WO2020135047A1 - 显示设备及其控制方法、控制装置 - Google Patents

显示设备及其控制方法、控制装置 Download PDF

Info

Publication number
WO2020135047A1
WO2020135047A1 PCT/CN2019/124547 CN2019124547W WO2020135047A1 WO 2020135047 A1 WO2020135047 A1 WO 2020135047A1 CN 2019124547 W CN2019124547 W CN 2019124547W WO 2020135047 A1 WO2020135047 A1 WO 2020135047A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
driver
distance
differential signal
display panel
Prior art date
Application number
PCT/CN2019/124547
Other languages
English (en)
French (fr)
Inventor
王明良
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020135047A1 publication Critical patent/WO2020135047A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present application relates to the field of display technology, in particular to a display panel control method, a display device, and a display panel control device.
  • the amplitude of differential signals transmitted in differential traces is generally a fixed value. Due to the different distance between the driver chip and the control unit that sends the differential signal, if the amplitude is set too small, the remote driver chip may have problems with data reception. If the amplitude is set too large, the electromagnetic radiation of the display panel may be exceeded .
  • the present application provides a display panel control method, which is applied to a display panel.
  • the display panel includes at least two drivers and a signal generator connected to each of the drivers, and the signal generator is configured to sequentially output an image differential signal to each
  • the driver and the display panel control method include the following steps:
  • a display panel control method in which a signal generator sequentially outputs an image differential signal to a display panel of at least two drivers connected thereto, determines the current received image differential signal by the signal receiving state parameter of each driver
  • the driver acts as a target driver.
  • Drivers that are different from the signal generator have corresponding amplitude values of the image differential signal. Therefore, the signal generator outputs the image differential signal to the target driver according to the amplitude corresponding to the target driver, so that the image differential signal received by the driver
  • the amplitude of can be adjusted adaptively according to its location, so that drivers with different distances can receive the complete image differential signal without generating a large amount of electromagnetic radiation.
  • FIG. 1 is a schematic diagram of a hardware distribution structure of a display panel related to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the hardware structure of the display panel control device in FIG. 1;
  • FIG. 3 is a schematic flowchart of a first embodiment of a display panel control method according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a second embodiment of a display panel control method according to an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a third embodiment of a display panel control method according to an embodiment of this application.
  • the main solution of the embodiment of the present application is that in a display panel including at least two drivers and a signal generator connected to each of the drivers, the signal generator is configured to sequentially output image differential signals to each of the drivers, wherein the display panel
  • the control method includes the following steps: acquiring the signal receiving state parameter of each of the drivers; determining the driver currently receiving the image differential signal according to each of the signal receiving state parameters as the target driver; Determine the amplitude of the image differential signal corresponding to the target driver; different drivers from the signal generator correspond to different amplitudes; control the signal generator to output the image differential signal to the target according to the amplitude driver.
  • the image differential signal Since the image differential signal is transmitted according to a fixed amplitude, excessive amplitude may cause excessive electromagnetic radiation. If the amplitude is too small, the image differential signal received by the driver 100 may be problematic.
  • the present application provides the above solution to ensure the quality of data received by the driver 100 while reducing the electromagnetic radiation generated.
  • the display panel may be a liquid crystal display panel.
  • a display panel includes a plurality of pixel units 01, a driver 100 connected to the pixel unit 01, a signal generator 200 connected to the driver 100, and a display panel control device connected to the signal generator 200 300.
  • the driver 100 may specifically include a source driver and a gate driver.
  • the display panel can be divided into a driving area 1 and a fan-out area 2.
  • the signal generator 200, the driver 100, and the display panel control device 300 may be disposed in the driving area 1, and the plurality of pixel units 01 are disposed in the fan-out area 2.
  • the signal generator 200 and the driver 100 are connected by a differential signal line.
  • the display panel further includes a plurality of source lines 02 and a plurality of gate lines 03.
  • a plurality of gate lines 03 are distributed in the fan-out area 2 and are connected to the gate driver in the driving area 1, and a plurality of source lines 02 are distributed in the fan-out area 2 and are spaced apart from the source driver in the driving area 1 connection.
  • a plurality of source lines 02 and a plurality of gate lines 03 are arranged orthogonally, wherein the gate lines 03 extend in the lateral direction (forming rows), and the source lines 02 extend in the longitudinal direction (forming columns).
  • the focal points of the gate line 03 and the source line 02 are defined as pixels. Each pixel is provided with a pixel unit 01.
  • the pixel unit 01 may specifically be a thin film transistor.
  • the source of each thin film transistor passes through the source line 02 and the source
  • the gate driver is connected, and the gate of each thin film transistor is connected to the gate driver through a gate line 03.
  • the gate driver sends a gate drive signal to the gate of the thin film transistor through the gate line 03 to turn on the thin film transistors on the display panel in sequence.
  • each gate driving signal specifically includes the selected target pixel and the turn-on signal of the target pixel.
  • the source driver sends the driving voltage corresponding to the pixel where the thin film transistor is located to the source of the thin film transistor through the source line 02.
  • the brightness of the pixels is controlled by the voltage difference between the driving voltage and the common voltage of the common electrodes of the display panel, thereby realizing the display of the image on the display panel.
  • the signal generator 200 can receive the image data to be displayed and convert the image data into an image differential signal.
  • the signal generator 200 can convert the image data into image differential signals with different amplitudes and different frequencies.
  • the image differential signal is image data transmitted in a differential signal format.
  • the signal generator 200 outputs the generated image differential signal to the source driver. After receiving the image differential signal, the source driver can extract the image data therein, and form a corresponding driving voltage to drive the pixels to emit light according to the image data.
  • One or more source drivers may be specifically provided. When there are multiple source drivers, each source driver can correspond to one or more columns of thin film transistors in the fan-out region 2 and provide a driving voltage for it.
  • One signal generator 200 may be correspondingly connected to multiple source drivers through differential traces. There may be more than one signal generator 200, and each signal generator 200 is connected to at least two source drivers, and provides corresponding image differential signals for the source drivers connected thereto.
