WO2020135470A1 - Systems and methods for vehicle control - Google Patents

Systems and methods for vehicle control Download PDF

Info

Publication number
WO2020135470A1
WO2020135470A1 PCT/CN2019/128151 CN2019128151W WO2020135470A1 WO 2020135470 A1 WO2020135470 A1 WO 2020135470A1 CN 2019128151 W CN2019128151 W CN 2019128151W WO 2020135470 A1 WO2020135470 A1 WO 2020135470A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
vehicle
signal
components
component
Prior art date
Application number
PCT/CN2019/128151
Other languages
French (fr)
Inventor
Muguo DU
Original Assignee
Beijing Qisheng Science And Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Qisheng Science And Technology Co., Ltd. filed Critical Beijing Qisheng Science And Technology Co., Ltd.
Publication of WO2020135470A1 publication Critical patent/WO2020135470A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J7/00Luggage carriers
    • B62J7/02Luggage carriers characterised by the arrangement thereof on cycles
    • B62J7/06Luggage carriers characterised by the arrangement thereof on cycles arranged above the front wheel, e.g. on the handlebars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/13Arrangements of batteries for propulsion on rider-propelled cycles with additional electric propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/30Frame parts shaped to receive other cycle parts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/80Accessories, e.g. power sources; Arrangements thereof
    • B62M6/90Batteries

