WO2019227914A1 - 天线及移动终端 - Google Patents

天线及移动终端 Download PDF

Info

Publication number
WO2019227914A1
WO2019227914A1 PCT/CN2018/124150 CN2018124150W WO2019227914A1 WO 2019227914 A1 WO2019227914 A1 WO 2019227914A1 CN 2018124150 W CN2018124150 W CN 2018124150W WO 2019227914 A1 WO2019227914 A1 WO 2019227914A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
feeding
antenna
gap
parasitic
Prior art date
Application number
PCT/CN2018/124150
Other languages
English (en)
French (fr)
Inventor
周大为
李元鹏
梁铁柱
张功磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020001302-1A priority Critical patent/BR112020001302A2/pt
Priority to JP2020501392A priority patent/JP7028954B2/ja
Priority to EP18920379.7A priority patent/EP3624264A4/en
Priority to AU2018426062A priority patent/AU2018426062B2/en
Priority to US16/620,359 priority patent/US11276930B2/en
Priority to CN201880094023.XA priority patent/CN112204815B/zh
Priority to KR1020197036158A priority patent/KR102276267B1/ko
Priority to CA3067483A priority patent/CA3067483C/en
Publication of WO2019227914A1 publication Critical patent/WO2019227914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of communications, and in particular, to an antenna and a mobile terminal including the antenna.
  • Most current mobile terminals have a call function, and an antenna for communication with the outside is provided inside the mobile terminal.
  • the mobile terminal When a user talks, the mobile terminal is mostly in the head-hand mode, and the antenna signal attenuation of the mobile terminal in the head-hand mode is relatively serious, which affects the call effect of the mobile terminal.
  • the purpose of this application is to provide an antenna that can still maintain the signal transmission and reception performance in the head-to-hand mode, and includes the following technical solutions:
  • An antenna includes a feeding branch, a parasitic branch, a feeding branch, a grounding branch, and a grounding part.
  • the antenna device is provided on a mobile terminal.
  • the mobile terminal includes a radiation part and a circuit board.
  • the circuit board includes a side.
  • the ground portion is provided on all or part of the ground layer on the circuit board, the side edge is located on the edge of the ground portion, a gap is formed between the radiation portion and the side edge, and the radiation portion
  • An insulation gap is provided, which separates the radiating part into the feeding branch and the parasitic branch, and the feeding branch extends from the feeding branch into the gap, and An end of the feeding branch far from the feeding branch is a feeding point, the ground branch extends from the parasitic branch into the gap and is electrically connected to the ground portion, and the side is located at the feeding The end of the electrical branch that is far from the insulation gap and the end of the parasitic branch that is far from the insulation gap, and the end of the feed branch that is far from the insulation gap and the far from the parasitic branch One end of the insulation gap is electrically connected to the ground .
  • a resonance generated by the antenna in the ground portion, the feeding branch, and the parasitic branch excites an inductive current loop around the gap.
  • the gap is enclosed by the radiating portion and the side, and the radiating portion is separated into a feeding branch and a parasitic branch by the insulating gap, and the feeding branch
  • the node and the parasitic branch protrude from the feeding branch and the ground branch respectively in the direction of the gap.
  • one end of the feeding branch far from the feeding branch is a feeding point, and is used for conducting radio frequency signals.
  • An end of the ground branch remote from the parasitic branch is electrically connected to the ground portion for maintaining a zero potential of the ground branch.
  • This current passes through the side edges and the feeding branches and the parasitic branches to form a current loop circulating around the gap.
  • the feeding branch and the ground branch can form a resonance of the current at a position where the induced current is large, which increases the radiation power of the antenna, thereby further enhancing the signal receiving and transmitting performance of the antenna.
  • the transmitting frequency of the antenna includes the low-frequency 617-960MHz frequency band, and also includes the LTE and GPS frequency bands that solve the low-frequency, such as the LTE B11 / 21/32 frequency band (1427-1515MHz); the GPS L1 / L2 / L5 frequency band ( 1575.42 / 1227.6 / 1176.45MHz) and so on.
  • the grounding portion, the feeding branch, and the parasitic branch together constitute an electrical length which is a half wavelength of the operating frequency of the antenna, so that the resonance generated by the three stimulates the induction around the gap.
  • the current is at a large value, which is conducive to improving the radiation efficiency.
  • the size range of the insulation gap in the length direction of the radiating part is: 0.2 mm or more and 2 mm or less to ensure the coupling between the power feeding branch and the parasitic branch.
  • the length direction of the radiating portion that is, the direction in which the radiating portion extends from the feeding branch to the parasitic branch.
  • the coupling between the feeding branch and the ground branch can also be adjusted by the amount of planar capacitive coupling formed by the insulation gap.
  • the insulation gap further includes a conductive suspension section, the suspension section is located between the feeding branch and the parasitic branch, and the suspension section and the feeding branch and the parasitic branch There are separate insulation gaps between them.
  • the floating section may be used to set a structure such as a key or an interface of the mobile terminal.
  • the feeding branch is closer to the end of the insulation gap on the feeding branch, and relative to the grounding point of the feeding branch, the ground branch is at The end of the parasitic branch is closer to the insulation gap.
  • the first distance is less than the second distance, and the third distance is less than the fourth distance, wherein the first distance is the distance between the connection between the feeding branch and the feeding branch and the insulation gap.
  • the second distance is a distance between a connection point of the feeding branch and the feeding branch and a position where the feeding branch is electrically connected to the ground
  • the third distance is the ground
  • the fourth distance is the electrical connection between the ground branch and the parasitic branch and the parasitic branch and the grounding part. The distance of the location.
  • the midpoint position of the side is the maximum position of the induced current. After the suspension section is added, the feeding branch and the ground branch are close to each other to obtain a better coupling effect.
  • the size range of the suspension section along the length of the radiating section is: 12 mm or more and 18 mm or less, and the size range of the separation gap in the length of the radiating section is: 0.2 mm or more and less than It is equal to 1.5mm. This arrangement can match most keys or interfaces, while ensuring the coupling of the ground branch and the feed branch.
  • the length of the feeder branch extending into the gap is: greater than or equal to 1/6 of the antenna operating frequency wavelength and less than or equal to 1/8 of the antenna operating frequency wavelength.
  • the ground branch The length extending into the gap is 1/4 of the wavelength of the working frequency of the antenna, which is used to further ensure effective coupling between the ground branch and the feed branch.
  • a parasitic frequency modulation device is provided between the ground branch and the ground portion, for adjusting the frequency of the ground branch.
  • the feeding branch is further provided with a feeding FM branch
  • the feeding FM branch is located in an extension direction of the parasitic branch toward the feeding branch, and the feeding FM branch also faces the gap
  • the feed FM branch is electrically connected to the ground portion.
  • the feed FM branch can be used to achieve grounding of the feed branch.
  • a feed frequency modulation device is further provided between the feed frequency modulation branch and the ground part, and the feed frequency modulation device is used for frequency adjustment of the feed branch.
  • the side includes a first segment and a second segment that intersect.
  • the power feeding branch or the parasitic branch is synchronously bent along with the side edges to maintain a uniform cross-sectional width of the gap in the length direction. That is, the feeding branch or the parasitic branch is also composed of two shapes that intersect.
  • the side further includes a third segment, the first segment is connected between the second segment and the third segment, the third segment intersects the first segment, and the second segment
  • the segment and the third segment are bent in the same direction from the first segment.
  • the feeding branch is synchronously bent with the third section
  • the parasitic branch is synchronously bending with the second section, that is, the feeding branch and the parasitic branch are both intersected by two sections.
  • the third segment can be used to further extend the length of the gap and cooperate with the first and second segments to adjust the position of the insulation gap on the mobile terminal.
  • the third segment and the second segment are symmetrically distributed at both ends of the first segment, and the parasitic branch and the feeding branch are symmetrically distributed on both sides of the insulation gap.
  • the length of the third segment is equal to the length of the second segment, so that the insulation gap is located at a middle position of a side frame of the mobile terminal.
  • the present application also relates to a mobile terminal including a transceiver and the antenna described above, the transceiver is electrically connected to a feed point in the antenna, and the transceiver implements data interaction with the outside world through the antenna. It can be understood that the mobile terminal can obtain a better call effect due to the application of the antenna.
  • the side is located at the bottom of the mobile terminal, and the top of the short-side mobile terminal adjacent to the position where the handset is provided in the mobile terminal, the position of the side is convenient for exposing the antenna during a call and avoiding blocking.
  • FIG. 1 is a schematic diagram of a mobile terminal according to the present application.
  • FIG. 2 is a schematic diagram of an antenna according to the present application.
  • FIG. 3 is a schematic diagram of a current flow of the antenna shown in FIG. 2;
  • FIG. 4 is a schematic diagram of internal resonance coupling of the antenna according to the present application.
  • FIG. 5 is a schematic diagram of a current flow of a prior art antenna
  • FIG. 6 is a schematic diagram of a characteristic current on a typical circuit board of the present application.
  • FIG. 7a is a schematic diagram of an embodiment of an antenna according to the present application.
  • FIG. 7b is a schematic diagram of an embodiment of an antenna according to the present application.
  • FIG. 8 is a schematic diagram of an embodiment of an antenna provided by this application.
  • FIG. 9 is a schematic diagram of an embodiment of an antenna provided by this application.
  • FIG. 10 is a schematic diagram of an embodiment of a mobile terminal provided by this application.
  • FIG. 11 is a schematic diagram of an embodiment of a mobile terminal provided by this application.
  • FIG. 12 is a schematic diagram of an embodiment of a mobile terminal provided in this application.
  • the mobile terminal according to the embodiment of the present application may be any device having a communication function, for example, a tablet computer, a mobile phone, an e-reader, a remote control, a notebook computer, a vehicle-mounted device, a network television, a wearable device, and the like having network functions smart device. Understandably, for the needs of various mobile terminals, wireless communication functions such as cellular, wireless local area network (WLAN), and Bluetooth are usually set on the mobile terminal. Therefore, an antenna for communication with the outside is provided inside the mobile terminal.
  • WLAN wireless local area network
  • the mobile terminal 200 includes a radiation section 210, a circuit board 220, a transceiver 230, and an antenna 100.
  • the radiating part 210 may be a frame of the mobile terminal 200 or a metal back cover of the mobile terminal 200.
  • the frame is a frame, in the embodiment shown in FIG. 1, a portion of the frame at the bottom and an edge of the circuit board 220 together constitute the main body of the antenna 100;
  • the slit forms a metal band similar to a frame.
  • the antenna 100 includes a feeding point 101, and the transceiver 230 is electrically connected to the feeding point 101 in the antenna 100. Therefore, when the antenna 100 works, the transceiver 230 implements data interaction with the outside world through the antenna 100.
  • the transceiver 230 is a radio frequency transceiver circuit for feeding an electromagnetic wave signal to the antenna 100.
  • the antenna 100 includes a feeding branch 10, a parasitic branch 20, a feeding branch 11, a ground branch 21, and a ground portion 30.
  • the circuit board 220 of the mobile terminal 200 includes one side 221, and the radiating portion 210 may be a part of the metal housing (including the frame and the back cover) of the mobile terminal 200.
  • the radiating portion 210 is a part of the frame,
  • the part 210 may also be a part of the metal back cover near the edge, and its position is close to the position of the frame.
  • a gap 40 is defined between the radiation portion 210 and the side edge 221.
  • the circuit board 220 includes a ground layer, and the radiating portion 210 is connected to the ground layer at both ends of the side 221.
  • the ground layer in the circuit board 220 forms the ground portion 30 of the antenna 100. It can be understood that the connection between the radiation portion 210 and the ground portion 30 also forms the gap 40 into a closed-loop structure.
  • the radiation portion 210 is provided with an insulation gap 50.
  • the insulation gap 50 separates the radiating portion 210 into the power feeding branch 10 and the parasitic branch 20. Therefore, for the antenna 100, the main structure of the antenna 100 is composed of the ground portion 30, the power feeding branch 10, and the parasitic branch 20 located inside the side 221.
  • the feeding branch 10 and the parasitic branch 20 are separated by the insulation gap 50.
  • the feeding branch 10, the parasitic branch 20 and the side 221 surround the gap 40. It can be understood that the gap 40 can be regarded as a clearance area of the antenna 100.