  • the signal generator 200 can sequentially transmit the image differential signal to each source driver.
  • Each source driver sequentially captures the image data in the image differential signal.
  • the display panel control device 300 specifically includes: a processor 3001, such as a CPU, a memory 3002, a signal monitoring module 3003, and a communication bus 3004.
  • the communication bus 3004 is used to implement connection communication between these components.
  • the memory 3002 may be a high-speed RAM memory or a stable memory (non-volatile memory), such as disk storage.
  • the memory 3002 may optionally be a storage device independent of the foregoing processor 3001.
  • the processor 3001 may be connected to the signal generator 200 described above to control the operation of the signal generator 200.
  • the signal monitoring module 3003 can be connected to each driver 100 and monitor the signal receiving state parameter of each driver 100.
  • the signal receiving state parameter is used to characterize whether each driver currently needs to receive the image differential signal.
  • the signal receiving state parameter may include the level of the allowable data signal (EIO signal).
  • FIG. 2 does not constitute a limitation on the device, and may include more or less components than those illustrated, or combine certain components, or have different component arrangements.
  • the memory 3002 as a readable storage medium may include a display panel control program.
  • the processor 3001 may be used to call the display panel control program stored in the memory 3002 and perform operations related to the steps of the display panel control method in the following embodiments.
  • an embodiment of the present application also provides a readable storage medium on which a display panel control program is stored, and the display panel control program is executed by the processor 3001 related to the display panel control method in the following embodiments Steps of operation.
  • an embodiment of the present application provides a display panel control method.
  • the display panel based on the above embodiment includes at least two drivers 100 and a signal generator 200 connected to each of the drivers 100.
  • the signal generator 200 is configured to sequentially output image differential signals to each of the drivers 100, and the display panel control method includes:
  • Step S10 Acquire the signal receiving state parameter of each driver 100
  • the driver 100 here may specifically include a source driver that supplies a driving voltage to the pixel unit 0101.
  • the signal generator 200 successively outputs image differential signals to each driver 100 connected thereto.
  • the signal receiving state parameter is a characteristic parameter that characterizes the current signal receiving state of the driver 100, and each driver can be monitored by the signal monitoring module 3003 in the display panel control device 300 during the process of the signal generator 200 transmitting the image differential signal to each driver 100 100 transmitted signals are collected.
  • the signal reception state of the driver 100 includes a state where signal reception is allowed and a state where signal reception is not allowed. When the driver 100 is in a state where signal reception is allowed, the driver 100 receives the image differential signal from the signal generator 200; when the driver 100 is in a state where signal reception is not allowed, the driver 100 prohibits receiving the image differential signal from the signal generator 200.
  • the signal receiving state parameter may specifically include the level of the allowable data signal (EIO signal) received by the driver 100.
  • the allowable data signal is a pulse level for controlling the signal reception state of the driver 100.
  • the level of the allowable data signal received by the driver 100 is a low level, the drive 100 is currently in a state where signal reception is not allowed; when the level of the allowable data signal received by the driver 100 is a low level, the drive 100 is currently in The state of receiving signals.
  • a driving sequence is preset between each driver 100, and the signal generator 200 sequentially outputs the image differential signal to the corresponding driver 100 according to the preset driving sequence.
  • the data signals are allowed to be transmitted between the drivers 100.
  • a driver 100 that receives an image differential signal receives its corresponding image differential signal
  • the level of the allowed data signals received by the other drivers 100 are all low, then all other drivers 100 It is in a state where signal reception is not allowed.
  • the driver 100 receiving the image differential signal receives the image differential signal
  • the driver 100 will send a high-level allowable data signal to the next driver 100 receiving the image differential signal.
  • the next server receiving the image differential signal receives the high power
  • the system switches to the state that allows the signal to be received, and starts to receive the corresponding image differential signal.
  • step S20 the driver 100 currently receiving the image differential signal is determined as the target driver according to each of the signal reception state parameters.
  • the driver 100 currently receiving the image differential signal is used as the target driver.
  • the driver 100 can be used as the target driver.
  • each of the signal reception state parameters may be compared with a preset parameter; and the driver 100 corresponding to the signal reception state parameter consistent with the preset parameter may be determined as the target driver.
  • the acquired signal reception state parameter may include the level of the allowable data signal received by each of the drivers 100, and the driver that currently receives the image differential signal according to each of the signal reception state parameters, and the step of serving as the target driver may further include: The driver that determines that the level of the received allowable data signal is greater than or equal to the preset level value is used as the target driver. Specifically, the level of the operation data signal received by each driver may be compared with a preset level value. When the level of the allowed data signal received by the driver is greater than or equal to the preset level value, it indicates that the driver receives the permission The data signal is at a high level, and the driver is used as the driver currently receiving the image differential signal.
  • Step S30 Determine the amplitude of the image differential signal corresponding to the target driver; different drivers from the signal generator correspond to different amplitudes;
  • each driver 100 may be correspondingly provided with an amplitude value of an image differential signal.
  • Drivers that are different from the signal generator correspond to different amplitude values of the image differential signal, forming a correspondence relationship between the driver and the amplitude value. Taking the position of the signal generator 200 as the base point, the farther the distance of the driver 100 from the base point, the greater the amplitude of the image differential signal corresponding to the driver 100; the closer the distance of the driver 100 from the base point , The smaller the amplitude of the image differential signal corresponding to the driver 100 is.
  • the amplitude of the image differential signal corresponding to the position of the target driver can be determined according to the corresponding relationship between the driver and the amplitude.
  • Step S40 Control the signal generator 200 to output the image differential signal to the target driver according to the amplitude.
  • the signal generator 200 can adjust the output current so that the amplitude of the output image differential signal is the amplitude determined according to the distance characteristic parameter. In addition, the signal generator 200 can also adjust the output voltage, output power, etc. so that the output image differential signal reaches the above-mentioned amplitude.
