WO2020135197A1 - 一种氮化镓器件动态电阻测试电路 - Google Patents

一种氮化镓器件动态电阻测试电路 Download PDF

Info

Publication number
WO2020135197A1
WO2020135197A1 PCT/CN2019/126469 CN2019126469W WO2020135197A1 WO 2020135197 A1 WO2020135197 A1 WO 2020135197A1 CN 2019126469 W CN2019126469 W CN 2019126469W WO 2020135197 A1 WO2020135197 A1 WO 2020135197A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
gallium nitride
diode
voltage
nitride device
Prior art date
Application number
PCT/CN2019/126469
Other languages
English (en)
French (fr)
Inventor
刘斯扬
李胜
孙贵鹏
肖魁
张弛
吴海波
孙伟锋
陆生礼
时龙兴
Original Assignee
东南大学
无锡华润上华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学, 无锡华润上华科技有限公司 filed Critical 东南大学
Publication of WO2020135197A1 publication Critical patent/WO2020135197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2637Circuits therefor for testing other individual devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • This application mainly relates to the field of reliability testing and analysis of high-voltage power semiconductor devices, in particular to a dynamic resistance test circuit for gallium nitride devices, specifically, a heterojunction for gallium nitride high electron mobility transistors and the like
  • the test circuit of the device dynamic resistance reliability problem is suitable for evaluating the on-resistance degradation degree of the device after high-pressure stress. It is an important method for the analysis of the resistance degradation mechanism and provides theoretical and technical support for improving the reliability of the device.
  • GaN gallium nitride
  • the high-voltage stress in the off state causes the on-resistance value of the device to change dynamically after it is turned on, which will cause the problem that the circuit loss is difficult to estimate. .
  • the dynamic resistance needs to be tested and analyzed.
  • an oscilloscope is usually used to directly measure the drain voltage of the GaN device under test, and the on-resistance of the device is calculated using the measured voltage value and the current value flowing through the device.
  • the drain voltage drops from hundreds of volts to hundreds of millivolts, and the accuracy of the oscilloscope cannot meet the requirements of accurately recording the voltage changes during this process, making it difficult to accurately calculate the on-resistance of the device .
  • This application is directed to the above problems, and proposes a dynamic resistance test circuit for gallium nitride devices with high test accuracy.
  • a dynamic resistance test circuit for a gallium nitride device including: a gate drive module for driving a device under test, a clamping circuit and a load module, the other end of the load module is connected to a power supply DC, and the clamping circuit includes a voltage regulator Module and high voltage diode D1, the anode of the high voltage diode D1 is connected to one end of the voltage stabilizing module, the cathode of the high voltage diode D1 is connected to one end of the load module and is used to connect the drain electrode of the gallium nitride device under test, and the other end of the voltage stabilizing module It is connected to the power ground and used to connect the source electrode of the gallium nitride device under test.
  • the clamping circuit further includes a constant current module. The constant current output by the constant current module flows to the gallium nitride device under test through the high-voltage diode D1.
  • a dynamic resistance test circuit for gallium nitride devices including:
  • Gate drive module (3) used to drive the GaN device under test Q1;
  • the clamping circuit (1) includes a voltage stabilizing module (12), a constant current module (11) and a diode D1, an anode of the diode D1 is connected to one end of the voltage stabilizing module (12), and a cathode of the diode D1 Connected to one end of the power supply and used to connect the drain electrode of the gallium nitride device Q1 under test, and the other end of the voltage stabilizing module (12) is connected to the power ground and used to connect the gallium nitride device Q1 under test.
  • the source electrode, the constant current output by the constant current module (11) flows through the diode D1 to the gallium nitride device Q1 under test.
  • FIG. 1 is a schematic diagram of a dynamic resistance test circuit of a gallium nitride device in an embodiment.
  • FIG. 2 is yet another embodiment of a dynamic resistance test circuit for gallium nitride devices.
  • Fig. 3 is a simulation result of the embodiment shown in Fig. 2.
  • FIG. 4 is another embodiment of the dynamic resistance test circuit of the gallium nitride device.
  • Fig. 5 is a simulation result of the embodiment shown in Fig. 4.
  • FIG. 6 is a schematic diagram of a dynamic resistance test circuit of a gallium nitride device in still another embodiment.
  • first element, component, region, layer, or section discussed below can be represented as a second element, component, region, layer, or section.
  • the dynamic resistance test circuit of the gallium nitride device includes:
  • Gate drive module (3) used to drive the GaN device under test Q1;
