WO2020135703A1 - 基于全桥绝缘检测电路的绝缘检测系统及电动汽车 - Google Patents

基于全桥绝缘检测电路的绝缘检测系统及电动汽车 Download PDF

Info

Publication number
WO2020135703A1
WO2020135703A1 PCT/CN2019/129155 CN2019129155W WO2020135703A1 WO 2020135703 A1 WO2020135703 A1 WO 2020135703A1 CN 2019129155 W CN2019129155 W CN 2019129155W WO 2020135703 A1 WO2020135703 A1 WO 2020135703A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
insulation
resistance
sampling resistor
resistor
Prior art date
Application number
PCT/CN2019/129155
Other languages
English (en)
French (fr)
Inventor
颜广博
赵甫
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Publication of WO2020135703A1 publication Critical patent/WO2020135703A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of power batteries, in particular to an insulation detection system and an electric vehicle based on a full-bridge insulation detection circuit.
  • insulation detection methods include high-voltage signal injection method and passive insulation detection method.
  • the active injection method generally requires that the energy of the injected signal source is relatively large to resist the influence of the bus voltage fluctuation on the detection accuracy.
  • the corresponding circuit structure is complicated, the power consumption is high, and the detection accuracy is susceptible to interference.
  • the selected injection signal source is generally large, it will make the PCB board size large, which is not conducive to the design of BMS miniaturization. direction.
  • Figure 1 is a high-voltage acquisition circuit connection diagram.
  • R is the voltage divider resistor, one end is connected to the positive electrode HV+ of the power battery
  • r is the sampling resistor, one end is connected to the negative electrode HV- of the power battery, and the other end is connected to the ADC sampling port.
  • Its working principle is: ADC sampling resistor r After the voltage value, the data value is transmitted to the MCU through the isolated communication to calculate the power battery total pressure value UE.
  • K1 and K2 are photoelectric switches, and the IO port of the single-chip microcomputer controls its on-off, Ra and Rb are voltage dividing resistors, ra and rb are sampling resistors, and OPA is an operational amplifier.
  • the principle of detecting insulation resistance is as follows: firstly, switch K1 is closed to open K2, and resistors Ra, ra, and Rn are connected in series to form a voltage-dividing relationship.
  • the voltage Ura at both ends of ra is collected through the ADC sampling circuit, and then switch K2 is closed to open K1, and the resistance Rp , Rb, Rb are connected in series to form a voltage division relationship, and the voltage Urb at both ends of rb is collected by another ADC sampling circuit.
  • the circuit equations are listed according to the circuit Thevenin (KCL, KVL) theorem, and the high voltage positive and high voltage negative can be calculated separately The insulation resistance Rp and Rn.
  • the ADC needs to collect the voltage value and connect it to the single-chip microcomputer for processing through isolation communication.
  • the present invention aims to propose an insulation detection system and an electric vehicle based on a full-bridge insulation detection circuit to shorten the insulation detection cycle, improve the detection accuracy, and reduce the cost.
  • the full-bridge insulation detection circuit includes a first insulation resistance connected between the positive pole of the first power supply and ground, and a first insulation resistance connected between the negative pole of the first power supply and ground A second insulation resistance, a first capacitor connected in parallel with the first insulation resistance, and a second capacitor connected in parallel with the second insulation resistance, characterized in that the insulation detection system includes: connected in series with the first capacitor A first voltage-dividing resistor and a first sampling resistor in parallel; a second voltage-dividing resistor in parallel with the first capacitor after being connected in series with the first sampling resistor; a third voltage-dividing resistor in parallel with the second capacitor after being connected in series A resistor and a second sampling resistor; one end is connected to a second power supply, and the other end is connected to a third sampling resistor of the second sampling resistor; a first switch connected between the first voltage dividing resistor and the first sampling resistor ; A second switch connected between the second voltage dividing resistor and the first sampling resistor and a
  • calculating the first insulation resistance and the second insulation resistance includes: controlling the third switch to close, opening the first switch and the second switch, and collecting the voltage of the second sampling resistor As the first voltage; controlling the first switch and the third switch to close, and the second switch to open, collecting the voltages of the first sampling resistor and the second sampling resistor as the second voltage and the second voltage, respectively Three voltages; according to the resistance of the first sampling resistor, the second sampling resistor or the third sampling resistor, the resistance of the first voltage dividing resistor, the first voltage, the second voltage And the third voltage determines the functional relationship between the first insulation resistance and the second insulation resistance as a first function relationship; controlling the first switch, the second switch, and the third switch to close, Collecting the voltages of the first sampling resistor and the second sampling resistor as the fourth voltage and the fifth voltage, respectively; according to the resistance values of the first sampling resistor, the second sampling resistor, or the third sampling resistor , The resistance of the first voltage-dividing resistor, the resistance of the second voltage-dividing resistor, the
  • U11 is the first voltage
  • U12 is the second voltage
  • U13 is the third voltage
  • Ra is the resistance of the first voltage-dividing resistor
  • R is the first sampling resistor
  • Rn is the resistance of the second insulation resistance
  • Rp is the resistance of the first insulation resistance
  • U11 is the first voltage
  • U14 is the fourth voltage
  • U15 is the fifth voltage
  • Ra is the resistance of the first voltage divider
  • Rb is the resistance of the second voltage divider
  • R is the resistance of the first sampling resistor, the second sampling resistor, or the third sampling resistor
  • Rn is the resistance of the second insulation resistance
  • Rp is the resistance of the first insulation resistance .
  • calculating the first insulation resistance and the second insulation resistance includes: controlling the third switch to close, opening the first switch and the second switch, and collecting the voltage of the second sampling resistor As the first voltage; controlling the first switch and the third switch to close, and the second switch to open, collecting the voltages of the first sampling resistor and the second sampling resistor as the second voltage and the second voltage, respectively Three voltages; according to the resistance of the first sampling resistor, the second sampling resistor or the third sampling resistor, the resistance of the first voltage dividing resistor, the first voltage, the second voltage And the third voltage determines the functional relationship between the first insulation resistance and the second insulation resistance as a first function relationship; controlling the first switch to open, and closing the second switch and the third switch, Collecting the voltages of the first sampling resistor and the second sampling resistor as the sixth voltage and the seventh voltage, respectively; according to the resistance values of the first sampling resistor, the second sampling resistor, or the third sampling resistor , The resistance value of the second voltage dividing resistor, the first voltage, the sixth voltage, and the
  • U11 is the first voltage
  • U12 is the second voltage
  • U13 is the third voltage
  • Ra is the resistance of the first voltage-dividing resistor
  • R is the first sampling resistor
  • Rn is the resistance of the second insulation resistance
  • Rp is the resistance of the first insulation resistance
  • the third functional relationship is:
  • U11 is the first voltage
  • U16 is the sixth voltage
  • U17 is the seventh voltage
  • Rb is the resistance of the second voltage-dividing resistor
  • R is the first sampling resistor
  • Rn is the resistance of the second insulation resistance
  • Rp is the resistance of the first insulation resistance.
  • the processor is further configured to: control the closing and opening of the first switch, the second switch, and/or the third switch multiple times to collect the first sampling resistance and The voltage of the second sampling resistor, thereby determining the voltages of the first insulation resistance and the second insulation resistance multiple times to determine the first insulation resistance and the second insulation resistance according to the voltages determined multiple times 1. Whether the power supply is short-circuited to ground.
  • determining whether the first power supply is short-circuited to the ground includes: controlling the first switch, the second switch, and the third switch to close, and collecting the first sampling resistor and the second sampling resistor. Voltage as the first sampling voltage and the second sampling voltage respectively; according to the resistance of the first sampling resistor, the second sampling resistor or the third sampling resistor, the first sampling voltage, the first division The resistance value of the piezoresistor and the resistance value of the second voltage-dividing resistor calculate the voltage of the first insulation resistance as the first insulation voltage; according to the first sampling resistance, the second sampling resistance, or the third sampling The resistance value of the resistor, the second sampling voltage, the resistance value of the third voltage divider resistor and the voltage of the first voltage divider resistor calculate the voltage of the second insulation resistance as the second insulation voltage; control the The first switch and the third switch are closed and the second switch is opened, and the voltages of the first sampling resistor and the second sampling resistor are collected as a third sampling voltage and a fourth sampling voltage, respectively; The resistance of the first sampling resistor
  • the determination of the first insulation voltage, the second insulation voltage, the third insulation voltage, the fourth insulation voltage, the fifth insulation voltage, and the sixth insulation voltage Whether the first power supply is short-circuited to ground includes: when the first insulation voltage is not equal to the third insulation voltage is not equal to the fifth insulation voltage, or the sum of the first insulation voltage and the second insulation voltage The sum of the voltage of the first power source, the sum of the third insulation voltage and the second insulation voltage is not equal to the sum of the voltage of the first power source, and the sum of the fifth insulation voltage and the second insulation voltage When any two of the voltages equal to the first power supply are established, it is determined that the first power supply is not short-circuited to ground; when the first insulation voltage is equal to the third insulation voltage is equal to the fifth insulation voltage, or The sum of the first insulation voltage and the second insulation voltage is equal to the voltage of the first power supply, the sum of the third insulation voltage and the second insulation voltage is equal to the voltage of the first power supply, and the When any two of the sum of the fifth insulation voltage and the second insulation
  • the first power source is a battery module, and when the first power source is short-circuited to the ground, the processor is further used to: use the first insulation voltage, the third insulation voltage, or the first 5. Divide the insulation voltage by the voltage of the single cell of the battery module to obtain a position value; determine the number of strings of the single cell in the battery module that have a short circuit to ground as the position value.
