穿过并确定方向,导向装置400的外形不受限制。优选地,通孔为圆柱体形状,并且可以有不同的孔径规格以适配不同的医疗器械。
在一个实施方案中,导向装置400还包含定位标志物,定位标志物可以整合在导向导管401上,也可以是可拆卸的独立构件。定位标志物可以有多种选择,根据需求选择最合适的方案,例如定位标志物是医学成像(MRI、CT、X光)中可监测到位置的构件,或者是可以通过电磁导航中检测到位置的磁定位标志物,或者是光学标志物。在一个实施例中,三个或更多个定位标志物构成一个独立的配件,例如定位配件500,其具有特殊几何结构并配有四个球型光学标志物(第一球型光学标志物511、第二球型光学标志物512、第三球型光学标志物513、第四球型光学标志物514),如图5所示,其中光学标志物主动发光,使用过程中,将定位配件500插入导向导管401的通孔,光学标志物发出的光被摄像头捕捉后,即可通过运算确定定位配件500的位置,从而确定导向导管401空间位置和其通孔的空间位置。在另一个实施例中,定位配件500为具有特殊几何结构的配有四个球型光学标志物,即第一球型光学标志物511、第二球型光学标志物512、第三球型光学标志物513、第四球型光学标志物514,如图5所示,其中光学标志物可以反射光,光发射单元发射的光线被被动光学标志物反射后,被摄像头接收,然后通过计算确定导向导管401空间位置和其通孔的空间位置。光学标志物不限于球型光学标志物,还包括例如角点等本领域技术人员所知的现有技术,只要能实现光学追踪即可。
参照附图5,在一个实施方案中,定位配件500是可拆卸的,包含体部501和锥部502,体部501上装配有四个球型光学标志物(第一球型光学标志物511、第二球型光学标志物512、第三球型光学标志物513、第四球型光学标志物514)。使用状态参见附图6,将定位配件500的锥部502插入导向导管401的通孔,通过体部501对导向导管401的位置进行标定,在软件的虚拟三维模型中显示出导管的位置,根据术前的规划进行,将导向 导管401调节到所需位置,然后可以将电钻、导丝、电极等手术器械从导向导管401的通孔穿过,从而进行立体定位手术。
本发明医疗辅助机器人的一部分能够在医学成像中被检测到位置,例如基座、连接件、导向装置、基座的一部分、连接件的一部分、导向装置的一部分等。在一个实施方案中,本发明医疗辅助机器人的导向装置400或其一部分设置为可直接在医学成像中定位。在一个具体实施例中,参见图4,导向导管401可由特定的材料制成,使得其能够在医学成像(例如MRI、CT、X光等现有医学成像技术)显示其结构,通过计算可以确定其通孔的中心位置和方向。在另一个具体实施例中,参见图9,导向导管401的一部分402和403由可在医学成像中能显示其轮廓和位置的物质组成,402和403是导向导管401管壁的一部分,外形呈现为两条平行的长度不同的弧形结构,从而可以计算出导向导管401的通孔的中心位置和方向。显而易见的,此实施例的结构设计仅仅是示例性的,任何能够通过计算确定通孔的中心位置和方向的结构均包含在本发明的范围内。
在另一个方案中,本发明医疗辅助机器人含有能够在医学成像中显示位置的标志物,从而在医学成像中可以定位导向装置400。
在该方案的一个具体实施方案中,参见图10,本发明医疗辅助机器人在导向导管401上镶嵌有三个定位标志物601、602和603,标志物尺寸和镶嵌位置已知,导向导管401的尺寸已知,从而可以在医学成像中,通过三个定位标志物的位置来计算导向导管401的朝向和位置。标志物的数量可以超过三个,还可以是可拆卸的,即在使用前安装到位即可。
在该方案的另一个具体实施方案中,本发明医疗辅助机器人在基座201或相对于基座201固定的位置上安装有定位标志物,参见图11,示出三个定位标志物601、602和603,由于安装位置已知,可以在医学成像中通过定位标志物601、602和603来确定基座201的位置,通过控制装置300基于电机的运动和基座201来计算导向导管401的朝向和位置。为了确保基于电机转动所计算的运动距离正确,在此方案中加装位置反馈装置,以确认基于电机转动所记录的运动距离完全正确。显而易见的是,定位标志物的数量可以超过3个,外形可以是其他能够计算几何中心的形状,定位标志物还可以是可拆卸的。
在该方案的又一个具体实施方案中,本发明医疗辅助机器人在连接件或与连接件位置关系固定的平面上安装有定位标志物,参见图12,示出一个实例,包括两组定位标志物,第一组标志物601、602和603可以确定第一连接件215的空间位置,第二组标志物604、605和606可以确定第二连接件225的空间位置,从而可以计算出导向导管401的方向和位置。每组定位标志物的数量可以超过3个,外形可以是其他能够计算几何中心的形状,还可以是可拆卸的。
在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种医疗辅助机器人,其特征在于,包含:
    固定连接装置,用于固定其末端所连接的结构;
    位置调整装置,包含基座、动力结构、以及至少两套移动组件,每套移动组件含有可相对移动的两个部件,所述动力结构能够促使所述两个部件进行相对运动;
    控制装置,用于调控动力结构以及与外部进行通讯连接;
    导向装置,用于限定手术器械的运动路径;
    其中,所述位置调整装置与所述固定连接装置的末端相连接,所述导向装置通过连接件与所述位置调整装置的移动组件铰接,使得所述导向装置根据移动组件的移动而变换空间位置,从而实现所述导向装置在三维空间中的定位。
  2. 根据权利要求1所述的医疗辅助机器人,其特征在于,所述医疗辅助机器人的一部分能够在医学成像中被检测到位置。
  3. 根据权利要求2所述的医疗辅助机器人,其特征在于,所述导向装置或导向装置的一部分能够在医学成像中被检测到位置。
  4. 根据权利要求1所述的医疗辅助机器人,其特征在于,还包含定位标志物。
  5. 根据权利要求4所述的医疗辅助机器人,其特征在于,所述定位标志物的位置可在医学成像中被检测到。
  6. 根据权利要求5所述的医疗辅助机器人,其特征在于,所述医学成像为磁共振成像(MRI)、X射线计算机断层扫描成像(CT)、或X射线成像。
  7. 根据权利要求4所述的医疗辅助机器人,其特征在于,所述定位标志物为可被光学追踪系统检测到其位置的光学标志物。
  8. 根据权利要求7所述的医疗辅助机器人,其特征在于,所述光学标志物为能够发光的主动光学标志物或者为能够反射光的被动光学标志物。
  9. 根据权利要求4所述的医疗辅助机器人,其特征在于,所述定位标志物为可被电磁导航系统检测到其位置的磁定位标志物。
  10. 根据权利要求1所述的医疗辅助机器人,其特征在于,所述固定连接装置为能够实现将所述位置调整装置相对于患者固定的任意机械结构。
  11. 根据权利要求10所述的穿刺辅助机器人,其特征在于,所述固定连接装置选自以下任一:万向臂、支架、弧形架、或多自由度机械连接结构。
  12. 根据权利要求11所述的穿刺辅助机器人,其特征在于,所述固定连接装置为包含至少一个关节的万向臂。
  13. 根据权利要求12所述的穿刺辅助机器人,其特征在于,所述万向臂包括紧固结构、支撑臂、第一关节、第一调节臂、第二关节、第二调节臂,第三关节和连接臂;紧固结构连接固定物与支撑臂,第一关节连接支撑臂和第一调节臂;第二关节连接第一调节臂和第二调节臂,第三关节连接第二调节臂和连接臂。
  14. 根据权利要求1所述的穿刺辅助机器人,其特征在于,所述动力结构为电机。
  15. 根据权利要求14所述的穿刺辅助机器人,其特征在于,所述电机为磁共振兼容的。
  16. 根据权利要求1所述的医疗辅助机器人,其特征在于,所述医疗辅助机器人是MRI兼容的。
PCT/CN2019/129468 2018-12-29 2019-12-27 一种医疗辅助机器人 WO2020135784A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019415870A AU2019415870B2 (en) 2018-12-29 2019-12-27 Medical robot
CN201990001269.8U CN215778612U (zh) 2018-12-29 2019-12-27 一种医疗辅助机器人