  • the clamping circuit (1) includes a voltage stabilizing module (12), a constant current module (11) and a diode D1, an anode of the diode D1 is connected to one end of the voltage stabilizing module (12), and a cathode of the diode D1 Connected to one end of the power supply and used to connect the drain electrode of the gallium nitride device Q1 under test, and the other end of the voltage stabilizing module (12) is connected to the power ground and used to connect the gallium nitride device Q1 under test.
  • the source electrode, the constant current output by the constant current module (11) flows through the diode D1 to the gallium nitride device Q1 under test.
  • the voltage measured at the voltage test point when the tested gallium nitride device Q1 is turned off is stabilized by the voltage stabilizing module 12, and the voltage stabilizing module 12 stabilizes the voltage at the voltage test point at 0-10V A constant value within the range, so the maximum value of the voltage value detected on the oscilloscope is the constant value of this voltage. Even if the voltage at the voltage test point drops to the order of millivolts, the accuracy of the oscilloscope can still meet the accuracy required for the test.
  • the current flowing through the high-voltage diode D1 when the tested gallium nitride device Q1 is turned on is provided by the constant current module 11, so the current flowing through the high-voltage diode D1 is a constant current, the diode voltage drop is constant, and the voltage measured at the voltage test point is more accurate .
  • the dynamic resistance test circuit of the gallium nitride device includes: a gate driving module 3 for driving the device under test, a clamping circuit 1 and a load module 2, one end of the load module 2 is connected to a power supply DC, the clamping circuit 1 includes a voltage stabilizing module 12 and a high voltage diode D1, the anode of the high voltage diode D1 is connected to one end of the voltage stabilizing module 12, the cathode of the high voltage diode D1 is connected to the other end of the load module 2 to be tested
  • the drain electrode of the gallium device Q1, the other end of the voltage stabilizing module 12 is connected to the power ground and used to connect the source electrode of the gallium nitride device Q1 under test, the clamping circuit 1 further includes a constant current module 11, the constant current module 11 The output constant current flows through the high-voltage diode D1 to the GaN device under test Q1.
  • the voltage test node of the clamping circuit 1 is the anode of the high-voltage diode D1.
  • the current flowing through the high-voltage diode D1 is provided by the constant current module 11, and the current value is 1-100mA
  • the load module 2 is one of resistive load and inductive load. Please refer to FIG. 2 together. In this embodiment:
  • a filter module 13 is connected in parallel with the voltage stabilizing module 12, and the filter module is a capacitor C1 and a resistor R2 connected in series with adjustable capacitance and resistance. The oscillation generated at the moment when the switch of the GaN device under test Q1 is switched is suppressed by the filter module 13.
  • the load module 2 is a clamping inductive load, including a power inductor L1 and a freewheeling diode D2.
  • the high voltage diode D1 in the clamping circuit 1 is a 600V silicon carbide Schottky diode, and the withstand voltage value of the high voltage diode D1 is greater than the voltage value provided by the power supply DC (direct current power supply).
  • the voltage stabilizing module 12 is composed of a voltage stabilizing diode Z1 and a resistor R1 connected in series.
  • the voltage stabilizing diode Z1 has a voltage stabilizing value of 3-10V, and the resistance R1 has a resistance value of 1-10k ⁇ .
  • the constant current module 11 uses a constant current source I source with a constant current value of 10 mA, and a common diode D3 is connected in series to prevent current backflush and protect the device.
  • the DC power supply (power supply DC) outputs a constant voltage.
  • the load module 2 When the tested GaN device Q1 is turned on, the current flowing through the device is controlled by the load module 2, and the load of the load module 2 can be a resistive load or an inductive load kind of.
  • the gate driving module 3 provides the gate control signal of the device under test, so that the gallium nitride device under test Q1 realizes the switching process within a specific time.
  • the gate drive module 3 When the load of the load module 2 is a resistor, the gate drive module 3 generally provides a single pulse signal; when the load of the load module 2 is an inductor, the gate drive module 3 generally provides a double pulse signal.
  • the tested GaN device Q1 When the tested GaN device Q1 is off, the tested GaN device Q1 withstands high voltage, and the high-voltage diode D1 in the clamping circuit 1 will test the tested GaN device Q1 with the constant current module 11 and the voltage regulator module 12 Isolation can not only convert the high voltage at both ends of the GaN device under test Q1 into a low voltage during measurement, but also effectively protect other components and instruments in the clamping circuit 1.
  • the output current of the constant current module 11 does not flow through the measured GaN device Q1 in the off state, but flows through the voltage stabilizing module 12 connected in parallel, when the voltage drop on the voltage stabilizing module 12 rises to a certain value ,