  • the feeding branch 10 is further provided with the feeding branch 11.
  • the feeding branch 11 extends from the feeding branch 10 into the gap 40.
  • the end of the feeding branch 11 far from the feeding branch 10 is the feeding point 101 of the antenna 100.
  • the end of the feeding branch 11 away from the feeding branch 10 may extend to the inside of the circuit board 220.
  • the feeding branch 11 is fed by a feeding circuit provided on the circuit board 220.
  • the parasitic branch 20 is also provided with a grounding branch 22 extending into the gap 40.
  • the ground branch 22 is electrically connected to the ground portion 30.
  • the end of the ground branch 22 far from the parasitic branch 20 may also extend to the inside of the circuit board 220.
  • the ground branch 22 and the ground portion 30 may be electrically connected through a ground spring, or may be electrically connected by welding.
  • the feeding branch 11 When feeding at the feeding point 101, the feeding branch 11 generates a current to form a low-frequency resonance branch. Due to the connection relationship between the feeding branch 11 and the feeding branch 10, the feeding branch 10 is also loaded with a feeding current. And the current of the feeding current at the insulation gap 50 is the smallest, and the current is largest at the position where the feeding branch 10 and the grounding portion 30 are conducting. Since the current at the insulation gap 50 is the smallest and the electric field is the strongest, the current can be coupled to the parasitic branch 20. The current on the parasitic branch 20 is also the smallest at the insulation gap 50, and the current is the largest at the position where the parasitic branch 20 and the ground portion 30 are conducting.
  • the feed branch 11 has resonance due to the feed current
  • the ground branch 21 has parasitic resonance due to the parasitic current.
  • two adjacent resonance frequencies are distributed at the left and right sides of the insulation slot 50. These two resonance frequencies are designed by strong coupling of the electric field.
  • an induced current is induced at the ground portion 30.
  • the induced current circulates through the ground portion 30, the feeding branch 10, and the parasitic branch 20 in sequence, that is, the induced current circulates around the gap 40 (see FIG. 3).
  • an induced current frequency excited at the ground portion 30, that is, a frequency of a signal transmitted to the outside through the radiating portion 210.
  • the horizontal axis in FIG. 4 is frequency, and the unit is (MHz), and the vertical axis is reflection coefficient of the antenna, and the unit is (dB). It can be understood that the antenna bandwidth refers to a bandwidth in a frequency where an echo coefficient is less than -6dB.
  • the resonance frequency generated by the feeding branch 10 is 890 MHz
  • the resonance frequency generated by the parasitic branch 20 is 970 MHz
  • the frequency connected between the two resonances is 930 MHz.
  • the induced current induced from the grounding portion 30 after the feeding branch 10 and the parasitic branch 20 are coupled is parallel to the gap 40 or described as parallel to the side Induced current at edge 221.
  • the working principle of the low frequency of the prior art antenna 1000 is that the feeding point 1001 excites the vertical part on the ground part 300. An induced current flowing to the side 2021 and gathered toward the feeding point 1001. The current on the ground portion 300 is the largest at the feeding point 1001, and the farther away from the feeding point 1001 is, the smaller the induced current is.
  • the resonance and efficiency of the prior art antenna 1000 depend on the length dimension of the ground portion 300 perpendicular to the side 2021 direction. That is, the size of the grounding part 300 in a direction perpendicular to the side 2021 and the size of the feeding section of the radiating part 2100 together constitute an unbalanced half-wavelength antenna resonance.
  • a current mode of the coupled excitation of the antenna 100 provided in the embodiment of the present application on the feeding branch 10 and the parasitic branch 20 is a first current mode 001 shown in FIG. 6.
  • FIG. 6 shows the characteristic current distribution of the antenna 100 in the first current mode 001.
  • the ground portion 30 has a rectangular shape.
  • the left side of FIG. 6 is the characteristic current located on the short side of the ground portion 30.
  • the current distribution on the right side of FIG. 6 is the current distribution with the characteristic current located on the long side of the ground portion 30. It can be found that in the first current mode 001, regardless of whether the side 221 is located on the long side or the short side of the grounding portion 30, the characteristic current on the grounding portion 30 appears to be the largest in the middle and the smallest in both ends. .
  • FIG. 5 shows the characteristic current strength distribution of the antenna in the second current mode 002 in the prior art, that is, the current direction of the prior art antenna 1000 is perpendicular to the side.
  • the feed point 1001 excites the ground portion 300 in the second current mode 002 state in which the current direction is perpendicular to the side 2021. It is located at the position where the characteristic current of the second current mode 002 is the weakest.
  • the prior art antenna 1000 does not form the most effective excitation for the ground part 300, and thus the low-frequency efficiency of the excitation is relatively poor, and it is often necessary to make up by increasing the clearance between the antenna branch and the antenna ground part.
  • the excitation source of the antenna 100 is to be located in a region of the maximum current distribution point in the current mode corresponding to the ground portion 30 for excitation.
  • the antenna 100 encloses the gap 40 by the radiating portion 210 and the side 221, and the radiating portion 210 is separated into the feeding branch by the insulating gap 50. Section 10 and the parasitic branch 20. This is considered as a current circulating path of the antenna 100.
  • the antenna 100 of the present application protrudes the feeding branch 11 and the ground branch 21 toward the gap 40 on the feeding branch 10 and the parasitic branch 20, respectively.
  • the end of the feeding branch 11 far from the feeding branch 10 is the feeding point 101
  • the end of the ground branch 21 far from the parasitic branch 20 is electrically connected to the grounding portion 30 for maintaining The potential balance of the ground branch 21 is described. That is to say, the feeding branch 11 and the ground branch 21 are coupled for exciting the ground portion 30.
  • the induced current generated at the ground portion 30 is the first current mode 001 parallel to the side 221.
  • the coupling between the feeding branch 11 and the ground branch 21 needs to be within a sufficient distance for coupling.
  • the feeding branch 11 and the ground branch 21 are relatively close to each other toward the insulation gap 50 and relatively far from the ends of the gap 40.
  • the induced position of the induced current on the ground portion 30 after the feeding branch 11 and the ground branch 21 are coupled, and its excitation position avoids the gap 40.
  • Both ends so that the ground portion 30 is excited at the position where the characteristic current distribution is the largest in the first current mode 001. That is, the feeding branch 11 and the ground branch 21 can resonate at a position where the induced current is large, so that the low-frequency efficiency of the antenna 100 is relatively higher, and the headroom required by the antenna is relatively smaller.
  • the antenna 100 described in the present application obtains greater radiation efficiency and signal transmission and reception performance.
  • the mobile terminal can obtain a better call effect and a smaller volume.
  • the antenna 100 is applied to a typical mobile terminal circuit board.
  • the size of the circuit board 220 is a rectangular shape with a length of 150 mm and a width of 75 mm.
  • the low-frequency band of the antenna 100 includes a frequency band of 617-960 MHz, thereby covering most low-frequency band signals in the prior art. It can be understood that the antenna 100 further includes LTE and GPS frequency bands with low frequency resolution, such as LTE B11 / 21/32 frequency band (1427-1515MHz); GPS L1 / L2 / L5 frequency band (1575.42 / 1227.6 / 1176.45MHz) and the like.
  • the grounding portion 30, the feeding branch 10, and the parasitic branch 20 together form an electrical length which is a half wavelength of the working frequency of the antenna, so that the resonance generated by the three is made.
  • the induced current around the gap is at a large value.
  • the length of the gap is 1/4 of the wavelength of the working frequency
  • the length of the side 221 is also 1/4 of the wavelength of the emission frequency
  • the length of the radiating portion 210 is also slightly
  • the emission frequency has a wavelength of 1/4.
  • the radiating portion 210 surrounds the side edge 221, the length of the radiating portion 210 may be slightly larger than the length of the side edge 221.
  • the radiating part 210 and the side 221 together form an asymmetrical 1/2 wavelength of the antenna dual dipole.
  • asymmetry means that a part of the radiating part 210 slightly larger than the side edge 221 is asymmetric.
  • the insulation slit 50 is disposed at a midpoint in the length direction of the radiation portion 210, that is, a midpoint in the length direction of the gap 40. That is, the electrical length of the feeding branch 10 is equal to the length of the parasitic branch 20. Because when the insulation slit 50 is located at a midpoint position in the length direction of the gap 40, it is beneficial to symmetrically arrange the feeding branch 11 and the grounded branch 21 on both sides of the insulation slit 50, and further to When the feeding branch 11 and the ground branch 21 are coupled to each other, the midpoint of the coupling is exactly located in the gap 40, that is, the midpoint of the side 221. That is, the resonance excitation source of the antenna 100 is at a midpoint position of the side 221.
  • the maximum value of the characteristic current is also at the midpoint position of the side 221.
  • the excitation point of the ground portion 30 is at the position where the excitation current of the ground portion 30 is at the maximum, so that better radiation efficiency can be obtained. It can be understood that, to achieve the coupling between the feeding branch 11 and the ground branch 21, the relative distance between the feeding branch 11 and the ground branch 21 needs to satisfy an effective coupling effect between the two.
  • the insulation gap 50 in order to ensure the coupling between the feed branch 10 and the parasitic branch 20, the insulation gap 50 needs to be as narrow as possible, supplemented by the feed branch 11 and the ground The coupling between the branches 21 is more matched to obtain a better antenna effect. Therefore, the width range of the insulation gap 50, that is, the dimension along the extension direction of the gap 40, should be set as: 0.2 mm or more and 2 mm or less, that is, the insulation gap 50 is in the radiating part. The size of 210 in the length direction should be set to: 0.2mm or more and 2mm or less. This point is quite different from existing antenna designs. Because in the existing antenna design, the coupling relationship between the antenna branches needs to be weakened as much as possible to avoid the mutual influence between the branches.
  • the mobile terminals in the prior art mostly adopt a wide antenna slot.
  • the insulation gap 50 needs to be as narrow as possible, so that the mobile terminal 200 including the antenna 100 can have a smaller antenna slit, thereby improving the mobile terminal 200 Appearance consistency.
  • the coupling between the feeding branch 11 and the ground branch 21 can also be controlled by the amount of planar capacitive coupling formed by the insulation gap 50. That is, a cross-sectional area of the radiating portion 210 where the radiating portion 210 is cut by the insulation slit 50.
  • the insulation gap 50 is composed of a suspension section 51 made of a conductive material and separation gaps 52 on both sides of the suspension section 51. It can be understood that the suspension section 51 is located between the power feeding branch 10 and the parasitic branch 20. Between the suspension section 51 and the power feeding branch 10 and between the suspension section 51 and the parasitic branch section 20, an insulating separation gap 52 is provided. That is, the suspension section 51 is a section in the radiating part 210, the suspension section 51 is located between the feeding branch 10 and the parasitic branch 20, and the suspension section 51 and the two ends of the suspension section 51 The separation slits 52 collectively constitute the insulation slits 50 to separate the feeding branch 10 and the parasitic branch 20.
  • the feeding branch 10 feeds power through the separation gap 52 and the suspension section 51, and feeds the parasitic branch 20 through the suspension section 51 through the separation gap 52. After the parasitic branch 20 obtains a parasitic current through the suspension section 51, the parasitic branch 20 is coupled with the feeding branch 10, and then the ground part 30 is resonantly excited.
  • the floating section 51 may be configured as an external key or interface of the mobile terminal 200, such as a charging interface, a USB interface, and the like of the mobile terminal 200. Because when the radiating part 210 is a frame or a housing, such interfaces are mostly provided on the radiating part 210, and such interfaces are mostly formed by opening directly on the radiating part 210.
  • the shape of the radiating part 210 at such an interface varies greatly, directly setting the insulation slot 50 here is not good for the resonance design of the antenna 100.
  • Such a key or interface is independently set as the suspension section 51, and the suspension section 51 is separated from the power feeding branch 10 and the parasitic branch 20 through the separation gap 52, so that the Both the feeding sub-branch 10 and the parasitic sub-branch 20 are conductors with relatively uniform shapes, which is helpful to simplify the model of the antenna 100 and achieve a more accurate characteristic matching design.
  • both the feeding branch 11 and the ground branch 21 need to be gathered toward the insulation gap 50.
  • One end of the gap 40 that is close to the feeding branch 10 and electrically connected to the ground portion 30 is defined as a first end 41, and the other end of the gap 40 is a second end 42. It can be understood that the second end 42 is close to a position where the parasitic branch 20 is electrically connected to the ground portion 30.
