WO2020134962A1 - 天线结构及移动终端 - Google Patents

天线结构及移动终端 Download PDF

Info

Publication number
WO2020134962A1
WO2020134962A1 PCT/CN2019/123602 CN2019123602W WO2020134962A1 WO 2020134962 A1 WO2020134962 A1 WO 2020134962A1 CN 2019123602 W CN2019123602 W CN 2019123602W WO 2020134962 A1 WO2020134962 A1 WO 2020134962A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna radiator
frequency band
antenna
resonance
frequency
Prior art date
Application number
PCT/CN2019/123602
Other languages
English (en)
French (fr)
Inventor
李日辉
蒋锐
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020134962A1 publication Critical patent/WO2020134962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • the embodiments of the present disclosure relate to the field of electronic technology, and in particular, to an antenna structure and a mobile terminal.
  • multi-carrier aggregation (CA) technology has been popularized.
  • low frequency/intermediate frequency/high frequency refer to frequency bands of 0.824 GHz to 0.96 GHz/1.71 GHz to 2.17 GHz/2.3 GHz to 2.7 GHz, respectively.
  • operators may also launch "low frequency + intermediate frequency + high frequency” multiple CA combinations, such as B5 + B3 + B7.
  • Multi-CA technology requires that mobile terminal antennas can support multiple frequency bands simultaneously.
  • the antenna scheme often adopted by mobile terminals with high screen ratio is shown in Figure 1.
  • the antenna radiator 101 and the reference ground 103 are provided with a clearance area 102 between the antenna radiator 101 and the reference ground 103.
  • the distance between the antenna radiator 101 and the reference ground 103 ranges from 0.5 mm to 3 mm.
  • 104 is the signal source;
  • 105 is the inductance, which realizes the antenna matching function.
  • 107 is an inductor or a capacitor.
  • the switching of the middle frequency and the low frequency is realized by turning on and off the switch 106. Generally speaking, when the switch 106 is off, it is low frequency, and when it is on, it is medium frequency.
  • the principle is that the switch 106 changes the electrical length of the antenna radiator 101, thereby changing the resonance frequency of the antenna.
  • the switch 106 is generally a single-pole multi-throw switch, respectively connected to different branches, and the antenna is resonated at different frequencies by switching to realize antenna tuning to cover a wider bandwidth.
  • each frequency band is covered by the switch 106 and works in a time-sharing manner. That is, only one frequency band can be supported at a time, and CA is not supported, which cannot meet the needs of multiple CAs. How to realize a multi-CA antenna device in a small antenna space is still a difficult problem.
  • Embodiments of the present disclosure provide an antenna structure and a mobile terminal to solve the problem that the antenna structure of the related mobile terminal cannot meet the requirements of multiple CAs.
  • an embodiment of the present disclosure provides an antenna structure, including:
  • a ground plate, a clearance area is formed between the ground plate and the antenna radiator;
  • a signal source, the first end of the signal source is connected to the ground plate;
  • a first capacitor the first end of the first capacitor is connected to the second end of the signal source, and the second end of the first capacitor is connected to the antenna radiator;
  • a first impedance matching network which is connected to the antenna radiator and the ground, respectively;
  • the antenna structure generates at least two resonance modes including a first resonance mode, a second resonance mode and a third resonance mode, and the first resonance mode resonates at a quarter of the first frequency band One wavelength; the second resonance mode resonates at a quarter wavelength or three quarter wavelength of the second frequency band.
  • an embodiment of the present disclosure also provides a mobile terminal, including: the antenna structure described in the foregoing embodiment.
  • the first end of the first capacitor is connected to the second end of the signal source, and the second end is connected to the antenna radiator; the first impedance matching network is respectively connected to the antenna radiator and ground, so that
  • Such an antenna structure can generate at least two resonance modes including a first resonance mode, a second resonance mode, and a third resonance mode, where the first resonance mode resonates at a quarter wavelength of the first frequency band
  • the second resonant mode resonates at a quarter wavelength or three quarter wavelength of the second frequency band.
  • Such an antenna structure can meet the multi-CA requirement of supporting multiple frequency bands simultaneously.
  • FIG. 1 is a schematic structural diagram of an antenna structure in the related art
  • FIG. 3 is a second structural diagram of an antenna structure according to some embodiments of the present disclosure.
  • FIG. 5 is a third structural schematic diagram of an antenna structure according to some embodiments of the present disclosure.
  • FIG. 6 is a second schematic diagram of the change of the voltage standing wave ratio of the antenna structure with frequency according to some embodiments of the present disclosure.
  • FIGS. 2-3 it is a schematic structural diagram of an antenna structure provided by some embodiments of the present disclosure.
  • the antenna structure includes: an antenna radiator 1; a ground plate 2, a clearance area 3 is formed between the ground plate 2 and the antenna radiator 1; a signal source 4, a first end of the signal source 4 is connected to the ground plate 2; a first capacitor 5.
  • the first end of the first capacitor 5 is connected to the second end of the signal source 4, the second end of the first capacitor 5 is connected to the antenna radiator 1; the first impedance matching network 6, the first impedance matching network 6 is respectively connected to the antenna radiator 1 and the ground; wherein, the antenna structure generates at least two resonance modes including a first resonance mode, a second resonance mode and a third resonance mode, the first resonance mode resonates At a quarter wavelength of the first frequency band; the second resonance mode resonates at a quarter wavelength or a third wavelength of the second frequency band.
  • the third resonance mode resonates at a quarter wavelength of the third frequency band.
  • the antenna radiator 1 is used to participate in antenna radiation and is a carrier for radiating electromagnetic wave energy.
  • the ground plate 2 together with the connected motherboard serves as a reference ground for the antenna.
  • the clearance area 3 can be understood as a certain distance (equivalent to the width of the clearance area 3) between the ground plate 2 and the antenna radiator 1, the greater the distance, the better the antenna radiation performance and the wider the antenna bandwidth . Due to the high requirements for the screen ratio of the full-screen mobile terminal, the distance is generally less than 5 mm, and the optional value range is 0.5 mm to 3 mm.
  • the antenna radiator 1 includes: a first antenna radiator and a second antenna radiator; the first antenna radiator is an antenna radiator connected to the first impedance matching network 6 1.
  • the antenna radiator at the first connection position A on the first antenna M to the first end M of the antenna radiator 1.
  • the first antenna radiator, the first impedance matching network 6, and the first capacitor 5 jointly excite the first resonance mode and the first Two resonance modes.
  • the second antenna radiator is the antenna radiator from the first connection position A to the second end N of the antenna radiator 1, and the second antenna radiator and the first impedance matching network 6 jointly excite the third resonance mode.
  • the first antenna radiator includes: an antenna radiator between the second connection position B and the second connection position A on the antenna radiator 1, and the second connection position B to the antenna radiator 1
  • the second connection position B is a position on the antenna radiator 1 connected to the second end of the first capacitor 5.
  • the total length of the antenna radiator 1 generally ranges from 40 mm to 90 mm, and the optional range ranges from 45 mm to 75 mm.
  • the length of the first antenna radiator generally ranges from 30 mm to 60 mm, and the optional range ranges from 40 mm to 55 mm.
  • the length of the second antenna radiator generally ranges from 10 mm to 30 mm, and the optional value ranges from 16 mm to 22 mm.
  • the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 may resonate at a quarter wavelength of the second frequency band or not.
  • whether the second resonance mode resonates at a quarter wavelength or three quarter wavelength of the second frequency band depends on the length of the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 .
