WO2020135593A1 - 扫地记录图的校准方法、扫地机器人及移动终端 - Google Patents

扫地记录图的校准方法、扫地机器人及移动终端 Download PDF

Info

Publication number
WO2020135593A1
WO2020135593A1 PCT/CN2019/128720 CN2019128720W WO2020135593A1 WO 2020135593 A1 WO2020135593 A1 WO 2020135593A1 CN 2019128720 W CN2019128720 W CN 2019128720W WO 2020135593 A1 WO2020135593 A1 WO 2020135593A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
sweep
calibration
sweeping
record
Prior art date
Application number
PCT/CN2019/128720
Other languages
English (en)
French (fr)
Inventor
鲁峰
Original Assignee
深圳市愚公科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市愚公科技有限公司 filed Critical 深圳市愚公科技有限公司
Publication of WO2020135593A1 publication Critical patent/WO2020135593A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor

Definitions

  • the invention relates to a calibration method for sweeping record maps, a sweeping robot using the method, and a corresponding mobile terminal.
  • the cleaning robot in the prior art cannot completely replace the manual cleaning of all places. In some places, the robot cannot be covered, so consumers need to get the cleaning path information of the robot to clearly know where to clean or re-clean manually. Therefore, how to record the data of the cleaning route information and display it to consumers in a friendly manner becomes particularly important.
  • the wifi transmission module of the sweeping robot in the prior art has a storage function, and can be used to store a part of the sweeping record map.
  • the stored data can be uploaded to the cloud through the wifi transmission module, and then the user can download the sweeping record map from the cloud through the APP to view .
  • the purpose of the present invention is to propose a calibration method for sweeping record maps, a sweeping robot using the method, and a corresponding mobile terminal, so that the user can obtain without exceeding the bandwidth and storage limits that the cloud and robot can withstand Complete calibrated sweeping record map.
  • the method for calibrating the sweep map of the present invention to solve the above technical problems includes the process of acquiring the basic sweep map, the process of acquiring the calibration sweep map, and the correction process; the process of acquiring the basic sweep map includes the following steps: S1, receiving trajectory records from the sweep robot The first sweep map of the device; S2.
  • the process of acquiring the calibration record includes the following steps: T1, receiving the first calibration sweeping record from the sweeping robot vision device; the first calibration sweeping record is visually recognized by the visual device on the sweeping robot through the cleaning situation of the scanned area It is formed, which contains the coordinate information of the starting point of the scanned area and the cleaning situation of the scanned area; T2.
  • the second calibration sweep map is formed and backed up;
  • the storage space occupied by the second calibration sweep map is smaller than the first calibration sweep map;
  • the calibration process includes the following steps: the part where the coordinates of the second sweep map and the second calibration sweep map coincides with the second calibration sweep map Replace, to calibrate the second sweep map, to form the third calibration sweep map; or upload both the second sweep map and the second calibration sweep map to the cloud for calibration in subsequent procedures to form the third calibration Sweeping record map; or according to the request of the terminal transferred from the cloud, both the second sweeping record map and the second calibration sweeping record map are transmitted to the user terminal, so as to perform calibration on the user terminal, and directly form a third calibration sweeping record map,
  • the third calibration sweep map can be displayed directly to the user, or it can be beautified to form the fourth calibration record map and displayed to the user.
  • the following features are also included: the first sweeping record and the first calibration sweeping record are completely transmitted to the communication module installed on the sweeping robot itself; the communication module is used to communicate with the cloud ; The size of the second sweep map and the second calibration sweep map ensure that the communication module can save the complete second sweep map and the complete second calibration sweep map; or, the first sweep map and the first A calibrated sweeping map is completely transmitted to the sweeping map processing process installed on the sweeping robot control motherboard (such as the ARM motherboard); the sweeping map processing process is used to process the sweeping map and can be communicated through the robot
  • the device communicates with the cloud; the size of the second sweep map and the second calibration sweep map ensure that the complete second sweep map and the complete second sweep map are stored in the memory of the control board.
  • the second sweep map and the second calibration sweep map are also stored in the cloud, or the third calibration sweep map is stored in the cloud.
  • the formation of the second sweeping record in step S2 specifically includes: S21, extracting a straight line segment of the sweeping robot's walking path; S22, obtaining the latest position coordinates of the robot, and judging whether the sweeping robot's walking to the new position point is still along the previous The same straight line; S23, if it is, then remove the points outside the end point on the entire straight line segment in the record, so that only the coordinates of the two points of the end point and the start point are retained on the direct segment; S24, repeat step S22 -S23, make the above judgment on each new position of the sweeping robot, so as to always keep the coordinates of only the end point and the starting point on the direct segment; obtain a simplified second sweeping record of the sweeping robot.
  • Step T2 specifically includes: T21, extracting the complete outer contour of the first calibration sweep record, and dividing its internal division into a plurality of square cells; T22, judging the cleaning conditions in each square cell, represented by digits, Form a digital grid graph.
  • the square squares in T21 are square squares with equal areas.
  • step T22 the digits are binary digits, that is, "0" and “1” are used to indicate “cleaned” and “uncleaned”, respectively, or vice versa.
  • the digits are quaternary digits or higher, so that more digit values can be used to represent more square states, and the square states include at least "cleaned” and "uncleaned” Over"
  • the invention also provides a cleaning robot, which includes a visual device and a communication module that communicates with the cloud, and is characterized in that: the communication module is provided with a computer program, which is used to implement the aforementioned calibration method of the sweeping record map.
  • the invention also provides a method for controlling a sweeping robot, which includes the following steps: A1, receiving second sweeping map information and second calibration sweeping map information from the cloud or via the cloud; comparing the coordinates of the second sweeping map with the second calibration The overlapping parts of the sweep map are replaced with the second calibration sweep map to achieve the calibration of the second sweep map to form the third calibration sweep map; either receive the third calibration sweep map directly from the cloud or via the cloud; A2 3. Perform conversion processing on the third calibration sweeping record map again, generate a new fourth calibration sweeping record map suitable for viewing by the user, and display and present it; A3. Receive user operation instructions on the fourth calibration sweeping record map, Form an operation instruction to control the cleaning robot.
  • the second calibration sweep map is a digital grid graph; in step A2, the conversion process includes: interpreting the digital information in each small square grid into cleaning information of the square grid, and predetermined The color or gray scale fills the corresponding square grid, and directly forms or beautifies to form a user-visible fourth calibration sweep record with color or gray scale.