  • the insulation detection system based on the full-bridge insulation detection circuit of the present invention has the following advantages:
  • the insulation detection system based on the full-bridge insulation detection circuit of the present invention controls the closing and opening of multiple switches provided in the circuit multiple times to collect the voltages of multiple sampling resistors multiple times, thereby determining the functional relationship of the insulation resistance multiple times Calculating the insulation resistance according to the function relationship can simplify the circuit structure, improve the stability of the circuit, shorten the insulation detection cycle, improve the detection accuracy, quickly complete the insulation detection function, and do not need to cause false alarms of the insulation resistance value during the detection process.
  • the use of high-cost components reduces costs.
  • Another object of the present invention is to propose an electric vehicle to shorten the insulation detection cycle, improve the detection accuracy and reduce the cost.
  • An electric vehicle provided with the insulation detection system based on the full-bridge insulation detection circuit described above.
  • the electric vehicle has the same advantages as the above-mentioned insulation detection system based on the full-bridge insulation detection circuit relative to the prior art, and will not be repeated here.
  • Figure 1 is a schematic diagram of high voltage acquisition connection
  • Figure 2 is a schematic diagram of the resistance connection of the upper and lower bridge arms
  • FIG. 3 is a schematic circuit block diagram of an insulation detection system based on a full-bridge insulation detection circuit according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an insulation detection system based on a full-bridge insulation detection circuit provided by an embodiment of the present invention
  • 5A-5D are schematic diagrams of an insulation detection system based on a full-bridge insulation detection circuit provided by an embodiment of the present invention.
  • 6A-6C are schematic diagrams of an insulation detection system based on a full-bridge insulation detection circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic circuit block diagram of an insulation detection system based on a full-bridge insulation detection circuit according to an embodiment of the present invention.
  • this system is based on a full-bridge dual-channel high-voltage acquisition and insulation resistance detection circuit, which consists of a battery pack, a controlled execution circuit, a feedback execution circuit, a voltage setting and feedback execution circuit, a processor 1, and so on.
  • the voltage setting and feedback execution circuit sets a voltage value, which is connected in series to the vehicle ground through a resistor, and the processor 1 collects the voltage drop of the feedback execution circuit to obtain an analog voltage value.
  • the controlled execution circuit controls the conduction of the photoelectric coupling switch for the processor 1I/O port.
  • the circuit between the high voltage positive electrode and the vehicle ground is used for conduction.
  • the processor 1AD port measures the voltage drop generated on the feedback circuit.
  • Processor 1 sets the output I/O ports of K1, K2, and K3 to high level successively to send out the total battery voltage acquisition and high voltage insulation detection signals. After waiting for the circuit to reach a steady state, it reads the voltage signals fed back by the ADC ports. . Substitute the voltage value read three times into the corresponding calculation formula to calculate the total battery voltage and the high-voltage positive and high-voltage negative insulation resistance to the vehicle.
  • Rp and Rn are the equivalent resistance between the high-voltage positive and high-voltage negative of the battery pack to the vehicle ground, hereinafter referred to as the first insulation resistance and the second insulation resistance, that is, the insulation resistance value to be measured.
  • Ra, Rb, and Rc are the parallel resistances of the measurement branches, hereinafter referred to as the first voltage-dividing resistor, the second voltage-dividing resistor, and the third voltage-dividing resistor.
  • the first switch K1, the second switch K2, and the third switch K3 are respectively Control its access, its resistance value is small.
  • R1, R2 and R3 are the first sampling resistor, the second sampling resistor and the third sampling resistor with the same resistance, that is, the insulation resistance is calculated by measuring the voltage of these resistors.
  • the first switch K1, the second switch K2, and the third switch K3 can be optocoupler control switches, or opt for optocoupler devices, transformer isolation coupling control, or capacitive coupling isolation control can also be selected, which can be closed to make the circuit twice Reached steady state.
  • Cp and Cn are the equivalent Y capacitors between the high-voltage positive and high-voltage negative of the battery pack and the ground of the vehicle, hereinafter referred to as the first capacitor and the second capacitor. Ip is the current flowing through the Rp branch between the high voltage and the vehicle ground during the detection process.
  • Iu1 is the current flowing through the corresponding branch when K1 and K2 are closed respectively.
  • Iu0 is the current flowing through the corresponding branch when K3 is closed.
  • Up and Un are the equivalent voltages of high-voltage positive and high-voltage negative to the vehicle ground during the detection process.
  • U11 is the ground voltage of the resistor R2 after closing the switch K3
  • U12 and U13 are the ground voltage of the resistors R1 and R2 after closing the switch K1/K3
  • U14 and U15 are the resistors R1 and R2 after closing the switch K1/K2/K3
  • U16 and U17 are the voltage of the ground of the vehicle after the switches K2/K3 are closed, and the voltage value read by the MCU through the ADC port.
  • the first insulation resistance Rp is connected between the positive electrode of the first power supply and ground
  • the second insulation resistance Rn is connected between the negative electrode of the first power supply and ground
  • the first capacitor Cp is connected in parallel with the first insulation resistance Rp
  • the second capacitor Cn is connected to the first
  • Two insulation resistances Rn are connected in parallel
  • the first voltage-dividing resistor Ra and the first sampling resistor R1 are connected in series with the first capacitor Cp
  • the second voltage-dividing resistor Rb and the first sampling resistor R1 are connected in series with the first capacitor Cp
  • third The voltage dividing resistor Rc and the second sampling resistor R2 are connected in series and connected in parallel with the second capacitor Cn
  • one end of the third sampling resistor R3 is connected to the second power supply and the other end is connected to the second sampling resistor R2
  • the first switch K1 is connected to the first voltage dividing resistor Between Ra and the first sampling resistor R1
  • the second switch K2 is connected between the second voltage dividing resistor Rb and the first
  • the processor 1 is used to control the closing and opening of the first switch K1, the second switch K2, and/or the third switch K3 multiple times to collect the first sampling resistor R1 and the second sampling resistor multiple times The voltage of R2, thereby determining the functional relationship between the first insulation resistance Rp and the second insulation resistance Rn multiple times to calculate the first insulation resistance Rp and the second insulation resistance Rn according to the determined multiple functional relationship.
  • the third switch K3 is controlled to close, the first switch K1 and the second switch K2 are opened, the current through the R branch is Ir, and the voltage across the second sampling resistor R2 collected through the ADC port of the MCU Using U11 as the first voltage, the following formula is obtained according to Thevenin's theorem:
  • the first switch K1 and the third switch K3 are controlled to be closed, and the second switch K2 is opened, the current through the first insulation resistance Rp branch is Ip1, and the current through the second insulation resistance Rn branch Is In1, the current through the branch of the first bridge resistor Ra and the first sampling resistor R1 is Iu1, the current through the branch of the second bridge resistor R2 is Ir0, and the branch of the third resistor Rc is The current is Iu0.
  • the voltages across the first sampling resistor R1 and the second sampling resistor R2 collected through the ADC port of the MCU are the second voltage U12 and the third voltage U13, respectively, and the following formula is obtained according to Thevenin's theorem:
  • U11 is the first voltage
  • U12 is the second voltage
  • U13 is the third voltage
  • Ra is the resistance of the first voltage-dividing resistor Ra
  • Rc is the resistance of the third voltage-dividing resistor Rc
  • R is the first sampling resistor R1
  • the resistance of the second sampling resistor R2 or the third sampling resistor R3 is the resistance of the second insulation resistance Rn
  • Rp is the resistance of the first insulation resistance Rp.