  • a display panel control method proposed by an embodiment of the present application in which a signal generator 200 sequentially outputs an image differential signal to at least two display panels of the driver 100 connected thereto, the current received image is determined by the signal receiving state parameter of each driver 100
  • the driver 100 of the differential signal serves as the target driver, and the driver 100 different from the signal generator 200 has the corresponding amplitude of the image differential signal. Therefore, the signal generator outputs the image differential signal to the target driver according to the amplitude corresponding to the target driver, so that the driver
  • the amplitude of the image differential signal received by 100 can be adjusted adaptively according to its location, so that drivers 100 at different distances can receive the complete image differential signal without generating a large amount of electromagnetic radiation.
  • a driver 100 is defined as a reference driver.
  • the step of determining the amplitude of the image differential signal corresponding to the target driver includes:
  • Step S31 determining that the amplitude value of the image differential signal corresponding to the reference driver is the reference amplitude value
  • Each driver 100 corresponds to a preset amplitude of an image differential signal.
  • the amplitude of the image differential signal corresponding to the reference driver is used as the reference amplitude.
  • Step S32 Determine the amplitude adjustment amplitude of the image differential signal corresponding to the target driver; different target drivers that are different from the signal generator correspond to different amplitude adjustment amplitudes;
  • Different drivers from the distance signal generator can be preset with different amplitude adjustment amplitudes.
  • the distance between the reference driver and the signal generator 200 may be defined as a reference distance. Different drivers 100 corresponding to the distance signal generator 200 are provided with different amplitude adjustment amplitudes. The greater the difference between the distance between the target driver and the signal generator 200 and the reference distance, the greater the amplitude adjustment amplitude corresponding to the target driver.
  • the reference driver When the reference driver is the driver closest to the signal generator 200, the greater the distance between the target driver and the signal generator 200, the greater the amplitude adjustment amplitude corresponding to the target driver.
  • the reference driver When the reference driver is the driver farthest from the signal generator 200, the smaller the distance between the target driver and the signal generator 200, the greater the amplitude adjustment amplitude corresponding to the target driver.
  • Step S33 Adjust the amplitude according to the reference amplitude and the amplitude to determine the amplitude of the image differential signal corresponding to the target driver.
  • the sum or difference of the amplitudes according to the reference amplitude and the amplitude adjustment determines the amplitude of the image differential signal corresponding to the target driver.
  • the amplitude corresponding to the target driver is determined according to the reference amplitude of the reference driver and the amplitude adjustment amplitude corresponding to the target driver, so that the amplitude of the image differential signal can be adjusted at a position suitable for the location of the target driver, In order to ensure the quality of the signal received by the target driver and reduce electromagnetic interference.
  • the step of determining the amplitude adjustment amplitude of the image differential signal corresponding to the target driver includes:
  • Step S321 Obtain the distance between the reference drive and the target drive and define it as the first distance
  • the distance between the reference drive and the target drive can be obtained by direct measurement, or it can be determined according to the line length of the signal line between the target drive and the reference drive. The longer the line length, the greater the distance.
  • the distance between the reference drive and the target drive can also be obtained by extracting parameters input by the user or preset setting parameters.
  • Step S322 Determine a corresponding amplitude adjustment amplitude according to the first distance.
  • the first distance may represent the position of the target driver relative to the signal generator 200.
  • the larger the first distance the farther the target drive is from the reference drive, the greater the amplitude of the target drive needs to be adjusted based on the reference amplitude, so different first distances or different first distances Different numerical adjustment ranges can be set corresponding to the numerical range.
  • the first distance between the target driver and the reference driver can represent the distance between the target driver and the signal driver 100, and the amplitude can be adjusted according to the amplitude of the image differential signal determined by the first distance, which is useful for debugging. If the amplitude of the image differential signal of the reference driver needs to be debugged, the amplitude of the image differential signal of other drivers 100 can be quickly determined according to the first distance during subsequent operations.
  • the distance between the target driver and the signal generator 200 is defined as the second distance
  • Step S01 determining the magnitude relationship between the second distance and the third distance
  • the relationship between the second distance and the third distance can be determined by obtaining the parameters input by the debugger. It is also possible to obtain the second distance and the third distance, and compare the second distance with the third distance to determine the above-mentioned size relationship.
  • Step S02 When the size relationship is that the second distance is greater than the third distance, determine the amplitude of the image differential signal corresponding to the target driver according to the sum of the reference amplitude and the amplitude adjustment amplitude value;
  • the sum of the reference amplitude and the amplitude adjustment amplitude is directly used as the amplitude of the image differential signal corresponding to the target driver; or, it can be adjusted by a certain adjustment coefficient based on the sum of the reference amplitude and the amplitude adjustment amplitude After that, the amplitude of the image differential signal corresponding to the target driver is obtained.
  • Step S03 When the size relationship is that the second distance is less than the third distance, determine the amplitude of the image differential signal corresponding to the target driver according to the difference between the reference amplitude and the amplitude adjustment amplitude value.
  • the difference between the reference amplitude and the amplitude adjustment amplitude is directly used as the amplitude of the image differential signal corresponding to the target driver; or, based on the difference between the reference amplitude and the amplitude adjustment amplitude, it is adjusted by a certain adjustment coefficient After that, the amplitude of the image differential signal corresponding to the target driver is obtained.
  • an embodiment of the present application also provides a display device including a display panel and a display panel control device.
  • the display panel includes a display panel and a display panel control device.
  • the display panel includes at least two drivers and A signal generator connected to each of the drivers, the signal generator is configured to sequentially output an image differential signal to each of the drivers, and the display panel control device includes:
  • the acquisition module acquires the signal receiving state parameters of each of the drivers
  • the identification module is set to determine the driver currently receiving the image differential signal according to each of the signal reception state parameters as the target driver;
  • the calculation module is set to determine the amplitude of the image differential signal corresponding to the target driver; different drivers from the signal generator correspond to different amplitudes;
  • the output module is configured to control the signal generator to output the image differential signal to the target driver according to the amplitude.
  • the driver 100 is defined as a reference driver, and the calculation module is specifically configured to determine the amplitude of the image differential signal corresponding to the reference driver as the reference amplitude; determine the amplitude adjustment amplitude of the image differential signal corresponding to the target driver Different target drivers from the signal generator correspond to different amplitude adjustment amplitudes; according to the reference amplitude and the amplitude adjustment amplitudes, determine the amplitude of the image differential signal corresponding to the target driver.