Definitions

  • This disclosure generally relates to control technology, and more particularly, relates to systems and methods for vehicle control.
  • a vehicle may include one or more components such as a light, a sensor, a controller, a motor, an electronic lock, or the like.
  • Some of the components of the vehicle e.g., an electric control unit (ECU) , a motor controller (MC) , etc.
  • ECU electric control unit
  • MC motor controller
  • a light may be connected to a power source to receive a power signal to power itself.
  • the light may also be connected to a controller to receive an instruction used to control operations of the light.
  • connections between the components may need a plurality of wires in the vehicle, for example, wires for power transmission and/or communication connection.
  • the arrangement of the plurality of wires in the vehicle may be complicated, and may cause interferences for signals transmitted by the plurality of wires. Therefore, it is desirable to provide methods and systems to simplify the wiring in the vehicle and reduce interferences between signals.
  • a control assembly for a vehicle may include a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of a first group of components of the vehicle.
  • the control assembly may include a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of a second group of components of the vehicle.
  • the second controller may be operably coupled to the first controller via a signal connection.
  • the first controller may include an electric control unit (ECU) .
  • ECU electric control unit
  • the front part of the vehicle may include a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
  • the front part of the vehicle may include at least one of a basket assembly, a steering column, a handlebar assembly, or a front frame of the vehicle.
  • the first group of components of the vehicle may include at least one of a handlebar, a headlight, a horn, a brake, a meter, or a sensor mounted in the front part.
  • the first controller may be mounted in a cavity of the basket assembly.
  • the basket assembly may include a basket and a housing.
  • the housing may include a fixing frame configured to fix the basket assembly to the vehicle, and a connection plate configured to fix the housing to the basket.
  • the cavity may be formed between the fixing frame and the connection plate.
  • the first controller may be mounted on the fixing frame.
  • the basket assembly may include a basket and a baseplate.
  • the cavity may be formed in the basket.
  • the basket may include at least one opening in communication with the cavity.
  • the baseplate may be configured to shield the opening.
  • the first controller may be mounted on the baseplate.
  • the second controller may include a motor controller.
  • the rear part of the vehicle may include a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
  • the rear part of the vehicle may include at least one of a component mounted under a seat of the vehicle, or a rear frame of the vehicle.
  • the second group of components of the vehicle may include at least one of a motor, a power source, a sensor mounted in the rear part, a taillight, or a lock.
  • the signal connection between the first controller and the second controller may include a wired connection or a wireless connection.
  • At least one of the first controller or the second controller may be operably coupled to a network.
  • the vehicle may be an electric bicycle.
  • a vehicle may include a first group of components, a second group of components, a control assembly configured to control the vehicle.
  • the control assembly may include a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of the first group of components.
  • the control assembly may include a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of the second group of components.
  • the second controller may be operably coupled to the first controller via a signal connection.
  • the vehicle may further include a pedal shaft.
  • the first controller may include an electric control unit (ECU) .
  • ECU electric control unit
  • the second controller may include a motor controller.
  • the front part of the vehicle may include a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
  • the rear part of the vehicle may include a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
  • a method for controlling a vehicle may include generating a signal associated with the vehicle by a second controller of the vehicle.
  • the method may include transmitting the signal to a first controller of the vehicle by the second controller.
  • the method may include processing the signal by the first controller.
  • the method may include generating an instruction by the first controller based on the processed signal.
  • the method may include transmitting the instruction to the second controller by the first controller.
  • the method may further include controlling a first component of the vehicle operably coupled to the second controller by the second controller based on the instruction.
  • the signal may include a communication signal and a power signal.
  • the generating a signal associated with the vehicle may include: obtaining the communication signal by the second controller from a second component of the vehicle operably coupled to the second controller; obtaining the power signal by the second controller from a third component of the vehicle operably coupled to the second controller; generating the signal by the second controller by combining the communication signal and the power signal.
  • the processing the signal may include separating the signal into the communication signal and the power signal by the first controller.
  • the generating an instruction based on the processed signal may include generating the instruction by the first controller based on the communication signal.
  • the method may further include providing a fourth component of the vehicle operably coupled to the first controller with power by the first controller by transmitting the power signal to the fourth component.
  • the first component of the vehicle may include at least one of a motor, a power source, a taillight, or a lock.
  • the second component of the vehicle may include at least one of a sensor mounted in a rear part of the vehicle, a motor, a power source, a taillight, or a lock.
  • the third component of the vehicle may include a power source.
  • the fourth component of the vehicle may include at least one of a headlight, a horn, a brake, a meter, or a sensor mounted in a front part of the vehicle.
  • a system for vehicle control may include at least one storage device including one or more sets of instructions and at least one processor in communication with the at least one storage device.
  • the at least one processor may be configured to cause the system to generate a signal associated with the vehicle by a second controller of the vehicle.
  • the system may transmit the signal to a first controller of the vehicle by the second controller.
  • the system may process the signal by the first controller.
  • the system may generate an instruction by the first controller based on the processed signal.
  • the system may transmit the instruction to the second controller by the first controller.
  • the system may further control a first component of the vehicle operably coupled to the second controller by the second controller based on the instruction.
  • FIG. 1 is a schematic diagram illustrating exemplary modules of a vehicle according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating an exemplary mechanical configuration that may be included or used in a vehicle according to some embodiments of the present disclosure
  • FIGs. 3A-3E are schematic diagrams illustrating an exemplary basket assembly according to some embodiments of the present disclosure.
  • FIGs. 4A-4D are schematic diagrams illustrating another exemplary basket assembly according to some embodiments of the present disclosure.
  • FIG. 5 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure
  • FIG. 6 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure
  • FIG. 7 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
  • FIG. 8 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
  • FIG. 9 is a flowchart illustrating an exemplary process for controlling a component of a vehicle according to some embodiments of the present disclosure.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It is to be expressly understood, the operations of the flowcharts may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • the systems and methods disclosed in the present disclosure are described primarily regarding vehicle control, it should also be understood that this is only one exemplary embodiment.
  • the systems and methods of the present disclosure may be applied to any other kind of vehicle control.
  • the systems and methods of the present disclosure may be applied to transportation systems of different environments including land (e.g. roads or off-road) , water (e.g. river, lake, or ocean) , air, aerospace, or the like, or any combination thereof.
  • the transportation systems may provide transportation services for users using various vehicles.
  • the vehicles of the transportation service may include a taxi, a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof.
  • the system or method of the present disclosure may be applied to a taxi-hailing service, a chauffeur service, a delivery service, a carpooling service, a bus service, a take-out service, a driver hiring service, a shuttle service, a travel service, or the like, or any combination thereof.
  • user in the present disclosure is used to refer to an individual, an entity, or a tool that may request a service, order a service, provide a service, or facilitate the providing of the service.
  • user terminal may be used interchangeably.
  • top, ” “bottom, ” “upper, ” “lower, ” “vertical, ” “lateral, ” “above, ” “below, ” “upward (s) , ” “downward (s) , ” “left-hand side, ” “right-hand side, ” “horizontal, ” and other such spatial reference terms are used in a relative sense to describe the positions or orientations of certain surfaces/parts/components of the vehicle with respect to other such features of the vehicle when the vehicle is in a normal operating position and may change if the position or orientation of the vehicle changes.
  • the vehicle may include a first group of components, a second group of components, and a control assembly.
  • the control assembly may include a first controller and a second controller.
  • the first controller may be mounted on a front part of the vehicle and configured to communicate with at least one component of the first group of components.
  • the second controller may be mounted on a rear part of the vehicle and configured to communicate with at least one component of the second group of components.
  • the second controller may be operably coupled to the first controller via a signal connection.
  • the second controller of the vehicle may generate a signal associated with the vehicle, and transmit the signal to the first controller.
  • the first controller may receive and process the signal transmitted by the second controller.
  • the first controller may generate an instruction and transmit the instruction to the second controller. Based on the instruction, the second controller may control one or more components of the vehicle.
  • a controller of a vehicle may be separated into a first controller and a second controller.
  • Each of the first controller and the second controller may be connected to and control in-vehicle devices adjacent to the first controller and the second controller, respectively, thereby simplifying the wiring (or cabling) in the vehicle and ensure stable transmission of signals.
  • the first controller and the second controller may be connected via one wire (or cable) , and the communication between the first controller and the second controller may be implemented based on the wire. Communication signals and power signals can be integrated before being transmitted, which can further simplify the wiring in the vehicle.
  • the first controller e.g., the ECU
  • the first controller and the second controller may be separately set and placed at different parts of the vehicle, which can improve the stability of the signal transmission and reduce signal interferences caused by communications between different in-vehicle devices.
  • different embodiments may have different beneficial effects.
  • the beneficial effects of different embodiments may be any combination of one or more of the beneficial effects mentioned above.
  • any other beneficial effect not mentioned in the present disclosure may also be obtained according to the systems and methods of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating exemplary modules of a vehicle according to some embodiments of the present disclosure.
  • the vehicle 100 may be applied for personal travel, a shared transportation service, a rental service, a car-hailing service, an express service, a takeaway service, etc.
  • the vehicle 100 may include a mechanical configuration 110, a control module 120, a driving module 130, a detection module 140, a transmission module 150, and/or an energy module 160.
  • the mechanical configuration 110 may include one or more components of the vehicle 100, such as a vehicle body, a frame, a wheel, a seat, a lock, a lighting system, a horn, a meter, or the like, or any combination thereof.
  • the vehicle 100 may include an electric car, an electric bicycle, an electric motorcycle, a balance car, an electric skateboard, an electric tricycle, a rover, a driverless vehicle, or the like.
  • the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 may be disposed on the mechanical configuration 110.
  • the server 170 may include a local server disposed on the mechanical configuration 110.
  • the server 170 may communicate with and/or be operably coupled to the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 via a wireless or a wired network. In some embodiments, the server 170 may be disposed away from the mechanical configuration 110 to remotely communicate with and/or be coupled to the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 via a wireless or a wired network.
  • control module 120 may be configured to control other modules of the vehicle 100 to implement functions of the vehicle 100. In some embodiments, the control module 120 may implement a centralized control or a distributed control of the modules of the vehicle 100. In some embodiments, the control module 120 may control the modules of the vehicle 100 through a wired control or a wireless control. In some embodiments, the control module 120 may function as one or more processors to execute one or more instructions. In some embodiments, the control module 120 may receive data and/or information sent by the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and/or the server 170.
  • control module 120 may send one or more instructions to the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and/or the server 170.
  • control module 120 may obtain data and/or information collected by the detection module 140, and/or process the obtained data and/or information.
  • control module 120 may control the driving module 130 to start or shut down an actuating device of the 100.
  • control module 120 may control the energy module 160 to perform charging or discharging.
  • the control module 120 may receive state information of the vehicle 100 and/or a signal indicating operations of a user outputted by the detection module 140.
  • the state information may include speed information, positioning information, electrical quantity of power supply, opening or closing state information of the lock, opening or closing state information of the lighting system, state information of the brake, state information of the meter, or the like, or any combination thereof.
  • the signal indicating operations of the user may include pressure data received by a certain component of the vehicle 100, a user-assisted operation, or the like, or any combination thereof.
  • the control module 120 may communicate with the transmission module 150, so that the control module 120 can receive information from a user terminal, an external network, or a remote server, and/or send information to the user terminal, the external network, or the remote server.
  • the control module 120 may communicate with the transmission module 150 to implement a human-computer interaction.
  • control module 120 may obtain the identity authentication or identification information of the user, receive user instructions, or provide feedback information to the user, or the like.
  • control module 120 may include one or more sub-controllers (e.g., a single core processing device or a multicores processing device) .
  • control module 120 may include an electronic control unit (ECU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • ECU electronice control unit
  • ASIC application-specific integrated circuit
  • ASIP application-specific instruction-set processor
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • controller a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • RISC reduced instruction
  • the driving module 130 may be configured to drive the vehicle 100 to move.
  • the driving module 130 may include an actuating device and/or a drive controller.
  • the actuating device may provide driving forces for the vehicle 100.
  • the driving forces may make the vehicle 100 move.
  • the actuating device may include one or more driving force sources.
  • Exemplary driving force sources may include a fuel driving force source, an electric driving force source, a manual driving force source, or the like, or any combination thereof.
  • the driving force source may include a motor driven by electric energy.
  • the motor may include a direct current (DC) motor, an alternating current (AC) induction motor, a permanent magnet motor, a switched reluctance motor, or the like, or any combination thereof.
  • the driving module 130 e.g., the actuating device
  • the drive controller may be configured to control the actuating device.
  • the drive controller may control the opening and/or closing state of the motor.
  • the drive controller may control the output power of the motor.
  • the drive controller may include one or more sub-controllers (e.g., a single core processing device or a multi-core processing device) .
  • the drive controller may include a central processor (CPU) , an application-specific integrated circuit (ASIC) , a dedicated instruction processor (ASIP) , a graphics processor (GPU) , a physical processor (PPU) , a digital signal processor (DSP) , and a field-programmable gate array (FPGA) , an editable logic circuit (PLD) , a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • the driving module 130 may communicate with other modules of the vehicle 100 via one or more signals.
  • the drive controller in the driving module 130 may communicate with and/or be coupled to the detection module 140 (e.g., receive speed information of the vehicle 100 outputted by the detection module 140, and thereby control the output power of the motor) .
  • the driving module 130 may communicate with and/or be coupled to the server 170 (e.g., receive an instruction from the server 170, or send state information of the actuating device to the server 170) .
  • the drive controller may control the actuating device to adjust a speed of the vehicle 100. In some embodiments, the actuating device may adjust the speed of the vehicle 100 by adjusting the driving forces provided for the vehicle 100. In some embodiments, if the actuating device includes a motor, the drive controller may also be referred to as a motor controller (MC) . In some embodiments, the drive controller may be referred to as a second controller. In some embodiments, the drive controller may communicate with and/or be coupled to a first controller (e.g., the control module 120, or a sub-controller of the control module 120) via a signal connection.
  • a first controller e.g., the control module 120, or a sub-controller of the control module 120
  • the second controller may transmit the speed information of the vehicle 100 to the first controller, and/or receive an instruction from the first controller to control the actuating device. More descriptions regarding the first controller and the second controller may be found elsewhere in the present disclosure (e.g., FIGs. 5, 6 and 9, and relevant descriptions thereof) .
  • the detection module 140 may be configured to collect and/or detect operational data and/or information of the vehicle 100, and/or transmit the operational data and/or information to the control module 120, the server 170, and/or the driving module 130.
  • the detection module 140 may include a detection unit and/or a positioning unit.
  • the detection unit may include one or more sensors.
  • the sensors may include a speed sensor, an acceleration sensor, a displacement sensor, a pedal force sensor, a torque sensor, a pressure sensor, a temperature sensor (e.g., for detecting a temperature of the power source) , or the like, or any combination thereof.
  • the detection unit may further include an electrical quantity detection unit, a lock detection unit, a communication detection unit, a fault detection unit, or the like, to detect the operation state of the vehicle 100.
  • the positioning unit may be configured to determine positioning information associated with the vehicle 100.
  • the positioning information may include current location information, driving route information, rental point information, nearby return point information, or the like, or any combination thereof.
  • the positioning unit may determine positioning information based on a global positioning system (GPS) , a global navigation satellite system (GLONASS) , a compass navigation system (COMPASS) , a Beidou navigation satellite system, a Galileo positioning system, a quasi-zenith satellite system (QZSS) , etc.
  • the positioning unit may transmit the positioning information to the transmission module 150, the control module 120, the driving module 130, the energy module 160, and/or the server 170.
  • the sensor (s) of the detection module 140 may be mounted on any position of the vehicle 100 (e.g., a seat, a wheel, a basket, a pedal, a frame, a lock, etc. ) .
  • the sensor (s) of the detection module 140 may be configured to detect parameter (s) associated with the vehicle 100, and generate corresponding electrical signal (s) indicative of the parameter (s) .
  • the pressure sensor may be configured to detect pressure load on the vehicle 100, and generate electrical signal (s) indicative of the pressure load.
  • a pressure sensor mounted on the basket may detect pressure load in the basket (e.g., a weight of objects placed in the basket) , and generate electrical signals indicative of the pressure load.
  • a speed sensor may be configured to detect the speed of the vehicle 100, and generate electrical signals indicative of the speed.
  • a temperature sensor operably coupled to the battery may detect a temperature of the battery, and generate electrical signals indicative of the battery.
  • the sensor (s) may transmit electrical signal (s) to the control module 120, and the control module 120 may process the electrical signal (s) and determine corresponding parameter (s) .
  • the transmission module 150 may include a network unit and/or an interaction unit for exchanging data and/or information.
  • One or more components e.g., the control module 120, the driving module 130, the detection module 140, and/or the energy module 160
  • the transmission module 150 may communicate with a user terminal, an external network, a remote server, or the like, or any combination thereof.
  • the transmission module 150 can be used for data and/or information exchange in a human-computer interaction process.
  • the transmission module 150 can be used in a vehicle service to obtain user information (e.g., for authentication and/or identification of the user) , receive user instructions (e.g., opening a lock, returning the vehicle 100) , provide feedback information (e.g., a current speed, a driving route of the vehicle 100, etc. ) to the user, or the like, or any combination thereof.
  • user information e.g., for authentication and/or identification of the user
  • receive user instructions e.g., opening a lock, returning the vehicle 100
  • provide feedback information e.g., a current speed, a driving route of the vehicle 100, etc.
  • the transmission module 150 may include any type of wired or wireless network.
  • the transmission module 150 may include a cable network, a wired network, a fiber-optic network, a telecommunications network, an internal network, an internet network, an area network (LAN) , a wide area network (WAN) , a wireless area network (WLAN) , a metro area network (MAN) , a public switched telephone network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the transmission module 150 may include one or more network access points.
  • the transmission module 150 may include wired or wireless network access points, such as a base station and/or an internet network exchange point.
  • the transmission module 150 may further include an input/output device such as a display, a microphone, an audio device, or the like, or any combination thereof.
  • the energy module 160 may be configured to provide energy to other modules of the vehicle 100.
  • the energy module 160 may provide electric power to other modules of the vehicle 100.
  • the energy module 160 may provide an electric power source via an energy storage device, a power generation device, or the like, or any combination thereof.
  • the energy storage device may include one or more batteries.
  • the energy storage device may be charged by an external power source, or a power generation device.
  • the power generation device may include one or more electric generators.
  • exemplary electric generators may be implemented as one or more energy conversion devices like a human power generation device, a photovoltaic power generation device, a heat conduction power generation device, a wind power generation device, a nuclear power generation device, etc.
  • the energy module 160 may detect states associated with the energy (e.g., the electrical quantity, the power source temperature, whether charging is required, whether the charging is completed, etc. ) via the detection module 140.
  • the energy module 160 may receive one or more instructions from the control module 120.
  • the energy module 160 may communicate with an external object through the transmission module 150.
  • the energy module 160 may directly communicate with and/or be coupled to the server 170, and/or provide energy to the server 170.
  • the server 170 may be configured to process information and/or data associated with the vehicle 100.
  • the server 170 may be an independent server or a server group.
  • the server group may be centralized or distributed (e.g., the server 170 may be a distributed system) .
  • the server 110 may be local or remote.
  • the server 170 may access information and/or data stored in the control module 120, the driving module 130, the detection module 140, and the energy module 160 via the transmission module 150.
  • the server 170 may be directly coupled to the control module 120, the driving module 130, the detection module 140, and/or the energy module 160 to access the information and/or data stored therein.
  • the server 170 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an internal cloud, or the like, or any combination thereof.
  • the server 170 may be a local server disposed on the vehicle 100, and may directly communicate with and/or be connected to the control module 120, the driving module 130, the detection module 140, and/or the energy module 160 to transmit information.
  • the server 170 may communicate with the user via the transmission module 150 to transmit information.
  • the server 170 may include a processing device and/or a storage device. The processing device may be configured to process the data and/or information associated with the vehicle 100 to perform functions described in the present disclosure.
  • the processing device may obtain historical charging records of the power source (e.g., the battery) and/or the recharge mileage from the vehicle 100, and/or manage the power source based on the obtained information.
  • the storage device may store data and/or instructions, such as user registration information, historical vehicle records, vehicle state information, etc.
  • the storage device may store the information and/or instructions executed and/or used by the server 170 to perform exemplary methods disclosed in the present disclosure.
  • the storage device may include a mass storage device, a removable memory, a volatile read/write memory (e.g., a random access memory (RAM) ) , a read-only memory (ROM) , or the like, or any combination thereof.
  • the server 170 may be operably coupled to a storage device of the vehicle 100. In some embodiments, the server 170 may control or manage one or more components of the vehicle 100 (e.g., the energy module 160, the detection module 140) by sending instructions to the control module 120 and/or the driving module 130.
  • the server 170 may control or manage one or more components of the vehicle 100 (e.g., the energy module 160, the detection module 140) by sending instructions to the control module 120 and/or the driving module 130.
  • each module of the modules may be distributed on different electronic components, one or more modules may be integrated on a same electronic component, or a single module may be disposed on one or more electronic components.
  • the driving module 130 and the control module 120 may be implemented on a separate chip, respectively, the detection module 140 may be separated into a detecting unit and a positioning unit, the transmission module 150 may be separated into a network unit and an interaction unit, or the detection module 140 and the control module 120 may be implemented on a same chip.
  • each of the control module 120, the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and the server 170 may have a storage unit, or multiple modules may share a single storage unit.
  • the data in the storage device may be accessed by the modules directly and/or indirectly (e.g., via the transmission module 150) .
  • FIG. 2 is a schematic diagram illustrating an exemplary mechanical configuration that may be included or used in a vehicle according to some embodiments of the present disclosure.
  • the vehicle 200 may include a taxi, a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof.
  • a taxi a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof.
  • a taxi a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof.
  • the vehicle 200 may include a vehicle body 210.
  • the vehicle body 210 may include a main frame 211, a front wheel assembly 212 connected to the main frame 211, a rear wheel assembly 213 connected to the main frame 211, a handlebar assembly 280, and/or a steering column 282.
  • the main frame 211 may include a front frame 2111 coupled to the front wheel assembly 212, and a rear frame 2112 coupled to the rear wheel assembly 213.
  • the front frame 2111 may have a bifurcated structure.
  • the front wheel assembly 212 may include a front wheel and a wheel shaft. Two ends of the wheel shaft of the front wheel assembly 212 may be fixed to two lower ends of the bifurcated structure, respectively.
  • the front wheel may rotate between the bifurcated structure.
  • An upper end of the front frame 2111 may be fixed to one end (e.g., a lower end) of the steering column 282.
  • Another end (e.g., an upper end) of the steering column 282 may be fixed to the handlebar assembly 280.
  • the handlebar assembly 280 may include a left handlebar 283 and/or a right handlebar 281 for a user to hold.
  • the handlebar assembly 280 may be configured to control a travel direction of the vehicle 200.
  • the user may control a rotation of the steering column 282 by using the handlebar assembly 280.
  • the rotation of the steering column 282 may guide a deflection of the front wheel assembly 212, thereby controlling the travel direction of the vehicle 200.
  • the front frame 2111 and the steering column 282 may be configured as an integral piece, and there may be no obvious boundary therebetween.
  • the steering column 282 and the handlebar assembly 280 may be configured as an integral piece.
  • the vehicle body 210 may be equipped with a control module 220, a driving module 230, and/or an energy module 240.
  • the control module 220 and the driving module 230 may be disposed inside the main frame 211.
  • the vehicle body 210 may be equipped with a transmission module 250.
  • the transmission module 250 may be integrated into the control module 220 or the driving module 230.
  • the vehicle 200 may also include a detection module.
  • the detection module may include one or more sensors 260.
  • the one or more sensors 260 may be disposed on the wheel (s) , the energy module 240, a pedal 270, the right handlebar 281, the left handlebar 283, or another component of the vehicle 200 which needs to be detected.
  • the body 210 may include the pedal 270, a lock (not shown) , the handlebar assembly 280, a handlebar (e.g., the right handlebar 281, the left handlebar 283) , the steering column 282, a headlight (not shown) , a taillight 285, a horn (not shown) , a brake 290, a seat 293, a damper 296, etc.
  • the vehicle 200 may further include a basket assembly (e.g., the basket assembly 300 shown in FIGs. 3A-3E, the basket assembly 400 shown in FIGs. 4A-4D) .
  • the basket assembly 300 may be mounted on the vehicle body 210.
  • the basket assembly 300 (or 400) may be mounted on the handlebar assembly 280.
  • the basket assembly 300 (or 400) may be mounted in front of the handlebar assembly 280.