  • the voltage stabilizing module 12 in the clamping circuit 1 stabilizes the voltage at the voltage test point to a certain constant value in the range of 0-10V, so that the maximum value of the voltage value detected on the oscilloscope is the constant value of this voltage, even if the voltage test point When the voltage drops to the order of millivolts, the accuracy of the oscilloscope can still meet the accuracy required for testing.
  • the output current of the constant current module 11 flows through the high-voltage diode D1 and the tested gallium nitride device Q1, and the voltage value at the voltage test point is the on-voltage of the tested gallium nitride device Q1
  • the on-resistance value of the tested gallium nitride device Q1 is the dynamic resistance.
  • the current flowing through the high-voltage diode D1 is provided by the constant current module 11 in the clamping circuit 1, so the high-voltage
  • the current value of the diode D1 is constant, and the voltage drop across the high voltage diode D1 is also constant.
  • the calculated turn-on voltage drop of the measured gallium nitride device Q1 is an accurate value.
  • a filter module 13 is added to the clamping circuit 1 to suppress the oscillation caused by the device switching instantaneously.
  • the load is a clamped inductive load, including a power inductor L1 and a freewheeling diode D2, the gate control signal of the device under test is a double pulse, and the duty cycle and period are adjustable.
  • the high-voltage diode D1 in the clamp circuit 1 is a 600V silicon carbide Schottky diode; the filter module 13 in the clamp circuit 1 is a capacitor C1 resistor R2 series loop, and the capacitance and resistance are adjustable; the voltage regulator module 12 is a voltage regulator The diode Z1 and the resistor R1 are connected in series, and the voltage regulation value is 5V; the constant current module 11 is composed of a constant current source I source connected in series with a common diode D3, and the constant current value is 10mA.
  • the common diode D3 can prevent current backflush to protect the device.
  • Fig. 3 is a simulation result of the embodiment shown in Fig. 2.
  • the load is a clamped inductive load, including a power inductor L1 and a freewheeling diode D2, the gate control signal of the device under test is a double pulse, and the duty cycle and period are adjustable.
  • the high-voltage diode D1 in the clamp circuit 1 is a 600V silicon carbide Schottky diode; the filter module 13 in the clamp circuit 1 is a capacitor C1 resistor R2 series loop, and the capacitance and resistance are adjustable; the voltage regulator module 12 is a voltage regulator The diode Z1 and the resistor R1 are connected in series, and the voltage regulation value is 5V; the constant current module 11 is composed of a constant voltage source V source connected in series with a common diode D3 and a constant current diode TD1. The constant current value is 1mA, and the common diode D3 can prevent the current from backlash Protect equipment.
  • Fig. 5 is a simulation result of the embodiment shown in Fig. 4.
  • the voltage change is within the range of 0-10V, which greatly improves the test accuracy.
  • V0 the supply voltage
  • V1 the voltage at the voltage test point
  • the voltage drop is generally in the hundreds of millivolts. Obviously, testing the accuracy of the oscilloscope cannot meet the demand.
  • test accuracy is V1 divided by 256(28), which is equal to 19.5mV, which can meet the required test accuracy. Therefore, the test circuit of the present application can significantly improve the test accuracy.
  • the current flowing through the high-voltage diode is a constant current
  • the voltage drop of the diode is constant
  • the measured voltage is more accurate.
  • technicians generally use external components, but usually ignore some component parameter changes (such as the voltage drop of the high-voltage diode in this application).
  • the measured voltage value is very close to the voltage drop of the high-voltage diode, the voltage drop of the diode caused by the current flowing through the high-voltage diode cannot be ignored.
  • This application uses a constant current module to ensure that the voltage drop of the high-voltage diode is constant.
  • the parasitic parameters of the components used in this application are small, which can reduce circuit oscillation.
  • This application uses high-voltage diodes with relatively small parasitic parameters (such as silicon carbide Schottky diodes) as high-voltage blocking components.
  • the other components in the clamping circuit can be small models to reduce parasitic parameters and achieve functional functions. Relatively few components are needed to minimize the vibration caused by the addition of clamping circuits.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种氮化镓器件Q1动态电阻测试电路,包括用于驱动待测器件的栅驱动模块(3)、钳位电路(1)和负载模块(2),负载模块(2)的一端连接电源DC,钳位电路(1)包括稳压模块(12)和高压二极管D1,高压二极管D1的阳极与稳压模块(12)一端连接,高压二极管D1的阴极与负载模块(2)的另一端连接被测氮化镓器件Q1的漏电极,稳压模块(12)的另一端接电源地并用于连接被测氮化镓器件Q1的源电极,钳位电路(1)还包括恒流模块(11),恒流模块(11)输出的恒定电流经过高压二极管D1流向被测氮化镓器件Q1。被测氮化镓器件Q1的栅控信号由栅驱动模块(3)提供,被测氮化镓器件Q1导通时流过高压二极管D1的电流由恒流模块(11)提供,被测氮化镓器件Q1关断时电压测试点测得的电压由稳压模块(12)稳压。