  • the resonance frequency corresponding to the quarter wavelength of the second frequency band or the resonance frequency corresponding to the third quarter wavelength and the second connection position B to the first end of the antenna radiator 1 The length of the antenna radiator between M is inversely proportional.
  • the length of the antenna radiator from the second connection position B to the first end M of the antenna radiator 1 largely affects the resonance frequency of the second resonance mode.
  • the second connection position B is connected to the second connection
  • the antenna radiator between the positions A is not resonant, that is, the first antenna radiator resonates at a quarter wavelength of the second frequency band.
  • the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 When the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 is not resonant, the antenna radiator between the second connection position B and the second connection position A can resonate in the second frequency band Three-quarter wavelength.
  • the length of the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 generally has a value range of 0 mm to 30 mm, and an optional value range It is 10mm ⁇ 20mm.
  • the value range of the first capacitor 5 is greater than or equal to 0.5 pf and less than or equal to 1.8 pf.
  • the optional value range is 0.8 ⁇ 1.2pf.
  • the resonance frequency corresponding to the quarter wavelength of the third frequency band is inversely proportional to the length of the second antenna radiator.
  • the length of the first antenna radiator is greater than or equal to the length of the second antenna radiator, wherein, accordingly, the resonance frequency of the antenna structure in the first frequency band is less than the resonance frequency in the third frequency band, and The resonance frequency of is less than the resonance frequency in the second frequency band.
  • the first frequency band is a low frequency band
  • the second frequency band is a high frequency band
  • the third frequency band is an intermediate frequency band.
  • the resonance frequency corresponding to the quarter wavelength of the second frequency band or the wavelength corresponding to the third quarter wavelength The lower the resonant frequency is, it may appear that the third frequency band is a high frequency band, and the second frequency band is an intermediate frequency band.
  • the resonance frequency in the first frequency band is smaller than the resonance frequency in the second frequency band
  • the resonance frequency in the second frequency band is smaller than the resonance frequency in the third band
  • the resonance frequency of the antenna structure in the first frequency band is smaller than the resonance frequency in the third frequency band, and the resonance frequency in the third frequency band is smaller than the resonance frequency in the second frequency band
  • the resonance frequency in the first frequency band is smaller than the resonance frequency in the second frequency band
  • the resonance frequency in the second frequency band is smaller than the resonance frequency in the third band
  • the length of the first antenna radiator is smaller than the length of the second antenna radiator; wherein, accordingly, the resonance frequency of the antenna structure in the third frequency band is smaller than the resonance frequency in the first frequency band, and the resonance in the second frequency band The frequency is greater than the resonance frequency in the first frequency band.
  • the first impedance matching network 6 is a first inductor or a second capacitor or a first preset length of wire.
  • first impedance matching network 6 is an inductor or a capacitor mainly depends on the length of the second antenna radiator.
  • the first impedance matching network 6 is the first inductance.
  • the value range of the first inductance is greater than 0nH and less than or equal to 5nH.
  • the first inductance is 2nH.
  • the first impedance matching network 6 is a second capacitor.
  • the value range of the second capacitor is greater than or equal to 3 pf and less than or equal to 15 pf.
  • the second capacitance is 6 pf.
  • the antenna structure can finally generate three resonance modes of the first resonance mode, the second resonance mode, and the third resonance mode.
  • FIG. 4 at the same time, the voltage Schematic diagram of the change of wave ratio with frequency.
  • the antenna efficiency of the antenna structure has a peak efficiency of more than 35% in the low frequency band/mid frequency band/high frequency band.
  • the horizontal axis is used to represent the frequency f
  • the vertical axis is used to represent the voltage standing wave ratio VWSR.
  • curve H represents the first resonance mode
  • f1 represents the first resonance frequency, that is, the resonance frequency corresponding to the quarter wavelength of the first frequency band
  • curve I represents the third resonance mode
  • f3 represents the third resonance frequency, That is, the resonance frequency corresponding to the quarter wavelength of the third frequency band
  • curve K represents the second resonance frequency
  • f2 represents the second resonance frequency, which corresponds to the quarter wavelength or the third quarter wavelength of the second frequency band.
  • Resonant frequency The three resonant modes exist at the same time to meet the needs of multiple CAs and improve antenna efficiency.
  • some embodiments of the present disclosure connect the first end of the first capacitor to the second end of the signal source, the second end is connected to the antenna radiator; the first inductor or the second capacitor is connected to the antenna radiator and ground, respectively So that such an antenna structure can generate a first resonance mode, a second resonance mode, and a third resonance mode, wherein the first resonance mode resonates at a quarter wavelength of the first frequency band; the second resonance mode The third resonance mode is resonant at a quarter wavelength or three quarter wavelength of the second frequency band; the third resonance mode is resonant at a quarter wavelength of the third frequency band.
  • Such an antenna structure can meet the requirement of supporting multiple frequency bands simultaneously Multiple CA needs.
  • the first impedance matching network 6 includes: a first selection unit; a plurality of impedance matching elements; a first control unit connected to the first selection unit, the first control unit controls the first The selection unit is conductive with the first target impedance matching element among the plurality of impedance matching elements.
  • the first control unit controls the first selection unit and the first target impedance matching element of the plurality of impedance matching elements to conduct through the first control unit. It is to adjust the equivalent electrical length of the antenna and realize the switching of the antenna frequency.
  • the first impedance matching network 6 can effectively control the resonance frequencies of the first frequency band, the second frequency band, and the third frequency band.
  • the first target impedance matching element is a second inductor; the resonance frequency corresponding to the quarter wavelength of the first frequency band, the quarter wavelength or the third quarter wavelength of the second frequency band
  • the corresponding resonance frequency and the resonance frequency corresponding to the quarter wavelength of the third frequency band are inversely proportional to the inductance value of the second inductance.
  • the first capacitor 5 is a variable capacitor.
  • the purpose of adjusting the capacitance value of the first capacitor 5 is to adjust the equivalent electrical length of the antenna and realize the switching of the antenna frequency.
  • the antenna structure can select the capacitance value of the first capacitor 5 according to the needs of each frequency band, so as to better optimize the adaptation of each frequency band.
  • the antenna structure further includes: a fourth antenna radiator, a feeding point is provided at a preset position of the fourth antenna radiator, and the feeding point is connected to the signal source 4 (FIG. Not shown); wherein, the first capacitor 5 is the electromagnetic coupling gap between the fourth antenna radiator and the first antenna radiator.
  • the antenna structure further includes: a second impedance matching network 7, a second The impedance matching network 7 is respectively connected to the antenna radiator 1 and the ground; wherein, the antenna structure also generates a fourth resonant mode, which resonates at a quarter wavelength or a double wavelength of the fourth frequency band.
  • the third resonance mode resonates at a half wavelength of the third frequency band, and the resonance frequency of the third frequency band is less than the resonance frequency of the fourth frequency band.
  • the antenna radiator 1 further includes: a third antenna radiator; the third antenna radiator is the third connection position C of the antenna radiator 1 connected to the second impedance matching network 7 to the second of the antenna radiator 1
  • the antenna radiator at the terminal N, the third antenna radiator and the second impedance matching network 7 jointly excite the fourth resonance mode and resonate at a quarter wavelength of the fourth frequency band.
  • the length is less than the length of the second antenna radiator.
