WO2020135163A1 - 基于自由空间光通信的通信终端、通信装置和通信系统 - Google Patents
基于自由空间光通信的通信终端、通信装置和通信系统 Download PDFInfo
- Publication number
- WO2020135163A1 WO2020135163A1 PCT/CN2019/126032 CN2019126032W WO2020135163A1 WO 2020135163 A1 WO2020135163 A1 WO 2020135163A1 CN 2019126032 W CN2019126032 W CN 2019126032W WO 2020135163 A1 WO2020135163 A1 WO 2020135163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- optical
- lens module
- optical signal
- control unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/1141—One-way transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/1143—Bidirectional transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/671—Optical arrangements in the receiver for controlling the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0015—Construction using splitting combining
Definitions
- the present application belongs to the field of information transmission technology, and specifically relates to a communication terminal, communication device and communication system based on free space optical communication.
- radio signal transmission technologies such as WIFI and Bluetooth can alleviate this inconvenience to a certain extent, existing radio signal transmission technologies have obvious limitations in high-speed signal transmission.
- the present application provides a communication terminal, communication device, and communication system based on free-space optical communication.
- the present application provides a communication terminal based on free-space optical communication, which includes an optical receiving unit and a first switching control unit; the optical receiving unit is used to receive light sent by a communication device Signal, the first switching control unit sets the communication device as a switching destination according to the optical signal;
- the light receiving unit includes a collimating lens module, and an array lens module, a photodiode, and an electrical signal amplification chip provided on the substrate;
- the collimating lens module is used to receive the optical signal sent by the communication device to the free space, and the received optical signal is shaped and sent to the array lens module; the array lens module is used to The received optical signal is sorted and sent to the photodiode.
- the photodiode is used to convert the optical signal into an electrical signal and then sent to the electrical signal amplifying chip for amplification.
- the electrical signal amplifying chip amplifies the output signal Sent to an external circuit.
- the communication terminal based on free space optical communication further includes an optical fiber, and the array lens module is connected to the collimating lens module through the optical fiber.
- the array lens module uses one lens, and when the optical path is turned, the lens includes a first surface, a second surface, and a third surface;
- the optical signal collimated by the collimating lens module enters the lens through the third surface of the lens, and after being reflected by the second surface, transmits the lens out of the first surface and enters the lens The photodiode.
- the angle between the second surface of the lens and the incident direction of the optical signal is 45°.
- the lens when the array lens module adopts one lens, and when the light path is direct, the lens includes a fourth surface and a fifth surface;
- the optical signal collimated by the collimating lens module enters the lens through the fifth surface of the lens, transmits the lens through the fourth surface, and enters the photodiode.
- the communication terminal based on free space optical communication further includes a demultiplexer, and the demultiplexer is used to separate the received one optical signal into multiple optical signals for transmission.
- the present application further provides a communication device based on free space optical communication, which includes a light emitting unit and a second switching control unit; the light emitting unit is used to emit an optical signal.
- the second switching control unit is used to control the establishment of a connection with the communication terminal that receives the optical signal;
- the light emitting unit includes a laser driving chip, a laser, an array lens module and a collimating lens module provided on the substrate, the laser driving chip is connected to the laser, and the laser is connected to the array lens module; the array The lens module is directly connected to the collimating lens module or connected to the collimating lens module through an optical fiber;
- the electrical signal externally loaded with information is input to the laser driving chip, and the laser driving chip drives the laser to emit light; the optical signal is sorted by the array lens module through the optical fiber or directly enters the collimating lens module; The collimating lens module collimates the transmitted optical signal and sends it into free space for transmission.
- the communication device based on free space optical communication further includes a multiplexer, and the multiplexer is used for synthesizing multiple optical signals into one optical signal for transmission.
- the communication device based on free space optical communication further includes an optical fiber, and the array lens module is connected to the collimating lens module through the optical fiber.
- the present application also provides a communication system, which includes a communication terminal, a plurality of communication devices, and a master control device;
- the first communication device of the plurality of communication devices includes an optical transmission unit and a second switching control unit, the optical transmission unit is used to transmit an optical signal, and the second switching control unit controls and receives the optical signal
- the communication terminal establishes a connection;
- the communication terminal includes an optical receiving unit and a first switching control unit, the optical receiving unit is configured to receive an optical signal emitted by the first communication device, and the first switching control unit is configured to convert the first signal according to the optical signal
- the communication device is set as the switching destination;
- the master control device includes a third handover control unit for receiving a handover request of the first communication device from a plurality of communication devices, the handover request including identification information of the communication terminal , The third switching control unit sends a connection instruction to the first switching control unit according to the switching request.
- the present application comprehensively coordinates and controls the communication device and the communication terminal through the master control device, the communication device emits an optical signal, and the communication terminal receives the optical signal.
- the communication device emits an optical signal
- the communication terminal receives the optical signal.
- communication between intelligent terminals is achieved, and compared with existing radio signal transmission methods, optical signal transmission can meet the needs of high-speed signal transmission.
- FIG. 1 is a schematic diagram of a communication system based on free space optical communication provided by a specific embodiment of the present application.
- FIG. 2 is a schematic diagram of an embodiment of an array lens module in a communication system based on free space optical communication provided by a specific embodiment of the present application.
- FIG. 3 is a schematic diagram of another embodiment of an array lens module in a communication system for free space optical communication provided by a specific embodiment of the present application.
- plural herein includes “two” and “more than two”; with regard to “plurality” herein includes “two groups” and “more than two groups”.