  • the convergence of the feeding branch 11 and the ground branch 21 with respect to the insulation gap 50 that is, the feeding branch 11 is closer to the insulation gap 50 with respect to the first end 41, and the ground branch 21 is also closer to the insulation gap 50 than the second end 42.
  • the length range of the suspension section 51 that is, the size along the length direction of the radiating part 210 is set as: 12 mm or more and 18 mm or less
  • the length range of the separation gap 52 that is, The dimension along the length direction of the radiation part 210 is set to be 0.2 mm or more and 1.5 mm or less.
  • the length direction of the radiating portion 210 that is, the direction in which the radiating portion 210 extends from the power feeding branch 10 to the parasitic branch 20.
  • Such a setting can make the length of the floating section 51 match the size of most keys or interfaces, and also ensure effective coupling of the ground branch 21 and the feeding branch 11.
  • the length of the ground branch 21 extending in the gap 40 may be set at a wavelength of the working frequency of the antenna. Between 1/4, the length of the feeding branch 11 extending within the gap 40 is: greater than or equal to 1/6 of the wavelength of the antenna operating frequency, and less than or equal to the wavelength of the antenna operating frequency. 1/8, the length of the ground branch extending into the gap is 1/4 of the wavelength of the working frequency of the antenna.
  • the electrical length of the feeding branch 11 and the distance between the feeding point 101 and the insulation gap 50 is the antenna 1/6 to 1/8 of the working frequency wavelength (this range includes the endpoints); when the feeding point 101 of the feeding branch 11 is far from the insulation gap 50, the electrical length of the feeding branch 11 can be understood as The antenna has a working frequency of 1/4.
  • the ground branch 21 since the length of the side 221 is a fixed value, when the feed current at the feed point 101 sends a signal of a corresponding resonant frequency, the ground branch 21 generates a parasitic current of another resonant frequency.
  • the ground branch 21 may further connect a parasitic frequency modulation device 22 in series to the ground portion 30.
  • the parasitic frequency modulation device 22 is located between the ground branch 21 and the ground portion 30. It can be understood that the parasitic frequency modulation device 22 may use frequency modulation components commonly used in the art, such as capacitors, inductors and other components.
  • a feed frequency-modulating branch 12 may also be provided on the feed branch 10.
  • the feed FM branch 12 is located in an extension direction of the parasitic branch 21 toward the feed branch 11, that is, the feed FM branch 12 is located between the feed branch 11 and the first end. Between 41.
  • the feed FM branch 12 also extends toward the gap 40, and the feed FM branch 12 is electrically connected to the grounding portion 30 to achieve the grounding function of the feed branch 10.
  • a feed frequency-adjusting device 121 may be provided between the feed frequency-modulating branch 12 and the grounding portion 30 for frequency adjustment of the feed branch 10. It can be understood that the feed frequency modulation device 121 may also be a component such as a capacitor or an inductor.
  • the size of the circuit board 220 in this embodiment of the present application is a rectangular shape with a length of 150 mm and a width of 75 mm.
  • the extension length of the side edge 221 in this direction does not exceed 75 mm at the maximum.
  • a larger length of the side 221 is required to match the electrical length of 1/4 wavelength. Therefore, when the side edge 221 is located on a single edge of the mobile terminal 200 and the length of the single edge is insufficient to match the 1/4 wavelength length required for the low frequency of the mobile terminal 200, the side edge 221 needs to be adjusted. Perform extension.
  • the length of the side 221 is lengthened to match the electrical length required for the frequency.
  • the extension of the side edge 221 also drives the extension of the radiation portion 210, and the gap 40 increases correspondingly with the extension of the side edge 221 and the radiation portion 210 (see FIG. 8).
  • the side edge 221 is a folded shape, and the side edge 221 of the folded edge includes a first segment 401 and a second segment 402 that intersect, and one end of the first segment 401 and one end of the second segment 402 coincide. Accordingly, the first end 41 of the gap 40 is located at an end of the first section 401, and the second end 42 is located at an end of the second section 402.
  • the power feeding branch 10 or the parasitic branch 20 also bends synchronously with the side 221 to keep the cross-sectional width of the gap 40 in the length extension direction uniform. After the shape of the slot 40 is changed, the current circulating loop of the antenna 100 during feeding still travels around the slot 40. At this time, the starting position of the induced current of the antenna 100 depends on the coupling position of the feeding branch 10 and the parasitic branch 20. That is, when the coupling position of the feeding branch 10 and the parasitic branch 20 appears in the first section 401, the starting position of the induced current on the ground portion 30 is in the first section 401 pair. It should be coupled.
  • the starting position of the induced current on the grounding portion 30 corresponds to the second section 402 Coupling position. It can be understood that no matter where the induced current is on the ground portion 30, the flow path of the induced current travels along the periphery of the gap 40. At this time, setting the sum of the lengths of the first segment 401 and the second segment 402 equal to the 1/4 wavelength of the mid-point of the low-frequency band of the mobile terminal 200 can make the antenna 100 effectively generate resonance in the low-frequency band. .
  • the position setting of the insulation gap 50 at the mobile terminal 200 all provides greater flexibility.
  • the radiator of the mobile terminal is mostly a metal frame, including a metal back cover, which is radiated in the form of a frame slit.
  • the efficiency of the antenna is deteriorated because the metal frame and the metal back cover are held by the human hand, especially when the opening of the metal frame is held by the hand, the antenna performance is seriously attenuated, resulting in Communication performance is degraded.
  • the antenna feed point excites the current in the long-side direction of the circuit board to radiate, that is, the second current mode 002 described in this application document.
  • the characteristic current of the antenna 100 is close to the minimum value at the point closest to the feeding point 101.
  • the radiation efficiency of the antenna thus excited is relatively low.
  • the head-hand mode attenuation of the antenna in the prior art is relatively serious.
  • the low frequency drop of the prior art antenna is at least 6dB or more.
  • the antenna 100 described in this application since the position of the antenna 100 described in this application is not limited by the low-frequency wavelength, the setting is relatively flexible, and theoretically, it can be set at any position around the mobile terminal 200. Correspondingly, the position of the insulation gap 50 may also be set at any position on the edge of the mobile terminal 200.
  • the antenna can be minimized by the palm of the user in the head-to-hand mode.
  • the antenna 100 in the present application uses the first current mode 001 for excitation, the antenna 100 has a higher excitation efficiency, and can greatly avoid signal attenuation of the antenna 100 in the head-hand mode. problem. It is found through an experimental test that when the insulation gap 50 is disposed at a bottom position of the mobile terminal 200.
  • the low-frequency drop of the antenna 100 in the head-to-hand mode according to the present application is controlled within 3 dB.
  • the antenna 100 is disposed at the bottom of the mobile terminal 200, and is defined in the embodiment of the present application as the side 221 is located at the bottom of the default display screen of the display surface 240 of the mobile terminal 200. end. That is, the bottom end of the mobile terminal 200 when the user observes the mobile terminal 200 at a front viewing angle. Because the mobile terminal 200 adopts a rectangular shape of a typical circuit board 220 with a length of 150 mm and a width of 75 mm, when a user holds the mobile terminal 200 and enters a head-handed state, the bottom position of the mobile terminal 200 is generally not Will be covered, in a relatively open and free state. Therefore, the antenna 100 is disposed at the bottom of the mobile terminal 200, which is beneficial to the signal reception of the antenna.
  • the insulating slot 50 in the antenna 100 in the present application further includes the floating section 51, it is also beneficial to the interface design of the mobile terminal 200 in the present application.
  • the folded edge of the side edge 221 further includes a third section 403.
  • the third segment 403 is located at an end of the first segment 401 away from the second segment 402, and the third segment 403 also intersects the first segment 401. That is, the first segment 401 is connected between the second segment 402 and the third segment 403, and the second segment 402 and the third segment 403 are bent in the same direction from the first segment 401 .
  • the feeding branch 10 or the parasitic branch 20 also bends synchronously with the side 221, and the feeding branch 10 or the parasitic branch 20 also has a shape where two sections intersect. It is composed to keep the cross-sectional width of the gap 40 in the length extension direction uniform.
  • the first end 41 of the gap 40 is located at an end of the third section 403 away from the first section 401, and the second end 42 is located at the second section. 402 is far from the end of the first section 401.
  • the introduction of the third section 403 can further expand the length of the gap 40. In this way, when the length of the side of the grounding portion 30 in a certain direction is insufficient, the introduction of the third segment 403 helps to pass the matching design of the third segment 403 and the second segment 402, and The position of the insulation gap 50 is set at the position of the side frame of the mobile terminal 200 corresponding to the side wall.
  • the insulation gap 50 may be located in the middle of a frame on one side of the mobile terminal 200.
  • a structure such as a charging interface or a USB interface
  • a corresponding interface structure can be provided on one side of the mobile terminal 200, such as a middle position of the bottom side.
  • intersection between the first segment 401 and the second segment 402 and the intersection between the third segment 403 and the first segment 401 are shown as perpendicular intersections in FIG. 9 The way. In other embodiments, the intersection between the first segment 401 and the second segment 402, and the intersection between the third segment 403 and the first segment 401, may also be based on the circuit
  • the shape of the plate 220 is different, or the shape of the radiating part 210 is different, and the shapes are set to intersect at any other angle, or to intersect curves, intersect multiple straight lines, and the like. As long as the length of the gap 40 can be effectively extended to match the wavelength required for the resonance frequency, the technical solution claimed in this application can be realized.
  • the side 221 in the antenna 100 includes both the second section 402 and the third section 403.
  • the insulation gap 50 also includes the suspension section 50 and the separation gap 52.
  • the embodiment of FIG. 7b is applicable to a case where an interface is required to be opened at a middle position of the short side of the mobile terminal 200.
  • the antenna 100 is provided on the top surface and the bottom surface of the mobile terminal 200.
  • the two antennas 100 can be located in the same frequency band, or can be set to different frequency bands and switched automatically.
  • the arrangement of the antenna 100 can further enhance the communication capability of the mobile terminal 200.
  • the foregoing embodiment of the antenna 100 described in this application uses a circuit board of a typical mobile terminal for description.
  • the mobile terminal 200 described in the present application is not limited to a mobile phone, but may also include a tablet, an electronic reader, a remote control, a notebook computer, a vehicle-mounted device, a network TV, a wearable device and other smart devices with network functions. Therefore, the circuit board 220 of the mobile terminal 200 described in the present application may also be any size that matches the structure of the above product.
  • the antenna 100 described in the present application may also be disposed at any edge position of the mobile terminal 200 according to actual conditions. For example, in the embodiment of FIG. 11, the mobile terminal 200 is a tablet computer.
  • the antenna 100 is simultaneously disposed on the top and the bottom of the mobile terminal 200. , You can get better communication effect when the user holds it. It can be understood that, at this time, the antenna 100 is located at a longer side position of the mobile terminal 200, which is slightly different from the antenna 100 located at a shorter side position of the mobile terminal 200 in the foregoing embodiment.
  • the radiating portion 210 of the mobile terminal 200 may be a metal frame structure of the mobile terminal 200 or a metal middle frame structure of the mobile terminal 200.
  • the back cover 250 of the mobile terminal 200 is preferably made of a non-conductive material such as glass or plastic, and the radiating part 210 is relatively independent and surrounds at least a section of the circuit board 220 to form the antenna 100 described in this application.
  • a circle of partitions 251 are provided on the back cover 250 of the mobile terminal 200, and the partitions 251 connect the A portion of the radiating portion 210 is separated from an edge of the back cover 250, and a part of the radiating portion 210 is used for radiating as the radiating portion 210 in the antenna 100.
  • the back cover 250 is made of a non-conductive material, and the radiating portion 210 is disposed in the back cover 250 by means of laser printing (LDS), injection molding, etc.
  • LDS laser printing
  • the back cover 250 communicates with the grounding portion 30, and can also achieve the technical effects of the antenna described in this application.
  • the radiation portion 210 is a flexible circuit board (FPC) electrically connected to the ground portion 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请涉及一种设于移动终端上的天线,移动终端包括辐射部和电路板,电路板包括侧边和接地层,辐射部由绝缘缝隙隔断为馈电支节和寄生支节。电路板和辐射部合围出间隙,馈电支节向间隙延伸有馈电分支用于天线的馈电,寄生支节向间隙延伸有电连接至接地部的接地分支。天线在接地部、馈电支节和寄生支节上激起绕间隙的电流回路。本申请所述天线在感应电流较大的位置形成谐振,而保证了通信信号具备更大功率,使得移动终端即使处于头手模式时,天线的效率衰减也能得到控制,保持较好的通话效果。