  • the basket assembly 300 (or 400) may be fixedly connected to the handlebar assembly 280, the steering column 282, or the front frame 2111.
  • the basket assembly may be fixedly connected to the steering column 282 of the handlebar assembly 280. In this case, the basket assembly may rotate with the rotation of the handlebar (s) .
  • the basket assembly 300 may be fixed to the main frame 211 (e.g., a handlebar bracket of the main frame 211) .
  • the handlebar bracket may be part of the main frame 211, and the handlebar bracket may be sheathed on the handlebar assembly 280 or the steering column 282, so that the handlebar assembly 280 or the steering column 282 may rotate relative to the handlebar bracket.
  • the basket assembly may not rotate with the rotation of the handlebar (s) .
  • the vehicle body 210 may be divided into a front part and a rear part based on a position of a pedal shaft (not shown) (i.e., a shaft of the pedal 270) .
  • the front part of the vehicle 200 may include a first plurality of portions of the vehicle 200 in front of the position of the pedal shaft.
  • the front part of the vehicle 200 may include at least one of the basket assembly 300 (or 400) , the steering column 282, the handlebar assembly 280, and the front frame 2111.
  • the rear part of the vehicle 200 may include a second plurality of portions of the vehicle 200 behind the position of the pedal shaft.
  • the rear part of the vehicle 200 may include at least one of a component mounted under the seat 293, and the rear frame 2112.
  • the vehicle 200 may include a first controller and/or a second controller.
  • the control module 220 may include the first controller
  • the driving module 30 may include the second controller.
  • the first controller and the second controller may be separately disposed at different positions of the vehicle body 210.
  • the first controller and the second controller may be independent of each other, and independently control different components (e.g., different in-vehicle devices) of the vehicle 200.
  • the first controller may directly control a lock, a headlight, a taillight, or the like, or any combination thereof.
  • the second controller may independently control the motor.
  • the motor may be controlled merely based on instructions of the second controller (not instructions of the first controller) .
  • the first controller and the second controller may be powered independently.
  • the first controller and the second controller may be connected to the power source, respectively, and may be powered by the power source, respectively.
  • the first controller may include an electronic control unit (ECU) .
  • the second controller may include a motor controller (MC) .
  • the first controller and/or the second controller may include a processor, a storage, an input/output (I/O) interface, a communication port, a converter, or the like, or any combination thereof.
  • I/O input/output
  • the processor may be configured to execute a set of instructions (or program codes) to implement one or more functions of the vehicle 200 disclosed in the present disclosure.
  • the instructions may include routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions disclosed in the present disclosure.
  • the processor may process data obtained from any component of the vehicle 200.
  • the processor may include a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
  • RISC reduced instruction set computer
  • ASICs application specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RISC machine
  • PLD programmable logic device
  • the storage may store data/information obtained from any component of the vehicle 200.
  • the storage may include a mass storage, a removable storage, a volatile read-and-write storage, a read only memory (ROM) , or the like, or any combination thereof.
  • Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random-access memory (RAM) .
  • Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • MROM mask ROM
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically-erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital versatile disk ROM etc.
  • the I/O interface may be configured to input or output signals, data or information.
  • the I/O interface may enable a user to communicate with the vehicle 200.
  • the I/O interface may include an input device and an output device.
  • Exemplary input device may include a keyboard, a mouse, a touch screen, a microphone, or the like, or any combination thereof.
  • Exemplary output device may include a display device, a loudspeaker, a printer, a projector, or the like, or any combination thereof.
  • Exemplary display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , or the like, or any combination thereof.
  • the communication port may connect to a network to facilitate data communication.
  • the connection may be a wired connection, a wireless connection, or a combination of both.
  • the communication port may be a standardized communication port, such as RS232, RS485, etc.
  • the communication port may be a specially designed communication port.
  • the converter may be configured to convert the obtained signal.
  • the obtained signal may include an analog signal, a digital signal, or the like, or any combination thereof.
  • the analog signal may refer to a continuous signal that may keep changes with a time period.
  • the digital signal may refer to a discrete wave that may carry information in a binary form.
  • the analog signal may include a voice, a video, a temperature, a light, a power signal, or the like, or any combination thereof.
  • the convert may include an analog-to-digital (ADC) , a digital-to-analog (DAC) , or the like, or any combination thereof.
  • the ADC may convert an analog signal to a digital signal.
  • the DAC converter may convert a digital signal to an analog signal.
  • the converter may obtain an analog signal inputted by the user, and convert the analog signal into a digital signal to be transmitted to other components to guide the operations of the other components of the vehicle 200.
  • the converter may obtain a digital signal from other components of the vehicle 200, and convert the digital signal into analog signal for further use.
  • the first controller may be communicated with and/or connected to a first group of components of the vehicle 200, and configured to control one or more of the first group of components of the vehicle 200.
  • the first controller may obtain information and/or signal (e.g., a user operation, state information of the first group of components, etc. ) associated with the vehicle 200 from the first group of components, and transmit control instruction to the first group of components to control the first group of components.
  • the first group of components of the vehicle 200 may include a handlebar, a headlight, a horn, a brake, a meter, etc.
  • the second controller may be communicated with and/or connected to a second group of components of the vehicle 200.
  • the second controller may be configured to control one or more of the second group of components of the vehicle 200.
  • the second group of components may include a motor, a power source, a sensor, a taillight, a lock, or the like, or any combination thereof.
  • the first controller and/or the second controller may be mounted on the vehicle body 210 (e.g., the main frame 211, the front part of the vehicle 200, the rear part of the vehicle 200, etc. ) . In some embodiments, the first controller and the second controller may be mounted on different positions of the vehicle 200. For example, the first controller may be mounted in the front part of the vehicle 200, while the second controller may be mounted in the rear part of the vehicle 200. In some embodiments, the first controller may communicate with and/or connect to the second controller via a signal connection.
  • the signal connection may include a wired connection, a wireless connection, or the like, or any combination thereof.
  • the wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof.
  • the wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof.
  • the first controller may obtain state information and/or signal (s) associated with one or more components of the vehicle 200 (e.g., from the second controller) .
  • the first controller may generate, based on the information and/or signal, one or more control instructions.
  • the first controller may control component (s) of the first group of components based on the control instruction (s) .
  • the first controller may transmit the control instruction (s) to the second controller to control the component (s) of the second group of components.
  • the first controller and the second controller may be of a same type.
  • the first controller and the second controller may be micro-controllers.
  • the first controller and the second controller may be of different types.
  • the first controller may be an ECU, while the second controller may be an MC.
  • the first controller may be mounted closer to the front part of the vehicle (e.g., the vehicle 100, the vehicle 200) than the second controller.
  • the second controller may be mounted near the motor.
  • the second controller may be mounted in the rear part of the vehicle.
  • the first controller may be mounted in the front part of the vehicle.
  • the first controller may be operably coupled to and/or communicate with the first group of components of the vehicle (e.g., the components (e.g., in-vehicle device (s) ) close to the first controller) .
  • the second controller may be operably coupled to and/or communicate with the second group of components of the vehicle (e.g., the components (e.g., in-vehicle device (s) ) close to the second controller) .
  • the first controller may have a signal connection with the in-vehicle device (s) mounted in the front part of the vehicle, such as the transmission module 150, the handlebar (s) , the headlight, the horn, the brake 290, the meter, a sensor mounted in the front part, or the like, or any combination thereof.
  • the second controller may have a signal connection with other in-vehicle device (s) mounted in the rear part of the vehicle, such as the motor, the power source, the taillight, the lock, and a sensor mounted in the rear part, or the like, or any combination thereof.
  • the first controller and the second controller may be equipped with a safety mechanism for water proofing and/or theft prevention. More descriptions of the safety mechanism may be found in Chinese Patent Application No. 201822256768.1 entitled “A BASEKET ASSEMBLY AND A VEHICLE. ” filed on December 29, 2018, the contents of which are hereby incorporated by reference.
  • the first controller may be mounted anywhere in the front part of the vehicle.
  • the front frame 2111, the steering column 282, or the handlebar assembly 280 may have a hollow tubular structure in which a cavity may be disposed.
  • the first controller may be placed in the cavity.
  • a housing may be disposed external to the front frame 2111, the steering column 282, or the handlebar assembly 280, and the first controller may be placed in a cavity inside the housing.
  • the housing may include a cubic container, a rectangular container, a spherical container, a trapezoid container, a container with an irregular shape, or the like.
  • the housing may be made of materials including for example, metal, plastic, glass, alloy, ceramic, rubber, or the like, or any combination thereof.
  • the housing may be fixed to the front frame 2111, the steering column 282, or the handlebar assembly 280 by bolting, welding, snapping, plugging, splicing, gluing, or the like, or any combination thereof.
  • the first controller may be set in the basket assembly (e.g., the basket assembly 300, the basket assembly 400) .
  • the second controller may be mounted anywhere in the rear part of the vehicle.
  • the second controller may be mounted below the seat 293, or on the rear frame 2112 of the rear part of the vehicle 200.
  • a cavity or housing may be set below the seat 293, and the second controller may be placed in the cavity or housing.
  • a seat tube e.g., a structure connecting the seat 293 and the main frame 211 below the seat 293 may have a hollow tubular structure, and the second controller may be placed in the seat tube.
  • the rear frame 2112 may have a hollow tubular structure, and the second controller may be placed inside the rear frame 2112.
  • a housing may be disposed external to the seat tube or the rear frame 2112, and the second controller may be placed in a cavity of the housing.
  • the housing may include a cubic container, a rectangular container, a spherical container, a trapezoid container, a container with an irregular shape, or the like.
  • the housing may be made of materials including for example, metal, plastic, glass, alloy, ceramic, rubber, or the like, or any combination thereof.
  • the housing may be fixed to the seat tube or the rear frame 2112 by bolting, welding, snapping, plugging, splicing, gluing, or the like, or any combination thereof.
  • a basket assembly is taken as an example to illustrate the mounting position of the controller (e.g., the first controller, the second controller) according to some embodiments in the present disclosure. It should be noted that the following descriptions are merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • FIGs. 3A-3E are schematic diagrams illustrating an exemplary basket assembly according to some embodiments of the present disclosure.
  • FIG. 3A is a schematic diagram illustrating an axonometric drawing of the basket assembly 300 according to some embodiments of the present disclosure.
  • FIG. 3B is a schematic diagram illustrating a breakdown structure of the basket assembly 300 according to some embodiments of the present disclosure.
  • FIG. 3C is a schematic diagram illustrating an exploded view of the basket assembly 300 according to some embodiments of the present disclosure.
  • FIG. 3D is a schematic diagram illustrating an exemplary cavity according to some embodiments of the present disclosure.
  • FIG. 3E is a schematic diagram illustrating a back structure of the basket assembly 300 according to some embodiments of the present disclosure.
  • the basket assembly 300 is described in detail below with reference to FIGs. 3A-3E. It should be noted that the following descriptions are merely provided for illustration purposes according to some embodiments of the present disclosure, and not intended to limit the scope of the present disclosure.
  • the basket assembly 300 may be fixedly connected to the handlebar assembly 280. In some embodiments, the basket assembly 300 may be connected to other components (e.g., a frame) of a vehicle. As shown in FIGs. 3A-3E, the basket assembly 300 may include a cavity 323. The cavity 323 may be configured to accommodate a first controller.
  • the basket assembly 300 may include a basket body 310 (also referred to as a basket) and a housing 320. In some embodiments, the housing 320 may be fixedly connected to the basket body 310. The cavity 323 may be formed inside the housing 320.
  • the housing 320 may be disposed on a side of the basket assembly 300 adjacent to the vehicle body 210. Because the housing 320 is relatively heavy, the disposition of the housing 320 may cause the basket assembly 300 more stable.
  • the housing 320 may be used to connect the basket body 310 and the vehicle body 210.
  • the housing 320 may include a fixing frame 321 and a connection plate 322.
  • the fixing frame 321 may be fixedly connected to a certain component of the vehicle 200.
  • the fixing frame 321 may be fixedly connected to the vehicle body 210 (e.g., the handlebar assembly 280) .
  • the connection plate 322 may be fixedly connected to the basket body 310.
  • the cavity 323 may be formed between the fixing frame 321 and the connection plate 322.
  • the connection plate 322 may have a configuration adapted to a side wall of the basket body 310 facing the vehicle body 210, such that the connection plate 322 can better fit with and be fixed to the basket body 310.
  • the fixing frame 321 and the vehicle body 210 may be connected via a bolt connection, a gluing connection, a welding connection, a snapping connection, a riveting connection, or the like, or any combination thereof.
  • the connection between the connection plate 322 and the basket body 310 may include, but is not limited to, a welding connection, a riveting connection, a bolt connection, a snapping connection, or the like, or any combination thereof.
  • connection between the fixing frame 321 and the connection plate 322 may be detachable or non-detachable.
  • the connection between the fixing frame 321 and the connection plate 322 may include, but is not limited to a bolt connection, a key connection, a pin connection, a welding connection, a riveting connection, or the like.
  • a lock may be disposed between the fixing frame 321 and the connection plate 322 for theft prevention.
  • connection plate 322 may improve a sealing performance of the housing 320, thereby preventing external objects (e.g., rain, dust, etc. ) from entering the cavity 323. Additionally or alternatively, the connection plate 322 may be omitted, and the basket body 310 may be directly connected to the fixing frame 321. In some embodiments, the basket body 310, the connection plate 322, and the fixing frame 321 may be fixedly connected via one or more bolts.
  • a first controller 325 may be mounted on the fixing frame 321.
  • the first controller 325 may be mounted on the fixing frame 321 via a detachable connection or a non-detachable connection.
  • the detachable connection may include a bolt connection, a snapping connection, or the like, or any combination thereof.
  • the non-removable connection may include a riveting connection, a gluing connection, a welding connection, or the like, or any combination thereof.
  • the first controller 325 may be mounted on the left side of the fixing frame 321 viewed from a direction indicated by the arrow A (e.g., viewed in front of the vehicle 200) .
  • the second controller, one or more sensors, a horn, and/or one or more other in-vehicle devices may also be disposed in the cavity 323 of the housing 320 of the basket assembly 300.
  • the housing 320 may connect the basket body 310 and the handlebar assembly 280.
  • a side surface of the housing 320 facing the handlebar assembly 280 may include a hole 324.
  • the hole 324 may be configured to dissipate heat, or transmit sound, or the like, or any combination thereof.
  • the hole 324 may transmit sound of a horn mounted in the housing 320.
  • FIGs. 4A-4D are schematic diagrams illustrating another exemplary basket assembly according to some embodiments of the present disclosure.
  • FIG. 4A is a schematic diagram illustrating an axonometric drawing of the basket assembly 400 according to some embodiments of the present disclosure.
  • FIG. 4B is a schematic diagram illustrating an exemplary bottom structure of the basket assembly 400 according some embodiment of the present disclosure.
  • FIG. 4C is a schematic diagram illustrating an exploded view of the basket assembly 400 according to some embodiments of the present disclosure.
  • FIG. 4D is a schematic diagram illustrating an exemplary basket body according to some embodiments of the present disclosure.
  • the structure of the basket assembly 400 may be described with reference to FIGs. 4A-4D according to some embodiments of the present disclosure. It should be noted that the following descriptions are intended to be presented by way of example only and are not limiting.
  • the basket assembly 400 may include a cavity 412.
  • the cavity 412 may be configured to accommodate a first controller.
  • the basket assembly 400 may include a basket body 410 (also referred to as a basket) .
  • the cavity 412 may be formed in the basket body 410.
  • the basket assembly 400 may include a baseplate 415.
  • the basket body 410 may have one or more openings (e.g., at a bottom of the basket body 410) . In some embodiments, at least one opening may be in communication with the cavity 412.
  • the baseplate 415 may be used to shield the openings. Specifically, the baseplate 415 may be fixedly connected to the bottom of the basket body 410.
  • the connection between the baseplate 415 and the basket body 410 may include a detachable connection or a non-detachable connection.
  • connection between the baseplate 415 and the basket body 410 may include a bolt connection, a key connection, a pin connection, a welding connection, a riveting connection, a snapping connection, or the like, or any combination thereof.
  • a lock may be disposed between the baseplate 415 and the basket body 410 for theft prevention.
  • the baseplate 415 and the basket body 410 may be connected by a specific bolt (e.g., a fixing bolt, a fixing screw, etc. ) to increase the difficulty of disassembly, thereby enhancing theft prevention capability.
  • the first controller may be mounted on the baseplate 415, and the baseplate 415 may be connected to the basket body 410, so that the first controller can be mounted in the cavity 412.
  • the cavity 412 may be disposed on a side of the basket body 410 that is adjacent to or facing the vehicle body 210.
  • a second controller or various types of sensors, a horn, and/or one or more other in-vehicle devices may also be disposed in the cavity 412 of the basket assembly 400.
  • a first controller 421 may be mounted on the baseplate 415.
  • the first controller 421 may be mounted on the baseplate 415 via a detachable connection or a non-detachable connection.
  • the detachable connection may include a bolt connection, a snapping connection, or the like, or any combination thereof.
  • the non-removable connection may include a riveting connection, a gluing connection, a welding connection, or the like, or any combination thereof.
  • a horn 417 may be mounted on the baseplate 415.
  • the first controller 421 and the horn 417 may be mounted on different sides of the baseplate 415 to balance weight, so that the basket assembly 400 can be more stable.
  • the horn 417 may be configured to generate a sound (e.g., music, an alarm, a reminder, or the like, or any combination thereof) .
  • the basket body 410 may include one or more holes 424 (e.g., on side surface of the basket body 410 facing the vehicle body 210) .
  • the horn 417 may directly face the hole (s) 424.
  • the hole (s) 424 may be configured to transmit the sound generated by the horn 417.
  • FIG. 5 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure.
  • the control assembly 500 of the vehicle e.g., the vehicle 100, the vehicle 200
  • the control assembly 500 may be an exemplary embodiment of the vehicle as described elsewhere in this disclosure (e.g., the vehicles illustrated in FIGs. 1 and 2) . As shown in FIG. 5, the control assembly 500 may include the first controller 551 and the second controller 552 which are operably coupled to a first group of components 553 and a second group of components 554 of the vehicle, respectively.
  • the first controller 551 may have a signal connection with a first group of components 553, and/or may control one or more components of the first group of components 553.
  • the first controller 551 may have a signal connection with a network.
  • the network may include a telecommunication network, an internal network, an internet network, a regional network (LAN) , a wide area network (WAN) , a wireless area network (WLAN) , a metropolitan area network (MAN) , public switched telephone network (PSTN) , a Bluetooth network, a mobile communication network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the first controller 551 may communicate with a remote server or a user terminal via the network.
  • the first controller 553 may obtain user information (e.g., for authentication and/or identification of the user) , receive user instructions (e.g., an instruction for opening a lock, an instruction for returning the vehicle) , and/or provide feedback information to the user (e.g., for notifying the user of a current speed or a driving route of the vehicle, etc. ) .
  • the first controller 551 may send state information (e.g., location information, a rental time, a rental location, locations on a route, an arrival time, an arrival location, a speed, a driving distance, opening or closing state of the lock, etc. ) , user information (e.g., account information, contact information, credit information, etc.
  • the first controller 551 may receive one or more instructions from the server via the network.
  • the first controller 551 may be mounted on a front part of the vehicle, thereby facilitating the connection between the first controller 551 and the network.
  • the first group of components 553 may include one or more in-vehicle device (s) mounted in the front part of the vehicle, or the first group of components 553 may be mounted in the front part of the vehicle.
  • the first group of components 553 may include a handlebar 5531, a headlight 5532, a horn 5533, a brake 5534, a meter 5535, a first sensor 5536, or the like, or any combination thereof.
  • the first group of components 553 may be mounted near (or adjacent to) the first controller 551.
  • the first controller 551 may include an ECU or a portion thereof.
  • the first sensor may include one or more sensors disposed at the front part of the vehicle.
  • the first sensor 5536 may include a pressure sensor mounted on the handlebar 5531, a pressure sensor mounted in a basket (e.g., a pressure sensor detecting whether the object (s) in the basket is overweight) , a positioning sensor, a speed sensor, an acceleration sensor, or the like, or any combination thereof.
  • the signal connection between the first controller 551 and the first group of components 553 disposed near the first controller 551 may facilitate the control of the first group of components 553 (e.g., by the first controller 551) , and simplify the cabling of the vehicle.
  • the signal connection may refer that signal (s) can be transmitted between the first controller 551 and the first group of components 553.
  • the signal connection between the first controller 551 and the first group of components 553 may be implemented via a wired connection and/or a wireless connection.
  • the first controller 551 may obtain a signal from one or more components of the first group of components 553 via a wired connection or a wireless connection.
  • the first sensor 5536 e.g., a pressure sensor mounted on the handlebar 5531
  • the first sensor 5536 may transmit the signal to the first controller 551 directly or via the network.
  • the first controller 551 may analyze state information of the vehicle (e.g., a current location, a target location, a state of the lock, or the like, or any combination thereof) .
  • the first controller 551 may generate an instruction to control the component (s) of the first group of components 553 and/or the component (s) of the second group of components 554.
  • the first controller 551 may be operably coupled to the second controller 552 via a signal connection.
  • the signal connection may include a wired connection and/or a wireless connection.
  • the second controller 552 may transmit information associated with or detected by the second group of components 554 to the first controller 551.
  • the first controller 551 may generate an instruction to control the component (s) of the second group of components 554 and transmit the instruction to the second controller 552, so that the second controller can control the component (s) according to the instruction.
  • the first controller 551 may generate an instruction and transmit the instruction to the second controller 552 to control the motor 5541 of the second group of components 554 to slow down or stop the vehicle.
  • the second controller 552 may have a signal connection with the second group of components 554, and/or may control one or more components (e.g., in-vehicle device (s) ) of the second group of components 554.
  • the second group of components 554 may include a motor 5541.
  • the second controller 552 may be disposed near or adjacent to the motor 5541.
  • the second controller 552 may include a motor controller (MC) .
  • the second controller 552 may be mounted on a rear part of the vehicle.
  • the second group of components 554 may include other in-vehicle devices that may be close to the motor 5541, such as a power source 5542, a second sensor 5543, a taillight, 5544, a lock 5545, or the like, or any combination thereof.
  • the second sensor 5543 may be disposed on the rear part of the vehicle.
  • the second sensor 5543 may include a first temperature sensor configured to detect the temperature of the motor 5541, a second temperature sensor configured to detect the temperature of the power source 5542, a sensor configured to detect the electrical quantity, a monitor configured to detect a service life of the power source, a sensor configured to detect the lock state (e.g., whether the lock is unlocked) , a pedal pressure sensor, a displacement sensor, a speed sensor, an acceleration sensor, an angle sensor, or the like, or any combination thereof.
  • the second controller 552 may obtain information and/or signal (e.g., detected by the second sensor 5543) from the second sensor 5543.
  • the second controller 552 may convert an analog signal into a digital signal to improve a stability and an anti-interference ability of the signal (s) in signal transmission.
  • the second controller 552 may transmit the information detected by the second sensor 5543 to the first controller 551.
  • the first controller 551 may generate an instruction based on the received information, and transmit the instruction to the second controller 552.
  • the second controller 552 may control the second group of components 554 based on the instruction (e.g., to speed up the vehicle) .
  • the second controller 552 may control the motor 5541 to increase a rotation speed, the power source 5542 to provide more power, or the like, to increase the speed of the vehicle.
  • the first controller 551 and the second controller 552 may be disposed at different positions of the vehicle. Although the first controller 551 and the second controller 552 are disposed at different positions, they may have a signal connection. In some embodiments, the first controller 551 may be mounted in front of the second controller 552 (or the first controller 551 may be mounted closer to the front part of the vehicle than the second controller 552) , thereby facilitating signal transmissions and avoiding signal interferences. In some embodiments, the first controller 551 may be mounted in a handlebar assembly (e.g., the handlebar assembly 280) or a basket assembly (e.g., the basket assembly 300, the basket assembly 400) . In some embodiments, the second controller 552 may be mounted under a seat (e.g., the seat 293) or behind the seat. In some embodiments, the first controller 551 and/or the second controller 552 may be sealed for water proofing and/or theft prevention.
  • a handlebar assembly e.g., the handlebar assembly 280
  • a basket assembly
  • the second controller 552 may be connected to the server directly or via the network. For example, the second controller 552 may obtain a control instruction from the server via the network. In some embodiments, the second controller 552 may control the second group of components 554 based on the control instruction. Merely by way of example, the second controller 552 may obtain a control instruction for deceleration, the second controller 552 may control the power source 5542 to reduce energy output, and/or control the motor 5541 to reduce rotation speed to implement the deceleration.
  • the first controller 551 may be used as a master controller, while the second controller 552 may be used as a slave controller.
  • the second controller 554 may be configured to control at least one component of the second group of components 554 based on the instruction of the first controller 551.
  • the first controller 551 may receive a request for using the vehicle sent from a user terminal.
  • the first controller 551 may generate an instruction and transmit the instruction to the second controller 552 to unlock the lock 5545 and/or activate the motor 5541.
  • the second controller 552 may control the charging or discharging of the power source 5542 based on the instruction of the first controller 551.
  • the second controller 552 may receive feedback information and/or signal (s) form at least one component of the second group of components 554, and transmit the feedback information and/or signal (s) to the first controller 551.
  • the second controller 552 may receive a feedback signal from the speed sensor, and transmit the feedback signal of the speed sensor to the first controller 551.
  • the second controller 552 may receive a signal of detected electrical quantity (e.g., from the second sensor 5543) , and transmit the signal to the first controller 551.
  • signal (s) may be transmitted between the first controller 551 and the second controller 552 via one or more channels.
  • a channel may refer to a medium used to transmit a signal (e.g., a communication signal, a power signal, etc. ) .
  • a communication signal may refer to a signal conveying information, and transmitted from a signal issuing end to a signal receiving end. Exemplary communication signal may include an analog signal, a digital signal, or the like, or any combination thereof.
  • the channel may include a wired channel (e.g., a line, a cable, an optic cable) , a wireless channel (e.g., a groundwave propagation, a short-wave ionospheric reflection, an ultrashort wave or a microwave line-of-sight relay, a satellite relay, etc. ) , or the like, or any combination thereof.
  • one communication signal may be transmitted via one channel.
  • two or more channels transmitting two or more signals may be multiplexed.
  • the multiplexing of channels may refer to a method of combining two or more channels into one channel to transmit two or more signals.