  • the calculation module when performing the step of determining the amplitude adjustment amplitude of the image differential signal corresponding to the target driver, the calculation module obtains the distance between the reference driver and the target driver and defines it as the first distance; The first distance determines the corresponding amplitude adjustment range.
  • the distance between the target driver and the signal generator is defined as the second distance
  • the distance between the reference driver and the signal generator is defined as the third distance
  • the calculation module is set to perform according to the reference amplitude
  • the amplitude of the image differential signal corresponding to the target driver is determined according to the sum of the reference amplitude and the amplitude adjustment amplitude; when The magnitude relationship is that when the second distance is less than the third distance, the amplitude of the image differential signal corresponding to the target driver is determined according to the difference between the reference amplitude and the amplitude adjustment amplitude.
  • the specific implementation of the display panel control device of the present application is basically the same as the above embodiments of the display panel driving method, and therefore has the technical effects mentioned in the above embodiment of the display panel driving method, which will not be repeated here.
  • the methods in the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware, but in many cases the former is better Implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or part that contributes to the existing technology, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above , Disk, CD), including several instructions to make a terminal device (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to perform the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板控制方法,显示面板控制装置、显示面板控制设备和显示面板。显示板控制方法包括:获取各所述驱动器的信号接收状态参数(S10);根据各信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器(S20);确定目标驱动器对应的图像差分信号的幅值;距离信号发生器不同的驱动器对应不同的幅值(S30);控制信号发生器按照幅值输出图像差分信号至目标驱动器(S40)。

Description

显示设备及其控制方法、控制装置
相关文件
本申请要求于2018年12月26日申请的,申请号为201811619811.4,申请名称为“显示面板及其控制方法、控制装置和显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及显示面板控制方法、显示设备和显示面板控制装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着电视尺寸越来越大,使用到的驱动器数量越来越多,作为传输数据的差分信号的走线也是越来越长。由于差分走线的级联特性,同一组差分走线会被多个驱动器公用。
目前,差分走线中传输的差分信号幅值一般为固定值。由于驱动芯片与发出差分信号的控制单元距离远近不同,若幅值设置过小,较远的驱动芯片对数据接收可能会有问题,若幅值设置过大,可能会导致显示面板的电磁辐射超标。
发明内容
本申请提供一种显示面板控制方法,应用于显示面板,所述显示面板包括至少两个驱动器和与各所述驱动器连接的信号发生器,所述信号发生器设置为依次输出图像差分信号至各所述驱动器,所述显示面板控制方法包括以下步骤:
获取各所述驱动器的信号接收状态参数;
根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器;
确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;
控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
本申请实施例提出的一种显示面板控制方法,在信号发生器依次输出图像差分信号至至少两个与其连接的驱动器的显示面板中,通过各个驱动器的信号接收状态参数确定当前接收图像差分信号的驱动器作为目标驱动器,距离信号发生器不同的驱动器具有对应的图像差分信号的幅值,因此,信号发生器按照目标驱动器对应的幅值输出图像差分信号至目标驱动器,使驱动器所接收的图像差分信号的幅值可依据其所在位置适应性调整,可使远近不同的驱动器均可接收到完整图像差分信号但不会产生大量的电磁辐射。
附图说明
图1是本申请实施例方案涉及显示面板的硬件分布结构示意图;
图2为图1中显示面板控制装置的硬件结构示意图;
图3为本申请实施例显示面板控制方法的第一实施例的流程示意图;
图4为本申请实施例显示面板控制方法的第二实施例的流程示意图;
图5为本申请实施例显示面板控制方法的第三实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是在包括至少两个驱动器和与各所述驱动器连接的信号发生器显示面板中,信号发生器设置为依次输出图像差分信号至各所述驱动器,其中,显示面板控制方法包括以下步骤:获取各所述驱动器的信号接收状态参数;根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器; 确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