- Free space optical communication is a two-way communication technology that realizes point-to-point, point-to-multipoint or multi-point-to-multipoint voice, data, and image information in the atmospheric channel by laser.
- it is an atmospheric wireless laser communication technology that combines the advantages of optical fiber communication and microwave communication. It has the advantages of large communication capacity and high-speed transmission, and does not require the laying of optical fibers.
- FIG. 1 is a schematic diagram of a communication system based on free space optical communication provided by this application.
- the communication terminal 10 based on free space optical communication includes a light receiving unit 11 and a first switching control unit 12.
- the optical receiving unit 11 is used to receive the optical signal sent by the communication device 20, and the first switching control unit 12 sets the communication device 20 as a switching destination according to the optical signal.
- the light receiving unit 11 includes a collimating lens module 111, an array lens module 112, a photodiode 113, and an electrical signal amplifying chip 114 provided on the substrate.
- the substrate includes but is not limited to a PCB board, a ceramic substrate and the like.
- the collimating lens module 111 is used to receive the optical signal sent by the communication device 20 to the free space, shape the received optical signal, and send it to the array lens module 112.
- the array lens module 112 is used to sort the received optical signal and send it to the photodiode 113.
- the photodiode 113 is used to convert the optical signal into an electrical signal and then sent to the electrical signal amplifying chip 114 for amplification.
- the electrical signal amplifying chip 114 The amplified output signal can be sent to an external circuit through the pin.
- both the array lens module 112 and the collimating lens module 111 can transmit optical signals bidirectionally, and both can unidirectionally transmit optical signals.
- the array lens module 112 can turn or direct the light path.
- the collimating lens module 111 uses one or more converging lenses.
- the array lens module 112 may use one or more lenses.
- the lens includes a first surface 1121, a second surface 1122, and a third surface 1123.
- the optical signal collimated by the collimating lens module 111 enters the lens through the third surface 1123 of the lens, and after being reflected by the second surface 1122, transmits the lens out of the first surface 1121 and enters the photodiode 113.
- the angle between the second surface 1122 of the lens and the incident direction of the optical signal is 45°.
- FIG. 3 is a schematic diagram of another embodiment of the array lens module 112 in the communication terminal 10 based on free-space optical communication of the present application.
- the lens includes a fourth surface 1124 and a fifth surface 1125.
- the optical signal collimated by the collimating lens module 111 enters the lens through the fifth surface 1125 of the lens, transmits the lens through the fourth surface 1124, and enters the photodiode 113.
- the communication terminal 10 based on free-space optical communication provided in this embodiment is not limited to smart phones, notebook computers, computers, smart watches, and so on.
- the collimator lens module 111 in the communication terminal 10 based on free-space optical communication provided in the embodiments of the present application is directly connected to the array lens module 112 for optical signal reception, and can replace copper wires, backplanes, etc. to improve the communication rate , To reduce upgrade costs; it can also simplify the design to meet different application needs.
- the communication terminal 10 based on free space optical communication includes a light receiving unit 11 and a first switching control unit 12.
- the optical receiving unit 11 is used to receive the optical signal sent by the communication device 20, and the first switching control unit 12 sets the communication device 20 as a switching destination according to the optical signal.
- the light receiving unit 11 includes a collimating lens module 111, an optical fiber, an array lens module 112, a photodiode 113, and an electrical signal amplifying chip 114 provided on a substrate.
- the collimating lens module 111 is connected to the array lens module 112 through an optical fiber, one end of the photodiode 113 is connected to the array lens module 112, and the other end is connected to the electrical signal amplifying chip 114.
- the substrate includes but is not limited to a PCB board, a ceramic substrate and the like.
- the collimating lens module 111 is used to receive the optical signal sent by the communication device 20 to the free space, shape the received optical signal, and send it to the array lens module 112 through the optical fiber.
- the array lens module 112 is used to sort the received optical signal and send it to the photodiode 113.
- the photodiode 113 is used to convert the optical signal into an electric signal and then sent to the electric signal amplifying chip 114 for amplification.
- the electric signal amplifying chip 114 The amplified output signal can be sent to an external circuit through the pin.
- both the array lens module 112 and the collimating lens module 111 can transmit optical signals bidirectionally, and both can unidirectionally transmit optical signals.
- the array lens module 112 can turn or direct the light path.
- the structures adopted by the array lens module 112 and the collimating lens module 111 are the same as those in the first embodiment, and will not be repeated here.
- the communication terminal 10 based on free-space optical communication provided in this embodiment is also not limited to smart phones, notebook computers, computers, smart watches, and so on.
- the collimating lens module 111 in the communication terminal 10 based on free-space optical communication is connected to the array lens module 112 through an optical fiber, used for optical signal reception, and can replace the connection of copper wires, backplanes, etc. to improve communication Speed, reduce upgrade costs; also simplify the design to meet different application needs.
- the communication terminal 10 based on free-space optical communication further includes a demultiplexer, and the demultiplexer uses a WDM device that separates optical wavelengths.
- the demultiplexer is used to separate the received optical signal into multiple optical signals for transmission.
- the demultiplexer is disposed between the array lens module 112 and the photodiode 113.
- the communication terminal 10 based on free-space optical communication further includes an alignment component.
- the alignment component may be a positioning pin or a positioning hole, and the alignment component is provided on the substrate. The arrangement of the alignment component facilitates the alignment of the communication terminal 10 and the communication device 20, thereby contributing to the efficiency of optical communication.