Description

一种氮化镓器件动态电阻测试电路 技术领域
本申请主要涉及高压功率半导体器件的可靠性测试与分析领域,尤其涉及一种氮化镓器件动态电阻测试电路,具体来说,是一种针对于氮化镓高电子迁移率晶体管等异质结器件动态电阻可靠性问题的测试电路,适用于评价器件在高压应力后的导通电阻退化程度,是电阻退化机理分析的重要手段,为提高器件可靠性提供理论和技术支持。
背景技术
随着全球节能环保意识逐渐增强,电动汽车、智能家电等清洁环保产业得到快速发展,对半导体功率器件提出了更高转换效率、更高开关速度、以及更低损耗的要求。以氮化镓(GaN)为代表的第三代半导体材料凭借出色的性能优势,在开关电源、电机控制器和并网逆变器等领域展现出显著的竞争力。然而在上述应用领域中,氮化镓器件面临着高压工作环境。在高压应力条件下,会激发电流崩塌效应,表现为氮化镓器件在关开过程中,关态的高压应力使器件开启后的导通电阻值动态变化,这将引起电路损耗难以估算的问题。为精确计算电路损耗,需要对动态电阻进行测试分析。在常规测试手段中,通常用示波器直接测量被测氮化镓器件的漏极电压,并且用所测到的电压值和流经器件的电流值计算器件的导通电阻。然而器件从关断到开通的过程中,漏极电压从数百伏下降到数百毫伏,示波器的精度不能满足精确记录此过程中的电压变化的要求,从而难以精确计算器件导通电阻值。
发明内容
本申请就是针对上述问题,提出了一种测试精度高的氮化镓器件动态电 阻测试电路。
本申请采用如下技术方案:
一种氮化镓器件动态电阻测试电路,包括:用于驱动待测器件的栅驱动模块、钳位电路和负载模块,所述负载模块的另一端连接电源DC,所述钳位电路包括稳压模块和高压二极管D1,高压二极管D1的阳极与稳压模块一端连接,高压二极管D1的阴极与所述负载模块的一端连接并用于连接被测氮化镓器件的漏电极,稳压模块的另一端接电源地并用于连接被测氮化镓器件的源电极,所述钳位电路还包括恒流模块,所述恒流模块输出的恒定电流经过高压二极管D1流向被测氮化镓器件。
一种氮化镓器件动态电阻测试电路,包括:
栅驱动模块(3),用于驱动被测氮化镓器件Q1;
电源;以及
钳位电路(1),包括稳压模块(12)、恒流模块(11)及二极管D1,所述二极管D1的阳极与所述稳压模块(12)的一端连接,所述二极管D1的阴极与所述电源的一端连接并用于连接所述被测氮化镓器件Q1的漏电极,所述稳压模块(12)的另一端接电源地并用于连接所述被测氮化镓器件Q1的源电极,所述恒流模块(11)输出的恒定电流经过所述二极管D1流向被测氮化镓器件Q1。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是一实施例中氮化镓器件动态电阻测试电路示意图。
图2是氮化镓器件动态电阻测试电路的再一个实施例。
图3是图2所示实施例的仿真结果。
图4是氮化镓器件动态电阻测试电路的另一个实施例。
图5是图4所示实施例的仿真结果。
图6是再一实施例中氮化镓器件动态电阻测试电路示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限 制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
参见图6,在该实施例中,氮化镓器件动态电阻测试电路,包括:
栅驱动模块(3),用于驱动被测氮化镓器件Q1;
电源;以及
钳位电路(1),包括稳压模块(12)、恒流模块(11)及二极管D1,所述二极管D1的阳极与所述稳压模块(12)的一端连接,所述二极管D1的阴极与所述电源的一端连接并用于连接所述被测氮化镓器件Q1的漏电极,所述稳压模块(12)的另一端接电源地并用于连接所述被测氮化镓器件Q1的源电极,所述恒流模块(11)输出的恒定电流经过所述二极管D1流向被测氮化镓器件Q1。
上述氮化镓器件动态电阻测试电路,被测氮化镓器件Q1关断时电压测试点测得的电压由稳压模块12稳压,稳压模块12将电压测试点的电压稳定在0-10V范围内的某一恒定值,这样示波器上探测的电压值最大值为此电压恒定值,即使电压测试点的电压下降到毫伏量级,示波器的精度仍然可以满足测试所需要的精度。被测氮化镓器件Q1导通时流过高压二极管D1的电流由恒流模块11提供,因此流过高压二极管D1的电流是恒定电流,二极管压降恒定,电压测试点测得的电压更准确。
在图1所示的实施例中,氮化镓器件动态电阻测试电路包括:用于驱动待测器件的栅驱动模块3、钳位电路1和负载模块2,所述负载模块2的一端连接电源DC,所述钳位电路1包括稳压模块12和高压二极管D1,高压二极管D1的阳极与稳压模块12一端连接,高压二极管D1的阴极与所述负载模块2的另一端连接被测氮化镓器件Q1的漏电极,稳压模块12的另一端接电源地并用于连接被测氮化镓器件Q1的源电极,所述钳位电路1还包括恒流 模块11,所述恒流模块11输出的恒定电流经过高压二极管D1流向被测氮化镓器件Q1。钳位电路1的电压测试节点为高压二极管D1的阳极,当被测氮化镓器件Q1处于开通状态时,流过所述高压二极管D1的电流由恒流模块11提供,电流值为1-100mA,所述负载模块2是阻性负载和感性负载的一种。请一并参见图2,在本实施例中:
在所述稳压模块12上并联有滤波模块13,滤波模块为电容C1、电阻R2串联回路,容值、阻值可调。被测氮化镓器件Q1开关转换的瞬间产生的震荡由滤波模块13抑制。
负载模块2为钳位感性负载,包括功率电感L1和续流二极管D2。
钳位电路1中的高压二极管D1为600V碳化硅肖特基二极管,所述高压二极管D1耐压值大于电源DC(直流电源)所提供的电压值。
稳压模块12由稳压二极管Z1和电阻R1串联组成,稳压二极管Z1稳压值为3-10V,电阻R1阻值为1-10kΩ。
恒流模块11采用恒定电流源I source,恒流值为10mA,并串联普通二极管D3,用于防止电流回冲并保护设备。
下面结合说明书附图对本申请作详细说明。
如图1所示,直流电源(电源DC)输出恒定电压,被测氮化镓器件Q1开启时,流过器件的电流由负载模块2控制,负载模块2的负载可以是电阻负载和电感负载中的一种。栅驱动模块3提供被测器件栅控信号,使得被测氮化镓器件Q1在特定的时间内实现开关过程。负载模块2的负载为电阻时,栅驱动模块3一般提供单脉冲信号;负载模块2的负载为电感时,栅驱动模块3一般提供双脉冲信号。在被测氮化镓器件Q1关断状态下,被测氮化镓器件Q1承受高压,钳位电路1中的高压二极管D1将被测氮化镓器件Q1与恒流模块11、稳压模块12隔离,既能将被测氮化镓器件Q1两端的高压转换为测量时的低压,还能有效保护钳位电路1中的其他元器件与仪器。恒流模块11输出电流不会流过关断状态下的被测氮化镓器件Q1,而是流过与之并联的稳压模块12,当稳压模块12上的压降上升到一定值时,钳位电路1中 的稳压模块12将电压测试点的电压稳定在0-10V范围内的某一恒定值,这样示波器上探测的电压值最大值为此电压恒定值,即使电压测试点的电压下降到毫伏量级,示波器的精度仍然可以满足测试所需要的精度。在被测氮化镓器件Q1开通状态下,恒流模块11的输出电流流过高压二极管D1和被测氮化镓器件Q1,电压测试点的电压值为被测氮化镓器件Q1导通压降和高压二极管D1导通压降之和。通过测试高压二极管D1的电压电流特性曲线,可以很容易得到高压二极管D1的导通压降,此时只需用电压测试点测得的电压值减去高压二极管D1的压降,就得到动态的被测氮化镓器件Q1导通电阻值,即所述动态电阻。在本申请中,为避免流过高压二极管D1的电流变化导致的高压二极管导通压降的变化,流过高压二极管D1的电流由钳位电路1中的恒流模块11提供,因此流过高压二极管D1的电流值恒定,高压二极管D1两端的压降也就恒定,所计算得到的被测氮化镓器件Q1导通压降为精确值。另外钳位电路1中添加滤波模块13,抑制器件开关瞬间产生的震荡。
在图2所示的实施例中,负载为钳位感性负载,包括功率电感L1和续流二极管D2,被测器件栅控信号为双脉冲,占空比、周期可调。钳位电路1中的高压二极管D1为600V碳化硅肖特基二极管;钳位电路1中的滤波模块13为电容C1电阻R2串联回路,容值、阻值可调;稳压模块12为稳压二极管Z1和电阻R1串联组成,稳压值为5V;恒流模块11为恒定电流源I source串联普通二极管D3组成,恒流值为10mA,普通二极管D3可防止电流回冲从而保护设备。图3是图2所示实施例的仿真结果。
在图4所示的实施例中,负载为钳位感性负载,包括功率电感L1和续流二极管D2,被测器件栅控信号为双脉冲,占空比、周期可调。钳位电路1中的高压二极管D1为600V碳化硅肖特基二极管;钳位电路1中的滤波模块13为电容C1电阻R2串联回路,容值、阻值可调;稳压模块12为稳压二极管Z1和电阻R1串联组成,稳压值为5V;恒流模块11为恒定电压源V source串联普通二极管D3、恒流二极管TD1组成,恒流值为1mA,普通二极管D3可防止电流回冲从而保护设备。图5是图4所示实施例的仿真结果。
本申请有以下优点:
1、在用示波器探测本申请中电压测试点的电压时,电压变化在0-10V范围内,大幅提高测试精度。被测器件关断时,器件两端电压为供电电压V0(V0大于等于100V),电压测试点电压为V1(V1小于10V)。在示波器的采样位数一般为8位,采用传统的测试方法,如果是V0=400V供电电压,那么测试精度为V0除以256(28),等于1.56V,而开启时的被测器件导通压降一般为几百毫伏级,显然测试示波器精度不能满足需求。采用本申请测试方法时,假设示波器测到的所述电压测试点的电压V1=5V时,测试精度为V1除以256(28),等于19.5mV,可以满足需要的测试精度。因此,采用本申请的测试电路,可以显著提高测试精度。