由于按照固定幅值传输图像差分信号,幅值过大会产生超标的电磁辐射,幅值过小会导致驱动器100接收的图像差分信号有问题。
本申请提供上述的解决方案,保证驱动器100接收数据的质量同时减少产生的电磁辐射。
本申请提出一种显示面板。具体的,该显示面板可为液晶显示面板。
在本申请实施例中,参照图1,显示面板包括多个像素单元01、与像素单元01连接的驱动器100、与驱动器100连接的信号发生器200、与信号发生器200连接的显示面板控制装置300。其中,驱动器100可具体包括源极驱动器和栅极驱动器。显示面板可划分有驱动区1和扇出区2。信号发生器200、驱动器100和显示面板控制装置300可设于驱动区1,多个像素单元01设于扇出区2。其中,为了减少电磁干扰,信号发生器200与驱动器100之间通过差分信号线连接。
具体的,显示面板还包括多条源极线02和多条栅极线03。多条栅极线03间隔分布设置于扇出区2且与驱动区1中的栅极驱动器连接,多条源极线02间隔分布设置于扇出区2且与驱动区1中的源极驱动器连接。在扇出区2中,多条源极线02与多条栅极线03正交设置,其中,栅极线03沿横向延伸(形成行),源极线02沿纵向延伸(形成列)。定义栅极线03与源极线02的焦点为像素点,每个像素点均设有像素单元01,该像素单元01具体可为薄膜晶体管,各薄膜晶体管的源极通过源极线02与源极驱动器连接,各薄膜晶体管的栅极通过栅极线03与栅极驱动器连接。栅极驱动器通过栅极线03向薄膜晶体管的栅极发送栅极驱动信号将显示面板上的薄膜晶体管依次打开。具体的,每个栅极驱动信号具体包括被选中的目标像素点以及目标像素点的导通信号。源极驱动器通过源极线02向薄膜晶体管的源极发送薄膜晶体管所在的像素点对应的驱动电压。通过驱动电压与显示面板的公共电极的公共电压之间的电压差实现对像素点的亮度的控制,从而实现显示面板上图像的显示。
其中,信号发生器200可接收所需显示的图像数据,将图像数据转换为图像差分信号。其中,信号发生器200可将图像数据转换为不同幅值、不同频率的图像差分信号。具体的,图像差分信号为以差分信号格式传输的图像数据。信号发生器200将生成的图像差分信号输出至源极驱动器,源极驱动器接收到图像差分信号后可提取其中的图像数据,并根据图像数据形成对应的驱动电压驱动像素点的发光。
源极驱动器可具体设有一个或多个。当源极驱动器设有多个时,每个源极驱动器可对应与扇出区2中一列或多列的薄膜晶体管并为其提供驱动电压。一个信号发生器200可通过差分走线对应连接有多个源极驱动器。其中,信号发生器200也可设有多于一个,每个信号发生器200与至少两个源极驱动器连接,并为与其连接的源极驱动器提供相应的图像差分信号。
在一个信号发生器200对应连接多个源极驱动器时,信号发生器200可依次将图像差分信号传输至各个源极驱动器。每个源极驱动器依次抓取图像差分信号中的图像数据。
在本申请实施例中,参照图2,显示面板控制装置300具体包括:处理器3001,例如CPU,存储器3002,信号监控模块3003和通信总线3004。其中,通信总线3004用于实现这些组件之间的连接通信。存储器3002可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器3002可选的还可以是独立于前述处理器3001的存储装置。
处理器3001可与上述的信号发生器200连接,以控制信号发生器200的运行。其中,信号监控模块3003可与各驱动器100连接,并监测各驱动器100的信号接收状态参数。具体的,信号接收状态参数用于表征各驱动器当前是否需接收图像差分信号,信号接收状态参数可包括允许数据信号(EIO信号)的电平。
本领域技术人员可以理解,图2中示出的装置结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2所示,作为一种可读存储介质的存储器3002中可以包括显示面板控制程序。
在图2所示的装置中,处理器3001可以用于调用存储器3002中存储的显示面板控制程序,并执行以下实施例中显示面板控制方法的相关步骤的操作。
此外,本申请实施例还提出一种可读存储介质,所述可读存储介质上存储有显示面板控制程序,所述显示面板控制程序被处理器3001执行以下实施例中显示面板控制方法的相关步骤的操作。
参照图3,本申请实施例提供一种显示面板控制方法,基于上述实施例的显示面板,该显示面板该包括至少两个驱动器100和与各所述驱动器100连接的信号发生器200,所述信号发生器200设置为依次输出图像差分信号至各所述驱动器100,所述显示面板控制方法包括:
步骤S10,获取各所述驱动器100的信号接收状态参数;
这里的驱动器100可具体包括为像素单元0101提供驱动电压的源极驱动器。信号发生器200先后向各个与其连接的驱动器100输出图像差分信号。
信号接收状态参数为表征驱动器100当前的信号接收状态的特征参数,可在信号发生器200向各驱动器100传输图像差分信号的过程中,通过显示面板控制装置300中的信号监控模块3003监测各驱动器100所传输的信号进行采集。驱动器100的信号接收状态包括允许接收信号的状态和不允许接收信号的状态。当驱动器100处于允许接收信号的状态时,驱动器100从信号发生器200接收图像差分信号;当驱动器100处于不允许接收信号的状态时,驱动器100禁止从信号发生器200接收图像差分信号。
其中,信号接收状态参数可具体包括驱动器100所接收的允许数据信号(EIO信号)的电平。允许数据信号为用于控制驱动器100的信号接收状态的脉冲电平。当驱动器100接收的允许数据信号的电平为低电平时,则该驱动器100当前处于不允许接收信号的状态;当驱动器100接收的允许数据信号的电平为低电平时,该驱动器100当前处于允许接收信号的状态。各个驱动器100之间预先设置有驱动次序,信号发生器200按照预设的驱动次序依次将图像差分信号输出至相应的驱动器100。
允许数据信号在各驱动器100之间传输,一个接收图像差分信号的驱动器100接收其对应的图像差分信号时,其他驱动器100所接收的允许数据信号的电平均为低电平,则其他驱动器100均处于不允许接收信号的状态。在接收图像差分信号的驱动器100接收完图像差分信号后,该驱动器100会发出高电平的允许数据信号至下一个接收图像差分信号的驱动器100,下一个接收图像差分信号的服务器接收到高电平的允许数据信号后,切换为允许接收信号的状态,并开始接收其对应的图像差分信号。
步骤S20,根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器100,作为目标驱动器。
将当前接收图像差分信号的驱动器100作为目标驱动器。当一驱动器100的信号接收状态参数满足预设条件时,可将该驱动器100作为目标驱动器。具体的,可分别将各所述信号接收状态参数与预设参数比较;将与所述预设参数一致的信号接收状态参数对应的驱动器100确定为所述目标驱动器。
此外,获取的信号接收状态参数可包括各所述驱动器100接收的允许数据信号的电平,根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器的步骤还可包括:确定接收的允许数据信号的电平大于或等于预设电平值的驱动器,作为目标驱动器。具体的,可将各驱动器接收到的运行数据信号的电平与预设电平值作比较,当驱动器接收的允许数据信号的电平大于或等于预设电平值时,表明驱动器接收的允许数据信号为高电平,将该驱动器作为当前接收图像差分信号的驱动器。
步骤S30,确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;
在显示面板中,驱动器100与信号发生器200的位置均固定。每个驱动器100可对应设有一个图像差分信号的幅值,距离信号发生器不同的驱动器对应有不同的图像差分信号的幅值,形成驱动器与幅值对应关系。以信号发生器200的所在位置为基点,驱动器100的位置距离基点的距离越远,则该驱动器100所对应设置的图像差分信号的幅值则越大;驱动器100的位置距离基点的距离越近,则该驱动器100所对应设置的图像差分信号的幅值则越小。
因此,在确定目标驱动器后,可依据驱动器与幅值对应关系确定目标驱动器的位置所对应的图像差分信号的幅值。