- a positioning pin is provided on the substrate of the light-receiving unit 11 of the communication terminal 10, and a positioning hole is provided on the substrate of the light-emitting unit of the communication device 20.
- the positioning pin and the positioning hole are used in conjunction, so that the light-receiving unit 11 of the communication terminal 10 Align with the light emitting unit on the communication device 20.
- An embodiment of the present application further provides a communication device 20, which includes a light emitting unit 21 and a second switching control unit 22.
- the optical transmission unit 21 is used to transmit an optical signal
- the second switching control unit 22 is used to control the establishment of a connection with the communication terminal 10 that receives the optical signal.
- the light emitting unit 21 includes a laser driving chip 211, a laser 212, an array lens module 112, and a collimating lens module 111 provided on a substrate, wherein the laser driving chip 211 is connected to the laser 212, and the laser 212 is connected to the array lens module 112 connection.
- the array lens module 112 is directly connected to the collimating lens module 111 or is connected to the collimating lens module 111 through an optical fiber.
- the substrate includes but is not limited to a PCB board, a ceramic substrate and the like.
- the external electrical signal carrying information is input to the laser driving chip 211, and the laser driving chip 211 drives the laser 212 to emit light.
- the optical signal is sorted by the array lens module 112 and then enters the collimating lens module 111 through an optical fiber or directly.
- the collimating lens module 111 collimates the transmitted optical signal and sends it to free space for transmission.
- both the array lens module 112 and the collimating lens module 111 can transmit optical signals bidirectionally, and both can unidirectionally transmit optical signals.
- the array lens module 112 can turn or direct the light path.
- the structures adopted by the array lens module 112 and the collimating lens module 111 are the same as those in the first embodiment, and will not be repeated here.
- the array lens module 112 uses a lens and turns the optical path, the emitted optical signal enters the lens through the first surface 1121 of the lens, and after being reflected by the second surface 1122, the third surface 1123 transmits the lens out of the lens and enters the quasi Straight lens module 111.
- the emitted optical signal enters the lens through the fourth surface 1124 of the lens, transmits the lens through the fifth surface 1125, and directly enters the collimating lens module 111.
- the light emitting unit 21 in the communication device 20 based on free space optical communication provided by the embodiment of the present application is directly or through an optical fiber connected to the collimating lens module 111 for optical signal transmission, and can replace the connection of copper wires, backplanes, etc.
- the communication rate reduces the upgrade cost; it can also simplify the design to meet different application requirements.
- the communication device 20 based on free-space optical communication provided in this embodiment is not limited to smart phones, notebook computers, computers, and smart watches.
- the communication device 20 based on free-space optical communication further includes a multiplexer, which uses a WDM device that synthesizes the optical wavelength.
- a multiplexer is used to combine multiple optical signals into one optical signal for transmission.
- the demultiplexer is provided between the laser 212 and the array lens module 112.
- An embodiment of the present application further provides a communication system, which includes a communication terminal 10, a plurality of communication devices 20, and a general control device 30.
- the first communication device 20 of the plurality of communication devices 20 includes a light emitting unit 21 and a second switching control unit 22, the light emitting unit 21 is used to emit an optical signal, and the second switching control unit 22 controls and receives the light
- the signal communication terminal 10 establishes a connection.
- the communication terminal 10 includes an optical receiving unit 11 and a first switching control unit 12, the optical receiving unit 11 is used to receive the optical signal emitted by the first communication device 20, and the first switching control unit 12 is used to convert the first
- the communication device 20 is set as the switching destination.
- the master control device 30 includes a third handover control unit for receiving a handover request of the first communication device 20 from a plurality of communication devices 20, the handover request including identification information of the communication terminal 10, the third The switching control unit sends a connection instruction to the second switching control unit 22 according to the switching request.
- the communication system based on free space communication includes a communication terminal 10, a communication device 20, and a master control device 30.
- the communication system may be integrated together or may be used separately.
- the communication device 20 and the communication terminal 10 are comprehensively coordinated and controlled.
- the communication device 20 emits an optical signal
- the communication terminal 10 receives the optical signal, enabling communication between intelligent terminals without laying a cable.