  • the length of the antenna radiator from the first connection position A on the antenna radiator 1 connected to the first impedance matching network 6 to the second end N of the antenna radiator 1 is compared to the figure 2 and 3 are longer. That is, the first connection position A is further disposed away from the second end N of the antenna radiator 1.
  • the antenna radiator at the third connection position C on the antenna radiator 1 to the second end N of the antenna radiator 1, that is, the third antenna radiator mainly generates another resonance mode through the second impedance matching network 7, That is, the fourth resonance mode resonating at a quarter wavelength of the fourth frequency band; the antenna radiator at the first connection position A to the second end N of the antenna radiator 1, that is, the second radiator and the second impedance match
  • the network 7 and the first impedance matching network 6 together produce a third resonant mode, that is, resonate at a half wavelength of the third frequency band.
  • the length of the second antenna radiator generally ranges from 25 mm to 35 mm, and the optional value ranges from 28 mm to 32 mm.
  • the length of the third antenna radiator generally ranges from 0mm to 15mm, and the optional value ranges from 6mm to 10mm.
  • the resonance frequency in the first frequency band is less than the resonance frequency in the third frequency band
  • the third resonance frequency is less than
  • the resonance frequency in the second frequency band and the resonance frequency in the fourth frequency band are greater than the resonance frequency in the third frequency band.
  • the first frequency band is a low frequency band
  • the second frequency band is a high frequency band
  • the third frequency band is an intermediate frequency band
  • the fourth frequency band is a high frequency band.
  • the size of the resonance frequency in the second frequency band and the resonance frequency in the fourth frequency band depend on the size of the specific antenna, and are not specifically limited here.
  • the resonance frequency in the first frequency band is less than the resonance frequency in the second frequency band
  • the resonance frequency in the second frequency band is less than the resonance frequency in the third frequency band
  • the resonance in the fourth frequency band The frequency is greater than the resonance frequency in the second frequency band.
  • the first frequency band is a low frequency band
  • the second frequency band is an intermediate frequency band
  • the third frequency band is a high frequency band
  • the fourth frequency band is a high frequency band.
  • the size of the resonance frequency in the third frequency band and the resonance frequency in the fourth frequency band depend on the size of the specific antenna, and are not specifically limited here.
  • the total length of the antenna radiator 1 generally ranges from 45 mm to 95 mm, and the optional range ranges from 50 mm to 80 mm.
  • the length of the first antenna radiator generally ranges from 30mm to 60mm, and the optional value ranges from 40mm to 55mm.
  • the length of the antenna radiator between the second connection position B and the first end M of the antenna radiator 1 generally has a value range of 0 mm to 30 mm, and an optional value range of 10 mm to 20 mm.
  • changing the antenna radiator of the third connection position C to the second end N of the antenna radiator 1, that is, the length of the third antenna radiator can effectively change the resonance frequency in the fourth frequency band; changing the first connection The antenna radiator from the position A to the second end N of the antenna radiator 1, that is, the length of the second antenna radiator, the value of the first impedance matching network 6, the value of the second impedance matching network 7, and the third connection position C The position of can effectively change the resonance frequency in the third frequency band.
  • the resonance frequency in the third frequency band is smaller than the resonance frequency in the first frequency band.
  • the relationship between the resonant frequency in the second frequency band, the resonant frequency in the fourth frequency band and the resonant frequency in the first frequency band, and the resonant frequency in the third frequency band depends on the size of the specific antenna, and is not done here Specific restrictions.
  • the second impedance matching network 7 is a third inductor or a third capacitor or a second preset length of wire, and the first impedance matching network 6 is a fourth inductor.
  • the value range of the third inductance is greater than 0nH and less than or equal to 5nH, and the optional value range is 0.5nH to 1.5 nH.
  • the value range of the third capacitor is greater than 1 pf and less than or equal to 10 pf.
  • the third capacitor is 8pf.
  • the value range of the fourth inductor is greater than 0nH and less than or equal to 6nH, and its optional value range is 2nH to 4nH.
  • the value range of the first capacitor 5 is 0.5pf to 1.8pf, and the optional value range is 0.8pf to 1.2pf.
  • the antenna structure can finally generate four resonance modes of the first resonance mode, the second resonance mode, the third resonance mode, and the fourth resonance mode, as shown in FIG. 6 at the same time, Schematic diagram of the voltage standing wave ratio of the antenna structure with frequency.
  • the antenna efficiency of the antenna structure has a peak efficiency of more than 35% in the low frequency band/mid frequency band/high frequency band.
  • the horizontal axis is used to represent the frequency f
  • the vertical axis is used to represent the voltage standing wave ratio VWSR.
  • curve H represents the first resonance mode
  • f1 represents the first resonance frequency, that is, the resonance frequency corresponding to the quarter wavelength of the first frequency band
  • curve I represents the third resonance mode
  • f3 represents the third resonance frequency, That is, the resonance frequency corresponding to the half wavelength of the third frequency band
  • curve J represents the fourth resonance mode
  • f4 represents the fourth resonance frequency, that is, the resonance corresponding to the quarter wavelength or the double wavelength of the fourth frequency band Frequency
  • curve K represents the second resonance frequency
  • f2 represents the second resonance frequency, that is, the resonance frequency corresponding to the quarter wavelength or three quarter wavelength of the second frequency band.
  • some embodiments of the present disclosure connect the first end of the first capacitor to the second end of the signal source, and the second end is connected to the antenna radiator; the first impedance matching network is connected to the antenna radiator and ground, respectively.
  • a two-impedance matching network that is, an inductor or a capacitor is connected to the antenna radiator 1 and the ground, respectively, so that the antenna structure can generate a first resonance mode, a second resonance mode, a third resonance mode, and a fourth resonance mode.
  • a resonant mode resonates at a quarter wavelength of the first frequency band; the second resonant mode resonates at a quarter wavelength or three quarter wavelength of the second frequency band; the third resonant mode resonates at The half-wavelength of the third frequency band and the fourth resonant mode resonate at the quarter-wavelength or double the wavelength of the fourth frequency band.
  • Such an antenna structure can meet the requirement of multiple CAs supporting multiple frequency bands simultaneously.
  • the second impedance matching network 7 includes: a second selection unit; a plurality of impedance matching elements; a second control unit connected to the second selection unit, and the second control unit controls the second The selection unit is conductive with the second target impedance matching element among the plurality of impedance matching elements.
  • the second control unit controls the second selection unit to conduct with the second target impedance matching element among the multiple impedance matching elements. It is to adjust the equivalent electrical length of the antenna and realize the switching of the antenna frequency.
  • the second impedance matching network 7 can effectively control the resonance frequency band of the third frequency band and the fourth frequency band.
  • the second target impedance matching element is a fifth inductor; the resonance frequency corresponding to the half wavelength of the third frequency band and the resonance frequency corresponding to the quarter wavelength of the fourth frequency band are respectively
  • the inductance value of the fifth inductor is inversely proportional.
  • the antenna radiator 1 in all the foregoing embodiments is made of metal, such as FPC, LDS, stainless steel, a metal casing of the mobile terminal, and a metal frame of the mobile terminal.
  • Some embodiments of the present disclosure also provide a mobile terminal, including: the antenna structure as described in the above embodiments.
  • the antenna structure in the above embodiments can be applied to mobile terminals. Specifically, it can be applied to mobile terminals with all-metal appearance. For example, a three-segment integrated metal shape, a U-shaped slot integrated metal shape, and a metal frame shape mobile terminal.