步骤S40,控制所述信号发生器200按照所述幅值输出所述图像差分信号至所述目标驱动器。
信号发生器200可通过调节输出电流以使输出的图像差分信号的幅值为上述依据距离特征参数所确定的幅值。此外,信号发生器200还可通过调节输出电压、输出功率等使输出的图像差分信号达到上述幅值。
本申请实施例提出的一种显示面板控制方法,在信号发生器200依次输出图像差分信号至至少两个与其连接的驱动器100的显示面板中,通过各个驱动器100的信号接收状态参数确定当前接收图像差分信号的驱动器100作为目标驱动器,距离信号发生器200不同的驱动器100具有对应的图像差分信号的幅值,因此,信号发生器按照目标驱动器对应的幅值输出图像差分信号至目标驱动器,使驱动器100所接收的图像差分信号的幅值可依据其所在位置适应性调整,可使远近不同的驱动器100均可接收到完整图像差分信号但不会产生大量的电磁辐射。
进一步的,定义一驱动器100为基准驱动器,参照图4,所述确确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
步骤S31,确定所述基准驱动器对应的图像差分信号的幅值为基准幅值;
每个驱动器100对应预设有一个图像差分信号的幅值。将基准驱动器所对应的图像差分信号的幅值作为基准幅值。
步骤S32,确定所述目标驱动器对应的图像差分信号的幅值调整幅度;距离所述信号发生器不同的目标驱动器对应不同的幅值调整幅度;
距离信号发生器不同的驱动器可对应预设有不同的幅值调整幅度。
基准驱动器与信号发生器200之间的距离可定义为基准距离。距离信号发生器200不同的驱动器100对应设有不同的幅值调整幅度。目标驱动器与信号发生器200之间的距离与基准距离的差值越大,目标驱动器对应的幅值调整幅度越大。
其中,当基准驱动器为距离信号发生器200最近的驱动器时,目标驱动器与信号发生器200之间的距离越大,则目标驱动器对应的幅值调整幅度越大。当基准驱动器为距离信号发生器200最远的驱动器时,目标驱动器与信号发生器200之间的距离越小,则目标驱动器对应的幅值调整幅度越大。
步骤S33,根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值。
根据基准幅值和幅值调整幅度之和或之差,确定目标驱动器所对应的图像差分信号的幅值。
在本实施例中,依据基准驱动器的基准幅值和目标驱动器对应的幅值调整幅度确定目标驱动器对应的幅值,可使图像差分信号的幅值可在适应于目标驱动器所在的位置进行调整,以保证目标驱动器接收信号的质量和减少电磁干扰。
具体的,参照图5,所述确定所述目标驱动器对应的图像差分信号的幅值调整幅度的步骤包括:
步骤S321,获取所述基准驱动器与所述目标驱动器之间的距离,并定义为第一距离;
基准驱动器与目标驱动器之间的距离可通过直接测量得到,也可依据目标驱动器与基准驱动器之间的信号线的线长确定,线长越长,距离越大。此外,基准驱动器与目标驱动器之间的距离还可通过提取用户输入的参数或预设的设置参数等得到。
步骤S322,根据所述第一距离确定对应的幅值调整幅度。
由于在显示面板上,各驱动器100和信号发生器200的位置均固定。因此,第一距离可表征目标驱动器相对于信号发生器200的所在位置。第一距离越大,则目标驱动器距离基准驱动器越远,则目标驱动器在基准幅值的基础上所需调整的幅值的幅度便需要越大,因此不同的第一距离或不同的第一距离所在的数值区间可对应设置有不同的幅值调整幅度。
在本实施例中,通过目标驱动器与基准驱动器之间的第一距离可表征目标驱动器距离信号驱动器100的远近,依据第一距离所确定的图像差分信号的幅值调整幅度,有利于调试时只需调试出基准驱动器的图像差分信号的幅度,便可在后续运行时依据第一距离快速的确定其他驱动器100的图像差分信号的幅度。
进一步的,定义目标驱动器与所述信号发生器200之间的距离为第二距离,定义基准驱动器与所述信号发生器200之间的距离为第三距离,根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
步骤S01,确定所述第二距离和所述第三距离之间的大小关系;
第二距离与第三距离的大小关系可通过获取调试人员输入的参数进行确定。也可获取第二距离和第三距离后,将第二距离与第三距离比较后确定上述的大小关系等。
步骤S02,当所述大小关系为所述第二距离大于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之和,确定所述目标驱动器对应的图像差分信号的幅值;
将基准幅值与所述幅值调整幅度之和直接作为目标驱动器对应的图像差分信号的幅值;或者,在基准幅值与所述幅值调整幅度之和的基础上通过一定的调整系数调整后,得到目标驱动器对应的图像差分信号的幅值。
步骤S03,当所述大小关系为所述第二距离小于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之差,确定所述目标驱动器对应的图像差分信号的幅值。
将基准幅值与所述幅值调整幅度之差直接作为目标驱动器对应的图像差分信号的幅值;或者,在基准幅值与所述幅值调整幅度之差的基础上通过一定的调整系数调整后,得到目标驱动器对应的图像差分信号的幅值。
通过上述方式,可保证距离信号发生器200越远的驱动器100所接收的图像差分信号的幅值越大,距离信号发生器200越近的驱动器100所接收的图像差分信号的幅值越小。
此外,本申请实施例还提出一种显示设备,所述显示设备包括显示面板和显示面板控制设备,所述显示面板包括显示面板和显示面板控制装置,所述显示面板包括至少两个驱动器和与各所述驱动器连接的信号发生器,所述信号发生器设置为依次输出图像差分信号至各所述驱动器,所述显示面板控制装置包括:
采集模块,获取各所述驱动器的信号接收状态参数;
识别模块,设置为根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器;
计算模块,设置为确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;
输出模块,设置为控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
其中,定义一所述驱动器100为基准驱动器,计算模块具体设置为确定所述基准驱动器对应的图像差分信号的幅值为基准幅值;确定所述目标驱动器对应的图像差分信号的幅值调整幅度;距离所述信号发生器不同的目标驱动器对应不同的幅值调整幅度;根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值。
具体得,计算模块在执行确定所述目标驱动器对应的图像差分信号的幅值调整幅度的步骤时,获取所述基准驱动器与所述目标驱动器之间的距离,并定义为第一距离;根据所述第一距离确定对应的幅值调整幅度。
定义目标驱动器与所述信号发生器之间的距离为第二距离,定义基准驱动器与所述信号发生器之间的距离为第三距离,所述计算模块设置为在执行根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤时,获取所述第二距离和所述第三距离之间的大小关系;
当所述大小关系为所述第二距离大于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之和,确定所述目标驱动器对应的图像差分信号的幅值;当所述大小关系为所述第二距离小于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之差,确定所述目标驱动器对应的图像差分信号的幅值。
本申请显示面板控制设备具体实施方式与上述显示面板驱动方法各实施例基本相同,因而具备上述显示面板驱动方法实施例中所提及的技术效果,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种显示面板控制方法,应用于显示面板,其中,所述显示面板包括至少两个驱动器和与各所述驱动器连接的信号发生器,所述信号发生器设置为依次输出图像差分信号至各所述驱动器,所述显示面板控制方法包括以下步骤:
    获取各所述驱动器的信号接收状态参数;