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811644911.2A CN111012499B (zh) 2018-12-29 2018-12-29 一种医疗辅助机器人
CN201811644911.2 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135784A1 true WO2020135784A1 (zh) 2020-07-02

Family

ID=70192821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129468 WO2020135784A1 (zh) 2018-12-29 2019-12-27 一种医疗辅助机器人

Country Status (3)

Country Link
CN (2) CN111012499B (zh)
AU (1) AU2019415870B2 (zh)
WO (1) WO2020135784A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618020A (zh) * 2020-12-15 2021-04-09 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置
CN113288435A (zh) * 2021-05-24 2021-08-24 上海卓昕医疗科技有限公司 医疗机器人及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113440227B (zh) * 2021-06-25 2022-12-13 陕西省人民医院 一种用于肾内科的穿刺辅助装置及辅助方法
CN114404043A (zh) * 2022-01-19 2022-04-29 北京罗森博特科技有限公司 并联机器人系统
CN114424967B (zh) * 2022-03-31 2022-06-24 真健康(北京)医疗科技有限公司 正交结构四自由度穿刺针定位导向装置
CN114469282B (zh) * 2022-03-31 2022-07-01 真健康(北京)医疗科技有限公司 正交结构五自由度穿刺机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243690A (zh) * 1997-08-27 2000-02-09 北京航空航天大学 机器人脑外科设备系统及其实现方法
US20110015649A1 (en) * 2008-01-25 2011-01-20 Mcmaster University Surgical Guidance Utilizing Tissue Feedback
CN102217927A (zh) * 2011-06-01 2011-10-19 广州宝胆医疗器械科技有限公司 经人工通道的智能电子内窥镜系统
CN102335017A (zh) * 2011-07-12 2012-02-01 中国科学院深圳先进技术研究院 介入治疗辅助机械臂
CN104083217A (zh) * 2014-07-03 2014-10-08 北京天智航医疗科技股份有限公司 一种手术定位装置和方法以及机器人手术系统
CN105268093A (zh) * 2015-09-21 2016-01-27 哈尔滨理工大学 一种自重平衡式放射性治疗粒子植入机器人