  • the operation instruction includes: designating a cleaning place, a virtual wall, designating a cleaning area, and designating a cleaning prohibited area.
  • the invention also proposes a mobile terminal, including a computer program, which is used to execute the above robot control method after running.
  • the beneficial effects of the present invention are: using the calibration sweep map from the sweeping robot vision device to calibrate the basic sweep map from the sweeping robot trajectory recording device, which can correct the map deviation caused by the sweeping robot slipping or hitting an obstacle Corrected, thus creating conditions for precise control of the subsequent sweeping robot.
  • the formed second sweep map and the second calibration sweep map are smaller than the first sweep map and the first calibration sweep map, respectively.
  • Storage space so that you can back up the complete second sweep record and the second calibration sweep record on the WiFi communication module of the sweeping robot or in the memory of the robot's control motherboard (ARM motherboard) without having to The storage space or the memory space of the robot is too large to upgrade.
  • FIG. 1A is a schematic flowchart of an embodiment of the present invention.
  • FIG. 1B is an interactive schematic diagram of an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of forming a second calibration sweep map according to an embodiment of the present invention.
  • FIGS. 3A and 3B are two exemplary diagrams of the sweep map recorded on the mobile phone according to an embodiment of the present invention.
  • FIG. 1A a schematic diagram of the overall process of Embodiment 1 of the present invention.
  • This embodiment shows a method for calibrating a sweeping record map.
  • the method is executed by a WiFi communication module provided on a sweeping robot.
  • the execution subject may be other forms, such as a 5G communication module, a dedicated router, a wireless cat, a relay station, a server, a robot control board (such as an ARM motherboard), and so on.
  • a 5G communication module such as a dedicated router, a wireless cat, a relay station, a server, a robot control board (such as an ARM motherboard), and so on.
  • a robot control board such as an ARM motherboard
  • the trajectory recording device on the sweeping robot will record the walking trajectory of the sweeping robot in the form of coordinate bitmap, form the first sweeping recording map, and transmit it to the wifi communication module installed on the sweeping robot itself.
  • This step can be achieved by the existing technology, for example, it can be obtained through inertial navigation data or visual sensor data. According to the robot size and sampling accuracy requirements, a point is usually recorded around 7cm (this size is equivalent to the size of the robot body).
  • the information of the sweep map is processed in step S2 to obtain the second sweep map, so that the storage space occupied by the second sweep map is smaller than that of the first sweep map, and the second sweep map
  • the size of the record map ensures that the complete second sweep map record information can be saved on the wifi communication module, thereby solving the problem of insufficient storage space. Since the complete second sweep map data is recorded, an accurate sweep track record is always saved on the wifi communication module.
  • the method for obtaining the second sweep map by converting the first sweep map in step S2 includes the following steps:
  • the wifi communication module obtains the latest position coordinates of the robot, it is determined whether the sweeping robot's walking to the new position point is still along the same straight line before, that is: extracting the neighbor of the sweeping robot
  • the coordinates of the next position point (hereinafter referred to as the new position point), according to the coordinates, determine whether the straight line segment where the new position point is closest to the sweeping robot is on a straight line, and determine whether the sweeping robot is still walking at this step.
  • the new position point The coordinates of the next position point (hereinafter referred to as the new position point), according to the coordinates, determine whether the straight line segment where the new position point is closest to the sweeping robot is on a straight line, and determine whether the sweeping robot is still walking at this step.
  • step S23 If yes, remove the points on the entire straight line segment that are outside the end point in the record, so that only the coordinates of the end point and the start point are retained on the direct segment. That is: if the third point is on the front straight line, the third point will replace the second given point as the end point of the new line segment; if not, the second point will be the first point of the new line segment, the third point As a temporary second point, jump to step S22.
  • the first and second sweeping record maps are being drawn all the time, forming a dynamic update effect.
  • the process of acquiring the calibration record includes the following steps:
  • T1 Receive a first calibration sweep record from the sweeping robot vision device; the first calibration sweep record is formed by the visual device on the sweep robot by visually identifying the cleaning situation of the scanned area, which contains the scanned area The coordinate information of the starting point and the cleaning information of the scanned area.
  • the first calibrated sweeping record map is positioned and constructed by the visual sweeping robot relying on the camera, that is, vision-based positioning and construction (visual Vslam).
  • the format of the graph may also be a coordinate bitmap format.
  • the sweeping range of the sweeping robot is very large, and the number of pixels to be recorded is usually 255*255, so the size of the data of the single sweep sweep record image is more than 65K (referring to the number of Bytes), and the storage of the first sweep sweep record image is already occupied There is a lot of storage space, so if you store a first calibration record, the storage space will be tightened. Therefore, in this embodiment, the first calibration record is processed as follows:
  • T21 Extract the complete outer contour of the first calibration sweep record, and divide its internal division into multiple squares, each square is square, and the area is equal (except for the edge part);
  • the digits can be binary digits, that is, "0" and “1” are used to indicate “uncleaned” and “cleaned”, respectively, or vice versa.
  • each grid since each grid only needs to store two states of 0 and 1, each grid actually occupies only one bit of storage space instead of one Byte. Therefore, the total space occupied is only 65Kbit, not 65KByte. The storage space is only 1/8 of the original.
  • the digits can also be quaternary digits or higher digits (such as 5-digit or 6-digit), so that more digit values can be used to represent more square states,
  • the grid state can include not only “cleaned” and “uncleaned”, but also include more states such as: “obstacle”, "scanned to be rescanned” and so on, for example: 00 is “cleaned”, 01 is “uncleaned”, 10 is “obstacle”, and 11 is "scanned to be rescanned”. But its disadvantage is that the storage space occupied becomes larger.
  • the second sweeping map is derived from the sweeping robot trajectory recording device, an XY coordinate map is used, and the resolution of drawing the map can only reach the width of the body of the sweeping robot, that is, the size of each pixel cannot be smaller than the sweeping robot Body (usually around 7cm).
  • the second calibration sweep map obtained in this embodiment is calculated. If the resolution is 255*255, the calibration sweep map is calibrated.
  • the line width of the path can be reduced by about one time, and within a limited cleaning area (such as below 700 square meters), the map can have more delicate pixels and the map drawn can be more accurate. And the smaller the area scanned, the more accurate it will be. Since this effect can be achieved under 700 square meters, for ordinary households, the calibrated sweep record can achieve this effect, which is enough for ordinary consumers.