    根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器;
    确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;以及,
    控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
  2. 如权利要求1所述的显示面板控制方法,其中,所述根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器的步骤包括:
    分别将各所述信号接收状态参数与预设参数比较;以及,
    将与所述预设参数一致的信号接收状态参数对应的驱动器确定为所述目标驱动器。
  3. 如权利要求1所述的显示面板控制方法,其中,所述目标驱动器距离所述信号发生器越远,所述目标驱动器对应的图像差分信号的幅值越大。
  4. 如权利要求1所述的显示面板控制方法,其中,所述控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器的步骤包括:
    控制所述信号发生器的输出电流,使输出的图像差分信号达到所述幅值。
  5. 如权利要求1所述的显示面板控制方法,其中,定义一所述驱动器为基准驱动器,所述确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    确定所述基准驱动器对应的图像差分信号的幅值为基准幅值;
    确定所述目标驱动器对应的图像差分信号的幅值调整幅度;距离所述信号发生器不同的目标驱动器对应不同的幅值调整幅度;以及,
    根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值。
  6. 如权利要求5所述的显示面板控制方法,其中,定义所述基准驱动器与所述信号发生器之间的距离为基准距离,所述目标驱动器与所述信号发生器之间的距离与基准距离的差值越大,所述目标驱动器对应的幅值调整幅度越大。
  7. 如权利要求5所述的显示面板控制方法,其中,所述确定所述目标驱动器对应的图像差分信号的幅值调整幅度的步骤包括:
    获取所述基准驱动器与所述目标驱动器之间的距离,并定义为第一距离;以及,
    根据所述第一距离确定对应的幅值调整幅度。
  8. 如权利要求7所述的显示面板控制方法,其中,所述获取所述基准驱动器与所述目标驱动器之间的距离,并定义为第一距离的步骤包括
    获取所述基准驱动器与所述目标驱动器之间的信号线的线长;以及,
    根据所述线长确定所述第一距离。
  9. 如权利要求7所述的显示面板控制方法,其中,定义目标驱动器与所述信号发生器之间的距离为第二距离,定义基准驱动器与所述信号发生器之间的距离为第三距离,根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    获取所述第二距离和所述第三距离之间的大小关系;以及,
    当所述大小关系为所述第二距离大于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之和,确定所述目标驱动器对应的图像差分信号的幅值。
  10. 如权利要求9所述的显示面板控制方法,其中,所述根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤还包括:
    当所述大小关系为所述第二距离小于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之差,确定所述目标驱动器对应的图像差分信号的幅值。
  11. 如权利要求1所述的显示面板控制方法,其中,所述信号接收状态参数包括各所述驱动器接收的允许数据信号的电平。
  12. 如权利要求11所述的显示面板控制方法,其中,所述根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器的步骤包括:
    确定接收的允许数据信号的电平大于或等于预设电平值的驱动器,作为目标驱动器。
  13. 一种显示设备,其中,所述显示设备包括显示面板和显示面板控制装置,所述显示面板包括至少两个驱动器和与各所述驱动器连接的信号发生器,所述信号发生器设置为依次输出图像差分信号至各所述驱动器,所述显示面板控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的显示面板控制程序,所述显示面板控制程序被所述处理器执行时实现下所述的显示面板控制方法的步骤:
    获取各所述驱动器的信号接收状态参数;
    根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器;
    确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;以及,
    控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
  14. 如权利要求13的显示设备,其中,定义一所述驱动器为基准驱动器,所述确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    确定所述基准驱动器对应的图像差分信号的幅值为基准幅值;
    确定所述目标驱动器对应的图像差分信号的幅值调整幅度;距离所述信号发生器不同的目标驱动器对应不同的幅值调整幅度;以及,
    根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值。
  15. 如权利要求14的显示设备,其中,定义目标驱动器与所述信号发生器之间的距离为第二距离,定义基准驱动器与所述信号发生器之间的距离为第三距离,根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    获取所述第二距离和所述第三距离之间的大小关系;以及,
    当所述大小关系为所述第二距离大于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之和,确定所述目标驱动器对应的图像差分信号的幅值。
    当所述大小关系为所述第二距离小于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之差,确定所述目标驱动器对应的图像差分信号的幅值。
  16. 一种显示面板控制装置,其中,所述显示面板控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的显示面板控制程序,所述显示面板控制程序被所述处理器执行时实现如下所述的显示面板控制方法的步骤:
    获取各所述驱动器的信号接收状态参数;
    根据各所述信号接收状态参数确定当前接收图像差分信号的驱动器,作为目标驱动器;
    确定所述目标驱动器对应的图像差分信号的幅值;距离所述信号发生器不同的驱动器对应不同的幅值;以及,
    控制所述信号发生器按照所述幅值输出所述图像差分信号至所述目标驱动器。
  17. 如权利要求16的显示面板控制装置,其中,定义一所述驱动器为基准驱动器,所述确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    确定所述基准驱动器对应的图像差分信号的幅值为基准幅值;
    确定所述目标驱动器对应的图像差分信号的幅值调整幅度;距离所述信号发生器不同的目标驱动器对应不同的幅值调整幅度;以及,
    根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值。
  18. 如权利要求17的显示面板控制装置,其中,定义目标驱动器与所述信号发生器之间的距离为第二距离,定义基准驱动器与所述信号发生器之间的距离为第三距离,根据所述基准幅值和所述幅值调整幅度,确定所述目标驱动器对应的图像差分信号的幅值的步骤包括:
    获取所述第二距离和所述第三距离之间的大小关系;以及,