- optical signal transmission can meet the needs of high-speed signal transmission.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本申请提供一种基于自由空间光通信的通信终端、通信装置和通信系统,通信系统包括通信终端、多个通信装置和总控装置;多个通信装置中的第一通信装置包括光发射单元和第二切换控制单元,光发射单元用于发射光信号,第二切换控制单元控制与接收到光信号的通信终端建立连接;通信终端包括光接收单元和第一切换控制单元,光接收单元用于接收第一通信装置发射的光信号,第一切换控制单元用于根据光信号,将第一通信装置设定为切换目的地;总控装置包括第三切换控制单元,第三切换控制单元用于从多个通信装置中接收第一通信装置的切换请求,切换请求中包含通信终端的身份识别信息,第三切换控制单元根据切换请求向第一切换控制单元发送连接指令。
Description
本申请属于信息传输技术领域,具体涉及一种基于自由空间光通信的通信终端、通信装置和通信系统。
随着通讯领域传输容量的日益增长,传统的传输技术已很难满足传输容量及传输速度的要求。同时,随着各种智能终端计算能力的不断提高以及越来越轻薄便携,传统用于信号传输的线缆的使用对于用户来说越来越不便捷。虽然WIFI、蓝牙等无线电信号传输技术在一定程度上能够缓解这种不便,但是现有的无线电信号传输技术在高速信号传输上具有明显的局限性。
发明内容
为至少在一定程度上克服相关技术中存在的问题,本申请提供了一种基于自由空间光通信的通信终端、通信装置和通信系统。
根据本申请实施例的第一方面,本申请提供了一种基于自由空间光通信的通信终端,其包括光接收单元和第一切换控制单元;所述光接收单元用于接收通信装置发送的光信号,所述第一切换控制单元根据所述光信号将所述通信装置设定为切换目的地;
所述光接收单元包括准直透镜模组、以及设置在基板上的阵列透镜模组、光电二极管和电信号放大芯片;
所述准直透镜模组用于接收通信装置发送至自由空间中的光信号,并对接收到的光信号进行整型后送入所述阵列透镜模组;所述阵列透镜模组用于对接收到的光信号进行整理后送入所述光电二极管,所述光电二极管用于将光信号转换成电信号后再送入所述电信号放大芯片进行放大,所述电信号放大芯片放大输出的信号送入外部电路。
进一步地,所述基于自由空间光通信的通信终端还包括光纤,所述阵列 透镜模组通过所述光纤与所述准直透镜模组连接。
进一步地,所述阵列透镜模组采用一个透镜,且对光路实现转折时,所述透镜包括第一表面、第二表面和第三表面;
经所述准直透镜模组准直后的光信号通过所述透镜的所述第三表面进入所述透镜,经所述第二表面反射后由所述第一表面透射出所述透镜,进入所述光电二极管。
更进一步地,所述透镜的第二表面与光信号的入射方向之间的夹角为45°。
进一步地,所述阵列透镜模组采用一个透镜,且对光路实现直射时,所述透镜包括第四表面和第五表面;
经所述准直透镜模组准直后的光信号通过所述透镜的所述第五表面进入所述透镜,经所述第四表面透射出所述透镜,进入所述光电二极管。
进一步地,所述基于自由空间光通信的通信终端还包括分波器,所述分波器用于将接收到的一路光信号分离成多路光信号进行传输。
根据本申请实施例的第二方面,本申请还提供了一种基于自由空间光通信的通信装置,其包括光发射单元和第二切换控制单元;所述光发射单元用于发射光信号,所述第二切换控制单元用于控制与接收到所述光信号的通信终端建立连接;
所述光发射单元包括设置在基板上的激光器驱动芯片、激光器、阵列透镜模组和准直透镜模组,所述激光器驱动芯片与激光器连接,所述激光器与阵列透镜模组连接;所述阵列透镜模组直接与准直透镜模组连接或者通过光纤与准直透镜模组连接;
外部载有信息的电信号输入至所述激光器驱动芯片,所述激光器驱动芯片驱动所述激光器发光;光信号通过所述阵列透镜模组整理后通过光纤或直接进入所述准直透镜模组;所述准直透镜模组对传输过来的光信号进行准直后送入自由空间进行传输。
进一步地,所述基于自由空间光通信的通信装置还包括合波器,所述合 波器用于将多路光信号合成为一路光信号进行发射。
进一步地,所述基于自由空间光通信的通信装置还包括光纤,所述阵列透镜模组通过所述光纤与所述准直透镜模组连接。
根据本申请实施例的第三方面,本申请还提供了一种通信系统,其包括通信终端、多个通信装置和总控装置;
所述多个通信装置中的第一通信装置包括光发射单元和第二切换控制单元,所述光发射单元用于发射光信号,所述第二切换控制单元控制与接收到所述光信号的通信终端建立连接;
所述通信终端包括光接收单元和第一切换控制单元,所述光接收单元用于接收第一通信装置发射的光信号,所述第一切换控制单元用于根据所述光信号,将第一通信装置设定为切换目的地;
所述总控装置包括第三切换控制单元,所述第三切换控制单元用于从多个通信装置中接收第一通信装置的切换请求,所述切换请求中包含所述通信终端的身份识别信息,所述第三切换控制单元根据所述切换请求向所述第一切换控制单元发送连接指令。
根据本申请的上述具体实施方式可知,至少具有以下有益效果:本申请通过总控装置对通信装置和通信终端进行综合协调、控制,通信装置发射光信号,通信终端接收光信号,能够在不铺设线缆的情况下,实现智能终端之间的通信,而且与现有的无线电信号传输方式相比,光信号的传输能够满足高速信号传输的需求。
应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本申请所欲主张的范围。
下面的所附附图是本申请的说明书的一部分,其示出了本申请的实施例,所附附图与说明书的描述一起用来说明本申请的原理。
图1为本申请具体实施方式提供的一种基于自由空间光通信的通信系统的原理图。
图2为本申请具体实施方式提供的一种基于自由空间光通信的通信系统中阵列透镜模组的一个实施例的示意图。
图3为本申请具体实施方式提供的一种自由空间光通信的通信系统中阵列透镜模组的另一个实施例的示意图。
为使本申请实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本申请所揭示内容的精神,任何所属技术领域技术人员在了解本申请内容的实施例后,当可由本申请内容所教示的技术,加以改变及修饰,其并不脱离本申请内容的精神与范围。
本申请的示意性实施例及其说明用于解释本申请,但并不作为对本申请的限定。另外,在附图及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
关于本文中所使用的“第一”、“第二”、…等,并非特别指称次序或顺位的意思,也非用以限定本申请,其仅为了区别以相同技术用语描述的元件或操作。