2、本申请中流过高压二极管的电流是恒定电流,二极管压降恒定,所测电压更准确。为避免示波器精度问题,技术人员一般都会采用外部元器件,但是通常会忽略一些元器件参数变化(比如本申请中的高压二极管的压降变化)。考虑到所测到的电压值非常接近高压二极管的压降,因此流过高压二极管上的电流变化引起的二极管压降不能被忽略,本申请采用恒流模块,确保高压二极管压降恒定。
3、本申请中所用元器件寄生参数小,可减小电路震荡。本申请利用寄生参数相对较小的高压二极管(如碳化硅肖特基二极管)作为阻挡高压的元器件,钳位电路中另外的元器件都可以是小型号,减小寄生参数,并且实现功能所需要的元器件相对较少,可以将因添加钳位电路而引入的震荡降到最低。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种氮化镓器件动态电阻测试电路,包括:用于驱动待测器件的栅驱动模块(3)、钳位电路(1)和负载模块(2),所述负载模块(2)的另一端连接电源DC,所述钳位电路(1)包括稳压模块(12)和高压二极管D1,高压二极管D1的阳极与稳压模块(12)一端连接,高压二极管D1的阴极与所述负载模块(2)的一端连接并用于连接被测氮化镓器件的漏电极,稳压模块(12)的另一端接电源地并用于连接被测氮化镓器件的源电极,所述钳位电路(1)还包括恒流模块(11),所述恒流模块(11)输出的恒定电流经过高压二极管D1流向被测氮化镓器件。
  2. 根据权利要求1所述的氮化镓器件动态电阻测试电路,其中,在所述稳压模块(12)上并联有滤波模块(13)。
  3. 根据权利要求2所述的氮化镓器件动态电阻测试电路,其中,滤波模块为电容C1、电阻R2串联回路,容值、阻值可调。
  4. 根据权利要求1所述的氮化镓器件动态电阻测试电路,其中,负载模块(2)为钳位感性负载,包括功率电感L1和续流二极管D2。
  5. 根据权利要求1所述的氮化镓器件动态电阻测试电路,其中,钳位电路中的高压二极管D1为600V碳化硅肖特基二极管。
  6. 根据权利要求1所述的氮化镓器件动态电阻测试电路,其中,稳压模块(12)由稳压二极管Z1和电阻R1串联组成。
  7. 根据权利要求1所述的氮化镓器件动态电阻测试电路,其中,恒流模块采用恒定电流源I source,恒流值为10mA,并串联普通二极管D3,用于防止电流回冲并保护设备。
  8. 一种氮化镓器件动态电阻测试电路,包括:
    栅驱动模块(3),用于驱动被测氮化镓器件Q1;
    电源;以及
    钳位电路(1),包括稳压模块(12)、恒流模块(11)及二极管D1,所 述二极管D1的阳极与所述稳压模块(12)的一端连接,所述二极管D1的阴极与所述电源的一端连接并用于连接所述被测氮化镓器件Q1的漏电极,所述稳压模块(12)的另一端接电源地并用于连接所述被测氮化镓器件Q1的源电极,所述恒流模块(11)输出的恒定电流经过所述二极管D1流向被测氮化镓器件Q1。
  9. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,还包括负载模块(2),所述负载模块(2)的一端连接所述电源,另一端连接所述二极管D1和所述漏电极;所述负载模块(2)为钳位感性负载,包括相互并联的功率电感L1和续流二极管D2。
  10. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,所述钳位电路(1)还包括与所述稳压模块(12)并联的滤波模块(13)。
  11. 根据权利要求10所述的氮化镓器件动态电阻测试电路,其中,所述滤波模块(13)包括相互串联的电容C1和电阻R2。
  12. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,所述二极管D1为600V碳化硅肖特基二极管。
  13. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,所述稳压模块(12)包括相互串联的稳压二极管Z1和电阻R1。
  14. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,所述恒流模块(11)包括相互串联的恒定电流源I source和二极管D3。
  15. 根据权利要求8所述的氮化镓器件动态电阻测试电路,其中,所述恒流模块(11)包括相互串联的恒定电压源V source、二极管D3以及恒流二极管TD1。
PCT/CN2019/126469 2018-12-24 2019-12-19 一种氮化镓器件动态电阻测试电路 WO2020135197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811583665.4 2018-12-24
CN201811583665.4A CN111426928B (zh) 2018-12-24 2018-12-24 一种氮化镓器件动态电阻测试电路