  • the channels of the communication signals and/or the power signals may be multiplexed to transmit, via one channel, the communication signals, the power signals, or any combination thereof.
  • the first controller 551 and the second controller 552 may communicate with and/or connected to each other via a wired or wireless connection.
  • the communication signals therebetween may be transmitted through one or more cables.
  • the communication signals may be transmitted through different channels (e.g., cables, cable cores, etc. ) .
  • one or more communication channels may be multiplexed into one communication channel.
  • the multiplexing of the communication channels may be implemented by a spatial division multiplexing (SDM) , a frequency division multiplexing (FDM) , a time division multiplexing (TDM) , a polarization division multiplexing (PDM) , an orbital angular momentum multiplexing (OAM) , a code division multiplexing (CDM) , or the like, or any combination thereof.
  • SDM spatial division multiplexing
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • PDM polarization division multiplexing
  • OFAM orbital angular momentum multiplexing
  • CDM code division multiplexing
  • the signal (s) transmitted between the second controller 552 and the second group of components 554 may include a digital signal.
  • the first controller 551 may convert an analog signal into a digital signal.
  • the second controller 552 may convert an analog signal into a digital signal.
  • the signal (s) may be transmitted between the first controller 510 and the second controller 520 in one or more signal transmission modes.
  • Exemplary signal transmission modes may include a digital signal transmission, an analog signal transmission, or the like, or any combination thereof.
  • the digital signal transmission may include a baseband transmission, a carrier transmission, or the like, or any combination thereof.
  • the analog signal transmission may include an electromagnetic wave transmission, a telephone network transmission, a cable television network transmission, or the like, or any combination thereof.
  • a digital signal may be converted to an analog signal and transmitted via the analog signal transmission mode.
  • an analog signal may be converted to a digital signal and transmitted via the digital signal transmission mode.
  • the analog signal may be transmitted with the digital signal.
  • the connections between components of the vehicle are illustrative. Any two components of the vehicle may be connected or not.
  • the connection between two components of the vehicle may be a one-way connection or two-way connection.
  • the vehicle may include one or more additional components or one or more components described above may be omitted.
  • the first sensor 5536 may be integrated into other components of the first group of components 553.
  • another brake may be added in the second group of components 554.
  • FIG. 6 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure.
  • the control assembly 600 of the vehicle e.g., the vehicle 100, the vehicle 200
  • the control assembly 600 may be an exemplary embodiment of the vehicle as described elsewhere in this disclosure (e.g., the vehicles illustrated in FIGs. 1 and 2) .
  • the control assembly 600 may include a first controller 610 and a second controller 620 operably coupled to a first group of components 630 and a second group of components 660 of the vehicle, respectively.
  • the control assembly 600 may be similar to the control assembly 500 described in connection with FIG. 5, except for certain features.
  • the first controller 610 of the control assembly 600 may include a carrier device 6101
  • the second controller 620 of the control assembly 600 may include a carrier device 6201.
  • the first controller 610 and the second controller 620 may be disposed at different positions of the vehicle. Although the first controller 610 and the second controller 610 are disposed at different positions, they may have a signal connection. Communication signal (s) and/or power signal (s) may be transmitted between the first controller 610 and the second controller 620. In some embodiments, a power signal may be transmitted between the first controller 610 and at least one component (e.g., an in-vehicle device) of the first group of components 630. In some embodiments, a power signal may be transmitted between the second controller 620 and at least one component (e.g., an in-vehicle device) of the second group of components 640.
  • Communication signal (s) and/or power signal (s) may be transmitted between the first controller 610 and the second controller 620.
  • a power signal may be transmitted between the first controller 610 and at least one component (e.g., an in-vehicle device) of the first group of components 630.
  • a power signal may
  • the communication signal (s) and/or the power signal (s) may be transmitted via a wired or wireless connection.
  • the communication signal (s) and/or the power signal (s) may be transmitted through a plurality of cables.
  • the communication signal (s) and/or the power signal (s) may be transmitted through different cables or cable cores.
  • signals transmitted via two or more channels may be transmitted via a multiplexed channel.
  • the communication signal (s) and/or the power signal (s) may be superimposed or multiplexed into one channel of signal for transmission.
  • the communication signal (s) may be coupled to (or integrated into) a power line and transmitted by the power line.
  • the communication signal (s) may be directly superimposed on the power signal (s) .
  • the communication signal (s) and/or the power signal (s) may be transmitted through a wired carrier communication.
  • the communication signal (s) may be digitally modulated and loaded on the power line, and the communication signal (s) and the power signal (s) on the power line may be coupled to generate a coupled signal.
  • the coupled signal may be transmitted through a cable or via a network.
  • the coupled signal may be demodulated to recover the communication signal (s) and the power signal (s) .
  • at least one carrier device may be disposed at an issuing end of the signal (s) to perform modulation, and/or coupling of the signal (s) .
  • at least one carrier device may be disposed at a receiving end of the signal (s) to perform demodulation of the signal (s) .
  • a carrier device 6101 may be disposed in the first controller 610, and/or a carrier device 6201 may be disposed in the second controller 620.
  • the first controller 610, the second controller 620, and components of the vehicle may be equipped with a respective carrier device.
  • the carrier device (s) may be integrated with the first controller 610, the second controller 620, or the in-vehicle devices into an electronic component.
  • the carrier device and the in-vehicle devices may be disposed in different electronic components, respectively.
  • two or more in-vehicle devices may share one or more carrier devices.
  • the communication signal (s) and the power signal (s) may be coupled and/or transmitted by a capacitive coupling, an inductive coupling, a direct current (DC) carrier communication, a narrowband carrier communication, a spread spectrum carrier communication, an orthogonal frequency division multiplexing, or the like, or any combination thereof.
  • the communication signal (s) and the power signal (s) may be transmitted by a narrowband carrier communication.
  • the communication signal (s) and the power signal (s) may be coupled and transmitted using a carrier modulation technology (as illustrated elsewhere in the present disclosure) , in which the frequency spectrum of the communication signal (s) may be moved to a relatively high carrier frequency for coupling.
  • the carrier modulation technology may include a frequency shift keying (FSK) , a phase shift keying (PSK) , a differential phase shift keying (DPSK) , a minimum shift keying (MSK) , a quadrature frequency shift keying (QPSK) , a quadrature amplitude modulation (QAM) , or the like, or any combination thereof.
  • the communication signal (s) and the power signal (s) may be coupled and/or transmitted using a spread spectrum carrier communication.
  • the frequency band of the transmitted signal (s) may be broadened so that frequency spectrum of the signal (s) sent at the issuing end is broadened.
  • dispreading may be performed on the transmitted signal (s) , and the frequency spectrum of the signal (s) may be recovered to its original bandwidth.
  • spectrum spreading operations may include a direct sequence spread spectrum (DS) , a frequency hopping spread spectrum (FH) , a time hopping spread spectrum (TH) , or the like, or any combination thereof.
  • the communication signal (s) and the power signal (s) may be coupled and/or transmitted using an orthogonal frequency division multiplexing technology.
  • the communication signal (s) may be decomposed into two or more sub-signals (e.g., N sub-signals) .
  • the N sub-signals may be modulated using N orthogonal sub-carriers, respectively.
  • each sub-signal may be modulated by one of the orthogonal sub-carriers.
  • the N modulated sub-signals may be orthogonal to each other and the frequency spectrums of the modulated sub-signals may be overlapped for transmission.
  • the power signal (s) may include an alternating current signal.
  • the power signal (s) may include a DC signal, which may facilitate the transmission of the modulated communication signal (s) .
  • the communication signal (s) may include a digital signal.
  • the power signal (s) may include a DC power signal.
  • the communication signal (s) may be separated from the coupled signal using a DC-block circuit.
  • the DC-block circuit may include a DC-block capacitor.
  • the power signal (s) may be separated from the coupled signal using a low-pass filtering circuit.
  • the communication signal (s) may be directly transmitted between two or more components of the vehicle via a transmission system (e.g., a baseband transmission system) .
  • the communication signal may be modulated to generate a modulated signal, and may be transmitted via the transmission system.
  • a carrier device e.g., the carrier device 6101, the carrier device 6102 at the issuing end may be configured to generate a carrier wave.
  • the carrier wave may be configured to load the communication signal that needs to be transmitted.
  • the carrier device may generate a carrier wave whose frequency is higher than the frequency of the communication signal.
  • the carrier device may modulate the carrier wave and the communication signal to generate a modulated signal.
  • the modulation of the carrier wave may include varying one or more properties of the carrier wave such that the communication signal to be transmitted may be loaded into the carrier wave to generate the modulated signal.
  • the modulation may include a frequency modulation, an amplitude modulation, a phase modulation, or the like, or any combination thereof.
  • the modulated signal may be transmitted through a channel, and after receiving the modulated signal, the carrier device at the receiving end may demodulate the modulated signal to obtain the original communication signal (s) .
  • two or more signals of the communication signal (s) and/or the power signal (s) may be superimposed to generate a superimposed signal.
  • two or more channels of the signals may be multiplexed into one channel to transmit the communication signal (s) , the power signal (s) , or the like, or any combination thereof.
  • a superimposed signal of a communication signal and a power signal may be transmitted between the first controller 610 and second controller 620 via a wireless network. That is, the electric energy may be transmitted between a power supply apparatus (e.g., a power source) and a power receiving apparatus without an electrical conductor. In some embodiments, the transmission of the electric energy may be realized by an electric field, a magnetic field, an electromagnetic wave, or the like, or any combination thereof.
  • the power signal may be wirelessly transmitted between the first controller 610 and the second controller 620 via an inductive coupling, an electric field coupling, an evanescent wave, a microwave conversion, a laser sensing, an ultrasonic wave, or the like, or any combination thereof.
  • the second controller 620 may be configured to receive a feedback signal of at least one of the in-vehicle devices of the second group of components 640 and a power signal of the power source 6402. The second controller 620 may superimpose the feedback signal with the power signal, and transmit the superimposed signal to the first controller 610.
  • the second controller 620 may receive a feedback signal indicating that the lock 6405 is unlocked, and superimpose the feedback signal with a power signal sent by the power source 6402.
  • the second controller 620 may send the superimposed signal (also referred to as a coupled signal, or a multiplexed signal) including the feedback signal and the power signal to the first controller 610.
  • the first controller 610 may be configured to receive the superimposed signal transmitted by the second controller 620, and separate the communication signal and the power signal from the superimposed signal.
  • the first controller 610 may use the separated power signal to supply power (e.g., to the first controller 610 itself, or the first group of components 630) .
  • the first controller 610 may demodulate a multiplexed signal (transmitted from the second controller 620) including a feedback signal indicating that the lock 6405 is unlocked and a power signal to obtain the feedback signal and the power signal.
  • the power signal may be used to supply power to the first controller 610.
  • the power signal may be used to supply power to one or more components of the first group of components 630 operably coupled to the first controller 610.
  • the systems and modules shown in FIGs. 5 and 6 may be implemented in various ways.
  • the systems and the modules may be implemented by hardware, software or a combination of software and hardware.
  • the hardware may be implemented by a dedicated logic.
  • the software may be stored in a memory and may be implemented by an appropriate instruction executing system (e.g., a microprocessor, a dedicated design hardware, etc. ) .
  • an appropriate instruction executing system e.g., a microprocessor, a dedicated design hardware, etc.
  • the above mentioned methods and systems may be implemented by computer-executable instructions and/or embedding in control codes of a processor.
  • control codes may be provided by a medium such as a disk, a CD or a DVD-ROM, a programmable memory device of a read-only memory (e.g., a firmware) , or a data carrier such as an optical or electric signal carrier.
  • the systems and modules of the present disclosure may be implemented by a hardware circuit of programmable hardware device.
  • the programmable hardware device may include a huge scale integrated circuits or a gate array, a semiconductor (e.g., the semiconductor of a logic chip, a transistor, etc. ) such as field-programmable gate arrays or programmable logic devices, etc.
  • the system and modules may be implemented by software executed by various processors.
  • the system and modules may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
  • each module of the modules described in connection with FIGs. 5 and 6 may be distributed on different electronic components, or one or more modules may be integrated on a same electronic component, or a single module may be disposed on one or more electronic components.
  • the torque sensor in the handlebar 5531 (or 6301) and the first controller 551 (or 610) may be implemented in independent chips, respectively, or may be integrated on a same chip. All such modifications are within the protection scope of the present disclosure.
  • FIG. 7 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
  • the process 700 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) .
  • the process 700 may be implemented as a set of instructions.
  • the server 170, a first controller of the vehicle, a second controller of the vehicle may execute the set of instructions, and when executing the instructions, the server 170, the first controller and/or the second controller may be configured to perform the process 700.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 700 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 700 illustrated in FIG. 7 and described below is not intended to be limiting.
  • a communication signal may be received from at least one in-vehicle device of the vehicle, and a power signal may be received from a power source.
  • operation 710 may be performed by a first controller and/or a second controller of the vehicle.
  • the second controller may receive a communication signal form a motor of the vehicle and a power signal from the power source of the vehicle.
  • the received communication signal and the power signal may be combined into an electrical signal (also referred to as a coupled signal, a multiplexed signal) .
  • the communication signal and the power signal may be superimposed or multiplexed to generate the electrical signal for transmission.
  • the superimposition or multiplexing may be performed by a capacitive coupling, an inductive coupling, a DC carrier communication, a narrowband carrier communication, a spread spectrum carrier communication, an orthogonal frequency division multiplexing, or the like, or any combination thereof.
  • the electrical signal may be transmitted.
  • the electrical signal may be transmitted to another controller of the vehicle (e.g., the first controller of the vehicle) .
  • an electrical signal carrying a communication signal may be transmitted to the first controller.
  • the second controller may transmit an electrical signal (e.g., a power signal coupled with a speed signal of the vehicle) to the first controller.
  • the first controller may receive the electrical signal and process (e.g., demodulate) the electrical signal to obtain the communication signal (e.g., the speed signal) .
  • the first controller may demodulate the power signal coupled with the speed signal transmitted by the second controller, and obtain the speed signal.
  • an instruction may be received from another controller (e.g., the first controller) of the vehicle.
  • the first controller may generate and send an instruction to the second controller to control the motor to decelerate.
  • At least one in-vehicle device of the vehicle may be controlled based on the instruction.
  • the second controller may control the battery to discharge based on the instruction (s) of the first controller.
  • the at least one in-vehicle device described in 750 may be the same as or different from the at least one in-vehicle device described in 710.
  • the process 700 may be implemented by a control system.
  • the control system may include an obtaining module configured to receive a communication signal from at least one in-vehicle device and a power signal from the power source.
  • the obtaining module may demodulate a superimposed and/or multiplexed signal to recover original signals (e.g., the communication signal, the power signal) .
  • the control system may inlcude a combiantion module configured to combine the communication signal and the power signal into an electrical signal.
  • the combination module may modulate the communication signal and couple the modulated communicaton signal to the power signal.
  • the control system may further include a transmission module configured to transmit the electrical signal.
  • the transmission module may transmit the electrical signal including a coupled communication signal.
  • FIG. 8 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
  • the process 800 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) .
  • the process 800 may be implemented as a set of instructions.
  • the server 170, a first controller of the vehicle, a second controller of the vehicle may execute the set of instructions, and when executing the instructions, the server 170, the first controller and/or the second controller may be configured to perform the process 800.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 800 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 800 illustrated in FIG. 8 and described below is not intended to be limiting.
  • a signal may be received from another controller. Operation 810 may be performed by a first controller, a second controller, or an in-vehicle device of the vehicle.
  • the signal may be an electrical signal generated by combining a communication signal and a power signal.
  • the received signal may be processed to separate the communication signal and the power signal from the electrical signal.
  • the first controller, the second controller, or an in-vehicle device of the vehicle may separate the power signal from the electrical signal by demodulating the received signal.
  • the power signal may be used to supply power.
  • the power signal may be used to supply power to at least one in-vehicle device of the vehicle.
  • the first controller may receive a communication signal (indicating an electrical quantity) sent from the second controller and a power signal sent from the battery.
  • the communication signal indicating the electrical quantity and the power signal may be combined into an electrical signal for transmission.
  • the first controller may demodulate the electrical signal to separate the communication signal indicating the electrical quantity and the power signal.
  • the first controller may supply power to itself using the separated power signal.
  • the first controller may also transmit the power signal to one or more in-vehicle devices of a first group of components operably coupled to the first controller to supply power to the in-vehicle device (s) .
  • a control system may be provided accoring to some embodiments of the present disclosure.
  • the control system may inlcude an obtaining module configured to receive a signal from another controller.
  • the obtaining module may receive an electrical signal generated by combining a communication signal and a power signal.
  • the control system may include a processing module configured to process the electrical signal to separate the communication signal and the power signal from the electrical signal.
  • the processing module may demodulate the electrical signal to recover the communication signal.
  • the control system may inlcude a power module configured to supply power to the vehicle using the power signal.
  • operation 810 and operation 820 may be integrated into one operation.
  • FIG. 9 is a flowchart illustrating an exemplary process for controlling a component of a vehicle according to some embodiments of the present disclosure.
  • the process 900 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) .
  • the process 900 may be implemented as a set of instructions stored in a storage.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 900 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 900 illustrated in FIG. 9 and described below is not intended to be limiting.
  • a second controller of the vehicle may generate a signal associated with the vehicle.
  • the signal may include a digital signal, an analog signal, or the like, or any combination thereof.
  • the signal may include a communication signal and/or a power signal.
  • the communication signal may include information associated with the vehicle, and/or may be transmitted from a signal issuing end to a signal receiving end.
  • the second controller may obtain the communication signal from a second component of the vehicle operably coupled to the second controller.
  • the second component of the vehicle may include at least one of a motor, a sensor, a power source, a taillight, a lock, or other component mounted in a rear part of the vehicle.
  • the information may indicate a state of at least one component of the second group of components of the vehicle.
  • the information may include speed information, location information, pressure information, electrical quantity information, or the like, or any combination thereof.
  • the information may include state information (e.g., a rotation speed, a power, a temperature, etc. ) of the motor, state information (e.g., a service life of the power source, a remaining electrical quantity, discharging or charging state, etc. ) of the power source, state information (e.g., turning on or turning off state, etc. ) of the taillight, state information (e.g., turning on or turning off state, etc. ) of the lock, or the like, or any combination thereof.
  • state information e.g., a rotation speed, a power, a temperature, etc.
  • state information e.g., a service life of the power source, a remaining electrical quantity, discharging or charging state, etc.
  • state information e.g., turning on or turning off state, etc.
  • the taillight e.g., turning on or turning off state, etc.
  • one or more sensors mounted in the rear part of the vehicle may detect signals associated with other components of the second group of components.
  • the second controller may be connected to and/or communicate with the sensors to obtain the signals. More descriptions regarding the sensors may be found elsewhere in the present disclosure (e.g., the second sensor 5543 in FIG. 5, the second sensor 6403 in FIG. 6, and the relevant descriptions thereof) .
  • the power signal may refer to a signal carrying power and may be used to provide power for various components of the vehicle.
  • the second controller may obtain the power signal from a third component of the vehicle operably coupled to the second controller.
  • the third component of the vehicle may include a power source (e.g., a battery) .
  • the second controller may obtain electric power from the battery.
  • the second controller may obtain the communication signal and/or the power signal via a wired connection or a wireless connection.
  • the second controller may combine the obtained communication signal and the power signal into one signal. In some embodiments, the second controller may generate the combined signal by superimposing the communication signal and the power signal. In some embodiments, the second controller may multiplex one or more channels for transmitting the communication signal and one or more channels for transmitting the power signal into one channel for transmitting the communication signal and the power signal together. In some embodiments, the second controller may couple the communication signal and/or the power signal into a carrier wave. More descriptions of the combination of the communication signal and the power signal may be found elsewhere in the present disclosure (FIG. 6, and the relevant description thereof) .
  • the second controller may transmit the combined signal to a first controller of the vehicle.
  • the first controller may be operably coupled to the second controller directly or indirectly (e.g., via a network) .
  • the second controller may transmit the combined signal to the first controller via a signal connection between the first controller and the second controller.
  • the signal connection may include a wired connection and/or a wireless connection. More descriptions regarding the signal transmission between the first controller and the second controller may be found elsewhere in the present disclosure (e.g., FIGs. 5 and 6, and the relevant descriptions thereof) .
  • the second controller may transmit the combined signal to the first controller, and the first controller may receive the combined signal form the second controller.
  • the second controller may transmit the combined signal to the first controller in real time or intermittently (e.g., periodically or irregularly) .
  • the first controller may process the signal received from the second controller.
  • the first controller may process the received signal to obtain the communication signal and the power signal.
  • the processing of the signal may include analyzing, denoising, smoothing, filtering, extracting, transformation, demodulating, separating, or the like, or any combination thereof.
  • the first controller may demodulate the received signal to obtain the communication signal from a modulated signal.
  • the first controller may convert the received signal from a digital signal to an analog signal.
  • the first controller may separate the received signal into the communication signal and the power signal.
  • Exemplary signal separating technology may include a principal components analysis (PCA) technology, a singular value decomposition (SVD) technology, an independent component analysis (ICA) technology, a dependent component analysis (DCA) technology, a non-negative matrix factorization technology, a low-complexity coding and decoding technology, a stationary subspace analysis technology, a common spatial pattern technology, a machine learning model technology, or the like, or any combination thereof.
  • the first controller may include a separator configured to separate the combined signal into the communication signal and the power signal.
  • the power signal may be used to power the first controller.
  • the first controller may transmit the power signal to a fourth component of the vehicle operably coupled to the first controller.
  • the fourth component of the vehicle may include at least one component of the vehicle mounted on a front part of the vehicle.
  • the fourth component of the vehicle may include a headlight, a horn, a brake, a meter, a sensor mounted in the front part, or the like, or any combination thereof.
  • the first controller may generate an instruction based on the processed signal.
  • the instruction may be used to cause the second controller to control one or more components of the vehicle.
  • the instruction may be generated based on the communication signal.
  • the first controller may obtain a speed of the vehicle and/or a pressure of a seat based on the processed signal. The first controller may determine whether the speed is greater than a speed threshold. In response to a determination that the speed of the vehicle is not greater than the speed threshold, the first controller may further determine whether the pressure is greater than a pressure threshold. In response to a determination that the pressure is not greater than the pressure threshold, the first controller may generate an instruction for turning off the motor or limiting the speed of the vehicle. In some embodiments, the first controller may generate the instruction based on a user operation and/or the processed signal. For example, the user may input an activation signal for activating the vehicle. The first controller may generate the instruction for turning on the taillight, activating the motor, unlocking the lock, or the like, or any combination thereof.
  • the first controller may transmit the instruction to the second controller.
  • the first controller may transmit one instruction to the second controller.
  • the first controller may transmit an instruction for locking the lock of the vehicle to the second controller.
  • the first controller may transmit a plurality of instructions to the second controller.
  • the first controller may transmit a first instruction for locking the lock, a second instruction for charging the power source, or a third instruction for turning off the motor, or the like, or any combination thereof.
  • the first controller may transmit the instruction to the second controller via the signal connection between the first controller and the second controller.
  • the first controller may transmit the instruction to a server (e.g., the server 170) directly or via a network.
  • the second controller may receive the instruction from the server directly or via a network.
  • the second controller may control a first component of the vehicle operably coupled to the second controller based on the instruction.
  • the first component of the vehicle may include components mounted in the rear part of the vehicle, and operably coupled to the second controller.
  • the first component of the vehicle may include the motor, the power source, the taillight, the lock, or the like, or any combination thereof.
  • the second controller may process the instruction.
  • the processing of the instruction may include analyzing, denoising, smoothing, filtering, extracting, converting, demodulating, separating, or the like, or any combination thereof.
  • the second controller may demodulate the instruction.
  • the second controller may separate a combined instruction into two or more instructions.
  • the second controller may transmit the instruction to the first component of the vehicle to perform corresponding operation (s) .
  • the second controller may transmit a lock instruction to the lock of the vehicle to lock the lock.
  • the second controller may transmit a charge instruction to the power source to cause the power source to be charged.
  • the second controller may transmit a lighting instruction to the taillight to turn on the taillight.
  • the senor mounted in the rear part of the vehicle may detect a controlling result of the second controller, and feedback the information to the second controller.
  • the second controller may transmit the feedback information to the server or the first controller.
  • the first controller and/or the server may adjust the previous instruction or generate a new instruction and transmit the new instruction to the second controller to control the first component of the vehicle.
  • one or more operations may be omitted and/or one or more additional operations may be added.
  • one or more storing operations may be added elsewhere in the process 900 to store the generated signal and/or instruction.
  • the operations 930 and 940 may be integrated into one operation to process the signal and generate the instruction.
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service