  • the antenna radiator 1 may be a U-shaped metal arm, as shown in FIG. 2, or an elongated metal arm, as shown in FIG. 3.
  • the ground plate 2 is made of metal. That is, the metal body is divided into U-shaped metal arms and ground plates by the gap 3.
  • the gap 3 is filled with non-metallic materials, such as plastic.
  • the width of the gap 3 generally ranges from 0.3 mm to 10 mm, and the optional value ranges from 0.8 mm to 2.5 mm.
  • the total length of the antenna radiator 1 generally ranges from 40 mm to 60 mm, and the optional range ranges from 45 mm to 55 mm.
  • the length of the U-shaped metal arm in FIG. 2 is shorter.
  • the length of the antenna radiator from the first connection position A to the second end N of the antenna radiator 1, that is, the length of the second antenna radiator generally ranges from 10 mm to 25 mm.
  • the length of the second antenna radiator is 17 mm.
  • the length of the antenna radiator from the first connection position A to the first end M of the antenna radiator 1, that is, the length of the first antenna radiator generally ranges from greater than or equal to 25 mm and less than or equal to 35 mm.
  • the optional value range of the first antenna radiator is 28 mm to 33 mm.
  • the length of the antenna radiator between the second connection position B on the antenna radiator 1 and the first end M of the antenna radiator 1 ranges from greater than 0 mm to less than or equal to 20 mm, and its optional value The range is from 5mm to 10mm.
  • the terminal device described in the above embodiments may be a mobile phone, navigation, tablet computer, personal digital assistant (PDA), or notebook computer.
  • PDA personal digital assistant

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种天线结构及移动终端。该天线结构包括:天线辐射体;接地板,所述接地板与所述天线辐射体之间形成净空区域;信号源,所述信号源的第一端与所述接地板连接;第一电容,所述第一电容的第一端与所述信号源的第二端连接,所述第一电容的第二端与所述天线辐射体连接;第一阻抗匹配网络,所述第一阻抗匹配网络分别与天线辐射体以及地连接;其中,所述天线结构产生包括第一谐振模态、第二谐振模态以及第三谐振模态中的至少两种谐振模态,所述第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长。

Description

天线结构及移动终端
相关申请的交叉引用
本申请主张在2018年12月26日在中国提交的中国专利申请号No.201811600696.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及电子技术领域,尤其涉及一种天线结构及移动终端。
背景技术
为了提升移动终端的上网速率,多载波聚合(Carrier Aggregation,CA)技术得到普及。例如,B39(1.88GHz~1.92GHz)频段+B41(2.5GHz~2.69GHz)频段的“中频+高频”CA组合,B5(0.824GHz~0.894GHz)频段+B3(1.71G Hz~1.88GHz)+B1(1.92GHz~2.17GHz)的“低频+中频”CA组合。这里,低频/中频/高频分别指0.824GHz~0.96GHz/1.71GHz~2.17GHz/2.3GHz~2.7GHz的频段。未来,运营商还可能推出“低频+中频+高频”多CA组合,如B5+B3+B7等。多CA技术要求移动终端天线能够同时支持多个频段。
近年来,高屏占比的移动终端,如“全面屏”(指屏幕比例为19:9)移动终端得到市场的青睐。但是,由于屏幕的高屏占比极大地压缩了天线空间,具体是指天线辐射体至参考地之间的空间,导致天线带宽很窄,无法满足多CA需求。
高屏占比的移动终端常采用的天线方案如图1所示。天线辐射体101、参考地103,天线辐射体101与参考地103之间设有净空区域102。天线辐射体101与参考地103之间距离取值范围为0.5mm~3mm。104为信号源;105为电感,实现天线匹配功能。107为电感或者电容。通过开关106的导通和断开实现中频和低频的切换。一般来说,开关106断开时为低频,导通时为中频。原理是:开关106改变了天线辐射体101的电气长度,从而改变天线的谐振频率。为了覆盖多个频段,开关106一般为单刀多掷开关,分别连接 不同的支路,通过切换使得天线谐振于不同的频率,实现天线调谐,以覆盖更宽的带宽。但是,每个频段都是通过开关106的切换来覆盖的,是分时工作的。即同时只能支持一个频段,不支持CA,无法满足多CA需求。如何在小的天线空间下实现多CA的天线装置仍是一个难点问题。
发明内容
本公开实施例提供一种天线结构及移动终端,以解决相关移动终端的天线结构无法满足多CA需求的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的实施例提供了一种天线结构,包括:
天线辐射体;
接地板,所述接地板与所述天线辐射体之间形成净空区域;
信号源,所述信号源的第一端与所述接地板连接;
第一电容,所述第一电容的第一端与所述信号源的第二端连接,所述第一电容的第二端与所述天线辐射体连接;
第一阻抗匹配网络,所述第一阻抗匹配网络分别与天线辐射体以及地连接;
其中,所述天线结构产生包括第一谐振模态、第二谐振模态以及第三谐振模态中的至少两种谐振模态,所述第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长。
第二方面,本公开的实施例还提供了一种移动终端,包括:如上述实施例所述的天线结构。
在本公开的一些实施例中,通过第一电容的第一端与信号源的第二端连接,第二端与天线辐射体连接;第一阻抗匹配网络分别与天线辐射体及地连接,使得这样的天线结构能够产生包括第一谐振模态第二谐振模态以及第三谐振模态中的至少两种谐振模态,其中,第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长,这样的天线结构,能够满足同时支持多个频段的多CA需求。
附图说明
图1为相关技术中天线结构的结构示意图;
图2为本公开的一些实施例的天线结构的结构示意图之一;