  • the first switch K1, the second switch K2, and the third switch K3 are controlled to close, the current through the first insulation resistance Rp branch is Ip2, and the current through the second insulation resistance Rn branch is In2 ,
  • the current through the branch of the upper bridge arm first voltage divider resistor Ra and the first sampling resistor R1 is Iu1'
  • the current through the lower bridge arm second sampling resistor R2 branch is Ir1
  • the current of the third voltage divider resistor Rc branch The current is Iu0'.
  • the voltages across the first sampling resistor R1 and the second sampling resistor R2 collected through the ADC port of the MCU are the fourth voltage U14 and the fifth voltage U15, respectively, and the following formula is obtained according to Thevenin's theorem:
  • U11 is the first voltage
  • U14 is the fourth voltage
  • U15 is the fifth voltage
  • Ra is the resistance of the first voltage-dividing resistor Ra
  • Rb is the resistance of the second voltage-dividing resistor Rb
  • Rc is the third voltage-dividing resistor
  • Rc is the resistance value of Rc
  • R is the resistance value of the first sampling resistance R1, the second sampling resistance R2 or the third sampling resistance R3
  • Rn is the resistance value of the second insulation resistance Rn
  • Rp is the resistance value of the first insulation resistance Rp.
  • the first functional relationship (26) and the second functional relationship (36) have two first unknown resistances Rp and second insulation resistances Rn, which can be solved to obtain the first insulation resistance Rp and the second insulation resistance Rn .
  • the embodiment of the present invention can also control the first switch K1 to open, the second switch K2 and the third switch K3 to close, as shown in FIG. 5D, through the first insulation resistance Rp branch
  • the current of the circuit is Ip2
  • the current through the second insulation resistance Rn branch is In2
  • the current through the upper bridge arm first voltage divider Ra and the first sampling resistor R1 branch is Iu1'
  • the second bridge arm is sampled
  • the current in the branch of the resistor R2 is Ir1
  • the current in the branch of the third voltage dividing resistor Rc is Iu0'.
  • the voltages across the first sampling resistor R1 and the second sampling resistor R2 collected through the ADC port of the MCU are the sixth voltage U16 and the seventh voltage U17, respectively, and the following formula is obtained according to Thevenin's theorem:
  • U11 is the first voltage
  • U16 is the sixth voltage
  • U17 is the seventh voltage
  • Rb is the resistance of the second voltage dividing resistor Rb
  • Rc is the third voltage dividing resistor Rc Resistance
  • R is the resistance of the first sampling resistor R1, the second sampling resistor R2 or the third sampling resistor R3
  • Rn is the resistance of the second insulation resistor Rn
  • Rp is the first A resistance value of the insulation resistance Rp.
  • the first functional relationship (26) and the third functional relationship (46) have two first unknown resistances Rp and second insulation resistances Rn, which can be solved to obtain the first insulation resistance Rp and the second insulation resistance Rn .
  • the processor 1 may also control the closing and opening of the first switch K1, the second switch K2, and/or the third switch K3 multiple times to collect the multiple times.
  • the first switch K1, the second switch K2, and the third switch K3 are controlled to be closed, and the current through the branch of the upper arm first voltage divider resistor Ra and the first sampling resistor R1 is Iu1.
  • the current of the second sampling resistor R2 branch of the lower arm is Ir1, and the current of the third voltage dividing resistor Rc branch is Iu0'.
  • the voltages are the first sampling voltage U21 and the second sampling voltage U22, respectively, and the following formula can be obtained according to Thevenin's theorem:
  • the first insulation voltage Up1 and the second insulation voltage Un1 can be calculated by equations (52) and (53).
  • the first switch K1 and the third switch K3 are controlled to be closed, the second switch K2 is opened, and the current through the branch of the upper arm first voltage dividing resistor Ra and the first sampling resistor R1 is Iu1,
  • the current through the second sampling resistor R2 branch of the lower arm is Ir1, and the current of the third voltage dividing resistor Rc branch is Iu0'.
  • the first sampling resistor R1 and the second sampling resistor R2 collected through the ADC port of the MCU
  • the terminal voltages are the third sampling voltage U23 and the fourth sampling voltage U24, respectively. According to Thevenin's theorem, the following formula can be obtained:
  • the third insulation voltage Up2 and the fourth insulation voltage Un2 can be calculated by equations (62) and (63).
  • the second switch K2 and the third switch K3 are controlled to be closed, the first switch K1 is opened, and the current through the branch of the upper bridge first voltage dividing resistor Ra and the first sampling resistor R1 is Iu1,
  • the current through the second sampling resistor R2 branch of the lower arm is Ir1, and the current of the third voltage dividing resistor Rc branch is Iu0'.
  • the first sampling resistor R1 and the second sampling resistor R2 collected through the ADC port of the MCU
  • the terminal voltages are the fifth sampling voltage U25 and the sixth sampling voltage U26, respectively, and the following formula can be obtained according to Thevenin's theorem:
  • the following formula can be obtained according to the resistance of the first sampling resistor R1, the second sampling resistor R2 or the third sampling resistor R3, the sixth sampling voltage U26, the resistance of the third voltage dividing resistor Rc and the voltage of the first voltage dividing resistor Ra ;
  • the fifth insulation voltage Up3 and the sixth insulation voltage Un3 can be calculated by equations (72) and (73).
  • the first power supply is determined according to the first insulation voltage, the second insulation voltage, the third insulation voltage, the fourth insulation voltage, the fifth insulation voltage, and the sixth insulation voltage Whether short circuit to ground, as follows:
  • the insulation voltage will change with the switch K1, K2 shift, that is, when the first insulation voltage Up1 is not equal to the third insulation voltage Up2 is not equal to the fifth insulation voltage Up3 , Or the sum of the first insulation voltage Up1 and the second insulation voltage Un1 is equal to the voltage of the first power supply, the sum of the third insulation voltage Up2 and the second insulation voltage Un1 is not equal to the voltage of the first power supply, and the fifth insulation voltage Up3 and the first When any two of the sum of the two insulation voltages Un1 and the voltage not equal to the first power supply are established, it is determined that the first power supply is not short-circuited to ground;
  • the insulation voltage Up will remain constant, that is, when the first insulation voltage Up1 is equal to the third insulation voltage Up2 is equal to the fifth insulation voltage Up3, or the first insulation voltage Up1 and the second
  • the sum of the insulation voltage Un1 is equal to the voltage of the first power supply
  • the sum of the third insulation voltage Up2 and the second insulation voltage Un1 is equal to the voltage of the first power supply
  • the sum of the fifth insulation voltage Up3 and the second insulation voltage Un1 is equal to the first power supply
  • the embodiment of the present invention can determine the short-circuit position, that is, the processor 1 uses the first insulation voltage, the third insulation voltage, or the fifth insulation voltage to divide by the single cell of the battery module
  • the voltage gives the position value. For example, if the first insulation voltage is 21V and the cell voltage is 4.2V, the position value is 5.
  • the number of strings of the single cell in which the short circuit to ground occurs in the battery module is the position value. For example, if the position value is 5, the fifth cell of the battery module is short-circuited to ground.
  • the embodiment of the invention can improve the synchronization of the total voltage collection and the insulation detection, improve the detection accuracy; shorten the insulation resistance detection period, accurately determine the short-circuit position of the battery module, the circuit structure is simple, and there is no need to introduce negative power supply, operational amplifier, high voltage collection Chip, isolated communication chip, high detection accuracy, no false alarm.