Description

天线及移动终端 技术领域
本申请涉及通信领域,尤其涉及一种天线,以及包含此天线的移动终端。
背景技术
当前的移动终端大多具备通话功能,其内部设置有与外界通信用的天线。用户通话功时移动终端大多处于头手模式,移动终端在头手模式下的天线信号衰减较为严重,影响移动终端的通话效果。
发明内容
本申请的目的在于提供一种处于头手模式下仍可较好保持信号收发性能的天线,包括如下技术方案:
一种天线,包括馈电支节、寄生支节、馈电分支、接地分支及接地部,所述天线装置设于移动终端,所述移动终端包括辐射部和电路板,所述电路板包括侧边,所述接地部设于所述电路板上的全部或部分接地层,所述侧边位于所述接地部的边缘,所述辐射部与所述侧边之间形成间隙,所述辐射部设有绝缘缝隙,所述绝缘缝隙将所述辐射部分隔为所述馈电支节和所述寄生支节,所述馈电分支从所述馈电支节向所述间隙内延伸,所述馈电分支远离所述馈电支节的一端为馈电点,所述接地分支从所述寄生支节向所述间隙内延伸且电连接至所述接地部,所述侧边位于所述馈电支节远离所述绝缘缝隙的一端和所述寄生支节之远离所述绝缘缝隙的一端之间,且所述馈电支节远离所述绝缘缝隙的一端和所述寄生支节之远离所述绝缘缝隙的一端均电连接至所述接地部。
具体而言,所述天线在所述接地部、所述馈电支节和所述寄生支节所以产生的谐振激起绕所述间隙的感应电流回路。
本申请所述天线,通过所述辐射部和所述侧边合围出所述间隙,通过所述绝缘缝隙将所述辐射部分隔为馈电支节和寄生支节,并在所述馈电支节和所述寄生支节朝向所述间隙的方向分别伸出所述馈电分支和所述接地分支。其中所述馈电分支远离所述馈电支节一端为馈电点,用于导通射频信号。所述接地分支远离所述寄生支节一端与所述接地部电连接,用于保持所述接地分支的零电位。当所述馈电点开始向所述天线进行馈电时,所述馈电分支与所述接地分支之间发生耦合,在所述侧边上激起沿所述间隙长度方向延伸的感应电流。该电流通过所述侧边以及所述馈电支节和所述寄生支节,形成了绕所述间隙循环的电流回路。所述馈电分支和所述接地分支得以在感应电流较大的位置对电流形成谐振,加大了天线的辐射功率,进而加强了所述天线的信号收发性能。
其中,所述天线的发射频率包括低频段的617~960MHz频带,还包括频率解决低频的LTE和GPS频段,例如LTE B11/21/32频段(1427~1511MHz);GPS L1/L2/L5频段(1575.42/1227.6/1176.45MHz)等。
其中,所述接地部、所述馈电支节和所述寄生支节共同构成电长度为天线工作频率 的二分之一波长,以使得三者所产生的谐振激起绕所述间隙的感应电流处于较大值,有利于提升辐射效率。
其中,所述绝缘缝隙沿所述辐射部长度方向上的尺寸范围为:大于等于0.2mm,且小于等于2mm,以保证所述馈电支节和所述寄生支节之间的耦合。所述辐射部的长度方向,即所述辐射部从所述馈电支节向所述寄生支节延伸的方向。
其中,所述馈电分支和所述接地分支之间的耦合还可以通过所述绝缘缝隙形成的平面电容耦合量来进行调整。
其中,所述绝缘缝隙还包括导电的悬浮段,所述悬浮段位于所述馈电支节与所述寄生支节之间,所述悬浮段与所述馈电支节、所述寄生支节之间分别设有绝缘的分隔缝隙。所述悬浮段可用于设置所述移动终端的按键或接口等结构。
其中,相对于馈电支节的接地点,所述馈电分支在所述馈电支节上更靠近所述绝缘缝隙的一端,相对于馈电支节的接地点,所述接地分支在所述寄生支节上更靠近所述绝缘缝隙的一端。具体而言,第一距离小于第二距离,并且第三距离小于第四距离,其中所述第一距离为所述馈电分支与所述馈电支节的连接处和所述绝缘缝隙的距离,所述第二距离为所述馈电分支与所述馈电支节的连接处和所述馈电支节与所述接地部电连接的位置的距离,所述第三距离为所述接地分支与所述寄生支节连接处和所述绝缘缝隙的距离,所述第四距离为所述接地分支与所述寄生支节的连接处和所述寄生支节与所述接地部电连接的位置的距离。所述侧边的中点位置为感应电流的最大位置,在加入悬浮段后,所述馈电分支和所述接地分支相互靠近可以获得更好的耦合效果。
其中,所述悬浮段沿所述辐射部长度方向的尺寸范围为:大于等于12mm,且小于等于18mm,所述分隔缝隙沿所述辐射部长度方向的尺寸范围为:大于等于0.2mm,且小于等于1.5mm。这样设置得以匹配大多数按键或接口,同时保证所述接地分支和所述馈电分支的耦合。
其中,所述馈电分支向所述间隙内延伸的长度的范围为:大于等于所述天线工作频率波长的1/6,且小于等于所述天线工作频率波长的1/8,所述接地分支向所述间隙内延伸的长度为所述天线工作频率波长的1/4,用于进一步保证所述接地分支与所述馈电分支的有效耦合。
其中,所述接地分支与所述接地部之间设有寄生调频装置,用于调整所述接地分支的频率。
其中,所述馈电分支还设有馈电调频分支,所述馈电调频分支位于所述寄生支节朝向所述馈电支节的延长方向上,所述馈电调频分支也朝向所述间隙延伸,所述馈电调频分支与所述接地部电连接。所述馈电调频分支可用于实现所述馈电支节的接地。
其中,所述馈电调频分支与所述接地部之间还设有馈电调频装置,所述馈电调频装置用于所述馈电支节的频率调整。
其中,所述侧边包括相交的第一段和第二段。所述馈电支节或所述寄生支节随所述侧边同步弯折,以保持所述间隙沿长度方向截面宽度一致。即所述馈电支节或所述寄生支节也由两段相交的形状组成。通过所述第一段和所述第二段的结合,可以延展所述间隙的长度,以扩大所述天线的波长匹配范围。
其中,所述侧边还包括第三段,所述第一段连接在所述第二段和所述第三段之间, 所述第三段与所述第一段相交,所述第二段和所述第三段自所述第一段同向弯折。所述馈电支节随所述第三段同步弯折,所述寄生支节随所述第二段同步弯折,即所述馈电支节和所述寄生支节均由两段相交的形状组成。所述第三段可用于进一步延长所述间隙的长度,并与所述第一段、第二段相配合以调整所述绝缘缝隙在所述移动终端上的位置。
其中,所述第三段与所述第二段对称分布在所述第一段的两端,所述寄生支节和所述馈电支节对称分布在所述绝缘缝隙的两侧。所述第三段的长度与所述第二段的长度相等,以使得所述绝缘缝隙位于所述移动终端一侧边框的中部位置。
本申请还涉及一种移动终端,包括收发器和上述天线,所述收发器与所述天线中的馈点电连接,所述收发器通过所述天线与外界实现数据交互。可以理解的,所述移动终端因为所述天线的应用,可以获得更优的通话效果。
其中,所述侧边位于移动终端的底端,移动终端内设有听筒的位置所临近的短边的移动终端的顶端,侧边所在的位置利于在通话状态下露出所述天线,避免遮挡。
附图说明
图1是本申请所述移动终端的示意图;
图2是本申请所述天线示意图;
图3是图2所示天线的电流流向示意图;
图4是本申请所述天线内部谐振耦合的示意图;
图5是现有技术天线的电流流向示意图;
图6是本申请典型电路板上的特征电流示意图;
图7a是本申请所述天线一种实施例的示意图;
图7b是本申请所述天线一种实施例的示意图;
图8是本申请提供的天线一种实施例的示意图;
图9是本申请提供的天线一种实施例的示意图;
图10是本申请提供的移动终端一种实施例的示意图;
图11是本申请提供的移动终端一种实施例的示意图;
图12是本申请提供的移动终端一种实施例的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请技术方案进行描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施方式涉及的所述移动终端可以是任何具备通信功能的设备,例如:平板电脑、手机、电子阅读器、遥控器、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。可以理解的,各种移动终端出于自身功能的需要,通常都会在移动终端上设置蜂窝(Cellular)、无线局域网(WLAN)和蓝牙(Bluetooth)等无线 通信功能。由此,所述移动终端的内部会设置有与外界通信用的天线。
请参见图1,移动终端200包括辐射部210、电路板220、收发器230以及天线100。所述辐射部210的一部分与所述电路板220的一部分共同形成所述天线100的主体,辐射部210可以为移动终端200的边框,也可以为移动终端200的金属后盖,当辐射部210为边框时,如图1所示的实施例中,底部的部分边框和电路板220的边缘共同构成天线100的主体;当辐射部210为金属后盖时,可以在金属后盖的边缘处通过开缝的形式形成类似边框的金属带,同样,金属带与电路板220的边缘共同构成天线100的主体。
所述天线100具备馈电点101,所述收发器230与所述天线100中的馈电点101实现电连接。由此,当所述天线100工作时,所述收发器230通过所述天线100与外界实现了数据交互。具体而言,收发器230为射频收发电路,用于向天线100馈入电磁波信号。
具体参照图2,所述天线100包括馈电支节10、寄生支节20、馈电分支11、接地分支21及接地部30。所述移动终端200的所述电路板220包括一侧边221,辐射部210可以为移动终端200的金属壳体(包括边框和后盖)的一部分,例如:辐射部210为边框的一部分,辐射部210也可以为金属后盖上靠近边缘的一部分,其位置与边框的位置接近。所述辐射部210与所述侧边221之间设有间隙40。所述电路板220包括有接地层,所述辐射部210在所述侧边221的两端分别与所述接地层连接。所述电路板220中的所述接地层即形成所述天线100的所述接地部30。可以理解的,所述辐射部210与所述接地部30的连接也将所述间隙40形成了闭环结构。所述辐射部210上设有绝缘缝隙50。所述绝缘缝隙50将所述辐射部210分隔为所述馈电支节10和所述寄生支节20。由此,对于所述天线100,所述天线100的主体结构由位于所述侧边221内部的接地部30、所述馈电支节10、所述寄生支节20构成。所述馈电支节10与所述寄生支节20之间由所述绝缘缝隙50分隔开。所述馈电支节10、所述寄生支节20以及所述侧边221合围出所述间隙40。可以理解的,所述间隙40可以视作所述天线100的净空区。
馈电支节10上还设有所述馈电分支11。所述馈电分支11从所述馈电支节10向所述间隙40内延伸。所述馈电分支11远离所述馈电支节10的一端为所述天线100的所述馈电点101,馈电分支11远离所述馈电支节10的一端可以延伸至电路板220内部,通过设置在电路板220上的馈电电路为馈电分支11馈电。所述寄生支节20上也设有向所述间隙40内延伸的接地分支22。所述接地分支22电连接至所述接地部30。接地分支22远离寄生支节20的一端也可以延伸至电路板220的内部,接地分支22与接地部30之间可以通过接地弹片实现电连接,也可以通过焊接的方式实现电连接。
当所述馈电点101处馈电时,所述馈电分支11产生电流,形成低频谐振支节。由于所述馈电分支11与所述馈电支节10的连接关系,所述馈电支节10也被加载了馈电电流。且馈电电流在所述绝缘缝隙50处的电流最小,在所述馈电支节10与所述接地部30导通的位置电流最大。由于在所述绝缘缝隙50处的电流最小,电场最强,可以将电流耦合至寄生支节20。寄生支节20上电流也在所述绝缘缝隙50处电流最小,在所述寄生支节20与所述接地部30导通的位置电流最大。所述馈电分支11处因为馈电电流而具备了谐振,所述接地分支21处因为寄生电流而具备了寄生谐振。这样的设计在所述天线100低频工作时,所述绝缘缝隙50处左右分布有两个临近的谐振频率。这两个谐振频率通过 电场强耦合设计,所述馈电分支11和所述接地分支21耦合后在所述接地部30处激起感应电流。该感应电流依次通过所述接地部30、所述馈电支节10和所述寄生支节20循环流动,也即所述感应电流绕所述间隙40循环流动(见图3)。所述馈电分支11和所述接地分支21耦合后在所述接地部30处激起的感应电流频率,即通过所述辐射部210向外界发射的信号频率。