Abstract

Systems and methods for vehicle control are provided. The methods include: generating a signal associated with the vehicle (1) by a second controller (230) of the vehicle (1); transmitting the signal to a first controller (220) of the vehicle (1) by the second controller (230); processing the signal by the first controller (220); generating an instruction based on the processed signal by the first controller (220); transmitting the instruction to the second controller (230) by the first controller (220); controlling a first component of the vehicle (1) operably coupled to the second controller (230) by the second controller (230) based on the instruction.

Description

SYSTEMS AND METHODS FOR VEHICLE CONTROL
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application No. 201811654205.6, filed on December 29, 2018, the contents of which are incorporated herein by reference.
TECHNICAL FIELD
This disclosure generally relates to control technology, and more particularly, relates to systems and methods for vehicle control.
BACKGROUND
Vehicles (e.g., an electric bicycle, a sharing bicycle, etc. ) have been widely used nowadays. A vehicle may include one or more components such as a light, a sensor, a controller, a motor, an electronic lock, or the like. Some of the components of the vehicle (e.g., an electric control unit (ECU) , a motor controller (MC) , etc. ) may be coupled to other components of the vehicle to communicate information and/or signal (e.g., a communication signal and a power signal) . For example, a light may be connected to a power source to receive a power signal to power itself. The light may also be connected to a controller to receive an instruction used to control operations of the light. The connections between the components may need a plurality of wires in the vehicle, for example, wires for power transmission and/or communication connection. The arrangement of the plurality of wires in the vehicle may be complicated, and may cause interferences for signals transmitted by the plurality of wires. Therefore, it is desirable to provide methods and systems to simplify the wiring in the vehicle and reduce interferences between signals.
SUMMARY
According to one aspect of the present disclosure, a control assembly for a vehicle is provided. The control assembly may include a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of a first group of components of the vehicle. The control assembly may include a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of a second group of components of the vehicle. The second controller may be operably coupled to the first controller via a signal connection.
In some embodiments, the first controller may include an electric control unit (ECU) .
In some embodiments, the front part of the vehicle may include a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
In some embodiments, the front part of the vehicle may include at least one of a basket assembly, a steering column, a handlebar assembly, or a front frame of the vehicle.
In some embodiments, the first group of components of the vehicle may include at least one of a handlebar, a headlight, a horn, a brake, a meter, or a sensor mounted in the front part.
In some embodiments, the first controller may be mounted in a cavity of the basket assembly.
In some embodiments, the basket assembly may include a basket and a housing. The housing may include a fixing frame configured to fix the basket assembly to the vehicle, and a connection plate configured to fix the housing to the basket. The cavity may be formed between the fixing frame and the connection plate.
In some embodiments, the first controller may be mounted on the fixing frame.
In some embodiments, the basket assembly may include a basket and a baseplate. The cavity may be formed in the basket. The basket may include at least one opening in communication with the cavity. The baseplate may be configured to shield the opening.
In some embodiments, the first controller may be mounted on the baseplate.
In some embodiments, the second controller may include a motor controller.
In some embodiments, the rear part of the vehicle may include a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
In some embodiments, the rear part of the vehicle may include at least one of a component mounted under a seat of the vehicle, or a rear frame of the vehicle.
In some embodiments, the second group of components of the vehicle may include at least one of a motor, a power source, a sensor mounted in the rear part, a taillight, or a lock.
In some embodiments, the signal connection between the first controller and the second controller may include a wired connection or a wireless connection.
In some embodiments, at least one of the first controller or the second controller may be operably coupled to a network.
In some embodiments, the vehicle may be an electric bicycle.
According to another aspect of the present disclosure, a vehicle is provided. The vehicle may include a first group of components, a second group of components, a control assembly configured to control the vehicle. The control assembly may include a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of the first group of components. The control assembly may include a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of the second group of components. The second controller may be operably coupled to the first controller via a signal connection.
In some embodiments, the vehicle may further include a pedal shaft.
In some embodiments, the first controller may include an electric control unit (ECU) .
In some embodiments, the second controller may include a motor controller.
In some embodiments, the front part of the vehicle may include a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
In some embodiments, the rear part of the vehicle may include a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
According to yet another aspect of the present disclosure, a method for controlling a vehicle is provided. The method may include generating a signal associated with the vehicle by a second controller of the vehicle. The method may include transmitting the signal to a first controller of the vehicle by the second controller. The method may include processing the signal by the first controller. The method may include generating an instruction by the first controller based on the processed signal. The method may include transmitting the instruction to the second controller by the first controller. The method may further include controlling a first component of the vehicle operably coupled to the second controller by the second controller based on the instruction.
In some embodiments, the signal may include a communication signal and a power signal.
In some embodiments, the generating a signal associated with the vehicle may include: obtaining the communication signal by the second controller from a second component of the vehicle operably coupled to the second controller; obtaining the power signal by the second controller from a third component of the vehicle operably coupled to the second controller; generating the signal by the second controller by combining the communication signal and the power signal.
In some embodiments, the processing the signal may include separating the signal into the communication signal and the power signal by the first controller.
In some embodiments, the generating an instruction based on the processed  signal may include generating the instruction by the first controller based on the communication signal.
In some embodiments, the method may further include providing a fourth component of the vehicle operably coupled to the first controller with power by the first controller by transmitting the power signal to the fourth component.
In some embodiments, the first component of the vehicle may include at least one of a motor, a power source, a taillight, or a lock.
In some embodiments, the second component of the vehicle may include at least one of a sensor mounted in a rear part of the vehicle, a motor, a power source, a taillight, or a lock.
In some embodiments, the third component of the vehicle may include a power source.
In some embodiments, the fourth component of the vehicle may include at least one of a headlight, a horn, a brake, a meter, or a sensor mounted in a front part of the vehicle.
According to yet another aspect of the present disclosure, a system for vehicle control is provided. The system may include at least one storage device including one or more sets of instructions and at least one processor in communication with the at least one storage device. When executing the one or more sets of instructions, the at least one processor may be configured to cause the system to generate a signal associated with the vehicle by a second controller of the vehicle. The system may transmit the signal to a first controller of the vehicle by the second controller. The system may process the signal by the first controller. The system may generate an instruction by the first controller based on the processed signal. The system may transmit the instruction to the second controller by the first controller. The system may further control a first component of the vehicle operably coupled to the second controller by the second controller based on the instruction.
Additional features will be set forth in part in the description which follows,  and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. The drawings are not to scale. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating exemplary modules of a vehicle according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating an exemplary mechanical configuration that may be included or used in a vehicle according to some embodiments of the present disclosure;
FIGs. 3A-3E are schematic diagrams illustrating an exemplary basket assembly according to some embodiments of the present disclosure;
FIGs. 4A-4D are schematic diagrams illustrating another exemplary basket assembly according to some embodiments of the present disclosure;
FIG. 5 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure;
FIG. 6 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure;
FIG. 7 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure;
FIG. 8 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure; and
FIG. 9 is a flowchart illustrating an exemplary process for controlling a component of a vehicle according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The following description is presented to enable any person skilled in the art to make and use the present disclosure, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this disclosure, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
These and other features, and characteristics of the present disclosure, as well as the methods of operations and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more  apparent upon consideration of the following description with reference to the accompanying drawings, all of which form part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
The flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It is to be expressly understood, the operations of the flowcharts may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
Moreover, while the systems and methods disclosed in the present disclosure are described primarily regarding vehicle control, it should also be understood that this is only one exemplary embodiment. The systems and methods of the present disclosure may be applied to any other kind of vehicle control. For example, the systems and methods of the present disclosure may be applied to transportation systems of different environments including land (e.g. roads or off-road) , water (e.g. river, lake, or ocean) , air, aerospace, or the like, or any combination thereof. The transportation systems may provide transportation services for users using various vehicles. The vehicles of the transportation service may include a taxi, a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof. The system or method of the present disclosure may be applied to a taxi-hailing service, a chauffeur service, a delivery service, a carpooling service, a bus service, a take-out service, a driver hiring service, a shuttle service, a travel service, or the like, or any combination thereof.
It will be understood that, although the terms “first, ” “second, ” “third, ” etc.,  may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments of the present invention.
The term “user” in the present disclosure is used to refer to an individual, an entity, or a tool that may request a service, order a service, provide a service, or facilitate the providing of the service. In the present disclosure, the terms “user” and “user terminal” may be used interchangeably.
Spatial and functional relationships between elements are described using various terms, including "connected, " "attached, " and "mounted. " Unless explicitly described as being "direct, " when a relationship between first and second elements is described in the present disclosure, that relationship includes a direct relationship where no other intervening elements are present between the first and second elements, and also an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. In contrast, when an element is referred to as being "directly" connected, attached, or positioned to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between, " versus "directly between, " "adjacent, " versus "directly adjacent, " etc. ) .
It should also be understood that terms such as “top, ” “bottom, ” “upper, ” “lower, ” “vertical, ” “lateral, ” “above, ” “below, ” “upward (s) , ” “downward (s) , ” “left-hand side, ” “right-hand side, ” “horizontal, ” and other such spatial reference terms are used in a relative sense to describe the positions or orientations of certain surfaces/parts/components of the vehicle with respect to other such features of the vehicle when the vehicle is in a normal operating position and may change if the position or orientation of the vehicle changes.
An aspect of the present disclosure is directed to systems and methods for vehicle control. The vehicle may include a first group of components, a second group of components, and a control assembly. The control assembly may include a first controller and a second controller. The first controller may be mounted on a front part of the vehicle and configured to communicate with at least one component of the first group of components. The second controller may be mounted on a rear part of the vehicle and configured to communicate with at least one component of the second group of components. The second controller may be operably coupled to the first controller via a signal connection. The second controller of the vehicle may generate a signal associated with the vehicle, and transmit the signal to the first controller. The first controller may receive and process the signal transmitted by the second controller. The first controller may generate an instruction and transmit the instruction to the second controller. Based on the instruction, the second controller may control one or more components of the vehicle.
According to the systems and methods of the present disclosure, a controller of a vehicle may be separated into a first controller and a second controller. Each of the first controller and the second controller may be connected to and control in-vehicle devices adjacent to the first controller and the second controller, respectively, thereby simplifying the wiring (or cabling) in the vehicle and ensure stable transmission of signals. According to the systems and methods of the present disclosure, the first controller and the second controller may be connected via one wire (or cable) , and the communication between the first controller and the second controller may be implemented based on the wire. Communication signals and power signals can be integrated before being transmitted, which can further simplify the wiring in the vehicle. According to the systems and methods of the present disclosure, the first controller (e.g., the ECU) may be connected to the network for signal transmission. The first controller and the second controller may be separately set and placed at different parts of the vehicle, which can improve the  stability of the signal transmission and reduce signal interferences caused by communications between different in-vehicle devices. It should be noted that different embodiments may have different beneficial effects. The beneficial effects of different embodiments may be any combination of one or more of the beneficial effects mentioned above. In some embodiments, any other beneficial effect not mentioned in the present disclosure may also be obtained according to the systems and methods of the present disclosure.
FIG. 1 is a schematic diagram illustrating exemplary modules of a vehicle according to some embodiments of the present disclosure. In some embodiments, the vehicle 100 may be applied for personal travel, a shared transportation service, a rental service, a car-hailing service, an express service, a takeaway service, etc. In some embodiments, the vehicle 100 may include a mechanical configuration 110, a control module 120, a driving module 130, a detection module 140, a transmission module 150, and/or an energy module 160.
In some embodiments, the mechanical configuration 110 may include one or more components of the vehicle 100, such as a vehicle body, a frame, a wheel, a seat, a lock, a lighting system, a horn, a meter, or the like, or any combination thereof. In some embodiments, the vehicle 100 may include an electric car, an electric bicycle, an electric motorcycle, a balance car, an electric skateboard, an electric tricycle, a rover, a driverless vehicle, or the like. In some embodiments, the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 may be disposed on the mechanical configuration 110. In some embodiments, the server 170 may include a local server disposed on the mechanical configuration 110. In some embodiments, the server 170 may communicate with and/or be operably coupled to the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 via a wireless or a wired network. In some embodiments, the server 170 may be disposed away from the mechanical  configuration 110 to remotely communicate with and/or be coupled to the control module 120, the driving module 130, the detection module 140, the transmission module 150, and/or the energy module 160 via a wireless or a wired network.
In some embodiments, the control module 120 may be configured to control other modules of the vehicle 100 to implement functions of the vehicle 100. In some embodiments, the control module 120 may implement a centralized control or a distributed control of the modules of the vehicle 100. In some embodiments, the control module 120 may control the modules of the vehicle 100 through a wired control or a wireless control. In some embodiments, the control module 120 may function as one or more processors to execute one or more instructions. In some embodiments, the control module 120 may receive data and/or information sent by the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and/or the server 170. In some embodiments, the control module 120 may send one or more instructions to the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and/or the server 170. For example, the control module 120 may obtain data and/or information collected by the detection module 140, and/or process the obtained data and/or information. As another example, the control module 120 may control the driving module 130 to start or shut down an actuating device of the 100. As a further example, the control module 120 may control the energy module 160 to perform charging or discharging. In some embodiments, the control module 120 may receive state information of the vehicle 100 and/or a signal indicating operations of a user outputted by the detection module 140. The state information may include speed information, positioning information, electrical quantity of power supply, opening or closing state information of the lock, opening or closing state information of the lighting system, state information of the brake, state information of the meter, or the like, or any combination thereof. The signal indicating operations of the user may include pressure data received by a certain component of the vehicle 100, a  user-assisted operation, or the like, or any combination thereof. In some embodiments, the control module 120 may communicate with the transmission module 150, so that the control module 120 can receive information from a user terminal, an external network, or a remote server, and/or send information to the user terminal, the external network, or the remote server. For example, the control module 120 may communicate with the transmission module 150 to implement a human-computer interaction. Specifically, the control module 120 may obtain the identity authentication or identification information of the user, receive user instructions, or provide feedback information to the user, or the like. In some embodiments, the control module 120 may include one or more sub-controllers (e.g., a single core processing device or a multicores processing device) . For example, the control module 120 may include an electronic control unit (ECU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
In some embodiments, the driving module 130 may be configured to drive the vehicle 100 to move. In some embodiments, the driving module 130 may include an actuating device and/or a drive controller. The actuating device may provide driving forces for the vehicle 100. The driving forces may make the vehicle 100 move. In some embodiments, the actuating device may include one or more driving force sources. Exemplary driving force sources may include a fuel driving force source, an electric driving force source, a manual driving force source, or the like, or any combination thereof. In some embodiments, the driving force source may include a motor driven by electric energy. In some embodiments, the motor may include a direct current (DC) motor, an alternating current (AC) induction motor, a permanent magnet motor, a switched reluctance motor, or the like, or any  combination thereof. In some embodiments, the driving module 130 (e.g., the actuating device) may include one or more motors. In some embodiments, the drive controller may be configured to control the actuating device. For example, the drive controller may control the opening and/or closing state of the motor. As another example, the drive controller may control the output power of the motor. In some embodiments, the drive controller may include one or more sub-controllers (e.g., a single core processing device or a multi-core processing device) . For example, the drive controller may include a central processor (CPU) , an application-specific integrated circuit (ASIC) , a dedicated instruction processor (ASIP) , a graphics processor (GPU) , a physical processor (PPU) , a digital signal processor (DSP) , and a field-programmable gate array (FPGA) , an editable logic circuit (PLD) , a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof. In some embodiments, the driving module 130 may communicate with other modules of the vehicle 100 via one or more signals. For example, the drive controller in the driving module 130 may communicate with and/or be coupled to the detection module 140 (e.g., receive speed information of the vehicle 100 outputted by the detection module 140, and thereby control the output power of the motor) . As another example, the driving module 130 may communicate with and/or be coupled to the server 170 (e.g., receive an instruction from the server 170, or send state information of the actuating device to the server 170) .
In some embodiments, the drive controller may control the actuating device to adjust a speed of the vehicle 100. In some embodiments, the actuating device may adjust the speed of the vehicle 100 by adjusting the driving forces provided for the vehicle 100. In some embodiments, if the actuating device includes a motor, the drive controller may also be referred to as a motor controller (MC) . In some embodiments, the drive controller may be referred to as a second controller. In some embodiments, the drive controller may communicate with and/or be coupled to  a first controller (e.g., the control module 120, or a sub-controller of the control module 120) via a signal connection. For example, the second controller may transmit the speed information of the vehicle 100 to the first controller, and/or receive an instruction from the first controller to control the actuating device. More descriptions regarding the first controller and the second controller may be found elsewhere in the present disclosure (e.g., FIGs. 5, 6 and 9, and relevant descriptions thereof) .
In some embodiments, the detection module 140 may be configured to collect and/or detect operational data and/or information of the vehicle 100, and/or transmit the operational data and/or information to the control module 120, the server 170, and/or the driving module 130. In some embodiments, the detection module 140 may include a detection unit and/or a positioning unit. In some embodiments, the detection unit may include one or more sensors. In some embodiments, the sensors may include a speed sensor, an acceleration sensor, a displacement sensor, a pedal force sensor, a torque sensor, a pressure sensor, a temperature sensor (e.g., for detecting a temperature of the power source) , or the like, or any combination thereof. In some embodiments, the detection unit may further include an electrical quantity detection unit, a lock detection unit, a communication detection unit, a fault detection unit, or the like, to detect the operation state of the vehicle 100. In some embodiments, the positioning unit may be configured to determine positioning information associated with the vehicle 100. For example, the positioning information may include current location information, driving route information, rental point information, nearby return point information, or the like, or any combination thereof. In some embodiments, the positioning unit may determine positioning information based on a global positioning system (GPS) , a global navigation satellite system (GLONASS) , a compass navigation system (COMPASS) , a Beidou navigation satellite system, a Galileo positioning system, a quasi-zenith satellite system (QZSS) , etc. In some embodiments, the positioning unit may transmit the  positioning information to the transmission module 150, the control module 120, the driving module 130, the energy module 160, and/or the server 170.
In some embodiments, the sensor (s) of the detection module 140 may be mounted on any position of the vehicle 100 (e.g., a seat, a wheel, a basket, a pedal, a frame, a lock, etc. ) . The sensor (s) of the detection module 140 may be configured to detect parameter (s) associated with the vehicle 100, and generate corresponding electrical signal (s) indicative of the parameter (s) . For example, the pressure sensor may be configured to detect pressure load on the vehicle 100, and generate electrical signal (s) indicative of the pressure load. Specifically, a pressure sensor mounted on the basket may detect pressure load in the basket (e.g., a weight of objects placed in the basket) , and generate electrical signals indicative of the pressure load. As another example, a speed sensor may be configured to detect the speed of the vehicle 100, and generate electrical signals indicative of the speed. As a further example, a temperature sensor operably coupled to the battery may detect a temperature of the battery, and generate electrical signals indicative of the battery. In some embodiments, the sensor (s) may transmit electrical signal (s) to the control module 120, and the control module 120 may process the electrical signal (s) and determine corresponding parameter (s) .
In some embodiments, the transmission module 150 may include a network unit and/or an interaction unit for exchanging data and/or information. One or more components (e.g., the control module 120, the driving module 130, the detection module 140, and/or the energy module 160) of the vehicle 100 may perform an information interaction with one or more external objects via the transmission module 150. In some embodiments, the transmission module 150 may communicate with a user terminal, an external network, a remote server, or the like, or any combination thereof. In some embodiments, the transmission module 150 can be used for data and/or information exchange in a human-computer interaction process. For example, the transmission module 150 can be used in a vehicle service to obtain  user information (e.g., for authentication and/or identification of the user) , receive user instructions (e.g., opening a lock, returning the vehicle 100) , provide feedback information (e.g., a current speed, a driving route of the vehicle 100, etc. ) to the user, or the like, or any combination thereof. In some embodiments, the transmission module 150 may include any type of wired or wireless network. For example, the transmission module 150 may include a cable network, a wired network, a fiber-optic network, a telecommunications network, an internal network, an internet network, an area network (LAN) , a wide area network (WAN) , a wireless area network (WLAN) , a metro area network (MAN) , a public switched telephone network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the transmission module 150 may include one or more network access points. For example, the transmission module 150 may include wired or wireless network access points, such as a base station and/or an internet network exchange point. In some embodiments, the transmission module 150 may further include an input/output device such as a display, a microphone, an audio device, or the like, or any combination thereof.
In some embodiments, the energy module 160 may be configured to provide energy to other modules of the vehicle 100. For example, the energy module 160 may provide electric power to other modules of the vehicle 100. In some embodiments, the energy module 160 may provide an electric power source via an energy storage device, a power generation device, or the like, or any combination thereof. In some embodiments, the energy storage device may include one or more batteries. In some embodiments, the energy storage device may be charged by an external power source, or a power generation device. In some embodiments, the power generation device may include one or more electric generators. In some embodiments, exemplary electric generators may be implemented as one or more energy conversion devices like a human power generation device, a photovoltaic  power generation device, a heat conduction power generation device, a wind power generation device, a nuclear power generation device, etc. In some embodiments, the energy module 160 may detect states associated with the energy (e.g., the electrical quantity, the power source temperature, whether charging is required, whether the charging is completed, etc. ) via the detection module 140. In some embodiments, the energy module 160 may receive one or more instructions from the control module 120. In some embodiments, the energy module 160 may communicate with an external object through the transmission module 150. In some embodiments, the energy module 160 may directly communicate with and/or be coupled to the server 170, and/or provide energy to the server 170.
In some embodiments, the server 170 may be configured to process information and/or data associated with the vehicle 100. The server 170 may be an independent server or a server group. The server group may be centralized or distributed (e.g., the server 170 may be a distributed system) . In some embodiments, the server 110 may be local or remote. For example, the server 170 may access information and/or data stored in the control module 120, the driving module 130, the detection module 140, and the energy module 160 via the transmission module 150. In some embodiments, the server 170 may be directly coupled to the control module 120, the driving module 130, the detection module 140, and/or the energy module 160 to access the information and/or data stored therein. In some embodiments, the server 170 may be implemented on a cloud platform. For example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an internal cloud, or the like, or any combination thereof. In some embodiments, the server 170 may be a local server disposed on the vehicle 100, and may directly communicate with and/or be connected to the control module 120, the driving module 130, the detection module 140, and/or the energy module 160 to transmit information. The server 170 may communicate with the user via the transmission module 150 to  transmit information. In some embodiments, the server 170 may include a processing device and/or a storage device. The processing device may be configured to process the data and/or information associated with the vehicle 100 to perform functions described in the present disclosure. For example, the processing device may obtain historical charging records of the power source (e.g., the battery) and/or the recharge mileage from the vehicle 100, and/or manage the power source based on the obtained information. In some embodiments, the storage device may store data and/or instructions, such as user registration information, historical vehicle records, vehicle state information, etc. In some embodiments, the storage device may store the information and/or instructions executed and/or used by the server 170 to perform exemplary methods disclosed in the present disclosure. In some embodiments, the storage device may include a mass storage device, a removable memory, a volatile read/write memory (e.g., a random access memory (RAM) ) , a read-only memory (ROM) , or the like, or any combination thereof.
In some embodiments, the server 170 may be operably coupled to a storage device of the vehicle 100. In some embodiments, the server 170 may control or manage one or more components of the vehicle 100 (e.g., the energy module 160, the detection module 140) by sending instructions to the control module 120 and/or the driving module 130.
It should be noted that the above description of the vehicle 100 is provided for the purposes of illustration and not intended to limit the scope of the present disclosure. It will be appreciated that those skilled in the art, after having understood the principles of the present disclosure, may make various modifications and changes in form and detail to the implementation of the vehicle 100 without departing from the principles. However, such changes and modifications do not depart from the scope of the present disclosure. Specifically, each module of the modules may be distributed on different electronic components, one or more modules may be integrated on a same electronic component, or a single module  may be disposed on one or more electronic components. For example, the driving module 130 and the control module 120 may be implemented on a separate chip, respectively, the detection module 140 may be separated into a detecting unit and a positioning unit, the transmission module 150 may be separated into a network unit and an interaction unit, or the detection module 140 and the control module 120 may be implemented on a same chip. In some embodiments, each of the control module 120, the driving module 130, the detection module 140, the transmission module 150, the energy module 160, and the server 170 may have a storage unit, or multiple modules may share a single storage unit. The data in the storage device may be accessed by the modules directly and/or indirectly (e.g., via the transmission module 150) .
FIG. 2 is a schematic diagram illustrating an exemplary mechanical configuration that may be included or used in a vehicle according to some embodiments of the present disclosure.
In some embodiments, the vehicle 200 may include a taxi, a private car, a hitch, a bus, a train, a bullet train, a high speed rail, a subway, a vessel, an aircraft, a spaceship, a hot-air balloon, an autonomous vehicle, a bicycle, a tricycle, a motorcycle, or the like, or any combination thereof. For illustration purposes, an electric bicycle is described as an example.
As shown in FIG. 2, the vehicle 200 may include a vehicle body 210. The vehicle body 210 may include a main frame 211, a front wheel assembly 212 connected to the main frame 211, a rear wheel assembly 213 connected to the main frame 211, a handlebar assembly 280, and/or a steering column 282. The main frame 211 may include a front frame 2111 coupled to the front wheel assembly 212, and a rear frame 2112 coupled to the rear wheel assembly 213. Specifically, the front frame 2111 may have a bifurcated structure. The front wheel assembly 212 may include a front wheel and a wheel shaft. Two ends of the wheel shaft of the front wheel assembly 212 may be fixed to two lower ends of the bifurcated structure,  respectively. The front wheel may rotate between the bifurcated structure. An upper end of the front frame 2111 may be fixed to one end (e.g., a lower end) of the steering column 282. Another end (e.g., an upper end) of the steering column 282 may be fixed to the handlebar assembly 280. The handlebar assembly 280 may include a left handlebar 283 and/or a right handlebar 281 for a user to hold. The handlebar assembly 280 may be configured to control a travel direction of the vehicle 200. Specifically, the user may control a rotation of the steering column 282 by using the handlebar assembly 280. The rotation of the steering column 282 may guide a deflection of the front wheel assembly 212, thereby controlling the travel direction of the vehicle 200. In some embodiments, the front frame 2111 and the steering column 282 may be configured as an integral piece, and there may be no obvious boundary therebetween. In some embodiments, the steering column 282 and the handlebar assembly 280 may be configured as an integral piece. In some embodiments, the vehicle body 210 may be equipped with a control module 220, a driving module 230, and/or an energy module 240. In some embodiments, the control module 220 and the driving module 230 may be disposed inside the main frame 211. In some embodiments, the vehicle body 210 may be equipped with a transmission module 250. In some embodiments, the transmission module 250 may be integrated into the control module 220 or the driving module 230. In some embodiments, the vehicle 200 may also include a detection module. The detection module may include one or more sensors 260. The one or more sensors 260 may be disposed on the wheel (s) , the energy module 240, a pedal 270, the right handlebar 281, the left handlebar 283, or another component of the vehicle 200 which needs to be detected. In some embodiments, the body 210 may include the pedal 270, a lock (not shown) , the handlebar assembly 280, a handlebar (e.g., the right handlebar 281, the left handlebar 283) , the steering column 282, a headlight (not shown) , a taillight 285, a horn (not shown) , a brake 290, a seat 293, a damper 296, etc. In some embodiments, the vehicle 200 may further include a basket  assembly (e.g., the basket assembly 300 shown in FIGs. 3A-3E, the basket assembly 400 shown in FIGs. 4A-4D) .