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234632A1 (fr) * 2001-02-23 2002-08-28 Willemin Machines S.A. Dispositif cinématique du support et de déplacement programmable d'un élément terminal dans une machine ou un instrument
US11786324B2 (en) * 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
CN103264384B (zh) * 2013-05-20 2016-09-28 苏州大学 串并混联式三自由度平动搬运机构
JP6913021B2 (ja) * 2015-03-05 2021-08-04 シンク サージカル, インコーポレイテッド キャリブレーションデバイス
CN206508019U (zh) * 2016-12-02 2017-09-22 战跃福 一种ct引导下经皮肺穿刺活检进针的自动调节角度指示仪
US10145747B1 (en) * 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
CN107970060A (zh) * 2018-01-11 2018-05-01 上海联影医疗科技有限公司 手术机器人系统及其控制方法
CN108527346B (zh) * 2018-07-05 2023-12-01 北京勤牛创智科技有限公司 一种双机器人系统及其控制方法
CN109091233B (zh) * 2018-08-15 2020-12-11 中国科学院深圳先进技术研究院 基于串并联结构的穿刺手术机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243690A (zh) * 1997-08-27 2000-02-09 北京航空航天大学 机器人脑外科设备系统及其实现方法
US20110015649A1 (en) * 2008-01-25 2011-01-20 Mcmaster University Surgical Guidance Utilizing Tissue Feedback
CN102217927A (zh) * 2011-06-01 2011-10-19 广州宝胆医疗器械科技有限公司 经人工通道的智能电子内窥镜系统
CN102335017A (zh) * 2011-07-12 2012-02-01 中国科学院深圳先进技术研究院 介入治疗辅助机械臂
CN104083217A (zh) * 2014-07-03 2014-10-08 北京天智航医疗科技股份有限公司 一种手术定位装置和方法以及机器人手术系统
CN105268093A (zh) * 2015-09-21 2016-01-27 哈尔滨理工大学 一种自重平衡式放射性治疗粒子植入机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618020A (zh) * 2020-12-15 2021-04-09 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置
CN112618020B (zh) * 2020-12-15 2022-06-21 深圳市精锋医疗科技股份有限公司 手术机器人及其控制方法、控制装置
CN113288435A (zh) * 2021-05-24 2021-08-24 上海卓昕医疗科技有限公司 医疗机器人及其控制方法

Also Published As

Publication number Publication date
AU2019415870A1 (en) 2021-07-29
AU2019415870B2 (en) 2022-04-14
CN111012499A (zh) 2020-04-17
CN215778612U (zh) 2022-02-11
CN111012499B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
AU2019412420B2 (en) Surgical navigation system
WO2020135784A1 (zh) 一种医疗辅助机器人
US11857269B2 (en) Integrated medical imaging and surgical robotic system
CN109549705B (zh) 一种手术机器人系统及其使用方法
US7671887B2 (en) System and method of navigating a medical instrument
US7925328B2 (en) Method and apparatus for performing stereotactic surgery
US5904691A (en) Trackable guide block
JP4340345B2 (ja) フレームレス定位手術装置
US11259894B2 (en) Tracking and guidance arrangement for a surgical robot system and related method
US20160228033A1 (en) Reference device for surgical navigation system
US20220378526A1 (en) Robotic positioning of a device
EP0919202A2 (en) Frameless stereotactic surgical apparatus
Eljamel Validation of the PathFinder™ neurosurgical robot using a phantom
Chen et al. MR-conditional steerable needle robot for intracerebral hemorrhage removal
JP2000139948A (ja) 外科手術手順の計画方法及び装置
JP2023533449A (ja) 患者処置において使用されるプローブの可動域を画定および修正するためのシステムおよび方法
JP2018108344A (ja) 器具類の深さを測定するためのシステム及び方法
JP7058690B2 (ja) ニューロナビゲーションを登録し、ロボットの軌道をガイダンスするためのシステムと、ロボット外科手術と、関連する方法および装置
JP2020182842A (ja) 誘導された生検針の軌道をロボットによりガイダンスするためのシステムと、関連する方法および装置
Finlay et al. PathFinder image guided robot for neurosurgery
US20230404686A1 (en) Coupler For Robotic End Effector
US20240041540A1 (en) Robotic Surgical System With A Harness Assembly Movable Between Expanded And Contracted States
US20200297451A1 (en) System for robotic trajectory guidance for navigated biopsy needle, and related methods and devices
Hussman et al. Frameless laser-guided stereotaxis: A system for CT-monitored neurosurgical interventions
InstaTrak Stereotactic Surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019415870

Country of ref document: AU

Date of ref document: 20191227

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19905043

Country of ref document: EP

Kind code of ref document: A1