图3为本公开的一些实施例的天线结构的结构示意图之二;
图4为本公开的一些实施例的天线结构的电压驻波比随频率的变化示意图之一;
图5为本公开的一些实施例的天线结构的结构示意图之三;以及
图6为本公开的一些实施例的天线结构的电压驻波比随频率的变化示意图之二。
具体实施方式
下面将结合本发明本公开中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图2-图3所示,为本公开的一些实施例提供的天线结构的结构示意图。该天线结构包括:天线辐射体1;接地板2,接地板2与天线辐射体1之间形成净空区域3;信号源4,该信号源4的第一端与接地板2连接;第一电容5,该第一电容5的第一端与信号源4的第二端连接,该第一电容5的第二端与天线辐射体1连接;第一阻抗匹配网络6,该第一阻抗匹配网络6分别与天线辐射体1以及地连接;其中,该天线结构产生包括第一谐振模态、第二谐振模态以及第三谐振模态中的至少两种谐振模态,第一谐振模态谐振于第一频段的四分之一波长;第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长。
基于上述连接关系的天线结构,所述第三谐振模态谐振于第三频段的四分之一波长。
这里,天线辐射体1用于参与天线辐射,是辐射电磁波能量的载体。
接地板2与相连接的主板一起,作为天线的参考地。
需要说明的是,净空区域3可以理解为接地板2与天线辐射体1之间具有一定的距离(相当于净空区域3的宽度),该距离越大则天线辐射性能越好,天线带宽越宽。由于全面屏移动终端对屏占比的要求高,该距离一般小于5mm,可选的取值范围为0.5mm~3mm。
作为一可选的实现方式,如图2所示,天线辐射体1包括:第一天线辐射体和第二天线辐射体;第一天线辐射体为与第一阻抗匹配网络6连接的天线辐射体1上的第一连接位置A至天线辐射体1的第一端M的天线辐射体,第一天线辐射体、第一阻抗匹配网络6以及第一电容5共同激发出第一谐振模态以及第二谐振模态。
第二天线辐射体为该第一连接位置A至天线辐射体1的第二端N的天线辐射体,第二天线辐射体以及第一阻抗匹配网络6共同激发出第三谐振模态。
这里,具体的,第一天线辐射体包括:天线辐射体1上的第二连接位置B与第二连接位置A之间的天线辐射体,以及,第二连接位置B至天线辐射体1的第一端M之间的天线辐射体,该第二连接位置B为天线辐射体1上与第一电容5的第二端连接的位置。
这里,作为一可选的实现方式,天线辐射体1的总长度一般取值范围为40mm~90mm,可选的取值范围为45mm~75mm。
基于上述天线辐射体1的总长度,第一天线辐射体的长度一般取值范围为30mm~60mm,可选的取值范围为40mm~55mm。
第二天线辐射体的长度一般取值范围为10mm~30mm,可选的取值范围为16mm~22mm。
需要说明的是,第二连接位置B至天线辐射体1的第一端M之间的天线辐射体可以谐振于第二频段的四分之一波长或者不谐振。
还有,第二谐振模态谐振于第二频段的四分之一波长还是四分之三波长取决于第二连接位置B至天线辐射体1的第一端M之间的天线辐射体的长度。
可选的,所述第二频段的四分之一波长所对应的谐振频率或者四分之三波长所对应的谐振频率与所述第二连接位置B至所述天线辐射体1的第一端M之间的天线辐射体的长度成反比。
也就是说,第二连接位置B至天线辐射体1的第一端M之间的天线辐射 体的长度很大程度上影响了第二谐振模态的谐振频率。第二连接位置B至天线辐射体1的第一端M之间的天线辐射体的长度越长,则第二频段的四分之一波长所对应的谐振频率或者四分之三波长所对应的谐振频率越低。
需要进一步说明的是,当第二连接位置B至天线辐射体1的第一端M之间的天线辐射体谐振于第二频段的四分之一波长时,第二连接位置B与第二连接位置A之间的天线辐射体不谐振,即第一天线辐射体谐振于第二频段的四分之一波长。
当第二连接位置B至天线辐射体1的第一端M之间的天线辐射体不谐振时,第二连接位置B与第二连接位置A之间的天线辐射体可谐振于第二频段的四分之三波长。
这里,基于上述天线辐射体1的总长度,第二连接位置B至天线辐射体1的第一端M之间的天线辐射体的长度一般取值范围为0mm~30mm,可选的取值范围为10mm~20mm。
这里,基于上述天线辐射体1的总长度,第一电容5的取值范围为大于或者等于0.5pf且小于或者等于1.8pf。其中,可选的取值范围为0.8~1.2pf。
可选的,所述第三频段的四分之一波长所对应的谐振频率与所述第二天线辐射体的长度成反比。
也就是说,第一连接位置A至天线辐射体1的第二端N的天线辐射体的长度越短,则第三频段的四分之一波长所对应的谐振频率越高。
可选地,第一天线辐射体的长度大于或者等于第二天线辐射体的长度,其中,相应地,天线结构在第一频段内的谐振频率小于第三频段内的谐振频率,第三频段内的谐振频率小于第二频段内的谐振频率。也就是说,第一频段为低频频段,第二频段为高频频段,第三频段为中频频段。
但是,由于第一连接位置A至天线辐射体1的第二端N的天线辐射体,即第二天线辐射体的长度越短,则第三频段的四分之一波长所对应的谐振频率越高,而第二连接位置B至天线辐射体1的第一端M的天线辐射体的长度越长,则第二频段的四分之一波长所对应的谐振频率或者四分之三波长所对应的谐振频率越低,所以可能出现第三频段为高频频段,第二频段为中频频段。
即,第一频段内的谐振频率小于第二频段内的谐振频率,第二频段内的谐振频率小于第三段内的谐振频率。
也就是说,本公开的一些实施例中,可选的,天线结构在第一频段内的谐振频率小于第三频段内的谐振频率,第三频段内的谐振频率小于第二频段内的谐振频率;或者,第一频段内的谐振频率小于第二频段内的谐振频率,第二频段内的谐振频率小于第三段内的谐振频率。
可选地,第一天线辐射体的长度小于第二天线辐射体的长度;其中,相应地,天线结构在第三频段内的谐振频率小于第一频段内的谐振频率,第二频段内的谐振频率大于第一频段内的谐振频率。
在本公开一可选的实施例中,第一阻抗匹配网络6为第一电感或第二电容或者第一预设长度的导线。
需要说明的是,第一阻抗匹配网络6是电感还是电容主要取决于第二天线辐射体的长度的长短。
可选的,在第二天线辐射体的长度小于20mm的情况下,第一阻抗匹配网络6为第一电感。
可选的,第一电感的取值范围为大于0nH且小于或者等于5nH。其中,可选的,第一电感为2nH。
可选的,在第二天线辐射体的长度大于25mm的情况下,第一阻抗匹配网络6为第二电容。
可选的,第二电容的取值范围为大于或者等于3pf且小于或者等于15pf。其中,可选的,第二电容为6pf。
基于上述实施例,天线结构最终可以产生第一谐振模态、第二谐振模态以及第三谐振模态的三个谐振模态,如图4所示,为同一时刻,该天线结构的电压驻波比随频率的变化示意图。经实测后可知,该天线结构的天线效率在低频段/中频段/高频段带内的峰值效率35%以上。这里,横轴用于表示频率f,纵轴用于表示电压驻波比VWSR。其中,曲线H表示第一谐振模态,f1表示第一谐振频率,即第一频段的四分之一波长所对应的谐振频率;曲线I表示第三谐振模态,f3表示第三谐振频率,即第三频段的四分之一波长所对应的谐振频率;曲线K表示第二谐振频率,f2表示第二谐振频率,即第二频 段的四分之一波长或者四分之三波长所对应的谐振频率。三个谐振模态是同时存在的,满足多CA需求,提升天线效率。
基于此,本公开的一些实施例通过第一电容的第一端与信号源的第二端连接,第二端与天线辐射体连接;第一电感或者第二电容分别与天线辐射体及地连接,使得这样的天线结构能够产生第一谐振模态第二谐振模态以及第三谐振模态,其中,第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长;所述第三谐振模态谐振于第三频段的四分之一波长,这样的天线结构,能够满足同时支持多个频段的多CA需求。
在本公开另一可选的实施例中,第一阻抗匹配网络6包括:第一选择单元;多个阻抗匹配元件;与第一选择单元连接的第一控制单元,第一控制单元控制第一选择单元与多个阻抗匹配元件中的第一目标阻抗匹配元件导通。
这里,本实施例在满足天线同时支持多个频段的多CA需求的基础上,通过第一控制单元控制第一选择单元与多个阻抗匹配元件中的第一目标阻抗匹配元件导通,其目的是为了调整天线的等效电长度,实现天线频率的切换。
这里,第一阻抗匹配网络6可以有效的控制第一频段、第二频段以及第三频段的谐振频率。
可选的,第一目标阻抗匹配元件为第二电感;所述第一频段的四分之一波长所对应的谐振频率,所述第二频段的四分之一波长或者四分之三波长所对应的谐振频率以及所述第三频段的四分之一波长所对应的谐振频率分别与所述第二电感的电感值成反比。