The basket assembly 300 (or 400) may be mounted on the vehicle body 210. For example, the basket assembly 300 (or 400) may be mounted on the handlebar assembly 280. In some embodiments, the basket assembly 300 (or 400) may be mounted in front of the handlebar assembly 280. In some embodiments, the basket assembly 300 (or 400) may be fixedly connected to the handlebar assembly 280, the steering column 282, or the front frame 2111. In some embodiments, the basket assembly may be fixedly connected to the steering column 282 of the handlebar assembly 280. In this case, the basket assembly may rotate with the rotation of the handlebar (s) . In some embodiments, the basket assembly 300 may be fixed to the main frame 211 (e.g., a handlebar bracket of the main frame 211) . Specifically, the handlebar bracket may be part of the main frame 211, and the handlebar bracket may be sheathed on the handlebar assembly 280 or the steering column 282, so that the handlebar assembly 280 or the steering column 282 may rotate relative to the handlebar bracket. In this case, the basket assembly may not rotate with the rotation of the handlebar (s) .
In some embodiments, the vehicle body 210 may be divided into a front part and a rear part based on a position of a pedal shaft (not shown) (i.e., a shaft of the pedal 270) . In some embodiments, the front part of the vehicle 200 may include a first plurality of portions of the vehicle 200 in front of the position of the pedal shaft. In some embodiments, the front part of the vehicle 200 may include at least one of the basket assembly 300 (or 400) , the steering column 282, the handlebar assembly 280, and the front frame 2111. In some embodiments, the rear part of the vehicle 200 may include a second plurality of portions of the vehicle 200 behind the position of the pedal shaft. In some embodiments, the rear part of the vehicle 200 may include at least one of a component mounted under the seat 293, and the rear frame 2112.
In some embodiments, the vehicle 200 may include a first controller and/or a second controller. In some embodiments, the control module 220 may include the first controller, and the driving module 30 may include the second controller. In some embodiments, the first controller and the second controller may be separately disposed at different positions of the vehicle body 210. In some embodiments, the first controller and the second controller may be independent of each other, and independently control different components (e.g., different in-vehicle devices) of the vehicle 200. For example, the first controller may directly control a lock, a headlight, a taillight, or the like, or any combination thereof. As another example, the second controller may independently control the motor. That is, the motor may be controlled merely based on instructions of the second controller (not instructions of the first controller) . In some embodiments, the first controller and the second controller may be powered independently. The first controller and the second controller may be connected to the power source, respectively, and may be powered by the power source, respectively. In some embodiments, the first controller may include an electronic control unit (ECU) . In some embodiments, the second controller may include a motor controller (MC) .
In some embodiments, the first controller and/or the second controller may include a processor, a storage, an input/output (I/O) interface, a communication port, a converter, or the like, or any combination thereof.
The processor may be configured to execute a set of instructions (or program codes) to implement one or more functions of the vehicle 200 disclosed in the present disclosure. The instructions may include routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions disclosed in the present disclosure. For example, the processor may process data obtained from any component of the vehicle 200. In some embodiments, the processor may include a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits  (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
The storage may store data/information obtained from any component of the vehicle 200. In some embodiments, the storage may include a mass storage, a removable storage, a volatile read-and-write storage, a read only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random-access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
The I/O interface may be configured to input or output signals, data or information. In some embodiments, the I/O interface may enable a user to communicate with the vehicle 200. In some embodiments, the I/O interface may include an input device and an output device. Exemplary input device may include a keyboard, a mouse, a touch screen, a microphone, or the like, or any combination thereof. Exemplary output device may include a display device, a loudspeaker, a printer, a projector, or the like, or any combination thereof. Exemplary display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based  display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , or the like, or any combination thereof. The communication port may connect to a network to facilitate data communication. The connection may be a wired connection, a wireless connection, or a combination of both. In some embodiments, the communication port may be a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port may be a specially designed communication port.
The converter may be configured to convert the obtained signal. In some embodiments, the obtained signal may include an analog signal, a digital signal, or the like, or any combination thereof. As used herein, the analog signal may refer to a continuous signal that may keep changes with a time period. The digital signal may refer to a discrete wave that may carry information in a binary form. For example, the analog signal may include a voice, a video, a temperature, a light, a power signal, or the like, or any combination thereof. In some embodiments, the convert may include an analog-to-digital (ADC) , a digital-to-analog (DAC) , or the like, or any combination thereof. The ADC may convert an analog signal to a digital signal. The DAC converter may convert a digital signal to an analog signal. For example, the converter may obtain an analog signal inputted by the user, and convert the analog signal into a digital signal to be transmitted to other components to guide the operations of the other components of the vehicle 200. As another example, the converter may obtain a digital signal from other components of the vehicle 200, and convert the digital signal into analog signal for further use.
The first controller may be communicated with and/or connected to a first group of components of the vehicle 200, and configured to control one or more of the first group of components of the vehicle 200. For example, the first controller may obtain information and/or signal (e.g., a user operation, state information of the first group of components, etc. ) associated with the vehicle 200 from the first group of components, and transmit control instruction to the first group of components to  control the first group of components. The first group of components of the vehicle 200 may include a handlebar, a headlight, a horn, a brake, a meter, etc.
The second controller may be communicated with and/or connected to a second group of components of the vehicle 200. The second controller may be configured to control one or more of the second group of components of the vehicle 200. The second group of components may include a motor, a power source, a sensor, a taillight, a lock, or the like, or any combination thereof.
In some embodiments, the first controller and/or the second controller may be mounted on the vehicle body 210 (e.g., the main frame 211, the front part of the vehicle 200, the rear part of the vehicle 200, etc. ) . In some embodiments, the first controller and the second controller may be mounted on different positions of the vehicle 200. For example, the first controller may be mounted in the front part of the vehicle 200, while the second controller may be mounted in the rear part of the vehicle 200. In some embodiments, the first controller may communicate with and/or connect to the second controller via a signal connection. The signal connection may include a wired connection, a wireless connection, or the like, or any combination thereof. The wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof. The wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof. For example, the first controller may obtain state information and/or signal (s) associated with one or more components of the vehicle 200 (e.g., from the second controller) . In some embodiments, the first controller may generate, based on the information and/or signal, one or more control instructions. In some embodiments, the first controller may control component (s) of the first group of components based on the control instruction (s) . In some embodiments, the first controller may transmit the control instruction (s) to the second controller to control the component (s) of the second group of components.
In some embodiments, the first controller and the second controller may be of a same type. For example, the first controller and the second controller may be micro-controllers. In some embodiments, the first controller and the second controller may be of different types. For example, the first controller may be an ECU, while the second controller may be an MC.
In some embodiments, the first controller may be mounted closer to the front part of the vehicle (e.g., the vehicle 100, the vehicle 200) than the second controller. In some embodiments, the second controller may be mounted near the motor. In some embodiments, the second controller may be mounted in the rear part of the vehicle. The first controller may be mounted in the front part of the vehicle. In some embodiments, the first controller may be operably coupled to and/or communicate with the first group of components of the vehicle (e.g., the components (e.g., in-vehicle device (s) ) close to the first controller) . The second controller may be operably coupled to and/or communicate with the second group of components of the vehicle (e.g., the components (e.g., in-vehicle device (s) ) close to the second controller) . For example, the first controller may have a signal connection with the in-vehicle device (s) mounted in the front part of the vehicle, such as the transmission module 150, the handlebar (s) , the headlight, the horn, the brake 290, the meter, a sensor mounted in the front part, or the like, or any combination thereof. In some embodiments, the second controller may have a signal connection with other in-vehicle device (s) mounted in the rear part of the vehicle, such as the motor, the power source, the taillight, the lock, and a sensor mounted in the rear part, or the like, or any combination thereof. In some embodiments, the first controller and the second controller may be equipped with a safety mechanism for water proofing and/or theft prevention. More descriptions of the safety mechanism may be found in Chinese Patent Application No. 201822256768.1 entitled “A BASEKET ASSEMBLY AND A VEHICLE. ” filed on December 29, 2018, the contents of which are hereby incorporated by reference.
In some embodiments, the first controller may be mounted anywhere in the front part of the vehicle. In some embodiments, the front frame 2111, the steering column 282, or the handlebar assembly 280 may have a hollow tubular structure in which a cavity may be disposed. In some embodiments, the first controller may be placed in the cavity. In some embodiments, a housing may be disposed external to the front frame 2111, the steering column 282, or the handlebar assembly 280, and the first controller may be placed in a cavity inside the housing. The housing may include a cubic container, a rectangular container, a spherical container, a trapezoid container, a container with an irregular shape, or the like. The housing may be made of materials including for example, metal, plastic, glass, alloy, ceramic, rubber, or the like, or any combination thereof. The housing may be fixed to the front frame 2111, the steering column 282, or the handlebar assembly 280 by bolting, welding, snapping, plugging, splicing, gluing, or the like, or any combination thereof. In some embodiments, the first controller may be set in the basket assembly (e.g., the basket assembly 300, the basket assembly 400) .
In some embodiments, the second controller may be mounted anywhere in the rear part of the vehicle. For example, the second controller may be mounted below the seat 293, or on the rear frame 2112 of the rear part of the vehicle 200. In some embodiments, a cavity or housing may be set below the seat 293, and the second controller may be placed in the cavity or housing. In some embodiments, a seat tube (e.g., a structure connecting the seat 293 and the main frame 211) below the seat 293 may have a hollow tubular structure, and the second controller may be placed in the seat tube. In some embodiments, the rear frame 2112 may have a hollow tubular structure, and the second controller may be placed inside the rear frame 2112. In some embodiments, a housing may be disposed external to the seat tube or the rear frame 2112, and the second controller may be placed in a cavity of the housing. The housing may include a cubic container, a rectangular container, a spherical container, a trapezoid container, a container with an irregular shape, or  the like. The housing may be made of materials including for example, metal, plastic, glass, alloy, ceramic, rubber, or the like, or any combination thereof. The housing may be fixed to the seat tube or the rear frame 2112 by bolting, welding, snapping, plugging, splicing, gluing, or the like, or any combination thereof.
In the following descriptions, a basket assembly is taken as an example to illustrate the mounting position of the controller (e.g., the first controller, the second controller) according to some embodiments in the present disclosure. It should be noted that the following descriptions are merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
FIGs. 3A-3E are schematic diagrams illustrating an exemplary basket assembly according to some embodiments of the present disclosure. FIG. 3A is a schematic diagram illustrating an axonometric drawing of the basket assembly 300 according to some embodiments of the present disclosure. FIG. 3B is a schematic diagram illustrating a breakdown structure of the basket assembly 300 according to some embodiments of the present disclosure. FIG. 3C is a schematic diagram illustrating an exploded view of the basket assembly 300 according to some embodiments of the present disclosure. FIG. 3D is a schematic diagram illustrating an exemplary cavity according to some embodiments of the present disclosure. FIG. 3E is a schematic diagram illustrating a back structure of the basket assembly 300 according to some embodiments of the present disclosure. The basket assembly 300 is described in detail below with reference to FIGs. 3A-3E. It should be noted that the following descriptions are merely provided for illustration purposes according to some embodiments of the present disclosure, and not intended to limit the scope of the present disclosure.
In some embodiments, the basket assembly 300 may be fixedly connected to the handlebar assembly 280. In some embodiments, the basket assembly 300 may be connected to other components (e.g., a frame) of a vehicle. As shown in FIGs. 3A-3E, the basket assembly 300 may include a cavity 323. The cavity 323  may be configured to accommodate a first controller. The basket assembly 300 may include a basket body 310 (also referred to as a basket) and a housing 320. In some embodiments, the housing 320 may be fixedly connected to the basket body 310. The cavity 323 may be formed inside the housing 320.
In some embodiments, the housing 320 may be disposed on a side of the basket assembly 300 adjacent to the vehicle body 210. Because the housing 320 is relatively heavy, the disposition of the housing 320 may cause the basket assembly 300 more stable. The housing 320 may be used to connect the basket body 310 and the vehicle body 210. As shown in FIG. 3C, the housing 320 may include a fixing frame 321 and a connection plate 322. The fixing frame 321 may be fixedly connected to a certain component of the vehicle 200. For example, the fixing frame 321 may be fixedly connected to the vehicle body 210 (e.g., the handlebar assembly 280) . The connection plate 322 may be fixedly connected to the basket body 310. The cavity 323 may be formed between the fixing frame 321 and the connection plate 322. In some embodiments, the connection plate 322 may have a configuration adapted to a side wall of the basket body 310 facing the vehicle body 210, such that the connection plate 322 can better fit with and be fixed to the basket body 310. Specifically, the fixing frame 321 and the vehicle body 210 may be connected via a bolt connection, a gluing connection, a welding connection, a snapping connection, a riveting connection, or the like, or any combination thereof. The connection between the connection plate 322 and the basket body 310 may include, but is not limited to, a welding connection, a riveting connection, a bolt connection, a snapping connection, or the like, or any combination thereof. In some embodiments, the connection between the fixing frame 321 and the connection plate 322 may be detachable or non-detachable. The connection between the fixing frame 321 and the connection plate 322 may include, but is not limited to a bolt connection, a key connection, a pin connection, a welding connection, a riveting connection, or the like. In some embodiments, if the fixing frame 321 and the  connection plate 322 are connected in a detachable connection, a lock may be disposed between the fixing frame 321 and the connection plate 322 for theft prevention.
In some embodiments, the configuration of the connection plate 322 may improve a sealing performance of the housing 320, thereby preventing external objects (e.g., rain, dust, etc. ) from entering the cavity 323. Additionally or alternatively, the connection plate 322 may be omitted, and the basket body 310 may be directly connected to the fixing frame 321. In some embodiments, the basket body 310, the connection plate 322, and the fixing frame 321 may be fixedly connected via one or more bolts.
In some embodiments, as shown in FIGs. 3C and 3D, a first controller 325 may be mounted on the fixing frame 321. The first controller 325 may be mounted on the fixing frame 321 via a detachable connection or a non-detachable connection. The detachable connection may include a bolt connection, a snapping connection, or the like, or any combination thereof. The non-removable connection may include a riveting connection, a gluing connection, a welding connection, or the like, or any combination thereof.
As shown in FIG 3D, the first controller 325 may be mounted on the left side of the fixing frame 321 viewed from a direction indicated by the arrow A (e.g., viewed in front of the vehicle 200) .
In some embodiments, the second controller, one or more sensors, a horn, and/or one or more other in-vehicle devices may also be disposed in the cavity 323 of the housing 320 of the basket assembly 300.
As shown in FIG. 3E, the housing 320 may connect the basket body 310 and the handlebar assembly 280. A side surface of the housing 320 facing the handlebar assembly 280 may include a hole 324. The hole 324 may be configured to dissipate heat, or transmit sound, or the like, or any combination thereof. For example, the hole 324 may transmit sound of a horn mounted in the housing 320.
FIGs. 4A-4D are schematic diagrams illustrating another exemplary basket assembly according to some embodiments of the present disclosure. FIG. 4A is a schematic diagram illustrating an axonometric drawing of the basket assembly 400 according to some embodiments of the present disclosure. FIG. 4B is a schematic diagram illustrating an exemplary bottom structure of the basket assembly 400 according some embodiment of the present disclosure. FIG. 4C is a schematic diagram illustrating an exploded view of the basket assembly 400 according to some embodiments of the present disclosure. FIG. 4D is a schematic diagram illustrating an exemplary basket body according to some embodiments of the present disclosure. The structure of the basket assembly 400 may be described with reference to FIGs. 4A-4D according to some embodiments of the present disclosure. It should be noted that the following descriptions are intended to be presented by way of example only and are not limiting.
As shown in FIGs. 4A-4D, the basket assembly 400 may include a cavity 412. The cavity 412 may be configured to accommodate a first controller. Specifically, the basket assembly 400 may include a basket body 410 (also referred to as a basket) . In some embodiments, the cavity 412 may be formed in the basket body 410.
In some embodiments, the basket assembly 400 may include a baseplate 415. In some embodiments, the basket body 410 may have one or more openings (e.g., at a bottom of the basket body 410) . In some embodiments, at least one opening may be in communication with the cavity 412. The baseplate 415 may be used to shield the openings. Specifically, the baseplate 415 may be fixedly connected to the bottom of the basket body 410. The connection between the baseplate 415 and the basket body 410 may include a detachable connection or a non-detachable connection. For example, the connection between the baseplate 415 and the basket body 410 may include a bolt connection, a key connection, a pin connection, a welding connection, a riveting connection, a snapping connection, or  the like, or any combination thereof. If the connection between the baseplate 415 and the basket body 410 is a detachable connection, a lock may be disposed between the baseplate 415 and the basket body 410 for theft prevention. In some embodiments, the baseplate 415 and the basket body 410 may be connected by a specific bolt (e.g., a fixing bolt, a fixing screw, etc. ) to increase the difficulty of disassembly, thereby enhancing theft prevention capability.
In some embodiments, the first controller may be mounted on the baseplate 415, and the baseplate 415 may be connected to the basket body 410, so that the first controller can be mounted in the cavity 412. In some embodiments, the cavity 412 may be disposed on a side of the basket body 410 that is adjacent to or facing the vehicle body 210.
It should be noted that, in some embodiments, a second controller or various types of sensors, a horn, and/or one or more other in-vehicle devices may also be disposed in the cavity 412 of the basket assembly 400.
As shown in FIG. 4C, a first controller 421 may be mounted on the baseplate 415. The first controller 421 may be mounted on the baseplate 415 via a detachable connection or a non-detachable connection. The detachable connection may include a bolt connection, a snapping connection, or the like, or any combination thereof. The non-removable connection may include a riveting connection, a gluing connection, a welding connection, or the like, or any combination thereof. In some embodiments, a horn 417 may be mounted on the baseplate 415. In some embodiments, the first controller 421 and the horn 417 may be mounted on different sides of the baseplate 415 to balance weight, so that the basket assembly 400 can be more stable. The horn 417 may be configured to generate a sound (e.g., music, an alarm, a reminder, or the like, or any combination thereof) . In some embodiments, the basket body 410 may include one or more holes 424 (e.g., on side surface of the basket body 410 facing the vehicle body 210) . When the baseplate 415 is connected to the basket body 410, the horn 417 may  directly face the hole (s) 424. The hole (s) 424 may be configured to transmit the sound generated by the horn 417.
FIG. 5 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure. As shown in FIG. 5, the control assembly 500 of the vehicle (e.g., the vehicle 100, the vehicle 200) may include a first controller 551 and/or a second controller 552.
The control assembly 500 may be an exemplary embodiment of the vehicle as described elsewhere in this disclosure (e.g., the vehicles illustrated in FIGs. 1 and 2) . As shown in FIG. 5, the control assembly 500 may include the first controller 551 and the second controller 552 which are operably coupled to a first group of components 553 and a second group of components 554 of the vehicle, respectively.
The first controller 551 may have a signal connection with a first group of components 553, and/or may control one or more components of the first group of components 553. In some embodiments, the first controller 551 may have a signal connection with a network. The network may include a telecommunication network, an internal network, an internet network, a regional network (LAN) , a wide area network (WAN) , a wireless area network (WLAN) , a metropolitan area network (MAN) , public switched telephone network (PSTN) , a Bluetooth network, a mobile communication network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the first controller 551 may communicate with a remote server or a user terminal via the network. For example, in a vehicle rental service, the first controller 553 may obtain user information (e.g., for authentication and/or identification of the user) , receive user instructions (e.g., an instruction for opening a lock, an instruction for returning the vehicle) , and/or provide feedback information to the user (e.g., for notifying the user of a current speed or a driving route of the vehicle, etc. ) . As another example, the first controller 551 may send state information (e.g., location information, a rental  time, a rental location, locations on a route, an arrival time, an arrival location, a speed, a driving distance, opening or closing state of the lock, etc. ) , user information (e.g., account information, contact information, credit information, etc. ) to a server (e.g., the server 170) via the network. The first controller 551 may receive one or more instructions from the server via the network. In some embodiments, the first controller 551 may be mounted on a front part of the vehicle, thereby facilitating the connection between the first controller 551 and the network. In some embodiments, the first group of components 553 may include one or more in-vehicle device (s) mounted in the front part of the vehicle, or the first group of components 553 may be mounted in the front part of the vehicle. For example, the first group of components 553 may include a handlebar 5531, a headlight 5532, a horn 5533, a brake 5534, a meter 5535, a first sensor 5536, or the like, or any combination thereof. In some embodiments, the first group of components 553 may be mounted near (or adjacent to) the first controller 551. In some embodiments, the first controller 551 may include an ECU or a portion thereof. In some embodiments, the first sensor may include one or more sensors disposed at the front part of the vehicle. The first sensor 5536 may include a pressure sensor mounted on the handlebar 5531, a pressure sensor mounted in a basket (e.g., a pressure sensor detecting whether the object (s) in the basket is overweight) , a positioning sensor, a speed sensor, an acceleration sensor, or the like, or any combination thereof. In some embodiments, the signal connection between the first controller 551 and the first group of components 553 disposed near the first controller 551 may facilitate the control of the first group of components 553 (e.g., by the first controller 551) , and simplify the cabling of the vehicle. In some embodiments, the signal connection may refer that signal (s) can be transmitted between the first controller 551 and the first group of components 553. In some embodiments, the signal connection between the first controller 551 and the first group of components 553 may be implemented via a wired connection and/or a wireless connection.
In some embodiments, the first controller 551 may obtain a signal from one or more components of the first group of components 553 via a wired connection or a wireless connection. For example, the first sensor 5536 (e.g., a pressure sensor mounted on the handlebar 5531) may detect a pressure applied by a hand of the user (e.g., to slow down or stop the vehicle) . The first sensor 5536 may transmit the signal to the first controller 551 directly or via the network. In some embodiments, in response to the obtained signal, the first controller 551 may analyze state information of the vehicle (e.g., a current location, a target location, a state of the lock, or the like, or any combination thereof) . In some embodiments, in response to the obtained signal, the first controller 551 may generate an instruction to control the component (s) of the first group of components 553 and/or the component (s) of the second group of components 554. In some embodiments, the first controller 551 may be operably coupled to the second controller 552 via a signal connection. The signal connection may include a wired connection and/or a wireless connection. In some embodiments, the second controller 552 may transmit information associated with or detected by the second group of components 554 to the first controller 551. In some embodiments, the first controller 551 may generate an instruction to control the component (s) of the second group of components 554 and transmit the instruction to the second controller 552, so that the second controller can control the component (s) according to the instruction. For example, the first controller 551 may generate an instruction and transmit the instruction to the second controller 552 to control the motor 5541 of the second group of components 554 to slow down or stop the vehicle.
The second controller 552 may have a signal connection with the second group of components 554, and/or may control one or more components (e.g., in-vehicle device (s) ) of the second group of components 554. In some embodiments, the second group of components 554 may include a motor 5541. In some embodiments, the second controller 552 may be disposed near or adjacent to the  motor 5541. In some embodiments, the second controller 552 may include a motor controller (MC) . In some embodiments, the second controller 552 may be mounted on a rear part of the vehicle. In some embodiments, the second group of components 554 may include other in-vehicle devices that may be close to the motor 5541, such as a power source 5542, a second sensor 5543, a taillight, 5544, a lock 5545, or the like, or any combination thereof. In some embodiments, the second sensor 5543 may be disposed on the rear part of the vehicle. The second sensor 5543 may include a first temperature sensor configured to detect the temperature of the motor 5541, a second temperature sensor configured to detect the temperature of the power source 5542, a sensor configured to detect the electrical quantity, a monitor configured to detect a service life of the power source, a sensor configured to detect the lock state (e.g., whether the lock is unlocked) , a pedal pressure sensor, a displacement sensor, a speed sensor, an acceleration sensor, an angle sensor, or the like, or any combination thereof. In some embodiments, the second controller 552 may obtain information and/or signal (e.g., detected by the second sensor 5543) from the second sensor 5543. In some embodiments, the second controller 552 may convert an analog signal into a digital signal to improve a stability and an anti-interference ability of the signal (s) in signal transmission.
Merely by way of example, the second controller 552 may transmit the information detected by the second sensor 5543 to the first controller 551. The first controller 551 may generate an instruction based on the received information, and transmit the instruction to the second controller 552. The second controller 552 may control the second group of components 554 based on the instruction (e.g., to speed up the vehicle) . In some embodiments, the second controller 552 may control the motor 5541 to increase a rotation speed, the power source 5542 to provide more power, or the like, to increase the speed of the vehicle.
In some embodiments, the first controller 551 and the second controller 552 may be disposed at different positions of the vehicle. Although the first controller  551 and the second controller 552 are disposed at different positions, they may have a signal connection. In some embodiments, the first controller 551 may be mounted in front of the second controller 552 (or the first controller 551 may be mounted closer to the front part of the vehicle than the second controller 552) , thereby facilitating signal transmissions and avoiding signal interferences. In some embodiments, the first controller 551 may be mounted in a handlebar assembly (e.g., the handlebar assembly 280) or a basket assembly (e.g., the basket assembly 300, the basket assembly 400) . In some embodiments, the second controller 552 may be mounted under a seat (e.g., the seat 293) or behind the seat. In some embodiments, the first controller 551 and/or the second controller 552 may be sealed for water proofing and/or theft prevention.
In some embodiments, the second controller 552 may be connected to the server directly or via the network. For example, the second controller 552 may obtain a control instruction from the server via the network. In some embodiments, the second controller 552 may control the second group of components 554 based on the control instruction. Merely by way of example, the second controller 552 may obtain a control instruction for deceleration, the second controller 552 may control the power source 5542 to reduce energy output, and/or control the motor 5541 to reduce rotation speed to implement the deceleration.
In some embodiments, the first controller 551 may be used as a master controller, while the second controller 552 may be used as a slave controller. Specifically, the second controller 554 may be configured to control at least one component of the second group of components 554 based on the instruction of the first controller 551. For example, the first controller 551 may receive a request for using the vehicle sent from a user terminal. The first controller 551 may generate an instruction and transmit the instruction to the second controller 552 to unlock the lock 5545 and/or activate the motor 5541. As another example, the second controller 552 may control the charging or discharging of the power source 5542  based on the instruction of the first controller 551. In some embodiments, the second controller 552 may receive feedback information and/or signal (s) form at least one component of the second group of components 554, and transmit the feedback information and/or signal (s) to the first controller 551. For example, the second controller 552 may receive a feedback signal from the speed sensor, and transmit the feedback signal of the speed sensor to the first controller 551. As another example, the second controller 552 may receive a signal of detected electrical quantity (e.g., from the second sensor 5543) , and transmit the signal to the first controller 551.
In some embodiments, signal (s) may be transmitted between the first controller 551 and the second controller 552 via one or more channels. A channel may refer to a medium used to transmit a signal (e.g., a communication signal, a power signal, etc. ) . A communication signal may refer to a signal conveying information, and transmitted from a signal issuing end to a signal receiving end. Exemplary communication signal may include an analog signal, a digital signal, or the like, or any combination thereof. In some embodiments, the channel may include a wired channel (e.g., a line, a cable, an optic cable) , a wireless channel (e.g., a groundwave propagation, a short-wave ionospheric reflection, an ultrashort wave or a microwave line-of-sight relay, a satellite relay, etc. ) , or the like, or any combination thereof. In some embodiments, one communication signal may be transmitted via one channel. In some embodiments, two or more channels transmitting two or more signals may be multiplexed. As used herein, the multiplexing of channels may refer to a method of combining two or more channels into one channel to transmit two or more signals. In some embodiments, the channels of the communication signals and/or the power signals may be multiplexed to transmit, via one channel, the communication signals, the power signals, or any combination thereof.