见图4,图4中的横轴为频率,单位为(MHz),纵轴为天线的回波系数(reflection coefficient),单位为(dB)。可以理解的,天线带宽指的是回波系数小于-6dB的频率内的带宽。当两个频率邻近的谐振,所述馈电分支10产生谐振的谐振频率为890MHz,所述寄生分支20产生谐振的谐振频率为970MHz,两个谐振中间相连的频率为930MHz。
需要提出的是,所述馈电支节10和所述寄生支节20在耦合后从所述接地部30激起的感应电流,是平行于所述缝隙40,或描述为平行于所述侧边221处的感应电流。现有技术中没有所述馈电支节10和所述寄生支节20的耦合(见图5),现有技术天线1000低频的工作原理是由馈电点1001在接地部300上激起垂直流向侧边2021,且向馈电点1001聚拢的感应电流。接地部300上的电流在馈电点1001处最大,越远离馈电点1001处感应电流越小。给定天线净空和天线形式的条件下,现有技术天线1000的谐振和效率取决于所述接地部300垂直于侧边2021方向上的长度尺寸。即,接地部300垂直于侧边2021方向上的尺寸与辐射部2100馈电枝节的尺寸共同组成非平衡的1/2波长的天线谐振。
本申请实施例提供的天线100在所述馈电支节10和所述寄生支节20的耦合激励的电流模式为图6所示的第一电流模式001。图6显示了所述天线100在所述第一电流模式001下的特征电流强弱分布方式,其中所述接地部30为矩形形状,图6左边为特征电流位于所述接地部30的短边上的电流分布,图6右边为特征电流位于所述接地部30的长边上的电流分布。可以发现,在第一电流模式001下,无论所述侧边221位于所述接地部30的长边还是短边,所述接地部30上的特征电流均显现为中部最大,两端最小的形态。
图5显示了现有技术中天线在所述第二电流模式002下的特征电流强弱分布方式,即现有技术天线1000电流方向垂直于侧边的情况。结合馈电点1001在间隙400内对接地部300的馈电激励状态,可知馈电点1001在电流方向垂直于侧边2021的所述第二电流模式002状态下,对接地部300的激励恰好位于所述第二电流模式002特征电流最弱的位置。这样使得现有技术天线1000没有对接地部300形成最有效的激励,由此激励起的低频效率相对较差,往往需要通过加大天线支节和天线接地部之间的净空区来进行弥补。
由此,根据本申请所述接地部30的特征模型的特征电流的分布来说,如果要最有效的激励所述接地部30低频,需要在所述接地部30特征电流最大点来进行激励,也即所述天线100的激励源要位于所述接地部30所对应的电流模式下电流分布最大点区域进行激励。在本申请所述天线100中,所述天线100通过所述辐射部210和所述侧边221合围出所述间隙40,所述辐射部210通过所述绝缘缝隙50分隔为所述馈电支10节和所述寄生支节20。此处被看作所述天线100的电流循环通路。进一步,本申请所述天线100在所述馈电支节10和所述寄生支节20上,分别朝向所述间隙40内伸出所述馈电分支11 和所述接地分支21。其中所述馈电分支11远离所述馈电支节10一端为所述馈电点101,所述接地分支21远离所述寄生支节20一端与所述接地部30电连接,用于保持所述接地分支21的电位平衡。即所述馈电分支11和所述接地分支21之间实现耦合,用于对所述接地部30进行激励。此时所述接地部30处产生的感应电流,是平行于所述侧边221的所述第一电流模式001。而所述馈电分支11与所述接地分支21要实现耦合,需要处于足够发生耦合的距离范围之内。通常情况下,所述馈电分支11与所述接地分支21均相对朝向所述绝缘缝隙50处靠拢,而相对远离所述间隙40的端部位置。这样,在所述第一电流模式001下,所述馈电分支11与所述接地分支21耦合后在所述接地部30上激起的感应电流,其激励位置避开了所述间隙40的两端部,从而在所述第一电流模式001下特征电流分布最大的位置对所述接地部30进行激励。即所述馈电分支11和所述接地分支21得以在感应电流较大的位置对电流形成谐振,使得所述天线100的低频效率相对更高,天线所需的净空区也相对更小。进而使得本申请所述天线100获得了更大的辐射效率和信号收发性能。
可以理解的,所述移动终端因为所述天线的应用,可以获得更优的通话效果,以及更小的体积。
一种实施例,所述天线100应用于典型移动终端电路板中。其中所述电路板220的尺寸为长150mm、宽75mm的矩形形状。其中所述天线100低频频段包括617~960MHz频带,由此覆盖现有技术中大部分的低频带信号。可以理解的,所述天线100还包括频率解决低频的LTE和GPS频段,例如LTE B11/21/32频段(1427~1511MHz);GPS L1/L2/L5频段(1575.42/1227.6/1176.45MHz)等。
一种具体实施方式中,所述接地部30、所述馈电支节10和所述寄生支节20共同构成电长度为天线工作频率的二分之一波长,以使得三者所产生的谐振激起绕所述间隙的感应电流处于较大值。可以理解的,当所述间隙的长度为所述工作频率波长的1/4时,所述侧边221的长度也为所述发射频率波长的1/4,所述辐射部210的长度也略为所述发射频率波长的1/4。因为所述辐射部210包围所述侧边221,因此所述辐射部210的长度会略大于所述侧边221的长度。一种实施例,所述辐射部210与所述侧边221共同组成所述天线双偶极子的非对称1/2波长。此处的非对称,即指所述辐射部210略大于所述侧边221的部分为非对称。
在本实施例中,所述绝缘缝隙50设置于所述辐射部210长度方向的中点处,也即所述间隙40长度方向的中点。即所述馈电支节10的电长度与所述寄生支节20的长度尺寸相等。因为,当所述绝缘缝隙50位于所述间隙40长度方向的中点位置时,有利于将所述馈电分支11和所接地分支21对称设置于所述绝缘缝隙50的两侧,进而在所述馈电分支11和所述接地分支21发生相互耦合的时候,其耦合的中点恰好位于所述间隙40,即所述侧边221的中点位置。也即所述天线100的谐振激励源处于所述侧边221的中点位置。由上述描述可知,当所述天线100处于所述第一电流模式001下时,其特征电流的最大值也处于所述侧边221的中点位置。所述馈电分支11与所述接地分支21耦合后对所述接地部30的激励点,处于所述接地部30的激励电流最大位置处,可以获得更好的辐射效率。可以理解的,要实现所述馈电分支11与所述接地分支21的耦合,所述馈电分支11与所述接地分支21的相对距离需要满足二者发生有效的耦合效应。
对于所述绝缘缝隙50,为了保证所述馈电支节10和所述寄生支节20之间的耦合,需要所述绝缘缝隙50尽量窄,并辅以所述馈电分支11和所述接地分支21之间的耦合更匹配,才得以获得更优性能的天线效果。由此,所述绝缘缝隙50的宽度范围,即沿所述间隙40的延伸方向上的尺寸宜设置为:大于等于0.2mm,且小于等于2mm,也即所述绝缘缝隙50在所述辐射部210的长度方向上尺寸宜设置为:大于等于0.2mm,且小于等于2mm。这一点相对于现有的天线设计来说较为不同。因为在现有的天线设计中,大多需要天线支节之间的耦合关系尽量减弱,避免支节之间的相互影响。由此,现有技术中的移动终端,大多采用了较宽的天线缝隙。而本申请所述天线100的方案中,则需要绝缘缝隙50尽量窄小,由此包含所述天线100的所述移动终端200可以具有更小的天线开缝,从而提高了所述移动终端200的外观一致性。
可以理解的,所述馈电分支11和所述接地分支21之间的耦合,还可以通过所述绝缘缝隙50形成的平面电容耦合量来控制。即所述辐射部210被所述绝缘缝隙50截断处的截面积。通过改变所述馈电支节10和所述寄生支节20在所述绝缘缝隙50处的截面面积,同样可以达到同调整所述绝缘缝隙50的宽度一样的效果,实现所述馈电分支11和所述接地分支21之间耦合的调节。
一种实施例见图7a,所述绝缘缝隙50在图7a的实施例中由导电材料制成的悬浮段51以及所述悬浮段51两侧的分隔缝隙52组成。可以理解的,所述悬浮段51位于所述馈电支节10与所述寄生支节20之间。在所述悬浮段51与所述馈电支节10之间,以及所述悬浮段51与所述寄生支节20之间,均设有绝缘的分隔缝隙52。也即所述悬浮段51为所述辐射部210中的一段,所述悬浮段51位于所述馈电支节10和所述寄生支节20之间,所述悬浮段51与其两端的所述分隔缝隙52共同组成所述绝缘缝隙50以分隔所述馈电支节10和所述寄生支节20。所述馈电支节10穿过所述分隔缝隙52与所述悬浮段51馈电,并通过所述悬浮段51穿过所述分隔缝隙52向所述寄生支节20馈电。所述寄生支节20通过所述悬浮段51获得寄生电流后,与所述馈电支节10发生耦合,进而对所述接地部30进行谐振激励。所述悬浮段51可被设置为所述移动终端200的外部按键或接口,如所述移动终端200的充电接口、USB接口等结构。因为所述辐射部210为边框或壳体时,此类接口多设置于所述辐射部210上,且此类接口多为直接在所述辐射部210上开口形成。由于此类接口处所述辐射部210的形状变化较大,因此在此处直接设置所述绝缘缝隙50不利于所述天线100的谐振设计。而将此类按键或接口独立设置为所述悬浮段51,通过所述分隔缝隙52将所述悬浮段51与所述馈电支节10和所述寄生支节20分隔开,使得所述馈电支节10和所述寄生支节20均为形状相对一致的导电体,有利于简化所述天线100的模型,实现更准确的特性匹配设计。
另一方面,因为所述绝缘缝隙50位于所述间隙40的中点位置,且所述悬浮段51对所述馈电分支11和所述接地分支21的耦合产生一定的干扰,使得耦合变弱。此时所述馈电分支11与所述接地分支21均需要向所述绝缘缝隙50处聚拢。定义所述间隙40靠近所述馈电支节10与所述接地部30电连接的一端为第一端41,所述间隙40的另一端为第二端42。可以理解的,所述第二端42靠近所述寄生支节20与所述接地部30电连接的位置。所述馈电分支11和所述接地分支21相对于所述绝缘缝隙50的聚拢,即所述馈电分支11相对于所述第一端41更靠近所述绝缘缝隙50,同时所述接地分支21相对于所述 第二端42也更靠近所述绝缘缝隙50。
一种实施例,将所述悬浮段51的长度范围,即沿所述辐射部210的长度方向上的尺寸设定为:大于等于12mm,且小于等于18mm,所述分隔缝隙52长度范围,即沿所述辐射部210的长度方向上的尺寸设定为:大于等于0.2mm,且小于等于1.5mm。所述辐射部210的长度方向,即所述辐射部210从所述馈电支节10向所述寄生支节20延伸的方向。这样设置可以使得所述悬浮段51的长度匹配大多数按键或接口的尺寸,同时还保证所述接地分支21和所述馈电分支11的有效耦合。