在本公开又一可选的实施例中,所述第一电容5为可变电容。在满足天线同时支持多个频段的多CA需求的基础上,通过调节第一电容5的电容值,其目的是为了调整天线的等效电长度,实现天线频率的切换。另外,该天线结构能够根据各个频段的需要选择第一电容5的电容值,以更好地优化每个频段的适配。
在本公开再一可选的实施例中,天线结构还包括:第四天线辐射体,第四天线辐射体的预设位置上设置有馈电点,该馈电点与信号源4连接(图中未显示);其中,第一电容5为第四天线辐射体与第一天线辐射体的电磁耦合 间隙。
基于图2及图3所示的实施例,为了进一步地拓展天线带宽,如图5所示,作为又一可选的实现方式,所述天线结构还包括:第二阻抗匹配网络7,第二阻抗匹配网络7分别与天线辐射体1以及地连接;其中,天线结构还产生第四谐振模态,第四谐振模态谐振于第四频段的四分之一波长或者一倍波长,此时,第三谐振模态谐振于第三频段的二分之一波长,且所述第三频段的谐振频率小于所述第四频段的谐振频率。
可选的,天线辐射体1还包括:第三天线辐射体;第三天线辐射体为与第二阻抗匹配网络7连接的天线辐射体1的第三连接位置C至天线辐射体1的第二端N的天线辐射体,第三天线辐射体以及第二阻抗匹配网络7共同激发出所述第四谐振模态且谐振于第四频段的四分之一波长,所述第三天线辐射体的长度小于所述第二天线辐射体的长度。
需要说明的是,本实现方式中,与第一阻抗匹配网络6连接的天线辐射体1上的第一连接位置A至天线辐射体1的第二端N的天线辐射体的长度相较于图2及图3要长。也就是,第一连接位置A更往远离天线辐射体1的第二端N的方向设置。
这里,天线辐射体1上第三连接位置C至天线辐射体1的第二端N的天线辐射体,也就是第三天线辐射体通过第二阻抗匹配网络7主要产生了另一个谐振模态,即谐振于第四频段的四分之一波长的第四谐振模态;第一连接位置A至天线辐射体1的第二端N的天线辐射体,也就是第二辐射体、第二阻抗匹配网络7以及第一阻抗匹配网络6一起产生了第三谐振模态,即谐振于第三频段的二分之一波长。
可选的,第二天线辐射体的长度一般取值范围为25mm~35mm,可选的取值范围为28mm~32mm。
可选的,第三天线辐射体的长度一般取值范围为0mm~15mm,可选的取值范围为6mm~10mm。
这里,在第一天线辐射体的长度大于或者第二天线辐射体的长度的情况下,所述第一频段内的谐振频率小于所述第三频段内的谐振频率,所述第三谐振频率小于所述第二频段内的谐振频率,所述第四频段内的谐振频率大于 所述第三频段内的谐振频率。也就是说,第一频段为低频频段,第二频段为高频频段,第三频段为中频频段,第四频段为高频频段。这里,第二频段内的谐振频率与第四频段内的谐振频率的大小视具体天线的尺寸而定,这里做不具体限定。
或者,所述第一频段内的谐振频率小于所述第二频段内的谐振频率,所述第二频段内的谐振频率小于所述第三频段内的谐振频率,所述第四频段内的谐振频率大于第二频段内的谐振频率。也就是说,第一频段为低频频段,第二频段为中频频段,第三频段为高频频段,第四频段为高频频段。这里,第三频段内的谐振频率与第四频段内的谐振频率的大小视具体天线的尺寸而定,这里不不具体限定。
本实现方式中,可选的,天线辐射体1的总长度一般取值范围为45mm~95mm,可选的取值范围为50mm~80mm。
第一天线辐射体的长度一般取值范围为30mm~60mm,可选的取值范围为40mm~55mm。
可选的,第二连接位置B至天线辐射体1的第一端M之间的天线辐射体的长度一般取值范围为0mm~30mm,可选的取值范围为10mm~20mm。
需要说明的是,改变第三连接位置C至天线辐射体1的第二端N的天线辐射体,也就是第三天线辐射体的长度可有效改变第四频段内的谐振频率;改变第一连接位置A至天线辐射体1的第二端N的天线辐射体,也就是第二天线辐射体的长度、第一阻抗匹配网络6的值、第二阻抗匹配网络7的值以及第三连接位置C的位置可有效改变第三频段内的谐振频率。
在第一天线辐射体的长度小于所述第二天线辐射体的长度的情况下,第三频段内的谐振频率小于第一频段内的谐振频率。
这里,第二频段内的谐振频率、第四频段内的谐振频率与第一频段内的谐振频率以及与第三频段内的谐振频率之间的大小关系视具体天线的尺寸而定,这里不做具体限定。
在本公开一可选的实施例中,第二阻抗匹配网络7为第三电感或者第三电容或者第二预设长度的导线,第一阻抗匹配网络6为第四电感。
这里,在第二阻抗匹配网络7为第三电感的情况下,可选的,所述第三 电感的取值范围为大于0nH且小于或者等于5nH,可选的取值范围为0.5nH~1.5nH。
在第二阻抗匹配网络7为第三电容的情况下,可选的,所述第三电容的取值范围为大于1pf且小于或者等于10pf。
可选的,所述第三电容为8pf。
这里,可选的,第四电感的取值范围为大于0nH且小于或者等于6nH,其可选的取值范围为2nH~4nH。
这里,可选的,第一电容5的取值范围为0.5pf~1.8pf,可选的取值范围为0.8pf~1.2pf。
基于上述实施例,天线结构最终可以产生第一谐振模态、第二谐振模态、第三谐振模态以及第四谐振模态的四个谐振模态,如图6所示,为同一时刻,该天线结构的电压驻波比随频率的变化示意图。经实测后可知,该天线结构的天线效率在低频段/中频段/高频段带内的峰值效率35%以上。这里,横轴用于表示频率f,纵轴用于表示电压驻波比VWSR。其中,曲线H表示第一谐振模态,f1表示第一谐振频率,即第一频段的四分之一波长所对应的谐振频率;曲线I表示第三谐振模态,f3表示第三谐振频率,即第三频段的二分之一波长所对应的谐振频率;曲线J表示第四谐振模态,f4表示第四谐振频率,即第四频段的四分之一波长或者一倍波长所对应的谐振频率;曲线K表示第二谐振频率,f2表示第二谐振频率,即第二频段的四分之一波长或者四分之三波长所对应的谐振频率。四个谐振模态是同时存在的,满足多CA需求,提升天线效率。
基于此,本公开的一些实施例通过第一电容的第一端与信号源的第二端连接,第二端与天线辐射体连接;第一阻抗匹配网络分别与天线辐射体及地连接,第二阻抗匹配网络,即电感或电容分别与天线辐射体1以及地连接使得该天线结构能够产生第一谐振模态第二谐振模态、第三谐振模态以及第四谐振模态,其中,第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长;所述第三谐振模态谐振于第三频段的二分之一波长,第四谐振模态谐振于第四频段的四分之一波长或者一倍波长,这样的天线结构,能够满足同时支持多个频段的多 CA需求。
在本公开另一可选的实施例中,第二阻抗匹配网络7包括:第二选择单元;多个阻抗匹配元件;与第二选择单元连接的第二控制单元,第二控制单元控制第二选择单元与多个阻抗匹配元件中的第二目标阻抗匹配元件导通。
这里,本实施例在满足天线同时支持多个频段的多CA需求的基础上,通过第二控制单元控制第二选择单元与多个阻抗匹配元件中的第二目标阻抗匹配元件导通,其目的是为了调整天线的等效电长度,实现天线频率的切换。
这里,第二阻抗匹配网络7可以有效的控制第三频段以及第四频段的谐振频段。
可选的,第二目标阻抗匹配元件为第五电感;所述第三频段的二分之一波长所对应的谐振频率以及所述第四频段的四分之一波长所对应的谐振频率分别与所述第五电感的电感值成反比。
可选的,上述所有实施例中的所述天线辐射体1为金属材质,例如FPC、LDS、不锈钢、移动终端的金属外壳、移动终端的金属边框等。
本公开的一些实施例还提供一种移动终端,包括:如上述实施例所述的天线结构。
也就是说,上述实施例中的天线结构可应用于移动终端。具体的,可应用于全金属外形的移动终端。例如,三段式一体化金属外形、U形缝隙一体化金属外形、金属边框外形的移动终端。
这里,可选的,天线辐射体1可以为U型金属臂,如图2所示,或者为长条形金属臂,如图3所示。
还有,可选的,接地板2为金属材质。也就是说,金属体被缝隙3分割成U型金属臂和接地板。
需要说明的是,缝隙3内填充有非金属材料,如塑料。可选的,缝隙3的宽度一般取值范围为0.3mm~10mm,可选的取值范围为0.8mm~2.5mm。
这里,如图3所示,天线辐射体1为长条形金属臂时,天线辐射体1的总长度一般取值范围为40mm~60mm,可选的取值范围为45mm~55mm。较图2中的U型金属臂的长度要短。
其中,第一连接位置A至天线辐射体1的第二端N的天线辐射体,即第 二天线辐射体的长度一般取值范围为10mm~25mm。可选的,第二天线辐射体的长度为17mm。