In some embodiments, the first controller 551 and the second controller 552  may communicate with and/or connected to each other via a wired or wireless connection. In some embodiments, the communication signals therebetween may be transmitted through one or more cables. In some embodiments, the communication signals may be transmitted through different channels (e.g., cables, cable cores, etc. ) . In some embodiments, one or more communication channels may be multiplexed into one communication channel. In some embodiments, the multiplexing of the communication channels may be implemented by a spatial division multiplexing (SDM) , a frequency division multiplexing (FDM) , a time division multiplexing (TDM) , a polarization division multiplexing (PDM) , an orbital angular momentum multiplexing (OAM) , a code division multiplexing (CDM) , or the like, or any combination thereof. In some embodiments, the signal (s) transmitted between the first controller 551 and the second controller 552 may include a digital signal. The signal (s) transmitted between the first controller 551 and the first group of components 553 may include a digital signal. The signal (s) transmitted between the second controller 552 and the second group of components 554 may include a digital signal. In some embodiments, the first controller 551 may convert an analog signal into a digital signal. In some embodiments, the second controller 552 may convert an analog signal into a digital signal.
In some embodiments, the signal (s) may be transmitted between the first controller 510 and the second controller 520 in one or more signal transmission modes. Exemplary signal transmission modes may include a digital signal transmission, an analog signal transmission, or the like, or any combination thereof. The digital signal transmission may include a baseband transmission, a carrier transmission, or the like, or any combination thereof. The analog signal transmission may include an electromagnetic wave transmission, a telephone network transmission, a cable television network transmission, or the like, or any combination thereof. In some embodiments, a digital signal may be converted to an analog signal and transmitted via the analog signal transmission mode. In some  embodiments, an analog signal may be converted to a digital signal and transmitted via the digital signal transmission mode. In some embodiments, the analog signal may be transmitted with the digital signal.
It should be noted that the embodiments illustrated in FIG. 5 and the description thereof is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, the connections between components of the vehicle are illustrative. Any two components of the vehicle may be connected or not. The connection between two components of the vehicle may be a one-way connection or two-way connection. In some embodiments, the vehicle may include one or more additional components or one or more components described above may be omitted. For example, the first sensor 5536 may be integrated into other components of the first group of components 553. As another example, another brake may be added in the second group of components 554.
FIG. 6 is a block diagram illustrating an exemplary control assembly of a vehicle and signal connections therebetween according to some embodiments of the present disclosure. As shown in FIG. 6, the control assembly 600 of the vehicle (e.g., the vehicle 100, the vehicle 200) may include a first controller 610 and/or a second controller 620.
The control assembly 600 may be an exemplary embodiment of the vehicle as described elsewhere in this disclosure (e.g., the vehicles illustrated in FIGs. 1 and 2) . The control assembly 600 may include a first controller 610 and a second controller 620 operably coupled to a first group of components 630 and a second group of components 660 of the vehicle, respectively. The control assembly 600 may be similar to the control assembly 500 described in connection with FIG. 5,  except for certain features. As shown in FIG. 6, the first controller 610 of the control assembly 600 may include a carrier device 6101, and the second controller 620 of the control assembly 600 may include a carrier device 6201.
In some embodiments, the first controller 610 and the second controller 620 may be disposed at different positions of the vehicle. Although the first controller 610 and the second controller 610 are disposed at different positions, they may have a signal connection. Communication signal (s) and/or power signal (s) may be transmitted between the first controller 610 and the second controller 620. In some embodiments, a power signal may be transmitted between the first controller 610 and at least one component (e.g., an in-vehicle device) of the first group of components 630. In some embodiments, a power signal may be transmitted between the second controller 620 and at least one component (e.g., an in-vehicle device) of the second group of components 640. In some embodiments, at least one component of the first group of components 630 may supply electric power. In some embodiments, at least one component of the second group of components 640 may supply electric power. In some embodiments, a power source may be configured to supply the electric power. In some embodiments, the power source may include one or more batteries. In some embodiments, the communication signal (s) and/or the power signal (s) may be transmitted via a wired or wireless connection. For example, the communication signal (s) and/or the power signal (s) may be transmitted through a plurality of cables. As another example, the communication signal (s) and/or the power signal (s) may be transmitted through different cables or cable cores. In some embodiments, signals transmitted via two or more channels may be transmitted via a multiplexed channel.
In some embodiments, the communication signal (s) and/or the power signal (s) may be superimposed or multiplexed into one channel of signal for transmission. For example, the communication signal (s) may be coupled to (or integrated into) a power line and transmitted by the power line. In some  embodiments, the communication signal (s) may be directly superimposed on the power signal (s) . In some embodiments, the communication signal (s) and/or the power signal (s) may be transmitted through a wired carrier communication. In some embodiments, the communication signal (s) may be digitally modulated and loaded on the power line, and the communication signal (s) and the power signal (s) on the power line may be coupled to generate a coupled signal. The coupled signal may be transmitted through a cable or via a network. After being received, the coupled signal may be demodulated to recover the communication signal (s) and the power signal (s) . In some embodiments, at least one carrier device may be disposed at an issuing end of the signal (s) to perform modulation, and/or coupling of the signal (s) . In some embodiments, at least one carrier device may be disposed at a receiving end of the signal (s) to perform demodulation of the signal (s) . As shown in FIG. 6, a carrier device 6101 may be disposed in the first controller 610, and/or a carrier device 6201 may be disposed in the second controller 620. In some embodiments, the first controller 610, the second controller 620, and components of the vehicle (e.g., other in-vehicle devices) may be equipped with a respective carrier device. In some embodiments, the carrier device (s) may be integrated with the first controller 610, the second controller 620, or the in-vehicle devices into an electronic component. In some embodiments, the carrier device and the in-vehicle devices may be disposed in different electronic components, respectively. In some embodiments, two or more in-vehicle devices may share one or more carrier devices. In some embodiments, the communication signal (s) and the power signal (s) may be coupled and/or transmitted by a capacitive coupling, an inductive coupling, a direct current (DC) carrier communication, a narrowband carrier communication, a spread spectrum carrier communication, an orthogonal frequency division multiplexing, or the like, or any combination thereof. In some embodiments, the communication signal (s) and the power signal (s) may be transmitted by a narrowband carrier communication. For example, the communication signal (s) and  the power signal (s) may be coupled and transmitted using a carrier modulation technology (as illustrated elsewhere in the present disclosure) , in which the frequency spectrum of the communication signal (s) may be moved to a relatively high carrier frequency for coupling. In some embodiments, the carrier modulation technology may include a frequency shift keying (FSK) , a phase shift keying (PSK) , a differential phase shift keying (DPSK) , a minimum shift keying (MSK) , a quadrature frequency shift keying (QPSK) , a quadrature amplitude modulation (QAM) , or the like, or any combination thereof. In some embodiments, the communication signal (s) and the power signal (s) may be coupled and/or transmitted using a spread spectrum carrier communication. For example, the frequency band of the transmitted signal (s) may be broadened so that frequency spectrum of the signal (s) sent at the issuing end is broadened. At the receiving end, dispreading may be performed on the transmitted signal (s) , and the frequency spectrum of the signal (s) may be recovered to its original bandwidth. In some embodiments, spectrum spreading operations may include a direct sequence spread spectrum (DS) , a frequency hopping spread spectrum (FH) , a time hopping spread spectrum (TH) , or the like, or any combination thereof. In some embodiments, the communication signal (s) and the power signal (s) may be coupled and/or transmitted using an orthogonal frequency division multiplexing technology. In some embodiments, the communication signal (s) may be decomposed into two or more sub-signals (e.g., N sub-signals) . The N sub-signals may be modulated using N orthogonal sub-carriers, respectively. That is, each sub-signal may be modulated by one of the orthogonal sub-carriers. The N modulated sub-signals may be orthogonal to each other and the frequency spectrums of the modulated sub-signals may be overlapped for transmission. In some embodiments, the power signal (s) may include an alternating current signal. In some embodiments, the power signal (s) may include a DC signal, which may facilitate the transmission of the modulated communication signal (s) . In some embodiments, the communication signal (s) may include a digital  signal. In some embodiments, the power signal (s) may include a DC power signal. In some embodiments, the communication signal (s) may be separated from the coupled signal using a DC-block circuit. In some embodiments, the DC-block circuit may include a DC-block capacitor. In some embodiments, the power signal (s) may be separated from the coupled signal using a low-pass filtering circuit.
In some embodiments, the communication signal (s) may be directly transmitted between two or more components of the vehicle via a transmission system (e.g., a baseband transmission system) . In some embodiments, the communication signal may be modulated to generate a modulated signal, and may be transmitted via the transmission system. A carrier device (e.g., the carrier device 6101, the carrier device 6102) at the issuing end may be configured to generate a carrier wave. The carrier wave may be configured to load the communication signal that needs to be transmitted. For example, the carrier device may generate a carrier wave whose frequency is higher than the frequency of the communication signal. In some embodiments, the carrier device may modulate the carrier wave and the communication signal to generate a modulated signal. The modulation of the carrier wave may include varying one or more properties of the carrier wave such that the communication signal to be transmitted may be loaded into the carrier wave to generate the modulated signal. In some embodiments, the modulation may include a frequency modulation, an amplitude modulation, a phase modulation, or the like, or any combination thereof. The modulated signal may be transmitted through a channel, and after receiving the modulated signal, the carrier device at the receiving end may demodulate the modulated signal to obtain the original communication signal (s) .
In some embodiments, two or more signals of the communication signal (s) and/or the power signal (s) may be superimposed to generate a superimposed signal. In some embodiments, two or more channels of the signals may be multiplexed into one channel to transmit the communication signal (s) , the power signal (s) , or the like,  or any combination thereof.
In some embodiments, a superimposed signal of a communication signal and a power signal may be transmitted between the first controller 610 and second controller 620 via a wireless network. That is, the electric energy may be transmitted between a power supply apparatus (e.g., a power source) and a power receiving apparatus without an electrical conductor. In some embodiments, the transmission of the electric energy may be realized by an electric field, a magnetic field, an electromagnetic wave, or the like, or any combination thereof. In some embodiments, the power signal may be wirelessly transmitted between the first controller 610 and the second controller 620 via an inductive coupling, an electric field coupling, an evanescent wave, a microwave conversion, a laser sensing, an ultrasonic wave, or the like, or any combination thereof.
In some embodiments, the second controller 620 may be configured to receive a feedback signal of at least one of the in-vehicle devices of the second group of components 640 and a power signal of the power source 6402. The second controller 620 may superimpose the feedback signal with the power signal, and transmit the superimposed signal to the first controller 610. For example, the second controller 620 may receive a feedback signal indicating that the lock 6405 is unlocked, and superimpose the feedback signal with a power signal sent by the power source 6402. The second controller 620 may send the superimposed signal (also referred to as a coupled signal, or a multiplexed signal) including the feedback signal and the power signal to the first controller 610. In some embodiments, the first controller 610 may be configured to receive the superimposed signal transmitted by the second controller 620, and separate the communication signal and the power signal from the superimposed signal. The first controller 610 may use the separated power signal to supply power (e.g., to the first controller 610 itself, or the first group of components 630) . For example, the first controller 610 may demodulate a multiplexed signal (transmitted from the second controller 620)  including a feedback signal indicating that the lock 6405 is unlocked and a power signal to obtain the feedback signal and the power signal. In some embodiments, the power signal may be used to supply power to the first controller 610. In some embodiments, the power signal may be used to supply power to one or more components of the first group of components 630 operably coupled to the first controller 610.
It should be understood that the systems and modules shown in FIGs. 5 and 6 may be implemented in various ways. For example, the systems and the modules may be implemented by hardware, software or a combination of software and hardware. The hardware may be implemented by a dedicated logic. The software may be stored in a memory and may be implemented by an appropriate instruction executing system (e.g., a microprocessor, a dedicated design hardware, etc. ) . It will be appreciated by those skilled in the art that the above mentioned methods and systems may be implemented by computer-executable instructions and/or embedding in control codes of a processor. For example, the control codes may be provided by a medium such as a disk, a CD or a DVD-ROM, a programmable memory device of a read-only memory (e.g., a firmware) , or a data carrier such as an optical or electric signal carrier. The systems and modules of the present disclosure may be implemented by a hardware circuit of programmable hardware device. The programmable hardware device may include a huge scale integrated circuits or a gate array, a semiconductor (e.g., the semiconductor of a logic chip, a transistor, etc. ) such as field-programmable gate arrays or programmable logic devices, etc. The system and modules may be implemented by software executed by various processors. The system and modules may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
It should be noted that the above descriptions regarding the systems and modules are merely provided for convenience of description, and does not limit the  scope of the present disclosure. Those skilled in the art, after having understood the principles of the present disclosure, may combine the modules in various ways, or form sub-systems connected to other modules without departing from the principles. For those skilled in the art, the modules may be combined in various ways or connected with other modules as sub-systems, and various modifications and transformations in form and detail may be conducted under the teaching of the present disclosure. Specifically, each module of the modules described in connection with FIGs. 5 and 6 may be distributed on different electronic components, or one or more modules may be integrated on a same electronic component, or a single module may be disposed on one or more electronic components. For example, the torque sensor in the handlebar 5531 (or 6301) and the first controller 551 (or 610) may be implemented in independent chips, respectively, or may be integrated on a same chip. All such modifications are within the protection scope of the present disclosure.
FIG. 7 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
The process 700 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) . For example, the process 700 may be implemented as a set of instructions. The server 170, a first controller of the vehicle, a second controller of the vehicle may execute the set of instructions, and when executing the instructions, the server 170, the first controller and/or the second controller may be configured to perform the process 700. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 700 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 700 illustrated in FIG. 7 and described below is not intended to be limiting.
In 710, a communication signal may be received from at least one in-vehicle device of the vehicle, and a power signal may be received from a power source. In some embodiments, operation 710 may be performed by a first controller and/or a second controller of the vehicle. For example, the second controller may receive a communication signal form a motor of the vehicle and a power signal from the power source of the vehicle.
In 720, the received communication signal and the power signal may be combined into an electrical signal (also referred to as a coupled signal, a multiplexed signal) . In some embodiments, the communication signal and the power signal may be superimposed or multiplexed to generate the electrical signal for transmission. In some embodiments, the superimposition or multiplexing may be performed by a capacitive coupling, an inductive coupling, a DC carrier communication, a narrowband carrier communication, a spread spectrum carrier communication, an orthogonal frequency division multiplexing, or the like, or any combination thereof.
In 730, the electrical signal may be transmitted. In some embodiments, the electrical signal may be transmitted to another controller of the vehicle (e.g., the first controller of the vehicle) . In some embodiments, an electrical signal carrying a communication signal may be transmitted to the first controller. For example, the second controller may transmit an electrical signal (e.g., a power signal coupled with a speed signal of the vehicle) to the first controller. In some embodiments, the first controller may receive the electrical signal and process (e.g., demodulate) the electrical signal to obtain the communication signal (e.g., the speed signal) . For example, the first controller may demodulate the power signal coupled with the speed signal transmitted by the second controller, and obtain the speed signal.
In 740, an instruction may be received from another controller (e.g., the first controller) of the vehicle. For example, upon receiving the speed signal of the vehicle, the first controller may generate and send an instruction to the second controller to control the motor to decelerate.
In 750, at least one in-vehicle device of the vehicle may be controlled based on the instruction. For example, the second controller may control the battery to discharge based on the instruction (s) of the first controller.
In some embodiments, the at least one in-vehicle device described in 750 may be the same as or different from the at least one in-vehicle device described in 710.
In some embodiments, the process 700 may be implemented by a control system. The control system may include an obtaining module configured to receive a communication signal from at least one in-vehicle device and a power signal from the power source. In some embodiments, the obtaining module may demodulate a superimposed and/or multiplexed signal to recover original signals (e.g., the communication signal, the power signal) . The control system may inlcude a combiantion module configured to combine the communication signal and the power signal into an electrical signal. In some embodiments, the combination module may modulate the communication signal and couple the modulated communicaton signal to the power signal. The control system may further include a transmission module configured to transmit the electrical signal. In some embodiments, the transmission module may transmit the electrical signal including a coupled communication signal.
FIG. 8 is a flowchart illustrating an exemplary process for vehicle control according to some embodiments of the present disclosure.
The process 800 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) . For example, the process 800 may be implemented as a set of instructions. The server 170, a first controller of the vehicle, a second controller of the vehicle may execute the set of instructions, and when executing the instructions, the server 170, the first controller and/or the second controller may be configured to perform the process 800. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 800 may be  accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 800 illustrated in FIG. 8 and described below is not intended to be limiting.
In 810, a signal may be received from another controller. Operation 810 may be performed by a first controller, a second controller, or an in-vehicle device of the vehicle. In some embodiments, the signal may be an electrical signal generated by combining a communication signal and a power signal.
In 820, the received signal may be processed to separate the communication signal and the power signal from the electrical signal. In some embodiments, the first controller, the second controller, or an in-vehicle device of the vehicle may separate the power signal from the electrical signal by demodulating the received signal.
In 830, the power signal may be used to supply power. In some embodiments, the power signal may be used to supply power to at least one in-vehicle device of the vehicle. For example, the first controller may receive a communication signal (indicating an electrical quantity) sent from the second controller and a power signal sent from the battery. In some embodiments, the communication signal indicating the electrical quantity and the power signal may be combined into an electrical signal for transmission. Upon receiving the electrical signal, the first controller may demodulate the electrical signal to separate the communication signal indicating the electrical quantity and the power signal. In some embodiments, the first controller may supply power to itself using the separated power signal. In some embodiments, the first controller may also transmit the power signal to one or more in-vehicle devices of a first group of components operably coupled to the first controller to supply power to the in-vehicle device (s) .
In some embodiments, a control system may be provided accoring to some  embodiments of the present disclosure. The control system may inlcude an obtaining module configured to receive a signal from another controller. In some embodiments, the obtaining module may receive an electrical signal generated by combining a communication signal and a power signal. The control system may include a processing module configured to process the electrical signal to separate the communication signal and the power signal from the electrical signal. In some embodiments, the processing module may demodulate the electrical signal to recover the communication signal. The control system may inlcude a power module configured to supply power to the vehicle using the power signal.
It should be noted that the above description regarding the process of vehicle control is merely provided for the purpose of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, operation 810 and operation 820 may be integrated into one operation.
FIG. 9 is a flowchart illustrating an exemplary process for controlling a component of a vehicle according to some embodiments of the present disclosure. The process 900 may be executed by a control assembly (e.g., the control assembly 500, the control assembly 600) of the vehicle (e.g., the vehicle 100, the vehicle 200) . For example, the process 900 may be implemented as a set of instructions stored in a storage. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 900 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 900 illustrated in FIG. 9 and described below is not intended to be limiting.
In 910, a second controller of the vehicle may generate a signal associated with the vehicle.
In some embodiments, the signal may include a digital signal, an analog signal, or the like, or any combination thereof. In some embodiments, the signal may include a communication signal and/or a power signal. The communication signal may include information associated with the vehicle, and/or may be transmitted from a signal issuing end to a signal receiving end. In some embodiments, the second controller may obtain the communication signal from a second component of the vehicle operably coupled to the second controller. In some embodiments, the second component of the vehicle may include at least one of a motor, a sensor, a power source, a taillight, a lock, or other component mounted in a rear part of the vehicle. The information may indicate a state of at least one component of the second group of components of the vehicle. In some embodiments, the information may include speed information, location information, pressure information, electrical quantity information, or the like, or any combination thereof. Merely by way of example, the information may include state information (e.g., a rotation speed, a power, a temperature, etc. ) of the motor, state information (e.g., a service life of the power source, a remaining electrical quantity, discharging or charging state, etc. ) of the power source, state information (e.g., turning on or turning off state, etc. ) of the taillight, state information (e.g., turning on or turning off state, etc. ) of the lock, or the like, or any combination thereof. In some embodiments, one or more sensors mounted in the rear part of the vehicle may detect signals associated with other components of the second group of components. The second controller may be connected to and/or communicate with the sensors to obtain the signals. More descriptions regarding the sensors may be found elsewhere in the present disclosure (e.g., the second sensor 5543 in FIG. 5, the second sensor 6403 in FIG. 6, and the relevant descriptions thereof) .
The power signal may refer to a signal carrying power and may be used to provide power for various components of the vehicle. In some embodiments, the second controller may obtain the power signal from a third component of the vehicle  operably coupled to the second controller. In some embodiments, the third component of the vehicle may include a power source (e.g., a battery) . For example, the second controller may obtain electric power from the battery.
In some embodiments, the second controller may obtain the communication signal and/or the power signal via a wired connection or a wireless connection.
In some embodiments, the second controller may combine the obtained communication signal and the power signal into one signal. In some embodiments, the second controller may generate the combined signal by superimposing the communication signal and the power signal. In some embodiments, the second controller may multiplex one or more channels for transmitting the communication signal and one or more channels for transmitting the power signal into one channel for transmitting the communication signal and the power signal together. In some embodiments, the second controller may couple the communication signal and/or the power signal into a carrier wave. More descriptions of the combination of the communication signal and the power signal may be found elsewhere in the present disclosure (FIG. 6, and the relevant description thereof) .
In 920, the second controller may transmit the combined signal to a first controller of the vehicle.
In some embodiments, the first controller may be operably coupled to the second controller directly or indirectly (e.g., via a network) . The second controller may transmit the combined signal to the first controller via a signal connection between the first controller and the second controller. The signal connection may include a wired connection and/or a wireless connection. More descriptions regarding the signal transmission between the first controller and the second controller may be found elsewhere in the present disclosure (e.g., FIGs. 5 and 6, and the relevant descriptions thereof) . The second controller may transmit the combined signal to the first controller, and the first controller may receive the combined signal form the second controller. In some embodiments, the second  controller may transmit the combined signal to the first controller in real time or intermittently (e.g., periodically or irregularly) .
In 930, the first controller may process the signal received from the second controller.
In some embodiments, the first controller may process the received signal to obtain the communication signal and the power signal. In some embodiments, the processing of the signal may include analyzing, denoising, smoothing, filtering, extracting, transformation, demodulating, separating, or the like, or any combination thereof. For example, the first controller may demodulate the received signal to obtain the communication signal from a modulated signal. As another example, the first controller may convert the received signal from a digital signal to an analog signal. As a further example, the first controller may separate the received signal into the communication signal and the power signal. Exemplary signal separating technology may include a principal components analysis (PCA) technology, a singular value decomposition (SVD) technology, an independent component analysis (ICA) technology, a dependent component analysis (DCA) technology, a non-negative matrix factorization technology, a low-complexity coding and decoding technology, a stationary subspace analysis technology, a common spatial pattern technology, a machine learning model technology, or the like, or any combination thereof. In some embodiments, the first controller may include a separator configured to separate the combined signal into the communication signal and the power signal.
In some embodiments, the power signal may be used to power the first controller. In some embodiments, the first controller may transmit the power signal to a fourth component of the vehicle operably coupled to the first controller. The fourth component of the vehicle may include at least one component of the vehicle mounted on a front part of the vehicle. For example, the fourth component of the vehicle may include a headlight, a horn, a brake, a meter, a sensor mounted in the  front part, or the like, or any combination thereof.
In 940, the first controller may generate an instruction based on the processed signal.
The instruction may be used to cause the second controller to control one or more components of the vehicle. In some embodiments, the instruction may be generated based on the communication signal. Merely by way of example, the first controller may obtain a speed of the vehicle and/or a pressure of a seat based on the processed signal. The first controller may determine whether the speed is greater than a speed threshold. In response to a determination that the speed of the vehicle is not greater than the speed threshold, the first controller may further determine whether the pressure is greater than a pressure threshold. In response to a determination that the pressure is not greater than the pressure threshold, the first controller may generate an instruction for turning off the motor or limiting the speed of the vehicle. In some embodiments, the first controller may generate the instruction based on a user operation and/or the processed signal. For example, the user may input an activation signal for activating the vehicle. The first controller may generate the instruction for turning on the taillight, activating the motor, unlocking the lock, or the like, or any combination thereof.
In 950, the first controller may transmit the instruction to the second controller.
In some embodiments, the first controller may transmit one instruction to the second controller. For example, the first controller may transmit an instruction for locking the lock of the vehicle to the second controller. In some embodiments, the first controller may transmit a plurality of instructions to the second controller. For example, the first controller may transmit a first instruction for locking the lock, a second instruction for charging the power source, or a third instruction for turning off the motor, or the like, or any combination thereof. In some embodiments, the first controller may transmit the instruction to the second controller via the signal  connection between the first controller and the second controller. In some embodiments, the first controller may transmit the instruction to a server (e.g., the server 170) directly or via a network. In some embodiments, the second controller may receive the instruction from the server directly or via a network.
In 960, the second controller may control a first component of the vehicle operably coupled to the second controller based on the instruction.
In some embodiments, the first component of the vehicle may include components mounted in the rear part of the vehicle, and operably coupled to the second controller. For example, the first component of the vehicle may include the motor, the power source, the taillight, the lock, or the like, or any combination thereof. In some embodiments, after receiving the instruction from the first controller, the second controller may process the instruction. The processing of the instruction may include analyzing, denoising, smoothing, filtering, extracting, converting, demodulating, separating, or the like, or any combination thereof. For example, the second controller may demodulate the instruction. As another example, the second controller may separate a combined instruction into two or more instructions.
In some embodiments, the second controller may transmit the instruction to the first component of the vehicle to perform corresponding operation (s) . For example, the second controller may transmit a lock instruction to the lock of the vehicle to lock the lock. As another example, the second controller may transmit a charge instruction to the power source to cause the power source to be charged. As still another example, the second controller may transmit a lighting instruction to the taillight to turn on the taillight.
In some embodiments, the sensor mounted in the rear part of the vehicle may detect a controlling result of the second controller, and feedback the information to the second controller. In some embodiments, the second controller may transmit the feedback information to the server or the first controller. In some embodiments,  the first controller and/or the server may adjust the previous instruction or generate a new instruction and transmit the new instruction to the second controller to control the first component of the vehicle.
It should be noted that the above description is merely provided for the purpose of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
In some embodiments, one or more operations may be omitted and/or one or more additional operations may be added. For example, one or more storing operations may be added elsewhere in the process 900 to store the generated signal and/or instruction. As another example, the  operations  930 and 940 may be integrated into one operation to process the signal and generate the instruction.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the  particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional  procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software only solution, e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various  embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, claimed subject matter may lie in less than all features of a single foregoing disclosed embodiment.