  • the first and second calibration sweep maps can be performed regularly or at the request of the end customer, because it has a larger picture and does not necessarily need to be real-time.
  • the storage space of the second calibration sweep map is larger than that of the second sweep map, and the second sweep map is recorded and converted from the trajectory recording device of the sweep robot. It can be stored in the robot.
  • the continuous drawing during the sweeping process has the characteristics of dynamic update and timely, and the second calibration sweeping record map needs to be drawn with VSLAM. Because the picture is large, the transmission and processing cannot be done in real time. Therefore, in this embodiment, the second calibration sweep map is used to calibrate the second sweep map, so as to obtain a combination of the advantages of the two, and obtain a sweep map that can be more accurate and maintain dynamic updates.
  • the execution subject of this embodiment is on the WIFI template of the robot.
  • the WIFI module not only has a communication function, it also has a map scan processing function; the WIFI template obtains the first scan map and the first calibrated scan map from the ARM main board of the robot through a serial port.
  • the execution subject may be in other forms, such as a 5G communication module, a dedicated router, a wireless cat, a relay station, a server, an ARM motherboard of a robot, and so on.
  • a 5G communication module such as a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, a Wi-Fi Protecte, or Wi-Fi, or Wi-Fi, or Wi-Fi.
  • the above method is actually implemented by a process running on the ARM motherboard, which may be referred to as a map scanning process.
  • the process obtains the first scan map and the first calibrated scan map from the ARM memory of the robot through a queue or a memory mapping method, and forms the second scan map and the second calibrated scan map by the method of the present invention, and retains it in the process In the memory occupied, that is to say, in the memory occupied by the process, there is a storage backup of the second scan map and the second calibration scan map, or a storage backup of the third scan map.
  • the calibration process of this embodiment is carried out in the user's mobile phone APP (that is, the APP that controls the sweeping robot) (of course, in other embodiments, it is not excluded in the WIFI communication module and the map scanning process in the robot ARM Or in the cloud), therefore, the WiFi communication module only needs to transmit the second sweep map and the second calibration sweep map to the user terminal according to the request of the mobile terminal (mobile phone APP) transferred from the cloud, so that the user terminal Carry out calibration on the top, and directly form or beautify to form a fourth calibration sweep record that can be displayed to the user.
  • the method of calibration is to replace the part where the coordinates of the second sweep map and the second calibration sweep map are replaced with the second calibration sweep map to form a third calibration sweep map. After the replacement, the end customer will see on the screen that a part of the sweeping record has suddenly become clear, while the remaining part continues to be drawn.
  • the second sweep map can be continuously drawn before calibration, during and after calibration, and the sweep map is continuously updated, which is why the terminal The user will see the reason why a part of the sweeping record is suddenly clear while the rest is still drawing.
  • FIG. 1B shows a schematic diagram of the interaction between the implementation subjects in this embodiment.
  • the third calibration sweep record after calibration is a combination of a digital grid graph and a dot graph.
  • the edges of the grid area are linear, not smooth curves, so that it is not beautiful, so after calibration Beautify the sweep map to form the final fourth calibration sweep map.
  • the circle can be elliptical or other pointless Corner shape replacement: If the cleaning status of the adjacent left and right squares or the upper and lower squares is "cleaned” on the row or column where the current square is located, it means that the current square does not belong to the corner, so the current The square is depicted as a square; if the cleaning status of the adjacent squares in any row or column direction is not all "cleaned", that is, as long as any adjacent square is not cleaned, it represents the current square It belongs to a corner, so the current square is depicted as a circle. In this way, the corners can be fitted into smooth curves in the finally formed fourth calibration sweep record chart to form a more beautiful picture.
  • the two adjacent squares on the left and right are in a straight line direction (customized as a row), as shown in the four cases of sequence numbers (4), (8), (12), (16) in Table 1 below ,
  • the cleaning status of the two adjacent squares is "cleaned", then the current square does not belong to the corner, so the current square is depicted as a square; similarly, the two adjacent squares above and below The current square is in a straight line direction (customized as a column), and the serial numbers (13), (14), (15), (16) in the following table 1 are cleaned of two adjacent squares in the upper and lower directions If the status is "cleaned", the current square does not belong to the corner, so the current square is depicted as a square. In the case of other serial numbers in Table 1 below, in any straight line direction (row or column), the cleaning status of the adjacent squares is not all "cleaned", which means that the current square belongs to the corner, so the current square Painted as a circle.
  • FIG. 3A and FIG. 3B are exemplary diagrams of sweeping records of the embodiment without calibration and beautification, after calibration and beautification, respectively.
  • the path deviation is serious; after calibration, the path is accurate and the obstacle can be visually identified.
  • the accuracy and aesthetics of FIG. 3B are greatly improved.
  • the part where the coordinates of the second sweep map and the second calibration sweep map are directly replaced on the WiFi communication module with the second calibration sweep map, to obtain the third calibration sweep map, which is stored in WiFi On the communication module the advantage is that the WiFi communication module only stores the third calibration sweep record, and the part where the coordinates of the second sweep sweep record and the second calibration sweep sweep map have been omitted from this picture , which can save storage space.
  • the third calibration sweep sweep is actually composed of two sweep sweeps, some of which are in the form of digital maps.
  • both the second sweep map and the second calibration sweep map are uploaded to the cloud for calibration in a subsequent procedure to form a third calibration sweep map.
  • the cloud can directly send the second sweeping record and the second calibration sweeping record to the user, and at the same time, send a request to the WiFi communication module of the sweeping robot to obtain the updated second sweeping Record chart and second calibration sweep record chart.
  • the method in the above embodiment is suitable for visual robot map transmission and display.
  • the calibrated sweeping map records the sweeping situation very accurately, its use is not limited to display.
  • This embodiment proposes several applications based on the calibration sweep map.
  • Virtual wall The user can designate a virtual wall in the sweeping area by means of a line, and order the sweeping robot not to clear the wall.
  • Designated cleaning area This point is similar to 1 above, except that the designated location is changed to the designated area.
  • the mobile terminal may also be a PC terminal, etc.; so the embodiments are only used to describe one or more specific implementations.