关于本文中所使用的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本创作。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
关于本文中所使用的“及/或”,包括所述事物的任一或全部组合。
关于本文中的“多个”包括“两个”及“两个以上”;关于本文中的“多组”包括“两组”及“两组以上”。
关于本文中所使用的用语“大致”、“约”等,用以修饰任何可以细微变化的数量或误差,但这些微变化或误差并不会改变其本质。一般而言,此类用语所修饰的细微变化或误差的范围在部分实施例中可为20%,在部分实施例中可为10%,在部分实施例中可为5%或是其他数值。本领域技术人员应当了解,前述提及的数值可依实际需求而调整,并不以此为限。
某些用以描述本申请的用词将于下或在此说明书的别处讨论,以提供本领域技术人员在有关本申请的描述上额外的引导。
自由空间光通信是一种通过激光在大气信道中实现点对点、点对多点或多点对多点间语音、数据、图像信息的双向通信技术。简言之,就是一种大气无线激光通信技术,其结合了光纤通信与微波通信的优点,既具有大通信容量、高速传输的优点,又不需要铺设光纤。
实施例一
图1为本申请提供的一种基于自由空间光通信的通信系统的原理图。如图1所示,基于自由空间光通信的通信终端10包括光接收单元11和第一切换控制单元12。其中,光接收单元11用于接收通信装置20发送的光信号,第一切换控制单元12根据所述光信号将所述通信装置20设定为切换目的地。光接收单元11包括准直透镜模组111、以及设置在基板上的阵列透镜模组112、光电二极管113和电信号放大芯片114。其中,基板包括但不限于PCB板、陶瓷基板等。
准直透镜模组111用于接收通信装置20发送至自由空间中的光信号,并对接收到的光信号进行整型后送入阵列透镜模组112。阵列透镜模组112用于对接收到的光信号进行整理后送入光电二极管113,光电二极管113用于将光信号转换成电信号后再送入电信号放大芯片114进行放大,电信号放大芯片114放大输出的信号可以通过引脚送入外部电路。
在本实施例中,阵列透镜模组112和准直透镜模组111都可以对光信号进行双向传输,也都可以对光信号进行单向传输。阵列透镜模组112可以对光路实现转折或直射。
在本实施例中,准直透镜模组111采用一个或多个聚合透镜。
图2为本申请基于自由空间光通信的通信终端10中阵列透镜模组112的一个实施例的示意图。阵列透镜模组112可以采用一个或多个透镜。当阵列透镜模组112采用一个透镜,且对光路实现转折时,如图2所示,透镜包括第一表面1121、第二表面1122和第三表面1123。接收信号时,经准直透 镜模组111准直后的光信号通过透镜的第三表面1123进入透镜,经第二表面1122反射后由第一表面1121透射出透镜,进入光电二极管113。优选地,透镜的第二表面1122与光信号的入射方向之间的夹角为45°。
图3为本申请基于自由空间光通信的通信终端10中阵列透镜模组112的另一个实施例的示意图。当阵列透镜模组112采用一个透镜,且对光路实现直射时,如图3所示,透镜包括第四表面1124和第五表面1125。接收信号时,经准直透镜模组111准直后的光信号通过透镜的第五表面1125进入透镜,经第四表面1124透射出透镜,进入光电二极管113。
本实施例提供的基于自由空间光通信的通信终端10不限于智能手机、笔记本电脑、计算机和智能手表等。
本申请实施例提供的基于自由空间光通信的通信终端10中准直透镜模组111直接与阵列透镜模组112连接,用于光信号接收,能够取代铜线、背板等连接,提高通信速率,降低升级成本;还能够简化设计,满足不同的应用需求。
实施例二
如图1所示,基于自由空间光通信的通信终端10包括光接收单元11和第一切换控制单元12。其中,光接收单元11用于接收通信装置20发送的光信号,第一切换控制单元12根据所述光信号将所述通信装置20设定为切换目的地。光接收单元11包括准直透镜模组111、光纤以及设置在基板上的阵列透镜模组112、光电二极管113和电信号放大芯片114。准直透镜模组111通过光纤与阵列透镜模组112连接,光电二极管113的一端与阵列透镜模组112连接,其另一端与电信号放大芯片114连接。其中,基板包括但不限于PCB板、陶瓷基板等。
准直透镜模组111用于接收通信装置20发送至自由空间中的光信号,并对接收到的光信号进行整型后通过光纤送入阵列透镜模组112。阵列透镜模组112用于对接收到的光信号进行整理后送入光电二极管113,光电二极管113用于将光信号转换成电信号后再送入电信号放大芯片114进行放大, 电信号放大芯片114放大输出的信号可以通过引脚送入外部电路。
在本实施例中,阵列透镜模组112和准直透镜模组111都可以对光信号进行双向传输,也都可以对光信号进行单向传输。阵列透镜模组112可以对光路实现转折或直射。
在本实施例中,阵列透镜模组112和准直透镜模组111所采用的结构均与实施例一中相同,在此不再赘述。
本实施例提供的基于自由空间光通信的通信终端10也不限于智能手机、笔记本电脑、计算机和智能手表等。
本申请实施例提供的基于自由空间光通信的通信终端10中准直透镜模组111通过光纤与阵列透镜模组112连接,用于光信号接收,能够取代铜线、背板等连接,提高通信速率,降低升级成本;还能够简化设计,满足不同的应用需求。
实施例三
在上述实施例一和实施例二的基础上,基于自由空间光通信的通信终端10还包括分波器,分波器采用对光波长进行分离的WDM器件。分波器用于将接收到的一路光信号分离成多路光信号进行传输。具体地,分波器设置在阵列透镜模组112与光电二极管113之间。
在上述实施例一和实施例二的基础上,基于自由空间光通信的通信终端10还包括对准组件,对准组件可以为定位销或定位孔,对准组件设置在基板上。对准组件的设置便于通信终端10与通信装置20进行对准从而有利于光通信效率。
具体使用时,通信终端10的光接收单元11的基板上设置定位销,通信装置20的光发射单元的基板上设置定位孔,定位销和定位孔配合使用,使得通信终端10的光接收单元11与通信装置20上的光发射单元进行对准。
实施例四
本申请实施例还提供了一种通信装置20,其包括光发射单元21和第二切换控制单元22。其中,光发射单元21用于发射光信号,第二切换控制单 元22用于控制与接收到所述光信号的通信终端10建立连接。光发射单元21包括设置在基板上的激光器驱动芯片211、激光器212、阵列透镜模组112和准直透镜模组111,其中,激光器驱动芯片211与激光器212连接,激光器212与阵列透镜模组112连接。阵列透镜模组112直接与准直透镜模组111连接或者通过光纤与准直透镜模组111连接。其中,基板包括但不限于PCB板、陶瓷基板等。