Publications (1)

Publication Number Publication Date
WO2020135197A1 true WO2020135197A1 (zh) 2020-07-02

Family

ID=71126072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126469 WO2020135197A1 (zh) 2018-12-24 2019-12-19 一种氮化镓器件动态电阻测试电路

Country Status (2)

Country Link
CN (1) CN111426928B (zh)
WO (1) WO2020135197A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230104095A1 (en) * 2021-10-04 2023-04-06 Nanya Technology Corporation Testing device and method for testing devices under test

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394228B (zh) * 2020-11-17 2022-09-06 青岛聚能创芯微电子有限公司 一种氮化镓功率器件导通电阻测试电路
US20240168079A1 (en) * 2022-03-03 2024-05-23 Innoscience (suzhou) Semiconductor Co., Ltd. Apparatus and method for measuring dynamic on-resistance of nitride-based switching device
CN114740297B (zh) * 2022-04-12 2022-12-02 湖南炬神电子有限公司 一种功率器件测试方法及系统
CN115267466B (zh) * 2022-05-11 2023-04-28 西安电子科技大学 一种氮化镓功率器件动态工况下特性研究的测试系统
CN115728693B (zh) * 2022-11-11 2023-08-25 佛山市联动科技股份有限公司 一种功率器件测试装置及其校准设备与方法
CN116223916B (zh) * 2023-05-08 2023-08-04 佛山市联动科技股份有限公司 一种动态导通电阻的测试装置及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816069A (zh) * 2007-10-08 2010-08-25 英特赛尔美国股份有限公司 可调电压隔离地对地esd钳位电路
CN103837731A (zh) * 2012-11-22 2014-06-04 富士通株式会社 用于测量晶体管的特性的电压检测电路和方法
US20160069946A1 (en) * 2014-09-05 2016-03-10 Kabushiki Kaisha Toshiba Semiconductor inspection apparatus
CN106154044A (zh) * 2016-06-18 2016-11-23 温州大学 一种功率二极管正向动态电阻测试装置
CN207440181U (zh) * 2017-11-27 2018-06-01 云南电网有限责任公司瑞丽供电局 一种高压断路器动态电阻测量系统
CN108738350A (zh) * 2016-03-02 2018-11-02 德克萨斯仪器股份有限公司 高分辨率功率电子器件测量