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Manipulator (AREA)

Abstract

一种扫地记录图的校准方法、扫地机器人及移动终端,扫地记录图的校准方法包括基本扫地记录图获取过程、校准扫地记录图获取过程和校正过程。利用来自扫地机器人视觉装置的校准扫地记录图对来自扫地机器人轨迹记录装置的基本扫地记录图进行校准,避免了因扫地机器人打滑或者碰到障碍物而造成的地图偏差,从而为后续扫地机器人精准控制创造了条件。由于第一扫地记录图和第一校准扫地记录图均进行了转换处理,形成的第二扫地记录图和第二校准扫地记录图分别小于第一扫地记录图和第一校准扫地记录图,这样就可以在扫地机器人的WiFi通讯模组上备份完整的第二扫地记录图和第二校准扫地记录图而无须对WiFi通讯模组的存储空间做太大的升级。

Description

扫地记录图的校准方法、扫地机器人及移动终端 技术领域
本发明涉及一种扫地记录图的校准方法,使用该方法的扫地机器人,以及相应的移动终端。
背景技术
现有技术中的扫地机器人不能完全代替人手完成所有地方的清扫。因为有些地方扫地机器人没办法覆盖到,所以消费者需要得到扫地机器人的清扫路径信息,以明确知道哪里需要手动打扫或重新打扫。因此,如何将清扫路径信息的数据进行记录以及友好地展示给消费者就变得尤为重要。
现有技术中的扫地机器人的wifi传输模块具有存储功能,可用于存储一部分扫地记录图,存储的数据可以通过该wifi传输模块上传给云端,然后用户即可通过APP从云端下载扫地记录图进行查看。
但是,当扫地机器人打滑或者碰到障碍物停止不前时,描绘的地图就会有偏差。因此,还需要对扫地记录图进行校准。另外,云端和机器人端所能承受的带宽和存储量均是有限制的,而图像数据一般比较大,这也为扫地记录图的记录以及友好地展示带来了困难。
发明内容
本发明目的在于提出一种扫地记录图的校准方法、使用该方法的扫地机器人、以及相应的移动终端,在不超过云端和机器人端所能承受的带宽和存储量限制的前提下使用户能够获得完整的经校准的扫地记录图。
本发明解决上述技术问题的扫地记录图的校准方法包括包括基本扫地记录图获取过程、校准扫地记录图获取过程和校正过程;基本扫地记录图获取过程包括如下步骤:S1、接收来自扫地机器人轨迹记录装置的第一扫地记录图;S2、接收到第一扫地记录图后进行转换处理形成第二扫地记录图,并备份存储;其中第二扫地记录图所占存储空间的大小小于第一扫地记录图;校准记录图获取过程包括如下步骤:T1、接收来自扫地机器人视觉装置的第一校准扫地记录图;所述第一校准扫地记录图由扫地机器人上的视觉装置经视觉识别已扫区域的清扫情况 而形成,其中包含有已扫区域的起始点坐标信息和已扫区域的清扫情况信息;T2、对第一校准扫地记录图后进行转换处理形成第二校准扫地记录图,并备份存储;其中第二校准扫地记录图所占存储空间的大小小于第一校准扫地记录图;校准过程包括如下步骤:将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,实现对第二扫地记录图的校准,形成第三校准扫地记录图;或者将第二扫地记录图和第二校准扫地记录图均上传到云端,以便在后续程序中校准,形成第三校准扫地记录图;或者根据云端转来的终端的请求,将第二扫地记录图和第二校准扫地记录图均传输到用户终端,以便在用户终端上进行校准,直接形成第三校准扫地记录图,该第三校准扫地记录图可直接向用户显示,或经美化形成第四校准记录图向用户显示。
在一些实施例中,还包括如下特征:所述第一扫地记录图和第一校准扫地记录图完整地传输给安装在扫地机器人自身上的通讯模组;所述通讯模组用于与云端通讯;第二扫地记录图和第二校准扫地记录图的大小确保通讯模组上能保存完整的第二扫地记录图和完整的第二校准扫地记录图;或者,所述第一扫地记录图和第一校准扫地记录图完整地传输给安装在扫地机器人控制主板(如ARM主板)上的扫地记录图处理进程;所述扫地记录图处理进程用于处理扫地记录图,并可通过机器人上设置的通讯装置与云端通讯;第二扫地记录图和第二校准扫地记录图的大小确保控制主板的内存中能保存完整的第二扫地记录图和完整的第二校准扫地记录图。
在云端也存储所述第二扫地记录图和第二校准扫地记录图,或者在云端存储所述第三校准扫地记录图。
步骤S2中形成第二扫地记录图具体包括:S21、提取扫地机器人行走路径中的一个直线段;S22、得到机器人的最新位置坐标,判断扫地机器人向新位置点的行走是否仍是沿着之前的同一条直线;S23、如果是,则将整个直线段上处于端点之外的点在记录中去除,使得该直接段上只保留终点和起点这两个点的坐标;S24、地重复进行步骤S22‐S23,对扫地机器人的每一个新位置点进行上述判断,从而始终保持该直接段上只保留终点和起点这两个点的坐标;得到扫地机器人的简化的第二扫地记录图。
步骤T2具体包括:T21、提取第一校准扫地记录图的完整外轮廓,并将其内 部区别划分成多个方形小格;T22、判断每个方形小格内的清扫情况,用数位进行表示,形成数位方格图。
T21中所述方形小格为正方形方格,各方格面积相等。
步骤T22中,数位为二进制数位,即分别用“0”和“1”来分别表示“清扫过”和“未清扫过”,或者反之。
步骤T22中,数位为四进制数位或更高进制数位,以便能有更多的数位值用来表示更多的方格状态,所述方格状态至少包括“清扫过”和“未清扫过”
本发明还提出一种扫地机器人,包括视觉装置、与云端通讯的通讯模组,其特征在于:所述通讯模组设置有计算机程序,用于实现前述的扫地记录图的校准方法。
本发明还提出一种扫地机器人控制方法,包括如下步骤:A1、从云端或经由云端接收第二扫地记录图信息和第二校准扫地记录图信息;将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,实现对第二扫地记录图的校准,形成第三校准扫地记录图;或者直接从云端或或经由云端接收第三校准扫地记录图;A2、对所述第三校准扫地记录图再进行转换处理,生成新的适合用户查看的第四校准扫地记录图,并进行显示呈现;A3、接收用户在第四校准扫地记录图上的操作指示,形成操作指令以对扫地机器人进行控制。
在一些实施例中,还包括如下特征:
步骤A1中,所述第二校准扫地记录图是数位方格图;步骤A2中,所述转换处理包括:将每个方形小格中的数位信息解读成该方格的清扫情况信息,并且预定的色彩或灰度填充相应的方形小格,直接形成或经美化形成用户可视的具有色彩或灰度的第四校准扫地记录图。
步骤A3中,所述操作指示包括:指定清扫地点、虚拟墙壁、指定清扫区域、指定禁止清扫区域。
在指定清扫区域和指定禁止清扫区域时,采用触摸漫延式操作。
本发明还提出一种移动终端,包括计算机程序,该程序用于运行后执行如上的机器人控制方法。
本发明有的益效果是:利用来自扫地机器人视觉装置的校准扫地记录图对来自扫地机器人轨迹记录装置的基本扫地记录图进行校准,可以把因扫地机器人打 滑或者碰到障碍物而造成的地图偏差纠正过来,从而为后续扫地机器人精准控制创造了条件。
由于第一扫地记录图和第一校准扫地记录图均进行了转换处理,形成的第二扫地记录图和第二校准扫地记录图分别小于第一扫地记录图和第一校准扫地记录图,减小了存储空间,这样就可以在扫地机器人的WiFi通讯模组上或机器人的控制主板(ARM主板)的内存中备份完整的第二扫地记录图和第二校准扫地记录图而无须对WiFi通讯模组的存储空间或机器人的内存空间做太大的升级。