在所述间隙40处产生循环电流之外,所述馈电分支11和所述接地分支21上也有电流经过。在一种实施例中,为了保证所述接地分支21与所述馈电分支11的有效耦合,可将所述接地分支21在所述间隙40内延伸的长度设置于所述天线工作频率波长的1/4之间,同时将所述馈电分支11在所述间隙40内延伸的长度的范围为:大于等于所述天线工作频率波长的1/6,且小于等于所述天线工作频率波长的1/8,所述接地分支向所述间隙内延伸的长度为所述天线工作频率波长的1/4。
具体的,在所述馈电分支11与所述第一端41的位置固定不变的情况下,所述馈电分支11的电长度和所述馈电点101与所述绝缘缝隙50的距离相关。一般来说,如图7a里的实施例的所示,在所述馈电分支11的所述馈电点101靠近所述绝缘缝隙50时,所述馈电分支11的电长度为所述天线工作频率波长的1/6~1/8(此范围包括端点);当所述馈电分支11的馈电点101远离所述绝缘缝隙50时,所述馈电分支11的电长度可以理解为所述天线工作频率波长的1/4。通过调整所述馈电分支11与所述绝缘缝隙50的相对距离,以及所述馈电点101到所述第一端41之间的长度,可以控制和调整所述馈电分支11的电长度。
一种实施例,由于所述侧边221的长度为固定值,所述馈电点101处的馈电电流发出对应谐振频率信号时,所述接地分支21产生另一谐振频率的寄生电流。为了使得所述馈电分支11处的馈电电流与所述接地分支21处的寄生电流阻抗匹配,所述接地分支21还可以在所述接地部30处串联一寄生调频装置22。所述寄生调频装置22位于所述接地分支21与所述接地部30之间。可以理解的,所述寄生调频装置22可以采用本领域常用的调频组件,如电容、电感等元器件。
相应的,所述馈电支节10上也可以设置馈电调频分支12。所述馈电调频分支12位于所述寄生支节21朝向所述馈电支节11的延长方向上,也即所述馈电调频分支12位于所述馈电支节11与所述第一端41之间。所述馈电调频分支12也朝向所述间隙40内延伸,所述馈电调频分支12与所述接地部30电连接,以实现所述馈电支节10的接地功能。
一种实施例,所述馈电调频分支12与所述接地部30之间也可以设置馈电调频装置121,用于所述馈电支节10的频率调整。可以理解的,所述馈电调频装置121也可以是电容、电感等元器件。
对于典型移动终端电路板,本申请实施例针对的所述电路板220的尺寸为长150mm、宽75mm的矩形形状。当所述侧边221位于所述电路板的宽度(75mm)边时,所述侧边221在该方向上的延伸长度最大不超过75mm。而对于天线的低频谐振而言,需要所述侧边221取较大的长度才能匹配1/4波长的电长度。由此,在所述侧边221位于所 述移动终端200的单一边缘,且该单一边缘长度不足以匹配所述移动终端200低频所需的1/4波长长度时,需要对所述侧边221进行延展。即加长所述侧边221的长度来匹配频率所需的电长度。相应的,所述侧边221的延展也带动了所述辐射部210的延展,所述缝隙40随所述侧边221和所述辐射部210的延展而相应增长(见图8)。所述侧边221为折边形状,折边的所述侧边221包括相交的第一段401和第二段402,所述第一段401的一端和所述第二段402的一端重合。相应的,所述间隙40的所述第一端41位于所述第一段401的端部,所述第二端42位于所述第二段402的端部。所述馈电支节10或所述寄生支节20也随所述侧边221发生同步弯折,以保持所述间隙40在长度延伸方向上的截面宽度一致。在所述缝隙40的形状发生改变后,所述天线100在馈电时的电流循环回路依然绕所述缝隙40行进。此时所述天线100的感应电流起始位置取决于所述馈电支节10与所述寄生支节20的耦合位置。即当所述馈电支节10与所述寄生支节20的耦合位置出现在所述第一段401内时,所述接地部30上感应电流的起始位置在所述第一段401对应该耦合位置处。当所述馈电支节10与所述寄生支节20的耦合位置出现在所述第二段402内时,所述接地部30上感应电流的起始位置在所述第二段402对应该耦合位置处。可以理解的,无论感应电流在所述接地部30上的任何位置,感应电流的流经路径都沿着所述间隙40的周围行进。此时,设置所述第一段401和所述第二段402的长度之和等于所述移动终端200的低频带中点1/4波长,可以使得所述天线100有效产生低频带内的谐振。
这样的设置方式,对于所述天线100,包括所述绝缘间隙50在所述移动终端200处的位置设定均提供了较大的灵活性。相较于现有的天线技术,移动终端的辐射体多为金属边框,包括金属后盖,采用边框开缝的形式进行辐射。这样的设置在用户采用头手模式进行通话时,因为人手握到金属边框和金属后盖,导致天线的效率衰减,尤其是当手握住金属边框的开缝处时,天线性能衰减严重,导致通信性能下降。
为此,大多数矩形的移动终端200会将天线开缝设置在移动终端的底部,避免人手直接与开缝接触。此时的天线馈电点激励其电路板的长边方向的电流来进行辐射,即本申请文件所述的第二电流模式002。通过前述可知,在所述第二电流模式002下,所述天线100的特征电流在最靠近所述馈电点101处恰好处于最小值。这样激起的天线辐射效率较低。一种实施例,因为用户在头手模式下移动终端的开缝依然靠近用户手握的位置,使得现有技术中天线的头手模式衰减较为严重。通常的,现有技术天线低频降幅至少在6dB以上。
而对于本申请所述天线100,一方面,因为本申请所述天线100的位置不受低频波长的限制,因而设置相对灵活,理论上可以设置在所述移动终端200周围的任意位置处。相应的,所述绝缘缝隙50的位置也可以设置在所述移动终端200边缘的任意位置。可以将用户在头手模式下手掌对天线的遮盖降到最小。另一方面,因为本申请所述天线100采用了所述第一电流模式001进行激励,所述天线100的激励功效更高,可以较大幅度的避免头手模式下所述天线100的信号衰减问题。通过试验测试得出,当所述绝缘缝隙50设置于所述移动终端200的底部位置时。采用本申请所述天线100在头手模式下的低频降幅控制在3dB以内。
需要提出的是,所述天线100设置于所述移动终端200的底部,在本申请实施例中 定义为所述侧边221位于所述移动终端200的所述显示面240的默认显示画面的底端。即用户于正视角度观测所述移动终端200时所述移动终端200的底端。由于所述移动终端200采用典型电路板220的尺寸为长150mm、宽75mm的矩形形状时,在用户手握所述移动终端200并进入头手状态时,所述移动终端200的底部位置通常不会被覆盖,处于相对开放的自由状态。由此,所述天线100设置于所述移动终端200的底端,有利于天线的信号接收。
另一方面,现有的移动终端产品中,大多将充电接口、USB接口等结构设置于移动终端的底部。在本申请所述天线100中的所述绝缘缝隙50还包含所述悬浮段51的实施例情况下,也有利于本申请所述移动终端200的接口设计。
一种实施例见图9,所述侧边221的折边还包括第三段403。所述第三段403位于所述第一段401远离所述第二段402的一端,且所述第三段403也与所述第一段401相交。即所述第一段401连接在所述第二段402和所述第三段403之间,且所述第二段402和所述第三段403自所述第一段401同向弯折。同样的,所述馈电支节10或所述寄生支节20也随所述侧边221发生同步弯折,所述馈电支节10或所述寄生支节20也由两段相交的形状组成,以保持所述间隙40在长度延伸方向上的截面宽度一致。可以理解的,在本实施例中所述间隙40的所述第一端41位于所述第三段403远离所述第一段401的端头,所述第二端42位于所述第二段402远离所述第一段401的端头。所述第三段403的引入,可以进一步拓展所述间隙40的长度。这样,在所述接地部30某一方向的侧边长度不足的情况下,所述第三段403的引入有助于通过所述第三段403和所述第二段402的匹配设计,而将所述绝缘缝隙50的位置设置于该侧壁对应的所述移动终端200一侧边框的位置。进一步的,当所述第三段403的长度与所述第二段402的长度相等时,所述绝缘缝隙50可以位于所述移动终端200一侧边框的中部。在所述移动终端200设置了充电接口或USB接口等结构时,得以将相应的接口结构设置于所述移动终端200一侧边,如底边的中部位置。
需要提出的是,所述第一段401与所述第二段402之间的相交,以及所述第三段403与所述第一段401之间的相交,在图9上显示为垂直相交的方式。在另外一些实施例中,所述第一段401与所述第二段402之间的相交,以及所述第三段403与所述第一段401之间的相交,还可以根据所述电路板220的形状不同,或所述辐射部210的形状不同,被设置为其余任意角度的相交,或曲线相交、多直线段相交等形状。只要所述间隙40的长度能够得到有效延长,以匹配谐振频率所需的波长即可实现本申请所要求保护的技术方案。
请看回图7b的实施例,结合了图7a和图9两种实施例的特点,所述天线100中的侧边221既包含了所述第二段402和所述第三段403,所述绝缘缝隙50也包含了所述悬浮段50和所述分隔缝隙52。图7b的实施例适用于在所述移动终端200的较短侧边上,需要在该较短侧边的中间位置开孔设置接口的情况。
一种实施例见图10,在所述移动终端200的顶面和底面均设置所述天线100,两个所述天线100可以位于同一频带,也可以分别设置为不同频带并自动切换,两个所述天线100的设置可以进一步加强所述移动终端200的通信能力。
为了方便理解,本申请所述天线100的上述实施例,采用了典型移动终端的电路板 进行描述。但由本申请说明书可知,本申请所述移动终端200不限于手机,还可以包括平板电脑、电子阅读器、遥控器、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。因此,本申请所述移动终端200的所述电路板220还可以为与上述产品结构匹配的任意尺寸。本申请所述天线100也可以根据实际情况设置于所述移动终端200的任意边缘位置。例如图11的实施例,所述移动终端200为平板电脑,用户在握持该平板电脑的时候易采用左右手两侧握持,此时所述天线100同时设置于所述移动终端200的顶部和底部,可以在用户握持时获得更好的通信效果。可以理解的,此时所述天线100位于所述移动终端200较长的侧边位置,与前述的实施例中所述天线100位于所述移动终端200较短的侧边位置略有差别。
在上述实施例中,所述移动终端200的所述辐射部210,可以为所述移动终端200的金属边框结构,也可以为所述移动终端200的金属中框结构。此时所述移动终端200的后盖250宜采用玻璃或塑料等非导电材料制成,所述辐射部210相对独立,且至少围绕所述电路板220的一段,以形成本申请所述天线100的技术方案。而对于一些采用全金属的所述后盖250实施例来说,可以采用图12的方法,在所述移动终端200的所述后盖250上设置一圈隔断251,所述隔断251将所述后盖250的边缘隔出一段所述辐射部210出来,其中一部分用以作为所述天线100中的所述辐射部210进行辐射。
还有一些实施例,所述后盖250为非导电材料制成,所述辐射部210通过激光打印(LDS)、注塑成型(insert modeling)等方式设置于所述后盖250中,并通过所述后盖250与所述接地部30实现连通,同样可以实现本申请所述天线的技术效果。或者,所述辐射部210为与所述接地部30电连接的柔性电路板(FPC)。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (15)