其中,第一连接位置A至天线辐射体1的第一端M的天线辐射体,即第一天线辐射体的长度一般取值范围为大于或者等于25mm且小于或者等于35mm。第一天线辐射体可选的取值范围为28mm~33mm。
其中,所述天线辐射体1上的第二连接位置B至天线辐射1的第一端M之间的天线辐射体的长度取值范围为大于0mm且小于或者等于20mm,其可选的取值范围为5mm~10mm。
上述实施例中所述的终端设备可以是手机、导航、平板电脑、个人数字助理(PDA)、或笔记本电脑等设备。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种天线结构,包括:
    天线辐射体(1);
    接地板(2),所述接地板(2)与所述天线辐射体(1)之间形成净空区域(3);
    信号源(4),所述信号源(4)的第一端与所述接地板(2)连接;
    第一电容(5),所述第一电容(5)的第一端与所述信号源(4)的第二端连接,所述第一电容(5)的第二端与所述天线辐射体(1)连接;
    第一阻抗匹配网络(6),所述第一阻抗匹配网络(6)分别与天线辐射体(1)以及地连接;
    其中,所述天线结构产生包括第一谐振模态、第二谐振模态以及第三谐振模态中的至少两种谐振模态,所述第一谐振模态谐振于第一频段的四分之一波长;所述第二谐振模态谐振于第二频段的四分之一波长或者四分之三波长。
  2. 根据权利要求1所述的天线结构,其中,所述第三谐振模态谐振于第三频段的四分之一波长。
  3. 根据权利要求2所述的天线结构,其中,所述天线辐射体(1)包括:第一天线辐射体和第二天线辐射体;
    所述第一天线辐射体为与所述第一阻抗匹配网络(6)连接的所述天线辐射体(1)上的第一连接位置(A)至所述天线辐射体(1)的第一端(M)的天线辐射体,所述第一天线辐射体、所述第一阻抗匹配网络(6)以及所述第一电容(5)共同激发出所述第一谐振模态以及所述第二谐振模态;
    所述第二天线辐射体为所述第一连接位置(A)至所述天线辐射体(1)的第二端(N)的天线辐射体,所述第二天线辐射体以及所述第一阻抗匹配网络(6)共同激发出所述第三谐振模态。
  4. 根据权利要求3所述的天线结构,其中,所述第一天线辐射体的长度大于或者等于所述第二天线辐射体的长度;
    所述第一频段内的谐振频率小于所述第三频段内的谐振频率,所述第三 频段内的谐振频率小于所述第二频段内的谐振频率;
    或者,所述第一频段内的谐振频率小于所述第二频段内的谐振频率,所述第二频段内的谐振频率小于所述第三频段内的谐振频率。
  5. 根据权利要求3所述的天线结构,其中,所述第一天线辐射体的长度小于所述第二天线辐射体的长度;
    所述第三频段内的谐振频率小于所述第一频段内的谐振频率,所述第二频段内的谐振频率大于所述第一频段内的谐振频率。
  6. 根据权利要求3所述的天线结构,其中,所述第一天线辐射体包括:所述天线辐射体(1)上的第二连接位置(B)与所述第一连接位置(A)之间的天线辐射体,以及,所述第二连接位置(B)至所述天线辐射体(1)的第一端(M)之间的天线辐射体;所述第二连接位置(B)为所述天线辐射体(1)上与所述第一电容(5)的第二端连接的位置。
  7. 根据权利要求6所述的天线结构,其中,所述第二频段的四分之一波长所对应的谐振频率或者四分之三波长所对应的谐振频率与所述第二连接位置(B)至所述天线辐射体(1)的第一端(M)之间的天线辐射体的长度成反比。
  8. 根据权利要求1所述的天线结构,其中,所述第一阻抗匹配网络(6)为第一电感或者第二电容或者第一预设长度的导线。
  9. 根据权利要求1所述的天线结构,其中,所述第一阻抗匹配网络(6)包括:
    第一选择单元;
    多个阻抗匹配元件;
    与所述第一选择单元连接的第一控制单元,所述第一控制单元控制所述第一选择单元与所述多个阻抗匹配元件中的第一目标阻抗匹配元件导通。
  10. 根据权利要求1所述的天线结构,其中,所述第一电容(5)为可变电容。
  11. 根据权利要求3所述的天线结构,其中,所述天线结构还包括:第四天线辐射体,所述第四天线辐射体的预设位置上设置有馈电点,所述馈电点与所述信号源(4)连接;
    其中,所述第一电容(5)为所述第四天线辐射体与所述第一天线辐射体的电磁耦合间隙。
  12. 根据权利要求3所述的天线结构,还包括:
    第二阻抗匹配网络(7),所述第二阻抗匹配网络(7)分别与天线辐射体(1)以及地连接;
    其中,所述天线结构还产生第四谐振模态,所述第四谐振模态谐振于第四频段的四分之一波长或者一倍波长,所述第三谐振模态谐振于第三频段的二分之一波长,且所述第三频段的谐振频率小于所述第四频段的谐振频率。
  13. 根据权利要求12所述的天线结构,其中,所述天线辐射体(1)还包括:第三天线辐射体;
    所述第三天线辐射体为与所述第二阻抗匹配网络(7)连接的所述天线辐射体(1)的第三连接位置(C)至所述天线辐射体(1)的第二端(N)的天线辐射体,所述第三天线辐射体以及所述第二阻抗匹配网络(7)共同激发出所述第四谐振模态且谐振于所述第四频段的四分之一波长,所述第三天线辐射体的长度小于所述第二天线辐射体的长度。
  14. 根据权利要求12所述的天线结构,其中,所述第二阻抗匹配网络(7)与所述天线辐射体(1)的第二端(N)连接;
    所述第二天线辐射体、所述第二阻抗匹配网络(7)以及所述第一阻抗匹配网络(6)共同激发出所述第四谐振模态且谐振于所述第四频段的一倍波长。
  15. 根据权利要求13所述的天线结构,其中,所述第一频段内的谐振频率小于所述第三频段内的谐振频率,所述第三谐振频率小于所述第二频段内的谐振频率,所述第四频段内的谐振频率大于所述第三频段内的谐振频率;
    或者,所述第一频段内的谐振频率小于所述第二频段内的谐振频率,所述第二频段内的谐振频率小于所述第三频段内的谐振频率,所述第四频段内的谐振频率大于第二频段内的谐振频率;
    或者,所述第三频段内的谐振频率小于所述第一频段内的谐振频率。
  16. 根据权利要求12所述的天线结构,其中,所述第二阻抗匹配网络(7)为第三电感或者第三电容或者第二预设长度的导线,所述第一阻抗匹配网络(6)为第四电感。
  17. 根据权利要求12所述的天线结构,其中,所述第二阻抗匹配网络(7)包括:
    第二选择单元;
    多个阻抗匹配元件;
    与所述第二选择单元连接的第二控制单元,所述第二控制单元控制所述第二选择单元与所述多个阻抗匹配元件中的第二目标阻抗匹配元件导通。
  18. 根据权利要求1所述的天线结构,其中,所述天线辐射体(1)为金属材质。
  19. 一种移动终端,包括:如权利要求1~18任一项所述的天线结构。
PCT/CN2019/123602 2018-12-26 2019-12-06 天线结构及移动终端 WO2020134962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811600696.6 2018-12-26
CN201811600696.6A CN109687151B (zh) 2018-12-26 2018-12-26 一种天线结构及移动终端

Publications (1)

Publication Number Publication Date
WO2020134962A1 true WO2020134962A1 (zh) 2020-07-02

Family

ID=66189494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123602 WO2020134962A1 (zh) 2018-12-26 2019-12-06 天线结构及移动终端

Country Status (2)

Country Link
CN (1) CN109687151B (zh)
WO (1) WO2020134962A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467387A (zh) * 2020-11-20 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN114069207A (zh) * 2020-07-29 2022-02-18 北京小米移动软件有限公司 天线结构和电子设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687151B (zh) * 2018-12-26 2021-12-14 维沃移动通信有限公司 一种天线结构及移动终端