附图说明
图1A是本发明实施例的总体流程示意图。
图1B是本发明实施例的交互示意图。
图2是本发明实施例形成第二校准扫地记录图的流程示意图。
图3A、3B分别是本发明实施例在手机端生成的扫地记录图的两个示例图。
具体实施方式
下面结合具体实施方式并对照附图对本发明作进一步详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
参照以下附图,将描述非限制性和非排他性的实施例,其中相同的附图标记表示相同的部件,除非另外特别说明。
实施例一
如图1A所示,本发明实施例一的总体流程示意图,该实施例示出了一种扫地记录图的校准方法,该方法的执行主体是设置于扫地机器人上的WiFi通讯模组。在另一些实施例中,其执行主体可以是其他形式,比如5G通讯模组、专用路由器、无线猫、中继站、服务器、机器人的控制主板(如ARM主板)等。包括基本扫地记录图获取过程、校准扫地记录图获取过程和校正过程。
(一)基本扫地记录图获取过程,它包括如下步骤:
S1、接收来自扫地机器人轨迹记录装置的第一扫地记录图。
机器人在工作时,扫地机器人上的轨迹记录装置会以坐标位图形式记录扫地机器人行走轨迹,形成第一扫地记录图,并完整的传输给安装在扫地机器人自身上的wifi通讯模组。此步骤现有技术即可实现,比如可通过惯性导航数据或视觉 传感器数据获得,根据机器人的大小和采样精度要求,通常7cm左右记录一个点(此尺寸相当于扫地机器人机身的大不)。
S2、接收到第一扫地记录图后进行转换处理形成第二扫地记录图,并备份存储。
由于扫地机器人的扫地范围很大,要记录的像素数通常达255*255,因此单幅扫地记录图数据的大小即达到65K以上,而扫地机器人上的wifi通讯模组在扣除应用程序所占用的空间之后,通常只能剩余较小的存储空间来存储历史数据。为此,本实施例把扫地记录图的信息做了步骤S2中的处理以得到第二扫地记录图,使得第二扫地记录图所占存储空间的大小小于第一扫地记录图,并且第二扫地记录图的大小确保wifi通讯模组上能保存完整的第二扫地记录图信息,从而解决存储空间不够的问题。由于记录的是完整的第二扫地记录图数据,在wifi通讯模组上始终保存了一个准确的扫地轨迹记录。
具体地,步骤S2中对第一扫地记录图转换处理得到第二扫地记录图的方法包括如下步骤:
S21、提取扫地机器人行走路径中的一个直线段:在第一扫地记录图中,记录有扫地机器人最初所在的点的坐标及最初行走所到达的第一个点的坐标;提取这两点,形成一个直线段,这样逐一向后提取每个点,即可得到机器人所走过的所有直线段,从中可找到机器人当前所在的直线段。当然,也可以不用自始至终提取所有的直线段,也可以直接只提取机器人当前所在的直线段。
S22、当机器人向下一个位置行走、wifi通讯模组得到机器人的最新位置坐标后,判断扫地机器人向新位置点的行走是否仍是沿着之前的同一条直线,即:提取扫地机器人的邻近的下一位置点(下称新位置点)的坐标,根据坐标判断新位置点与扫地机器人最临近的之前所在的直线段是否在一条直线上,判断扫地机器人本次一个步距的行走是否仍是沿着之前的同一条直线。
具体的判断方法比如可以是:第一个点作为线段首点,第二个点作为线段临时结束点,计算直线方程:y=a*x+b中的参数a,b;机器人移动到第三个点时,根据前面的直线方程判断该点是否上面的直线上:只需把三个点的坐标代入上述方程看是否满足即可,能满足该方程则在一条直接上,否则不在一条直接线上。
S23、如果是,则将整个直线段上处于端点之外的点在记录中去除,使得该 直接段上只保留终点和起点这两个点的坐标。即:如果第三点在前面的直线上,则将第三点替代第二给点作为新的线段结束点;如果不在,则将第二点作为新线段的第一个点,将第三点作为临时第二点,跳转至第S22步。
S24、不断地重复进行步骤S22‐S23,对扫地机器人的每一个新位置点进行上述判断,从而始终保持该直接段上只保留终点和起点这两个点的坐标;得到扫地机器人的简化的第二扫地记录图。可以看出,此图实际上是以XY坐标图的形式存在的(图中只是列出各个转折点的XY坐标)。
显然,扫地机器人直线行走的时间越长,则删除的数据越多,从而扫地记录图也就越简化。
在扫地机器人工作期间,第一、二扫地记录图是一直不停地在绘制的,形成动态更新的效果。
(二)校准记录图获取过程,包括如下步骤:
T1、接收来自扫地机器人视觉装置的第一校准扫地记录图;所述第一校准扫地记录图由扫地机器人上的视觉装置经视觉识别已扫区域的清扫情况而形成,其中包含有已扫区域的起始点坐标信息和已扫区域的清扫情况信息。
第一校准扫地记录图是由视觉扫地机器人依赖于摄像头来定位和建图的,即基于视觉的定位与建图(视觉Vslam)。其图的形式也可以是坐标位图形式。
如上所述,扫地机器人的扫地范围很大,要记录的像素数通常达255*255,因此单幅扫地记录图数据的大小即达到65K以上(指Byte数),存储第一扫地记录图已经占用很大的存储空间了,如此再存储一个第一校准记录图,则存储空间会紧上加紧。为此,本实施例对第一校准记录图进行如下处理:
T2、对第一校准扫地记录图后进行转换处理形成第二校准扫地记录图,使得第二校准扫地记录图所占存储空间的大小小于第一校准扫地记录图,然后进行备份存储。具体方法如图2所示,包括如下步骤:
T21、提取第一校准扫地记录图的完整外轮廓,并将其内部区别划分成多个方格,各方格为正方形,面积相等(边缘部位除外);
T22、判断每个方格内的清扫情况,用数位进行表示,形成数位方格图。
数位可采用二进制数位,即分别用“0”和“1”来分别表示“未清扫过”和“清扫过”,或者反之。
如此以来,假设数位方格图仍为255*255象素大小,则由于每个方格只需要存储0和1两个状态,则每个方格事实上只占用一个bit的存储空间而非一个Byte。因此,所占用的总空间只有65Kbit,而非65KByte。存储空间只有原来的1/8。
在其他一些实施例中,数位也可以为四进制数位或更高进制数位(如5进制或6进制),以便能有更多的数位值用来表示更多的方格状态,这样,方格状态不仅可包括“清扫过”和“未清扫过”,还可以包括诸如:“障碍物”、“扫过待重扫”等更多状态,比如:00为“清扫过”、01为“未清扫过”、10为“障碍物”、11为“扫过待重扫”。但其缺点是所占用的存储空间变大了。
由于第二扫地记录图是源自扫地机器人轨迹记录装置,采用的是XY坐标图,其绘制地图的分辨率只能达到扫地机器人的机身宽度大小,即每个象素的大小不能小于扫地机器人的机身(通常为7cm左右)。本实施例获得的第二校准扫地记录图相比于用XY坐标图做出的第二扫地记录图而言,经计算,如果是采用255*255的分辨率,则其校准后的扫地记录图的路径的线宽可减少约一倍,在有限的清扫面积(比如700平方米以下)内可以使地图具有更细腻的象素,绘制的地图更精准。而且所扫的面积越小会越精准。由于700平方米以下均能达到此效果,因此对于普通住家而言,其校准后的扫地记录图都可以达到这个效果,对普通消费者来说是足够使用了。
第一、二校正扫地记录图可以是定期进行,也可以是应终端客户发出的请求进行,因为它图片较大,不一定要做到很实时。
需要指出的是,第二校准扫地记录图的存储空间大小要大于第二扫地记录图,而且第二扫地记录图是从扫地机器人的轨迹记录装置中记录并转换而得来的,它可以在机器人扫地过程中不断的绘制,具有动态更新及时的特点,而第二校准扫地记录图需要用VSLAM绘制,因图片较大而传输和处理都不能做到很实时。因此,本实施例利用第二校准扫地记录图对第二扫地记录图进行校准,以便得到二者优点的结合,获得一个既能更精准而又能保持动态更新的扫地记录图。