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553395B2 (ja) * 2007-06-15 2010-09-29 シャープ株式会社 オシロスコープおよびそれを用いた半導体評価装置
CN101404406B (zh) * 2008-07-15 2011-08-03 无锡华润上华科技有限公司 一种锂电池保护电路
CN102495265B (zh) * 2011-11-30 2014-05-21 杭州士兰微电子股份有限公司 一种mosfet开关元件的电流采样电路
CN202383186U (zh) * 2011-11-30 2012-08-15 杭州士兰微电子股份有限公司 一种mosfet开关元件的电流采样电路
CN102545852B (zh) * 2012-01-17 2013-12-18 南京航空航天大学 应用于固态功率控制器的泄漏钳位电路及其控制方法
CN104142701B (zh) * 2013-05-06 2016-08-24 意法半导体研发(深圳)有限公司 限流电路
US20150028922A1 (en) * 2013-05-29 2015-01-29 Texas Instruments Incorporated Transistor switch with temperature compensated vgs clamp
US10677846B2 (en) * 2015-06-04 2020-06-09 Hydra-Electric Company Electronic switch
CN105811765B (zh) * 2016-04-19 2018-08-03 南京航空航天大学 一种用于在线测量功率晶体管导通压降的电压钳位电路
CN107907743B (zh) * 2017-11-15 2021-04-06 华润微电子(重庆)有限公司 一种器件导通时的电阻的测试方法
CN108710076B (zh) * 2018-05-24 2020-06-30 南京南大光电工程研究院有限公司 动态导通阻抗自动化提取电路及自动化提取方法
CN108718150B (zh) * 2018-05-28 2019-08-09 南京南大光电工程研究院有限公司 基于AlGaN/GaN HEMT器件的高频高压动态导通阻抗提取电路及提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816069A (zh) * 2007-10-08 2010-08-25 英特赛尔美国股份有限公司 可调电压隔离地对地esd钳位电路
CN103837731A (zh) * 2012-11-22 2014-06-04 富士通株式会社 用于测量晶体管的特性的电压检测电路和方法
US20160069946A1 (en) * 2014-09-05 2016-03-10 Kabushiki Kaisha Toshiba Semiconductor inspection apparatus
CN108738350A (zh) * 2016-03-02 2018-11-02 德克萨斯仪器股份有限公司 高分辨率功率电子器件测量
CN106154044A (zh) * 2016-06-18 2016-11-23 温州大学 一种功率二极管正向动态电阻测试装置
CN207440181U (zh) * 2017-11-27 2018-06-01 云南电网有限责任公司瑞丽供电局 一种高压断路器动态电阻测量系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230104095A1 (en) * 2021-10-04 2023-04-06 Nanya Technology Corporation Testing device and method for testing devices under test

Also Published As

Publication number Publication date
CN111426928B (zh) 2021-08-20
CN111426928A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2020135197A1 (zh) 一种氮化镓器件动态电阻测试电路
Gelagaev et al. A fast voltage clamp circuit for the accurate measurement of the dynamic on-resistance of power transistors
US9575113B2 (en) Insulated-gate bipolar transistor collector-emitter saturation voltage measurement
Foulkes et al. Developing a standardized method for measuring and quantifying dynamic on-state resistance via a survey of low voltage GaN HEMTs
US9712149B2 (en) Semiconductor device
EP2521259A2 (en) Semiconductor device and electronic device
Yang et al. Design of a fast dynamic on-resistance measurement circuit for GaN power HEMTs
TWI494732B (zh) 電流控制電路和電流控制方法
WO2020228468A1 (zh) 降低功率器件反向恢复电流的栅极驱动电路
CN111337807B (zh) 开关器件的高频高压动态导通电阻测试电路及测量方法
Li et al. Accurate measurement of dynamic on-state resistances of GaN devices under reverse and forward conduction in high frequency power converter
Lei et al. Precise extraction of dynamic R dson under high frequency and high voltage by a double-diode-isolation method
US11698404B2 (en) Universal switching platform and method for testing dynamic characteristics of a device
CN109617038B (zh) 一种多量程电压采集装置的输入保护电路
JP2019110699A (ja) 駆動装置および半導体装置
CN108683334B (zh) 一种用于浮动地线buck型开关电源的电源开关状态检测电路
Everts et al. A hard switching VIENNA boost converter for characterization of AlGaN/GaN/AlGaN power DHFETs
Meng et al. A Highly Precise On-State Voltage Measurement Circuit With Dual Current Sources for Online Operation of SiC MOSFETs
Cao et al. A new measurement circuit to evaluate current collapse effect of GaN HEMTs under practical conditions
Gelagaev et al. A novel voltage clamp circuit for the measurement of transistor dynamic on-resistance
CN210442473U (zh) 一种瞬态热阻测试电路
CN110244211B (zh) 一种瞬态热阻测试电路
Rąbkowski et al. Experimental evaluation of GaN Gate Injection Transistors
Wiesemann et al. Switching characteristics of a 1.2 kV sic mosfet module using a controllable current-sourced gate driver
CN115605769B (zh) 用于测量氮化物基半导体器件的动态导通电阻的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903701

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903701

Country of ref document: EP

Kind code of ref document: A1