    当所述大小关系为所述第二距离大于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之和,确定所述目标驱动器对应的图像差分信号的幅值。
    当所述大小关系为所述第二距离小于所述第三距离时,根据所述基准幅值与所述幅值调整幅度之差,确定所述目标驱动器对应的图像差分信号的幅值。
PCT/CN2019/124547 2018-12-26 2019-12-11 显示设备及其控制方法、控制装置 WO2020135047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811619811.4A CN109559671A (zh) 2018-12-26 2018-12-26 显示面板及其控制方法、控制装置和显示设备
CN201811619811.4 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020135047A1 true WO2020135047A1 (zh) 2020-07-02

Family

ID=65871658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124547 WO2020135047A1 (zh) 2018-12-26 2019-12-11 显示设备及其控制方法、控制装置

Country Status (2)

Country Link
CN (1) CN109559671A (zh)
WO (1) WO2020135047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559671A (zh) * 2018-12-26 2019-04-02 惠科股份有限公司 显示面板及其控制方法、控制装置和显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212700A (en) * 1991-07-24 1993-05-18 Sumitomo Electric Industries, Ltd. Modulation circuit for a light emission device
CN1489125A (zh) * 2002-08-27 2004-04-14 精工爱普生株式会社 显示驱动电路及显示装置
CN105448270A (zh) * 2016-01-19 2016-03-30 京东方科技集团股份有限公司 一种显示驱动系统和显示装置
CN106023931A (zh) * 2016-07-21 2016-10-12 青岛海信电器股份有限公司 液晶屏及其节能控制方法
CN106128406A (zh) * 2016-09-08 2016-11-16 京东方科技集团股份有限公司 眼图幅值调节方法、数据传输方法、电路和显示装置
CN109559671A (zh) * 2018-12-26 2019-04-02 惠科股份有限公司 显示面板及其控制方法、控制装置和显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012586A (ja) * 2003-06-20 2005-01-13 Nec Electronics Corp データ転送装置
JP2011043775A (ja) * 2009-08-24 2011-03-03 Nec Lcd Technologies Ltd 画像表示装置及び該画像表示装置に用いられる映像信号処理方法
KR101977248B1 (ko) * 2012-11-13 2019-08-28 엘지디스플레이 주식회사 표시장치와 그의 데이터 충전편차 보상방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212700A (en) * 1991-07-24 1993-05-18 Sumitomo Electric Industries, Ltd. Modulation circuit for a light emission device
CN1489125A (zh) * 2002-08-27 2004-04-14 精工爱普生株式会社 显示驱动电路及显示装置
CN105448270A (zh) * 2016-01-19 2016-03-30 京东方科技集团股份有限公司 一种显示驱动系统和显示装置
CN106023931A (zh) * 2016-07-21 2016-10-12 青岛海信电器股份有限公司 液晶屏及其节能控制方法
CN106128406A (zh) * 2016-09-08 2016-11-16 京东方科技集团股份有限公司 眼图幅值调节方法、数据传输方法、电路和显示装置
CN109559671A (zh) * 2018-12-26 2019-04-02 惠科股份有限公司 显示面板及其控制方法、控制装置和显示设备

Also Published As

Publication number Publication date
CN109559671A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018084516A1 (ko) 전지 장치, 디스플레이 장치 및 그의 제어 방법
WO2017052102A1 (ko) 전자 장치, 그의 디스플레이 패널 장치 보정 방법 및 보정 시스템
WO2020134963A1 (zh) 显示面板驱动方法、装置和可读存储介质
WO2020119559A1 (zh) 显示面板的驱动架构及方法
WO2016088970A1 (en) Electronic apparatus and control method thereof
WO2020135074A1 (zh) 显示面板及其控制方法、控制装置、控制设备
WO2020080781A1 (en) System with display apparatuses and method of controlling the same
WO2020134964A1 (zh) 显示面板及其控制方法、控制设备
WO2020082466A1 (zh) 伽马电压校正电路、方法及显示装置
WO2020135049A1 (zh) 显示面板的过流保护方法及显示装置
WO2020017834A1 (ko) 복수의 디스플레이장치를 포함하는 시스템 및 그 제어방법
WO2020135047A1 (zh) 显示设备及其控制方法、控制装置
WO2016192127A1 (zh) 一种阵列基板和液晶显示面板
WO2020113679A1 (zh) 扩展频谱的方法、芯片、显示面板及可读存储介质
WO2020134997A1 (zh) 显示面板的驱动方法、显示装置及存储介质
WO2021017332A1 (zh) 语音控制报错方法、电器及计算机可读存储介质
WO2020135072A1 (zh) 显示设备及其控制方法、装置
WO2020107597A1 (zh) 显示面板、像素充电方法和计算机可读存储介质
WO2017028590A1 (zh) 显示设备白平衡调试的方法、装置和系统
WO2020138909A1 (ko) 콘텐트 공유 방법 및 그 전자 장치
WO2019112308A1 (en) Electronic device, user terminal apparatus, and control method thereof
WO2017188519A1 (en) Multi-vision device
WO2019164326A1 (ko) 실시간 콘텐트 데이터를 공유하는 전자 장치
WO2022025304A1 (ko) 영상표시장치 및 이를 포함하는 시스템
WO2021206213A1 (en) Electronic apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19906426

Country of ref document: EP

Kind code of ref document: A1