外部载有信息的电信号输入至激光器驱动芯片211,激光器驱动芯片211驱动激光器212发光。光信号通过阵列透镜模组112整理后通过光纤或直接进入准直透镜模组111。准直透镜模组111对传输过来的光信号进行准直后送入自由空间进行传输。
在本实施例中,阵列透镜模组112和准直透镜模组111都可以对光信号进行双向传输,也都可以对光信号进行单向传输。阵列透镜模组112可以对光路实现转折或直射。
在本实施例中,阵列透镜模组112和准直透镜模组111所采用的结构均与实施例一中相同,在此不再赘述。当阵列透镜模组112采用一个透镜,且对光路实现转折时,发射出的光信号通过透镜的第一表面1121进入透镜,经第二表面1122反射后由第三表面1123透射出透镜,进入准直透镜模组111。
当阵列透镜模组112采用一个透镜,且对光路实现直射时,发射出的光信号通过透镜的第四表面1124进入透镜,经第五表面1125透射出透镜,直接进入准直透镜模组111。
本申请实施例提供的基于自由空间光通信的通信装置20中光发射单元21直接或者通过光纤与准直透镜模组111连接,用于光信号发送,能够取代铜线、背板等连接,提高通信速率,降低升级成本;还能够简化设计,满足不同的应用需求。
本实施例提供的基于自由空间光通信的通信装置20不限于智能手机、笔记本电脑、计算机和智能手表等。
在本实施例中,基于自由空间光通信的通信装置20还包括合波器,合波器采用对光波长进行合成的WDM器件。合波器用于将多路光信号合成为一路光信号进行发射。具体地,分波器设置在激光器212与阵列透镜模组112之间。
实施例五
本申请实施例还提供了一种通信系统,其包括通信终端10、多个通信装置20和总控装置30。其中,多个通信装置20中的第一通信装置20包括光发射单元21和第二切换控制单元22,光发射单元21用于发射光信号,第二切换控制单元22控制与接收到所述光信号的通信终端10建立连接。通信终端10包括光接收单元11和第一切换控制单元12,光接收单元11用于接收第一通信装置20发射的光信号,第一切换控制单元12用于根据所述光信号,将第一通信装置20设定为切换目的地。总控装置30包括第三切换控制单元,第三切换控制单元用于从多个通信装置20中接收第一通信装置20的切换请求,该切换请求中包含通信终端10的身份识别信息,第三切换控制单元根据切换请求向第二切换控制单元22发送连接指令。
基于本申请上述实施例提供的基于自由空间通信的通信系统包括通信终端10、通信装置20和总控装置30,该通信系统可以集成在一起,也可以分开使用。通过总控装置30对通信装置20和通信终端10进行综合协调、控制,通信装置20发射光信号,通信终端10接收光信号,能够在不铺设线缆的情况下,实现智能终端之间的通信,而且与现有的无线电信号传输方式相比,光信号的传输能够满足高速信号传输的需求。
以上所述仅为本申请示意性的具体实施方式,在不脱离本申请的构思和原则的前提下,任何本领域的技术人员所做出的等同变化与修改,均应属于本申请保护的范围。
Claims (10)
- 一种基于自由空间光通信的通信终端,其特征在于,包括光接收单元和第一切换控制单元;所述光接收单元用于接收通信装置发送的光信号,所述第一切换控制单元根据所述光信号将所述通信装置设定为切换目的地;所述光接收单元包括准直透镜模组、以及设置在基板上的阵列透镜模组、光电二极管和电信号放大芯片;所述准直透镜模组用于接收通信装置发送至自由空间中的光信号,并对接收到的光信号进行整型后送入所述阵列透镜模组;所述阵列透镜模组用于对接收到的光信号进行整理后送入所述光电二极管,所述光电二极管用于将光信号转换成电信号后再送入所述电信号放大芯片进行放大,所述电信号放大芯片放大输出的信号送入外部电路。
- 根据权利要求1所述的基于自由空间光通信的通信终端,其特征在于,所述基于自由空间光通信的通信终端还包括光纤,所述阵列透镜模组通过所述光纤与所述准直透镜模组连接。
- 根据权利要求1或2所述的基于自由空间光通信的通信终端,其特征在于,所述阵列透镜模组采用一个透镜,且对光路实现转折时,所述透镜包括第一表面、第二表面和第三表面;经所述准直透镜模组准直后的光信号通过所述透镜的所述第三表面进入所述透镜,经所述第二表面反射后由所述第一表面透射出所述透镜,进入所述光电二极管。
- 根据权利要求3所述的基于自由空间光通信的通信终端,其特征在于,所述透镜的第二表面与光信号的入射方向之间的夹角为45°。
- 根据权利要求1或2所述的基于自由空间光通信的通信终端,其特征在于,所述阵列透镜模组采用一个透镜,且对光路实现直射时,所述透镜包括第四表面和第五表面;经所述准直透镜模组准直后的光信号通过所述透镜的所述第五表面进入所述透镜,经所述第四表面透射出所述透镜,进入所述光电二极管。
- 根据权利要求1或2所述的基于自由空间光通信的通信终端,其特 征在于,所述基于自由空间光通信的通信终端还包括分波器,所述分波器用于将接收到的一路光信号分离成多路光信号进行传输。
- 一种基于自由空间光通信的通信装置,其特征在于,包括光发射单元和第二切换控制单元;所述光发射单元用于发射光信号,所述第二切换控制单元用于控制与接收到所述光信号的通信终端建立连接;所述光发射单元包括设置在基板上的激光器驱动芯片、激光器、阵列透镜模组和准直透镜模组,所述激光器驱动芯片与激光器连接,所述激光器与阵列透镜模组连接;所述阵列透镜模组直接与准直透镜模组连接或者通过光纤与准直透镜模组连接;外部载有信息的电信号输入至所述激光器驱动芯片,所述激光器驱动芯片驱动所述激光器发光;光信号通过所述阵列透镜模组整理后通过光纤或直接进入所述准直透镜模组;所述准直透镜模组对传输过来的光信号进行准直后送入自由空间进行传输。
- 根据权利要求7所述的基于自由空间光通信的通信装置,其特征在于,所述基于自由空间光通信的通信装置还包括合波器,所述合波器用于将多路光信号合成为一路光信号进行发射。
- 根据权利要求7所述的基于自由空间光通信的通信终端,其特征在于,所述基于自由空间光通信的通信装置还包括光纤,所述阵列透镜模组通过所述光纤与所述准直透镜模组连接。