Claims (34)

  1. A control assembly for a vehicle, comprising:
    a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of a first group of components of the vehicle; and
    a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of a second group of components of the vehicle;
    wherein the second controller is operably coupled to the first controller via a signal connection.
  2. The control assembly of claim 1, wherein the first controller includes an electric control unit (ECU) .
  3. The control assembly of claim 1, wherein the front part of the vehicle includes a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
  4. The control assembly of claim 1, wherein the front part of the vehicle includes at least one of a basket assembly, a steering column, a handlebar assembly, or a front frame of the vehicle.
  5. The control assembly of any one of claims 1-4, wherein the first group of components of the vehicle includes at least one of a handlebar, a headlight, a horn, a brake, a meter, or a sensor mounted in the front part.
  6. The control assembly of claim 4, wherein the first controller is mounted in a cavity of the basket assembly.
  7. The control assembly of claim 6, wherein:
    the basket assembly includes a basket and a housing;
    the housing includes a fixing frame configured to fix the basket assembly to the vehicle, and a connection plate configured to fix the housing to the basket; and
    the cavity is formed between the fixing frame and the connection plate.
  8. The control assembly of claim 7, wherein the first controller is mounted on the fixing frame.
  9. The control assembly of claim 6, wherein
    the basket assembly includes a basket and a baseplate;
    the cavity is formed in the basket;
    the basket includes at least one opening in communication with the cavity; and
    the baseplate is configured to shield the opening.
  10. The control assembly of claim 9, wherein the first controller is mounted on the baseplate.
  11. The control assembly of claim 1, wherein the second controller includes a motor controller.
  12. The control assembly of claim 3, wherein the rear part of the vehicle includes a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
  13. The control assembly of any one of claims 1-12, wherein the rear part of the vehicle includes at least one of a component mounted under a seat of the vehicle, or a rear frame of the vehicle.
  14. The control assembly of any one of claims 1-13, wherein the second group of components of the vehicle includes at least one of a motor, a power source, a sensor mounted in the rear part, a taillight, or a lock.
  15. The control assembly of claim 1, wherein the signal connection between the first controller and the second controller includes a wired connection or a wireless connection.
  16. The control assembly of claim 1, wherein at least one of the first controller or the second controller is operably coupled to a network.
  17. The control assembly of claim 1, wherein the vehicle is an electric bicycle.
  18. A vehicle, comprising:
    a first group of components;
    a second group of components; and
    a control assembly configured to control the vehicle, the control assembly including:
    a first controller mounted on a front part of the vehicle and configured to communicate with at least one component of the first group of components; and
    a second controller mounted on a rear part of the vehicle and configured to communicate with at least one component of the second group of components;
    wherein the second controller is operably coupled to the first controller via a signal connection.
  19. The vehicle of claim 18, further comprising a pedal shaft.
  20. The vehicle of claim 18, wherein the first controller includes an electric control unit (ECU) .
  21. The vehicle of claim 18, wherein the second controller includes a motor controller.
  22. The vehicle of claim 18, wherein the front part of the vehicle includes a plurality of portions of the vehicle mounted in front of a pedal shaft of the vehicle.
  23. The vehicle of claim 18, wherein the rear part of the vehicle includes a plurality of portions of the vehicle mounted behind the pedal shaft of the vehicle.
  24. A method for controlling a vehicle implemented on a computing device having at least one processor, at least one storage medium, and a communication platform connected to a network, the method comprising:
    generating, by a second controller of the vehicle, a signal associated with the vehicle;
    transmitting, by the second controller, the signal to a first controller of the vehicle;
    processing, by the first controller, the signal;
    generating, by the first controller, an instruction based on the processed signal;
    transmitting, by the first controller, the instruction to the second controller; and
    controlling, by the second controller, a first component of the vehicle operably coupled to the second controller based on the instruction.
  25. The method of claim 24, wherein the signal includes a communication signal and a power signal.
  26. The method of claim 25, wherein the generating a signal associated with the vehicle comprises:
    obtaining, by the second controller, the communication signal from a second component of the vehicle operably coupled to the second controller;
    obtaining, by the second controller, the power signal from a third component of the vehicle operably coupled to the second controller; and
    generating, by the second controller, the signal by combining the communication signal and the power signal.
  27. The method of claim 25, wherein the processing the signal comprises:
    separating, by the first controller, the signal into the communication signal and the power signal.
  28. The method of claim 27, wherein the generating an instruction based on the processed signal comprises:
    generating, by the first controller, the instruction based on the communication signal.
  29. The method of claim 27, further comprising:
    providing, by the first controller, a fourth component of the vehicle operably coupled to the first controller with power by transmitting the power signal to the fourth component.
  30. The method of claim24, wherein the first component of the vehicle includes at least one of a motor, a power source, a taillight, or a lock.
  31. The method of claim 26, wherein the second component of the vehicle includes at least one of a sensor mounted in a rear part of the vehicle, a motor, a power source, a taillight, or a lock.
  32. The method of claim 26, wherein the third component of the vehicle includes a power source.
  33. The method of claim 29, wherein the fourth component of the vehicle includes at least one of a headlight, a horn, a brake, a meter, or a sensor mounted in a front part of the vehicle.
  34. A system for vehicle control, comprising:
    at least one storage device including one or more sets of instructions; and
    at least one processor in communication with the at least one storage device, wherein when executing the one or more sets of instructions, the at least one processor is configured to cause the system to:
    generate, by a second controller of the vehicle, a signal associated with the vehicle;
    transmit, by the second controller, the signal to a first controller of the vehicle;
    process, by the first controller, the signal;
    generate, by the first controller, an instruction based on the processed signal;
    transmit, by the first controller, the instruction to the second controller; and
    control, by the second controller, a first component of the vehicle operably coupled to the second controller based on the instruction.
PCT/CN2019/128151 2018-12-29 2019-12-25 Systems and methods for vehicle control WO2020135470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811654205.6 2018-12-29
CN201811654205.6A CN111391953A (en) 2018-12-29 2018-12-29 Electric vehicle control equipment

Publications (1)

Publication Number Publication Date
WO2020135470A1 true WO2020135470A1 (en) 2020-07-02

Family

ID=71127651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128151 WO2020135470A1 (en) 2018-12-29 2019-12-25 Systems and methods for vehicle control

Country Status (2)

Country Link
CN (1) CN111391953A (en)
WO (1) WO2020135470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475882A (en) * 2022-03-22 2022-05-13 长沙优力电驱动系统有限公司 Electric vehicle control device and electric vehicle equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115107911B (en) * 2021-03-09 2023-08-08 宏碁股份有限公司 Antitheft processing method for electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811771A (en) * 1994-06-28 1996-01-16 Yamaha Motor Co Ltd Bicycle with motor
JPH09142369A (en) * 1995-11-24 1997-06-03 Sanyo Electric Co Ltd Manual driving gear
CN1095782C (en) * 1995-08-30 2002-12-11 三洋电机株式会社 Electric vehicle
US20110320063A1 (en) * 2010-06-29 2011-12-29 Frank Molinaro Handlebar control system
US20170088013A1 (en) * 2015-09-28 2017-03-30 Yamaha Hatsudoki Kabushiki Kaisha Straddle-type electric vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561734B2 (en) * 2012-07-31 2017-02-07 Shimano Inc. Bicycle power supply system
DE102015220084A1 (en) * 2015-10-15 2017-04-20 Conti Temic Microelectronic Gmbh Electric bicycle, immobilizer for an electric bicycle and method of operating an electric bicycle
JP6894206B2 (en) * 2016-09-15 2021-06-30 ヤマハ発動機株式会社 Electric auxiliary vehicle
CN206327469U (en) * 2016-12-09 2017-07-14 山西美丽通行科技有限公司 One kind is without stake and has a universal intelligent bicycle
CN107187520B (en) * 2017-07-05 2022-09-23 天津驭驰科技有限公司 Intelligent bicycle basket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811771A (en) * 1994-06-28 1996-01-16 Yamaha Motor Co Ltd Bicycle with motor
CN1095782C (en) * 1995-08-30 2002-12-11 三洋电机株式会社 Electric vehicle
JPH09142369A (en) * 1995-11-24 1997-06-03 Sanyo Electric Co Ltd Manual driving gear
US20110320063A1 (en) * 2010-06-29 2011-12-29 Frank Molinaro Handlebar control system
US20170088013A1 (en) * 2015-09-28 2017-03-30 Yamaha Hatsudoki Kabushiki Kaisha Straddle-type electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475882A (en) * 2022-03-22 2022-05-13 长沙优力电驱动系统有限公司 Electric vehicle control device and electric vehicle equipment

Also Published As

Publication number Publication date
CN111391953A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
US10604020B2 (en) Floating armature
US10076960B2 (en) Wheel assembly with inductive charging for vehicle using regenerative braking
US20180304765A1 (en) Preconditioned charging using an autonomous vehicle
US10471838B2 (en) High voltage fast charge utilizing two charge ports
US20180143035A1 (en) Smart refill assistant for electric vehicles
US20180009321A1 (en) Logic rule-based dynamic power allocation
WO2020135470A1 (en) Systems and methods for vehicle control
US20110015814A1 (en) Charging station with solar panels
US20170138758A1 (en) Tracking power consumption and payment
US20110011930A1 (en) Parking meter with ev recharging capability
CN104066636B (en) Travel controlling system
US11314244B2 (en) Systems and methods for determining abnormal information associated with a vehicle
US11198373B2 (en) Method for operating a charging device
US10556599B2 (en) Conditional progressive degradation of electric vehicle power supply system
CN210258045U (en) Mobile SOFC (solid oxide fuel cell) shared charging vehicle and system
JP6881242B2 (en) Mobile and advertising method
CN110114261B (en) System and method for determining abnormality information related to vehicle
CN106921936A (en) Charging pile system of selection and system based on GPS
US10363938B2 (en) Authentication using electromagnet signal detection
KR20170098395A (en) Self-Electricity Generating Bicycle Rent Service
CN111384333A (en) Battery locking device and control method and system thereof
CN111377019A (en) Vehicle control equipment
US11050272B2 (en) Open line detection during pre-charge
KR20150012527A (en) Active Regenerative Brake Control Apparatus of Vehicle for RE-EV
JP2019093968A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905002

Country of ref document: EP

Kind code of ref document: A1