  • the ADC interface of the MCU is used for sampling directly, so the influence of the zero drift of the external amplifier on the sampling accuracy and the total
  • the pressure and insulation sampling cannot be collected at the same time, which causes a large error in the calculation result. Its structural characteristics determine that the two steady-state voltage fluctuations are small, and the circuit stability time is significantly shortened. Therefore, the detection response speed is faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种基于全桥绝缘检测电路的绝缘检测系统及电动汽车,所述绝缘检测系统包括第一采样电阻(R1)、第二分压电阻(Rb)、第三分压电阻(Rc)、第二采样电阻(R2)、第三采样电阻(R3)、第一开关(K1)、第二开关(K2)以及第三开关(K3);以及处理器,用于多次控制所述第一开关(K1)、所述第二开关(K2)和/或所述第三开关(K3)的闭合和断开,以多次采集所述第一采样电阻(R1)和所述第二采样电阻(R2)的电压,从而多次确定第一绝缘电阻(Rp)和第二绝缘电阻(Rn)的函数关系式以根据所多次确定的函数关系式计算所述第一绝缘电阻(Rp)和所述第二绝缘电阻(Rn)。本方案所述的基于全桥绝缘检测电路的绝缘检测系统及电动汽车可以缩短绝缘检测周期,提高检测精度并降低了成本。

Description

基于全桥绝缘检测电路的绝缘检测系统及电动汽车 技术领域
本发明涉及动力电池技术领域,特别涉及一种基于全桥绝缘检测电路的绝缘检测系统及电动汽车。
背景技术
目前,常用的绝缘检测方法有高压信号注入法、被动绝缘检测方法等。其中对于主动注入法一般需要求其注入的信号源能量较大,以抵制母线电压波动对检测精度的影响。由此会造成对应的电路结构复杂,功耗较高且检测精度易受干扰;另外由于所选的注入信号源一般体积较大,这会使得PCB板尺寸较大,不利于BMS小型化的设计方向。
如图1为一种高压采集电路连接图。图中R为分压电阻,一端和动力电池正极HV+相连接,r为采样电阻,一端和动力电池负极HV-相连接,另外一端连接ADC采样口,其工作原理为:ADC采样电阻r两端电压值后通过隔离通讯将数据值传给MCU进行计算出动力电池总压值UE。
如图2中K1、K2为光电开关,单片机IO口控制其通断,Ra、Rb为分压电阻,ra、rb为采样电阻,OPA为运算放大器。其检测绝缘电阻检测原理为:首先闭合开关K1断开K2,电阻Ra、ra、Rn串联形成分压关系,通过ADC采样电路采集得到ra两端电压Ura,然后闭合开关K2断开K1,电阻Rp、rb、Rb串联形成分压关系,通过另一路ADC采样电路采集得到rb两端电压Urb。通过采集到的已知量Ura和Urb和已测的电池包总压UE,根据电路戴维宁(KCL、KVL)定理列出电路方程,可分别计算得出高压正、高压负对整车地之间的绝缘阻值Rp和Rn。
从图1电路结构图可以看出要准确的测量出电池总压UE压需要ADC采集到电压值经过隔离通讯连接至单片机进行处理。
从图2电路结构图可以看出在进行绝缘电阻阻值的测量时,由于电压信号较弱且由于负向电压的存在需要在上下桥臂电路中引入运放及负电源基准,对信号进行放大和处理才能对Ura、Urb的值进行ADC采样,再由MCU进行处理和判断。由于放大器存在零点漂移,这会造成电压采集端口的模拟量的漂移从而影响绝缘阻值的检测精度。
从以上叙述中可以看出,该判断方法存在以下几个问题:
1、信号采集同步性差:电池总压测量电路和绝缘检测电路是的两套独立电路分时 完成测量功能,无法保证绝缘检测Ura和Urb与总压UE是在同一时刻采集。
2、检测精度差:由于负电压的存在需要引入运算放大器,放大器存在零点漂移问题,会造成电压采集端口的模拟量的漂移从而影响绝缘阻值的检测精度。
3、检测周期长:当测量Rp时需要开关K2闭合,K1打开,此时上桥臂总电阻变大,下桥臂总电阻变小,此时Cp开始充电,而Cn开始放电,等待上下桥臂Y电容充放电稳态后进行Ura、Urb电压值的采样,由此造成绝缘电阻检测的周期较长。
4、成本高:需要两套独立电路完成高压采集及绝缘检测功能,需要专用高压采集芯片和隔离通讯芯片,需要负电压基准源芯片和运算放大器芯片,导致了电路的复杂及成本的提高。
发明内容
有鉴于此,本发明旨在提出一种基于全桥绝缘检测电路的绝缘检测系统及电动汽车,以缩短绝缘检测周期,提高检测精度并降低了成本。
为达到上述目的,本发明的技术方案是这样实现的:
一种基于全桥绝缘检测电路的绝缘检测系统,所述全桥绝缘检测电路包括连接在第一电源正极和地之间的第一绝缘电阻、连接在所述第一电源负极和地之间的第二绝缘电阻、与所述第一绝缘电阻并联的第一电容、与所述第二绝缘电阻并联的第二电容,其特征在于,所述绝缘检测系统包括:串联后与所述第一电容并联的第一分压电阻和第一采样电阻;与所述第一采样电阻串联后与所述第一电容并联的第二分压电阻;串联后与所述第二电容并联的第三分压电阻和第二采样电阻;一端连接第二电源,另一端连接所述第二采样电阻的第三采样电阻;连接在所述第一分压电阻和所述第一采样电阻之间的第一开关;连接在所述第二分压电阻和所述第一采样电阻之间的第二开关以及连接在所述第三分压电阻和所述第二采样电阻之间的第三开关;以及处理器,用于多次控制所述第一开关、所述第二开关和/或所述第三开关的闭合和断开,以多次采集所述第一采样电阻和所述第二采样电阻的电压,从而多次确定所述第一绝缘电阻和所述第二绝缘电阻的函数关系式以根据所多次确定的函数关系式计算所述第一绝缘电阻和所述第二绝缘电阻。
进一步的,计算所述第一绝缘电阻和所述第二绝缘电阻包括:控制所述第三开关闭合、所述第一开关和所述第二开关断开,采集所述第二采样电阻的电压作为第一电压;控制所述第一开关和所述第三开关闭合、所述第二开关断开,采集所述第一采样电阻和 所述第二采样电阻的电压分别作为第二电压和第三电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第一分压电阻的阻值、所述第一电压、所述第二电压以及所述第三电压确定所述第一绝缘电阻和所述第二绝缘电阻的函数关系式作为第一函数关系;控制所述第一开关、所述第二开关以及所述第三开关闭合,采集所述第一采样电阻和所述第二采样电阻的电压分别作为第四电压和第五电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第一分压电阻的阻值、所述第二分压电阻的阻值、所述第一电压、所述第四电压以及所述第五电压确定所述第一绝缘电阻和所述第二绝缘电阻的函数关系式作为第二函数关系;根据所述第一函数关系和所述第二函数关系计算所述第一绝缘电阻和所述第二绝缘电阻。
进一步的,所述第一函数关系为:
Figure PCTCN2019129155-appb-000001
其中U11为所述第一电压,U12为所述第二电压,U13为所述第三电压,Ra为所述第一分压电阻的阻值,R为所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值,Rn为所述第二绝缘电阻的阻值,Rp为所述第一绝缘电阻的阻值,
所述第二函数关系为:
Figure PCTCN2019129155-appb-000002
其中U11为所述第一电压,U14为所述第四电压,U15为所述第五电压,Ra为所述第一分压电阻的阻值,Rb为所述第二分压电阻的阻值,R为所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值,Rn为所述第二绝缘电阻的阻值,Rp为所述第一绝缘电阻的阻值。
进一步的,计算所述第一绝缘电阻和所述第二绝缘电阻包括:控制所述第三开关闭合、所述第一开关和所述第二开关断开,采集所述第二采样电阻的电压作为第一电压;控制所述第一开关和所述第三开关闭合、所述第二开关断开,采集所述第一采样电阻和所述第二采样电阻的电压分别作为第二电压和第三电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第一分压电阻的阻值、所述第一电压、所述第二电压以及所述第三电压确定所述第一绝缘电阻和所述第二绝缘电阻的函数关系式作为第一函数关系;控制第一开关断开、所述第二开关和所述第三开关闭合,采集所述第一采样电阻和所述第二采样电阻的电压分别作为第六电压和第七电压;根据所述 第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第二分压电阻的阻值、所述第一电压、所述第六电压以及所述第七电压确定所述第一绝缘电阻和所述第二绝缘电阻的函数关系式作为第三函数关系;根据所述第一函数关系和所述第三函数关系计算所述第一绝缘电阻和所述第二绝缘电阻。
进一步的,所述第一函数关系为:
Figure PCTCN2019129155-appb-000003
其中U11为所述第一电压,U12为所述第二电压,U13为所述第三电压,Ra为所述第一分压电阻的阻值,R为所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值,Rn为所述第二绝缘电阻的阻值,Rp为所述第一绝缘电阻的阻值,
所述第三函数关系为:
Figure PCTCN2019129155-appb-000004
其中U11为所述第一电压,U16为所述第六电压,U17为所述第七电压,Rb为所述第二分压电阻的阻值,R为所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值,Rn为所述第二绝缘电阻的阻值,Rp为所述第一绝缘电阻的阻值。
进一步的,所述处理器还用于:多次控制所述第一开关、所述第二开关和/或所述第三开关的闭合和断开,以多次采集所述第一采样电阻和所述第二采样电阻的电压,从而多次确定所述第一绝缘电阻和所述第二绝缘电阻的电压以根据所多次确定的第一绝缘电阻和第二绝缘电阻的电压判断所述第一电源是否对地短路。