- 一种通信系统,其特征在于,包括通信终端、多个通信装置和总控装置;所述多个通信装置中的第一通信装置包括光发射单元和第二切换控制单元,所述光发射单元用于发射光信号,所述第二切换控制单元控制与接收到所述光信号的通信终端建立连接;所述通信终端包括光接收单元和第一切换控制单元,所述光接收单元用于接收第一通信装置发射的光信号,所述第一切换控制单元用于根据所述光信号,将第一通信装置设定为切换目的地;所述总控装置包括第三切换控制单元,所述第三切换控制单元用于从多个通信装置中接收第一通信装置的切换请求,所述切换请求中包含所述通信终端的身份识别信息,所述第三切换控制单元根据所述切换请求向所述第一切换控制单元发送连接指令。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811603004.3 | 2018-12-26 | ||
CN201811603004.3A CN109586790A (zh) | 2018-12-26 | 2018-12-26 | 基于自由空间光通信的通信终端、通信装置和通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020135163A1 true WO2020135163A1 (zh) | 2020-07-02 |
Family
ID=65932710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/126032 WO2020135163A1 (zh) | 2018-12-26 | 2019-12-17 | 基于自由空间光通信的通信终端、通信装置和通信系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11070291B2 (zh) |
CN (1) | CN109586790A (zh) |
WO (1) | WO2020135163A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617612A (zh) * | 2018-12-25 | 2019-04-12 | 杭州耀芯科技有限公司 | 自由空间中光信号对准传输装置、系统及方法 |
CN109586790A (zh) * | 2018-12-26 | 2019-04-05 | 杭州耀芯科技有限公司 | 基于自由空间光通信的通信终端、通信装置和通信系统 |
CN113132011B (zh) * | 2021-04-20 | 2023-06-20 | 中国科学院半导体研究所 | 用于空间光通信建链的收发机及建链方法 |
CN115378501A (zh) * | 2022-03-31 | 2022-11-22 | 昂纳信息技术(深圳)有限公司 | 一种车载的数据传输装置及车载数据传输系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000078087A (ja) * | 1998-08-27 | 2000-03-14 | Sony Corp | 光空間伝送装置 |
JP2005006063A (ja) * | 2003-06-12 | 2005-01-06 | Nara Institute Of Science & Technology | 光通信用送信装置およびコリメータレンズ |
CN101983347A (zh) * | 2008-01-31 | 2011-03-02 | 惠普开发有限公司 | 自由空间光学互连 |
CN106487448A (zh) * | 2016-09-21 | 2017-03-08 | 深圳市新岸通讯技术有限公司 | 用于自动跟踪fso设备信号光的光学系统及其方法 |
CN107181508A (zh) * | 2016-03-09 | 2017-09-19 | 松下电器(美国)知识产权公司 | 通信终端、通信装置及通信系统 |
CN108768516A (zh) * | 2018-07-02 | 2018-11-06 | 北京卫星信息工程研究所 | 波长快速可调谐的空间激光通信终端 |
CN109061804A (zh) * | 2018-08-17 | 2018-12-21 | 杭州耀芯科技有限公司 | 多路多模光信号聚合、传输、分离装置及方法 |
CN109586790A (zh) * | 2018-12-26 | 2019-04-05 | 杭州耀芯科技有限公司 | 基于自由空间光通信的通信终端、通信装置和通信系统 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6771905B1 (en) * | 1999-06-07 | 2004-08-03 | Corvis Corporation | Optical transmission systems including optical switching devices, control apparatuses, and methods |
US6522437B2 (en) * | 2001-02-15 | 2003-02-18 | Harris Corporation | Agile multi-beam free-space optical communication apparatus |
US20050117904A1 (en) * | 2001-08-01 | 2005-06-02 | Youngwan Choi | Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof |
JP3988606B2 (ja) * | 2002-10-01 | 2007-10-10 | 株式会社日立製作所 | 光スイッチ |
JP2006343223A (ja) * | 2005-06-09 | 2006-12-21 | Yokogawa Electric Corp | フォトダイオードアレイ |
JP2006344915A (ja) * | 2005-06-10 | 2006-12-21 | Sony Corp | 光学ユニット |
JP2006350044A (ja) * | 2005-06-17 | 2006-12-28 | Yokogawa Electric Corp | 光チャネルモニタ |
CN102185652A (zh) * | 2011-04-14 | 2011-09-14 | 北京国科环宇空间技术有限公司 | 无线激光通信传输方法及系统 |
CN103226223A (zh) * | 2013-05-13 | 2013-07-31 | 洛合镭信光电科技(上海)有限公司 | 用于高速并行光收发模块的光引擎微封装结构 |
CN203385903U (zh) * | 2013-08-23 | 2014-01-08 | 福州高意通讯有限公司 | 一种用于40g的光收发组件 |