上面说过,本实施例的执行主体是在机器人的WIFI模板上。在这种情况下,WIFI模组不单是具有通讯功能,它还具有扫地图处理功能;WIFI模板是通过串口从机器人的ARM主板上获取第一扫地图和第一校准扫地图的。
但在另一些实施例中,其执行主体可以是其他形式,比如5G通讯模组、专 用路由器、无线猫、中继站、服务器、机器人的ARM主板等。下面以执行主体为机器人的ARM主板为例进行简单补充介绍。
当执行主体是在机器人的ARM主板上时,上述方法实际上是通过一个运行在ARM主板上的进程来实现的,可称为扫地图处理进程。该进程通过队列方式或内存映射方式从机器人的ARM内存中获取第一扫地图和第一校准扫地图,并且通过本发明的方法形成第二扫地图和第二校准扫地图,并保留在该进程所占用的内存中,也就是说,在该进程所占用的内存中,保留有第二扫地图和第二校准扫地图的存储备份,或者保留有第三扫地记录图的存储备份。
(三)校准过程
本实施例的校准过程放在用户手机APP(即对扫地机器人进行控制的APP)中进行(当然,在其他实施例中,不排除在WIFI通讯模组中、机器人ARM中的扫地图处理进程中或云端进行),因此,WiFi通讯模组只需根据云端转来的移动终端(手机APP)的请求,将第二扫地记录图和第二校准扫地记录图均传输到用户终端,以便在用户终端上进行校准,直接形成或美化后形成可供向用户显示的第四校准扫地记录图。校准的方法是将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,形成第三校准扫地记录图。替换后,终端客户将会在屏幕上看到,一部分扫地记录图突然变得清楚了,而剩余部分则在继续绘制。
由于第二扫地记录图的文件较小,并且可以及时动态更新,因此校准前、校准中和校准后,第二扫地记录图还可以不停地进行绘制,不断更新扫地记录图,这就是为什么终端用户会看到一部分扫地记录图突然变得清楚的同时而剩余部分还在继续绘制的原因。
通常,用户不开手机APP时,是无须上传扫地记录图的;当用户打开手机APP,则向扫地机器人的WiFi通讯模组发出请求,获得第二扫地记录图和第二校准扫地记录图。此方案的优点是可以节省网络流程和云端存储空间。
图1B示出了本实施例中各实施主体的交互示意图。
本实施例中,校准后的第三校准扫地记录图为数位方格图和点图的组合,其格子区域的边缘为直线型,不是平滑的曲线,以至于不太美观,故在校准后还对 扫地记录图进行美化才形成最终的第四校准扫地记录图。
美化的方法具体包括:
在对每一个方格进行描绘前,判断当前方格的相邻方格的清扫状态,并将当前方格描绘成方形或圆形(在其他实施例中,圆形可用椭圆形或其他无尖角形状替代):如果在当前方格所在的行或列上,其相邻的左右方格或上下方格的清扫状态都为“已清扫”,则代表当前方格不属于边角,故当前方格描绘成方形;如果在任意一个行或列方向上,其相邻方格的清扫状态不都为“已清扫”,即只要有任意一个相邻方格为未清扫,则代表当前方格属于边角,故将当前方格描绘成圆形。通过此种方式,可以在最终形成的第四校准扫地记录图中,将边角拟合成平滑曲线,形成更美观的图。
例如:选择当前方格的上下左右四个相邻的方格,并判断清扫状态(“0”和“1”分别表示“未清扫过”和“清扫过”);其总共16种情况,其中的7中种情况把当前方格描绘成方形,否则就是圆形。具体如下:
左右两个相邻的方格与当前方格处在一个直线方向(自定义为行)上,如下表一中的序号(4)、(8)、(12)、(16)这四种情形,其左右两个相邻的方格的清扫状态都为“已清扫”,则当前方格不属于边角,故将当前方格描绘成方形;同理,上下两个相邻的方格与当前方格在一个直线方向(自定义为列)上,如下表一的序号(13)、(14)、(15)、(16),其上下两个方向两个相邻的方格的清扫状态都为“已清扫”,则当前方格不属于边角,故将当前方格描绘成方形。如下表一的其他序号的情形,在任意一个直线方向(行或列),其相邻方格的清扫状态不都为“已清扫”,则代表当前方格属于边角,故将当前方格描绘成圆形。
表一 当前方格的描绘形状表
Figure PCTCN2019128720-appb-000001
Figure PCTCN2019128720-appb-000002
图3A和图3B分别为本实施例的一个未经校准和美化、经校准和美化后的扫地记录图示例图。如图3A中的虚线框图所示,未经校准前,其路径偏移严重;经校准后,其路径准确并且能够形象地识别出障碍物。另外,与原图3A相比,图3B的精度和美观度均有较大提升。
实施例二
本实施例中,直接在WiFi通讯模组上将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,获得第三校准扫地记录图,存储于WiFi通讯模组上,其好处是WiFi通讯模组上只是存储第三校准扫地记录图这一张,此张图上已将第二扫地记录图中坐标与第二校准扫地记录图重合的部分舍去,因而可以节省存储空间。但由于第二扫地记录图中坐标与第二校准扫地记录图的制式不一样,所以第三校准扫地记录图实际上是由两张扫地记录图拼接而成,其中一部分是以数位图的形式存在,另一部分是以XY坐标图的形式存在。
实施例三
本实施例中,是将第二扫地记录图和第二校准扫地记录图均上传到云端,以便在后续程序中校准,形成第三校准扫地记录图。这样,当用户打开手机APP时,云端可直接向用户发送第二扫地记录图和第二校准扫地记录图,与此同时,也向扫地机器人的WiFi通讯模组发出请求,获得更新的第二扫地记录图和第二校准扫地记录图。此方案的优点是当扫地机器人的WiFi通讯模组和云端的通讯断开之后,有户仍可以知道机器人之前扫到了哪里。
实施例四
上述实施例中的方法适用于视觉机器人地图传输和展示。然而,由于校准后的扫地记录图对扫地情况的记录非常准确,所以它的用途不仅仅限于展示。本实施例就提出了几种基于校准后的扫地记录图的应用。
1、指哪扫哪:用户在展示在手机屏幕上的经校准后的扫地记录图上进行指点,即可实现让扫地机器人前往指定地点清扫的目的。
2、虚拟墙壁:用户可以用划线的方式,在扫地区域指定虚拟墙,命令扫地机器人不可以越墙去清扫。
3、指定清扫区域:此点与上述1相似,只是指定地点改为指定区域。
4、指定禁区等功能:此点与上述3相似,只是指定区域改为指定禁止区域,即禁止机器人前往清扫的区域。
5、漫延功能:在上述3和4中,在指定清扫区域和指定禁止清扫区域时,采用触摸漫延式操作,即将手指点在一个地点不动,则指定的区域自动从手指所点的地方向四周漫延,直到遇到墙壁、虚拟墙壁,或者松开手指;如果遇到狭窄通道,则判断如果通道宽度大于扫地机器人的机身,则沿通道继续漫延,如果通道宽度小于机身,则停止向通道漫延。此种方式可令用户快速指定清扫区域,并且方便有趣味。
本领域技术人员将认识到,对以上描述做出众多变通是可能的,比如移动终端也可以是PC端,等等;所以实施例仅是用来描述一个或多个特定实施方式。
尽管已经描述和叙述了被看作本发明的示范实施例,本领域技术人员将会明白,可以对其作出各种改变和替换,而不会脱离本发明的精神。另外,可以做出 许多修改以将特定情况适配到本发明的教义,而不会脱离在此描述的本发明中心概念。所以,本发明不受限于在此披露的特定实施例,但本发明可能还包括属于本发明范围的所有实施例及其等同物。