进一步的,判断所述第一电源是否对地短路包括:控制所述第一开关、所述第二开关以及所述第三开关闭合,采集所述第一采样电阻和所述第二采样电阻的电压分别作为第一采样电压和第二采样电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第一采样电压、所述第一分压电阻的阻值、以及第二分压电阻的阻值计算所述第一绝缘电阻的电压作为第一绝缘电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第二采样电压、所述第三分压电阻的阻值以及所述第一分压电阻的电压计算所述第二绝缘电阻的电压作为第二绝缘电压;控制所述第一开关和所述第三开关闭合、所述第二开关断开,采集所述第一采样电阻和所述第二采样的电阻的电压分别作为第三采样电压和第四采样电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第三采样电压以及所述第一分压电 阻的阻值计算所述第一绝缘电阻的电压作为第三绝缘电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第四采样电压、所述第三分压电阻的阻值以及所述第一分压电阻的电压计算所述第二绝缘电阻的电压作为第四绝缘电压;控制所述第二开关和所述第三开关闭合、所述第一开关断开,采集所述第一采样电阻和所述第二采样的电阻的电压分别作为第五采样电压和第六采样电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第五采样电压以及所述第二分压电阻的阻值计算所述第一绝缘电阻的电压作为第五绝缘电压;根据所述第一采样电阻、所述第二采样电阻或所述第三采样电阻的阻值、所述第六采样电压、所述第三分压电阻的阻值以及所述第一分压电阻的电压计算所述第二绝缘电阻的电压作为第六绝缘电压;根据所述第一绝缘电压、所述第二绝缘电压、所述第三绝缘电压、所述第四绝缘电压、所述第五绝缘电压以及所述第六绝缘电压判断所述第一电源是否对地短路。
进一步的,所述根据所述第一绝缘电压、所述第二绝缘电压、所述第三绝缘电压、所述第四绝缘电压、所述第五绝缘电压以及所述第六绝缘电压判断所述第一电源是否对地短路包括:在所述第一绝缘电压不等于所述第三绝缘电压不等于所述第五绝缘电压时,或所述第一绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压、所述第三绝缘电压与所述第二绝缘电压的和不等于所述第一电源的电压以及所述第五绝缘电压与所述第二绝缘电压的和不等于所述第一电源的电压中任意两者成立时,判断所述第一电源未对地短路;在所述第一绝缘电压等于所述第三绝缘电压等于所述第五绝缘电压时,或所述第一绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压、所述第三绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压以及所述第五绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压中任意两者成立时,判断所述第一电源对地短路。
进一步的,所述第一电源是电池模组,在所述第一电源对地短路时,所述处理器还用于:使用所述第一绝缘电压、所述第三绝缘电压或所述第五绝缘电压除以所述电池模组的单体电芯的电压得到位置值;判断所述电池模组中发生对地短路的单体电芯的串数为所述位置值。
相对于现有技术,本发明所述的基于全桥绝缘检测电路的绝缘检测系统具有以下优势:
本发明的基于全桥绝缘检测电路的绝缘检测系统通过多次控制设置在电路多个开关的闭合和断开,以多次采集多个采样电阻的电压,从而多次确定绝缘电阻的函数关系 式以根据函数关系式计算绝缘电阻,能够简化电路结构提高电路的稳定性,缩短绝缘检测周期,提高检测精度,快速完成绝缘检测功能,并在检测过程中不发生绝缘阻值的误报并不需使用高额成本的部件,降低了成本。
本发明的另一目的在于提出一种电动汽车,以缩短绝缘检测周期,提高检测精度并降低了成本。
为达到上述目的,本发明的技术方案是这样实现的:
一种电动汽车,所述电动汽车设置有上文所述的基于全桥绝缘检测电路的绝缘检测系统。
所述电动汽车与上述基于全桥绝缘检测电路的绝缘检测系统相对于现有技术所具有的优势相同,在此不再赘述。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为高压采集连接示意图;
图2为上下桥臂电阻连接示意图;
图3是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的电路框图示意图;
图4是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的示意图;
图5A-5D是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的示意图;
图6A-6C是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的示意图。
附图标记说明
1   处理器
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可 以相互组合。
下面将参考附图并结合实施方式来详细说明本发明。
图3是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的电路框图示意图。如图3所示,本系统基于全桥双路高压采集及绝缘电阻检测电路,其由电池包、被控执行电路、反馈执行电路、电压设置及反馈执行电路、处理器1等组成。电压设置及反馈执行电路为设定一个电压值,该值通过电阻串联连接至整车地,处理器1采集反馈执行电路压降得到模拟电压值。被控执行电路为处理器1I/O口控制光电耦合开关导通,使用高压正极与整车地之间的电路导通,导通后处理器1AD口测量反馈电路上产生的压降。处理器1分别先后将K1、K2、K3的输出I/O口置于高电平即发出电池总压采集和高压绝缘检测信号,等待电路达到稳态后,分别读取ADC口反馈的电压信号。将三次读取的电压值代入相应的计算公式计算得出电池总压及高压正和高压负对整车的绝缘阻值。
图4是本发明一实施例提供的基于全桥绝缘检测电路的绝缘检测系统的示意图。如图4所示,Rp、Rn分别为电池包高压正、高压负对整车地之间的等效电阻,下文称第一绝缘电阻和第二绝缘电阻,即待测的绝缘电阻值。Ra、Rb、Rc分别为测量支路的并联电阻,下文称第一分压电阻、第二分压电阻和第三分压电阻,由第一开关K1、第二开关K2和第三开关K3分别控制其接入,其阻值较小。R1、R2和R3为阻值相等的第一采样电阻、第二采样电阻和第三采样电阻,即通过测量这些电阻的电压来计算绝缘阻值。第一开关K1、第二开关K2和第三开关K3可以为光耦控制开关,也可以不选光耦器件,选变压器隔离耦合控制,也可以选用电容耦合隔离控制,可以分别闭合使电路两次达到稳态。Cp、Cn分别为电池包高压正和高压负与整车地之间的等效Y电容,下文称第一电容和第二电容。Ip为检测过程中高压正与整车地之间Rp支路流过的电流,电流方向即如图中所示。In为整车地与高压负之间电阻Rn流过的电流。Iu1为分别闭合K1、K2时对应支路流过的电流。Iu0为闭合K3时对应支路流过的电流。Up、Un分别为检测过程中高压正、高压负对整车地的等效电压。U11为闭合开关K3后电阻R2对整车地电压,U12和U13为闭合开关K1/K3后电阻R1和R2对整车地电压,U14和U15为闭合开关K1/K2/K3后电阻R1和R2对整车地电压,U16和U17为闭合开关K2/K3后电阻R1和R2对整车地电压,其中,MCU通过ADC端口读取的电压值。
第一绝缘电阻Rp连接在第一电源正极和地之间,第二绝缘电阻Rn连接在第一电源负极和地之间、第一电容Cp与第一绝缘电阻Rp并联、第二电容Cn与第二绝缘电阻 Rn并联,第一分压电阻Ra和第一采样电阻R1串联后与第一电容Cp并联;第二分压电阻Rb与第一采样电阻R1串联后与第一电容Cp并联;第三分压电阻Rc和第二采样电阻R2串联后与第二电容Cn并联;第三采样电阻R3一端连接第二电源,另一端连接第二采样电阻R2;第一开关K1连接在第一分压电阻Ra和第一采样电阻R1之间;第二开关K2连接在第二分压电阻Rb和第一采样电阻R1之间,第三开关K3连接在第三分压电阻Rc和第二采样电阻R2之间。
本发明实施例中,处理器1用于多次控制第一开关K1、第二开关K2和/或第三开关K3的闭合和断开,以多次采集第一采样电阻R1和第二采样电阻R2的电压,从而多次确定第一绝缘电阻Rp和第二绝缘电阻Rn的函数关系式以根据所多次确定的函数关系式计算第一绝缘电阻Rp和第二绝缘电阻Rn。
下面将详细描述本发明的绝缘检测过程:
如图5A所示,控制第三开关K3闭合、第一开关K1和第二开关K2断开,经过R支路的电流为Ir,通过MCU的ADC口采集到的第二采样电阻R2两端电压为U11作为第一电压,根据戴维宁定理以得出以下公式:
Ua=2×U11                                                   式(11)
Figure PCTCN2019129155-appb-000005
接着,如图5B所示,控制第一开关K1和第三开关K3闭合、第二开关K2断开,经过第一绝缘电阻Rp支路的电流为Ip1,经过第二绝缘电阻Rn支路的电流为In1,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1,经过下桥臂第二采样电阻R2支路的电流为Ir0,第三分压电阻Rc支路的电流为Iu0。通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第二电压U12和第三电压U13,根据戴维宁定理以得出以下公式:
Ip1+Iu1=In1+Iu0                                         式(21)
Ir=Ir0+Iu0                                              式(22)
Figure PCTCN2019129155-appb-000006
UE=Up+Un                                             式(24)
Figure PCTCN2019129155-appb-000007
根据式(11)、(12)、(21)-(25),可以得到第一函数关系式:
Figure PCTCN2019129155-appb-000008
其中U11为第一电压,U12为第二电压,U13为第三电压,Ra为第一分压电阻Ra的阻值,Rc第三分压电阻Rc的阻值,R为第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值,Rn为第二绝缘电阻Rn的阻值,Rp为第一绝缘电阻Rp的阻值。
接着,如图5C所示,控制第一开关K1、第二开关K2以及第三开关K3闭合,经过第一绝缘电阻Rp支路的电流为Ip2,经过第二绝缘电阻Rn支路的电流为In2,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1’,经过下桥臂第二采样电阻R2支路的电流为Ir1,第三分压电阻Rc支路的电流为Iu0’。通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第四电压U14和第五电压U15,根据戴维宁定理以得出以下公式:
Ip2+Iu1'=In2+Iu0'                                            式(31)
Ir'=Ir1+Iu0'                                                 式(32)
Figure PCTCN2019129155-appb-000009
UE=Up+Un                                                 式(34)
Figure PCTCN2019129155-appb-000010
根据式(11)、(12)、(31)-(35),可以得到第二函数关系式:
Figure PCTCN2019129155-appb-000011
其中U11为第一电压,U14为第四电压,U15为第五电压,Ra为第一分压电阻Ra的阻值,Rb为第二分压电阻Rb的阻值,Rc为第三分压电阻Rc的阻值,R为第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值,Rn为第二绝缘电阻Rn的阻值,Rp为第一绝缘电阻Rp的阻值。
第一函数关系式(26)和第二函数关系式(36)分别具有两个相同未知数第一绝缘电阻Rp和第二绝缘电阻Rn,可以求解,得到第一绝缘电阻Rp和第二绝缘电阻Rn。
当K2闭合电路稳态后,再闭合K3,此时等效Y电容Cp、Cn继续开始充放电。由于第一分压电阻Ra和第二分压电阻Rb阻值相差较小,不会造成较长时间的对第一电容Cp和第二电容Cn充放电,电路从一个稳态跳转向另一个稳态需要极短时间,等待 电路再次达到稳态后,MCU的ADC口采样得到稳定的电压值。这使得前后两个稳态的电压变化量ΔU较小,因此这大大缩减的两个稳态之间的时间间隔。由此该电路有效缩短了绝缘阻值的检测周期。
另外,如果ADC采集到的电压超出量程时,本发明实施例还可以控制第一开关K1断开、第二开关K2和第三开关K3闭合,如图5D所示,经过第一绝缘电阻Rp支路的电流为Ip2,经过第二绝缘电阻Rn支路的电流为In2,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1’,经过下桥臂第二采样电阻R2支路的电流为Ir1,第三分压电阻Rc支路的电流为Iu0’。通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第六电压U16和和第七电压U17,根据戴维宁定理以得出以下公式:
Ip2+Iu1'=In2+Iu0'                                            式(41)
Ir'=Ir1+Iu0'                                                 式(42)
Figure PCTCN2019129155-appb-000012
UE=Up+Un                                                 式(44)
Figure PCTCN2019129155-appb-000013
根据式(11)、(12)、(41)-(45),可以得到第二函数关系式:
Figure PCTCN2019129155-appb-000014
其中U11为所述第一电压,U16为所述第六电压,U17为所述第七电压,Rb为所述第二分压电阻Rb的阻值,Rc为所述第三分压电阻Rc的阻值,R为所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值,Rn为所述第二绝缘电阻Rn的阻值,Rp为所述第一绝缘电阻Rp的阻值。
第一函数关系式(26)和第三函数关系式(46)分别具有两个相同未知数第一绝缘电阻Rp和第二绝缘电阻Rn,可以求解,得到第一绝缘电阻Rp和第二绝缘电阻Rn。
另外,假如电池包工作中,若电池包内发生金属异物掉落至电池包内,金属异物会随着车辆移动会在电池包内到处移动,当金属异物接触到某节电芯模组电极时,会发生该节电芯模组电极对整车地发生短路的情况发生。对此,本发明实施例还可以通过处理器1多次控制所述第一开关K1、所述第二开关K2和/或所述第三开关K3的闭合和断 开,以多次采集所述第一采样电阻R1和所述第二采样电阻R2的电压,从而多次确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的电压以根据所多次确定的第一绝缘电阻Rp和第二绝缘电阻Rn的电压判断所述第一电源是否对地短路。
具体地,如图6A所示,控制第一开关K1、第二开关K2以及第三开关K3闭合,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1,经过下桥臂第二采样电阻R2支路的电流为Ir1,第三分压电阻Rc支路的电流为Iu0’,通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第一采样电压U21和第二采样电压U22,根据戴维宁定理可以得出以下公式:
Ir'=Ir1+Iu0'                               式(51)
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第一采样电压U21、第一分压电阻Ra的阻值、以及第二分压电阻Rb的阻值可以得到以下公式:
Figure PCTCN2019129155-appb-000015
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第二采样电压U22、第三分压电阻Rc的阻值以及第一分压电阻Ra的电压可以得到以下公式:
Figure PCTCN2019129155-appb-000016
通过式(52)和式(53)可以计算第一绝缘电压Up1和第二绝缘电压Un1。
接着,如图6B所示,控制第一开关K1和第三开关K3闭合、第二开关K2断开,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1,经过下桥臂第二采样电阻R2支路的电流为Ir1,第三分压电阻Rc支路的电流为Iu0’,通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第三采样电压U23和第四采样电压U24,根据戴维宁定理可以得出以下公式:
Ir'=Ir1+Iu0'                         式(61)
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第三采样电压U23以及第一分压电阻Ra的阻值可以得到以下公式:
Figure PCTCN2019129155-appb-000017
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第四采样电 压U24、第三分压电阻Rc的阻值以及第一分压电阻Ra的电压可以得到以下公式:
Figure PCTCN2019129155-appb-000018
通过式(62)和式(63)可以计算第三绝缘电压Up2和第四绝缘电压Un2。
接着,如图6C所示,控制第二开关K2和第三开关K3闭合、第一开关K1断开,经过上桥臂第一分压电阻Ra和第一采样电阻R1支路的电流为Iu1,经过下桥臂第二采样电阻R2支路的电流为Ir1,第三分压电阻Rc支路的电流为Iu0’,通过MCU的ADC口采集到的第一采样电阻R1和第二采样电阻R2两端电压分别为第五采样电压U25和第六采样电压U26,根据戴维宁定理可以得出以下公式:
Ir'=Ir1+Iu0'                          式(71)
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第五采样电压U25以及第二分压电阻Rb的阻值可以得到以下公式:
Figure PCTCN2019129155-appb-000019
根据第一采样电阻R1、第二采样电阻R2或第三采样电阻R3的阻值、第六采样电压U26、第三分压电阻Rc的阻值以及第一分压电阻Ra的电压可以得到以下公式;
Figure PCTCN2019129155-appb-000020
通过式(72)和式(73)可以计算第五绝缘电压Up3和第六绝缘电压Un3。
最后,根据所述第一绝缘电压、所述第二绝缘电压、所述第三绝缘电压、所述第四绝缘电压、所述第五绝缘电压以及所述第六绝缘电压判断所述第一电源是否对地短路,具体如下:
当金属异物未对整车地发生短路时,绝缘电压会随着开关K1,K2档位的切换发生变化,即在第一绝缘电压Up1不等于第三绝缘电压Up2不等于第五绝缘电压Up3时,或第一绝缘电压Up1与第二绝缘电压Un1的和等于第一电源的电压、第三绝缘电压Up2与第二绝缘电压Un1的和不等于第一电源的电压以及第五绝缘电压Up3与第二绝缘电压Un1的和不等于第一电源的电压中任意两者成立时,判断第一电源未对地短路;
当有金属异物对整车地发生短路时绝缘电压Up会保持恒定不变,即在第一绝缘电压Up1等于第三绝缘电压Up2等于第五绝缘电压Up3时,或第一绝缘电压Up1与第二 绝缘电压Un1的和等于第一电源的电压、第三绝缘电压Up2与第二绝缘电压Un1的和等于第一电源的电压以及第五绝缘电压Up3与第二绝缘电压Un1的和等于第一电源的电压中任意两者成立时,判断第一电源对地短路。
在第一电源对地短路时,本发明实施例可以判断短路位置,即通过处理器1,使用第一绝缘电压、第三绝缘电压或第五绝缘电压除以电池模组的单体电芯的电压得到位置值。例如第一绝缘电压使21V,单体电芯电压为4.2V,则位置值为5。
然后,判断所述电池模组中发生对地短路的单体电芯的串数为所述位置值。例如位置值为5,则电池模组第5节单体电芯发生对地短路。
本发明实施例可以提高总压采集和绝缘检测的同步性,提高检测精度;缩短绝缘电阻检测周期,准确判断出电芯模组短路位置,电路结构简单,无需引入负电源、运算放大器、高压采集芯片、隔离通讯芯片,检测精度高,无误报。
由于电路无需引入外接的负电源及运算放大器和电池总压采集和绝缘采样在同一时刻进行采集,直接使用MCU的ADC接口进行采样,故避免了外接放大器的零点漂移对采样精度造成的影响和总压与绝缘采样不能在同一时刻采集造成计算结果误差大。其结构特性决定了两次稳态的电压波动较小,电路稳定时间明显缩短。因此检测响应速度更快。
由上述可知,电压采样只需要通过MCU的两个ADC口完成,减少了隔离通讯,节省了MCU的IO接口资源,同时减轻了MCU在采样、处理过程中的软件负荷。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于全桥绝缘检测电路的绝缘检测系统,所述全桥绝缘检测电路包括连接在第一电源正极和地之间的第一绝缘电阻Rp、连接在所述第一电源负极和地之间的第二绝缘电阻Rn、与所述第一绝缘电阻Rp并联的第一电容Cp、与所述第二绝缘电阻Rn并联的第二电容Cn,其特征在于,所述绝缘检测系统包括:
    串联后与所述第一电容Cp并联的第一分压电阻Ra和第一采样电阻R1;与所述第一采样电阻R1串联后与所述第一电容Cp并联的第二分压电阻Rb;串联后与所述第二电容Cn并联的第三分压电阻Rc和第二采样电阻R2;一端连接第二电源,另一端连接所述第二采样电阻R2的第三采样电阻R3;连接在所述第一分压电阻Ra和所述第一采样电阻R1之间的第一开关K1;连接在所述第二分压电阻Rb和所述第一采样电阻R1之间的第二开关K2以及连接在所述第三分压电阻Rc和所述第二采样电阻R2之间的第三开关K3;以及
    处理器,用于多次控制所述第一开关K1、所述第二开关K2和/或所述第三开关K3的闭合和断开,以多次采集所述第一采样电阻R1和所述第二采样电阻R2的电压,从而多次确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的函数关系式以根据所多次确定的函数关系式计算所述第一绝缘电阻Rp和所述第二绝缘电阻Rn。
  2. 根据权利要求1所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,计算所述第一绝缘电阻Rp和所述第二绝缘电阻Rn包括:
    控制所述第三开关K3闭合、所述第一开关K1和所述第二开关K2断开,采集所述第二采样电阻R2的电压作为第一电压;
    控制所述第一开关K1和所述第三开关K3闭合、所述第二开关K2断开,采集所述第一采样电阻R1和所述第二采样电阻R2的电压分别作为第二电压和第三电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第一分压电阻Ra的阻值、所述第一电压、所述第二电压以及所述第三电压确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的函数关系式作为第一函数关系;
    控制所述第一开关K1、所述第二开关K2以及所述第三开关K3闭合,采集所述第一采样电阻R1和所述第二采样电阻R2的电压分别作为第四电压和第五电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、 所述第一分压电阻Ra的阻值、所述第二分压电阻Rb的阻值、所述第一电压、所述第四电压以及所述第五电压确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的函数关系式作为第二函数关系;
    根据所述第一函数关系和所述第二函数关系计算所述第一绝缘电阻Rp和所述第二绝缘电阻Rn。
  3. 根据权利要求2所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,
    所述第一函数关系为:
    Figure PCTCN2019129155-appb-100001
    其中U11为所述第一电压,U12为所述第二电压,U13为所述第三电压,Ra为所述第一分压电阻Ra的阻值,R为所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值,Rn为所述第二绝缘电阻Rn的阻值,Rp为所述第一绝缘电阻Rp的阻值,
    所述第二函数关系为:
    Figure PCTCN2019129155-appb-100002
    其中U11为所述第一电压,U14为所述第四电压,U15为所述第五电压,Ra为所述第一分压电阻Ra的阻值,Rb为所述第二分压电阻Rb的阻值,R为所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值,Rn为所述第二绝缘电阻Rn的阻值,Rp为所述第一绝缘电阻Rp的阻值。
  4. 根据权利要求1所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,计算所述第一绝缘电阻Rp和所述第二绝缘电阻Rn包括:
    控制所述第三开关K3闭合、所述第一开关K1和所述第二开关K2断开,采集所述第二采样电阻R2的电压作为第一电压;
    控制所述第一开关K1和所述第三开关K3闭合、所述第二开关K2断开,采集所述第一采样电阻R1和所述第二采样电阻R2的电压分别作为第二电压和第三电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第一分压电阻Ra的阻值、所述第一电压、所述第二电压以及所述第三电压确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的函数关系式作为第一函数关系;
    控制第一开关K1断开、所述第二开关K2和所述第三开关K3闭合,采集所述第一采样电阻R1和所述第二采样电阻R2的电压分别作为第六电压和第七电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第二分压电阻Rb的阻值、所述第一电压、所述第六电压以及所述第七电压确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的函数关系式作为第三函数关系;
    根据所述第一函数关系和所述第三函数关系计算所述第一绝缘电阻Rp和所述第二绝缘电阻Rn。
  5. 根据权利要求4所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,
    所述第一函数关系为:
    Figure PCTCN2019129155-appb-100003
    其中U11为所述第一电压,U12为所述第二电压,U13为所述第三电压,Ra为所述第一分压电阻Ra的阻值,R为所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值,Rn为所述第二绝缘电阻Rn的阻值,Rp为所述第一绝缘电阻Rp的阻值,
    所述第三函数关系为:
    Figure PCTCN2019129155-appb-100004
    其中U11为所述第一电压,U16为所述第六电压,U17为所述第七电压,Rb为所述第二分压电阻Rb的阻值,R为所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值,Rn为所述第二绝缘电阻Rn的阻值,Rp为所述第一绝缘电阻Rp的阻值。
  6. 根据权利要求1所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,所述处理器还用于:
    多次控制所述第一开关K1、所述第二开关K2和/或所述第三开关K3的闭合和断开,以多次采集所述第一采样电阻R1和所述第二采样电阻R2的电压,从而多次确定所述第一绝缘电阻Rp和所述第二绝缘电阻Rn的电压以根据所多次确定的第一绝缘电阻Rp和第二绝缘电阻Rn的电压判断所述第一电源是否对地短路。
  7. 根据权利要求6所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,判断所述第一电源是否对地短路包括:
    控制所述第一开关K1、所述第二开关K2以及所述第三开关K3闭合,采集所述第一采样电阻R1和所述第二采样电阻R2的电压分别作为第一采样电压和第二采样电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第一采样电压、所述第一分压电阻Ra的阻值、以及第二分压电阻Rb的阻值计算所述第一绝缘电阻Rp的电压作为第一绝缘电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第二采样电压、所述第三分压电阻Rc的阻值以及所述第一分压电阻Ra的电压计算所述第二绝缘电阻Rn的电压作为第二绝缘电压;
    控制所述第一开关K1和所述第三开关K3闭合、所述第二开关K2断开,采集所述第一采样电阻R1和所述第二采样的电阻的电压分别作为第三采样电压和第四采样电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第三采样电压以及所述第一分压电阻Ra的阻值计算所述第一绝缘电阻Rp的电压作为第三绝缘电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第四采样电压、所述第三分压电阻Rc的阻值以及所述第一分压电阻Ra的电压计算所述第二绝缘电阻Rn的电压作为第四绝缘电压;
    控制所述第二开关K2和所述第三开关K3闭合、所述第一开关K1断开,采集所述第一采样电阻R1和所述第二采样的电阻的电压分别作为第五采样电压和第六采样电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第五采样电压以及所述第二分压电阻Rb的阻值计算所述第一绝缘电阻Rp的电压作为第五绝缘电压;
    根据所述第一采样电阻R1、所述第二采样电阻R2或所述第三采样电阻R3的阻值、所述第六采样电压、所述第三分压电阻Rc的阻值以及所述第一分压电阻Ra的电压计算所述第二绝缘电阻Rn的电压作为第六绝缘电压;
    根据所述第一绝缘电压、所述第二绝缘电压、所述第三绝缘电压、所述第四绝缘电压、所述第五绝缘电压以及所述第六绝缘电压判断所述第一电源是否对地短路。
  8. 根据权利要求7所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,所述根据所述第一绝缘电压、所述第二绝缘电压、所述第三绝缘电压、所述第四绝缘电压、所述第五绝缘电压以及所述第六绝缘电压判断所述第一电源是否对地短路包括:
    在所述第一绝缘电压不等于所述第三绝缘电压不等于所述第五绝缘电压时,或所述第一绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压、所述第三绝缘电压与所述第二绝缘电压的和不等于所述第一电源的电压以及所述第五绝缘电压与所述第二绝缘电压的和不等于所述第一电源的电压中任意两者成立时,判断所述第一电源未对地短路;
    在所述第一绝缘电压等于所述第三绝缘电压等于所述第五绝缘电压时,或所述第一绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压、所述第三绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压以及所述第五绝缘电压与所述第二绝缘电压的和等于所述第一电源的电压中任意两者成立时,判断所述第一电源对地短路。
  9. 根据权利要求8所述的基于全桥绝缘检测电路的绝缘检测系统,其特征在于,所述第一电源是电池模组,在所述第一电源对地短路时,所述处理器还用于:
    使用所述第一绝缘电压、所述第三绝缘电压或所述第五绝缘电压除以所述电池模组的单体电芯的电压得到位置值;
    判断所述电池模组中发生对地短路的单体电芯的串数为所述位置值。
  10. 一种电动汽车,其特征在于,所述电动汽车设置有权利要求1-9中任一项权利要求所述的基于全桥绝缘检测电路的绝缘检测系统。
PCT/CN2019/129155 2018-12-29 2019-12-27 基于全桥绝缘检测电路的绝缘检测系统及电动汽车 WO2020135703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811636686.8A CN109720235B (zh) 2018-12-29 2018-12-29 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN201811636686.8 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135703A1 true WO2020135703A1 (zh) 2020-07-02

Family

ID=66297934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129155 WO2020135703A1 (zh) 2018-12-29 2019-12-27 基于全桥绝缘检测电路的绝缘检测系统及电动汽车

Country Status (2)

Country Link
CN (1) CN109720235B (zh)
WO (1) WO2020135703A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311239A (zh) * 2021-07-21 2021-08-27 盐城工学院 一种电动汽车绝缘电阻检测电路及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720235B (zh) * 2018-12-29 2020-06-30 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN112240954A (zh) * 2019-07-17 2021-01-19 上海海拉电子有限公司 一种绝缘检测电路及方法
CN112706627B (zh) * 2019-10-09 2022-10-14 北京新能源汽车股份有限公司 一种绝缘检测电路、方法及电动汽车
CN113795763B (zh) * 2019-10-31 2024-04-02 株式会社Lg新能源 漏电检测设备、漏电检测方法及电动车辆
CN111157797A (zh) * 2020-03-11 2020-05-15 上海度普新能源科技有限公司 一种绝缘检测电路和储能充电设备
CN111505380A (zh) * 2020-04-24 2020-08-07 东软睿驰汽车技术(沈阳)有限公司 一种车辆绝缘电阻的检测装置、系统与电动汽车
CN111722014B (zh) * 2020-06-29 2023-04-28 蜂巢能源科技股份有限公司 绝缘检测方法、装置、介质及电子设备
CN111722069B (zh) * 2020-06-30 2023-09-22 蜂巢能源科技股份有限公司 绝缘检测电路采样电阻的选择方法、装置、介质及设备
CN112345902A (zh) * 2020-10-28 2021-02-09 一巨自动化装备(上海)有限公司 一种实现电压均衡的绝缘检测电路
CN112659898B (zh) * 2020-12-01 2023-08-18 珠海格力电器股份有限公司 汽车的绝缘电阻检测电路的故障诊断装置、方法和汽车
CN113295927B (zh) * 2021-05-21 2023-06-20 度普(苏州)新能源科技有限公司 一种绝缘检测系统及绝缘检测方法
CN113715663B (zh) * 2021-08-12 2023-02-10 深圳欣锐科技股份有限公司 绝缘检测电路、电动汽车和充电桩
CN115248362A (zh) * 2021-12-22 2022-10-28 中科芯集成电路有限公司 一种电容式绝缘检测电路及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085575A1 (en) * 2007-09-28 2009-04-02 Caterpillar Inc. Testing method for a ground fault detector
CN201886117U (zh) * 2010-09-29 2011-06-29 京滨电子装置研究开发(上海)有限公司 电动车的绝缘检测电路
CN103576064A (zh) * 2013-10-28 2014-02-12 惠州市亿能电子有限公司 一种带有校准模块的绝缘检测电路及其校准方法
CN105911353A (zh) * 2016-04-15 2016-08-31 广州汽车集团股份有限公司 汽车绝缘电阻检测电路及其绝缘电阻检测方法
CN106501611A (zh) * 2016-10-28 2017-03-15 深圳市航盛电子股份有限公司 绝缘电阻检测方法及装置
CN107478993A (zh) * 2017-07-11 2017-12-15 中国科学技术大学 一种电动汽车动力电池双边绝缘电阻监测装置
CN107748292A (zh) * 2017-12-05 2018-03-02 阳光电源股份有限公司 一种交流绝缘检测电路、系统及方法
CN208109933U (zh) * 2018-03-15 2018-11-16 宁波吉利汽车研究开发有限公司 一种绝缘电阻检测电路
CN109720235A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘检测系统及电动汽车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085575A1 (en) * 2007-09-28 2009-04-02 Caterpillar Inc. Testing method for a ground fault detector
CN201886117U (zh) * 2010-09-29 2011-06-29 京滨电子装置研究开发(上海)有限公司 电动车的绝缘检测电路
CN103576064A (zh) * 2013-10-28 2014-02-12 惠州市亿能电子有限公司 一种带有校准模块的绝缘检测电路及其校准方法
CN105911353A (zh) * 2016-04-15 2016-08-31 广州汽车集团股份有限公司 汽车绝缘电阻检测电路及其绝缘电阻检测方法
CN106501611A (zh) * 2016-10-28 2017-03-15 深圳市航盛电子股份有限公司 绝缘电阻检测方法及装置
CN107478993A (zh) * 2017-07-11 2017-12-15 中国科学技术大学 一种电动汽车动力电池双边绝缘电阻监测装置
CN107748292A (zh) * 2017-12-05 2018-03-02 阳光电源股份有限公司 一种交流绝缘检测电路、系统及方法
CN208109933U (zh) * 2018-03-15 2018-11-16 宁波吉利汽车研究开发有限公司 一种绝缘电阻检测电路
CN109720235A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘检测系统及电动汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311239A (zh) * 2021-07-21 2021-08-27 盐城工学院 一种电动汽车绝缘电阻检测电路及方法

Also Published As

Publication number Publication date
CN109720235B (zh) 2020-06-30
CN109720235A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020135703A1 (zh) 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN105911353B (zh) 汽车绝缘电阻检测电路及其绝缘电阻检测方法
CN107991625A (zh) 动力蓄电池系统绝缘电阻检测电路与检测方法
CN105277791B (zh) 直流小电流二次放电蓄电池内阻在线检测方法
CN107677964B (zh) 一种新能源汽车电机电池模拟测试方法
WO2023207404A1 (zh) 一种电池内阻检测方法和电池内阻检测电路
Shen et al. Design of online detection system for insulation resistance of electric vehicle based on unbalanced bridge
CN111142037A (zh) 一种高频放电蓄电池内阻在线检测方法
CN108872697A (zh) 用于动力电池单体的高抗扰电压采集电路及其方法
CN109282856A (zh) 一种同时检测温度/电压/电流信号的单芯片传感器
CN103543411B (zh) 一种锂电池电压检测装置
CN106374834A (zh) 一种太阳电池伏安特性测量电路和方法
CN102989694B (zh) 一种基于fpga的快速电池分选系统
CN213337815U (zh) 绝缘检测电路、电池管理系统和车辆
CN107561434A (zh) 一种用于pwm/pfm双模式dc‑dc开关电源的电流检测电路
TW202338373A (zh) 絕緣阻抗檢測電路及絕緣阻抗檢測方法
CN212159919U (zh) 双模直流电流传感器电路
CN211826404U (zh) 一种电源蓄电池单体电压差分采集电路
CN1020804C (zh) 光导微机型电介质损耗测定仪
CN111580007A (zh) 蓄电池内阻检测电路及其方法
CN219758378U (zh) 一种多路高精度直流电压隔离采样电路
CN216595440U (zh) 一种高压绝缘检测电路
CN207689567U (zh) 一种高精度电压检测电路
CN218995622U (zh) 电池内阻参数测量电路和电池内阻测量装置
CN115951116B (zh) 一种峰值电流检测系统及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904706

Country of ref document: EP

Kind code of ref document: A1