JP6222182B2 (ja) * | 2015-07-31 | 2017-11-01 | 住友電気工業株式会社 | 波長多重光受信モジュール |
CN207021995U (zh) * | 2017-03-21 | 2018-02-16 | 深圳大学 | 光通信系统及光通信组件 |
US10411797B1 (en) * | 2018-06-08 | 2019-09-10 | SA Photonics, Inc. | Free space optical node with fiber bundle |
-
2018
- 2018-12-26 CN CN201811603004.3A patent/CN109586790A/zh active Pending
-
2019
- 2019-12-17 WO PCT/CN2019/126032 patent/WO2020135163A1/zh active Application Filing
- 2019-12-20 US US16/724,044 patent/US11070291B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000078087A (ja) * | 1998-08-27 | 2000-03-14 | Sony Corp | 光空間伝送装置 |
JP2005006063A (ja) * | 2003-06-12 | 2005-01-06 | Nara Institute Of Science & Technology | 光通信用送信装置およびコリメータレンズ |
CN101983347A (zh) * | 2008-01-31 | 2011-03-02 | 惠普开发有限公司 | 自由空间光学互连 |
CN107181508A (zh) * | 2016-03-09 | 2017-09-19 | 松下电器(美国)知识产权公司 | 通信终端、通信装置及通信系统 |
CN106487448A (zh) * | 2016-09-21 | 2017-03-08 | 深圳市新岸通讯技术有限公司 | 用于自动跟踪fso设备信号光的光学系统及其方法 |
CN108768516A (zh) * | 2018-07-02 | 2018-11-06 | 北京卫星信息工程研究所 | 波长快速可调谐的空间激光通信终端 |
CN109061804A (zh) * | 2018-08-17 | 2018-12-21 | 杭州耀芯科技有限公司 | 多路多模光信号聚合、传输、分离装置及方法 |
CN109586790A (zh) * | 2018-12-26 | 2019-04-05 | 杭州耀芯科技有限公司 | 基于自由空间光通信的通信终端、通信装置和通信系统 |
Also Published As
Publication number | Publication date |
---|---|
US11070291B2 (en) | 2021-07-20 |
US20200213007A1 (en) | 2020-07-02 |
CN109586790A (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020135164A1 (zh) | 自由空间中光信号对准传输装置、系统及方法 | |
WO2020135163A1 (zh) | 基于自由空间光通信的通信终端、通信装置和通信系统 | |
US10547385B2 (en) | Transceiver module including optical sensor at a rotationally symmetric position | |
CN110048778B (zh) | 一种基于bga封装的高速多通道并行光收发模块及测试装置 | |
US20170134090A1 (en) | Handheld terminals, computers, and visible light communication systems | |
WO2020191844A1 (zh) | 一种高速并行双向传输光模块 | |
CN207339856U (zh) | 板间自由空间通信光模块 | |
US12074642B2 (en) | Optical module | |
US20230418006A1 (en) | Optical module | |
WO2018161686A1 (zh) | 内置信号校准电路的双速率dml器件、模块及信号校准方法 | |
CN208140986U (zh) | 一种用于aoc有源光缆的光收发组件 | |
CN210724810U (zh) | 用于小型移动电子设备的外接便携无线光通信组件 | |
US20190190609A1 (en) | Optical Transceiver for Radio Frequency Communication | |
CN201293853Y (zh) | 一种可发射多路光信号的光模块 | |
CN210347999U (zh) | 一种多通道的光收发模块 | |
CN110855369A (zh) | 用于小型移动电子设备的外接便携无线光通信组件及方法 | |
JP2016532156A (ja) | 光電変換器および光電接続装置 | |
CN209281011U (zh) | 多通道光收发装置 | |
CN207021995U (zh) | 光通信系统及光通信组件 | |
CN106526762A (zh) | 一种高效耦合的qsfp 光模块 | |
CN116381872A (zh) | 一种光模块 | |
CN104348552A (zh) | 一种多芯塑料光纤收发模块 | |
CN110651212B (zh) | 一种多通道并行双向器件耦合装置 | |
CN104062718B (zh) | 光电两用连接器 | |
US20200348498A1 (en) | Dual collimating lens configuration for optical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19902955 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19902955 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19902955 Country of ref document: EP Kind code of ref document: A1 |