Claims (16)

  1. 一种扫地记录图的校准方法,其特征在于包括基本扫地记录图获取过程、校准扫地记录图获取过程和校正过程;
    基本扫地记录图获取过程包括如下步骤:
    S1、接收来自扫地机器人轨迹记录装置的第一扫地记录图;
    S2、接收到第一扫地记录图后进行转换处理形成第二扫地记录图,并备份存储;其中第二扫地记录图所占存储空间的大小小于第一扫地记录图;
    校准记录图获取过程包括如下步骤:
    T1、接收来自扫地机器人视觉装置的第一校准扫地记录图;所述第一校准扫地记录图由扫地机器人上的视觉装置经视觉识别已扫区域的清扫情况而形成,其中包含有已扫区域的起始点坐标信息和已扫区域的清扫情况信息;
    T2、对第一校准扫地记录图后进行转换处理形成第二校准扫地记录图,并备份存储;其中第二校准扫地记录图所占存储空间的大小小于第一校准扫地记录图;
    校准过程包括如下步骤:
    将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,实现对第二扫地记录图的校准,形成第三校准扫地记录图;或者
    将第二扫地记录图和第二校准扫地记录图均上传到云端,以便在后续程序中校准,形成第三校准扫地记录图;或者
    根据云端转来的终端的请求,将第二扫地记录图和第二校准扫地记录图均传输到用户终端,以便在用户终端上进行校准,直接形成第三校准扫地记录图,该第三校准扫地记录图可直接向用户显示,或经美化形成第四校准记录图向用户显示。
  2. 如权利要求1所述的扫地记录图的校准方法,其特征在于:所述第一扫地记录图和第一校准扫地记录图完整地传输给安装在扫地机器人自身上的通讯模组;所述通讯模组用于与云端通讯;第二扫地记录图和第二校准扫地记录图的大小确保通讯模组上能保存完整的第二扫地记录图和完整的第二校准扫地记录图;
    或者,
    所述第一扫地记录图和第一校准扫地记录图完整地传输给安装在扫地机器人控制主板上的扫地记录图处理进程;所述扫地记录图处理进程用于处理扫地记录图,并可通过机器人上设置的通讯装置与云端通讯;第二扫地记录图和第二校 准扫地记录图的大小确保控制主板的内存中能保存完整的第二扫地记录图和完整的第二校准扫地记录图。
  3. 如权利要求2所述的扫地记录图的校准方法,其特征在于:在云端也存储所述第二扫地记录图和第二校准扫地记录图,或者在云端存储所述第三校准扫地记录图。
  4. 如权利要求1所述的扫地记录图的校准方法,其特征在于步骤S2中形成第二扫地记录图具体包括:
    S21、提取扫地机器人行走路径中的一个直线段;
    S22、得到机器人的最新位置坐标,判断扫地机器人向新位置点的行走是否仍是沿着之前的同一条直线;
    S23、如果是,则将整个直线段上处于端点之外的点在记录中去除,使得该直接段上只保留终点和起点这两个点的坐标;
    S24、地重复进行步骤S22‐S23,对扫地机器人的每一个新位置点进行上述判断,从而始终保持该直接段上只保留终点和起点这两个点的坐标;得到扫地机器人的简化的第二扫地记录图。
  5. 如权利要求1所述的扫地记录图的校准方法,其特征在于步骤T2具体包括:
    T21、提取第一校准扫地记录图的完整外轮廓,并将其内部区别划分成多个方形小格;
    T22、判断每个方形小格内的清扫情况,用数位进行表示,形成数位方格图。
  6. 如权利要求5所述的扫地记录图的校准方法,其特征在于步骤T21中所述方形小格为正方形方格,各方格面积相等。
  7. 如权利要求6所述的扫地记录图的校准方法,其特征在于:步骤T22中,数位为二进制数位,即分别用“0”和“1”来分别表示“清扫过”和“未清扫过”,或者反之。
  8. 如权利要求6所述的扫地记录图的校准方法,其特征在于:步骤T22中,数位为四进制数位或更高进制数位,以便能有更多的数位值用来表示更多的方格状态,所述方格状态至少包括“清扫过”和“未清扫过”。
  9. 如权利要求5所述的扫地记录图的校准方法,其特征在于:对所述第三校准扫地记录图进行美化以形成第四校准扫地记录图:根据当前方格的相邻方格的清 扫状态,将所述当前方格描绘成方形或圆形或其他无尖角形状以将边角拟合成平滑曲线。
  10. 如权利要求9所述的扫地记录图的校准方法,其特征在于:如果在当前方格所在的行或列上,其相邻的左右方格或上下方格的清扫状态都为“已清扫”,则代表当前方格不属于边角,则当前方格描绘成方形;如果在任意一个行或列方向上,其相邻方格的清扫状态不都为“已清扫”,即只要有任意一个相邻方格为未清扫,则代表当前方格属于边角,则将当前方格描绘成圆形或其他无尖角形状。
  11. 一种扫地机器人,包括视觉装置以及与云端通讯的通讯模组,其特征在于:所述通讯模组设置有计算机程序,用于实现如权利要求1‐10任一项所述的方法。
  12. 一种扫地机器人控制方法,其特征在于,包括如下步骤:
    A1、从云端或经由云端接收第二扫地记录图信息和第二校准扫地记录图信息;将第二扫地记录图中坐标与第二校准扫地记录图重合的部分以第二校准扫地记录图替换,实现对第二扫地记录图的校准,形成第三校准扫地记录图;或者
    直接从云端或经由云端接收第三校准扫地记录图;
    A2、对所述第三校准扫地记录图进行转换处理生成新的适合用户查看的第四校准扫地记录图,并进行显示呈现;
    A3、接收用户在第四校准扫地记录图上的操作指示,形成操作指令以对扫地机器人进行控制。
  13. 如权利要求12所述的扫地机器人控制方法,其特征在于,步骤A1中,所述第二校准扫地记录图是数位方格图;步骤A2中,所述转换处理包括:将每个方形小格中的数位信息解读成该方格的清扫情况信息,并且预定的色彩或灰度填充相应的方形小格,直接形成用户可视的具有色彩或灰度的第三校准扫地记录图或经美化形成的第四校准扫地记录图。
  14. 如权利要求13所述的扫地机器人控制方法,其特征在于,步骤A3中,所述操作指示包括:指定清扫地点、虚拟墙壁、指定清扫区域、指定禁止清扫区域。
  15. 如权利要求14所述的扫地机器人控制方法,其特征在于,在指定清扫区域和指定禁止清扫区域时,采用触摸漫延式操作。
  16. 一种移动终端,其特征在于:包括计算机程序,该程序用于运行后执行如权利要求12‐15任一项所述的方法。
PCT/CN2019/128720 2018-12-28 2019-12-26 扫地记录图的校准方法、扫地机器人及移动终端 WO2020135593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811625986.6A CN109528095B (zh) 2018-12-28 2018-12-28 扫地记录图的校准方法、扫地机器人及移动终端
CN201811625986.6 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020135593A1 true WO2020135593A1 (zh) 2020-07-02