CN114447583B (zh) * 2019-08-23 2023-09-01 华为技术有限公司 天线及电子设备
CN111029725B (zh) * 2019-12-31 2021-09-24 维沃移动通信有限公司 一种电子设备
CN112928451B (zh) * 2021-01-21 2023-05-26 维沃移动通信有限公司 天线电路及电子设备
CN112993576B (zh) * 2021-02-08 2023-07-07 维沃移动通信有限公司 电子设备以及电子设备的控制方法
CN113922048B (zh) * 2021-05-28 2022-09-30 荣耀终端有限公司 一种终端天线及终端电子设备
CN116315598A (zh) * 2021-12-07 2023-06-23 Oppo广东移动通信有限公司 天线装置及电子设备
CN116130947A (zh) * 2022-09-09 2023-05-16 华为技术有限公司 天线装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140210682A1 (en) * 2013-01-29 2014-07-31 Asustek Computer Inc. Antenna
CN103985954A (zh) * 2014-06-03 2014-08-13 联想(北京)有限公司 无线通信设备
CN108232472A (zh) * 2017-12-27 2018-06-29 广东欧珀移动通信有限公司 天线组件及电子装置
CN108321542A (zh) * 2015-06-12 2018-07-24 广东欧珀移动通信有限公司 天线系统及应用该天线系统的通信终端
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN109687151A (zh) * 2018-12-26 2019-04-26 维沃移动通信有限公司 一种天线结构及移动终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278192A (ja) * 2008-05-12 2009-11-26 Sony Ericsson Mobilecommunications Japan Inc アンテナ装置及び通信端末装置
US9306266B2 (en) * 2012-09-21 2016-04-05 Aalto University Foundation Multi-band antenna for wireless communication
CN104485512B (zh) * 2014-11-28 2018-02-06 深圳市信维通信股份有限公司 用于具有金属框架便携式设备的lte载波聚合天线
CN105896083A (zh) * 2015-12-22 2016-08-24 乐视移动智能信息技术(北京)有限公司 可调谐天线以及移动终端
US10403963B2 (en) * 2017-01-19 2019-09-03 Stmicroelectronics (Tours) Sas Antenna for mobile communication device
CN108767500A (zh) * 2018-05-31 2018-11-06 维沃移动通信有限公司 一种天线装置及移动终端
CN108879116B (zh) * 2018-06-25 2021-06-18 维沃移动通信有限公司 一种天线系统及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140210682A1 (en) * 2013-01-29 2014-07-31 Asustek Computer Inc. Antenna
CN103985954A (zh) * 2014-06-03 2014-08-13 联想(北京)有限公司 无线通信设备
CN108321542A (zh) * 2015-06-12 2018-07-24 广东欧珀移动通信有限公司 天线系统及应用该天线系统的通信终端
CN108232472A (zh) * 2017-12-27 2018-06-29 广东欧珀移动通信有限公司 天线组件及电子装置
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN109687151A (zh) * 2018-12-26 2019-04-26 维沃移动通信有限公司 一种天线结构及移动终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069207A (zh) * 2020-07-29 2022-02-18 北京小米移动软件有限公司 天线结构和电子设备
CN114069207B (zh) * 2020-07-29 2023-08-22 北京小米移动软件有限公司 天线结构和电子设备
CN112467387A (zh) * 2020-11-20 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN112467387B (zh) * 2020-11-20 2023-02-28 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN109687151B (zh) 2021-12-14
CN109687151A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020134962A1 (zh) 天线结构及移动终端
EP3896790B1 (en) Antenna structure and communication terminal
WO2020135146A1 (zh) 天线结构及无线通信终端
WO2020135046A1 (zh) 天线结构及通信终端
WO2022206237A1 (zh) 天线组件及电子设备
TWI630759B (zh) 天線結構及應用該天線結構的無線通訊裝置
US20210305702A1 (en) Antenna structure and communications terminal
JP6118889B2 (ja) 移動端末装置
US9401543B2 (en) Broadband antenna
US20160294042A1 (en) Loop-shaped antenna and mobile terminal
TWI488358B (zh) 通訊電子裝置及其天線結構
US9640868B2 (en) Wideband antenna and wireless communication device
US9980018B2 (en) Communication device with narrow-ground-clearance antenna element
US20120169547A1 (en) Multiband antenna with surrounding conductive cosmetic feature
WO2015143714A1 (zh) 一种天线及移动终端
TW201340465A (zh) 寬頻天線及其相關射頻裝置
US20120050121A1 (en) Antenna having capacitive element
WO2019227914A1 (zh) 天线及移动终端
TWI633704B (zh) 無線裝置之天線
TW201818609A (zh) 行動裝置
US10811775B2 (en) Loop antenna
EP3709441B1 (en) Multi-frequency antenna and mobile terminal
TW201421808A (zh) 寬頻天線及無線通訊裝置
EP2728665B1 (en) Communication device and wide-band antenna element therein
KR101634824B1 (ko) 분기 캐패시터를 이용한 역-f 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902424

Country of ref document: EP

Kind code of ref document: A1