  1. 一种天线,其特征在于,包括馈电支节、寄生支节、馈电分支、接地分支及接地部,所述天线装置设于移动终端,所述移动终端包括辐射部和电路板,所述电路板包括侧边,所述接地部包括所述电路板上的全部或部分接地层,所述侧边位于所述接地部的边缘,所述辐射部与所述侧边之间形成间隙,所述辐射部设有绝缘缝隙,所述绝缘缝隙将所述辐射部分隔为所述馈电支节和所述寄生支节,所述馈电分支从所述馈电支节向所述间隙内延伸,所述馈电分支远离所述馈电支节的一端为馈电点,所述接地分支从所述寄生支节向所述间隙内延伸且电连接至所述接地部,所述侧边位于所述馈电支节远离所述绝缘缝隙的一端和所述寄生支节之远离所述绝缘缝隙的一端之间,且所述馈电支节远离所述绝缘缝隙的一端和所述寄生支节之远离所述绝缘缝隙的一端均电连接至所述接地部。
  2. 如权利要求1所述的天线,其特征在于,所述天线在所述接地部、所述馈电支节和所述寄生支节所产生的谐振激起绕所述间隙的感应电流回路。
  3. 如权利要求1所述的天线,其特征在于,所述接地部、所述馈电支节和所述寄生支节共同构成电长度为天线工作频率的二分之一波长。
  4. 如权利要求1所述的天线,其特征在于,所述绝缘缝隙沿所述辐射部的长度方向上的尺寸范围为:大于等于0.2mm,且小于等于2mm。
  5. 如权利要求1所述的天线,其特征在于,所述绝缘缝隙还包括导电的悬浮段,所述悬浮段位于所述馈电支节与所述寄生支节之间,所述悬浮段与所述馈电支节、所述寄生支节之间分别设有绝缘的分隔缝隙。
  6. 如权利要求5所述的天线,其特征在于,第一距离小于第二距离,并且第三距离小于第四距离,其中所述第一距离为所述馈电分支与所述馈电支节的连接处和所述绝缘缝隙的距离,所述第二距离为所述馈电分支与所述馈电支节的连接处和所述馈电支节与所述接地部电连接的位置的距离,所述第三距离为所述接地分支与所述寄生支节连接处和所述绝缘缝隙的距离,所述第四距离为所述接地分支与所述寄生支节的连接处和所述寄生支节与所述接地部电连接的位置的距离。
  7. 如权利要求6所述的天线,其特征在于,所述悬浮段沿所述辐射部长度方向的尺寸范围为:大于等于12mm,且小于等于18mm,所述分隔缝隙沿所述辐射部长度方向的尺寸范围为:大于等于0.2mm,且小于等于1.5mm。
  8. 如权利要求1~7任一项所述的天线,其特征在于,所述馈电分支向所述间隙内延伸的长度的范围为:大于等于所述天线工作频率波长的1/6,且小于等于所述天线工作频率波长的1/8,所述接地分支向所述间隙内延伸的长度为所述天线工作频率波长的1/4。
  9. 如权利要求1~7任一项所述的天线,其特征在于,所述接地分支与所述接地部之间设有寄生调频装置,用于所述接地支节的调频。
  10. 如权利要求1~7任一项所述的天线,其特征在于,所述馈电分支还设有馈电调频分支,所述馈电调频分支位于所述寄生支节朝向所述馈电支节的延长方向上,所述馈电调频分支也朝向所述间隙延伸,所述馈电调频分支与所述接地部电连接,用于所述馈电支节的接地。
  11. 如权利要求10所述的天线,其特征在于,所述馈电调频分支与所述接地部之间还设有馈电调频装置,用于所述馈电分支的调频。
  12. 如权利要求1~7任一项所述的天线,其特征在于,所述侧边包括相交的第一段和第二段,所述馈电支节或所述寄生支节随所述侧边同步弯折。
  13. 如权利要求1~7任一项所述的天线,其特征在于,所述侧边包括第一段、第二段和第三段,所述第二段和所述第三段均与所述第一段相交,所述第一段连接在所述第二段和所述第三段之间,所述第二段和所述第三段自所述第一段同向弯折,所述馈电支节随所述第三段同步弯折,所述寄生支节随所述第二段同步弯折。
  14. 如权利要求13所述的天线,其特征在于,所述第三段与所述第二段对称分布在所述第一段的两端,所述寄生支节和所述馈电支节对称分布在所述绝缘缝隙的两侧。
  15. 一种移动终端,其特征在于,所述移动终端包括收发器和权利要求1~14任一项所述的天线,所述收发器与所述馈电点电连接。
PCT/CN2018/124150 2018-06-01 2018-12-27 天线及移动终端 WO2019227914A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112020001302-1A BR112020001302A2 (pt) 2018-06-01 2018-12-27 Antena e terminal móvel
JP2020501392A JP7028954B2 (ja) 2018-06-01 2018-12-27 アンテナ及び移動端末
EP18920379.7A EP3624264A4 (en) 2018-06-01 2018-12-27 MOBILE ANTENNA AND TERMINAL
AU2018426062A AU2018426062B2 (en) 2018-06-01 2018-12-27 Antenna and mobile terminal
US16/620,359 US11276930B2 (en) 2018-06-01 2018-12-27 Antenna and mobile terminal
CN201880094023.XA CN112204815B (zh) 2018-06-01 2018-12-27 天线及移动终端
KR1020197036158A KR102276267B1 (ko) 2018-06-01 2018-12-27 안테나 및 이동 단말기
CA3067483A CA3067483C (en) 2018-06-01 2018-12-27 Antenna and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810554555.9 2018-06-01
CN201810554555.9A CN110556620B (zh) 2018-06-01 2018-06-01 天线及移动终端