Family

ID=65857563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128720 WO2020135593A1 (zh) 2018-12-28 2019-12-26 扫地记录图的校准方法、扫地机器人及移动终端

Country Status (2)

Country Link
CN (1) CN109528095B (zh)
WO (1) WO2020135593A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528095B (zh) * 2018-12-28 2020-11-17 深圳市愚公科技有限公司 扫地记录图的校准方法、扫地机器人及移动终端
CN110716551A (zh) * 2019-11-06 2020-01-21 小狗电器互联网科技(北京)股份有限公司 移动机器人行驶策略确定方法、装置以及移动机器人
CN111328017B (zh) * 2020-02-18 2021-05-14 深圳市愚公科技有限公司 一种地图传输方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256812B2 (ja) * 2004-04-26 2009-04-22 三菱重工業株式会社 移動体の障害物回避方法及び該移動体
CN102890507A (zh) * 2011-07-21 2013-01-23 鸿奇机器人股份有限公司 自走机器人、清洁机器人及其定位方法
CN107687860A (zh) * 2016-08-04 2018-02-13 鸿富锦精密工业(深圳)有限公司 自动修正环境信息的自主移动设备及方法
CN108205320A (zh) * 2017-12-18 2018-06-26 深圳市奇虎智能科技有限公司 地图数据处理方法及装置
US20180200888A1 (en) * 2017-01-18 2018-07-19 Lg Electronics Inc. Mobile robot system and control method thereof
CN108508891A (zh) * 2018-03-19 2018-09-07 珠海市微半导体有限公司 一种机器人重定位的方法
CN109074638A (zh) * 2018-07-23 2018-12-21 深圳前海达闼云端智能科技有限公司 融合建图方法、相关装置及计算机可读存储介质
CN109528095A (zh) * 2018-12-28 2019-03-29 深圳市愚公科技有限公司 扫地记录图的校准方法、扫地机器人及移动终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392668C (zh) * 2006-01-16 2008-06-04 浙江大学 纸质矢量地图自动数字化的方法
CN100449444C (zh) * 2006-09-29 2009-01-07 浙江大学 移动机器人在未知环境中同时定位与地图构建的方法
CN101661738B (zh) * 2009-09-18 2014-04-02 威盛电子股份有限公司 电子装置与其反锯齿处理方法
CN102138769B (zh) * 2010-01-28 2014-12-24 深圳先进技术研究院 清洁机器人及其清扫方法
CN105302136B (zh) * 2015-09-23 2018-02-23 上海物景智能科技有限公司 一种基于清洁机器人的区域分割方法
WO2018053100A1 (en) * 2016-09-14 2018-03-22 Irobot Corporation Systems and methods for configurable operation of a robot based on area classification
CN108917769A (zh) * 2018-07-13 2018-11-30 北京工业大学 一种基于九叉树的机器人自适应栅格地图创建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256812B2 (ja) * 2004-04-26 2009-04-22 三菱重工業株式会社 移動体の障害物回避方法及び該移動体
CN102890507A (zh) * 2011-07-21 2013-01-23 鸿奇机器人股份有限公司 自走机器人、清洁机器人及其定位方法
CN107687860A (zh) * 2016-08-04 2018-02-13 鸿富锦精密工业(深圳)有限公司 自动修正环境信息的自主移动设备及方法
US20180200888A1 (en) * 2017-01-18 2018-07-19 Lg Electronics Inc. Mobile robot system and control method thereof
CN108205320A (zh) * 2017-12-18 2018-06-26 深圳市奇虎智能科技有限公司 地图数据处理方法及装置
CN108508891A (zh) * 2018-03-19 2018-09-07 珠海市微半导体有限公司 一种机器人重定位的方法
CN109074638A (zh) * 2018-07-23 2018-12-21 深圳前海达闼云端智能科技有限公司 融合建图方法、相关装置及计算机可读存储介质
CN109528095A (zh) * 2018-12-28 2019-03-29 深圳市愚公科技有限公司 扫地记录图的校准方法、扫地机器人及移动终端

Also Published As

Publication number Publication date
CN109528095A (zh) 2019-03-29
CN109528095B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2020135593A1 (zh) 扫地记录图的校准方法、扫地机器人及移动终端
CN111202472B (zh) 扫地机器人的终端地图构建方法、终端设备及清扫系统
WO2022104848A1 (zh) 快速测绘方法和装置
WO2019096264A1 (zh) 智能割草系统
CN107179086A (zh) 一种基于激光雷达的制图方法、装置及系统
CN109965797B (zh) 扫地机器人地图的生成方法、扫地机器人控制方法及终端
WO2023005377A1 (zh) 一种机器人的建图方法及机器人
CN109541630A (zh) 一种适用于建筑物室内平面2d slam测绘的方法
CN107993282A (zh) 一种动态的可量测实景地图制作方法
CN112556685B (zh) 导航路线的显示方法、装置和存储介质及电子设备
CN110362102B (zh) 一种无人机航线生成的方法、装置和系统
WO2023160698A1 (zh) 动态全覆盖路径规划方法及装置、清洁设备、存储介质
WO2020010841A1 (zh) 一种基于视觉回环校准陀螺仪的扫地机定位方法及装置
CN111328017B (zh) 一种地图传输方法和装置
WO2022037369A1 (zh) 扫地机器人及其地图构建方法和装置
CN112828879A (zh) 一种任务管理方法、装置、智能机器人和介质
CN109579826A (zh) 一种机器人导航地图的方向显示控制方法、装置及芯片
CN111028658A (zh) 一种基于gps和在线地图的割草机器人电子地图构建方法
CN115265520A (zh) 智能作业设备及其建图方法、装置和存储介质
CN112022002A (zh) 扫地机地图编辑方法、装置、设备及存储介质
CN117281439A (zh) 清洁路径的规划方法及展示方法、清洁设备和产品
CN111868656B (zh) 一种作业控制系统、作业控制方法、装置、设备及介质
CN113821021B (zh) 一种自动行走设备区域边界生成方法及系统
KR100946767B1 (ko) 지형지물 및 지리정보에 대한 수집 데이터를 기준점 별로 수정하여 수치지도를 작성하는 방법
WO2023179398A1 (zh) 地图的显示方法、装置、存储介质及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905021

Country of ref document: EP

Kind code of ref document: A1