Publications (1)

Publication Number Publication Date
WO2019227914A1 true WO2019227914A1 (zh) 2019-12-05

Family

ID=68698619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124150 WO2019227914A1 (zh) 2018-06-01 2018-12-27 天线及移动终端

Country Status (9)

Country Link
US (1) US11276930B2 (zh)
EP (1) EP3624264A4 (zh)
JP (1) JP7028954B2 (zh)
KR (1) KR102276267B1 (zh)
CN (2) CN110556620B (zh)
AU (1) AU2018426062B2 (zh)
BR (1) BR112020001302A2 (zh)
CA (1) CA3067483C (zh)
WO (1) WO2019227914A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186331B (zh) * 2019-07-04 2023-06-30 北京小米移动软件有限公司 一种终端设备
CN110943282B (zh) * 2019-12-12 2021-07-02 惠州Tcl移动通信有限公司 一种移动终端
CN113328233B (zh) * 2020-02-29 2022-11-08 华为技术有限公司 电子设备
KR20230014678A (ko) * 2020-05-25 2023-01-30 엘지전자 주식회사 재방사 안테나 및 무선충전장치
CN113764866B (zh) * 2020-06-03 2022-11-18 华为技术有限公司 一种天线装置、电子设备
CN112003020B (zh) * 2020-08-24 2023-04-28 Oppo广东移动通信有限公司 电子设备
CN114649680A (zh) * 2020-12-18 2022-06-21 华为技术有限公司 一种电子设备
CN113258268B (zh) * 2021-04-12 2022-11-01 荣耀终端有限公司 天线装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203503779U (zh) * 2013-07-25 2014-03-26 北京光宝移动电子电信部件有限公司 天线和手持通讯设备
CN106571516A (zh) * 2016-10-27 2017-04-19 瑞声科技(南京)有限公司 天线系统
CN107230835A (zh) * 2016-03-23 2017-10-03 Ace技术株式会社 具备环型辐射单元的金属体天线
CN107611565A (zh) * 2017-09-13 2018-01-19 维沃移动通信有限公司 一种gps‑wifi天线及移动终端

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904197B2 (ja) 2007-05-08 2012-03-28 パナソニック株式会社 不平衡給電広帯域スロットアンテナ
KR102013588B1 (ko) * 2012-09-19 2019-08-23 엘지전자 주식회사 이동 단말기
US9331397B2 (en) * 2013-03-18 2016-05-03 Apple Inc. Tunable antenna with slot-based parasitic element
US9118117B2 (en) * 2013-10-18 2015-08-25 Southern Taiwan University Of Science And Technology Receiving and transmitting device for wireless transceiver
JP6204229B2 (ja) * 2014-03-03 2017-09-27 株式会社フジクラ ループアンテナ
TWI501464B (zh) 2014-03-05 2015-09-21 Quanta Comp Inc 行動裝置
CN203932323U (zh) * 2014-05-28 2014-11-05 瑞声精密制造科技(常州)有限公司 适用于具有金属框结构的移动终端的天线系统
KR102226173B1 (ko) * 2014-09-02 2021-03-10 삼성전자주식회사 외부 금속 프레임을 이용한 안테나 및 이를 구비한 전자 장치
CN105449349A (zh) 2014-09-24 2016-03-30 中兴通讯股份有限公司 一种宽频带4g无线终端天线
KR20160067541A (ko) 2014-12-04 2016-06-14 엘지전자 주식회사 안테나 모듈 및 이를 이용한 이동 단말기
KR102495241B1 (ko) * 2015-08-10 2023-02-03 삼성전자주식회사 안테나 장치 및 그것을 포함하는 전자 장치
CN105762492B (zh) 2016-04-20 2019-02-05 Oppo广东移动通信有限公司 金属外壳、天线装置和移动终端
CN105655689B (zh) 2016-03-18 2017-11-14 广东欧珀移动通信有限公司 天线装置和移动终端
CN107293838A (zh) * 2016-03-31 2017-10-24 宏碁股份有限公司 具有窄接地面净空区的天线元件的通信装置
CN107275761A (zh) 2016-04-08 2017-10-20 北京小米移动软件有限公司 终端的天线
CN105977634B (zh) 2016-05-03 2019-07-05 瑞声科技(新加坡)有限公司 一种lte全频带手机天线结构
CN105977614B (zh) * 2016-05-30 2020-02-07 北京小米移动软件有限公司 通信天线、通信天线的控制方法、装置及终端
CN106384870A (zh) 2016-09-30 2017-02-08 努比亚技术有限公司 一种终端天线的频段扩展结构
CN106876979A (zh) 2016-12-30 2017-06-20 努比亚技术有限公司 一种移动终端及通信方法
CN106876976A (zh) 2016-12-30 2017-06-20 努比亚技术有限公司 一种天线、后盖和终端以及通信方法
CN106848594B (zh) 2017-03-06 2019-10-11 北京小米移动软件有限公司 天线模块及电子设备
CN107437661B (zh) 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203503779U (zh) * 2013-07-25 2014-03-26 北京光宝移动电子电信部件有限公司 天线和手持通讯设备
CN107230835A (zh) * 2016-03-23 2017-10-03 Ace技术株式会社 具备环型辐射单元的金属体天线
CN106571516A (zh) * 2016-10-27 2017-04-19 瑞声科技(南京)有限公司 天线系统
CN107611565A (zh) * 2017-09-13 2018-01-19 维沃移动通信有限公司 一种gps‑wifi天线及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624264A4 *

Also Published As

Publication number Publication date
US11276930B2 (en) 2022-03-15
CN112204815A (zh) 2021-01-08
CA3067483C (en) 2023-03-21
CN112204815B (zh) 2021-10-26
EP3624264A1 (en) 2020-03-18
BR112020001302A2 (pt) 2020-12-08
JP7028954B2 (ja) 2022-03-02
AU2018426062B2 (en) 2021-01-21
KR20200003907A (ko) 2020-01-10
AU2018426062A1 (en) 2020-01-02
KR102276267B1 (ko) 2021-07-12
EP3624264A4 (en) 2020-07-01
CN110556620B (zh) 2021-07-09
JP2020527310A (ja) 2020-09-03
CN110556620A (zh) 2019-12-10
US20200106177A1 (en) 2020-04-02
CA3067483A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2019227914A1 (zh) 天线及移动终端
CN109921175B (zh) 天线结构及具有该天线结构的无线通信装置
WO2020135146A1 (zh) 天线结构及无线通信终端
TWI691117B (zh) 天線結構及具有該天線結構的無線通訊裝置
CN107681249B (zh) 天线结构及具有该天线结构的无线通信装置
CN107645043B (zh) 天线结构及具有该天线结构的无线通信装置
CN113517546B (zh) 一种电子设备
US11962063B2 (en) Antenna structure and electronic device using same
CN113451741B (zh) 一种天线及终端设备
US11355853B2 (en) Antenna structure and wireless communication device using the same
WO2021197399A1 (zh) 一种天线及终端
WO2024027258A1 (zh) 天线结构及电子设备
CN112825386B (zh) 天线结构及具有该天线结构的无线通信装置
US20240072440A1 (en) Antenna assembly and electronic device
TWI725324B (zh) 行動裝置
TWI814085B (zh) 天線結構及具有該天線結構之無線通訊裝置
TW201911644A (zh) 天線結構及具有該天線結構之無線通訊裝置
CN112838369A (zh) 天线模块
CN112151939A (zh) 天线结构及具有该天线结构的无线通信装置
WO2023273604A1 (zh) 天线模组及电子设备
CN112751169A (zh) 天线结构及具有该天线结构的无线通信装置
CN112751161A (zh) 天线结构及具有该天线结构的无线通信装置
CN112151937A (zh) 天线结构及具有该天线结构的无线通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197036158

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018920379

Country of ref document: EP

Effective date: 20191209

ENP Entry into the national phase

Ref document number: 3067483

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018426062

Country of ref document: AU

Date of ref document: 20181227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020501392

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920379

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001302

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020001302

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200121